MT. TAYLOR MINE

CLOSEOUT/ CLOSURE PLAN

EXISTING MINE PERMIT #C1002RE DISCHARGE PERMIT DP-61

JANUARY 1998 REVISED DECEMBER 1998 UPDATED JULY 2012 REVISED APRIL 2013 REVISION 1, NOVEMBER 2013

MT. TAYLOR MINE

CLOSEOUT/ CLOSURE PLAN

EXISTING MINE PERMIT #C1002RE DISCHARGE PERMIT DP-61

JANUARY 1998

REVISED DECEMBER 1998

UPDATED JULY 2012

REVISED APRIL 2013

REVISED NOVEMBER 2013

Prepared by

Alan Kuhn Associates LLC

Table of Contents

1 INTRODUCTION			JCTION	1
	1.1	Bac	kground	1
	1.2	Proj	ject Description	2
	1.3	Proj	ject History	4
	1.4	Exis	ting and Required Permits	5
2	SITE	СНА	ARACTERISTICS	6
	2.1	Site	Climate	6
	2.2	Site	Geologic Setting Summary	6
	2.3	Site	Hydrology Summary	7
	2.3.	1	Surface Water	7
	2.3.	2	Ground Water	8
	2.4	Exis	ting Mine Units	10
	2.4.	1	Mine Unit	11
	2.4.2		Mine Dewatering and Mine Water Treatment Unit	12
	2.4.3		Service and Support Facilities	14
	2.4.	4	Ore Stockpile	14
	2.4.	5	South Waste Pile	15
	2.4.	5	Storm Water Retention Ponds	15
	2.4.	7	Access Road	16
	2.5	Futu	ure Mine Units	16
3	POS	T-CLO	OSURE LAND USE	17
	3.1	Fact	tors in Selection of Post-mining Lands Uses	17
	3.2	Pote	ential Post-Mining Land Uses	18
	3.3	Sele	ected Post-Mining Land Uses	19
	3.3.	1	Grazing	19
	3.3.	2	Commercial or Government Facilities	20
	3.4	No	Waiver from Self-Sustaining Ecosystem or Post-Mining Land Use	21

4	[DESCRI	IPTION OF CLOSEOUT ACTIVITIES	22
	4.1	Sh	naft Closures	23
	4.2	e w	/ell and Conduit Plugging	24
	4	4.2.1	Conduits	24
	4	4.2.2	Depressurizing and Deep Monitor Wells	25
	4.3	S Su	Irface Facilities Demolition	25
	4.4	Ea	arthwork	27
	2	4.4.1	Waste Pile Disposal Cell	29
	2	4.4.2	Ore Pad Working Surface Removal	
	2	4.4.3	Excavation and Disposal of Contaminated Soil	32
	2	4.4.4	Existing Waste Pile Stabilization	33
	4	4.4.5	Future North Waste Pile Stabilization	
	2	4.4.6	Finish grading	
	4.5	5 Re	evegetation	
	2	4.5.1	Revegetation Species	
	2	4.5.2	Other Revegetation Materials	
	2	4.5.3	Seed-Bed Preparation and Seeding	
	4	4.5.4	Seed Origin and Quality	
	4	4.5.5	Revegetation Success	
	4	4.5.6	Management and Contingency Plans	41
	4.6	6 Er	osion Protection	41
	4	4.6.1	Protection of the Waste Rock Pile Surfaces	41
	4	4.6.2	Arroyos	43
	4.7	' Fe	encing	44
5	I	POST-C	CLOSURE ENVIRONMENTAL COMPLIANCE AND MONITORING	45
	5.1	Gr	round Water	45
	ŗ	5.1.1	Alluvial Ground Water Monitoring	45
	ŗ	5.1.2	Deep Aquifer Ground Water Monitoring	46
	5.2	2 Su	ırface Water	47
	5.3	B Ra	adiological Safety and Monitoring	48
	ŗ	5.3.1	Radiological Safety	48

	5.3	.2	Radiological Monitoring	48
			Quality	
	5.5	Sew	vage Treatment Plant Discharge	49
			UT SCHEDULE	
7	CO	ST EST	TIMATE	50

LIST OF TABLES

- 1.1 Existing Permits
- 1.2 Ground Water Levels in Wells and Shafts
- 2.1 Water Quality Test Results for Mine Pool in 24-ft Shaft
- 2.2 Water Quality Test Results for Point Lookout Aquifer, Well 2A
- 2.3 Deep Wells
- 2.4 Mine Water Treatment Ponds Area Radiological Profile
- 2.5 Capacity of MWTU Ponds with Design Upgrades
- 3.1 Mt. Taylor Mine Building Radiological Survey Results
- 4.1 Inventory of Potential Contaminants on Hand
- 4.2 Estimated Volumes and Locations of Contaminated Sediment and Soil
- 4.3 Earthwork Balance
- 5.1 Building Inventory
- 5.2 Seed Mix: Selected Species and Planting Rates
- 5.3 Interim Vegetation Success Standards

LIST OF FIGURES

- 1-1 Site Location Map
- 1-2 Existing Mine Facility
- 1-3 Mine Permit Area
- 1-4 Well Locations and Descriptions
- 1-5 Typical Section of Dewatering Wells
- 1-6 Observation wells

- 2-1 Geologic Section at the Mt Taylor Mine
- 2-2 Pre-Mining Topography
- 2-3 Treated Water Pipeline
- 4-1 Mine Closeout Contaminated Sediment/ Soil Disposal Cell
- 5-1 Site Radiological Data
- 6-1 Closeout Schedule

APPENDICES

- A Mt. Taylor Mine Closeout Plan Drawings
- B Engineering Analyses
- C Technical Specifications
- D Field Sampling and Laboratory Test Data
- E Cost Estimate
- F Revegetation and Weed Management Plan

1 INTRODUCTION

1.1 Background

Rio Grande Resources Corporation (RGR) is the owner and operator of the Mt. Taylor Mine located at San Mateo, Cibola County, New Mexico. The mine is currently on standby status in accordance with the provisions of 19.10.7.701 NMAC. RGR has submitted an application for revision of its mine permit from standby status to active status (RGR 2013a: RGR 2013b) in accordance with 19.10.5.505 and 19.10.7.701 H NMAC. This Closeout/Closure Plan (CCP) is submitted, as required by 19.10.5.506 and 19.10.5.507 NMAC, to describe the measures and estimated costs for reclamation of the mine site for the designated post-mining land uses at the end of the mine life.

In January 2012 the Mining and Minerals Division (MMD) of the New Mexico Department of Energy, Minerals and Natural Resources issued Permit Revision 10-1 to the existing-mine permit #C1002RE for the Mt. Taylor Mine. In addition to renewing the Standby status for the mine, Permit Revision 10-1 required the owner, Rio Grande Resources (RGR), to update the Closeout Plan to reflect current regulatory standards and as-is (existing) site conditions while the Mine Permit is in Standby status and before the mine returns to Active (operating) status. The closeout plan was originally submitted in 1998 by RGR as a revision to its existing-mine permit #C1002RE in accordance with the New Mexico Mining Act of 1993, Section 69-36-1 Section 69-36-11B(3) and (4), and the New Mexico Mining Act Rules subparts 506.A and 506.B of 19.10.5 NMAC.

In addition, the New Mexico Water Quality Control Commission, through 20.6.2.3107 A (11) NMAC as enforced by the Mining Environmental Compliance Section (MECS) of the New Mexico Environment Department's Ground Water Quality Bureau (NMED-GWQB), requires a closure plan under Discharge Permit DP-61. DP-61 was originally approved in 1979 and was subsequently modified and renewed in 1984 and 1989, and amended to include a closure plan in 1995. Both the mine permit and the discharge plan require reclamation of some of the mine facilities as well as financial assurance (FA) to cover the cost of such reclamation. Because the mine closeout plan and the discharge permit closure plan have common elements and similar FA requirements, the MMD and MECS agreed that RGR could submit one document, a Closeout/ Closure Plan, including one cost estimate, that satisfies the

requirements of both agencies, with MMD taking the lead in coordinating the regulatory review and approval process. RGR submitted its CCP for existing conditions, those applicable to the mine site during standby, in July, 2012 (RGR 2012). In April 2013, RGR submitted a CCP for the mine after return to active status. This document is the first revision of that CCP, reflecting comments from regulatory agencies as well as changes to the application for revision of the mine permit to active status from the April 2013 application (RGR 2013a) to the November 2013 revision #1 of that application (RGR 2013b).

The mine permit #C1002RE closeout plan and DP-61 closure plan, both submitted in 1998, anticipated that the primary post-mining land use (PMLU) of the mine site and most facilities would be a water supply project (WSP). Although the WSP remains a feasible PMLU (see section 3), the previous business agreements for the WSP have expired, so the WSP was not included in the 2012 CCP update and is not included in this revision of the CCP.

This submittal has been prepared to revise the 2012 CCP to reflect both the existing land disturbances and mine facilities and those expected for the life of the mine, beyond those addressed in the 2012 CCP. This CCP describes the existing and expected future disturbances caused by mining and the measures that will be taken to reclaim the disturbed land for post-mining land uses and to satisfy the requirements of relevant environmental standards.

The following sections contain a description of the mine site and mining-related disturbances (section 2); proposed post-mining land uses and related ecosystems (section 3); closeout measures to achieve the post-mining land uses (section 4); and environmental monitoring, environmental standards and permits required for closeout (section 5). Section 6 addresses the closeout schedule. The cost estimate for closeout of the mine once returned to active status is discussed in section 7.

1.2 Project Description

RGR is owner and operator of the Mt. Taylor Mine located in Cibola County, New Mexico in Section 24, T13N, R8W, NMPM (Figure 1-1). The mine site is 1/2 mile northeast of the Village of San Mateo and is accessible from New Mexico State Route 605. The mine extracts uranium ore from depths of over 3,000 feet below ground surface using room-and-pillar and stope mining methods. There are no mill facilities present within the permit area. The underground mine is a room-and-pillar mine consisting of drifts,

stopes and stations that connect to two 3300-foot deep shafts from the mine surface. The mine facilities at ground surface are shown on Figure 1-2.

At the time of this application, the mine remains on standby after mining operations were suspended in 1990 due to the depressed uranium market. RGR has submitted an application to revise the mine permit from standby to active status (RGR 2013a, RGR 2013b). The existing Mt. Taylor Mine units are described in the Mine Permit Application of December 1994. Of the 4006.7 acres included in the entire permit area (Figure 1-3), the mine surface facilities are located on 285.6 acres, of which approximately 148 acres are disturbed land and the remaining 137.9 acres are undisturbed. The Mine Unit, consisting of the underground workings, shafts, and conduits, has no surface disturbance other than that included in the Service and Support Facilities Unit (shaft collars, vent raises). The disturbed land consists of:

- Support (Service and Support) Facilities 93.0 acres
- Mine Water Treatment Area 28 acres
- Ore Stockpile 6.8 acres
- Waste Pile 11.5 acres
- Storm water Retention Ponds (2) 3.7 acres
- Access Road 4.7 acres

These existing facilities are shown on Figure 1-2 and described in more detail in the mine permit and the closeout drawings (Appendix A). Other permits related to the mine are listed in Table 1.1. Detailed locations and descriptions of deep wells are shown on Figure 1-4 of this closeout/ closure plan.

The Treated Mine Water Discharge Pipeline extends 4.3 miles from the Mine Water Treatment Unit (MWTU) area to the outfall point north of the mine. Up to 15 acres, most beyond the mine surface, could be disturbed when the pipeline is removed.

A maintained gravel access road, NM 334, bisects the mine site. This is a state road and right-of-way, maintained by Cibola County, that provides public access to the west edge of the Cibola National Forest; it is not part of the mine permit area, and not subject to closeout. However, surface disturbance will be required to remove soil with elevated levels of radium and uranium.

Land disturbance may increase from the present 148 acres by approximately 21 acres if the north waste rock pile is needed. This facility, included in the original mine permit, is the only mine unit included in the mine permit not yet existing. It will be constructed only if the existing (south) waste pile reaches its design capacity before all waste rock has been removed from the mine.

This Closeout/Closure Plan addresses decommissioning of the existing mine disturbances as well as additional facilities that were anticipated in the original permit. Existing land disturbance subject to closeout/ closure actions, for which financial assurance is required, is described in the following sections.

1.3 Project History

Prior to 1971, when Gulf Mineral Resources Corporation acquired the property, there was no mining within the permit area of the Mt. Taylor Mine. However, some disturbance for exploratory drilling and access roads was created before 1971.

The Mt. Taylor Mine was developed in the 1970's by Gulf Mineral Resources Company. After excavation of the two 3,300 foot shafts during a five-year period, Gulf started production in 1980. Production continued until September 30, 1982, when the market price of uranium fell dramatically, resulting in the temporary cessation of production by Gulf. Mine pumps continued pumping mine water during this shut-down period. Ownership was transferred to Chevron Resources Company in 1985 when the two companies merged. Chevron suspended production of uranium ore in 1990 due to low market price for uranium. RGR acquired the mine and other Chevron property in 1991.

To gain access to the ore zones, the mine was dewatered, and the mine water was treated before discharge. Pumping of water from wells began in the early 1970's. Recent water levels in some of these wells are listed in Table 1.2. Locations and descriptions of the wells within the mine area are shown on Figure 1-4, and typical sections of the wells are shown on Figure 1-5.

Five observation wells were installed in the Westwater level for monitoring drawdown during the initial dewatering of the mine. One of these observations wells, OBW 24-85 located at N 1579711 E 2783249, is in the mine area near dewatering well #8, and the other four are located outside of the mine area at locations shown on Figure 1-6. These wells have not been used during mining operations or

standby.

The mine historically produced uranium using conventional underground mining methods from ore zones of the Morrison Formation at depths of more than 3000 feet below ground surface. Approximately 675,085 tons of ore and approximately 698,000 tons of waste rock have been mined. The ore was shipped off site for milling. Waste rock from shaft sinking (shaft muck) and from mine development was placed in an on-site waste rock pile.

The mine has not produced since RGR purchased the property because of the historical market price for uranium and high cost of reactivation. Facility descriptions remain unchanged from those provided in previous renewals of this plan. Based on improving market conditions and recovery technologies, mine operation will resume after the mine permit (# CI002RE), issued by the Mining and Minerals Division, is revised to Active (Operating) status about year 2014. The mine is expected to operate for at least 10 years after returning to active status. Upon permanent cessation of operations, the mine will be reclaimed in accordance with this CCP and subsequent revisions, if any.

1.4 Existing and Required Permits

RGR maintains several permits that are relevant to the closeout/ closure of the Mt. Taylor Mine. In addition to the mine permit #C1002RE and DP-61, the other permits related to the mine are listed in Table 1.1.

There are no stationary sources with potential emissions of regulated contaminants associated with closeout activities, so there are no air quality permit requirements for closeout.

A Clean Water Act Section 404 permit would be required only if the amount of riprap placed will be more than one cubic yard per running foot or more than 500 feet long (40 CFR 232.3). The closeout design volumes are expected to stay below these limits, but if they are exceeded, the work could be done under the Nationwide Permit #13 (Jean Manger, Albuquerque COE office, telecom (4/23/98), which requires a Joint Application for Department of the Army Permit and NM Water Quality Certification.

No other permits beyond those listed in Table 1.1 and those just discussed above are required for closeout of the Mt. Taylor Mine.

2 SITE CHARACTERISTICS

2.1 Site Climate

The climate and air quality of the permit area are described in the Permit Application (RGR 1994a) and the Environmental Site Assessment (RGR 1994b). The climate is semi-arid, like most of the state, but the elevation (about 7300 feet above MSL) and orographic effects of Mt. Taylor cause low winter temperatures and frequent high winds that impose some limitations on post-mining land uses and ecosystems. In particular, the climate of the site is not well suited to crop production other than hay, but it has historically allowed livestock grazing. Rainfall is not sufficient to support forest within the area of the surface facilities, where most disturbance has occurred.

2.2 Site Geologic Setting Summary

The geologic setting of the mine has been described in detail in the Baseline Study prepared by NMEI in 1974 and the Site Assessment submitted in 1994. The following summary is derived from those reports. The geologic section is illustrated in Figure 2-1.

The mine level is approximately 3200-3300 feet deep in the Recapture Creek Sandstone member of the Morrison Formation. This member grades laterally into the Westwater Canyon member above. The Westwater Canyon member is quite variable in thickness owing to lensing and vertical gradations into both the Brushy Basin and Recapture Creek members. The lower sandstone unit is about 64 feet thick, while the upper sandstone unit is approximately 123 feet thick in the mine shaft area. These two sandstone units, which carry the uranium ore reserves of the mine, are most often separated by a green shale. The Brushy Basin member conformably overlies and interfingers with the Westwater Canyon member. It measures 80 feet thick and contains uranium ore deposits at several locations in New Mexico.

Between the ore-bearing formations and ground surface is a sequence of sedimentary units approximately 2900 feet thick, starting with the Dakota Sandstone, which unconformably overlies the Brushy Basin member of the Morrison Formation. The Dakota is approximately 58 feet thick and is only slightly mineralized and not mined at the Mt. Taylor Mine. The overlying Mancos Shale, nearly 900 feet thick, is composed chiefly of dark-gray, calcareous, marine clay shale. The Gallup Sandstone interfingers with and conformably overlies the Mancos Shale and is the lowermost member of the

Mesaverde group. The Gallup Sandstone consists of two separate sandstone units separated by 130 feet of dark gray shale. The Crevasse Canyon Formation contains three major members, in ascending order the Dilco Coal, Dalton Sandstone, and Gibson Coal. The Hosta Tongue Sandstone of the Crevasse Canyon Formation, 115 feet thick, is overlaid by another Mancos Shale wedge called the Satan Tongue, consisting of dark gray, sandy shale. The Point Lookout Sandstone, the shallowest aquifer at the mine, averages 767 feet deep and approximately 115 feet thick. The Point Lookout aquifer provides the domestic water supply for both the mine and the Village of San Mateo.

The Menefee Formation is the uppermost geologic unit present at the mine. It forms uneven slopes around the mine and near the Village of San Mateo. The formation is composed of interbedded pale yellowish-brown silt stone, fine to medium grained sandstone, gray shale, carbonaceous shale, and thin coal beds. Its thickness at the mine is approximately 767 feet (NMEI 1974). Mine water treatment pond basins were excavated into the Menefee, and both the manway/vent and production shafts are collared in this formation.

Deposits of Quaternary age exposed in the area consist of unconsolidated talus, alluvial and eolian sediments. Talus, landslides, and black lava blocks cover extensive areas on the slopes adjacent to the high basalt-covered mesas to the south, southwest and east of the mine. Clay, silt, sand, and gravel alluvial lenses underlie the valleys, as well as the lower topographic slopes (NMEI 1974).

2.3 Site Hydrology Summary

The hydrologic conditions of the mine and impacts from mining have been described in detail in the Baseline Study prepared by NMEI in 1974 and the Site Assessment submitted in 1994. The following summary of the surface and ground water hydrology from those reports and updates from more recent observations and studies are provided here as the basis for proposed closeout/closure measures.

2.3.1 Surface Water

Two main surface drainage systems collect both spring water and storm water run-off in the vicinity of the mine. The primary surface water course is San Mateo Creek, located one-half mile south of the mine. The perennial stream is fed with numerous springs in the San Mateo Canyon area, but disappears into the stream bed approximately two miles beyond the Village of San Mateo. During spring peak run-off and after heavy rain storms, the surface flow may occasionally extend for a brief period farther down San Mateo Creek. Surface water runoff within the permit area occurs only after heavy precipitation on or upstream from the site.

The second main drainage system is the Marquez Canyon ephemeral steam, located immediately north of the mine. This deeply incised arroyo collects water during the infrequent heavy rain storms, but otherwise is dry throughout the year. Low-flow springs are located at higher elevations feeding this drainage, but their total flow has never been large enough to be measureable at the mine's elevation. Marquez arroyo flattens out and dissipates into the alluvium about one-half mile west of the mine.

Constructed during mine development in the 1970's, diversion ditches and below-grade collection systems intercept and channel runoff originating on the site to storm water retention ponds where water is evaporated. These ditches replace three shallow ephemeral drainage courses that existed prior to mine development (Figure 2-2). Storm water originating directly on the mine site area was channeled into a below-ground storm water collection system (culverts) and passed into either the mine water treatment system before being discharged off-site or was retained in storm water retention ponds and evaporated. As part of site drainage upgrades during mine reactivation:

- Runoff from the service and support area previously directed into mine water treatment pond #2 will be re-diverted into a replacement culvert along the county road that discharges to the south storm water retention pond (RGR 2013, Drawing MT13-AC-14).
- Runoff from the east and north slopes of the south waste pile will be collected in a culvert system that discharges to the south storm water retention pond (RGR 2013, Drawing MT13-AC-14).
- *3.* Runoff from the north pile (if constructed) will be collected in a perimeter drainage swale around the pile and discharged to a retention basin at the west end of the pile.

The storm water runoff retention structures are designed to contain not less than the 100-year storm runoff and hold the water for evaporation. After closure, those diversion ditches and retention structures that support post-mining land use will remain in use for stock watering; otherwise, runoff will be re-directed to existing drainage courses that naturally would receive runoff from the site.

2.3.2 Ground Water

Several aquifers are intersected by the mine shafts and were affected by mine dewatering. These aquifers and the ground water conditions in general are described by NMEI (1974) in the Baseline Study and by a report by Geohydrology Associates, Inc., 1994.

Ground water occurs in some Cretaceous formations and in the sandstones of the Morrison Formation, where the ore bodies are found. These water-bearing strata produce a large amount of water that was removed by pumping during mine operations through 1990 to dewater the ore bodies. The pumps were shut off on June 25, 1990, after mining operations were suspended in 1990, and the mine has subsequently flooded as ground water levels recovered. After the mine returns to active status, mine dewatering will resume.

The mine water has concentrations of uranium and radium that slightly exceed current drinking water standards (Table 2.1), requiring it to be treated for these constituents before release. After the mine water is treated in the Mine Water Treatment Unit, it is transported through a 24-inch, 4.3 mile pipeline across private land, except for approximately a three-quarter mile portion leased from the Federal Forest Lands, to the outfall in San Lucas Canyon north of the mine. The water discharges under NPDES Permit #NM 0028100 from Outfall 001 into the San Lucas Canyon, normally an ephemeral stream, where it will provide a source of water for both domestic animals and wildlife. The discharge water flows northward from the San Lucas Canyon and disappears approximately 22 miles from the point of discharge after comingling with the San Miguel Creek drainage system.

A recent study (RGR 2013b, Appendix E) found that uranium levels in soil and ground water downstream from the Outfall 001 are very low, below human health limits, indicating that previous mine water discharge has not contaminated the soil or ground water.

The Village of San Mateo and the mine both have wells reaching approximately 650-900 feet into the Point Lookout Sandstone, the shallowest potable water aquifer at the mine site. The water chemistry of many of these wells was included in the 1974 Baseline Study. The quality of the Point Lookout water remains very good (Table 2.2), and the aquifer has a large flow potential. The mine began using this water in 1972, whereas the village's water well, located at 35° 19' 56.14" N, 107° 39' 02.53" W, was drilled in 1976 by Gulf and serves approximately 200 residents.

The NMEI Baseline Study (1974) includes a list of other water wells, most of which are clustered in and around San Mateo. Six wells (three hand-dug) are in the alluvium less than 100 feet deep and nine wells produce from the Upper Menefee Formation from 120 feet to 336 feet deep. Some of these wells are currently being used for watering livestock, but a number of them were plugged off when the Point Lookout water well was drilled for village use by Gulf.

Perched ground water occurs in some locations in the mine area at the alluvium/bedrock contact at 30-60 feet and in shallow, low-volume aquifers elsewhere in the Upper Menefee. On the mine site one perched zone in alluvium at the bedrock contact has been investigated for contamination and is currently being addressed in an NMED-approved abatement plan. The shallowest aquifer capable of sustaining a water potable supply in the mine area, the Point Lookout sandstone in the Lower Menefee, has a potentiometric surface at a depth of approximately 450-500 feet below the surface. This sandstone unit is separated vertically from the surface and alluvium by several hundred feet of shale and sandy shale sequences (Figure 2-1) in the Upper Menefee, minimizing the possibility of any seepage water reaching the Lower Menefee aquifer.

2.4 Existing Mine Units

Mt. Taylor Mine is an underground mine, with the ore bodies over 3000 feet below surface, supported by a surface facility. Refer to the Permit Application (RGR 1994b) for details of mine facilities. Ore is mined by drill-and- blast and mechanical methods, hoisted to the surface in ore skips via shafts, and transported offsite for milling. Due to the extreme depth of the ore, no surface mining has been conducted.

A worst-case subsidence analysis was performed in support of the 1994 Permit Application. Even with the assumed case of 100 percent extraction of ore, which would not be physically possible, no subsidence would reach ground surface) and would be limited to 300 feet above the mine workings. During previous mining operations, approximately a million tons was extracted from the ore body without intersecting aquifers outside the Morrison units containing the target uranium deposit. Using best current practices of room-and-pillar mining with backfilling, subsidence would be limited to heights less than one room width above the room, leaving overlying aquifers and ground surface unaffected. Therefore, upon closeout, underground workings (the Mine Unit) will be abandoned and shafts will be plugged.

Surface operations consist of all activities needed for support of underground mining including:

- hoisting of men, materials, and ore
- ventilation and cooling of air for the underground
- removal and treatment of mine water
- disposal of waste rock
- administrative, health and safety, and maintenance services
- stockpiling and loading of ore for offsite milling

The location and identification of existing mine units are shown on Figure 1-2.

2.4.1 Mine Unit

The facilities in this category, collectively called the Mine Unit, consist of all subsurface components of the Mt. Taylor Mine, including shafts and underground workings. The underground mine workings, including all drifts, stopes, and haulageways and other openings for ore extraction are shown on Figure II of the Site Assessment. These underground workings follow the ore body at depths of 3100-3200 feet below ground surface.

The Mt. Taylor Mine has two shafts, the main production or haulage shaft (24-foot shaft) and a manway/ ventilation shaft (14-foot shaft). In addition, two 10 ¾ -inch I.D. utility conduits extend from ground surface to mine level. The shafts and conduits penetrate all the geologic units and aquifers described in sections 2.2 and 2.3.

The conduits have steel casings, grouted in place. The conduits are 11.5 inches O.D., cemented in place in 12.5 inch diameter boreholes through the entire length of 3100 feet (north conduit) and 3200 feet (south conduit). The annulus between the steel casing and the bored hole is cement-grouted. The grout isolates the conduit from all aquifers except the Westwater at mine level. At MMD's request, the entire length of each conduit will be grouted in the same way as the deep wells.

Both shafts have cast-in-place reinforced concrete liners from collar level to mine level. The liner thickness increases with depth, from 1.0 feet at subcollar level to 3.0 feet at mine level. The rock/ concrete contact is pressure-grouted through the saturated section from the Point Lookout aquifer to the shaft stations at mine level, isolating the shafts from the aquifers above mine level and the aquifers

from each other. The hydrologic isolation of the shafts and the mine water from the Point Lookout aquifer is demonstrated by the difference in static water levels between the shafts and the Phase I dewatering wells in the Point Lookout aquifer (Table 1.2); the shaft water levels are approximately 800 feet below ground surface, or about elevation 6545, versus the water elevation of about 6864 in the Phase I well #2A in the Point Lookout aquifer. After 22 years without dewatering, this water level difference of approximately 300 feet over a distance of 200-400 feet (Table 1.2) shows that there is no measurable hydrologic connection between the mine water (Morrison/ Recapture/Westwater) and the Point Lookout. Table 1.2 lists the most recent water levels measured in the mine shafts, which show that the potentiometric surface in the shaft water is that of the mine-level aquifers, not the Pt. Lookout aquifer. Any connection would have equalized the water levels in the mine shafts to those in the Point Lookout by flow from the Point Lookout to the shafts during the time since pumping stopped. The isolation of mine water from the Point Lookout is also evident from the contrast in water quality between the mine water (Table 2.1) sampled in the 24-foot shaft and the Point Lookout water (Table 2.2) sampled in well 2A.

2.4.2 Mine Dewatering and Mine Water Treatment Unit

The mine facilities include deep wells for removing water from the mine, a Mine Water Treatment Unit (MWTU), and a treated water discharge pipeline. When the mine is operating, these facilities are used to pump, treat, and discharge up to 7,200,000 gallons per day. However, during mine standby, no mine water was discharged, and these facilities were not in operation.

During initial mine operations, water was pumped from up to 22 deep wells to dewater the mine. These wells are located concentrically around the shafts, as shown on Figures 1-2 and 1-3 and listed in Table 2.3. In addition, two deep monitoring wells (SM in Table 2.3) near the production shaft were installed to initially conduct aquifer tests and then to measure water levels in and below the mine horizon.

When the mine is active, the mine water is treated to remove low concentrations of uranium and radium so that the treated water meets drinking water standards. Treatment consists of sediment settlement, precipitation of radium by flocculation with barium chloride, and removal of uranium in an ion exchange circuit. Treated water is then pumped through a 4.3 mile long, 24-inch pipeline and

discharged to San Lucas Canyon (Figure 2-3) under authority of NPDES permit # NM0028100. The pipe consists of 1/4-3/8 inch thickness steel sections welded in the field.

The MWTU is regulated under Discharge Plan 61 (DP-61), which was originally approved on July 20, 1979 and subsequently renewed on July 12, 1984; March 30, 1989; and January 24, 1995. DP-61 is currently in the process of timely renewal based on RGR's application dated September 6, 1999.

The MWTU covers 28 acres of land surface within the Mine Permit boundary. The mine water treatment unit includes the water treatment equipment and buildings as well as the ponds, which had an original combined capacity of approximately 62 acre-feet (Appendix B, MT13.04).

The MWTU will be upgraded when the mine permit is revised to active status. All eight ponds (RGR 2013, Drawing MT13-AC-02) will be regraded to remove existing vegetation and contaminated sediments and to create uniform 3H:1V slopes. Sections 3.1.2 and 3.2.1 of the mine permit revision application (RGR, 2013b) describe the excavation and disposal of sediments when the mine is reactivated. Double membrane high-density polyethylene (HDPE) liner systems will be installed in all ponds except ponds #6 and 7, in which single 60 mil HDPE liners will be installed. Existing hydraulic structures will be refurbished, and new concrete spillways will be constructed at the inlet hydraulic structures of the ponds. Table 2.4 lists the physical dimensions and radium concentrations of the MWTU ponds as they exist before mine reactivation. Table 2.5 lists the approximate dimensions of the MWTU ponds after upgrading for reactivation, allowing for uncertainties in the final pond depths. The ponds are below-grade basins excavated into native soil and rock. During standby, Pond #2 was used as a retention pond for runoff from the mine service and support area; upon mine reactivation, that runoff will be redirected to the south storm water retention pond.

The flocculant treatment facility ion exchange (IX) plant and barium chloride treatment facility contain the active treatment components of the MWTU. Mine water is treated with flocculant before being released into Pond #1. Three ponds, #1, #2 and #3, are settling basins for suspended solids that are pumped out of the mine with the mine water. Mine water is circulated from pond #1 through ponds #2 and 3, then treated by ion exchange to remove uranium and with barium chloride (barium-radium-sulfate co-precipitation) to remove radium from solution as precipitate in Ponds #4, 5 and 8. The treated water is held in ponds #6 and 7 before release to the 24-inch pipeline, which conveys the water to Outfall 001 in San Lucas Canyon.

Area A, northeast of Pond #1, was used during the pond cleaning process to dewater the sands and silt prior to storage on the ore pad for shipment off site. Upon reactivation, Area A will be used for expansion of pond #1 and for general laydown of equipment.

2.4.3 Service and Support Facilities

Service and support facilities include all surface functions other than mine water treatment and mine waste rock disposal. The location and identification of these facilities are shown on Figure 1-2.

Service facilities are those units at ground surface that support the overall mine operation but do not provide direct support of underground operations, and that will be either removed from the site or converted to post-mining use after closeout. These facilities include the guard house, fire equipment building, service building, electrical substation, car shop, carpenter shop, electrical building, waste treatment building, storage building, core storage building, water tanks, fuel storage tanks, fan shop, septic tank, leach field, and water wells for water supply to the mine.

Support facilities consist of those facilities at ground surface (above the shafts collars) that have a direct function in underground mining operations and that will be either removed from the site or converted to post-mining use after closeout. These units supply air for ventilation; pumping of water from the underground space; cooling and heating of underground air; and hoisting of personnel, materials and ore to and from the underground mining levels. The present mine support facilities include the compressor buildings, York chiller, cooling tower, pump building, shaft heating building, hoist house, headframes, and exhaust fans.

An electrical substation is located at the north side of the service and support facilities area. This substation is owned by the Continental Divide Electrical Cooperative and Public Service of New Mexico, is not part of the mine permit, and is not subject to closeout.

2.4.4 Ore Stockpile

The ore stockpile, presently covering 6.8 acres and containing approximately 60,000 tons of low-grade ore, will be removed before the pad is reconstructed and placed in the waste pile disposal cell. Upon mine reactivation, the entire 10-acre ore pad will be reconstructed with a liner, truck wash, and runoff collection system as described in RGR, 2013b. The chemistry of the ore in the stockpile is represented

by the tests results in Appendix D.3.

2.4.5 South Waste Pile

The existing south waste pile occupies 11.5 acres in the southwest corner of the surface facility area. Upon resumption of mining operations, waste rock will be placed on this pile until it reaches the maximum build-out configuration (RGR 2013b, Drawings MT13-AC-08 and -09). The waste pile contains waste rock (rock with uranium content below ore value), mined during mine development and production, from non-ore bearing formations or below-ore-grade rock in the mine. The mound of material at the southwest corner is primarily shaft muck excavated from strata above mine level, making its radionuclide content essentially background level.

The waste pile also contains a variety of non-rock waste from the mine such as rock bolts, timbers, and other hardware. These materials occur randomly throughout the pile. Waste rock removed from underground mines typically includes non-rock materials that are hoisted with the rock and remain mixed with the rock when placed in the waste pile. At the Mt. Taylor Mine this mixture has been in place for up to 34 years with no evidence of settlement. The hardware and other non-rock waste were placed randomly, and no record was made of disposal locations. Burial of non-rock waste generated during closeout will be controlled so that the material will be placed in lifts and either covered with soil after each lift or flooded with a soil/cement slurry to fill voids.

Analyses were performed previously to determine the structural stability (resistance to mass movement) of the pile upon ultimate buildout, the largest size that the pile could have. This condition would include slopes that are higher than those that exist now or planned for closeout. The results of these analyses, documented in Appendix B, show that the minimum factors of safety are 2.42 under static load conditions and 1.61 under pseudostatic (earthquake) load conditions. These values are well above the minimums necessary (1.00) to ensure slope stability.

2.4.6 Storm Water Retention Ponds

Two runoff retention ponds (RGR 2013b, Drawing MT13-AC-16) capture and retain runoff from areas of the mine surface that contain ore or waste rock. The north storm water retention pond (ore pad runoff retention pond), 0.9 acres and located between the ore stockpile and the mine water treatment area, retained runoff from the ore pad and holds it until it evaporates. The south storm water

retention pond, covering approximately 2.1 acres, retains storm water from the existing waste pile and a portion of the service and support facilities area. The sediments in both ponds have radium levels exceeding the 6.8 pCi/g limit and will be cleaned up as part of reactivation and before construction of liners. The contaminated soil from this cleanup will be placed in the disposal cell on the existing waste pile (RGR 2013b, Figure 3-3).

Upon mine reactivation, these storm water runoff retention ponds will be deepened and the pond slopes regraded to 4H:1V slopes. A double HDPE liner system will be constructed in the ore pad runoff retention pond to receive and evaporate up to the 100-year runoff from the ore pad and the truck wash. Upon mine reactivation, the capacity of the south storm water runoff retention pond will be increased sufficiently to hold the runoff of two 100-year storms, and a clay liner at least 1.0 feet thick will be constructed. Presently, Pond #2 in the mine water treatment unit receives most of the runoff from the service and support unit area through a system of subgrade drainage pipes. Upon mine reactivation, this runoff will be diverted through a new system of manholes and culverts to the south storm water retention pond. Later, upon closeout, this runoff will continue to be diverted to the south storm water retention pond but also to arroyos north and south of the mine site, similar to the natural, pre-mining drainage patterns.

2.4.7 Access Road

The maintained gravel road, NM 334, is a public road and right-of-way, totaling approximately 4.7 acres, maintained for the State of New Mexico by Cibola County, that provides access to the west edge of the Cibola National Forest; it is not part of the mine permit area, and not subject to closeout.

2.5 Future Mine Units

Both existing and future mine units were described in the original mine permit application (RGR 1994b). The only mine unit not existing at this time (future mine unit) is the north waste rock pile. The north pile will be constructed only if needed, and that need will not be determined until at least five years after the mine is reactivated.

3 POST-CLOSURE LAND USE

3.1 Factors in Selection of Post-mining Lands Uses

In selecting post-mining land uses (PMLUs) for the permit area, RGR took into account many factors. These included:

- Technical feasibility
- Economics
- Land ownership
- Current and possible future surrounding land uses
- Public interests
- Site resources and ecosystems
- Environmental impacts and standards

Technical feasibility - No uses were considered for which the necessary technology does not presently exist.

Economics - This factor consists of two parts, economic feasibility and economic compatibility. A PMLU should have net positive economic returns (returns at least equal to costs). The net returns can be in the form of revenues, cost savings, or any combination of these. The PMLU should work positively within the local economy, either by improving it or helping to sustain it.

Land Ownership - RGR leased or purchased its permit-area surface from the owners listed in the Permit Application. RGR anticipates that after termination of the mine, control of the surface will return to those owners. Most of the surface will be returned to the previous owners; however, a total of 16.6 acres (10 acres of surface centered on each of the two shafts that overlap), will remain under RGR ownership.

Current and possible future surrounding land uses - The surrounding lands have been used for livestock grazing and small-scale logging for several generations, and these uses are expected to continue in the foreseeable future. The Cibola National Forest to the east provides a number of recreational, commercial, and cultural uses available to the public. The selected PMLUs should be consistent and compatible with surrounding land uses but need not be the same uses.

Public interests - The San Mateo community has a strong cultural heritage and places great value on its rural, independent lifestyle. PMLUs that would require substantial new infrastructure or impose demographic changes were avoided to reduce the chance for negative impacts to the community.

Site resources and ecosystems - RGR examined the resources of the site other than the uranium ore, especially those already disturbed by mining, to identify which ones have potential for productive use after mining. Site resources include both natural and man-made attributes of the site. Water removed from the mine and some mine surface facilities are considered to be resources that have potential use after mining operations. Reclamation should restore the pre-mining ecosystem to the extent consistent with the PMLU(s).

Environmental impacts and standards - Potential PMLUs should limit land disturbance or, preferably, contribute to mitigation of mining disturbances. Each PMLU must be able to meet standards for air and water protection established by the New Mexico Environment Department (NMED) and federal agencies as applicable.

3.2 Potential Post-Mining Land Uses

Using the factors described above, RGR identified the following potential PMLUs:

- livestock grazing
- wildlife habitat
- commercial or government facilities
- water supply facilities

Livestock grazing as a PMLU is consistent with surrounding and historical land uses and local public interest. It is also consistent with the wishes of those land surface owners who have expressed a preference. This use will be facilitated through covering of the waste rock pile and mine water treatment ponds, final grading of disturbed surfaces, and revegetation. This PMLU could coexist with or next to the other potential PMLUs and would restore the pre-mining ecosystem.

Wildlife habitat is consistent with surrounding lands uses and community values. It is readily implemented with the same measures used for establishing livestock grazing.

Commercial or government facilities would make use of some existing mine buildings and infrastructure, all in excellent condition, for services, manufacturing, or wholesale/ retail sales, providing a center for employment in the San Mateo area. This use is consistent with a municipal/ industrial water supply or livestock grazing PMLU but is not compatible with wildlife habitat. The mine surface facilities include office, warehouse, and maintenance facilities that could be used by other mining operations in the area or by land management agencies such as the Bureau of Land Management and the US Forest Service. Although located away from main transportation routes and in a thinly populated area, the mine facilities could attract light industrial business.

Water supply facilities already exist on site in the form of the mine water treatment unit and the wells. During operations these facilities remove water from the mine and treat it to the required standards before release. Continued operation of these facilities after mining potentially could provide a long-term source of water for municipal and industrial users. Such users might be within the local area but might also be located at much greater distance from the mine.

3.3 Selected Post-Mining Land Uses

For the purposes of this closeout/ closure plan, RGR has selected grazing as the primary PMLU and the basis of the cost estimate for financial assurance. However, this use can be used in combination with one or more of the other PMLUs selected by the landowners. The electrical substation will remain unchanged or otherwise disposed, as determined by Continental Divide Electrical Cooperative and Public Service of New Mexico. Existing NM 334 and its right-of-way through section 24 will remain unchanged. The right-of-way is not under RGR control either during or after mining. This surface is dedicated to public use and is not subject to reclamation or PMLU considerations under the Mining Act.

3.3.1 Grazing

Prior to the development of the mine, the site was used for grazing by generations of the same families to whom ownership or control will be returned after mining. See the Mine Permit Application (RGR, 1994b) for delineation of post-mining surface ownership. Specifically, the following present and future surface owners have grazed livestock on, or expressed this preference for, the following areas:

• Portion of NE 1/4, section 24 - This is the northerly portion of the mine surface area, containing the

Mine Water Treatment Unit as well as the county road right-of-way. Presently, RGR is the surface owner of this tract. After RGR's economic use of this property has ended, the surface property will be returned to Arturo S. and Mary Lou Candelaria *et ux* (Candelaria) except for areas described in the relevant agreement. This land has been grazed historically so the non-excluded parts of this surface will be returned to grazing as the PMLU.

- Portion of SE 1/4, section 24 This is the southerly portion of the mine surface area as well as
 undisturbed land south of the mine facilities. It contains most of the surface support and mine
 support facilities and the waste rock pile. Presently, RGR owns the surface of this tract. After RGR's
 economic use of this property has ended, RGR will return the surface ownership to the Trusts of
 Sifredo Sandoval Ethel Sandoval *et ux* (Sandoval). Sandoval has expressed its preference that some
 existing buildings be left in place for Sandoval's use after mining. Sandoval has also stated its
 preference for grazing as the PMLU on this surface.
- Fernandez portion of SE 1/4, section 24 This triangle of land, about six acres owned by the Fernandez Company Ltd., is the surface presently occupied by part of the waste rock pile and the adjacent storm water retention pond. RGR is negotiating a land swap agreement with the Fernandez Company to transfer title of this land to RGR in exchange for RGR land outside the permit area. This triangle of land would be included subsequently with the rest of the SE 1/4 of section 24 and turned over to Sandoval. The south storm water runoff retention pond will be retained as a stock tank, and the remainder of the area will be converted to grazing with the exception of the waste pile, which will be fenced to exclude grazing.

3.3.2 Commercial or Government Facilities

The existing service and support facilities, located within the Sandoval portion of the site, are multiple-use buildings that support offices, warehouse, and maintenance/ repair activities. These buildings have been surveyed for radiological contamination. At the landowner's request, some building and facilities will be left in place for PMLU for logistical support of agricultural, commercial/ mining or government activities. The agreement with Sandoval specifies that the facilities listed on Drawing MT13-CL-04 as "Facilities to Remain" and "Wells to Remain" will remain in place for PMLU.

The agreement with Sandoval specifies that the following facilities will remain in place for PMLU:

• Guard House (Security Building)

- Fire Equipment Building (Fire House)
- Car (Maintenance) Shop
- Carpenter Shop
- Core Storage Building
- Fan Shop
- Septic System Treatment Unit, Septic Tank and Leach Field
- Water Wells # 1, 2A, 3, 4, 5, 6, 7, 8, and 10
- Water Tank

These facilities are listed on Table 5.1 and shown on Drawing MT12-CL-04 (Appendix A).

Radiation levels in these facilities do not exceed the NRC Regulatory Guide 1.86 criteria for unrestricted release and use (Table 3.1). A radiological survey will be conducted before mine closure begins to confirm that no decontamination will be required or to identify where contamination exceeds release standards and decontamination will be required.

3.4 No Waiver from Self-Sustaining Ecosystem or Post-Mining Land Use

RGR is not seeking a waiver from a self-sustaining ecosystem or post-mining land use. RGR is proposing livestock grazing as the primary PMLU, with wildlife habitat as a natural and compatible use inevitably associated with livestock grazing. Once vegetation is re-established on the portions of the site not used for other purposes, grazing should be sustainable as it has been in this area for many generations. The mine water treatment pond and waste pile areas will be fenced and restricted from grazing so that a self-sustaining ecosystem can regenerate on fill slopes without interference from livestock.

Agricultural/ commercial or government use of the service and support structures to be left in place, as requested by the landowner, are additional PMLUs that will provide valuable infrastructure for sustainable economic opportunities for the San Mateo community. No comparable facilities exist in this area to support mining, land management, agriculture or commerce.

4 DESCRIPTION OF CLOSEOUT ACTIVITIES

Closeout/ closure of the Mt. Taylor Mine will include a number of activities that are organized into several categories:

- 1) Shaft closures
- 2) Well and Conduit Plugging
- 3) Surface Facilities Demolition
- 4) Earthwork
- 5) Revegetation

Best Management Practices (BMP) will be followed in all of the closeout activities, including "Best Practice in Environmental Management of Uranium Mining", IAEA Nuclear Energy Series NF-T-1.2., and FHWA (Federal Highway Administration), 1995, *Best Management Practices for Erosion and Sediment Control* FHWA-SLP-94-005. Technical specifications for these measures, as appropriate, are contained in Appendix C. Closeout measures are illustrated in Drawings MT12-CL-04 through -13, and the anticipated surface configuration of the site after closeout is shown on Drawings MT12-CL-04 and -13.

All contractors using heavy equipment, trucks, and other materials involving fuel, lubricant, solvents or capable of collecting and transporting solid contaminants will be refueled, serviced, washed, and parked in a specified area. This area will be located by the contractor and approved by RGR. The area will include a wash facility with a temporary liner and water collection system. Wash water will be evaporated and residues removed for disposal offsite in a licensed facility.

At the time of this submittal, small quantities of solvents and lubricants from the maintenance shops may remain on site at the time of closeout. Presently, in standby status, the inventory of potential contaminants is limited to those listed in Table 4.1. During operations, additional quantities of these and other materials will be on site. All such materials will be removed and disposed of offsite by a licensed contractor at a permitted facility.

Radiation levels in the facilities that will be retained for PMLU do not exceed the NRC Regulatory Guide 1.86 criteria for unrestricted release and use; therefore, no decontamination will be required.

4.1 Shaft Closures

Both the 24 ft. diameter production or haulage shaft and the 14 ft. diameter manway/ ventilation shaft will be closed in the same way, illustrated on Drawings MT12-CL-05 and -06 and described in Appendix C. Using the following procedures, the plug in the 24 ft. shaft will extend to a depth of 62 feet and to 40 feet in the 14 ft. shaft:

- Equipment and fittings within the shaft collar will be removed to the subcollar level. Softer, less rigid materials such as wood and rope guides, pipes, electrical cable, and duct work will be dropped down the shaft. Structural steel, sheet metal and other rigid materials will be removed from the shaft for salvage.
- The headframe will be toppled to the ground with explosives and/or heavy equipment and cut into pieces by excavator-mounted hydraulic shears.
- Selected pieces of the headframe structural steel and steel plate will be set aside to use in the shaft plug, but the remaining pieces will be cut to 40-foot maximum lengths, sorted and separately stacked for salvage and sale off-site.
- Selected structural steel I-beams and scrap metal plate from headframe demolition will be welded in sections to fit into the shafts at subcollar level, 40.75 feet deep in the 14 ft. diameter shaft and 60 feet deep in the 24 ft. diameter shaft (See Drawings MT12-CL-05 and -06).
- Each section will be lowered from ground surface and set onto the shaft subcollar to form the first layer of the support platform for the shaft plug and backfill.
- A second layer of I-beams will be placed on top of, and perpendicular to, the lower layer to form an orthogonal support system for the shaft plug and backfill.
- A plug of light-weight concrete will be poured to encapsulate the platform steel.
- The remainder of the shaft, as well as connecting tunnels and raises, will be backfilled with cementitious slurry of soil, Portland cement, fly ash, and water. The proportions will be determined using test batches of the available materials.
- Remaining space at the top of the shaft will be capped with concrete, including a marker monument.

The hydrologic isolation of the shaft from the surrounding aquifers was established by the initial design and construction of each shaft, which included a continuous concrete liner and pressure grouting of the rock around the liner through the water-bearing formations. The effectiveness of these features, described in section 2.4.1, has not diminished over time and will not be compromised by shaft closure measures. The space within each shaft is isolated from the surrounding aquifers and is hydrologically connected only to the ore zone in the Recapture/Westwater members of the Morrison Formation. The effectiveness of the shaft liners and annular grout is evident in the difference between the water levels of the Pt. Lookout wells versus the mine shaft and Tres Hermanos/Dakota/Westwater wells shown in Table 1.2. Mine water quality (Table 2.1) naturally bears the chemical effects of the ore zone, while the Pt. Lookout water chemistry (Table 2.2) is clearly different, also demonstrating the effectiveness of the hydrologic isolation of both shafts

Infiltration or inflow of water from surface runoff will be prevented by the shaft plug and backfill in each shaft as well as by the existing shaft liner and annular grout, the combination of which provides a barrier to infiltration that is equivalent to the natural bedrock surrounding the shafts. Therefore, the proposed shaft closure measures will be protective of ground water quality from both mine-level and surface sources of potential contamination.

A system of tunnels provides access to, and utility corridors for, the shafts (Drawing MT12-CL-04, Rev. 1, item 24). The tunnels connecting directly to the shafts will be backfilled with slurried weak soil cement as part of shaft closure. The other tunnels, total 2642 feet of 7 ft. by 11 ft. tunnel and 838 ft. of 4 ft. diameter tunnel, will be backfilled with the same soil cement slurry used for shaft backfill.

4.2 Well and Conduit Plugging

4.2.1 Conduits

Two vertical utility conduits, casings extending from ground surface to mine level, will be plugged. The conduits are 11.5 inches O.D., cemented in place in 12.5 inch diameter boreholes through the entire length of 3100 feet (north conduit) and 3200 feet (south conduit). The conduits will be grouted from bottom of casing to ground surface using tremie methods. The grout mix will be 4:1 cement to bentonite. Details are described in the technical specifications in Appendix C.6. These specifications are preliminary and will be modified in accordance with a well plugging plan approved by the Office of the State Engineer.

4.2.2 Depressurizing and Deep Monitor Wells

Of the 22 wells used to depressurize and dewater the mine (Table 2.3 and Figure 1-4), 14 extend to depths greater than 2000 feet. In addition, two deep (>3500 feet) monitor wells were used to observe drawdown in the mine area. Five observation wells were used only during initial drawdown. These wells are too deep to be economically maintained and operated for PMLU and will be plugged. Five observation wells were used only during initial drawdown. Each of these will be grouted from bottom of casing to ground surface using tremie methods as required by 19.27.4.NMAC. The grout mix will be 4:1 cement to bentonite. Details are described in the technical specifications in Appendix C.6.

At least one year before cessation of mining, RGR will submit to the Office of the State Engineer (OSE) a deep well plugging plan on OSE's Form WD-08 that will include:

- Sealant design including ratios and material specifications of seal components.
- Well construction details borehole and casing diameters, screen types and intervals
- Depth to water
- Casing annulus seal description
- Plugging steps
- Documentation and reporting of well plugging

4.3 Surface Facilities Demolition

Surface facilities not listed in Section 3.2, to be retained for the land owner for PMLU, will be demolished. Table 5.1 lists all surface buildings, their sizes and their disposition at closeout. Facilities to be demolished include:

- Shaft Headframes
- Compressor Building
- York Chiller Refrigeration Equipment and Building
- Pump Building)Chill Water Pump House)
- Shaft Heating Building
- Hoist House
- Service Building (Office and Warehouse)

- Electrical Building
- Water Treatment and Boiler Building
- Fuel Storage Tanks
- Storage Building
- Glycol Heat Exchanger
- Chlorine Building
- Flocculant Treatment Building
- Barium Chloride Treatment Building
- Ion Exchange Building
- Mine Water Treatment Pond Hydraulic Structures
- Mine Car Rails and Concrete Base for Rail
- Shaft Exhaust Fans and Vents
- Cooling Tower
- Mine Water Discharge Pipes
- Treated Water Pipeline
- Truck Wash Facility

Radiological contamination levels in these facilities have not exceeded the NRC Regulatory Guide 1.86 criteria for unrestricted release and use. All of the facilities to be demolished will be surveyed to document the level of contamination. However, based on prior experience, RGR expects that, of these facilities, only the Ion Exchange Building may require decontamination prior to demolition.

Structural steel and sheet metal roofing and siding will be salvaged for sale and off-site use. Pipe in the tunnel connecting the shafts will be removed and, if clean of contamination, will be sold or scrapped. Alternatively, pipe and other scraps materials will be either disposed of in the shafts prior to plugging or buried in the waste pile or if clean, buried in the ore loadout trench east of the electrical substation. Materials dropped in the shafts will be limited to non-contaminated, flexible or soft materials that will not damage the shaft liners when dropped. Demolition of these facilities will include the concrete slabs or other foundations. The concrete will be broken up, separated from reinforcement, and recycled as riprap in closure of the waste piles.

The treated water discharge pipeline is 1/4 to 3/8 inch thick steel pipe. The in-place and spare lengths total approximately 23,000 feet. This pipe will be removed from the site and sold for re-use or salvage, but no cost credit for this is taken in the cost estimate (Section 7).

The shaft hoists will be sold and removed from the site. Hoists of this size are hard to find and have long lead times for manufacturing, so these hoists have high re-sale values on the world market. However, no cost credit against the closeout cost estimate has been taken for any sale of the hoists.

Ponds will be decommissioned at the same time as other surface facilities, but the time required will be longer because of the steps involved:

- Evaporate remaining water
- Remove contaminated sediments
- Demolish hydraulic controls structures and piping.
- Backfill pond basins

The buried drainage culvert from the storm drain along the county road, which diverts runoff away from the mine water treatment area, will not be removed. It will continue to direct water to the south storm water retention pond, which will be a stock tank after reclamation.

Contaminated pond sediments and soils in the ponds area will be removed and placed in the waste pile disposal cell (Section 4.4.1). Demolition debris that is contaminated will be placed in the waste pile outside of the disposal cell, but clean debris, including piping and pond liners, will be buried in the pond basin backfill.

4.4 Earthwork

Earthwork for mine closeout will begin after most of the demolition work has been completed. In general, earthwork will involve short hauls by dozer to redistribute berm fills or mine waste rock and by scraper or grader for contaminated soil removal. Some loader excavation and short truck hauling may be required, as well. Except for short pushes of up to 300 feet on pond berms and waste pile slopes, the working grades are less than 5%. All borrow sources and haulage routes for excavated material are within the existing disturbed area of the mine.

Steep cut slopes (steeper than 1H: 1V) in weak sedimentary rock or soil will be flattened by cut-and-fill to final gradients of not greater than 1H:1V. However, cut slopes in hard sandstone or basalt, or sedimentary slopes that have naturally revegetated to basal coverage and canopy equivalent to similar natural slopes, will not be flattened. Slopes reduced to 1H:1V will be left uncovered and will not be revegetated, providing an artificial talus habitat for wildlife.

The first earthwork will be removal of contaminated pond sediment, ore pad working surface soil not used in the shaft plugs, and contaminated site soils. Table 4.2 lists the estimated quantities and locations of these materials prior to excavation. The pond sediments will be excavated and hauled to the south waste pile for placement in a clay-lined disposal cell, as described below. The contaminated soil not used in shaft plugs will be used to construct the disposal cell berms, with any excess placed on the pile outside of the disposal cell.

The remaining earthwork for mine site closure has been designed to use available soils from areas already disturbed, and sufficient fill volumes should be available from the design cut quantities (Table 4.3). However, if additional borrow soil is needed, it can be obtained from the area east of the ore stockpile or immediately north of Marquez Canyon arroyo within the permit area. The soil consists of sandy clay, clayey sand and clay with Unified Soil Classification of SC and CL as determined by test pits and laboratory testing (Appendix D). Table 4.3 lists the estimated volumes of clean soil required for closeout earthwork and the sources for that soil as well as the overall balance of site earthwork.

The site provides ample quantities of native soils with good engineering properties and suitable agronomic properties. The east-dipping interbedded shale, claystone, mudstone, and thin sandstone lenses that underlie the site are the parent materials for the residual and colluvial soils that thinly blanket most of the site. The NRCS web site has soil survey results for this area (http://soildatamart.nrcs.usda.gov/manuscripts/NM682/0/cibola.pdf) that identify the mine site soils as Penistaja- SanMateo- Sparank series. These are surficial soils that have supported native vegetation; they are not overburden or interburden materials. The units on the mine site are #230 dumps-pits complex on the disturbed areas and otherwise #57 San Mateo clay loam and #257 Sparank- San Mateo Complex. According to the NRCS survey, the latter two soils, from which borrow soil will be excavated, naturally support western wheat grass, vine mesquite, alkali sacaton, and fourwing saltbush. Site soils are consistently low-to-moderate plasticity clays with some sandy clay. Alluvial sand with some gravel and cobbles exists in the few arroyos on site, but these soils are not in borrow locations or on the ore

pad, waste pile, or water treatment ponds. The referenced soil chemistry data in Appendix D.3.1 demonstrate the consistency of soil chemistry and physical properties of soils across the site. The only soil contaminant of concern is radium arising from mining operation; radium-contaminated soil will not be used in site closeout covers or backfill.

4.4.1 Waste Pile Disposal Cell

RGR will construct a clay-lined waste cell within the south waste pile, as part of mine reactivation, that will serve several purposes:

- Isolate contaminated old pond sediments removed prior to installation of geomembrane liners in the mine water treatment ponds
- Provide a field test for a 2.0 ft. thick soil cover over the contaminated sediments and soils, to verify performance as a radon barrier and growth medium.
- Provide a test plot for revegetation methods and seed mixes

The lined waste disposal cell will be located in the northwest quadrant of the waste pile at a nominal bottom elevation of 7340 ft. (RGR 2013b, Figure 3-3). The cell will be 1-1.5 acres in area, at least 5 feet deep, with a capacity of approximately 15,000 CY to 30,000 CY. A clay liner, consisting of not less than 1.0 ft. of compacted clay soil (CL, CH, or SC soils per USCS classification) will be constructed under the disposal cell to provide additional protection for ground water. This cell will be started as soon as possible after the mine returns to active status and before any pond sediments have been excavated. Once contaminated materials from mine reactivation have been placed in the cell, it will be covered with 2.0 ft. of compacted clay, and the surface will be revegetated in accordance with the revegetation plan (CCP, Section 4.5 as revised in Rev. 1). The cell surface will be off-limits for additional waste disposal during the subsequent mining period (at least five years) to allow monitoring of cover integrity and vegetation success.

This reactivation disposal cell will provide for permanent disposal of contaminated material generated prior to resumption of mining but will also provide a test for the final closure cell cover design concepts. Lessons learned from the activation waste cell will be useful in refining the cover design of a second-generation cell (closure cell) of similar design that will be placed near the top of the waste pile. This closure cell, illustrated in Figure 4-1, will be the repository for contaminated pond sediments and

soils excavated at mine closeout/ closure.

The actual position and dimensions of the closure cell will not be known until mine closeout. The illustration on Figure 4-1 assumes that the cell will be 1.5 acres and 15-20 feet deep with a capacity of approximately 40,000 CY plus a 1.0 ft.-thick clay liner and a 2.0 ft.-thick clay cover.

The cover thickness for both the disposal cell and the waste pile will be 2.0 feet. This cover will have several functions – barrier to infiltration of water, protection from erosion, support of vegetation, and radon attenuation.

The radon attenuation function is unique to cover of uranium- and radium-bearing materials, but it governs the design thickness of the cover. The RADON code) was used to model radon attenuation achieved with 2.0 feet of cover soil, derived from clean soil in the pond berms and elsewhere. The modeling shows that 2.0 feet of cover consisting of clay and sandy clay soils found on site would be sufficient to meet the radon flux standard of 20 pCi/m²s from the cover surface. The key parameters for the RADON model, the sediment thickness and concentration of radium of the pond sediments, were based on the measured values of these parameters in the sediments and waste pile during standby. The RADON input and output files for each model are included in Appendix B.1.

In addition to its function as a barrier to release of radon from the wastes, the soil cover will serve other functions – a barrier to infiltration of water (runoff and direct rainfall), erosion protection, and a growth medium for vegetation. Extensive research and experience with uranium mill tailing covers indicates that an appropriately designed soil cover accomplishes all three objectives (NRC 2010). The two-foot thick soil cover on the Mt. Taylor Mine ore stockpile supports robust volunteer vegetation, demonstrating that this local soil is a good growth medium. The waste pile characterization study (Kleinfelder 2012) showed that water infiltration is very low even in sandy waste rock, as indicated by low degree of soil saturation even without a soil cover.

4.4.2 Ore Pad Working Surface Removal

The ore pad working surface, the top-most 12-inch layer of gravel or crushed sandstone that forms the travel course of the pad, will be excavated by loader and hauled by truck to the shafts, where the gravel will be dumped as shaft backfill up to the subcollar level or mixed as aggregate into the cementitious backfill above the shaft plugs. As an alternative, the gravel may be placed in the waste pile. After the ore pad working surface is removed, the remaining contaminated soil in the ore pad, if any, will be excavated to achieve the required soil cleanup standards and placed on the waste pile.

4.4.3 Ponds Backfill

The sediments in the Mine Water Treatment Unit (MWTU) ponds and the ore pad runoff retention pond are expected to contain low levels of uranium, radium, barium sulfate and other constituents in the sediments from the mine and mine water treatment circuit described in section 2.4.2 and Appendix D. Upon termination of mining activities, the ponds will be allowed to dry by natural evaporation, then the pond sediments will be removed with light earthwork equipment and hand cleaning until residual gamma readings at the liner surface are not higher than those for the soil cleanup standard. The pond sediments will be placed in the disposal cell on the waste pile, described in Section 4.4.1.

After the pond sediments have been removed, the pond liners above 4.0 ft. below final grade elevation will be folded into the pond, then the hydraulic controls and related structures including foundations in the pond area will be demolished. Concrete and other debris not exceeding radiological contamination limits of clean soil (0.026 millirem/hour) and not salvaged will be placed in the pond basins.

When the hydraulic control structures of the ponds are demolished and that debris is placed in the ponds, clean soil will be placed into the debris to fill voids. If the size or thickness of debris prevents this dry-soil backfilling, the debris will be flooded with weak soil/cement slurry with not less than 5% by weight Portland cement. The slurry will be placed in lifts not thicker than 2.0 ft. and allowed to set until firm and dry to the touch before the next slurry lift is poured or the placement of dry soil backfill commences.

When the debris in the pond basins has been buried, the berms around each of the ponds will be excavated by dozer. The clean berm soils will be pushed into the pond basins, spread and tracked in lifts appropriate to the size of the contractor's equipment. This earthwork will involve balanced cut and fill of clean soil (Table 4.3), essentially placing this soil back where it originated. Technical specifications for this earthwork are included in Appendix C.

4.4.4 Excavation and Disposal of Contaminated Soil

As is typical for a uranium mining operation, materials bearing uranium and uranium progeny are found at locations within the mine permit boundary including the waste pile, mine water treatment ponds, and the immediate vicinity of the 24-foot main shaft, the ore pad area, the storm water retention ponds, and approximately seven acres north of Marquez Canyon arroyo. This radiological contamination is limited to the mine permit area. Figure 5-1 shows the results of radiological measurements and sampling, and recent radiological investigations are documented in Appendix D.

Investigative radiation surveys and soil sampling were performed in Spring 2012 in the mine area to 1) establish background levels of radium and to 2) identify higher levels of radioactive materials that might have been dispersed from the mine by wind, rain and snow runoff. Background levels are those levels due to natural content of radium unrelated to mining. The radium background as 1.8 pCi/g and background total uranium is 9.96 ppm. Both values were established by samples taken in June 2007 and in April 2012.

Radium levels above background are assumed to indicate impacts from mining. This investigation included the Marquez Canyon arroyo and the other San Mateo Creek tributaries situated north and east of the Village of San Mateo. All the surveys and soil sampling found uranium and uranium progeny (e.g., radium) at background concentrations along these drainages. This finding indicates: 1) operations at the mine have used administrative and engineered controls that prevent the spread of uranium mining contaminants beyond the mine area permit; and 2) the controls implemented under the NPDES storm water permit (i.e., storm water ponds, berms, diversion channels) have prevented the discharge of radioactive materials from the mine property.

The highest external radiation exposure rates measured in 2012 were inside Ponds #3, 4, and 8 (2.5, 2.1, and 1.5 millirem/hour, respectively). This is due to the settling of radium and radium-bearing residues during mine water treatment up to 1990. Exposure rates elsewhere around the site varied from background (+/-0.015 millirem/hour) to 0.4 millirem/hour around the main shaft and 0.17 millirem/hour on the waste pile.

Access to the mine is controlled by fences, locked gates, and surveillance to prevent exposure to the general public. Occupational exposure controls and monitoring are implemented during entry into the

ponds and excavation of the ponds, piles, and mine compound. These controls will be continued during closeout activities.

After demolition is complete and debris has been transported to the locations of staging or disposal on site, the site soils will be excavated to remove radiological contamination above the cleanup standard as derived from 40 CFR 192, 5 pCi/g Ra-226 above background in the top 15 cm (~6 inches) of soil. The technical specifications for contaminated soil earthwork are included in Appendix C.

Historical and recent site radiological surveys (Trinitek, 2012) indicate an average background Ra-226 concentration of 1.8 pCi/g, so soils exceeding 6.8 pCi/g radium will be excavated and placed on the mine water treatment pond basins or the north waste pile (if constructed) from areas north of the county road and on the south waste pile from the county road and areas to the south. The 6.8 pCi/g Ra corresponds to a gamma reading of 0.026 millirem/hour. Gamma readings will be made while soil cleanup excavation is being performed, and readings below 0.026 millirem/hour will indicate that the soil radium concentrations are below 6.8 pCi/g and the soil cleanup standard has been achieved.

Existing and recent radiological survey results are shown on Figure 5-1 and Drawing MT13-CL-02. The area limits and estimated volumes of soil cleanup at closeout are approximately 133 acres and 90,000 -95,000 cubic yards for entire mine site. Cleanup of contaminated soil from the county road right-of-way is included in these quantities.

Contaminated soil in large, unobstructed areas will be excavated, loaded and hauled to the waste pile by scraper. Smaller or obstructed areas of soil will be excavated by loader or grader and either windrowed for scraper pickup or loaded onto trucks for disposal in the waste pile.

4.4.5 Existing Waste Pile Stabilization

Upon reactivation of the mine (revision of the mine permit to active status), RGR will begin the practice of progressive, contemporaneous stabilization (reclamation) to protect the existing south waste pile against erosion. In the initial step of this stabilization, RGR will reshape the existing waste pile to enhance long-term stability, as shown on Drawings MT13-AC-09 and -10 (RGR, 2013b). The waste rock pile will be consolidated into a smaller area and stabilized in place. The thin wedge of waste rock on the east side of the pile (Drawing MT13-CL-09) will be excavated and pushed by dozer west over the area of thicker waste rock. The north, west and south slopes will be flattened to 5H:1V, as represented

in the lower slopes Drawings MT13-AC-08 (RGR 2013) and MT13-CL-09, then covered with 2.0 feet of clean soil obtained from the clean soil stockpile located in the southwest corner of the pile (RGR 2013b, Drawing MT13-AC-09, section A-A').

Burial of non-rock waste generated during closeout will be controlled so that the material will be placed in lifts and either covered with soil after each lift or flooded with soil/cement slurry to fill voids.

As part of the original closeout plan, analyses were performed to determine the structural stability (resistance to mass movement) of the pile after maximum buildout and stabilization. The results of these analyses, documented in Appendix B, show that the minimum factors of safety are 2.42 under static load conditions and 1.61 under pseudostatic (earthquake) load conditions for slope gradients that are steeper than those proposed for the reconfiguration of the existing waste pile. These values are well above the minimums necessary (1.00) to ensure stability. The configuration of the pile reshaped from its present (2013) form to 5H:1V slopes will have even higher factors of safety, given the lower height and flattened slopes compared to those assumed in the model.

The initial reshaping and slope stabilization, undertaken for mine reactivation, will be completed as a condition of reactivation of the mine. The costs associated with this effort will be removed from the financial assurance instrument (Section 7) when the effort is completed and approved by MMD.

Contaminated soil and pond sediments, excavated as part of the reactivation of the mine (RGR 2013b), will be the first materials added to the waste pile. The pond sediments will be placed in a clay-liner closure cell, described in Section 4.4.1, and the contaminated soil will be used to form the berms of that cell and to form additional lifts on the pile. When these reactivation-generated materials have been placed, the pile slopes will be finish-graded, covered with clean soil, revegetated, and protected with erosion control materials such as Curlex or other surface stabilization materials, as described below. Subsequently, when mining resumes, additional waste rock will be added to the pile, and the grading/cover placement/revegetation/erosion protection steps will be repeated progressively over time for each 10-foot lift added to the pile. The technical specifications for this earthwork are included in Appendix C.

A recent waste pile characterization study (Kleinfelder, 2012) was performed in support of the Stage II abatement plan for the perched water contaminant excursion from the pre-mining waste lagoon buried

under the waste pile. This study showed that infiltration of precipitation into the waste pile is offset by evaporation and that contaminants in the waste rock (low levels of radionuclides, no acid rock drainage) are not being leached from the waste rock. Therefore, a soil cover is not needed to protect the waste rock from infiltration or leaching, and the function of a cover will be to provide radon attenuation, a suitable growth medium for vegetation, and erosion protection of the waste rock.

The mound of shaft muck (soil stockpile) that occupies the southwest corner of the waste pile has background levels of radiation and presently supports healthy volunteer vegetation, so it will be used as cover soil over the reshaped waste pile surface. Results of soil tests (Appendix D) show that the shaft muck has weathered to soil consistency and classifies as low to moderate plasticity clay and clayey sand, similar to the soil presently covering the ore stockpile, on which two feet of cover is supporting healthy volunteer vegetation. Therefore, 2.0 feet of this soil cover over the waste pile will support a vegetative cover consistent with the local ecosystem and with the PMLU. RADON modeling (Appendix B) shows that 2.0 feet of soil cover also limits radon flux at the cover surface to less than the standard of 20 pCi/m^2s .

The soil cover will be placed and revegetated progressively over the mine life with each 10-foot lift added to the waste pile. To protect the cover from erosion after finish grading, and until vegetation is established, the side slopes will be covered with tobacco netting, Curlex[®], or similar biodegradable mat through which water can pass and plants can grow. If needed, crushed concrete will be used to create water bars and riprap blankets on the lower portions of side slopes and other locations where runoff may concentrate. Exact locations will be determined based on as-built slopes using the:

- Revised Universal Soil Loss Equation (RUSLE2), available at <u>http://fargo.nserl.purdue.edu/rusle2_dataweb/RUSLE2_Index.htm</u>, and
- Water Erosion Prediction Project erosion model (WEPP), available at http://forest.moscowfsl.wsu.edu/cgi-bin/fswepp/wd/weppdist.pl.

For purposes of closeout planning and estimating, RGR assumes that all broken concrete generated by demolition (approximately 2500 cubic yards) will be crushed, screened, and applied on the waste pile and adjacent diversion channel for erosion protection.

4.4.6 Future North Waste Pile Stabilization

Drawings MT13-CL-11 and -12 depict the future north waste pile that would, if needed, be build north of the Marquez Canyon arroyo. This pile is designed, and would be built, with 5H:1V slopes that require no additional shaping for reclamation, which would be achieved progressively with buildout as described for the south pile (Section 4.4.4). With each 10-foot high lift, the 2.0 feet of cover soil would be applied and vegetated, then erosion controls applied as described in the following sections.

4.4.7 Finish grading

After demolition, soil cleanup, shaft and well plugging, and backfilling are complete, the land surface disturbed by these and related mine site activities will be regraded to approximately the line and grades shown on Drawings MT12-CL-07 through -13 to provide controlled drainage and to prepare those areas for revegetation. Grading along the treated water pipeline corridor will be performed as needed to prepare the ground for revegetation. Grading will be adjusted as needed to remove obstacles or depressions in the ground surface that might obstruct or divert runoff from the intended flow directions. The technical specifications for grading are included in Appendix C. Finish grading will be accomplished by motor grader over approximately 139 acres on the mine permit area and pipeline corridor.

4.5 Revegetation

Following regrading, areas that have been disturbed by Mt. Taylor mining operations and soil cleanup will be revegetated in accordance with the Revegetation and Weed Management Plan (Appendix F) and Appendix C.5. Revegetated areas include approximately 15 acres along the treated water pipeline, the waste rock pile, the ore pad area, mine water treatment pond area and locations of demolished facilities. Storm water ponds and those areas where mining-related features such as buildings and roads are retained at the request of the surface owner will not be revegetated.

Preparations for revegetation and the selected seed mix will be directed toward establishing a vegetation community that can thrive at this site and that can support grazing of livestock. Plants native to the general area will be used as much as possible to provide for long-term stability of the soils and vegetation communities. Plant species that provide rapid initial cover will be used in the seed mix to

achieve initial soil stabilization. Species selected will not necessarily be found in the surrounding undisturbed area, but will have been approved for use in reclamation by the Natural Resources Conservation Service (NRCS, 1980) and other appropriate government agencies.

Revegetation of the recontoured areas will employ a variety of methods, depending principally on the steepness of the slope. A large percentage of the total disturbed area will be revegetated using standard mine reclamation equipment; i.e., tracked and wheeled tractors, rangeland seed drill, and mulch applicator. In areas with slopes of 3H:1V or steeper (natural or cut slopes east of the shafts), a mixture of manual and mechanical application techniques will be used, including hand broadcasting and heavy chains dragged by a tracked dozer to incorporate the seed with the soil. Mulching in most cases will be accomplished by a mulch blower and crimped by a tracked dozer. If hand application of mulch is required, crimping will be accomplished by hand as well. Seeding with a seed drill will be conducted as much as possible along the contour in order to minimize the development of rills. During the revegetation period temporary runoff controls will be used as necessary to impede or divert rainfall and snowmelt runoff from revegetated areas.

Runoff control during regrading and revegetation will use the most appropriate technology available at that time, including methods recognized by the NRCS or the International Association for Erosion Control. Measures that use present technology include check dams constructed of hay bales, geotextile silt fences secured in shallow trenches, and water bars across the disturbed area and perpendicular to the slope. Tobacco net, Curlex or similar net-and-fiber mats might be used as required for protection of surfaces susceptible to rilling or wind erosion. The specific measures applied to revegetated surfaces will be based on the method most appropriate for the seeding method, erodibility and depth of the soils, degree of slope, proportion of large rocks at the surface, roughness of the surface, and anticipated rainfall.

Locations of temporary runoff controls will be selected, consistent with the Stormwater Pollution Prevention Plan (SWPPP), to retard or divert runoff, trap sediment, and provide improved conditions for germination and plant establishment. These locations will be changed over time to keep pace with revegetation. Once revegetation has been achieved, temporary erosion control measures that have not disintegrated will be removed.

4.5.1 Revegetation Species

The predominant native grass species in the area is blue grama (NMEI 1974). Therefore, this species will be the primary species in the revegetation seed mix if it is readily and economically available at the time of closeout. Other species in the mix have been selected on the basis of their suitability for the terrain and climate, compatibility with native species and nutrient value to livestock. Additional factors in the selection of species are (1) likelihood of becoming a "pest" species in the area, (2) ability to achieve quick cover with a minimum of care and moisture, (3) strength of their root system for stabilizing the soil, and (4) ability to act as a nurse crop for the later establishment of local grasses, shrubs and forbs. Several cool-season and warm-season grass and shrub species are proposed in this plan to reestablish species that have been severely impacted by grazing and to optimize the chances for successful germination and establishment, regardless of the particular microclimate. The list of proposed species is shown on Table 5.2.

The seed mixture proposed in this plan is intended to introduce both cool-season grasses and permanent warm-season species to the recontoured areas. This approach incorporates a full range of seed species into the seedbed in one application, allowing one or more among them to exploit conditions favorable to their establishment. Vegetation establishment over the long term will be augmented by natural invasion by plant species already established in the adjoining undisturbed areas. Depending on the growing conditions of any particular year, the adjacent established vegetation will have the potential to enhance natural succession in the revegetated areas.

A weed management plan will be prepared not less than one year before mine closeout begins. Eradication measures may include application of herbicides, mechanical removal, or burning. Specific measures will be selected at the time of eradication.

4.5.2 Other Revegetation Materials

Hay bales and mulch. These materials will be used to slow runoff and provide temporary protection to newly emergent vegetation. To reduce the likelihood of introducing small grain species to the area, native grass hay will be used. Blue grama or similar hay may be available locally and would be preferable since its use would likely provide additional seed source to the revegetated areas. Alfalfa (Medicago sativa) will be used if native grass hay is unavailable or impractical. Hay mulch will be spread by means of a blower or by hand on steep slopes. It will be applied at a rate of approximately 1-2.5 ton per acre, sufficient to provide adequate cover for the seeds yet not so much to prevent moisture from percolating into the soil or smother emerging seedlings. The use of hydro-mulch is not anticipated since, in the dry climate normal for this area, the fairly dense surface that forms on the mulch layer tends to impede percolation of the limited rainfall.

Stabilization Netting. A number of materials are commercially available for this purpose. Tobacco netting, Curlex[®], jute or other biodegradable material will be used if netting is chosen as a means to stabilize the soil. However, the additional stabilization achieved with its use may not be sufficient to justify its cost. In the areas where jute or other suitable netting is used, it will be rolled by hand onto the surfaces to be treated, then anchored in place to prevent the net from being dislodged by the wind or surface water runoff.

4.5.3 Seed-Bed Preparation and Seeding

The regraded surfaces will be prepared for seeding by scarifying the surface and creating minor depressions to provide a proper seed bed. Seed will then be applied by either rangeland drill or broadcast. Broadcast seed will be incorporated into the growth medium by hand raking or some mechanical means such as heavy chains dragged behind tracked dozers.

4.5.4 Seed Origin and Quality

Seed should be harvested from native stands within 200 miles north, 300 miles south, 200 miles west, and 100 miles east of Mt. Taylor. If seed from native stands is not available, seed of suitable quality grown under appropriate conditions, or seed of released cultivars known to be adapted to the San Mateo area, may be used. All seed must be certified, and each seed bag must have attached to it a complete label with certification information.

4.5.5 Revegetation Success

Interim Standard - Because of the history of intensive grazing in the area of the Mt. Taylor Mine, the use of reference area or baseline data for establishing technical standards for revegetation success was considered to be inappropriate. Therefore, an interim technical standard based on range site descriptions has been proposed and is described in Table 5.3. Range site descriptions were obtained from the Natural Resource Conservation Service (NRCS 1980) for soil mapping units existing on the mine site. This standard will remain in effect until either the volunteer revegetation success is determined to support a higher standard or a test plot program has produced acceptable results that support a more site-specific standard.

Volunteer Revegetation Success – In approximately two decades since mining operations were suspended and the last significant disturbances were made to the mine site, volunteer vegetation has taken hold in areas of the site that were not subjected to routine maintenance traffic. Specifically, vegetation has developed on the slopes of the waste pile and on the cover of the ore stockpile. No survey of these surfaces has been performed, but the success of the volunteer vegetation will be measured against the criteria listed in Table 5.3 to evaluate if the vegetation success meets or exceeds the interim standard.

Monitoring - Monitoring of revegetated areas will be conducted on a periodic basis in accordance with the Revegetation and Weed Management Plan (Appendix F). Success of both germination and establishment will be dependent in large part on the moisture received in the summer and winter months and variations from year to year. Monitoring activities will be designed and scheduled to recognize this. An annual survey of the revegetated areas will be conducted to determine species composition and vegetation cover, frequency and density. Since establishment of vegetation is a function of its ability to reproduce, vegetation will also be assessed for its reproductive status, as well as its overall vigor. The annual survey will be conducted toward the end of the growing season, no later than early September. The survey will be conducted by a botanist or other qualified vegetation specialist. Survey results will be analyzed and summarized to aid in determining the need for any changes in management practices or the need for reseeding or other supplementary practices. Less formal monitoring will be conducted through the year by RGR personnel to identify conditions in the revegetated areas that may require attention.

Evaluation - Evaluation of success will be based on a combination of criteria categories that include (1) site-specific conditions, (2) vegetation cover and species composition in the undisturbed adjacent areas, and (3) the potential vegetation cover and composition per NRCS range descriptions for particular soil types in the area (SCS 1993). A combination of these criteria is used since any one of them by itself may be inadequate to provide an acceptable standard. Specific criteria and numeric values for evaluation will be developed in consultation with the Mining and Minerals Division. The success criteria are expected to

take into account:

- <u>Range site descriptions</u>, developed by the SCS (1993) for the area are based on a combination of factors including types of soils (depth, parent material, etc.) and climate. The descriptions provide a range of expected vegetation types and annual productivity for various uses.
- <u>Site-specific conditions</u>, used to modify the range-site derived criteria by increasing or decreasing required production. These will be used primarily to adjust productivity as a function of soil depth.
- <u>Life-form diversity in surrounding undisturbed areas</u>, i.e. the ratio of grasses:forbs:woody plant species, used to provide an additional measure by which to evaluate revegetation success. The criteria will be developed with the understanding that the entire region has been extensively grazed for many generations. Therefore, there are no truly undisturbed areas from which a baseline or natural background standard can be developed (NMEI 1974).

4.5.6 Management and Contingency Plans

After revegetation efforts have been completed, management of the revegetated areas will follow the will Revegetation and Weed Management Plan (Appendix F) and will include:

- instruction of staff in measures to protect revegetated areas
- posting of signs to warn against disturbance
- placement, and replacement as necessary, of erosion controls
- supplementary seeding of areas as necessary
- periodic inspections and monitoring

Revegetation efforts will be repeated until successful. If results of annual monitoring indicate failure in all or part of a revegetated area, RGR will either supplement work already accomplished or revegetate the affected area, as appropriate. Efforts will be modified as necessary depending on what the cause of the failure is determined to have been.

4.6 Erosion Protection

4.6.1 **Protection of the Waste Rock Pile Surfaces**

Erosion modeling using the Revised Universal Soil Loss Equation (RUSLE) performed for the original CCP submittal showed that the maximum annual soil loss rate on the unreclaimed waste rock pile is

only 0.02 T/acre/yr and would be reduced to less than 0.005 T/acre/yr after revegetation of the soil cover. Since the original analysis, the closeout design has been changed, so a new analysis using the updated using the 2010 version 2.0.4.0 of the RUSLE2 model. The analysis examined several base management scenarios, from smooth bare slope surface to 4-year-old vegetation on the modeled slope. For the modeled slope, representing the worst case for the waste pile, 350 feet long at 20% slope, best erosion protection is achieved by use of hay mulch. The predicted soil loss is 0.77 t/ac/yr using hay mulch, compared to slightly higher soil loss of 0.82 t/ac/yr using rock mulch or gravel. For comparison, with vegetation after four years the predicted loss is 4.3 t/ac/yr, and a smooth bare surface is predicted to have 5.6 t/ac/yr soil loss. Therefore, RGR's use of hay mulch with rock and/or gravel will provide the best slope protection while also encouraging vegetation of the waste pile cover.

The south waste pile will be reshaped, and the north waste pile would be constructed, to avoid concentration of runoff and maintain sheet flow over the pile slopes. Erosion control blankets used in conjunction with revegetation should provide adequate interim protection of the 5H:1V and flatter slopes. Progressive reclamation allows time and opportunity to observe and evaluate the effectiveness of these measures. If additional erosion protection is needed for surfaces on the waste pile that are susceptible to erosion due to high runoff velocities or concentrated flows, such as steep slopes or drainage swales, riprap will be applied. In most cases, crushed concrete screened for minus five inches with average particle diameter (d_{50}) of not less 2.7 inches will be applied at least 0.5 feet thick as riprap in the bottom 1/3 of steeper slopes and as water bars in swales. Larger riprap (12 inches plus) will be used along the south arroyo bank, south of the waste pile. Riprap will consist of crushed concrete or basalt or equivalent rock.

Only durable, adequately-size concrete pieces meeting the size criteria will be applied as riprap.. Gravel and sand-size fragments will be used as crusher fines in rock mulch (Appendix C.3, Section 2.9.3), and larger. RGR intends to make the maximum possible use of broken concrete for environmental and resource conservation reasons as well as economic reasons, in accordance with Sections 2.3 and 3.5 of "Best Practice in Environmental Management of Uranium Mining", IAEA Nuclear Energy Series NF-T-1.2.

Durability of all candidate concrete material will be evaluated by the procedures in:

- ASTM D 4992 Standard Practice for Evaluation of Rock to be Used for Erosion Control
- ASTM C 88 Test Method for Soundness of Aggregates by Use of Sodium or Magnesium Sulfate
- ASTM C127 <u>Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse</u> <u>Aggregate</u>
- ASTM C535 <u>Test Method for Resistance to Degradation of Large-Size Coarse Aggregate by Abrasion</u> and Impact in the Los Angeles Machine

If the quantity of suitable crushed concrete is not sufficient, basalt boulders can be harvested from the mesa slope east and south of the mine and crushed into the necessary sizes.

Information on drainage structures and erosion protection design for the waste rock pile is provided in Appendix B and Drawings MT12-CL-09 through -12. Design runoff and shear calculations were prepared as part of the original closeout plan in 1998 and address the issue of erosion protection for the ultimate build-out size and shape of the waste pile surfaces. Those calculations determined that the peak shear stress during design storm runoff would not exceed the allowable shear stress for the cover soil or riprap protection. The waste pile at final buildout will have flatter slopes than assume in the calculation; therefore, the runoff parameters and results in the 1998 calculations modeled a more extreme (conservative) condition than would develop for the actual waste pile closure slopes. Nevertheless, the 1998 calculations have been retained and applied to this revision for conservatism.

Top surfaces will not require riprap. These surfaces have been designed with 1% slopes (RGR 2013b, Drawings MT13-AC-09 and -11) so that the allowable shear from runoff on clayey soil surfaces will not be exceeded by peak runoff of the 100-year, 24-hour storm.

Water bars of crushed concrete or basalt will be placed in swales or on slopes as necessary, based on final actual slope grades and lengths, using calculation methods in Appendix B. The need for, or location of, water bars cannot be determined until the actual amount of contaminated soil placed on the waste pile and the final grades of the cover are known. However, for cost estimating purposes approximately 1600 cubic yards of riprap on the pile outslopes has been assumed.

4.6.2 Arroyos

Hydrologic analyses using the HEC-1 and HEC-2 models (Appendix B) show that Marquez Canyon arroyo will conduct the 24-hour, 100-year flood without need for erosion protection or channel improvements.

These analyses show that the design flood water and energy surfaces are well within the arroyo banks in both cases, indicating that there should be no out-of-bank flow during the design flood and that the arroyo morphology appears to be in equilibrium with much larger runoff events.

The middle arroyo was largely filled in during site construction, but its remnants lead to the south storm water retention pond (ultimately the stock tank) north of the waste rock pile. The middle arroyo has a very small watershed; therefore, it receives little runoff that can be accommodated with site grading and channel shaping.

The southern arroyo was diverted at the time of mine development to run along the south side of the waste rock pile. HEC-1 and HEC-2 analyses show that its hydraulic parameters are also sufficient to convey the 24- hour, 100-year flood but its north bank adjacent to the waste pile will require protection by large (12 inch or larger) riprap. For this purpose, broken concrete from demolition or basalt cobbles and boulders will be used. The riprap will be placed from toe of the north bank to the elevation of the peak water surface of the 100-year design flood, less than 10 vertical feet above the arroyo thalweg. The riprap thickness will be not less than two times the average particle diameter and will extend from the southwest corner of the waste pile eastward for at least 400 feet or to the southeast corner of the waste pile at approximately where the arroyo crosses E 559450 (Drawing MT13-CL-13). Riprap will be placed also at other locations of concentrated flow in this arroyo, especially areas where flow has bypassed some of the existing concrete liners and at the western end of the entire channel. Approximately 600 cubic yards of channel protection riprap has been estimated for this application, and additional 250-300 cubic yards would be available if needed.

A surface water diversion channel, located east of the 14-foot shaft and ore stockpile areas, intercepts and diverts runoff northward to Marquez Arroyo. The channel is very stable, with substantial amount of rock and vegetation in place, and will be preserved in closeout in this condition.

4.7 Fencing

Recently RGR has replaced and increased the height of existing fences on the mine site to provide better exclusion of cattle and wildlife from the mine site. One chain link fence, eight feet high, encloses the MWTU, approximately 5000 feet in length. Another eight-foot chain link fence will be up to 3000 feet

long surrounding the waste pile, depending of its final footprint. An additional 2000 feet of this fence will prevent entry to the shaft areas.

5 POST-CLOSURE ENVIRONMENTAL COMPLIANCE AND MONITORING

Through the closeout measures described in section 4 and the requirements of other permits described in section 1.4, the Mt. Taylor Mine site is expected to stay within environmental standards for air and water quality. The mine involves extraction of ore for processing elsewhere; there are no milling facilities on the site to concentrate or release potential contaminants.

5.1 Ground Water

5.1.1 Alluvial Ground Water Monitoring

Investigations on the mine site performed over the years through 2012 (RGR 2012; Kleinfelder 2012; RGR 1994a; NMEI 1974) indicate that alluvium forms a discontinuous, thin veneer over residual soil and rock of the east-dipping Menefee shales and interbedded sandstones. The alluvial soil cover is thin or absent over most of the mine site. Shallow alluvial ground water occurs only in the paleoarroyo that lies below part of the Service and Support area and the existing waste pile. The underlying Menefee strata are unsaturated above the Pt. Lookout.

During the previous renewal period of mine standby, RGR reported information to the NMED that showed elevated concentrations of chloride, nitrate, sulfate, and TDS in monitor well MW-5 located in alluvium of the paleoarroyo down gradient from the waste pile. In response to NMED concerns about the origin and extent of this contamination, a two-stage abatement plan was undertaken and a waste rock characterization study (Kleinfelder, 2012) was performed. That study determined that the contamination is a relic of an old sanitary waste lagoon, originally a stock tank located above the paleoarroyo, which was buried under the waste rock. The contamination is limited to a perched water zone at the base of the paleoarroyo. It originated from the waste lagoon and was not caused by infiltration or leaching of the waste rock.

An abatement plan is in effect for remediation of contamination in perched water at the alluvial soil/ bedrock contact below and west of the waste rock pile. Stage II of the approved abatement plan is in progress and is expected to remediate the contamination. A line of salt cedars has been planted across the plume, along a north-south line at the west edge of the mine area, to intercept the plume, consume the nitrates, and dry up the perched water zone. The plume and the effects of the abatement plan are being assessed through a monitoring program. When the abatement plan objectives have been achieved, this monitoring program will be discontinued and a completion report will be submitted to NMED.

For the abatement plan, shallow alluvial monitor wells have been installed, water levels measured, and water samples obtained for testing. The alluvial monitor wells already in place (MW and WP series) span the width of saturation in the paleoarroyo; therefore, no addition shallow monitor wells are needed. Quarterly ground water monitoring will be continued in wells MW-5 WP-5, WP-4, and MW-4 after completion of the abatement plan to detect and evaluate infiltration of storm water from the south storm water retention pond into the alluvium. The target water quality parameters to be tested are uranium, radium, selenium, chloride, and sulfate. The stage II abatement monitoring program will be continued until NMED has determined that the abatement goals have been achieved; although unlikely, this monitoring could extend to and beyond closeout. No additional remedial measures are expected, so none is included in this closeout/closure plan.

The only other potential future sources of shallow ground water contamination are the mine water treatment ponds and the ore pad and its runoff retention pond, but such contamination is not expected. These facilities will have HDPE liners and either leak detection systems or runoff collection and retention. In the area of these facilities, the alluvial cover is thin or absent. Therefore, there is no shallow ground water that could be potentially impacted by leakage from the mine water treatment ponds (20.6.2.3108 F NMAC). At cessation of mining, the mine dewatering will be terminated and the mine water treatment ponds and ore pad runoff retention pond will be allowed to evaporate the remaining water. At that time, the pond leak detection sump monitoring and tensiometers, if any (RGR 2013, Section 6.5.2.1) will cease, as well, in preparation for closure of the ponds.

5.1.2 Deep Aquifer Ground Water Monitoring

Upon termination of mine dewatering, RGR will measure the water levels in the mine shafts at least quarterly for 12 months. When the phreatic level in well #2A has recovered to approximately original

levels, Point Lookout water will be tested for the parameters listed in Table 2.2 to demonstrate that the water quality meets human health standards per 20.6.2.3103 NMAC.

Two deep monitoring wells, SM-24-38 and SM-24-43, extend to depths below the mine workings, or about 3500 feet, next to the 24-foot shaft. These wells were used to measure water levels in the mine. They will be decommissioned and plugged at mine closure.

Stage I depressurizing wells (RGR 2013b, Section 6.5.2.2) to depths of up to 1200 feet will be retained by the land owner for PMLU. Well 2A currently provides potable water from the Point Lookout aquifer for use at the mine. This well will continue to be sampled annually for the sample water quality parameters listed in Table 2.2 until closure is complete per DP-61. The sampling and test results will be reported to NMED annually during the closure period.

5.2 Surface Water

Surface water releases will continue to conform to NPDES #NMR05GB27 requirements until closeout is completed and the permit has been terminated.

The surface water courses across the site are ephemeral, and no monitoring of flows has been conducted during operation or standby periods. The storm water retention ponds have collected runoff during larger storm or snowmelt events but are usually dry. Sediments with elevated levels of radium will be removed from these ponds upon mine reactivation and again, if necessary, during closeout, and this cleanup will be verified by radiological surveys and sample testing. No post-closure monitoring will be conducted after the pond basins are determined to be free of contamination.

The proposed revegetation and erosion protection measures have been designed to limit runoff and erosion rates to normal levels, with special emphasis placed on preventing erosion of waste rock material or exposure and release of the buried sediments in the mine water treatment ponds. The waste areas, including waste pile and pond covers, will be visually inspected annually until the revegetation in those areas has been determined to be satisfactory and protective of areas containing buried contaminants. All other potential sources of sediment are naturally occurring at ground surface, and the erosion rates of these materials should return to normal when revegetation has been completed.

Erosion modeling in 1998 using the Revised Universal Soil Loss Equation (RUSLE) for the then-proposed

steeper, benched slopes of the south waste pile showed that the maximum soil loss rate, estimated at 1.1 T/acre/year for the as-is pile, would be reduced to a maximum of 0.2 T/acre/year after closeout. The maximum annual soil loss rate on the unreclaimed waste rock pile is only 0.02 T/acre/yr., according to RUSLE modeling performed for the original closeout plan, and this will be reduced to less than 0.005 T/acre/yr. after reshaping to 5H:1V slopes and revegetation of the soil cover. Therefore, sediment releases should be very low.

5.3 Radiological Safety and Monitoring

5.3.1 Radiological Safety

Radiation safety controls will be implemented to protect workers and the public, and to ensure compliance with the ALARA requirement in the New Mexico Radiation Protection Regulations (20.3.4.404.B NMAC). The performance standards will be the pertinent monitoring requirements and radiation dose limits specified elsewhere in 20.3.4 NMAC. The controls will be implemented pursuant to the Mt. Taylor Mine Radiation Safety Program Manual (RSPM) and its subordinate standard procedures. Radiation work permits (RWP) will be written and implemented for those phases of work for which no applicable standard procedures are in place.

5.3.2 Radiological Monitoring

In 2012, the Mt. Taylor Mine resumed its routine radiation safety environmental monitoring program. Seven initial monitoring locations, shown on Figure 6-1 of RGR 2013, were established. A radon track-etch detector and a gamma radiation dosimeter are located at each station and will be exchanged and analyzed every three months throughout closeout activities. The data are used to monitor public and worker radiation dose.

Gamma radiation surveys have been performed routinely on the surface of the service and support area and will continue during closeout, with gamma surveys performed at least monthly and contamination surveys performed at least weekly. After closeout activities are completed, a contamination survey will be performed in buildings retained for PMLU. The radiation and contamination surveys will be used as a part of the radiation safety program to monitor radiation dose and to control intakes of radioactive materials.

The site surveying methodologies will be the portions of the Multi-Agency Radiation Survey and Site Investigation Manual (or equivalent methodologies) for soil characterization that are applicable to uranium mine reclamation. As allowed by MARSSIM, the release criteria of 6.8 pCi/g Ra-226 will be used in lieu of a derived concentration guideline limit (DCGL). Alternatively, portions of MMD's Draft Guidance for Meeting Radiation Criteria Levels and Reclamation at New Uranium Mining Operations may be utilized; however, in its draft form it is written specifically to new mines. All radiological surveys will be conducted by health physicists and health physics technicians.

The monitoring and analysis for intake of respirable particulates will use methods consistent with Nuclear Regulatory Commission (NRC) guidances such as Regulatory Guides 4.14, 8.34, and 8.37. The airborne radioactivity monitoring will consist of continuous and grab samples using filter media on calibrated air samplers (pumps). The filters will have high efficiency for removal of sub-micron particles. The guidance in ANSI/HPS N13.1-1999 (section 6.6.2 Filter media) will be followed in using the filter media. Particulates collected on the filters will be analyzed for radioactivity per unit volume of air by an off-site lab. Radiation dose will be estimated using the derived air concentrations (DAC) and annual limits on intake (ALI) for natural uranium given in 20.3.4.461 NMAC.

5.4 Air Quality

Air quality impacts from Mt. Taylor Mine are minimal, resulting primarily from fugitive dust generated by truck traffic. Completion of closeout measures will reduce truck traffic to occasional trips by the landowner if grazing is the PMLU. Traffic related to other continued use of mine facilities retained by the surface owners cannot be predicted at this time. Revegetation of disturbed ground and erosion protection on steep slopes will reduce other fugitive dust to background levels. There are no other sources of dust or gaseous emissions left after closeout. For additional information on air quality, see page 14 of the Mt. Taylor Mine Site Assessment.

5.5 Sewage Treatment Plant Discharge

The sewage treatment plant (STP) will be taken out of service and demolished at termination of mining. The existing septic tank will be inspected, repaired or replaced if necessary, placed back into service with the leach field through closeout. Once the STP is taken out of service, the sampling and testing under NPDES #NM0028100 will be discontinued. No monitoring of the septic system is planned.

6 CLOSEOUT SCHEDULE

The schedule for mine closeout is shown in the Gantt chart in Figure 6-1. From initiation of the closeout contracting process to completion of the closeout activities on site is estimated to take about 16 months. The first 5-6 months would be taken up by project management and contractor procurement, followed by 9-10 months of actual construction activities on site from mobilization through demobilization.

7 COST ESTIMATE

The estimated costs of closeout/ closure of the Mt. Taylor Mine were developed to satisfy the requirements of both MMD's *CLOSEOUT PLAN GUIDELINES FOR EXISTING MINES, Attachment #4* (FINANCIAL ASSURANCE CALCULATION HAND BOOK) and its Guidance To Mine Operators for Calculating Reclamation Costs in Net Present Value, December 29, 2004 as well as NMED-GWQB's Discharge Plan Closure Guidance for Mines, May 30, 1996.

Several references were used for unit costs, the primary being R.S. Means Heavy Construction Cost Data 2013, the Wyoming DEQ Guideline No. 12, and the Caterpillar Performance Handbook. The basis for each unit cost is identified on the cost estimate spreadsheet.

Quantities of work and materials were based on field measurements or counts of materials, construction or design record drawings, and area/ volume calculation functions within AutoDesk AutoCAD Civil 3D[®] design software. A new base map, completed in June 2012 at 2.0-foot contour intervals, was used as the topographic base along with AutoCAD Civil 3D[®] design software for the earthwork estimates in this CCP.

The cost estimate does not include closure costs for the north waste pile. If this pile is needed, RGR will update the cost estimate to include costs related to closure of this facility. If the north waste pile is not needed and not constructed, the area reserved for this pile will be left undisturbed.

The cost estimate does not include any deductions or offsets for re-sale or salvage value of mine components and scrap. However, the value of these materials, especially the structural steel and the treated water pipeline, could offset one quarter to one third the actual direct cost of closeout.

Cost estimates for closeout of the IX facility are based on the conservative assumption that tubular materials (pipes) and debris internal to the IX circuit will contain scale or corrosion material with radiological contamination that cannot be removed, making it necessary to dispose of these materials as low-level radioactive waste in a licensed facility off-site (DOE 2002). Additional assumptions are that 1) the IX resin will be sent to a third party facility licensed by NRC or an Agreement State to process equivalent feed source material in the form of IX resin, and 2) the third party facility would accept title to the resin. The decontamination and demolition (D&D) costs for the IX circuit equipment are covered under the financial assurance requirement of the Radioactive Material License with the NMED Radiation Control Bureau and are not included in this estimate; only the IX structure is included in this estimate.

The detailed estimate is presented in Appendix E. The estimated costs by category are:

Total Direct + Indirect, Location-adjusted, with NMGRT	\$6,895,547
New Mexico Gross Receipts Tax	\$432,234
Total Adjusted Direct + Indirect =	\$6,463,312
Location Cost Adjustment=	0.879
Direct + Indirect Cost =	\$7,353,029
Indirect Cost =	\$2,418,110
Direct Cost =	\$ 4,934,919

The cost estimate also includes cost projections over three additional years with annual escalation of 2.0%.

LIST OF REFERENCES

Geohydrology Associates, Inc, 1994, Water Resources Report, Mount Taylor Uranium Mine, Cibola County, New Mexico (unpublished)

FHWA (Federal Highway Administration). 1995. *Best Management Practices for Erosion and Sediment Control*. FHWA-SLP-94-005. Federal Highway Administration, Sterling, VA

Kleinfelder, 2012, *Mine Waste Rock Pile Characterization Report*, Mt. Taylor Mine, San Mateo, New Conservation

Natural Resource Conservation Service (NRCS), 1980, *Range Site Descriptions, Section lie, Technical Guide*, USDA SCS, NM MLRA 36-119-N New Mexico Environmental Institute (NMEI), 1974, *An Environmental Baseline Study of the Mount Taylor Project Area of New Mexico*, prepared for the Gulf Mineral Resources Company, Project No. 3110-301

New Mexico Energy, Minerals and Natural Resources Department, Mining and Minerals Division (MMD), 1996, *Closeout Plan Guidelines for Existing Mines*

Rio Grande Resources (RGR), 1994a, Environmental Site Assessment, Mt. Taylor Uranium Mine Operations

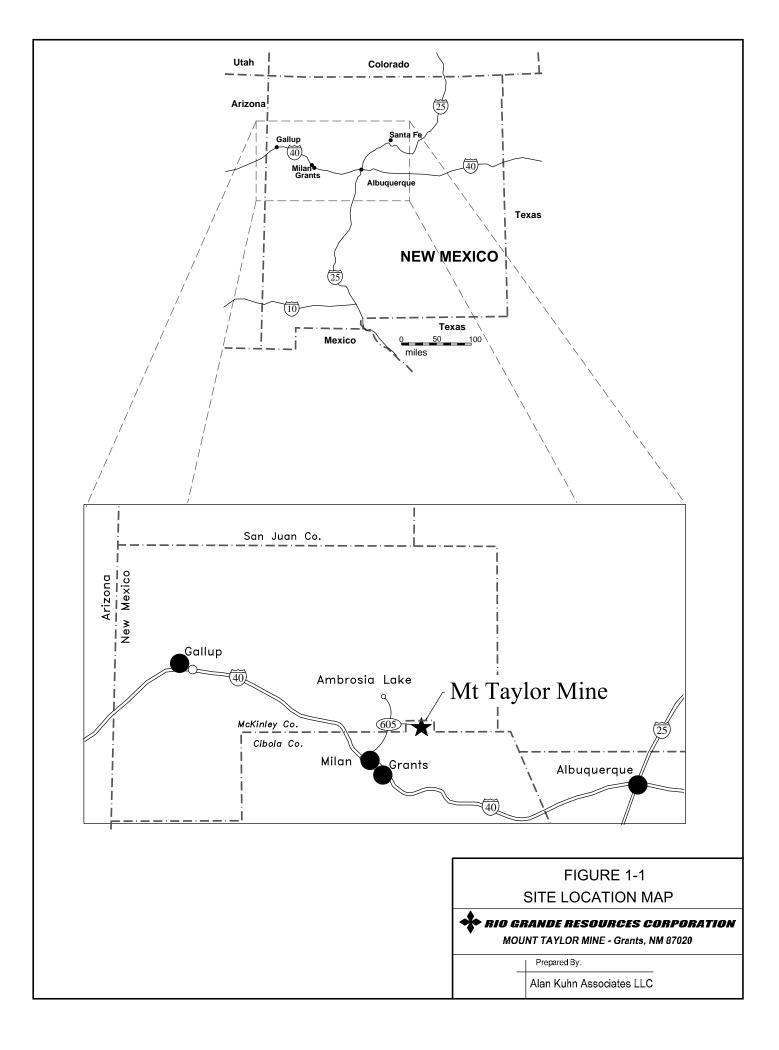
Rio Grande Resources (RGR), 1994b, Existing Mine Permit Application, Mt. Taylor Mine

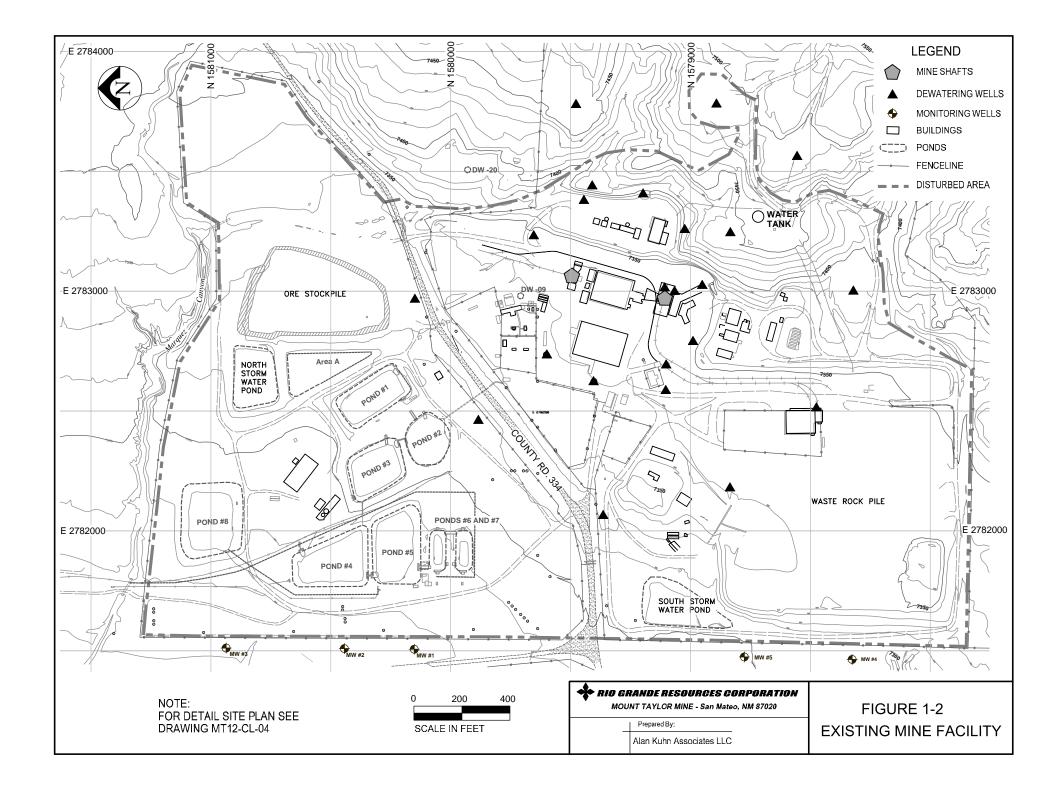
Rio Grande Resources (RGR), 1998, Mt Taylor Mine Closeout Plan, January 1998

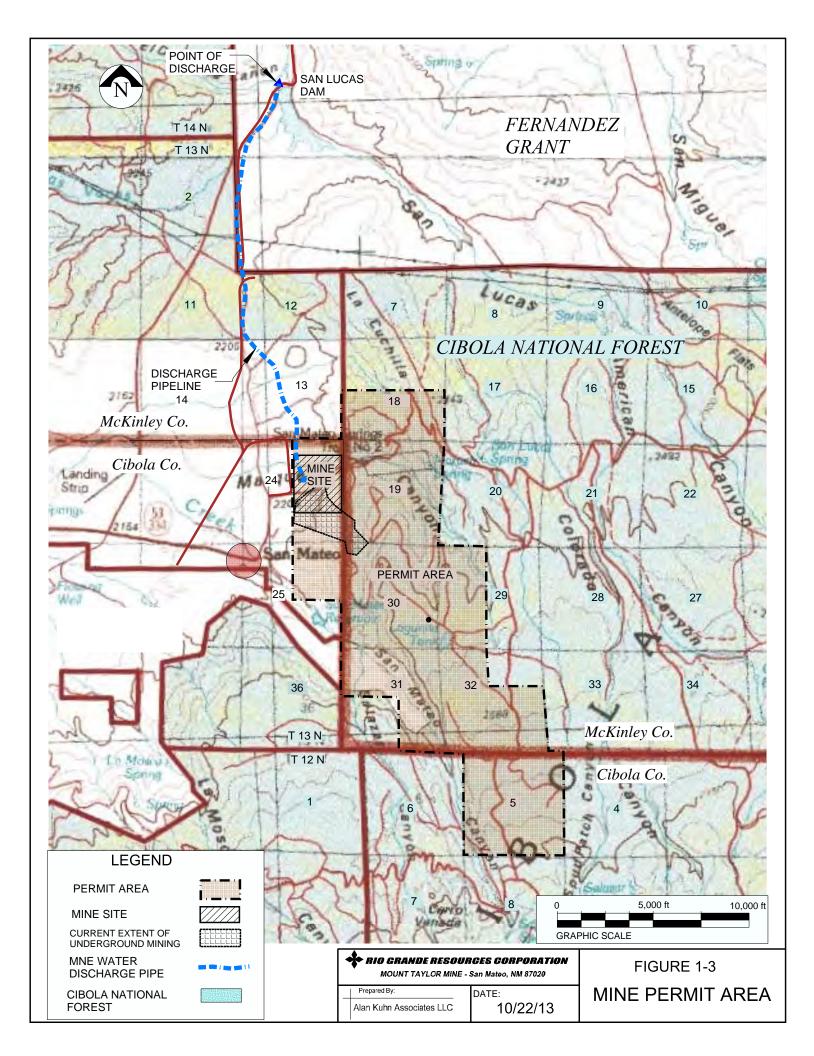
Rio Grande Resources (RGR), 2012, *Mt. Taylor Mine Closeout/Closure Plan*, Existing Mine Permit #C1002RE, Discharge Plan DP-61

Rio Grande Resources (RGR), 2013a, *Application for Revision of Mine Permit* #C1002RE from Standby to Active Status and Modification of Ground Water Discharge Permit DP-61; Rev 0, April 2013

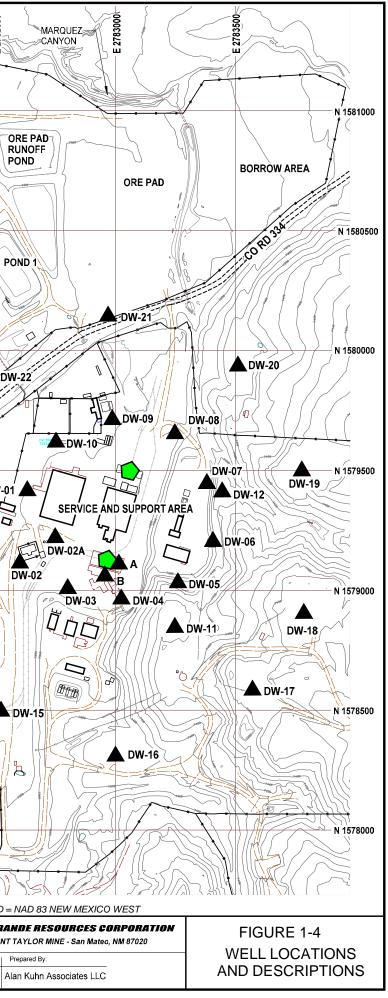
Rio Grande Resources (RGR), 2013b, *Application for Revision of Mine Permit* #C1002RE from Standby to Active Status and Modification of Ground Water Discharge Permit DP-61; Rev 1, November 2013

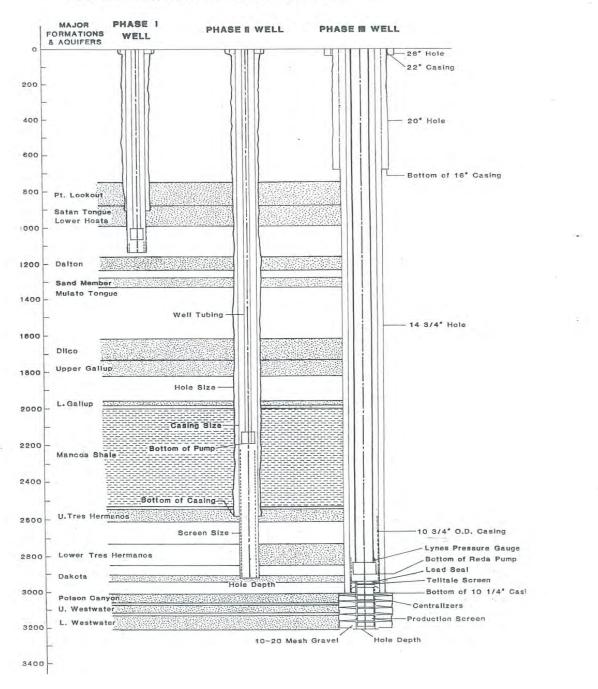

Natural Resources Conservation Service NRCS) formerly Soil Conservation Service (SCS), 1993, *Soil Survey of Cibola Area, New Mexico, Paris of Cibola, McKinley, and Valencia Counties,* U.S. Dept. of Agriculture,


Trinitek, 2012, April 2012 Soil Investigation, Memorandum Report to Rio Grande Resources, unpublished

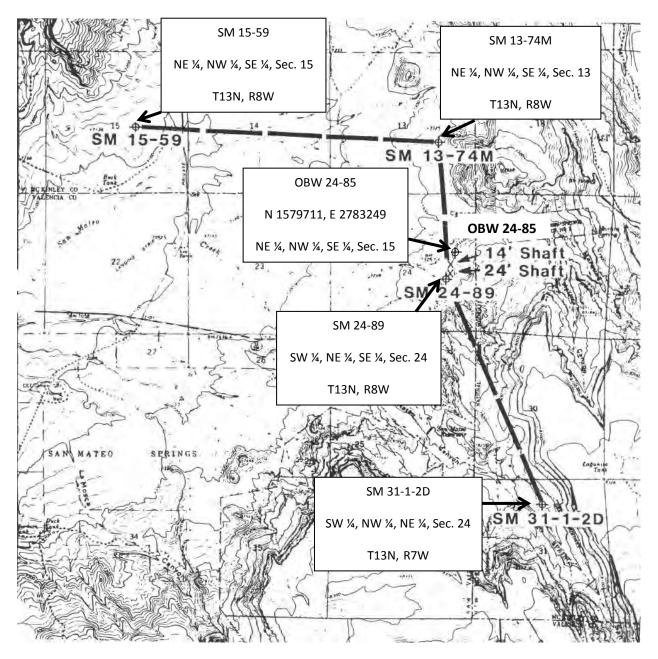

U.S. Department of Energy Office of Environmental Management (DOE), 2002, The Cost of Waste Disposal: Life Cycle Cost Analysis of Disposal of Department of Energy Low-Level Radioactive Waste at Federal and Commercial Facilities,

U.S. Nuclear Regulatory Commission (NRC), 2010, Proceedings of the Workshop on Engineered Barrier Performance Related to Low-Level Radioactive Waste, Decommissioning, and Uranium Mill Tailings Facilities, NUREG/CP-0195, August 2010


Wyoming Department of Environmental Quality (WDEQ), 2012, *Standardized Reclamation Performance Bond Format and Cost Calculation Methods*, Guideline No. 12



					ORMATIO		-		1						E 2781500			E 2782000	\geq		\#/{/> E 2782500-
	Closure	State Plane (oordinates		Depth, Feet		Screened Interval,	Screened	Aquifer in	Pt L	ookout	We	stwater					$\overline{+}$		1	*
Well No.	Disposition (3)	(NAD	83)	Elevation, Feet AMSL	from Surface	Elevation AMSL	Feet Depth (5)	Interval, Feet Elevation (5)		Top Depth/ Elevation	Bottom Depth/ Elevation	Top Depth/ Elevation	Bottom Depth/ Elevation	N 1581000-	O MW	/-3		POND 8	<u>}</u>		
		Ν	E											2		//	K		<u>)</u>	FI	F
DW 1	PMLU	1579419	2782626	7340	1118	6222	740-890	6600-6450	PL	740/6600	870/6470				▶						
DW 2	Plug	1579121	2782606	7345	2920	4425	2550-2920	4795-4425	TH/D	740/6605	870/6475			K	(18th	a)	/ //	<i>4 /</i> /
DW 2-a ⁽¹⁾ DW 3	PMLU PMLU	1579202 1579008	2782709 2782795	7347 7347	925 1150	6422 6197	750-900 737-891	6597-6447 6610-6456	PL PL	741/6606 751/6606	871/6476 871/6476				1. 🔪	// A				,)	
DW 3 DW 4	PMLU	1578965	2782795	7347	1130	6214	750-900	6599-6449	PL PL	750/6599	871/6476 880/6469			V		/ (T.	\mathbf{A}	\sim	>)	
DW 5	PMLU	1579038	2783256	7406	1150	6234	852-1002	6554-6404	PL	807/6599	937/6469			N 1580500-			POND 4	30	<u>}</u>		
DW 6	PMLU	1579210	2783402	7385	1190	6195	845-995	6540-6390	PL	800/6585	930/6455			11 1000000	O MW	/-1					A
DW 7	PMLU	1579455	2783384	7376	1125	6251	825-995	6551-6401	PL	780/6596	910/6466							- HH		1/ 1	$\langle \langle $
DW 8	PMLU	1579672	2783240	7346	1044	6302	791-941	6555-6405	PL	746/6600	876/6470						0	$-\mathcal{N}$	POND	3	0
SW 9	Plug	1579723	2782973	7340	2845	4495	2538-2840	4802-4500	ТН	738/6602	868/6472					N (POND	5	1/14	A	
DW 10	PMLU	1579619	2782734	7337	1065	6272	738-888	6599-6449	PL	738/6599	868/6469				M W	-2	1990	\square			
DW 11	Plug	1578845	2783245	7446	3028	4418	2819-3028	4627-4418	TH/D	847/6599	977/6469			ł	$ \mathbf{f}\rangle$	// F		5	°) ((POND	2
DW 12	Plug	1579421	2783439	7419	2940	4479	2791-2940	4628-4479	TH/D	819/6600	949/6470			N 1580000			PONDS	∠ וי 6 AND 7	. \\	7300	X
DW 13	Plug	1579378	2782065	7317	3185	4132	3045-3185	4247-4132	W	722/6595	852/6465	3132/4185	3272/4045	N 1580000			4	Ĩ.		7/	
DW 14	Plug	1578847	2782182	7338	3205	4133	3048-3188	4290-4150	W	736/6602	866/6472	3146/4192	3286/4052	t			\nearrow	1 /	/	10	A r
DW 15	Plug	1578491	2782501	7347	3205	4142	3056-3196	4291-4151	W	744/6603	874/6473	3154/4193	3294/4053		†	- /Ĩ	Ν.		. /		
DW 16	Plug	1578334	2782995	7393	3275	4118	3105-3245	4288-4148	W	793/6600	923/6470	3203/4190	3343/4050	ł							
DW 17	Plug	1578570	2783563	7501	3342	4159	3209-3342	4291-4159	W	896/6604	1027/6474	3307/4194	3447/4054	*	AT .		X		1		
DW 18 DW 19	Plug	1578902 1579493	2783778 2783781	7502 7453	3314 3274	4188 4179	3212-3314 3166-3274	4295-4192 4287-4179	W W	900/6606 854/6599	1030/6476 984/6469	3310/4196 3264/4189	3450/4056 3404/4049	V	M/		. / * *			//	
DW 19 DW 20	Plug Plug	1579495	2783505	7385	3274	4179	2938-3223	4287-4179	D-W	786/6599	984/6469	3196/4189	3336/4049			/	1	K			
DW 20	Plug	1580165	2783966	7316	3184	4132	2873-3173	4443-4143	D-W	721/6595	851/6465	3131/4185	3271/4045	N 1579500/		5-5-	10-1-			*-	+
DW 22	Plug	1579900	2782460	7305	3195	4110	3019-3159	4286-4146	W	707/6598	837/6468	3117/4188	3257/4048	334-				*	DW-13		-DW-
SM-24-38	Plug	1579132	2783007	7349	3535	3814	3107-3247	4324-4184	W	795/6636	925/6506	3205/4226	3345/4086			<u> </u>			DW-13	f man	-6-
SM-24-43	Plug	1579029	2782948	7347	3535	3812	3064-3204	4283-4143	W	752/6595	882/6465	3162/4185	3302/4045					115			f l
(1	.) Well 2-a su	oplies domes	tic water fro	om the Pt. Lo	okout Sands	tone										OUTH STO	RM WATER	A H	[] []mon		
(2) Wells insta	led in 1977												1		RETENTION		$\{ \{ \mathcal{C} \}$		\parallel	H
1.) PMLU= Post-	mining land	use											1					. 2 *		1 (
(3	,	0													O MV	V-5///	0 6	$\left(\right) \left(\right)$	\sum	7/	
•) All well cas	0		in Pt Lookou	t, 9 5/8 " ID	in Tres Herm	anos and D	akota, 10 ¾″∣	D with 7 " line	r in Westwate	r				O MV	V-5//					
(4	,	ings are stee	l – 8 5/8 " ID					akota, 10 ¾″ I	D with 7 " line	r in Westwate	r				O MV	V-5/			Tom the second s		
(4 (5) All well cas	ings are stee nd depths of	l – 8 5/8 " ID screens and	formation i	itercepts ar	e approxima		akota, 10 ¾" I	D with 7 " line	r in Westwate	r									-14	
(4 (5) All well cas) Elevation a	ings are stee nd depths of	l – 8 5/8 " ID screens and	formation i	itercepts ar	e approxima		akota, 10 ¾″ I	D with 7 " line	r in Westwate	r	ſ	- /		O MV				A DW	-14	
(4 (5) All well cas) Elevation a	ings are stee nd depths of	l – 8 5/8 " ID screens and	formation i	itercepts ar	e approxima		NOT	E: WELLS I	NOS: DW-01	, DW-02 AND	DW-15								-14	
(4 (5) All well cas) Elevation a	ings are stee nd depths of	l – 8 5/8 " ID screens and	formation i	itercepts ar	e approxima		NOT		NOS: DW-01	, DW-02 AND	DW-15	- MW-A						0	 	
(4 (5 (6	,) All well cas ;) Elevation ar ;) PL=Pt Looko	ings are stee ad depths of ut, TH= Tres H	l – 8 5/8 " ID screens and ermanos, D	formation i = Dakota, W	tercepts ar	e approxima		NOT	E: WELLS I	NOS: DW-01	, DW-02 AND		0 MW-4							 	
(4 (5 (6) All well cas) Elevation a	ings are stee ad depths of ut, TH= Tres H	l – 8 5/8 " ID screens and ermanos, D	formation i = Dakota, W	tercepts ar	e approxima		NOT	E: WELLS I	NOS: DW-01	, DW-02 AND	DW-15 N 1578500 -	MW-4						0	 	
(4 (5 (6) All well cas) Elevation au) PL=Pt Looko NITORING	WELLS II	I – 8 5/8 " ID screens and ermanos, D IFORMA	formation in = Dakota, Wa TION TAE	Westwate	e approxima		NOT	E: WELLS I	NOS: DW-01	, DW-02 AND		MW-4				SOUTH	WASTE	O MW-6		
(4 (5 (6) All well cas) Elevation au) PL=Pt Looko NITORING	WELLS II	I – 8 5/8 " ID screens and ermanos, D NFORMA	formation in = Dakota, W TION TAE	SLE ner Colli	e approxima Ir Screer Denti	te.	NOT	E: WELLS I	NOS: DW-01	, DW-02 AND		• MW-4				SOUTH	WASTE	0		
(4 (5 (6) All well cas) Elevation au) PL=Pt Looko NITORING	WELLS II	I – 8 5/8 " ID screens and ermanos, D VFORMA Casing/Ii Diamet	formation iii = Dakota, W TION TAE	SLE ner Colli	e approxima ar <u>Screer</u> Depti on, Elevatio	Interval, ft / n Length	NOT	E: WELLS I	NOS: DW-01	, DW-02 AND		MW-4				SOUTH	WASTE	O MW-6		
(4 (5 (6) All well cas) Elevation and) PL=Pt Looko NITORING State Plan Coordinate NAD 83	WELLS II WELLS II v Year s Installe	I – 8 5/8 " ID screens and ermanos, D NFORMA Casing/li Diamet	formation iii = Dakota, W TION TAE	SLE Colla Elevati	e approxima screer Depti on, Elovati	Interval, ft / n Length	NOTI	E: WELLS I	NOS: DW-01	, DW-02 AND		O MW-4				SOUTH	WASTE	O MW-6		
(4 (5 (6 Well No.) All well cas) Elevation an) PL=Pt Looko NITORING State Plan Coordinate NAD 83 Easting Nor	WELLS II WELLS II VELLS II	I – 8 5/8 " ID screens and ermanos, D NFORMA Casing/li Diamet inches	formation i = Dakota, Wa TION TAE	BLE ner al Feet A	e approxima ar on, MSL Elevatio of top	Interval, ft // n Length	NOTI	E: WELLS↑ E BEEN TAK	NOS: DW-01 EN OUT OF	, DW-02 AND SERVICE.		O MW-4				SOUTH	WASTE	O MW-6		
(4 (5 (6 Well No.	 All well cas All well cas Elevation an PL=Pt Looko NITORING State Plan Coordinate NAD 83 Easting Nor 2781541 15 	WELLS II WELLS II vs Installe	I – 8 5/8 " ID screens and ermanos, D NFORMA Casing/li Diamet inches 3	formation iii = Dakota, W TION TAE	SLE ner al Feet A 727	ar on, VISL Elevatio of top	Interval, ft / n Length	NOTI	E: WELLS N E BEEN TAK	IOS: DW-01 EN OUT OF	, DW-02 AND SERVICE.		O MW-4				SOUTH	WASTE	O MW-6		
(4 (5 (6 Well No.	 All well cas All well cas Elevation an PL=Pt Looko NITORING State Plan Coordinate NAD 83 Easting Nor 2781541 15 	WELLS II WELLS II VELLS II	I – 8 5/8 " ID screens and ermanos, D NFORMA Casing/li Diamet inches 3	formation i = Dakota, Wa TION TAE	BLE ner al Feet A	ar on, VISL Elevatio of top	Interval, ft // n Length	NOTI	E: WELLS↑ E BEEN TAK	IOS: DW-01 EN OUT OF	, DW-02 AND SERVICE.		O MW-4				SOUTH	WASTE	O MW-6		
(4 (5 (6 Well No.	 All well cas All well cas Elevation an PL=Pt Looko NITORING State Plan Coordinate NAD 83 Easting Nor 2781541 15 2781538 15 	WELLS II WELLS II vs Installe	I – 8 5/8 " ID screens and ermanos, D NFORMA Casing/li Diamet inches 3 3 3	formation in = Dakota, Wa TION TAE er Casing/Ii Materi	SLE ner al Feet A 727	e approxima ar on, VISL 4 25 5 25 25	Interval, ft / n Length 10	NOTI	E: WELLS N BEEN TAK	NOS: DW-01 EN OUT OF FENCE L DEWATE	, DW-02 AND SERVICE. INE RING WELLS		O MW-4				SOUTH	WASTE	O MW-6		
(4 (5 (6 Well No. MW-1 MW-2	 All well cas All well cas Elevation an PL=Pt Looko NITORING State Plan Coordinate NAD 83 Easting Nor 2781541 15 2781545 15 	WELLS II WELLS II VELLS II P S S S S S S S S S S S S S S S S S S	I – 8 5/8 " ID screens and ermanos, D NFORMA Casing/li Diamet inches 3 3 3 3	formation in = Dakota, Wa TION TAE ar casing/li Materi steel	SLE ner al Flevat Feet A 727 727	e approxima ar on, VISL Elevatio of top 4 25 5 25 2 30	Interval, ft // n Length 10 10	NOTI	E: WELLS N E BEEN TAK	NOS: DW-01 EN OUT OF FENCE L DEWATE	, DW-02 AND SERVICE.		O MW-4				SOUTH	WASTE	O MW-6		
(4 (5 (6 Well No. MW-1 MW-2 MW-3 MW-4	 All well cas All well cas Elevation an PL=Pt Looko NITORING State Plan Coordinate NAD 83 Easting NAT 2781541 15 2781545 15 2781545 15 2781545 15 2781050 15 	WELLS II WELLS II VVELLS II P S S S S S S S S S S S S S S S S S S	I – 8 5/8 " ID screens and ermanos, D NFORMA Casing/li Diamet inches 3 3 3 3 4	formation in = Dakota, Wa TION TAE er Casing/li Materi steel steel steel PVC	SLE Colli Flevation Feet A 727 727 727 7284	e approxima ar on, VISL Elevatio of top 4 2 2 30 2 33	Interval, ft // n Length 10 10 10 10 15	NOTI	E: WELLS N BEEN TAK	FENCE L DEWATE	, DW-02 AND SERVICE. INE RING WELLS RING WELLS		O MW-4				SOUTH	WASTE	O MW-6		
(4 (5 (6 Well No. MW-1 MW-2 MW-3 MW-4 MW-5) All well cas) Elevation an) PL=Pt Looko NITORING State Plan Coordinate NAD 83 Easting Nor 2781541 15 2781545 15 2781545 15 2781545 15 2781556 15	WELLS II e year Installe a0484 1979 30191 1979 30976 1979 78580 2005 79062 2005	I – 8 5/8 " ID screens and ermanos, D IFORMA Casing/li Diamet inches 3 3 3 4 4 2	formation in = Dakota, Wa TION TAE Casing/Ii Materi steel steel PVC PVC	SLE Pretation SLE SLE SLE Collia Elevation Feet A 727 727 727 727 728 729	e approxima ar on, VISL Elevatio of top 4 25 5 25 2 30 2 33 7 22.5	Interval, ft // n Length 10 10 10 10 15 10	NOTI	E: WELLS N BEEN TAK	FENCE L DEWATE MONITO	, DW-02 AND SERVICE. INE RING WELLS RING WELLS T BUILDINGS		O MW-4				SOUTH	WASTE	O MW-6		
(4 (5 (6 Well No. MW-1 MW-2 MW-3 MW-4 MW-5 MW-6) All well cas) Elevation an) PL=Pt Looko NITORING State Plan Coordinate NAD 83 Easting Nor 2781541 15 2781538 15 2781545 15 2781050 15 2781050 15 2782243 15	WELLS II WELLS II e 's Installe 30191 1979 30192 1979 30193 1979 30194 1979 30195 1979 30196 20055 78580 20055 78620 2011	I – 8 5/8 " ID screens and ermanos, D NFORMA Casing/li Diamet inches 3 3 3 3 4 2 2 2	formation in = Dakota, Wa TION TAE er Casing/li Materi steel steel steel PVC PVC	SLE Colli Elevati Feet A 727 727 727 7284 729 734	e approxima ar on, VISL Elevatio of top 4 25 5 25 2 30 2 33 7 22.5 1 15	Interval, ft // n Length 10 10 10 10 10 15 10 35	NOTI	E: WELLS N BEEN TAK	FENCE L DEWATE	, DW-02 AND SERVICE. INE RING WELLS RING WELLS T BUILDINGS		O MW-4			-5 			ROCK PIL	E	
(4 (5 (6 Well No. MW-1 MW-2 MW-3 MW-4 MW-5) All well cas) Elevation an) PL=Pt Looko NITORING State Plan Coordinate NAD 83 Easting Nor 2781541 15 2781538 15 2781545 15 2781050 15 2781050 15 2782243 15	WELLS II e year Installe a0484 1979 30191 1979 30976 1979 78580 2005 79062 2005	I – 8 5/8 " ID screens and ermanos, D NFORMA Casing/li Diamet inches 3 3 3 3 4 2 2 2	formation in = Dakota, Wa TION TAE Casing/Ii Materi steel steel PVC PVC	SLE Pretation SLE SLE SLE Collia Elevation Feet A 727 727 727 727 728 729	e approxima ar on, VISL Elevatio of top 4 25 5 25 2 30 2 33 7 22.5 1 15	Interval, ft // n Length 10 10 10 10 15 10	NOTI	E: WELLS N BEEN TAK	FENCE L DEWATE MONITO	, DW-02 AND SERVICE. INE RING WELLS RING WELLS T BUILDINGS		O MW-4				SOUTH		ROCK PIL	E 500° C	



12

MT. TAYLOR MINE TYPICAL SECTION OF DEWATERING WELLS

Figure 1-5 Typical Section of Dewatering Wells

OBW and SM observation wells drilled to the Westwater level and cased with 3 7/8 " drill pipe, then used to monitor drawdown during initial mine dewatering. To be plugged at closeout.

SYSTEM	FORMATION	MEMBER		.OGY	ELEVATION IN FEET	FEET					
	MENEFEE	MENEFEE SANDSTONE & SHALE			(767) 7340 - 6573	- - - - - - - - - - - - -					
	PT. LOOKOUT	POINT LOOKOUT SANDSTONE			(115) 6573 - 6458	-					
		SATAN TONGUE SHALE	Part de la caracteria d		(23) 6458 - 6435	-					
		LOWER HOSTA SANDSTONE GIBSON COAL			(81) 6435 - 6354 (165) 6354 - 6189						
6		DALTON SANDSTONE	40 n 0 1 0 n 0 1 0 0 0 1 1 0 0 1 1 0 0 0		(84) 6189 - 6105						
CRETACEOUS	CREVASSE CANYON	MULLATTO TONGUE OF MANCOS SHALE			(395) 6105 - 5710	 6000 					
		STRAY SANDSTONE			(8) 5710 - 5702	-					
C I		DILCO COAL	1 <u>010,000,000</u> 1,000,000	الله <u>المحروراتي</u> در يرد برد در	(92) 5702 - 5610	-					
		UPPER GALLUP SANDSTONE			(95) 5610 - 5515	-					
	GALLUP	GALLUP SHALE			(130) 5515 - 5385	- 5500 -					
		LOWER GALLUP SANDSTONE			(40) 5385 - 5345	<u> </u>					
	MANCOS	MAIN BODY OF MANCOS SHALE			(536) 5345 - 4809	 5000 					
		TRES HERMANOS SANDSTONE			(326) 4809 - 4483	 4500					
<u> </u>	DAKOTA				(58) 4483 - 4425	Ŀ					
<u>ں</u>	NORDIGEN	BRUSHY BASIN MUDSTONE			(80) 4425 - 4345 (123) 4345 - 4222	-					
SS	MORRISON	GREEN SHALE LOWER WEST WATER SANDSTONE			(12) 4222 - 4210 (64) 4210 - 4146						
Ă		RECAPTURE CREEK SS & SHALE			(79) 4146 - 4067						
JURASSIC		BLUFF SANDSTONE		$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	(223) 4067 - 3844	- 					
			RIO GRANDE RESOURCES CORPORATION MOUNT TAYLOR MINE - Grants, NM 87020								
		Prepared By: Alan Kuhn Associates LLC		Geological Section at the Mount Taylor Mine							

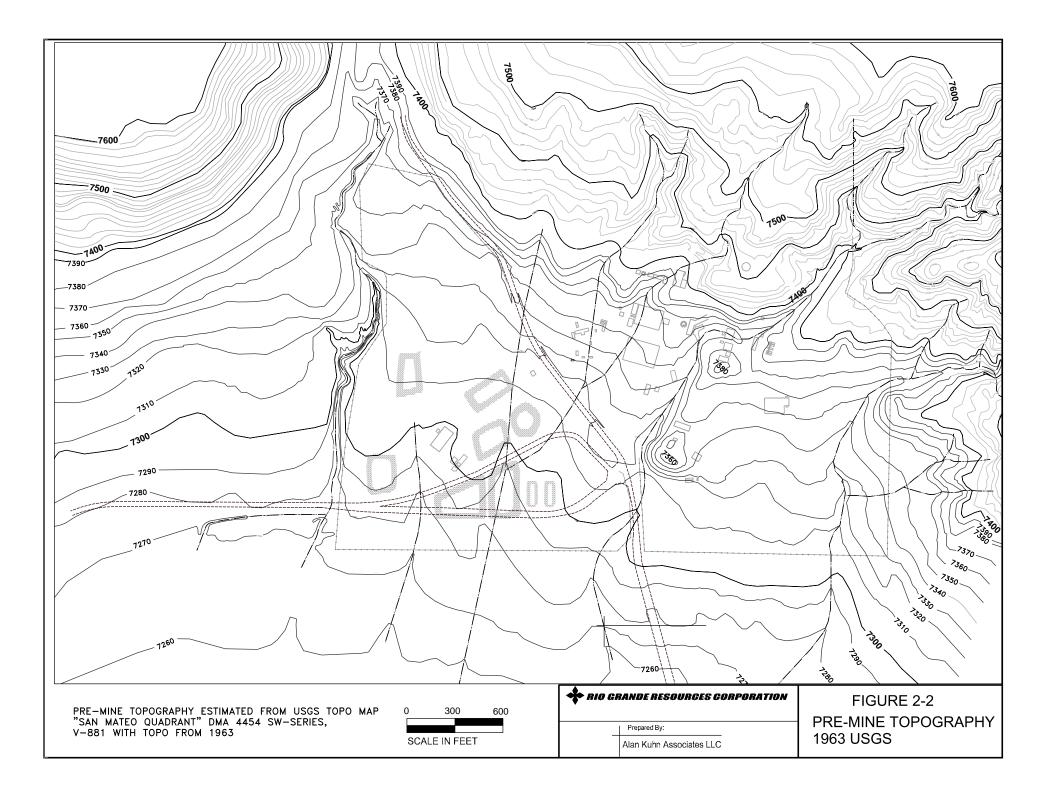
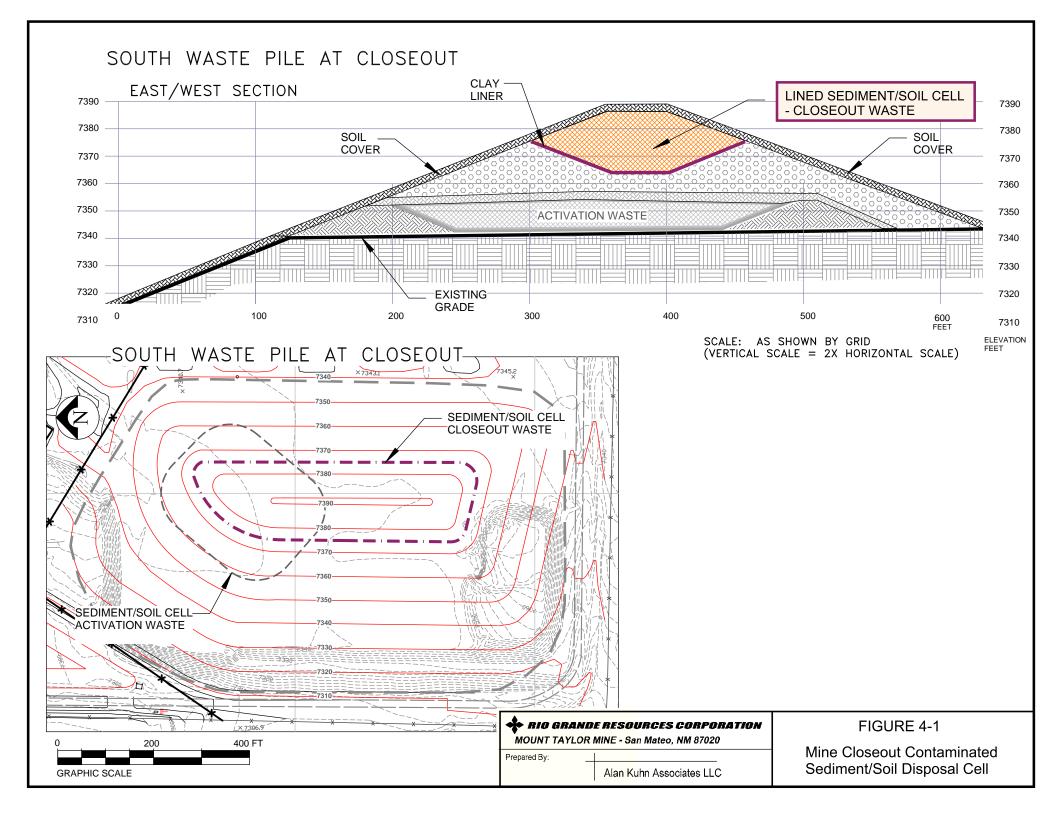
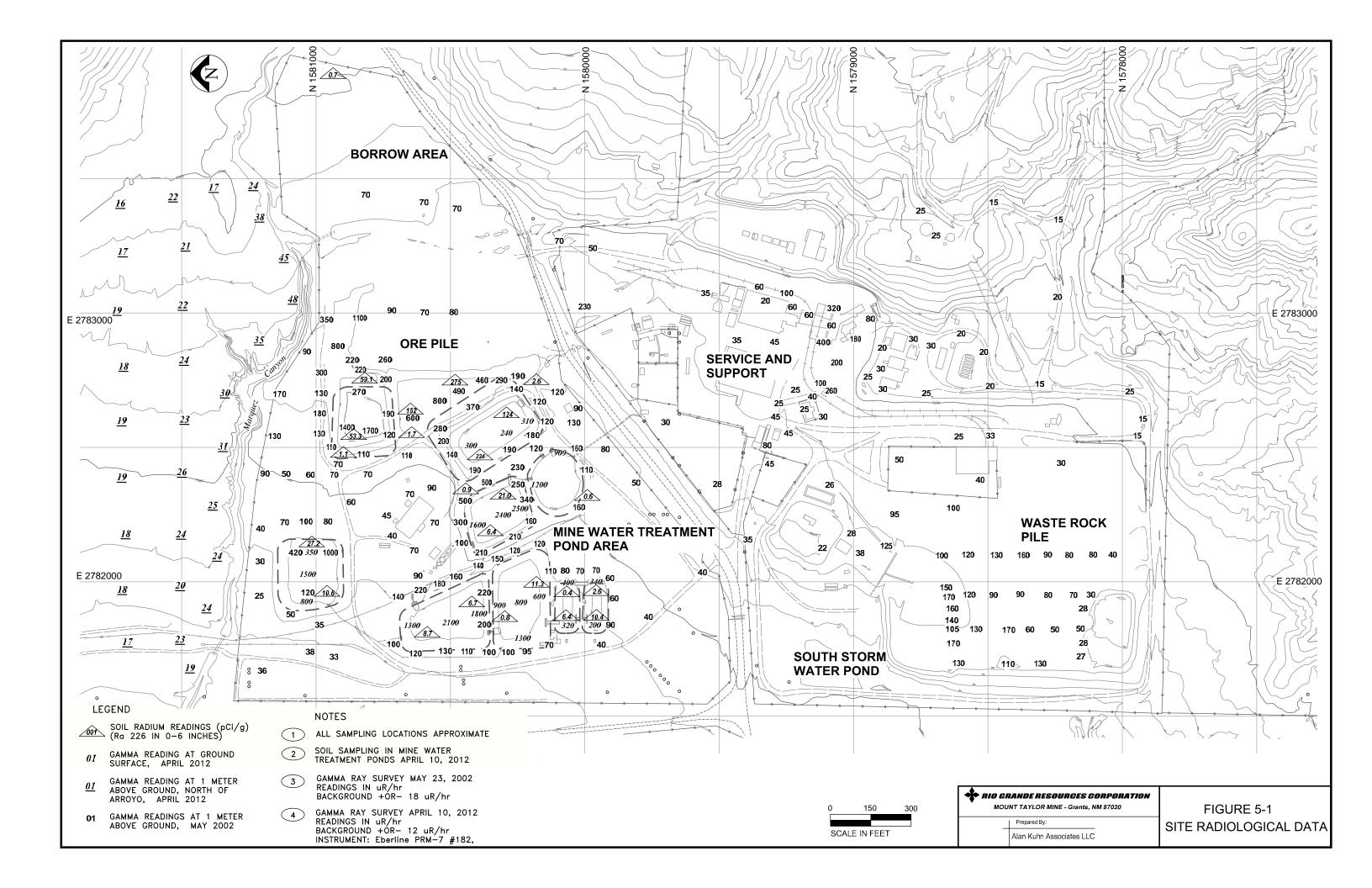




Figure 2-3 Treated Water Pipeline

		Figure 6-1 Mt. Taylor Mine Closeout/ Closure Schedule Name Duration Q1 Q2 Q3 Q4 Q1 Q2 Q3																							
ID	Task Name	Duration					ງ2				Q3			Q4			Q1						Q3		
1			J	F	M	_	Α	Μ	J	J	A	S	0	N	D	J		F	Μ	Α	Μ	J	J	A	S
	PROJECT MANAGEMENT	120 daus																				_	_		
2		120 days				+					-											_			
3		30 days				_					┛┓													 	
4		5 days				_										_									
5		60 days				_																	-		
6		15 days														_				<u> </u>					
7		10 days				_																			
8		60 days																							
9		60 days														_									
10		25 days				_					C					_				ļ					
11		20 days				_						C													
	2 SHAFT BACKFILL AND PLUGGING	100 days				_										_									
13		90 days								_	Ĺ														
14		90 days										Č													
	WELL AND CONDUIT PLUGGING	30 days									Č														
	EARTHWORK	197 days																							
17		20 days									Č]														
18		60 days											Ľ]	1									
19	MWTU Ponds	97 days												-		-									
20	Contaminated Soil	60 days											Č]	Ч									
21	Waste Pile	62 days														Č									
22	2 Finish Grading	15 days																	Ē						
23	B Erosion Protection	30 days																	È						
24	REVEGETATION	30 days																							
25	6 Conditioning, seeding, mulching	15 days																							
26	5 Fencing	15 days																							
	gure 6-1 MT TAYLOR MINE CLOSEOUT/ EV. 1 NOVEMBER 2013	CLOSURE S	CHEE	DUL	-				stone mary					⁻ ask Baselir	ne			-							

Table 1.1 Existing Permits

NAME OF PERMIT	PURPOSE	EXPIRES
FEDERAL		
NPDES NM 0028100	MINE WATER DISCHARGE	JULY 2015
MULTI-GENERAL STORM WATER PERMIT #NMR05GB27	STORM WATER DISCHARGE INDUSTRIAL PLANT	SEPTEMBER 2013, in renewal
US FOREST SERVICE "SPECIAL USE PERMIT"	24" WATER TRANSMISSION PIPELINE	DECEMBER 2028
STATE OF NEW MEXICO		
DISCHARGE DP-1712	TEMPORARY BENCH TEST	CANCELED
DISCHARGE DP-61	MINE WATER DISCHARGE & RETENTION	APPROVAL PENDING
RADIOACTIVE SOURCE LICENSE #SO043-09	RADIATION SOURCES ONLY	December 31, 2017
RADIOACTIVE MATERIAL LICENSE	MATERIAL and I-X PLANT	NEW APPLICATION on 4/11/13, in processing
STAND-BY MINE PERMIT # C1002RE –REVISION 10-1	STANDBY STATUS	OCTOBER 2014
SOLID WASTE LANDFILL FOR MINE	MINE WASTE & LANDFILL	NO RENEWAL NEEDED

Description	State Plane Coordinates (NAD 83)		Collar Elevation	Total Depth	Depth to Water	Elevation of Water Level	DATE MEASURED
	Ν	Ε	(Feet AMSL)	(Feet from Collar)	(Feet from Collar)	(feet AMSL)	
14' SHAFT	1579534	2783046	7343	~3300	794	6549	December 2013
WELL 2A (DOMESTIC WELL)	1579120	2782651	7347	1150	483	6864	August 2011
WELL #6 PHASE II	1579210	2783402	7395	1190	598	6797	December 2013
WELL #11 PHASE II	1578845	2783245	7442	3028	933	6509	December 2013
WELL #12 PHASE II	1579421	2783439	7414	2940	819	6595	December 2013
WELL #13 PHASE III	1579378	2782065	7317	3815	771	6546	December 2013
WELL #20 PHASE III	1579945	2783505	7381	3223	836	6545	December 2013

Table 1.2 Ground Water Levels in Wells and Shafts

Other wells were not accessible at the time of measurement.

***San Mateo Municipal Well

Elevation	7240
Top of Point Lookout	576'
Depth to Water	196'
Depth of Well	701'
Date Drilled	1976

Table 2.1 Water Quality Test Results for Mine Pool in 24-ft Shaft

CONSTITUENT	20.6.2.3103 NMAC STANDARDS FOR GROUND WATER OF 10,000 mg/l TDS CONCENTRATION OR LESS	MEASURED VALUE OF SAMPLE COLLECTED ON 09/28/07	VALUE VS STANDARD
Uranium	0.03 mg/l	0.071 mg/l	above standard
Radium 226	30 pCi/l	16.8 pCi/l	below standard
Selenium	0.05 mg/l	not detected	below standard
for Domestic Wa	ter Supply		1
Chloride	250 mg/l	4 mg/l	below standard
Iron	1.0 mg/l	0.05 mg/l	below standard
Sulfate	600 mg/l	44 mg/l	below standard
Total dissolved solids	1000 mg/l	358 mg/l	below standard
Zinc	10 mg/l	not detected	below standard
рН	6 to 9 s.u.	8.38.0 s.u.	within range
for Irrigation Use			
Molybdenum	1.0 mg/l	0.2 mg/l	below standard

Table 2.2 Water Qualit	y Test Results for Point Lookout Aquifer, Well 2A
------------------------	---

CONSTITUENT	20.6.2.3103 NMAC STANDARDS FOR GROUND WATER OF 10,000 mg/I TDS CONCENTRATION OR LESS	MEASURED VALUE OF SAMPLE COLLECTED ON 09/28/07	MEASURED VALUE OF SAMPLE COLLECTED ON 08/28/12	VALUE VS STANDARD					
Uranium	0.03 mg/l	0.0012 mg/l	0.0015 mg/l	below standard					
Radium 226	30 pCi/l	0.24 pCi/l	0.44 pCi/l	below standard					
Selenium	0.05 mg/l	0.001 mg/l	0.001 mg/l	below standard					
	fo	r Domestic Water Su	pply						
Chloride	250 mg/l	6 mg/l	7 mg/l	below standard					
Iron	1.0 mg/l	not detected	not tested	below standard					
Sulfate	600 mg/l	92 mg/l	112 mg/l	below standard					
Total dissolved solids	1000 mg/l	523 mg/l	577 mg/l	below standard					
Zinc	10 mg/l	0.11 mg/l	not tested	below standard					
рН	6 to 9 s.u.	9.0 s.u.	8.94 s.u.	within range					
	for Irrigation Use								
Molybdenum	1.0 mg/l	not detected	not tested	below standard					

Table 2.3 Deep Wells

	Closure	State Plane	Coordinates	Collar	Depth, Feet	Depth, Feet	Screened	Screened	Aquifer in	Pt Lookout		We	stwater
Well No.	Disposition (3)	(NAD	9 83)	Elevation, Feet AMSL	from Surface	Elevation AMSL	Interval, Feet Depth (5)	Interval, Feet Elevation (5)	Screened Interval (6)	Top Depth/ Elevation	Bottom Depth/ Elevation	Top Depth/ Elevation	Bottom Depth/ Elevation
		N	E										
1	PMLU	1579419	2782626	7340	1118	6222	740-890	6600-6450	PL	740/6600	870/6470		
2	Plug	1579121	2782606	7345	2920	4425	2550-2920	4795-4425	TH/D	740/6605	870/6475		
2-a ⁽¹⁾	PMLU	1579202	2782709	7347	925	6422	750-900	6597-6447	PL	741/6606	871/6476		
3	PMLU	1579008	2782795	7347	1150	6197	737-891	6610-6456	PL	751/6606	871/6476		
4	PMLU	1578965	2783021	7349	1130	6214	750-900	6599-6449	PL	750/6599	880/6469		
5	PMLU	1579038	2783256	7406	1172	6234	852-1002	6554-6404	PL	807/6599	937/6469		
6	PMLU	1579210	2783402	7385	1190	6195	845-995	6540-6390	PL	800/6585	930/6455		
7	PMLU	1579455	2783384	7376	1125	6251	825-995	6551-6401	PL	780/6596	910/6466		
8	PMLU	1579672	2783240	7346	1044	6302	791-941	6555-6405	PL	746/6600	876/6470		
9	Plug	1579723	2782973	7340	2845	4495	2538-2840	4802-4500	TH	738/6602	868/6472		
10	PMLU	1579619	2782734	7337	1065	6272	738-888	6599-6449	PL	738/6599	868/6469		
11	Plug	1578845	2783245	7446	3028	4418	2819-3028	4627-4418	TH/D	847/6599	977/6469		
12	Plug	1579421	2783439	7419	2940	4479	2791-2940	4628-4479	TH/D	819/6600	949/6470		
13	Plug	1579378	2782065	7317	3185	4132	3045-3185	4247-4132	W	722/6595	852/6465	3132/4185	3272/4045
14	Plug	1578847	2782182	7338	3205	4133	3048-3188	4290-4150	W	736/6602	866/6472	3146/4192	3286/4052
15	Plug	1578491	2782501	7347	3205	4142	3056-3196	4291-4151	W	744/6603	874/6473	3154/4193	3294/4053
16	Plug	1578334	2782995	7393	3275	4118	3105-3245	4288-4148	W	793/6600	923/6470	3203/4190	3343/4050
17	Plug	1578570	2783563	7501	3342	4159	3209-3342	4291-4159	W	896/6604	1027/6474	3307/4194	3447/4054
18	Plug	1578902	2783778	7502	3314	4188	3212-3314	4295-4192	W	900/6606	1030/6476	3310/4196	3450/4056
19	Plug	1579493	2783781	7453	3274	4179	3166-3274	4287-4179	W	854/6599	984/6469	3264/4189	3404/4049
20	Plug	1579945	2783505	7385	3223	4162	2938-3223	4447-4162	D-W	786/6599	916/6469	3196/4189	3336/4049
21	Plug	1580165	2782966	7316	3184	4132	2873-3173	4443-4143	D-W	721/6595	851/6465	3131/4185	3271/4045
22	Plug	1579900	2782460	7305	3195	4110	3019-3159	4286-4146	W	707/6598	837/6468	3117/4188	3257/4048
SM-24-38	Plug	1579132	2783007	7349	3535	3814	3107-3247	4324-4184	W	795/6636	925/6506	3205/4226	3345/4086
SM-24-43	Plug	1579029	2782948	7347	3535	3812	3064-3204	4283-4143	w	752/6595	882/6465	3162/4185	3302/4045

(1) Well 2-a supplies domestic water from the Pt. Lookout Sandstone

(2) Wells installed in 1977

(3) PMLU= Post-mining land use

(4) All well casings are steel – 8 5/8 " ID in Pt Lookout, 9 5/8 " ID in Tres Hermanos and Dakota, 10 %" ID with 7 " liner in Westwater

(5) Elevation and depths of screens and formation intercepts are approximate.

(6) PL=Pt Lookout, TH= Tres Hermanos, D= Dakota, W= Westwater

Table 2.4 Mine Water Treatment Ponds Area Radiological Profile

(see Table 2, App. D.3.1 for lab data and App. D.1.1 for sample locations)

Ponds Areas and Sediment Volumes

Pond #	Surface Area of Pond Basin, sf	Average Depth of Sediment in Pond, ft	Surface Area** of Pond Sediment, sf	Estimated Sediment Volume, cy	Ra-226 Concentrations in Sediments, pCi/g
1	44600	0.67	28302	699	113-224
2	31550	1.0 *	23241	1000 *	wet, no samples
3	43100	0.96	27966	991	6.4-21
4	68750	0.75	37708	1047	0.8-18.1
5	72831	1.63	36718	2210	0.8-11.3
6	11100	1.5	5056	281	0.8-6.4
7	10700	2.21	5064	414	1.0-10.4
8	45250	2.25	21729	1811	2.5-27.2

^{*}

Estimated values. Standing water prevented direct measurement or sediment sampling.

Surface areas from AutoCad calculation based on existing base map from 1991.

Other Soil Samples in the MWTU Area

Location	Sample ID	Sample Depth, ft	Ra-226, pCi/g
Pond 1 berm	MT-1-F	0.5	2
Pond 2 berm	MT-2-D	0.5	0.6
Pond 3 berm	MT 3-F	0.5	0.9
Area A	MT-A-A	0-0.3	152
Area A	MT-A-A	0.5-0.7	8.7
Area A	MT-A-A	2.3-2.5	1.7
Area A	MT-A-B	0-0.3	275
Area A	MT-A-B	0.7-0.9	5.4
Area A	MT-A-B	2.5-2.8	29.3
Area A	MT-A-C	0.5	1.7
Borrow Area	MT-borrow	2.0-5.5	0.7
N. Storm Pond	MT-OP-C-S1	0-0.5	53.3
N. Storm Pond	MT-OP-C-S2	1.7	1.7
N. Storm Pond	MT-OP-C-S3	4.0-4.2	0.8
N. Storm Pond	MT-OP-C-S4	6	1.5
N. Storm Pond	MT-OP-D-S1	0-0.5	51.9
N. Storm Pond	MT-OP-D-S2	4.0-4.2	1.9
N. Storm Pond	MT-OP-D-S3	6.3	0.6
N. Storm Pond Berm	MT-OP-E	0.5	1.1

Pond Number	Operating Pool Elevation		Area , ft^2	Volume, cy	Volume (acre feet)				
1	Min	7305	68938	24718	15.32				
	Max	7308		32912	20.40				
2	Min	7299.6	31655	5803	3.60				
	Max	7301		7470	4.63				
3	Min	7296.7	40373	12420	7.70				
	Max	7300		18130	11.24				
4	Min	7287.5	60195	12680	7.86				
	Max	7291		14977	9.28				
5	Min	7285	60218	11729	7.27				
	Max	7286		14041	8.70				
6	Min	7282.8	6636	698	0.43				
	Max	7286		1623	1.01				
7	Min	7282.8	6634	698	0.43				
	Max	7286		1615	1.00				
8	Min	7287.5	34105	4489	2.78				
	Max	7291		9569	5.93				
	Total area 308754								
		Volur	mes at Min Poo	l	50.47				
		Volur	mes at Max Poo	I	57.11				

Table 2.5 Capacity of MWTU Ponds With Design Upgrades

Based on 2012 Topography and AutoCAD volumetrics

Table 3.1 Mt. Taylor Mine Building Radiological Survey Results

	Surface Co	ontamination (dp	m/100 cm²)	Removable Contamination (dpm/100 cm ²)		
Location	Maximum	Average	Minimum	Maximum	Average	Minimum
14' Shaft Hoist House & Storage	471	321.5	32	9	4.0	0
24' Shaft Hoist House and Repair Shop	71	19.1	8	9	2.7	0
Car Shop	568	140.5	0	13	4.7	0
Carpenter Shop	171	64.2	0	4	1.2	0
Compressor Building	86	40.3	11	11	4.0	0
Electrical Building	96	42.8	11	6	3.7	1
Fan Shop	214	109.8	0	13	5.7	0
Storage Building	182	75.0	11	9	5.0	1
Fire Equipment Building	268	100.0	11	1	1.0	1
Guard Shack	11	2.8	0	1	0.3	0
Main Service Building	1189	293.5	0	35	4.3	0
Water Treatment Building	246	109.8	0	6	2.8	0
York Chiller Building	257	89.2	11	6	2.8	0

Survey performed by Stan Fitch, CHP, on July 2012. The survey employed techniques consistent with NUREG-1727 to screen for contamination on interior surfaces of the structures indicated. The survey may be applied as an historical site assessment for determining the characterization guidelines and DCGLs specified by NUREG-1727 and MARSSIM. All contamination values in units of disintegrations per minute per 100 square centimeters of alpha radiation.

DESCRIPTION	MATERIAL SAFETY DATA CAS #'s								
Antifreeze/Coolant	107-21-1			·	<u>.</u>				
Coherex	64742-34-3	64742-11-6							
Diesel Fuel #2	68476-34-6	64742-80-9	64741-44-2	8008-20-6	64742-81-0	94741-59-9			
	91-20-3								
Engine Oil	68649-42-3								
Gasoline Fuel	86290-81-5	71-43-2	108-88-3	100-41-4	1330-20-7	106-97-8			
	110-54-3	110-82-7	108-87-2	540-84-1	91-20-3	64-17-5			
	637-92-3	994-05-8	142-82-5	1634-04-04					
Grease	686-42-3	Mixture							
Holeplug 3/8	14464-46-1	15468-32-3	1302-78-9	14808-60-7					
Hydraulic Oil	Mixture								
Insulating Oil	64741-97-5	64742-53-6							
Lubricant - Gear	Mixture								
Transmission Fluid	Mixture								

Table 4.1 Inventory of Potential Contaminants on Hand

Quantities on hand vary and are replaced as they are consumed.

LOCATION	VOLUME, CY (4)
Mine Water Treatment Ponds (1)	6812 (5)
Ore Pad Runoff Retention Pond (2)	904 (5)
Ore Pad (2)	15906
South Storm Water Retention Pond (2)	1514 (5)
MWTU area excluding ponds (3)	24943
Service and Support Area (3)	34104
County Road ROW (3)	3791
Borrow Area (3)	7395
Area north of Marquez Canyon Arroyo	12707
Total	108,076

Table 4.2 Estimated Volumes and Locations of Contaminated Sediment and Soil

Notes:

- (1) Assumed sediment depth of 1.0 ft. in ponds #1-5 and 8 at time of closeout. No contaminated sediment in ponds #6 and 7.
- (2) Assumed sediment depth of 1.0 ft
- (3) Assumed sediment depth of 0.5 ft
- (4) Volumes based on calculations MT13.04, MT13.06, and MT13.07
- (5) Disposal in waste cell in south waste pile.

Table 4.3 Earthwork Balance

Pond Sediments to Waste Pile Disposal Cell

Pond Number	Area at Existing Pond Bottom (FT ²)	Assumed depth of cut (Feet)	Sediments Removed (CY)	Total Volume to be Backfilled (CY)
POND #1	38950	1	1443	30060
POND #2	20070	1	743	10320
POND #3	23747	1	880	22590
POND #4	34428	1	1275	29014
POND #5	35897	1	1330	26188
POND #6	2099	0	0	2950
POND #7	2099	0	0	2950
POND #8	30577	1	1132	28038
Ore Pad Runoff Pond	24417	1	904	17950
South Storm Water Pond	40878	1	1514	NA
	Total Exca	avated, to Disposal Cell	9230	
			Total Backfill Needed	170060

Contaminated Soil to Waste Pile

Area Description	Area in (FT ²)	Depth Of Cut (FT)	Volume (CY)
Mine Water Treatment Pond Area (Not including the pond bottoms)	1,346,922	0.5	24943
Ore Pad Area	429,451	1.0	15906
Borrow Area	399,326	0.5	7395
Support and Service Area (Not including building footprints)	1,841,593	0.5	34104
County Road (ROW)	204,732	0.5	3791
Area North of Marquez Canyon	686,178	0.5	12707
	ste Pile	98846	
	Total Bac	kfill Needed	NA

Cut / Fill Balance

Description	Contaminated		Clean		
	Cut, CY	Fill, CY	Cut, CY	Fill, CY	
MWTU area					
Pond basins	9230			170060	
MWTU area fill to grade				58,195	
MWTU cut to grade			228,785		
Site Contaminated Soil	98846				
Maximum Waste Rock from Mining Operations (1)	150506				
South Waste Pile					
Total Capacity of South Waste Rock Pile (At full buildout)		259383			
Disposal cell liner				2489	
Clean soils from MWTU Pond Expansions			18744		
Clean Soils from Activation Grading in South Waste Rock area			23236		
Cover soils over South Waste Rock area				34905	
Totals	258582	259383	270765	265649	
Note:	Extra fill needed	801	Extra Clean Cut Available	5116	
(1) Assumes approximately 10 cy per shift for 20 years, conservatively high.	Balance available	from clean soil cut	t = 4315		

Table 5.1 Building Inventory

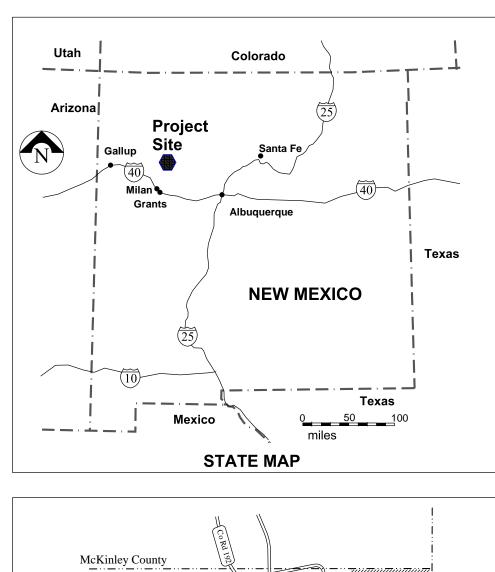
Building Name	Building Type	Dimensions	Volume, ft ³	Disp	oosition at Closeout
				Demolish	Retain for Owner PMLU**
Compressor Building	Steel frame and siding	40'4"x40'2"x16'	25921	х	
York Chiller (Chill Water) Building	Steel frame and siding	100'x50'x30'	150000	х	
Pump Building (Chill Water Pump House)	Steel frame and siding	40'x24'x16'	15360	х	
Chlorine Building	Concrete Block	23'x50'6"x20'	23230	х	
Shaft Heating Building	Steel frame and siding	50'x30'x16'	24000	х	
Glycol Heat Exchanger	Steel frame and siding	50 x 30 x 16	24000	х	
Hoist House	Steel frame and siding	162'x120'x40'	777600	х	
Cooling Tower	Steel frame and siding	75 x 25 x 25	46875	х	
Guard House (Security Building)	Steel frame and siding	63'x20'6"x16'	20664		Х
Fire Equipment Building (Fire House)	Steel frame and siding	27'x24'x16'	10368		Х
Service Building (Office and Warehouse)	Steel frame and siding	194'x138'x24'	642528	х	
Car (Maintenance) Shop	Steel frame and siding	150'x100'x30'	450000		Х
Carpenter Shop	Steel frame and siding	45'x24'x16'	17280		Х
Electrical Building	Steel frame and siding	62'x30'x16'	29760	х	
Water Treatment and Boiler Building	Steel frame and siding	62'x50'x16'	49600	х	
Core Storage Building	Steel frame and siding	100x38'x16'	60800		Х
Fan Shop	Steel frame and siding	40 x 30 x 12	14400		Х
Storage Building	Steel frame and siding	28'x30'x16'	13440	х	
Flocculant Treatment Facility	Steel frame and siding	30'x23'x12'	8280	х	
Barium Chloride Treatment Facility	Steel frame and siding	40'x25'x16'	16000	х	
Ion Exchange Plant	Steel frame and siding	140'x70'x40'	392000	х	
Water Tank	Steel		300,000 gal		Х
Fuel Storage Tanks	Steel		various	х	

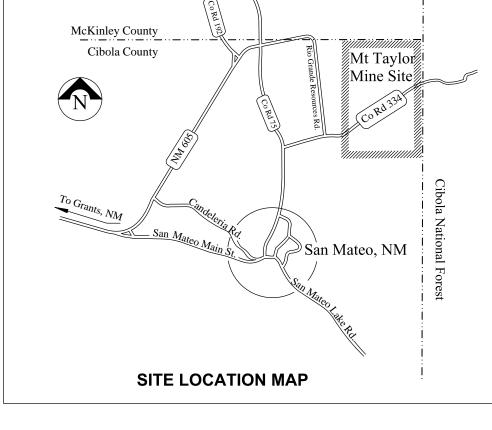
**Other facilities to be retained for PMLU by owner – Phase I water wells (to Pt. Lookout aquifer), septic tank and leach field

Table 5.2 Seed Mix: Selected Species and Planting Rates

- Western wheatgrass (Agropyron smithii) Rate: 6 PLS/ft²
 Cool season native perennial grass, reproduces from seeds and rhizomes, growth
 starts when daytime temperatures reach 12-13 C, grows in dry, rocky soils.
- 2. Winterfat (Ceratoides /anata)* Rate: 2 PLS/ft²
- Blue grama (Boute/oua gracilis)* Rate: 6.0-6.5 PLS/ft²
 Warm season native perennial grass, reproduces from seed, tillers, and rhizomes, growth starts May- June, grows on rock slopes.
- 4. Galleta (Hilaria jamesii) Rate: 6 PLS/ft²
- 5. Alkali Sacaton (Sporobolus airoides) Rate: 6 PLS/ft²
- 6. Mountain mahogany (*Cercocarpus montanus*) Rate: 2 PLS/ft²
- Fourwing saltbush (Atriplex canescens) Rate: 2 PLS/ft²
 Evergreen native perennial shrub, reproduces from seeds, grows on grassy uplands, excellent reclamation species.
- 8. Globemallow (Sphaeralcea fend/en) Rate: 2 PLS/ft²
- 9. Narrowleaf Penstemon (Penstemon angustifo/ia) Rate: 2 PLS/ft²
- New Mexican feathergrass (Stipa neomexicana) Rate: 6 PLS/ft²
 Cool season native perennial grass, reproduces by seed and tillers, growth starts midspring, grows on rocky slopes.
- Perennial flower mix as available, African Daisy, Cornflower, Perennial Gaillardia, Annual Gaillardia, Black-eyed Susan, Evening Primrose, Baby's Breath, Sweet William, Blue Flax, Shasta Daisy, Sweet Alyssum, Corn Poppy, California Poppy, Catchfly, Wall Flower, Siberian, Rocky Mtn. Penstemon, Prairie Coneflower, Spurred Snapdragon, Plains Coneflower, Purple Coneflower Rate: 6-8 lb./acre
- * Black grama may be substituted for these species. Other variations and substitutions may be made based on cost and availability of seed at the time of closeout.

Seed origin and quality specifications: Seed should be harvested from native stands within 200 miles north, 300 miles south, 200 miles west and 100 miles east of Mt. Taylor. If seed from native stands is not available, seed of suitable quality grown under appropriate conditions or seed of released cultivars known to be adapted to the San Mateo area may be used. All seed must be certified, and each seed bag must have attached to it a complete label with certification information.


Table 5.3 Interim Vegetation Success Standards


Section IIE, Technical Guide						
	Perce	ntage of Potential Pr	oduction			
Natural Plant Species	Clayey Bottomland Mapping Unit 257	Bottomland Mapping Unit 57	Average			
Western Wheatgrass	35-45	20-30	32			
Alkali Sacaton	5-10	30-40	21			
Vine Mesquite	10-15	1-5	7			
Blue Grama, Spike Mulhy, Galleta	15-25	10-15	16			
Bottlebrush Squirreltail	1-3	1-5	2			
Fourwing Saltbush	3-10	3-10	6			
Winterfat	1-3		2			
Rabbitbush, Broom Snakeweed	1-5	1-5	3			
Forbs	3-8	1-5	4			
others	1	9	5			
Ground Cover, %	50	55	52			
Production, Ib./acre	1250-3200	1200-3000	2162			
Plant Species	Expected Percentage of Production	Standard				
Western Wheatgrass	32	20-45	-			
Alkali Sacaton	20	5-40				
		10-30				
New Mexican Feathergrass	20					
	20 16	10-25				
New Mexican Feathergrass						
New Mexican Feathergrass Blue Grama, Spike Mulhy, Galleta	16	10-25				
New Mexican Feathergrass Blue Grama, Spike Mulhy, Galleta Fourwing Saltbush Winterf Mountain Mahogany	16 6	10-25 3-10				
New Mexican Feathergrass Blue Grama, Spike Mulhy, Galleta Fourwing Saltbush Winterf Mountain Mahogany Globemallow	16 6 2	10-25 3-10 1-3 0-5 0-5				
New Mexican Feathergrass Blue Grama, Spike Mulhy, Galleta Fourwing Saltbush Winterf Mountain Mahogany Globemallow Narrowleaf Penstemon	16 6 2 1 1 1	10-25 3-10 1-3 0-5 0-5 0-5				
New Mexican Feathergrass Blue Grama, Spike Mulhy, Galleta Fourwing Saltbush Winterf Mountain Mahogany Globemallow Narrowleaf Penstemon others	16 6 2 1 1	10-25 3-10 1-3 0-5 0-5				
New Mexican Feathergrass Blue Grama, Spike Mulhy, Galleta Fourwing Saltbush Winterf Mountain Mahogany Globemallow Narrowleaf Penstemon	16 6 2 1 1 1	10-25 3-10 1-3 0-5 0-5 0-5	-			

APPENDIX A

DRAWINGS

- MT12-CL-01 Title Sheet
- MT12-CL-02 Closeout Plan Index Sheet
- MT12-CL-03 Gamma and Soil Radium Sample Locations
- MT12-CL-04 Facility Disposition Plan
- MT12-CL-05 Shaft Closure Manway Vent
- MT12-CL-06 Shaft Closure Production Shaft
- MT12-CL-07 Final Grading Plan Mine Water Treatment Pond and Ore Pad Areas
- MT12-CL-08 Typical Sections Mine Water Treatment Pond Infill
- MT12-CL-09 Final Grading and Cover Plan South Waste Rock Pile Area
- MT12-CL-10 Final Grading and Cover Sections South Waste Rock Pile Area
- MT12-CL-11 Final Grading and Cover Plan North Waste Rock Pile Area
- MT12-CL-12 Final Grading and Cover Sections North Waste Rock Pile Area
- MT12-CL-13 Final Site Grading Plan

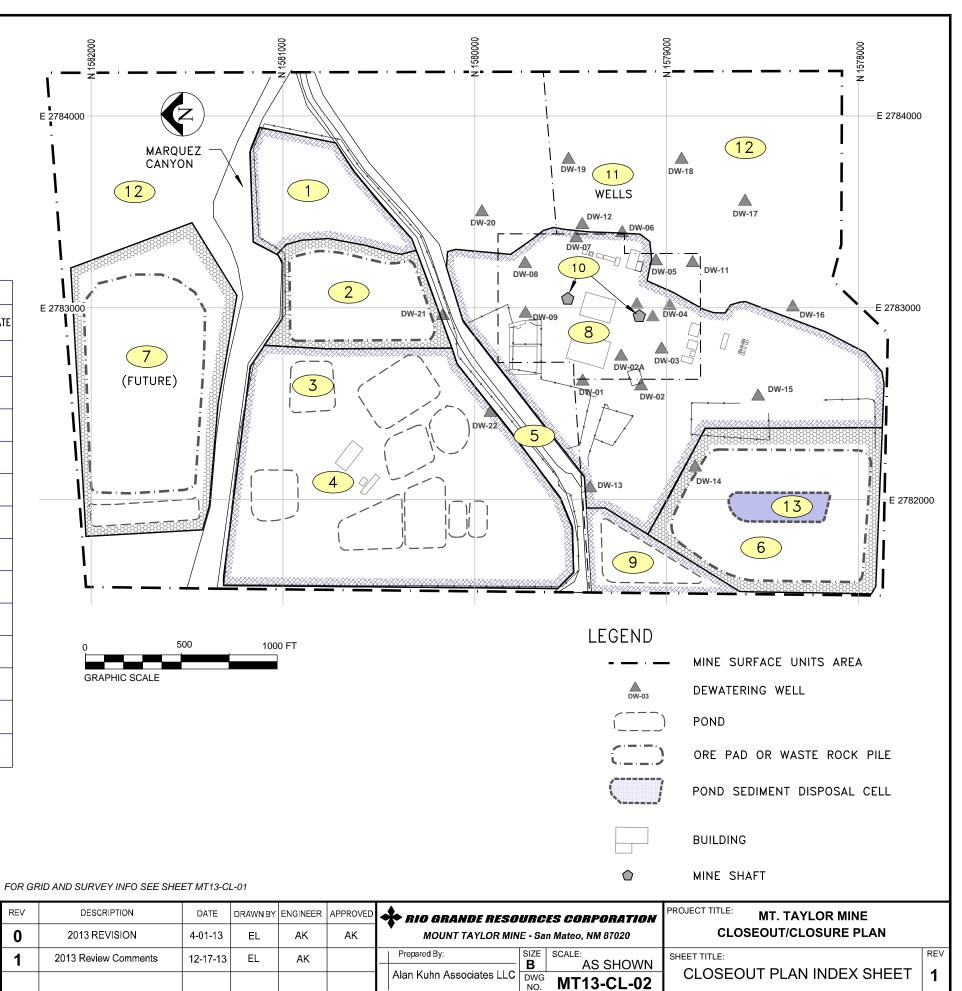
MOUNT TAYLOR MINE CLOSEOUT/CLOSURE PLAN

DRAWING LIST

DRAWING NUMBER	DRAWING TITLE	G-01
MT13-CL-01	TITLE SHEET	
MT13-CL-02	CLOSEOUT PLAN INDEX SHEET	G-02
MT13-CL-03	GAMMA AND SOIL RADIUM SAMPLE LOCATIONS	
MT13-CL-04	FACILITY DISPOSITION PLAN	G-03
MT13-CL-05	SHAFT CLOSURE - MANWAY VENT	
MT13-CL-06	SHAFT CLOSURE - PRODUCTION SHAFT	
MT13-CL-07	FINAL GRADING PLAN- MINE WATER TREATMENT POND AND ORE PAD AREA	
MT13-CL-08	TYPICAL SECTIONS - MINE WATER TREATMENT POND BACKFILL	S-1.0
MT13-CL-09	FINAL GRADING AND COVER PLAN- SOUTH WASTE ROCK PILE AREA	S-2.0
MT13-CL-10	FINAL GRADING AND COVER SECTIONS- SOUTH WASTE ROCK PILE AREA	s
MT13-CL-11	FINAL GRADING AND COVER PLAN- NORTH WASTE ROCK PILE AREA	S
MT13-CL-12	FINAL GRADING AND COVER SECTIONS- NORTH WASTE ROCK PILE AREA	S
MT13-CL-13	FINAL SITE GRADING PLAN	

REV	DESCRIPTION	DATE	DRAWN BY	ENGINEER	APPROVED	RIO GRANDE RESO	URC	ES (
0	2013 REVISION	4-01-13	EL	AK		MOUNT TAYLOR MIN	E - Sai	n Mat
1	2013 Review Comments	12-17-13	EL	AK		Prepared By:	SIZE B	SCA
						Alan Kuhn Associates LLC	DWG NO.	Μ

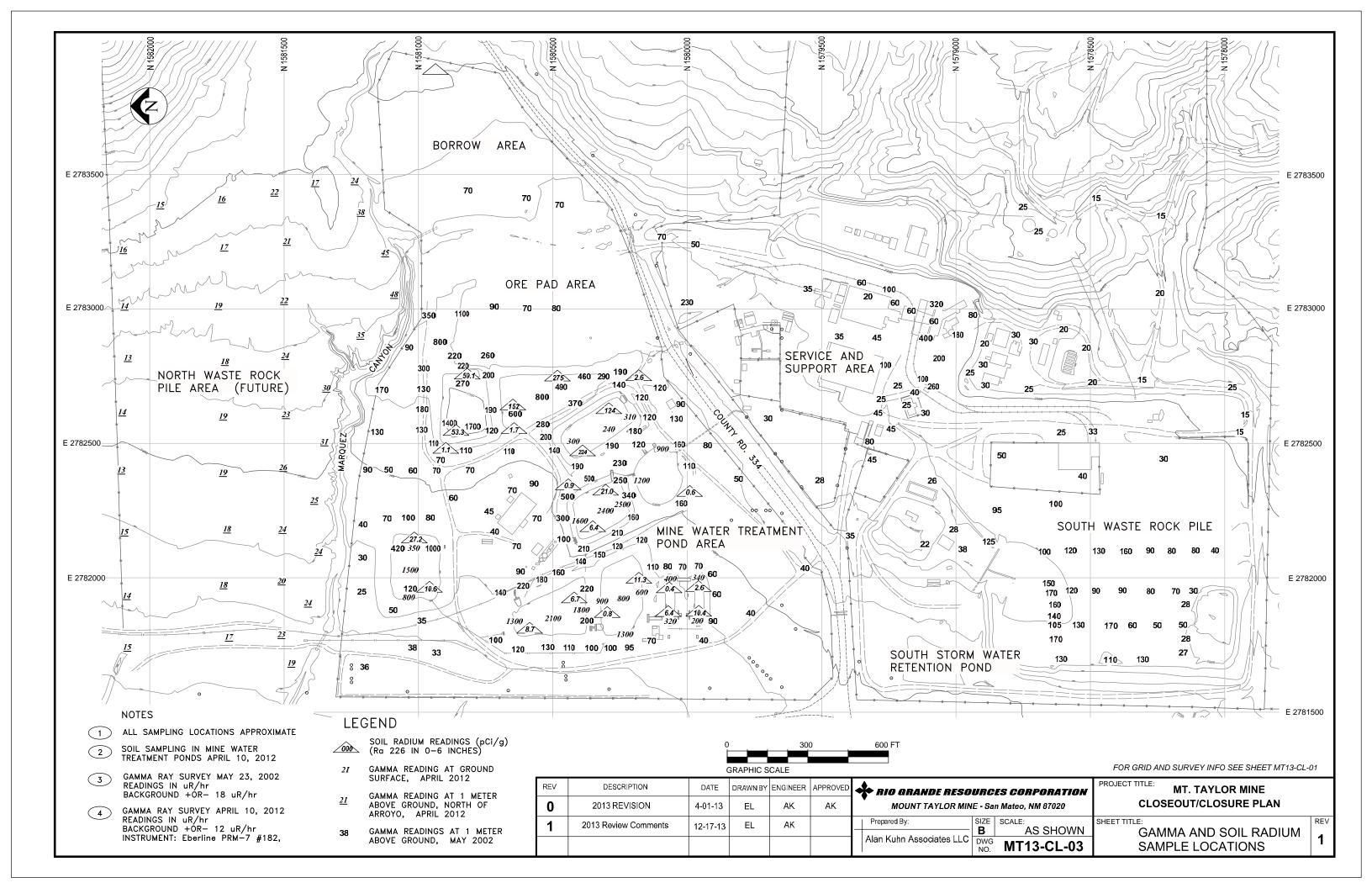
GENERAL NOTES

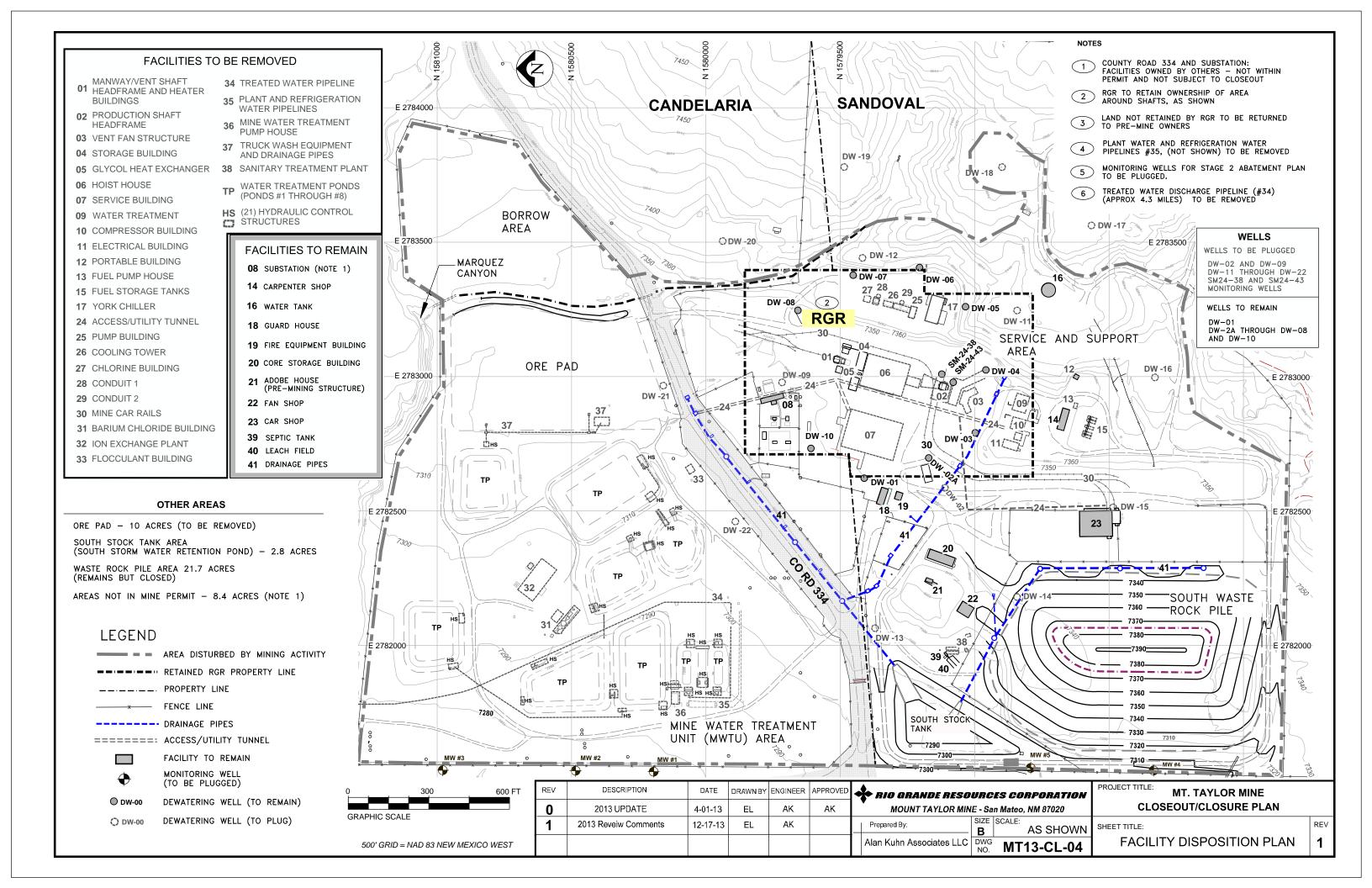

- FOR DETAILS REGARDING CONSTRUCTION AND MATERIAL REQUIREMENTS FOR THIS PROJECT, SEE THE PROJECT SPECIFICATIONS. IN ANY CASE OF CONFLICT BETWEEN THE DRAWINGS AND SPECIFICATIONS, THE SPECIFICATIONS WILL GOVERN.
- THE GRID AND COORDINATES SHOWN ON ALL PLANS ARE NEW MEXICO WEST ZONE NAD 83
- THE TOPOGRAPHIC MAP OF THIS SITE USED IN THESE DRAWINGS AS A BASE MAP WAS PRODUCED BY THOMAS R. MANN & ASSOCIATES, INC. IN MAY 2012.

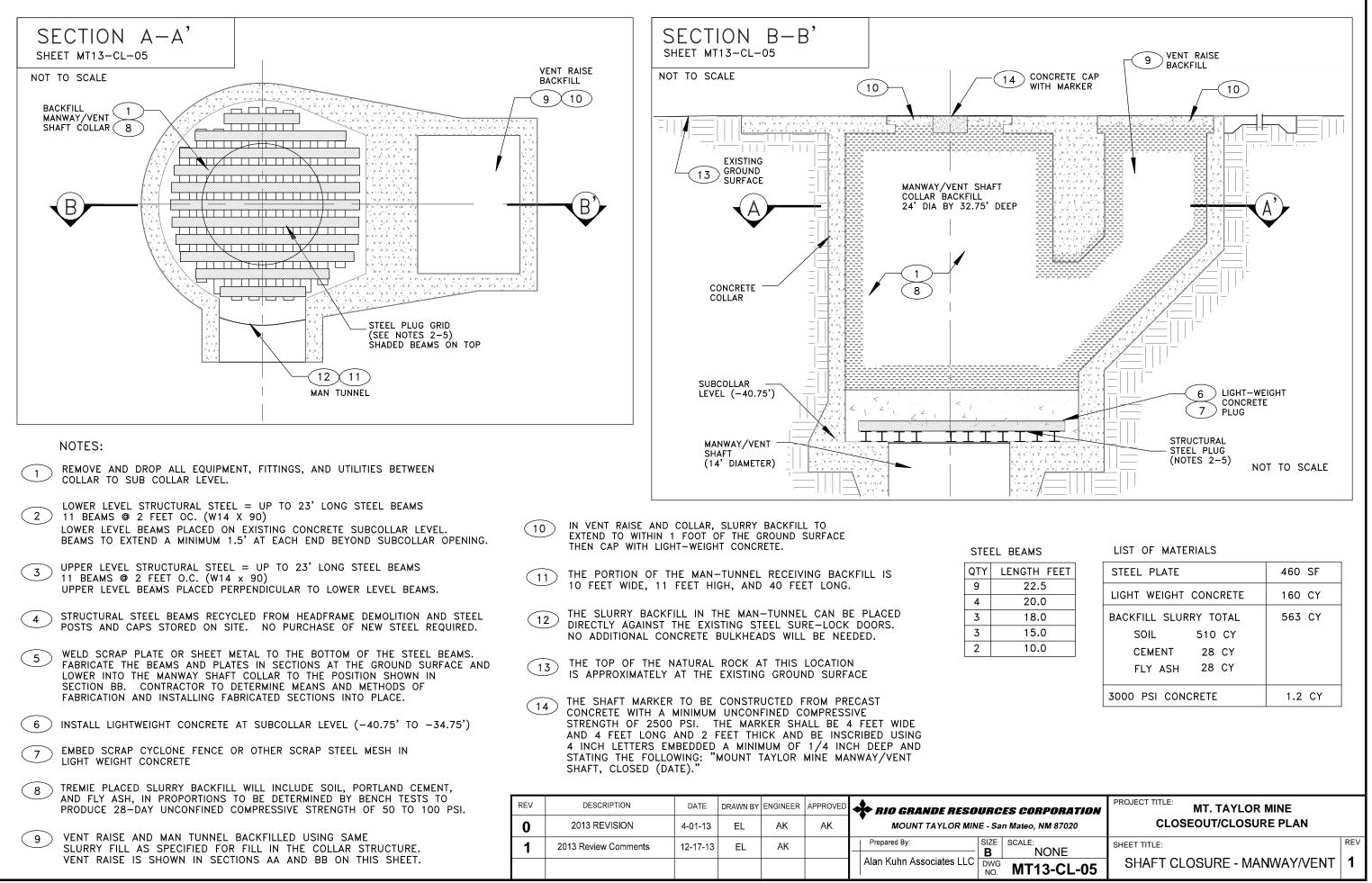
SURVEY REFERENCES

- .0 THE TOPOGRAPHIC BASE MAP WAS PRODUCED BY AERIAL SURVEY METHODS AND COMPLIES WITH NATIONAL MAP ACCURACY STANDARDS
- 0 SURVEY DATA FOR THE MAP WAS FURNISHED BY THE FOLLOWING:
- S-2.1 FIELD SURVEY OF CONTROL POINTS AND THE 1000 FOOT GRID- BY SURVEY CONTROL, INC. ALBUQUERQUE NM
- S-2.2 AERIAL PHOTOGRAPHY EXPOSED ON MAY 4, 2012 BY BLUE SKIES CONSULTING, BELEN NM.
- S-2.3 ORTHOPHOTO BASE MAPPING AND RELATED DIGITAL FILES PRODUCED BY THOMAS R. MANN, INC.

CORPORATION ateo, NM 87020	PROJECT TITLE: MT. TAYLOR MINE CLOSEOUT/CLOSURE PLAN	
NONE	SHEET TITLE: TITLE SHEET	REV 1

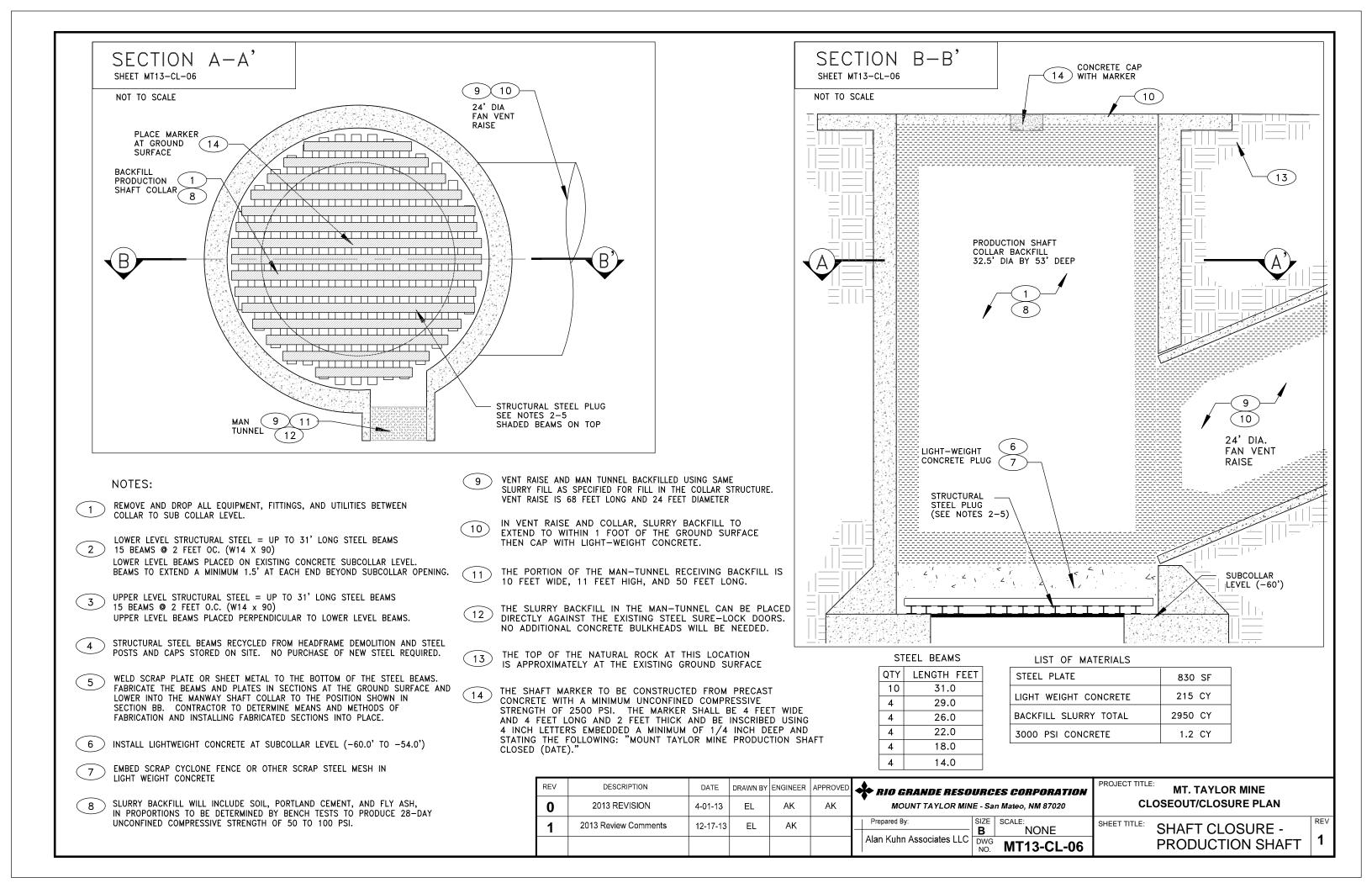

	AREA			•	TASKS			
N0.	AREA DESCRIPTION	DEMOLITION	SOIL 1 CLEANUP	PLUG OR BACKFILL	REMOVE ² SEDIMENT	PLACE COVER	FINISH GRADING	REVEGETATE
	BORROW AREA		Х				X	×
2	ORE PAD AREA	Х	Х				X	X
3	ORE PAD RUNOFF RETENTION POND	Х	Х	Х	X		X	×
4	MINE WATER TREATMENT AREA	Х	Х		Х		X	×
5	COUNTY ROAD ROW		Х				X	
6	SOUTH WASTE ROCK ¹ PILE AREA					Х	X	×
7	NORTH WASTE ROCK PILE AREA – (FUTURE)						X	X
8	SERVICE AND SUPPORT AREA	Х	×				×	
9	SOUTH STORMWATER RETENTION POND		Х		×			
10	MINE SHAFTS – MANWAY AND PRODUCTION	Х		Х				
(11)	DEWATERING WELLS			Х				
(12)	UNDEVELOPED AREAS							X
(13)	CLAY-LINED DISPOSAL CELL			X ²			X	

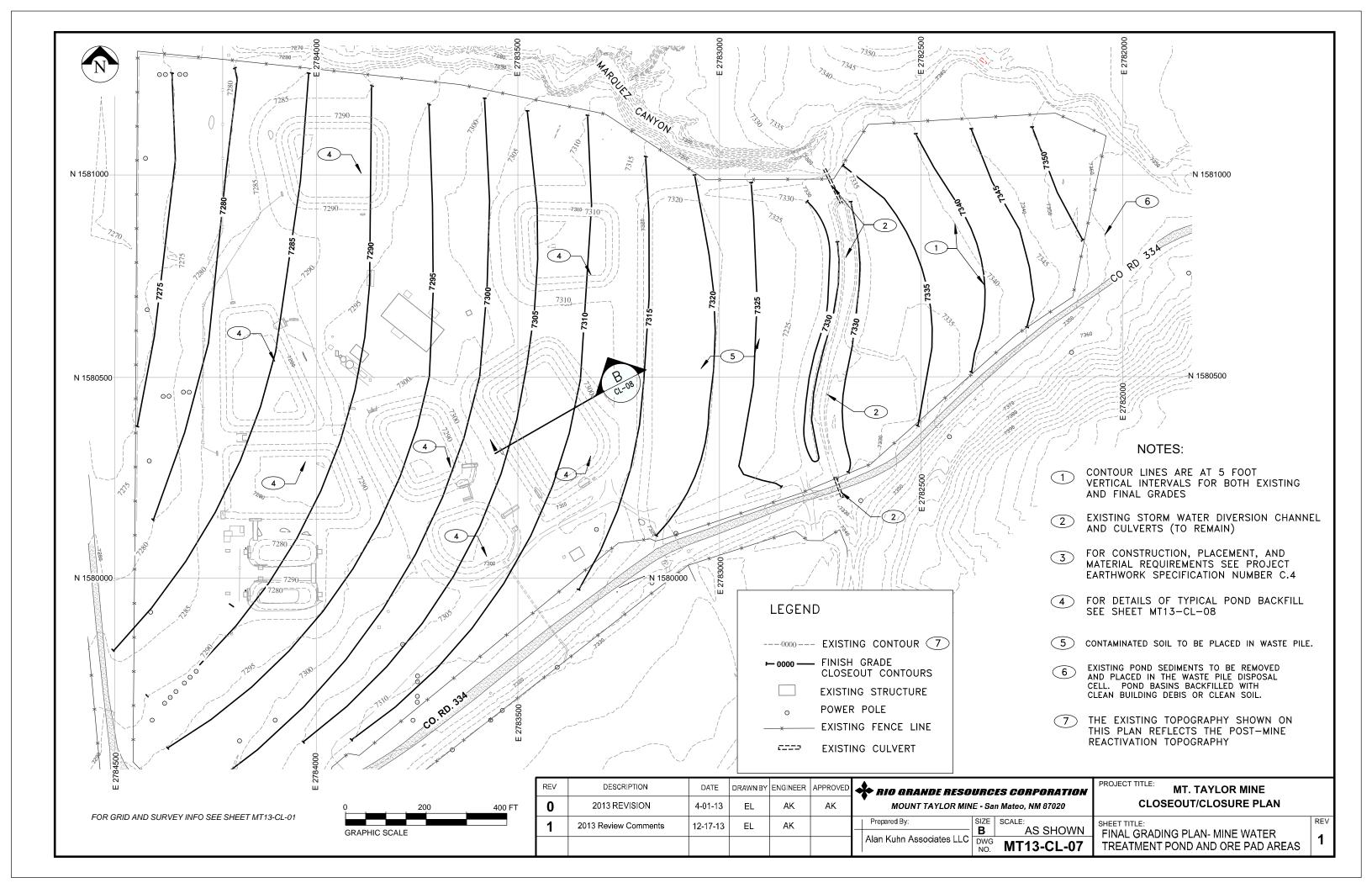


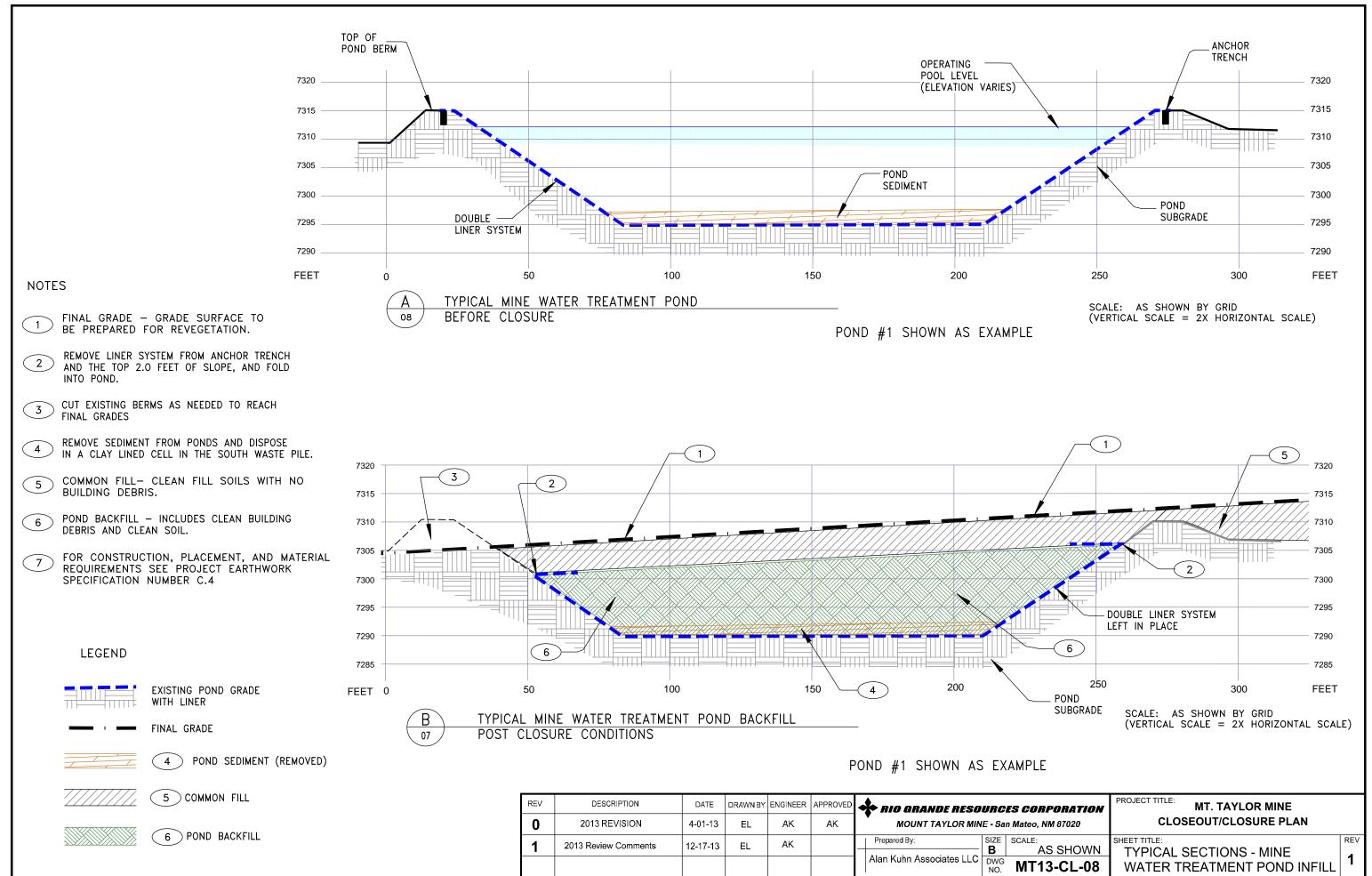

NOTES

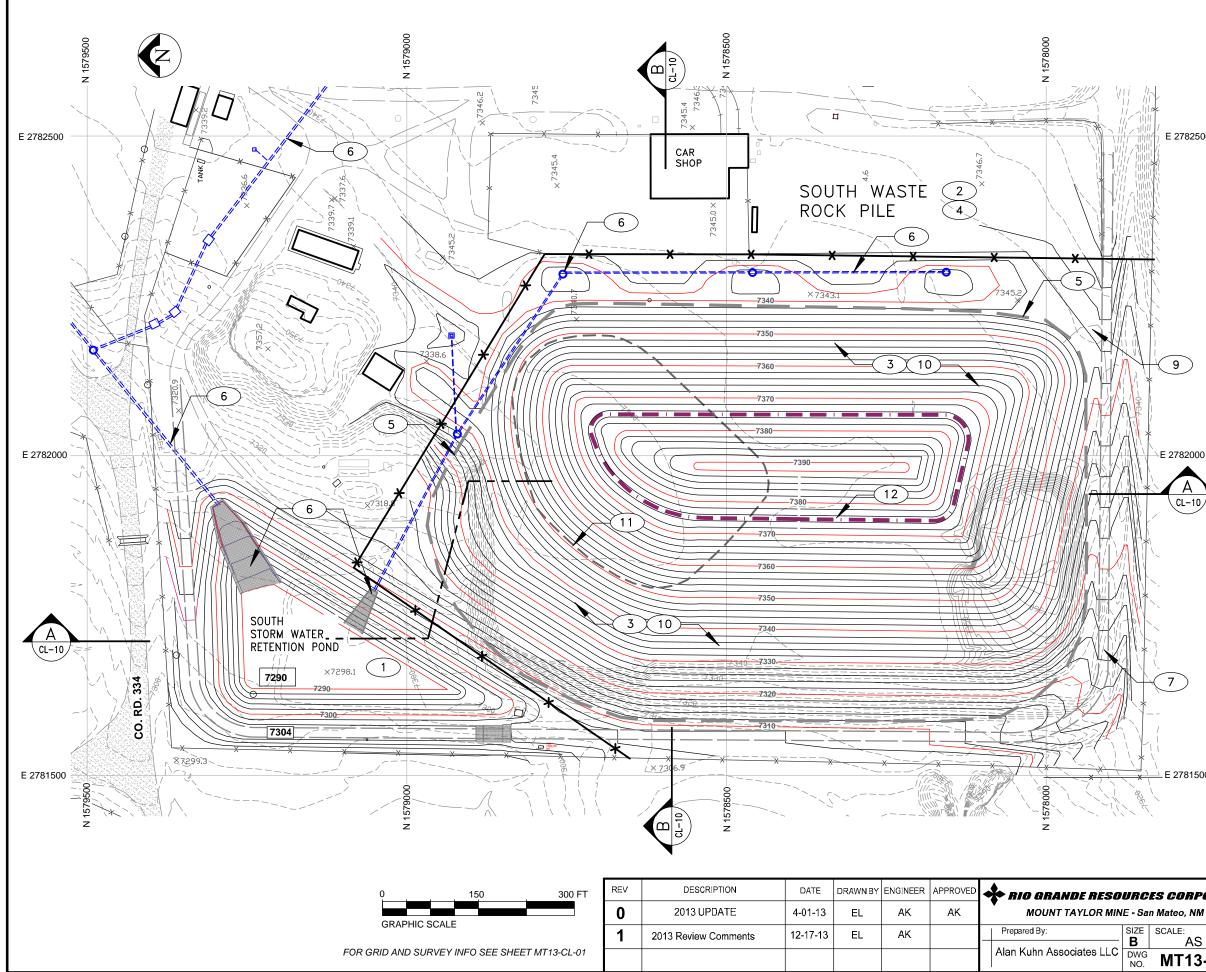
- 1. CONTAMINATED SOILS FROM SITE CLEANUP TO BE DEPOSITED ON SOUTH WASTE ROCK PILE.
- POND SEDIMENTS TO BE REMOVED AND DEPOSITED IN CLAY LINED DISPOSAL CELL LOCATED IN THE SOUTH WASTE ROCK PILE.
- 3. FOR QUANTITIES AND DETAILED DESCRIPTIONS OF EACH TASK SEE THE PROJECT SPECIFICATIONS

REV	DESCRIPTION	DATE	DRAWN BY	ENGINEER	APPROVED	💠 RIO GRANDE RESO	URC	ES C
0	2013 REVISION	4-01-13	EL	AK	AK	MOUNT TAYLOR MIN	E - Sai	n Mai
1	2013 Review Comments	12-17-13	EL	AK		Prepared By:	SIZE B	SCA
						Alan Kuhn Associates LLC	DWG NO.	Μ

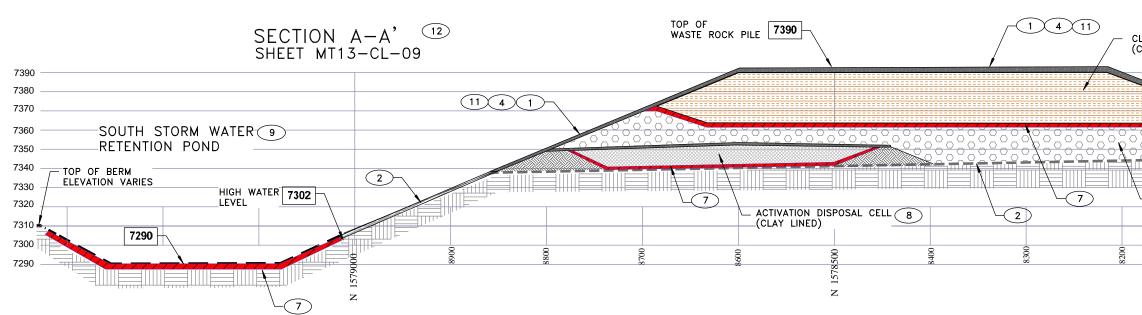






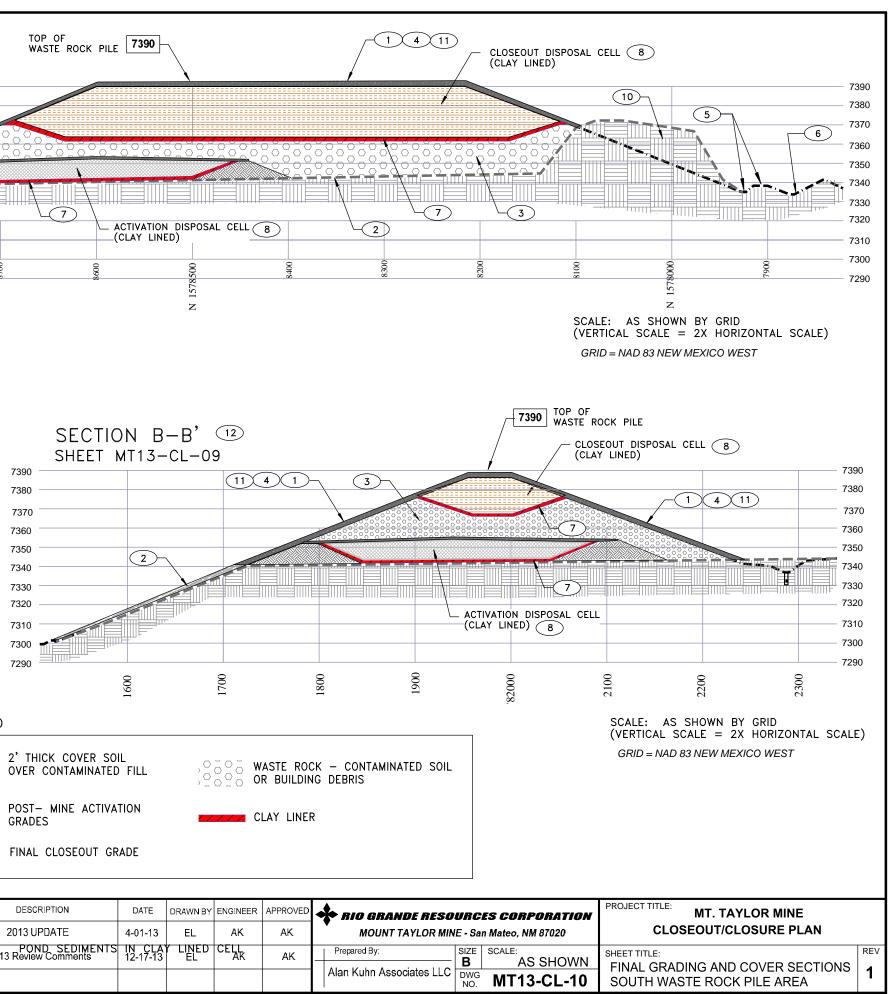

STEEL PLATE	460 SF
LIGHT WEIGHT CONCRETE	160 CY
BACKFILL SLURRY TOTAL	563 CY
SOIL 510 CY	
CEMENT 28 CY	
FLY ASH 28 CY	
3000 PSI CONCRETE	1.2 CY

CORPORATION ateo, NM 87020	PROJECT TITLE: MT. TAYLOR MINE CLOSEOUT/CLOSURE PLAN	
NONE MT13-CL-05	SHEET TITLE: SHAFT CLOSURE - MANWAY/VENT	REV
WIT13-CL-05		


	NO	TES:
		SOUTH STORM WATER RETENTION POND
E 2782500	2	WASTE ROCK PILE AT FINAL BUILDOUT CONTOURS SHOWN AT 2' INTERVALS
	3	WASTE ROCK PILE SLOPES = 5H TO 1V
	4	WASTE ROCK PILE TO RECEIVE 2' MIN. CLEAN SOIL COVER PLACED CONTEMPORANEOUSLY WITH WASTE ROCK
	5	PERIMETER OF WASTE ROCK PILE
	6	DRAINAGE PIPES, MANHOLES AND CONCRETE SPILLWAYS TO REMAIN
	7	SERVICE ROAD TO REMAIN
9	8	FOR CONSTRUCTION, PLACEMENT, AND MATERIAL REQUIREMENTS SEE PROJECT EARTHWORK SPECIFICATION NUMBER C.4
	9	USE CLEAN FILL SOILS FOR FILL AREAS OF 2 FEET OR LESS
2782000	10	REVEGETATE ALL DISTURBED AREAS
	(11)	ACTIVATION DISPOSAL CELL (CLAY LINED)

(12) CLOSEOUT DISPOSAL CELL (CLAY LINED)

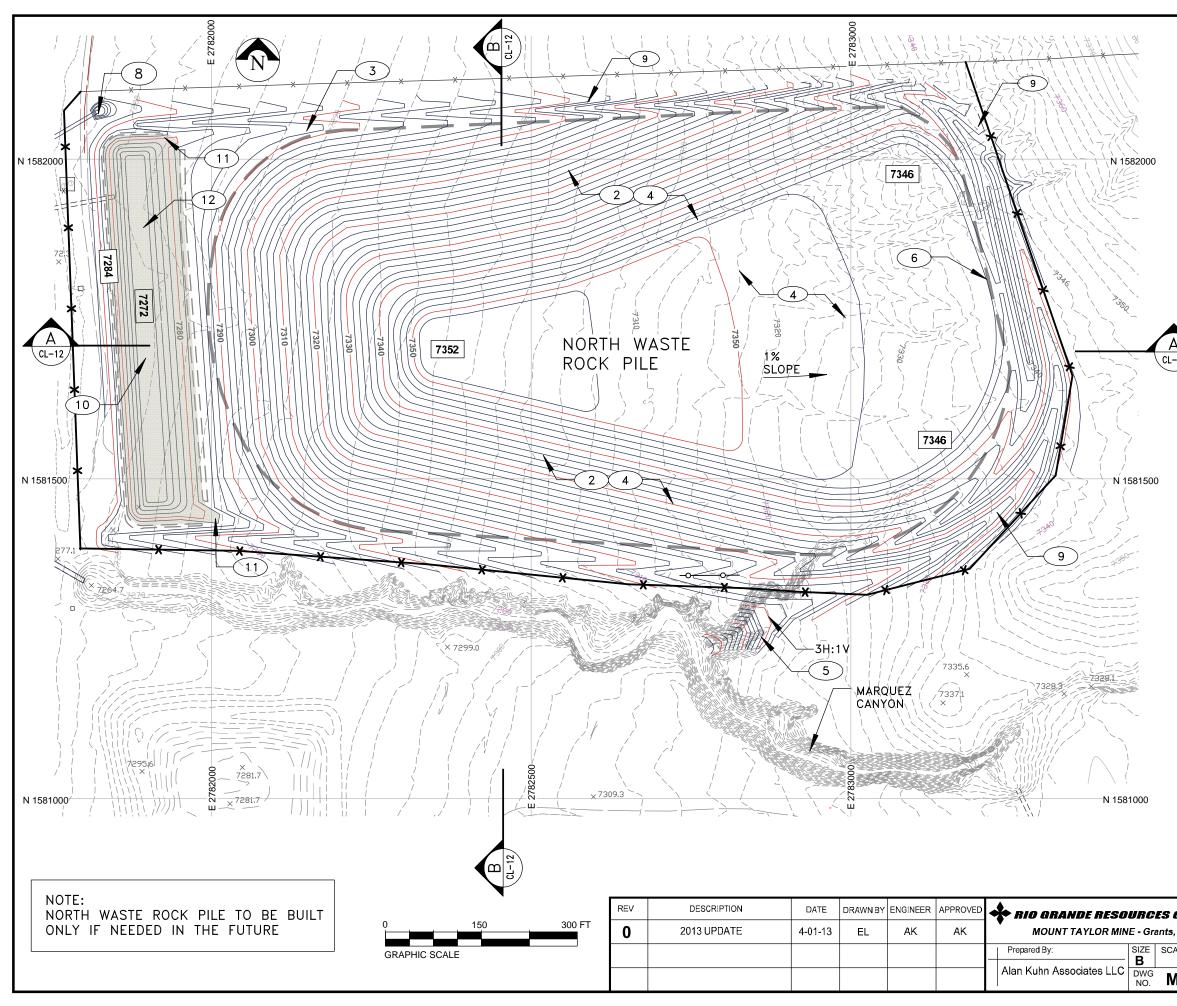
Α


LEGEND 0000 DESIGN SPOT ELEVATIONS DESIGN CONTOURS (2 FOOT INTERVALS) --- EXISTING CONTOURS (2 FOOT INTERVALS) ===== DRAINAGE PIPES ACTIVATION DISPOSAL CELL (CLAY LINED) 5 CLOSEOUT DISPOSAL CELL (CLAY LINED) NEW FENCE LINE * EXISTING FENCE LINE

	AYLOR MINE CLOSURE PLAN
AS SHOWN FINAL GRADING	
MT13-CL-09 SOUTH WASTER	ROCK PILE AREA



NOTES:


- FINAL GRADES AT FULL BUILDOUT. (1)POST MINE REACTIVATION GRADES. - COVER SOILS PLACED
- (2) OVER REGRADED WASTE ROCK SLOPES AT MINE REACTIVATION.
- WASTE ROCK FROM MINE, CONTAMINATED SOIL (3)AND DEMOLITION DEBRIS
- FINISH SLOPES OF WASTE ROCK PILE 5H TO 1V MAXIMUM (4)WITH 2 FEET OF CLEAN SOIL COVER PLACED CONTEMPORANEOUSLY ON PILE SLOPES.
- CONTAINMENT BERM AND DRAINAGE SWALE AT TOE OF SLOPE (5)
- EXISTING DIVERSION CHANNEL (6)
- CLAY LINER 1FT THICK MINIMUM $\overline{7}$
- CLAY LINED DISPOSAL CELL FOR POND SEDIMENTS. 8 SEE MT13-CL-09
- SOUTH STORM WATER RETENTION POND. (9) TOP OF BERM ELEVATION = 7304' MINIMUM BOTTOM OF BASIN ELEVATION = 7290'
- SHAFT MUCK PILE- TO BE USED FOR THE COVER SOILS PLACED ON (10)THE WASTE ROCK PILE.
- REVEGETATE ALL DISTURBED AREAS EXCEPT THE SOUTH (11)STORM WATER RETENTION POND
- (12)FOR CONSTRUCTION, PLACEMENT, AND MATERIAL REQUIREMENTS SEE PROJECT EARTHWORK SPECIFICATION NUMBER C.4

LEGEND

	REV	DESCRIPTION	DATE	DRAWN BY	ENGINEER	APPROVED	RIO GRANDE RESOURC	CES COR
	0	2013 UPDATE	4-01-13	EL	AK	AK	MOUNT TAYLOR MINE - S	an Mateo, N
	1	2013 Review Comments	IN CLA 12-17-13		CELL AK	AK	Prepared By: SIZE	SCALE:
FOR GRID AND SURVEY INFO SEE SHEET MT13-CL-01							Alan Kuhn Associates LLC	³ MT1

NOTES:

- 1 WASTE ROCK PILE AT FINAL BUILDOUT CONTOURS SHOWN AT 2' INTERVALS
- (2) WASTE ROCK PILE SLOPES = 5H TO 1V
- 3 DRAINAGE SWALE AT TOE OF SLOPE
- 4 2' THICK COVER OF CLEAN SOIL OVER WASTE ROCK PILE PLACED CONTEMPORANEOUSLY WITH BUILDOUT
- 5 RIP RAP WHERE DRAINAGE SWALES FLOW INTO MARQUEZ CANYON
- 6 PERIMETER OF WASTE ROCK PILE
- (7) REVEGETATE ALL DISTURBED AREAS
- 8 2' DIA CMP CULVERT
- 9 OUTER DRAINAGE SWALES TO DIVERT RUNOFF FROM MESA
- 10 STORM WATER RETENTION BASIN FOR RUNOFF FROM WASTE ROCK PILE -TOP OF EMBANKMENT ELEVATION = 7284' HIGH WATER ELEVATION = 7282' BOTTOM OF POND ELEVATION = 7272'
- 11 RIP RAP AT SWALE ENTRANCE TO STORM WATER RETENTION BASIN
- (12) CLAY LINER 1 FT THICK MINIMUM

LEGEND

 0000
 DESIGN SPOT ELEVATIONS

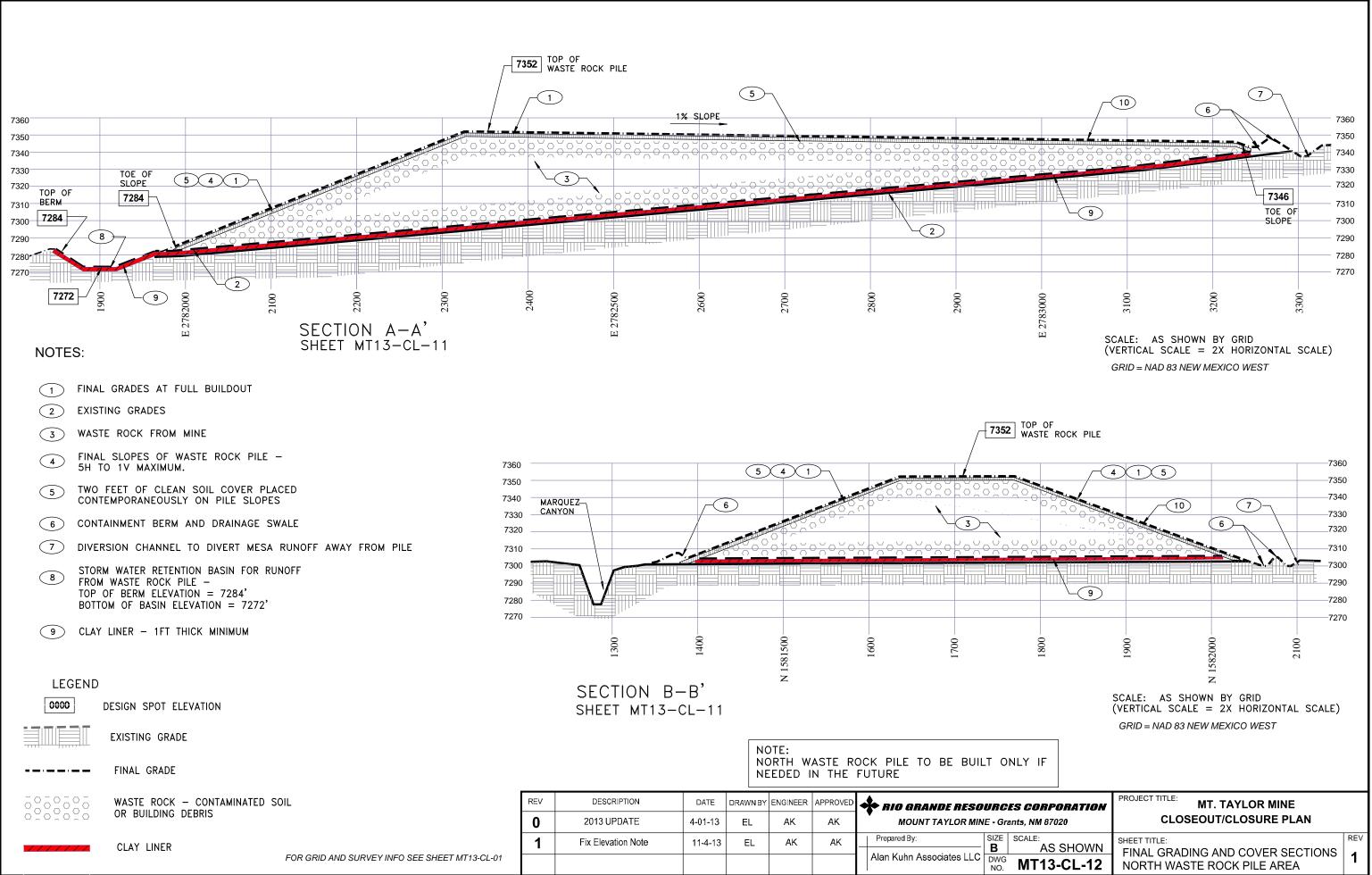
 DESIGN CONTOURS (2 FOOT INTERVALS)

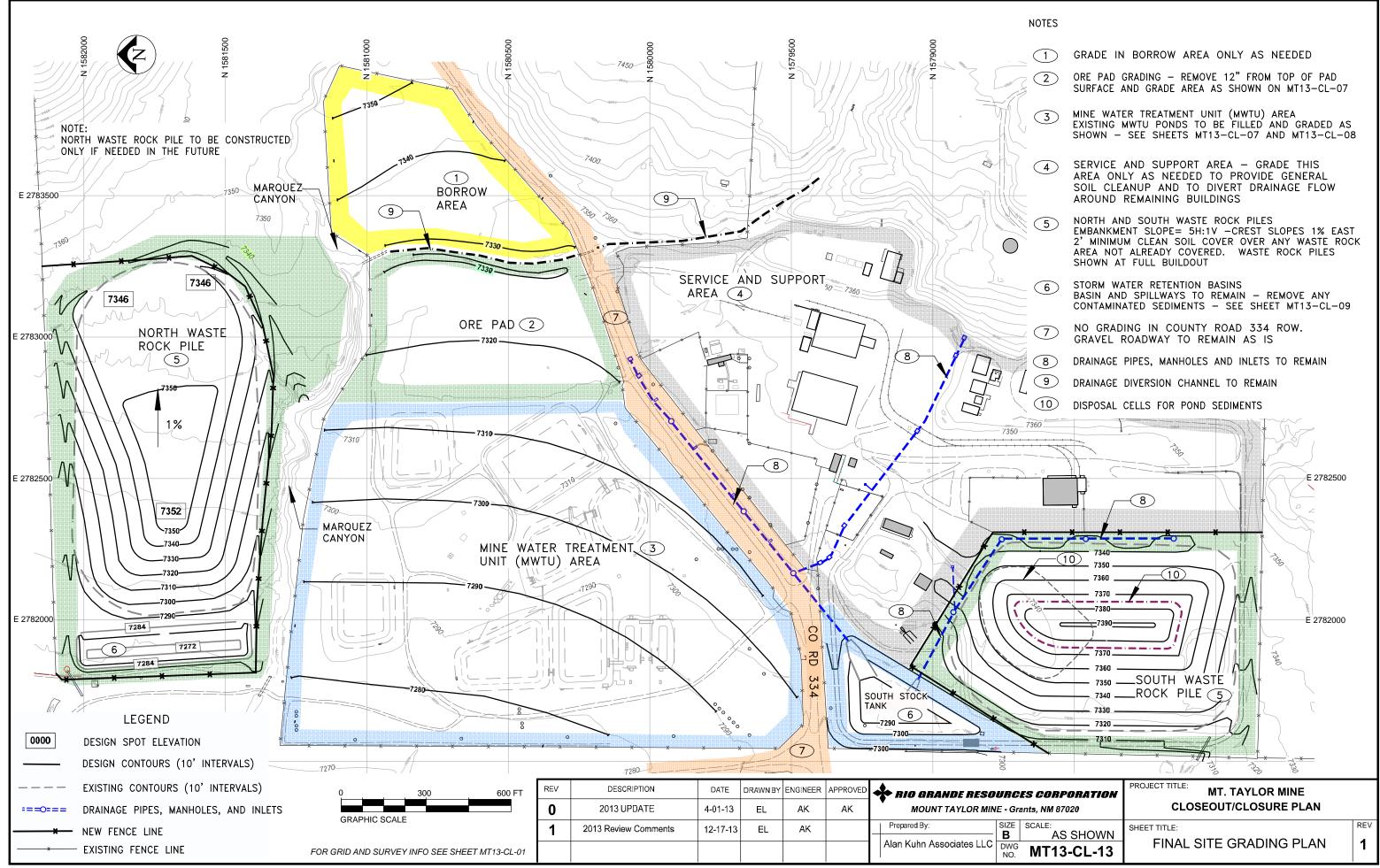
 EXISTING CONTOURS (2 FOOT INTERVALS)

 EXISTING FENCE LINE

 NEW FENCE LINE

 TOP OF STORM WATER


 RETENTION BASIN


 PERIMETER OF WASTE ROCK PILE

 CLAY LINER

s, NM 87020	PROJECT TITLE: MT. TAYLOR MINE CLOSEOUT/CLOSURE PLAN	
CALE:	SHEET TITLE:	REV
AS SHOWN	FINAL GRADING AND COVER PLAN -	~
MT13-CL-11	NORTH WASTE ROCK PILE AREA	0

APPENDIX B

ENGINEERING ANALYSES

B.1 RADON Analyses - New for 2012 Update

B.2 - Retained from Original Closeout Plan, 1998

- SURFACE WATER HYDROLOGIC ANALYSIS
 - FLOOD HYDROGRAPH (HEC-1) ANALYSES
 - WATER SURFACE PROFILE (HEC-2) ANALYSES
- REVISED UNIVERSAL SOIL LOSS EQUATION (RUSLE) ANALYSES
- SLOPE STABILITY (SB-SLOPE) ANALYSES
- DESIGN RUNOFF AND SHEAR CALCULATIONS

These calculations were based on full build-out of the mine site.

As-is conditions are less than full build-out, therefore these

calculations are conservative for as-is conditions.

REVISED UNIVERSAL SOIL LOSS EQUATION (RUSLE2 VERSION 2.0.4.0) AVERAGE ANNUAL SOIL LOSS MT. TAYLOR MINE WASTE PILE, MAXIMUM SLOPE AT CLOSEOUT

This Annual Soil Loss Analysis updates and supplements the original RUSLE2 anaylsis performed in 1995, using the latest version (July 2010) of RUSLE2 per USDA-Agricultural Research Service, 2008, User's Reference Guide, Revised Universal Soil Loss Equation Version 2

The analysis examined several base management scenarios, listed below, to bracket those possible for selection for the worst case condition.

Worst case condition : Waste pile regraded to uniform 5H:1V slope, longest slope at maximum build-out, which represents the slope form at the end of mine life. Location: Nearest selection, Bernalillo County, NM

Base Management	Slope Length, ft	Slope Steepness, %	Contouring	Diversion/ terrace, sediment basin	Soil	Strips/ barriers	Sediment delivery, t/ac/yr	Soil Loss, t/ac/yr
Highly disturbed, blade and mulch with native hay at 4000 lb/ac	350	20	perfect contouring, 0 row grade	default	sandy clay loam (l-m OM, s-m perm)	default	0.28	0.77
Highly disturbed, blade and mulch with rock at 100t/ac	350	20	perfect contouring, 0 row grade	default	sandy clay loam (l-m OM, s-m perm)	default	0.30	0.82
Highly disturbed, gravel, fresh	350	20	perfect contouring, 0 row grade	default	sandy clay loam (I-m OM, s-m perm)	default	0.30	0.82
Highly disturbed,long term vegetation after 4 years		20	perfect contouring, 0 row grade	default	sandy clay loam (l-m OM, s-m perm)	default	4.3	4.3
Smooth bare	350	20	perfect contouring, 0 row grade	default	sandy clay loam (I-m OM, s-m perm)	default	0.61	5.6

On the modeled slope, 350 feet long at 20% slope, the worst case for the waste pile, best erosion protection is achieved by use of hay mulch. The predicted soil loss is 0.77 t/ac/yr using hay mulch, compared to slightly higher soil loss of 0.82 t/ac/yr using rock mulch or gravel. For comparison, with vegetation after four years the predicted loss is 4.3 t/ac/yr, and a smooth bare surface is predicted to have 5.6 t/ac/yr soil loss.

B.1 RADON ANALYSIS

WATER TREATMENT PONDS AND WASTE ROCK PILE AFTER CLOSURE

Pond	Pond Se	diment	Fill from A Ore Stoc		Contaminated Soil Fill		Contaminated Soil Fill		Soil C	over	Total Fill Depth, ft (1)	Calculated Radon Flux from Cover, pCi/m ² S
	Average Thickness,	Average Ra-226,	Average Thickness,	Average Ra-226,	Average Thickness,	Average Ra-226,	Average Thickness,	Average Ra-226,				
	ft (2)	pCi/g	ft	pCi/g	ft	pCi/g (3)	ft	pCi/g				
1	1.5	119	1.0	214	11.0	44	2.0	6.8	14	19.7		
2	1.5	224	0.0	NA	11.0	44	2.0	6.8	13	19.9		
3	1.65	21	1.0	214	13.0	44	2.0	6.8	16	19.1		
4	0.75	18	0.0	NA	10.0	44	2.0	6.8	12	18.8		
5	1.7	11	0.0	NA	13.0	44	2.0	6.8	15	18.8		
6	1.5	6	0.0	NA	13.0	44	2.0	6.8	15	18.8		
7	1.4	10	0.0	NA	13.0	44	2.0	6.8	15	18.9		
8	2.25	27	0.0	NA	7.0	44	2.0	6.8	9	18.4		
Waste Rock Pile	Waste	aste Rock Contaminated Soil Fill Soil Cover				over						
	17	50 (4)			1.6 (5)	44	2.0	6.8		19.9		
(1)	Total fill de	oth is design	top of cover	to existing to	op of pond se	diment						
(2)	Pond sedim	ent thicknes	sses are avera	ige values fro	om test pit log	gs, April 201	2. Pond 2 sed	iment thickr	ness estima	ted		
	because of	standing wa	ater									
(3)	Average of a	10 pond sur	face sedimen	t samples, to	represent so	urce of soil	contaminatio	n				
(4) Conservative estimate based on low concentrations of Ra-226 in SPLP leachate from waste pile tests, Table 2, Kleinfelder, 2012												
(5)	1.4 ft over 2	21.7 acres ba	ased on 48,66	0 BCY contai	minated soil,	1.6 ft thick v	vith 15% swe	ll for LCY pla	ced.			
The RADON	N model was r	run in accord	dance with:									
U.S. Nuclear Regulatory Commission Office of Research, RADON, Version 1.2, May 22, 1989, and												
U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research, "Regulatory Guide 3.64,												

Table B.1 Input Parameters and Radon Flux - RADON modeling of Mine Water Treatment Pond Cover and Waste Rock Pile

"Calculation of Radon Flux Attenuation by Earthen Uranium Mill Tailings Covers", June 1989.

Pond #1

------ Input Parameters ------

Number of Layers: 4

Radon Flux into Layer 1: 0 pCi/m2s

Surface Radon Concentration: 0 pCi/L

Bare Source Flux (Jo) from Layer 1: 43.30 pCi/m2s

Specific Bare Source Flux from Layer 1: 0.364 pCi/m2s per pCi_Ra-226/g

Layer Thickness Ra-226 Emanat Porosity Moisture Diff Coeff

No	No. [m] [pCi/g] Fract [dry wt_%] [n					/ wt_%] [m2/s]
1	0.45	119	.25	0.4	5	2.704E-6
2	0.3	214	.25	0.4	5	2.704E-6
3	3.3	44	.25	0.4	10	1.602E-6
4	0.6	6.8	.25	0.4	10	1.602E-6
	Res	ults of	Rador	n Diffus	ion Ca	lculation
Lay	er Thic	kness	Exit F	lux Exit	t Conc	. MIC
No	. [m]	[pC	Ci/m2s] [pCi/	'L]	
1	0.45	3.9	64	109.4E	3 0.	850
2	0.3	31.4	4 2	104.5E3	8 0.8	350
3	3.3	20.7	7 5 2	18.20E3	8 0.7	00

4 0.6 **19.67** 0E0 0.700

Total cover radon retention: 54.57%

Pond #2

------ Input Parameters ------

Number of Layers: 4

Radon Flux into Layer 1: 0 pCi/m2s

Surface Radon Concentration: 0 pCi/L

Bare Source Flux (Jo) from Layer 1: 81.50 pCi/m2s

Specific Bare Source Flux from Layer 1: 0.364 pCi/m2s per pCi_Ra-226/g

Layer Thickness Ra-226 Emanat Porosity Moisture Diff Coeff

No	. [m]	[pCi	/g] Fra	act	[dry	y wt_%] [m2/s]
1	0.45	224	.25	0.4	5	2.704E-6
2	0.01	214	.25	0.4	5	2.704E-6
3	3.3	44	.25	0.4	10	1.602E-6
4	0.6	6.8	.25	0.4	10	1.602E-6

----- Results of Radon Diffusion Calculation ------

Layer Thickness Exit Flux Exit Conc. MIC

No.	[m]	[pCi/m2	2s] [pCi/L]	
1	0.45	38.88	118.6E3	0.850
2	0.01	39.70	118.2E3	0.850
3	3.3	20.99	18.39E3	0.700
4	0.6	<mark>19.86</mark>	0E0 (0.700

Total cover radon retention: 75.63%

Pond #3

------ Input Parameters ------

Number of Layers: 4

Radon Flux into Layer 1: 0 pCi/m2s

Surface Radon Concentration: 0 pCi/L

Bare Source Flux (Jo) from Layer 1: 9.818 pCi/m2s

Specific Bare Source Flux from Layer 1: 0.468 pCi/m2s per pCi_Ra-226/g

Layer Thickness Ra-226 Emanat Porosity Moisture Diff Coeff

No	. [m]	[pCi	i/g] Fr	act	[dr	y wt_%] [m2/s]
1	0.6	21	.25	0.4	5	2.704E-6
2	0.3	214	.25	0.4	5	2.704E-6
3	3.9	44	.25	0.4	10	1.602E-6
4	0.6	6.8	.25	0.4	10	1.602E-6

----- Results of Radon Diffusion Calculation ------

Layer Thickness Exit Flux Exit Conc. MIC

No.	[m]	[pCi/m2	2s] [pCi/L	.]
1	0.6	-23.6	72.31E3	0.850
2	0.3	12.41	73.85E3	0.850
3	3.9	20.04	17.62E3	0.700
4	0.6	<mark>19.10</mark>	0E0	0.700

Total cover radon retention: -94.5%

------ Input Parameters ------

Number of Layers: 4

Radon Flux into Layer 1: 0 pCi/m2s

Surface Radon Concentration: 0 pCi/L

Bare Source Flux (Jo) from Layer 1: 3.474 pCi/m2s

Specific Bare Source Flux from Layer 1: 0.193 pCi/m2s per pCi_Ra-226/g

Layer Thickness Ra-226 Emanat Porosity Moisture Diff Coeff

l	No.	. [m]	[pC	i/g] Fr	act	[dr	y wt_%] [m2/s]
	1	0.23	18	.25	0.4	5	2.704E-6
	2	0.01	214	.25	0.4	5	2.704E-6
	3	3	44	.25	0.4	10	1.602E-6
	4	0.6	6.8	.25	0.4	10	1.602E-6

----- Results of Radon Diffusion Calculation ------

Layer Thickness Exit Flux Exit Conc. MIC

No.	[m]	[pCi/m	2s] [pCi/l	_]
1	0.23	-5.23	45.65E3	0.850
2	0.01	-3.79	45.69E3	0.850
3	3	19.68	17.34E3	0.700
4	0.6	<mark>18.82</mark>	0E0	0.700

Total cover radon retention: -442.%

------ Input Parameters ------

Number of Layers: 4

Radon Flux into Layer 1: 0 pCi/m2s

Surface Radon Concentration: 0 pCi/L

Bare Source Flux (Jo) from Layer 1: 4.474 pCi/m2s

Specific Bare Source Flux from Layer 1: 0.407 pCi/m2s per pCi_Ra-226/g

Layer Thickness Ra-226 Emanat Porosity Moisture Diff Coeff

No	. [m]	[pCi	/g] Fra	act	[dr	y wt_%] [m2/s]
1	0.51	11	.25	0.4	5	2.704E-6
2	0.01	214	.25	0.4	5	2.704E-6
3	3.9	44	.25	0.4	10	1.602E-6
4	0.6	6.8	.25	0.4	10	1.602E-6

----- Results of Radon Diffusion Calculation ------

Layer Thickness Exit Flux Exit Conc. MIC

No.	[m]	[pCi/m2	s] [pCi/l	L]
1	0.51	-10.8	37.92E3	0.850
2	0.01	-9.26	38.01E3	0.850
3	3.9	19.72	17.37E3	0.700
4	0.6	<mark>18.85</mark>	0E0	0.700

Total cover radon retention: -321.%

------ Input Parameters ------

Number of Layers: 4

Radon Flux into Layer 1: 0 pCi/m2s

Surface Radon Concentration: 0 pCi/L

Bare Source Flux (Jo) from Layer 1: 2.183 pCi/m2s

Specific Bare Source Flux from Layer 1: 0.364 pCi/m2s per pCi_Ra-226/g

Layer Thickness Ra-226 Emanat Porosity Moisture Diff Coeff

No	o. [m]	[pCi	i/g] Fra	act	[dr	y wt_%] [m2/s]
1	0.45	6	.25	0.4	5	2.704E-6
2	0.01	214	.25	0.4	5	2.704E-6
3	3.9	44	.25	0.4	10	1.602E-6
4	0.6	6.8	.25	0.4	10	1.602E-6

----- Results of Radon Diffusion Calculation ------

Layer Thickness Exit Flux Exit Conc. MIC

No.	[m]	[pCi/m2	2s] [pCi/l	_]
1	0.45	-11.2	37.21E3	0.850
2	0.01	-9.68	37.31E3	0.850
3	3.9	19.72	17.37E3	0.700
4	0.6	<mark>18.84</mark>	0E0	0.700

Total cover radon retention: -763.%

------ Input Parameters ------

Number of Layers: 4

Radon Flux into Layer 1: 0 pCi/m2s

Surface Radon Concentration: 0 pCi/L

Bare Source Flux (Jo) from Layer 1: 3.417 pCi/m2s

Specific Bare Source Flux from Layer 1: 0.342 pCi/m2s per pCi_Ra-226/g

Layer Thickness Ra-226 Emanat Porosity Moisture Diff Coeff

No	. [m]	[pCi	/g] Fra	act	[dry	y wt_%] [m2/s]
1	0.42	10	.25	0.4	5	2.704E-6
2	0.01	214	.25	0.4	5	2.704E-6
3	3.9	44	.25	0.4	10	1.602E-6
4	0.6	6.8	.25	0.4	10	1.602E-6

----- Results of Radon Diffusion Calculation ------

Layer Thickness Exit Flux Exit Conc. MIC

No.	[m]	[pCi/m2	s] [pCi/L	.]
1	0.42	-9.87	39.37E3	0.850
2	0.01	-8.38	39.46E3	0.850
3	3.9	19.74	17.38E3	0.700
4	0.6	<mark>18.86</mark>	0E0	0.700

Total cover radon retention: -452.%

------ Input Parameters ------

Number of Layers: 4

Radon Flux into Layer 1: 0 pCi/m2s

Surface Radon Concentration: 0 pCi/L

Bare Source Flux (Jo) from Layer 1: 13.98 pCi/m2s

Specific Bare Source Flux from Layer 1: 0.518 pCi/m2s per pCi_Ra-226/g

Layer Thickness Ra-226 Emanat Porosity Moisture Diff Coeff

No	o. [m]	[pCi	/g] Fra	act	[dr	y wt_%] [m2/s]
1	0.68	27	.25	0.4	5	2.704E-6
2	0.01	214	.25	0.4	5	2.704E-6
3	2.1	44	.25	0.4	10	1.602E-6
4	0.6	6.8	.25	0.4	10	1.602E-6

----- Results of Radon Diffusion Calculation ------

Layer Thickness Exit Flux Exit Conc. MIC

No.	[m]	[pCi/m2	s] [pCi/L	.]
1	0.68	-6.44	39.93E3	0.850
2	0.01	-4.96	39.99E3	0.850
3	2.1	19.10	16.86E3	0.700
4	0.6	<mark>18.35</mark>	0E0	0.700

Total cover radon retention: -31.2%

Waste Rock Pile

Input Parameters
Number of Layers: 3
Radon Flux into Layer 1: 0 pCi/m2s
Surface Radon Concentration: 0 pCi/L
Bare Source Flux (Jo) from Layer 1: 43.68 pCi/m2s
Specific Bare Source Flux from Layer 1: 0.874 pCi/m2s per pCi_Ra-226/g

Layer Thickness Ra-226 Emanat Porosity Moisture Diff Coeff

No	. [m]	[pCi	/g] Fr	act	[dry v	wt_%] [m2/s]
1	4.5	50	.25	0.4	7.000	2.216E-6
2	0.5	44	.25	0.4	10	1.602E-6
3	0.6	6.8	.25	0.4	10	1.602E-6

----- Results of Radon Diffusion Calculation ------

Layer Thickness Exit Flux Exit Conc. MIC

No. [m] [pCi/m2s] [pCi/L]

1	4.5	13.07	35.47E3	0.790
2	0.5	21.08	18.47E3	0.700

3 0.6 <mark>19.94</mark> 0E0 0.700

Total cover radon retention: 54.35%

REVISED UNIVERSAL SOIL LOSS EQUATION INPUT/OUTPUT FILE

* filename	R x	K X			P	×300000 0 ⊐ A ° 665665555555
* NTTAYLR2 * NTTAYLR1	27 27 27	0.12 0.12 0.12	0.62 0.93 0.07	0.203 0.662 0.370	0.50 0.57 0.25	= 0.2 = 1.1 = 0.02
* RGRPILE1 * RGRPILE2	27	0.12	0.07	0.008	0.03	# 0 # 0
- 9 8	Ŏ	000	0	000	0	= 0
2 66666666666 6666	ő	Ŭ ÉÉÉÉÉÉÉÉÉÉÉÉ	0 3666666666666666666666666666666666666	Ŭ 666666666666666666666666666666666666	0 666666666	= Ŏ °
5 0						e e
accession access	K F4 Calls	Factor, Esc	Returns to	RUSLE Main	Nenu >ááá	dác sá sá sá sá sá sá s

Filename Key:

MTTAYLR2	Reclaimed surface of stockpile and laydown areas east of WSP
MTTAYLR1	Disturbed surface of stockpile and laydown areas east of WSP
RGRPILE1	Pile surface before revegetation
RGRPILE2	Pile surface after revegetation

and the second second

GEOSYSTEM SLOPE STABILITY PROGRAM SB-SLOPE

PROJECT DATA: Project: Mt Taylor Mine Closeout Plan, Old Waste Rock Pile Stability Location: San Mateo, NM Description: Old Waste Pile, Max Buildout, Mt. Taylo: Filename: RGROLDPI ANALYSIS DATA: Soil Density Cohesion Phi Line Left Right Soil Point Coordinates Deg No. Point Point No. No. pcf psf No. х ү 20.0 250 1 112.0 2 1 550.0 307.0 1 1 1 0 34.0 2 102.0 2 2 2 3 615.0 310.0 2 3 4 2 750.0 346.0 3 3 2 5 775.0 346.0 4 4 4 55 62 6 7 2 6 865.0 373.0 5 1 1050.0 371.0 6 1050.0 330.0 7 0.0 0.0 8 0.0 9 0.0 0.0 0.0 10 0.0 0.0 11 Seismic coefficient, horizontal = 0.100 vertical = 0.100Range search; initial parameters: max increment min 10.0 551.0 650.0 left x right x 775.0 1050.0 10.0 radius increment is 10.0 minimum perpendicular depth is 15.0 limit at elevation 270.0 OVERALL MINIMUM: x = 686.7, y = 562.5, r = 267.2, FS = 2.418f e st Range search; initial parameters: max increment min 10.0 750.0 551.0 left x 10.0 950.0 right x 775.0 radius increment is 10.0 minimum perpendicular depth is 15.0 limit at elevation 270.0 OVERALL MINIMUM: x = 691.5, y = 567.7, r = 281.8, FS = 1.606

GEOSYSTEM SLOPE STABILITY PROGRAM SB-SLOPE

PROJECT DATA: Project: Mt Taylor Mine Closeout Plan, New Waste Rock Pile Stability Location: San Mateo, NM Filename: RGRNEWPI Description:

ANALYSIS DATA:

ANALYS	SIS DATA	.:					1999 - 19 2 99323	10000 2 10	1987 1299 *	
Point	Coordin	ates	Line	Left	Right	Soil	Soil	Density	Cohesion	Phi
No.	Х	Y	No.	Point	Point	No.	NO.	pcf	psf	Deg
1	1.0	273.0	1	1	2	1	1	112.0	250	20.0
2	95.0	276.0	2	2	3	2	2	102.0	0	34.0
3	180.0	304.0	3	3	4	2				
4	205.0	304.0	4	4	5	2				
5	287.0	332.0	5	5	6	2				
6	312.0	332.0	6	6	7	2				
7	395.0	360.0	7	7	8	2				
8	545.0	359.0	8	2	9	1				
9	110.0	270.0	9	9	10	1				
10	545.0	270.0								
11	0.0	0.0						12		

Seismic coefficient, horizontal = 0.100 vertical = 0.100

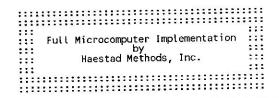
OVERALL MINIMUM: x = 180.3, y = 550.9, r = 300.2, FS = 1.585

Range search; initial parameters: min max increment 10.0 180.0 2.0 left x right x 312.0 545.0 10.0 radius increment is 10.0 minimum perpendicular depth is 15.0 limit at elevation 250.0 OVERALL MINIMUM: x = 180.3, y = 550.9, r = 300.2, FS = 2.324

RUNOFF AND EROSION PROTECTION ANALYSIS PARAMETERS

rents							
र.		inches					
TS	2.00	inches					
						and the second s	
0.40	for woodlands	s on shallow clay o	over rock - u	ndisturbed surface			UREG/CR-4620)
0.50	for rolling surf	face on cultivated	clay loam se	oil, and bare clay			nd 4.6, NUREG/CR-4620)
0.40			1.1.2			(1able 4.6, N	IUREG/CR-4620)
0.45				المتعاطمة مع			
0.50	for clay cover	r surtace before ve	egetation is r	eestaplished			
0.050	for stash	tural observate on	rock with en	me vegetation			(Table B-6, USBR Design of Small Dams, 1987)
	for earth cho	annels and slones	with small	Trowth			(Table B-6, USBR Design of Small Dams, 1987)
	for sand sa	ndy loam and othe	er non-colloi	dal soils (waste rock su	rface)		(Table 4.2, NUREG/CR-4620)
0.025							(Table 4.2, NUREG/CR-4620)
	0207 STREET, 1998			100 T			(NUREG/CP-4651)
n=0.0456(dť	50 x S)^0.159	fo	r riprap char	nels			(NUREG/CR-4651)
tive soil and	natural vegeta	tion = 0.5 * 205	0.1	, for bare surface =		0	(USDA Ag. Handbook 667, Table 3.1)
							(USDA Ag. Handbook 667, page 12)
C soils =							
=	0.3	3 mm, or					(USDA An Handback 667 mars 19)
= d75^(1/6)	/39, min. of 0.0	0156					(USDA Ag. Handbook 667, page 12)
SC soils =	0.015	6 inches	21 2 - 22 - 22	1.111.4.444			(USDA Ag. Handbook 667, Figure 3.2)
=					AND A AND		(USDA Ag. Handbook 667, Pigure 3.2) (USDA Ag. Handbook 667, page 14)
actor, Ce =	1.12	5 for native clay	at 100 pcf d	1.10 for waste r	OCK (SP to SM)		(USDA Ag. Handbook 667, page 14) (USDA Ag. Handbook 667, Table 3.3)
Ta, in psf,	D	10	0.075	→ /1 07 DIA2+14 0 DI	147 71 v 104 4 v 1	Ce	(abbring, nandwook our, nasie o.o)
				_ = (1.07 Pl*2+14.3 Pl*	-+/./JX 10*-4 X	~~	(USDA Ag. Handbook 667, Figure 3.1)
0.4 0/0	- 0.4 1.20 0						
				ga szecesetetetetetetetetetetetetetetetetetet			- 60 NURECION 48300
r, F =		3 assumed base	d on vegeta	tion over 30 % or less c	ot area		(p. 68, NUREG/CR-4620) (p. 48, NUREG/CR-4620)
	0.2	27 for blasted/ crus	shed rock				(p. 48, NUREG/CR-4620) (Table B.1, NUREG/CR-4651)
							(Table B.1, NUREG/CR-4651)
		5					
		a 1	0.040.	maliana			
							(Figure 4.8, NUREG/CR-4620)
	4	it flow ten FAlter		radians 0.00	3		
∖= instrock m	Noment with -			0.00			
inst rock me	r ovement withou	a now, with rotals					
inst rock mo	vement withou						
inst rock me	vement withou			4			
inst rock me	ovement withou						
inst rock me	ovement withou	i), and minimum v		0.04			
0.00013*(L	-^0.77/S^0.385	i), and minimum v		0.04			
0.00013*(L	ovement withou	i), and minimum v		0.04			
0.00013*(L	-^0.77/S^0.385	i), and minimum v		0.04			
inst rock me 0.00013*(L fail depth *	-^0.77/S^0.385	i), and minimum v		0.04	<u></u>		<u> </u>
inst rock me 0.00013*(L fail depth *	vement withou 	i), and minimum v		0.04			
0.00013*(L fail depth *	-^0.77/S^0.385 60/rainfall durat	i), and minimum v		0.04 = (1.486/n)*R^.667*S	•^.5 for channeliz	ed flow	
0.00013*(L fail depth * a *n/1.486*S^ (1.486/n)*y^	2000 2000 2000 2000 2000 2000 2000 200	i), and minimum t			•.5 for channeliz	ed flow	
0.00013*(L 6.00013*(L fail depth * a *n/1.486*S^ (1.486/n)*y^ cross section		i), and minimum v tion, inches/hr for sheet flow wetted perimeter	value is				
	-^0.77/S^0.385 60/rainfail durat .5)*0.6 .667*S^.5 n area of flow/ \ (Ns/n)^2 on b	i), and minimum t tion, inches/hr for sheet flow wetted perimeter are soil, = 62.4*S	value is S*y*(1-Cf)*(N	= (1.486/n)*R^.667*S			
0.00013*(L fali depth * a (1.486/s^ cross sectio : 62.4*S*y * ng value for	-^0.77/S^0.385 60/rainfail durat .5)*0.6 .667*S^.5 n area of flow/ \ (Ns/n)^2 on b	i), and minimum t tion, inches/hr for sheet flow wetted perimeter are soil, = 62.4*S	value is S*y*(1-Cf)*(N	= (1.486/n)*R^.667*S Is/n)^2 on native soil wi			
0.00013*(L fail depth * a (1.486/n)*y^ cross section cross section coss coss coss coss coss coss coss coss	-^0.77/S^0.385 60/rainfail durat .5)*0.6 .667*S^.5 n area of flow/ \ (Ns/n)^2 on b	i), and minimum v tion, inches/hr for sheet flow wetted perimeter are soil, = 62.4*S lity) for sheet flow	value is s*y*(1-Cf)*(N = ((65*Ta*(!	= (1.486/n)*R^.667*S Is/n)^2 on native soll wi 5/3))/(i*L*F*n))^(6/7)	ith natural vegeta	tion	
0.00013*(L fail depth * a *n/1.486*S^ (1.486/n)*y^ cross sectior : 62.4*S*y * ng value for ier nod, with gradia		i), and minimum v tion, inches/hr for sheet flow wetted perimeter are soil, = 62.4*S lity) for sheet flow Safety Facto	value is \$*y*(1-Cf)*(N = ((65*Ta^(\$ or SF = (cos	= (1.486/n)*R^.667*S Is/n)^2 on native soll wi 5/3))/(i*L*F*n))^(6/7) . SA)*(tan FA)/((21*y*S)	ith natural vegeta /(G-1)*d50)*(tan	tion	
0.00013*(L fail depth * a *n/1.486*S^ (1.486/n)*y^ cross sectior : 62.4*S*y * ng value for ier nod, with gradia		i), and minimum v tion, inches/hr for sheet flow wetted perimeter are soil, = 62.4*S lity) for sheet flow Safety Facto	value is \$*y*(1-Cf)*(N = ((65*Ta^(\$ or SF = (cos	= (1.486/n)*R^.667*S Is/n)^2 on native soll wi 5/3))/(i*L*F*n))^(6/7) . SA)*(tan FA)/((21*y*S)	ith natural vegeta /(G-1)*d50)*(tan	tion	
0.00013*(L fail depth * a *n/1.486*S^ (1.486/n)*y^ cross sectior : 62.4*S*y * ng value for ier nod, with gradia		i), and minimum v tion, inches/hr for sheet flow wetted perimeter are soil, = 62.4*S lity) for sheet flow Safety Facto	value is s*y*(1-Cf)*(N = ((65*Ta^(\$ or, SF = (cos *S/((G-1)*d5	= (1.486/n)*R^.667*S ls/n)^2 on native soll wi 5/3))/(i*L*F*n))^(6/7) . SA)*(tan FA)/((21*y*S) 50))/2*(sec SA)*2+4)^0	ith natural vegeta /(G-1)*d50)*(tan	tion	
	vement withou ^0,77/S^0.385 60/rainfail durat .5)*0.6 .667*S^.5 n area of flow/ v (Ns/n)*2 on bi erosional stabil nt < 0.1 ictor, SF = (Sm	i), and minimum v tion, inches/hr for sheet flow wetted perimeter are soil, = 62.4*S lity) for sheet flow , Safety Facto n/2)*((Sm*(21*y*S)(value is s*y*(1-Cf)*(N = ((65*Ta^(s r, SF = (cos *S/((G-1)*d5 ((G-1)*d50))	= (1.486/n)*R^.667*S ls/n)^2 on native soll wi 5/3))/(i*L*F*n))^(6/7) . SA)*(tan FA)/((21*y*S) 50))/2*(sec SA)*2+4)^0	th natural vegeta /(G-1)*d50)*(tan).5-	tion	
	TS 0,40 0,50 0,45 0,50 0,035 0,025 0,	TS 2.00 0.40 for woodlands 0.50 for colling surf 0.40 for clay with 1 0.45 for waste rocl 0.50 for clay with 1 0.45 for waste rocl 0.50 for clay with 1 0.45 for waste rocl 0.050 for steep na 0.035 for earth cha 0.025 for clays and 0.036 0.15 = 0.16 = 0.26 Scissis = 0.11 C Sosils = 0.396 clays and 0.396 clays and 0.4 (SP, SM) = 0.4*1.25*d 0.33 18 <td>TS 2.00 inches 0.40 for woodlands on shallow clay of 0.50 for rolling surface on cultivated 0.40 for clay with light vegetation 0.45 0.40 for clay with light vegetation 0.45 for waste rock surface, unveget 0.50 for clay cover surface, unveget 0.50 0.050 for steep natural channels on 0.035 for earth channels and slopes 0.02 for sand, sandy loam and oth 0.025 0.02 for sand, sandy loam and oth 0.025 for clays and shales (clay cov or = 0.0456(d50 x S)^0.159 for 0.0456(d50 x S)^0.159 for for for sand, sandy loam and oth 0.025 0.02 for sand, sandy loam and oth 0.025 for clays and shales (clay cov or = 0.0456(d50 x S)^0.159 for 0.02 for sand, sandy loam and oth 0.025 for clays and shales (clay cov or = 0.0456(d50 x S)^0.159 for ctive soil and natural vegetation = 0.5 * 205 C soils = 0.14 mm, or = 0.3 mm, or close inches = 0.3962 mm, or for lasted clay = 0.02 pi 0.02 pi 0.02 pi 0.04*075 (SP, SM) = 0.02 pi 0.02 pi 0.04*1.25*d50 = 0.02 pi 0.02 pi 0.02 pi 0.04*075 0.02 pi 0.02*00 (Afs 2.65 (design values) 0.33 18.3 degrees, 0.30, or 16.7 degrees, 0.30</td> <td>TS2.00inches0.40for woodlands on shallow clay over rock - u0.50for rolling surface on cultivated clay loam so0.40for clay with light vegetation0.45for waste rock surface, unvegetated0.50for clay cover surface before vegetation is ro0.050for steep natural channels on rock with so0.035for earth channels and slopes with small g0.025for clays and shales (clay cover)0.025for clays and shales0.025for clays and shales10.025for clays and shales1156inches120.3 mm, or120.0156120.3 mm, or120.015612in psf.12120.47 for blasted/ crushed rock0.452.65(design values)0.3318.3 degrees,0.31940.30, or16.7 degrees,0.2915</td> <td>TS2.00 inches0.40for woodlands on shallow clay over rock - undisturbed surface0.50for rolling surface on cultivated clay loam soil, and bare clay0.40for clay with light vegetation0.45for waste rock surface, unvegetated0.50for clay cover surface before vegetation is reestablished0.050for steep natural channels on rock with some vegetation0.035for earth channels and slopes with small growth0.02for sand, sandy loam and other non-colloidal soils (waste rock surface surface)0.025for clays and shales (clay cover)=0.0456(d50 x S)^0.159for riprap channelstive soil and natural vegetation = 0.5 * 20?0.10.055inches=0.3 mm, or0.0055 inches=0.3962 mm, or0.0156C soils =0.125 for native clay at 100 pcf d1.10for waste rctr, Ce =1.125 for native clay at 100 pcf d1.10for waste rctr, SP =0.02p.0.27psf0.47475= 0.4*1.25*d50 =0.5*d500.33(design values)0.330.30, or16.7 degrees,0.314radians0.30, or16.7 degrees,0.2915radians</td> <td>TS2.00 inches0.40for woodlands on shallow clay over rock - undisturbed surface0.50for rolling surface on cultivated clay learn soil, and bare clay0.40for clay with light vegetation0.45for waste rock surface, unvegetated0.50for clay cover surface before vegetation is reestablished0.050for steep natural channels on rock with some vegetation0.035for earth channels and slopes with small growth0.02for sand, sandy loarn and other non-colloidal soils (waste rock surface)0.025for clays and shales (clay cover)=0.0456(d50 x S)^0.159for riprap channelstive soil and natural vegetation = 0.5 * 20?0.1</td> <td>TS2.00 inches0.40for woodlands on shallow clay over rock - undisturbed surface(Table 4.5, N (Table 4.4 an (Table 4.6, N)0.50for clay with light vegetation(Table 4.6, N) (Table 4.6, N)0.44for clay with light vegetation(Table 4.6, N)0.50for steep natural channels on rock with some vegetation(Table 4.6, N)0.050for steep natural channels on rock with some vegetation(Table 4.6, N)0.050for steep natural channels on rock with some vegetation(Oaster 1.6, N)0.025for clays and yloam and other non-colloidal soils (waste rock surface)(Oaster 1.6, N)0.025for clays and shales (clay cover)(Iaster 1.6, N)=0.0456(d50 x S)^0.159for riprap channels(Iaster 1.6, N)tive soil and natural vegetation = 0.5 * 20?0.1, for bare surface =0C soils =0.14 mm, or0.0055 inches0.0156(So soils =0.0156 inches=0.3 mm, or0.0156 inches1.10 for waste rock (SP to SM)(SP, SM) =0.02 psfctr, Ce =1.125 for native clay at 100 pcf d1.10 for waste rock (SP to SM)(SP, SM) =0.02 psf0.4*075= 0.4*1.25*d50 =0.5*d500.4*d75= 0.4*1.25*d50 =0.5*d50c, F =3 assumed based on vegetation over 30 % or less of area0.27 for blasted/ crushed rock0.450.3318.3 degrees,0.3194 radians0.30, or16.7 degrees,0.2915 radians0.30, or16.7 degrees,0.2915 radians0.2015 radians</td>	TS 2.00 inches 0.40 for woodlands on shallow clay of 0.50 for rolling surface on cultivated 0.40 for clay with light vegetation 0.45 0.40 for clay with light vegetation 0.45 for waste rock surface, unveget 0.50 for clay cover surface, unveget 0.50 0.050 for steep natural channels on 0.035 for earth channels and slopes 0.02 for sand, sandy loam and oth 0.025 0.02 for sand, sandy loam and oth 0.025 for clays and shales (clay cov or = 0.0456(d50 x S)^0.159 for 0.0456(d50 x S)^0.159 for for for sand, sandy loam and oth 0.025 0.02 for sand, sandy loam and oth 0.025 for clays and shales (clay cov or = 0.0456(d50 x S)^0.159 for 0.02 for sand, sandy loam and oth 0.025 for clays and shales (clay cov or = 0.0456(d50 x S)^0.159 for ctive soil and natural vegetation = 0.5 * 205 C soils = 0.14 mm, or = 0.3 mm, or close inches = 0.3962 mm, or for lasted clay = 0.02 pi 0.02 pi 0.02 pi 0.04*075 (SP, SM) = 0.02 pi 0.02 pi 0.04*1.25*d50 = 0.02 pi 0.02 pi 0.02 pi 0.04*075 0.02 pi 0.02*00 (Afs 2.65 (design values) 0.33 18.3 degrees, 0.30, or 16.7 degrees, 0.30	TS2.00inches0.40for woodlands on shallow clay over rock - u0.50for rolling surface on cultivated clay loam so0.40for clay with light vegetation0.45for waste rock surface, unvegetated0.50for clay cover surface before vegetation is ro0.050for steep natural channels on rock with so0.035for earth channels and slopes with small g0.025for clays and shales (clay cover)0.025for clays and shales0.025for clays and shales10.025for clays and shales1156inches120.3 mm, or120.0156120.3 mm, or120.015612in psf.12120.47 for blasted/ crushed rock0.452.65(design values)0.3318.3 degrees,0.31940.30, or16.7 degrees,0.2915	TS2.00 inches0.40for woodlands on shallow clay over rock - undisturbed surface0.50for rolling surface on cultivated clay loam soil, and bare clay0.40for clay with light vegetation0.45for waste rock surface, unvegetated0.50for clay cover surface before vegetation is reestablished0.050for steep natural channels on rock with some vegetation0.035for earth channels and slopes with small growth0.02for sand, sandy loam and other non-colloidal soils (waste rock surface surface)0.025for clays and shales (clay cover)=0.0456(d50 x S)^0.159for riprap channelstive soil and natural vegetation = 0.5 * 20?0.10.055inches=0.3 mm, or0.0055 inches=0.3962 mm, or0.0156C soils =0.125 for native clay at 100 pcf d1.10for waste rctr, Ce =1.125 for native clay at 100 pcf d1.10for waste rctr, SP =0.02p.0.27psf0.47475= 0.4*1.25*d50 =0.5*d500.33(design values)0.330.30, or16.7 degrees,0.314radians0.30, or16.7 degrees,0.2915radians	TS2.00 inches0.40for woodlands on shallow clay over rock - undisturbed surface0.50for rolling surface on cultivated clay learn soil, and bare clay0.40for clay with light vegetation0.45for waste rock surface, unvegetated0.50for clay cover surface before vegetation is reestablished0.050for steep natural channels on rock with some vegetation0.035for earth channels and slopes with small growth0.02for sand, sandy loarn and other non-colloidal soils (waste rock surface)0.025for clays and shales (clay cover)=0.0456(d50 x S)^0.159for riprap channelstive soil and natural vegetation = 0.5 * 20?0.1	TS2.00 inches0.40for woodlands on shallow clay over rock - undisturbed surface(Table 4.5, N (Table 4.4 an (Table 4.6, N)0.50for clay with light vegetation(Table 4.6, N) (Table 4.6, N)0.44for clay with light vegetation(Table 4.6, N)0.50for steep natural channels on rock with some vegetation(Table 4.6, N)0.050for steep natural channels on rock with some vegetation(Table 4.6, N)0.050for steep natural channels on rock with some vegetation(Oaster 1.6, N)0.025for clays and yloam and other non-colloidal soils (waste rock surface)(Oaster 1.6, N)0.025for clays and shales (clay cover)(Iaster 1.6, N)=0.0456(d50 x S)^0.159for riprap channels(Iaster 1.6, N)tive soil and natural vegetation = 0.5 * 20?0.1, for bare surface =0C soils =0.14 mm, or0.0055 inches0.0156(So soils =0.0156 inches=0.3 mm, or0.0156 inches1.10 for waste rock (SP to SM)(SP, SM) =0.02 psfctr, Ce =1.125 for native clay at 100 pcf d1.10 for waste rock (SP to SM)(SP, SM) =0.02 psf0.4*075= 0.4*1.25*d50 =0.5*d500.4*d75= 0.4*1.25*d50 =0.5*d50c, F =3 assumed based on vegetation over 30 % or less of area0.27 for blasted/ crushed rock0.450.3318.3 degrees,0.3194 radians0.30, or16.7 degrees,0.2915 radians0.30, or16.7 degrees,0.2915 radians0.2015 radians

100-YEAR STORM RUNOFF AND RESULTING PEAK SH	AND RES	ULTING PE		R STRESSE	EAR STRESSES ON WASTE ROCK PILES	E ROCK PII	LES				
	<u>ц</u>	FLOW PATH PARAMETERS	PARAME1	rers		PEAK	PEAK RUNOFF PARAMETERS	RAMETE	RS		
SEGMENT	LENGTH	GRADIENT S	SLOPE ANGLE degrees	ELEMENT tc hours	RAINFALL WITHIN tc (1)	RAINFALL INTENSITY in./hr.	RATE q cfs/ft	DEPTH Y ft	VELOCITY v fps	SHEAR STRESS psf	ALLOWABLE SHEAR STRESS psf
FLOW OVER WASTE ROCK											
maximum simple top slope >> design top slope >>	400	0.050 0.035	2.86 2.00	0.042 0.048	0.40 0.70	9.52 14.69	0.21 0.32	0.012 0.014	0.87 0.81	0.02 0.019	0.02 0.02
maximum simple side slope >> design simple side slope >>	80 80	0.10 0.33	5.71 18.26	0.042 0.042	0,40 0.40	9.52	0.04	0.006 0.008	0.74 1.71	0.02	0.02 0.02
FLOW OVER CLAY COVER											
maximum simple top slope >> design top slope >>	1070 383	0.01 0.010	0.57 0.57	0.165 0.075	1.60 0.85	9.72 11.39	0.57 0.240	0.016 0.009	0.37 0.26	0.004 0.002	0.079
maximum side slope below design to		0.33	18.26 0.57	0.115	1.10	9.59 8.41	0.289	0.029 0.010	3.25 0.28	0.235 0.003	0.079
upper west slope	82	0.33	18.26 14.05	0.042	0.40	9.52 9.52	0.04	0.009	1.51 1.62	0.075 0.079	0.079
IDWEL WEST SIGNA	350	0.010	0.57	0.042	0.92	21.90	0.42	0.013	0.33	0.003	0.079
-	68 00	0.33	18.42	0.084	0.92	10.95 0.52	0.48 0.05	0.040	3.99 1.58	0.321 0.080	0.079
maximum simple side slope >> design simple side slope >>	062	0.33	18.42	0.042	0.40	9.52	0.04	0.009	1.50	0.074	0.079
FLOW TO TOP SURFACE CHANNELS	383	0.01	0.57	0.075	0.40	5.36	0.11	0.006	0.19	0.001	0.079
								1			


9431HYD.XLS

ELEMENT ELEMENT ELEMENT MAX. MIN. L WDTH ELEMENT MAX. MIN. LENGTH WDTH ELEV. ELEV. ELEV. S EAST 383 1 7371 7366.2 S N & S 350 1 7371 7366.2 S N & S 92 1 7373 7371 LON 82 1 7373 7371 RUN-ON 82 1 7373 7376 RUN-ON 82 1 7375 7376 RUN-ON 90 1 7375 7376 PES 210 1 7375 7376 PES 210 1 7375 7376 PES 210 1 7313 7276 PENCH CHANNELS 1 7313 7276 PLON acres f. 6 6 21.54 2 2 20.00 1	L GRADIENT V. S SIENT 871 0.0100 391 0.0100 396 0.3330 396 0.3330 396 0.3330 3330 0.3330 2.5 0.3330 376 0.3330 376 0.3330 0.3330 376 0.3330 376 0.3330 376 0.3330 376 0.3330 376 0.3330	SLOPE ANGLE (mi isi bagrees h 0.57 18.42 18.42 18.42 18.42 18.42 18.42 18.42 18.42 18.42 18.42	te RAIN (minimum WIT is 0.042) te te hours int 0.075 0.075 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.076 0.076 0.165 0.076	RAINFALL WITHIN tc (1) 0.80 0.40 0.40 0.40 0.40 0.40 0.40 0.40	inthr 10.77 10.77 11.10 9.52 9.52 10.53 9.72 9.72 9.72 9.72 9.72 9.72	Peak Unit Discharge cfs/ft cfs/ft cfs/ft cfs/ft 0.0865 0.0973 0.0865 0.0490 0.1213 0.0490 0.0315 0.0854 0.0854	d50 for S>0.1, inches 3.1.2 3.1.2 5.3 5.3 1.3	S<0.1, Inches 0.20	Manning Coeff. n 0.0170 0.048 0.0361 0.0361 0.0361	Peak Flow Depth, 4 A	Peak Flow Velocity	Safety
2 1 7371 2 1 7373 2 1 7373 2 1 7362 7 737 5 1 7366 6 1 7371 7 7375 6 1 7375 6 1 7375 7 7 7 7 8 0 7 0 7 0 7 0 7 0 7 1 7375 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6.2 0.0100 371 0.0100 388 0.33330 386 0.33330 376 0.33330 376 0.33330 351 0.3330 351 0.3330 351 0.3330 351 0.3330 351 0.3330 351 0.3330	0.57 0.57 18.42 18.42 18.42 18.42 18.42 18.42 18.42 18.42	0.075 0.070 0.081 0.042 0.042 0.042 0.165 0.170 0.170 0.054 0.075	0.80 0.75 0.90 0.40 0.40 0.80 1.50 1.50 0.40 0.40 0.60	10.72 10.77 11.10 9.52 9.52 9.72 9.70 9.70 9.52		2 4 7 5 3 7 1 5 3 7 1 5 3 7 1 5 3 7 1 5 5 1 7 5	0.20	0.0170 0.0148 0.0394 0.0381 0.0381	0.10	on Rock v fps	Factor of Rock
0 1 7377.5 5 1 737.5 0 1 7313 0 1 7313 7 7313 0 AREA 1 7313 AREA 1 2 AREA 1 AREA 1 2 4 2 2 1 2 2 1 4 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 2 1 2	376 0.0100 351 0.3330 276 0.3330 0.3330 0.3330	0.57 18.42 18.42 18.42	0.165 0.170 0.042 0.054	1.50 1.65 0.40 0.60	9.72 9.70 9.52 11.07		5.3 1.3	0.30	0.0181	0.06 0.03 0.04	1.87 3.02 2.37 2.37	1.25
Y DRAINAGE AREA DEPTH acres ft 2 2 2 2	H DIMENSIONS					_	N/A		0.0499 0.0398	0.18 0.12 0.03	2.62 4.25 2.06	1.03
TION NEEDED AREA DEPTH WIDTH ds acres ft ff ff 21.54 21.54 2 20.00 15.17 2 20.00	-		ЧD	RAULIC PAF	HYDRAULIC PAPAMETERS			AVERAGE	AVERAGE ROCK SIZE			
21.54 2 20.00 15.17 2 20.00		AREA Co	Capacity cfs	œ.	۶.	w	VELOCITY fps	SHEAR psf	d _{s0} inches			
25.00 150.00	0.00 355 0.00 250 5.00 210 5.00 550	50 50 60 152.5	11.65 11.65 20.50 9.19	1.62 1.62 1.68 0.98	0.0176 0.0176 0.0463 0.0463	0.01 0.01 0.205 0.205	0.233 0.233 0.342	1.01 1.01 21.42 0.68	0.3 5.4 0.2			
NEW WASTE ROCK PILE BENCH DITCHES 8.50 1 20.00 540 BENCH CHUTES 8.50 1 1 10.00 30 ON BENCHES 8.50 1 1 10.00 90 ON SLOPES 8.50 1 10.00 90		22.5 13 12.5	8.56 10.20 15.47	0.89 0.84 0.81	0.0160 0.0225 0.0480	0.01 0.03	0.38 0.78 1.24	0.55 1.58 16.72	0.1 0.4 4.2			
EAST TOE (OUT-OF-BANKS FLOW 31.8 10 150.00 90 NORTH AND SOUTH TOES 28.47 7 50.00 91		1750 472.5	32.84 28.69	8.58 5.38	0.0321 0.0356	0.029	0.02	15.30 16.79	3.8 4.2			

,

ROCKSIZE.XLW

HEC1 S/N: 1343001323 HMVersion: 6.33	Data File: MARQEZ.HC1	
**************************************	**************************************	* RING CENTER * TREET * IA 95616 * 104 *
	X X XXXXXX XXXXX X X X X X X XXXX X X X X X X X XXXXXX	

37 Brookside Road * Waterbury, Connecticut 06708 * (203) 755-1666

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

VINEINE 10,20, AND 30 RUNDEF 10 WEIZE OF MINE PROPERTY .06 .06	890, ROUTE CC	ZZ געם בב געל לו	34 22 25
10, 20, 30 RUNDFF FROM UPPER MARQUEZ AND MARUCA CANYONS AND LOWER MARQUEZ	0 2 BINE KONOLL 40 COMBINE	KO HC KW COW KK	28 20 58 58
ROM LOWER MARQUEZ CANYON 1 0	20 0 23 23 80NOFF F 30 78 20 80NOFF F	51 18 - 78	52 52 53 53
אמער איז	יע 200. לס גסחוב ש	80 595 Kk 50	55 51
ИСТИАС АСИТОИ Г О	2¢ 0 L2 0 0 0 92 0 59 50 BUNOEE	72 84 87 11 KO	02 81 21 91 51
אפטובב אנטאסד דס טטענדטע 9.1 אין קאפד אטענדע אין פאפטרב אטעסד אין		60 2680 KK 10	7L 2L
NOTIJNUL AJURAM OT NOYNAJ ZJURRAM REGU MOR 1 0	0	re 81: 87 5*1 KO	21 01 8 2
1.2 1.70 2.80 2.1 2.5 2.5 2.7 3.2	20-2 S.	6H 10 3 10	9 5 7 2
A SIMULATION FOR MARQUEZ CANYON WATERSHED - MT. TAYLOR MINE ASS STORM EVENT D 96 D		11 10 100	2 Z
01			TINE
HEC-1 INPUT			

70 3MIT 30AT2 XAM	MUMIXA N Jaatz	2.76 Area Brsin		er in Squrke M) Flow For Maxim Z4-Hour Z4-Hour	i in a subscription of the	12.50 PEAK TIME OF TIME IN 1	990- Flow PEAK	MOITAT2 Of	NOTTAREQU
		۲.55 کورټ	-85 -23	-8£ -£9	136. 126.	13.50	904° 656	02 0701	ТА НЧАЯЭОЯДҮН ОТ ОЭТИОЯ ТА НЧАЯЭОЯДҮН
		٤٩٠١	1 62	36	.131.	13.00	°265	0 702	KONIED 10
		£9°0	52-	-22	.٤٢	15-00	• 529	30	ТА НЧАЯВОЯСҮН
		20.2	1221	152	·207	13.00	-62SI	07	TA GENIBMOD E
		20°S	153.	153-	.904	13.00	1205L	0507	BOUTED TO

OZE 3JAAT TUOTNIA9 YAAMMUS 100 YEAR- 24 HOUR EVENT

00°192

2**01**00

۲٤.845

96.225

00.00

00'0

12.41

82°21

000.1

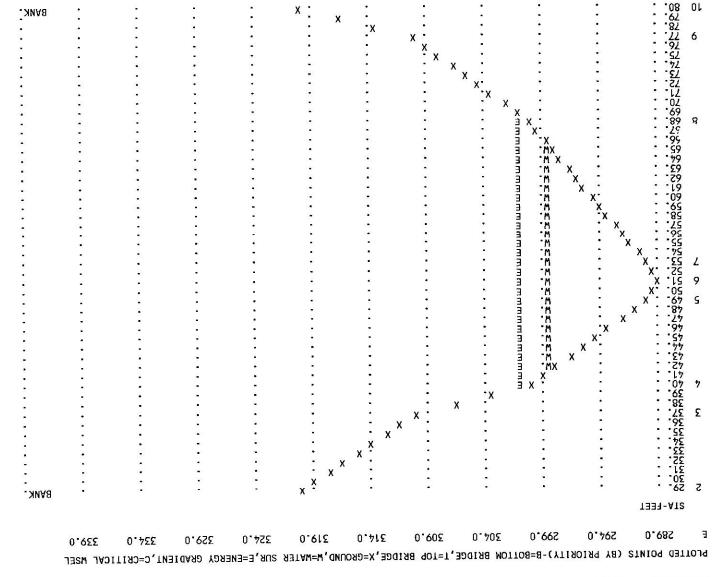
2.000

					00°0 ХГСН	25.32 10PWID	0°00 Di⊾kma	00°0 XSM4IQ	0.00 DIFWSP	320°18 CM3Er	291°00 ס	2°000 RECNO	*
										120	JUT TABLE	ОТИТЯЧ ҮЯ А М	WNS
											THEVE AUDI	YEAR- 24 1	00L
30.32	15.92	01'9	<u> </u> לע"ו⊅ו	76°972	St-972	۲٤- 845	00°L92	00°772	00*0	00-0	00.009	000 ⁻ l	
00.12	87.29	12.2	79°521	<u> ደ</u> ታ	57, 255	96° 222	00°ι9Σ	57.155	00.0	00.00	00.008	2.000	
53.70	52-09	7 6⁼⊆	232.10	52,055	31.0SE	320-18	00°192	318.50	00.0	00.0	00°0	3.000	۴
310°	АЗЯА	АСН	SX∗0L	ΕC	CRIWS	CMRET	Ø	ELMIN	ЕГГС	ΕΓΙΚΟ	кгсн	ONDES	

20-92

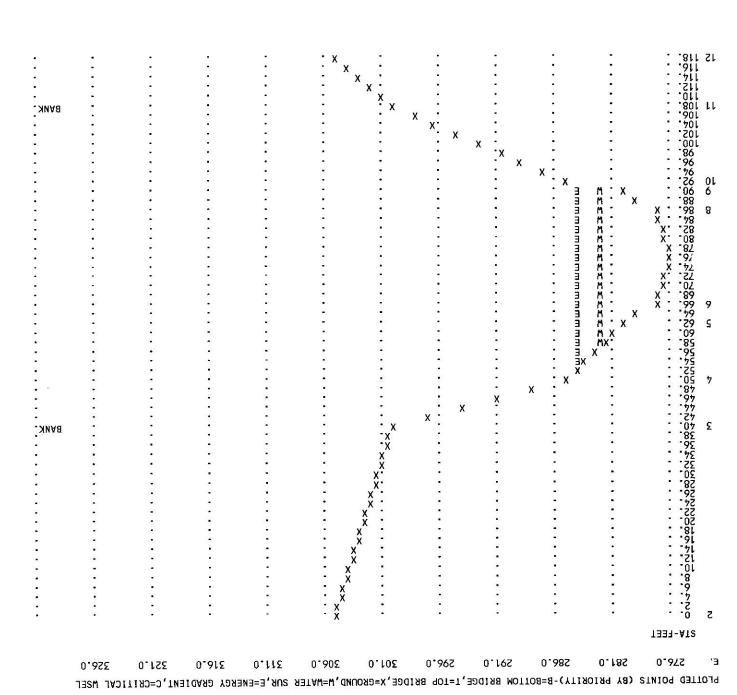
45.22

00.009


00.008

00-00

00.00


اح 685 د 0					-						
6 - 1 207 2010	08 67 0	50 60 20	ç Z	22 07 05Σ	012 002 052	89 25 08	200 210 58		55 57 6	590 220 1	1 1 1
801 009 29 223		59 08	2	06 05	280 280	28 07	22	2	811 77 0	302 502 202 502 502	R R
L O		00	156	0 89 89 0 1500	1500 792 0021	01 05 801	07 59 59		11 8 52 52 50	292 520 22 20	C- KK
82 253 L 0	2 ZZ 0	29		õ	0 2	0ş	01 07				Ĵ
5.						0 נאיגרוב	SOTRI2 O	0 A 1080 S	ا درمهر	ן וארבס י	5
		.*.	******SY	JON NOUSE	ESTED SECT	NOBX*****	¥¥		- 10 NAWSEC	-1 LPRNT	ç
							TUOTNIRG	i yaammuz	CODES FOR	YARIABLE 150	s
				a	•	0	0	0	ł	۲-	
	L.	0	0	L-	0		XZECA	PREVS	1074I	NPROF	â
	JJAATI	CHNIW	MSI	ALLOC	NE	KSECH			0		
	0		6251	Ū	0	1-	0	0		VOTUDI	- P
	Ъ	NZEL	Ö	SNIAH	METRIC	1912	1018	ANIN	ONI	1CHECK	I.
966996 ۲0:59200 کار Page ۲		SOH.ZUDAAMI VA SIHT	Σ :∋Ji∓	ete (SZ.d :nois	аэлмн О	S:6S:0l ∶€	mil nust	964389	:sisQ nu	אי
	9991-552 (3 N 0 1	Materbury	- }	Rrooksid	2			
					WICKO-COW						
		XXXXXXX X X XXXXXX	ххххх		XXX XXX XXXX XXXX XXXX	X X X X XXXXXXX					
		x x x xxxxx			X X	х х					

CROSS SECTION 1.00 STREAM 100 YEAR- 24 HOUR EVENT 1579-DISCHARGE= 1579-

2.00 CROSS SECTION

		•62	151	=3Đ	DISCHAR
EVENT	HOUR	54			STREAM

S2H-1	ZUQAAMI	۶:3	Jiq stsO	25.8	;noiere	элмн	٥٥:55:01	00	1579. 248-24 5 56996	Run Date: CROSS SECTION 700 MAEST 700 YI 700 MESE 700 YI 700 YI 7	3

NNA8					x	х х х х х ландалания 	(x x x x x x x x x x x x x x x x x x x	XXX	× × × × ×	:×	 68 68 64 736 736 740 74
	277.0 277.0	0°5∠2 11°c=ck111	867 GRADIE 273.0	ס°ועז גיניב∈אפ	ар, w=иатея 0.925	567.0 267.0	;,1=10P BR	10M BRIDGE 263.0	261.0 261.0	S59.0 (ву рятор	ELEV 257.0

2

100 YEAR- 24 HOUR EVENT

021 3J8AT TUOTNING YAAMMUS

¥

¥

										0S1	JUT TABLE	ОТИГЯЧ ҮЯАМ	4MUS
											ноив елеит	YEAR- 24 I	001
02.211	152.54	12.89	16¢-22	70.102	64.865	598.49	00°6251	589.00	00.00	00.00	320,00	000°L	*
92.721	16.841	09 01	22.521	283.90	77.18S	91.582	00"6251	276.00	00-0	00*0	1500-00	2°000	
121-74	85°071	11-23	168°54	01-992	564.15	51-492	00 6251	257.00	00.0	00*0	00*0	3.000	*
01K	ABRA	ИСН	sy*01	Βđ	SMINO	CMREL	Ø	НІМЛЭ	ЕГГС	ELTRD	HOTX	SECNO	

00-6251 000.1 00°05Σ 82-42 00'0 72°91 00.00 598.49 2°000 1200.00 70°72 00'0 10.81 00°0 382.16 00°62⊆l **3**,000 00-00 00.0 00.00 51.492 00°6251 00.00 06°52 ð SECNO DIEMSX DIEMSB CMSEL TOPWID DIEKMZ колх

¥				21 8221			
¥	67 81 51	TIME	960	51/90/60	31	A DA	เกษ
*							
×		Ξl'	0**	NEESION			
*		16	61	YAM			
×	(HEC-1)	SAGE	b VC	ROGRAPH	HAL	000	14
*							

¥.		¥
×	7011-952 (916)	*
ý.	DAVIS, CALIFORNIA 95616 DIN-027 (916)	*
×.	POD ZECOND ZIKEFI	*
ĸ	HADBOFOCIC ENCINEERING CENTER	*
	D.S. ARMY CORPS OF ENGINEERS	×
* *	Sussitions so caree and e	

ххх		XX	ххх	XXXXXXX	х	х
X		х	X	Х	Х	X
X			X	х	х	X
X	XXXXX		X	XXXX	XXXX	XXXX
Ŷ			X	Х	X	х
ŶХ		х	X	Х	X	х
X		XX	XXX	XXXXXXX	Х	Х

Full Microcomputer Implementation by Haestad Methods, Inc.

37 Brookside Road * Waterbury, Connecticut 06708 * (203) 755-1666

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DR, AND HEC1KW. THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-SITLE INPUT SIRUCTURE. INE OPTIONS: DAMBREAK ON RM-CARD MAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRANT VERSION NEW OPTIONS: DAMBREAK ON RM-CARD MAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRANT VERSION OSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION REMOPTIONS: DAMBREAK ON RM-CARD MAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRANT VERSION NEW OPTIONS: DAMBREAK ON RM-CARD MAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRANT VERSION REMOPTIONS: DAMBREAK ON RM-CARD MAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRANT VERSION NEW OPTIONS: DAMBREAK ON RM-CARD MAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRANT VERSION NEW OPTIONS: DAMBREAK ON RM-CARD MAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRANT VERSION NEW OPTIONS: DAMBREAK ON RM-CARD MAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRANT VERSION NEW OPTIONS: DAMBREAK ON RM-CARD MAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRANT VERSION NEW OPTIONS: DAMBREAK ON RM-CARD MAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRANT VERSION NEW OPTIONS: DAMBREAK ON RM-CARD MAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRANT VERSION NEW OPTIONS: DAMBREAK ON RM-CARD MAS CHANGED WITH REVISIONS DATES:GREEN AND AMPT INFILTRATION KUNDARY VERSIONS DATES AND REVISIONS OF REVISIONS DATES:GREEN AND AMPT INFILTRATION

58 58 28 22 80 KK 3040 ROUTE COMBINED TO AND 20 RUNOFF TO WEST SIDE OF MINE PROPERTY 968 .036 .03 .03 AND 20 TRAP 14 30 COMBINE OF AND SO RUNOFF Combine Runoff From Erab West Hummer Combine Combine D 123456 789012 34 567890 12 3456 KO HC KW 0.088 .06 TRAP 14 ROUTE WEST HUMMER RUNOFF TO JUNCTION 30 KD KK 0.4 2977 51.0 0 0 71 0 50 50 nd Br Ko Kk 12 0 0 0 RUNOFF FROM WEST HUMMER ROUTE EAST HUMMER RUNDEF TO JUNCTION 30 10.10 .06 TANN 10 80 KK 5156 0201 0"7 nd Fr Be Ko Kko 0 0 22-0 0 25-12 0 0 0 TO RUNOFF FROM EAST HUMMER 5.Z 7.5 5.5 5.3 1.5 S-00 02"1 1.2 Hd OI II OI II OI **†**⊆* 3.2 PRECIP DEPTH- AREA SIMULATION FOR HUMMER WATERSHED - MT. TAYLOR MINE 100 YEAR, 24 HOUR STORM EVENT 15, 2 0 0 15, 2 1 SNIT

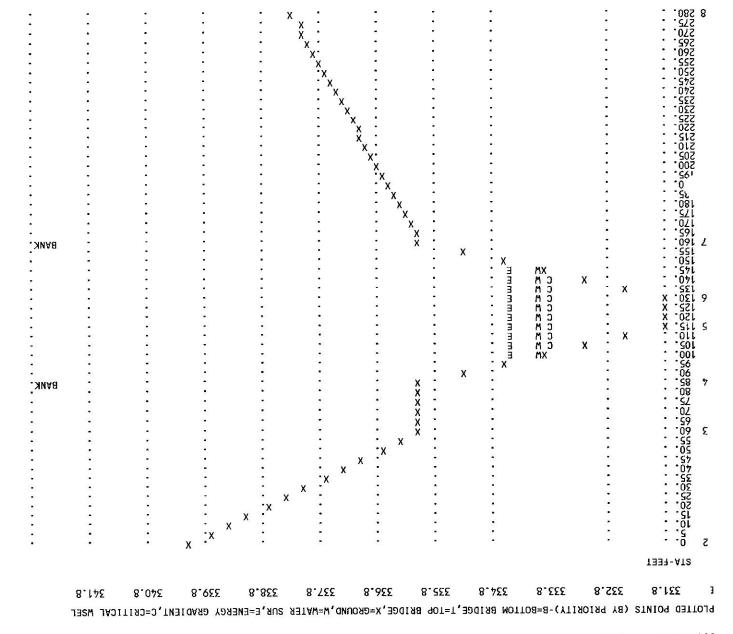
		7L°0	3.	.5	-11	12-25	.701	5030	ROUTED TO	
		7L°0	-2	٢٤.	•11	15°00	.811	50	TA H9A9BO90YH	
		07*0	-01	"OL	°5Σ	15.25	524	1030	ROUTED TO	
		07.0	.9	-6	.15	12°00	526.	OL	TA H9A90090YH	
TO BHIT BOATS XAM	MUMIXAM 3date	NIZA8 A39a	NUR-25 POR PERIOD	FLOW FOR MAXIN	SDAREVA SUOH-2	TIME OF XA39	PEAK	NOITATS	NOITAREGO	
				YAAMMUS Eet per second Ea in square m	A CUBIC F	LIWE IN I				
					- nammer:	olia stad	δ Σ. δ :no	I SJƏVMH	2221002921 :N/S 1.	j,

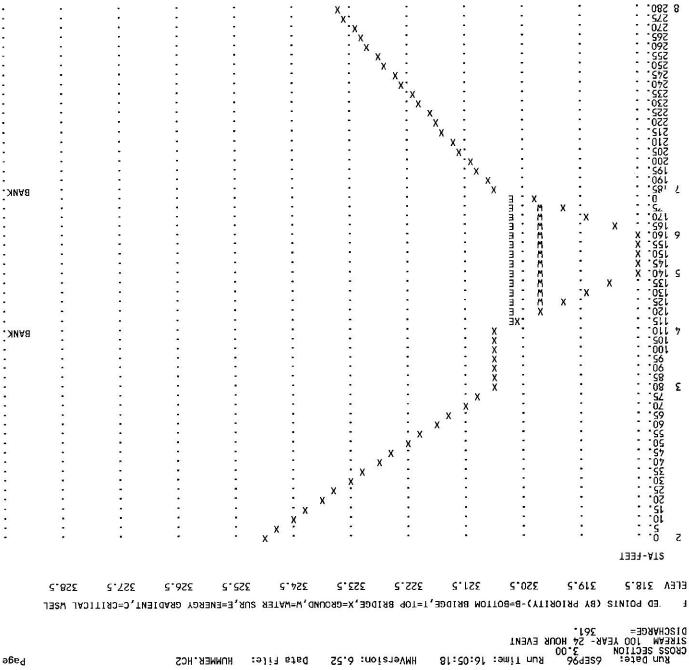
OT GETUOR

Z COMBINED AT

3040 ' 755 71 12.25 75'0 . 21 .94 192 20 · 71 7 •97 12.25 75"0

						001	09	26	32 ί	ብርና	ł
201 i	ንታዩ 0	£6 0	772 006	09 006	05£ 006	021 02 081	20	32	0	05Σ 05Σ ι	ì
621	52° ሀ 22 0	SIL D	27.122 27.122	58 862	226 820	580 90 126	2	- 822 232 25	651 0 2	9 <u>22</u> 072 ፘ	5
851	2.812 0	271	2.812 000	011	125	580 80		253	- 981 0	251 352	
Ļ	0	õ			٤.	981 1	0	li 70'	2 £0*	2 2 2	:
						0	0	0	ι	L	
						BHILE	SOLAIS	A I DENS	I COPY	ІНГЕО	Ļ
			c	NEGHON NOT	באובה אברו	******			-10 NOWZEC	-1 FPRNT	4
			******	ATON MINDED	1939 49191	11030444444	ተ ጥ		0.000	051	,
							RINTOUT	9 YAAMMUS	SODES FOR	VARIABLE	:
	l	0	0	L-	0	0	0	0	L	L-	
	JDAATI	CHNIW	MBI	VERDC	Νđ	KSECH	XSECV	BRFVS	10191	40994M	i
	0		192	0	0	ι-	0	0	0		
	FQ	1 3 \$M	Ö	SNIAH	METRIC	51RT	1018	ANIN	ONI	ICHECK	
								UK EVENT	.EVK- 57 HO	1 00 L	1
				SINEWE	VORAMI TUC	CHIIM CHISS	ataw gamm		WINE	ROJYAT .	TM: M
								*********	**********	********	**
							1,117		XeW :5-9		
01100101	XECUTED 6SEP96	אַניאַ אַראַ					****		SURFACE PR		
81:20:91	A00324 0311123Y										
r age 1		SOH. ABM	ພ∩ม :อาเ-	isted S	č.d :noie	ла нилег	:50:91 :9	เยเเนกษ	96d359	teted av	·u
t enca		tan dan	maan			-7410 01	20 70				1774)
					0010308	600X 00		c			
	9991-55	¥ (202) ¥		itaanna v			Vistoose T	.2			
			SOOHI		HAEST						
		2512213 211				:::::::::::::::::::::::::::::::::::::::					
		:::	INTATNEMEL			:::					
		XXXXXX	(X X	xxxxx x x	XXXXXXX X	x x x x					
			X	ŶŶ	Х	X X XXXXXX					
		X X	x	X	X X XXXXXXX	X X X X X X					
		~ XXXX)	(XXXXX	******	X X					
				*							
**************************************	(916)	*				*	81:50:91	+++++++++ LIME	e2Eb36	ATAG Nu	**
AUERTING CENTER *	DWAIS' CHILOB	* * *				*		1661 /	Kem 15-8-4	noiste	213
	U.S. ARMY CORP	*				¥	******		SURFACE F		
·› -› ተዋምምዋ ቁ ጥተታ ዋዋ ለኛጥ ምጥተ ይ ችጥ የ	an a										


HMVersion: 6.52 Data File: HUMMER.HC2


CS 8/N: 1393001565

CROSS SECTION 1.00 STREMA 100 YEAR- 24 HOUR EVENT 3612CHARGE= 361.

NAA NAA NAA			× ,	; X)	< X >	 X X	× ,	× × × ×	. x	- - - - - - - - - - - - - - - - - - -	- 081 - 021 - 021 - 091 - 098 - 095 - 005 - 0	
- - - - - - - - - - - - - - - - - - -							× × × × ×	× ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷	•		205 + 67 - 57 - 222 - 222 - 222 - 22 - 22 - 22 - 20 - 20	
	0°792 1957 MSEF	362.0 362.0	310493 7993 360.0	328°0 228°0	83TAW=W, GN 0.32δ	0" ז≥ל 10פב' x=פאסח	52.0 352.0	350_0 350_0	0°875 08-875	(87 PRIOR 346.0	STA-FEET 344.0 Sta-feet	і В

CROSS SECTION 2.00 STREAM 100 YEAR- 24 HOUR EVENT 361SCHARGE= 361.

.

.

.

.

.

.....

.

.

.

.

•

2

.

:

.

.

.

2

81:20:31 :9mil nu8 RUMMER.HC2 selia eted SZ.6 :nois19VMH

SURFACE WATER RUNOFF HYDROLOGIC ANALYSIS

GENERAL PARAMETRIC EVALUATION AND MODEL INPUT DATA SELECTION FOR HEC-1 (WATERSHED RUNOFF) AND HEC-2 (FLOOD ROUTING)

Design Storm Precipitation (Inches) for Various Frequency Intervals and Durations

Interval years	Duration in Hours													
,	1	2	3	6	12	24								
2 5 10 25 50 100	0.89 1.03 1.15 1.38 1.71 1.97	1.00 1.17 1.32 1.59 1.91 2.15	1.07 1.27 1.44 1.73 2.04 2.27	1.20 1.45 1.65 2.00 2.30 2.50	1.30 1.60 1.83 2.23 2.50 2.73	1.50 1.90 2.20 2.70 2.90 3.20								

** Duration selected must be => time of concentration, Tc

Unit Duration ~= Lg/5.5

```
Time of Concentration, tc

For watersheds < or = 10 sq. mi.

tc = 0.00013*(L^{0.77/S^{0.385}})

where S = gradient

For watersheds > 10 sq. mi.

tc = 0.385*(11.9*L^{3})/H

where H = elevation difference
```

```
Curve Number, CN

CN = 71 for P-J uplands (Group D) = 78 for Group B/C soils

Time to Peak Discharge, Tp, hours

Tp = 0.5*dt+Tlag

where dt = duration of excess, or computation interval

Tlag = time between center of rainfall excess and time of peak discharge
```

Peak flow of unit hydrograph, Qp, cfs/in Qp = 484*Area*/Tp where Area = subbasin area in sq mi

Average Manning's Coefficient, Kn =

0.26 for uplands, general storm

0.13 for PMF and well-developed drainage courses

0.05 for uplands thunderstorm

0.073 for thunderstorm in well-developed drainage

courses

For Southwest region

0.07 for coniferous forest areas

0.042 for desert terrain

WEATHER DATA FOR THE MT. TAYLOR AREA

from National Weather Service Annual Climatological Summaries 1986-1995 Grants Airport (1986-1995) and San Mateo (1986-1987) Stations

GRANTS AIRPORT

AVERAGE MONTHLY PRECIPITATION, INCHES

	J	F	M	A	M	J	JL	A	S	0	N	D	Annual
1986	0.00	0.55	0.32	0.47	1.29	1.94	1.75	1.53	1.10	1.55	2.25	1.35	14.10
1987	1.60		0.54	0.28		[2.61	3.05	0.72	0.50	0.82	1.25	13.76
1988	0.19		0.07	1.74	0.20	1.06	1.22	2.30	1.46	0.85	0.15	0.13	9,46
1989	0.77	0.45	0.16	0.00		0.10	0.98	0.90	1.64	1.07	0.05	0.11	6.31
1990		S. 200 S. 200	0.88	1.54		0.37	1.96	3.99	2.13	1.27	0.62	1.59	15.89
1991	0.66		1.04			0.99	1.05	1.66	1.83	0.27	1.33	1.76	11.55
1992			0.93	0.67		l	1.68	1.86	1.23	0.90	0.90	1.26	13.56
1993		1.15	1.94	0.25				4,23	0.35	0.60	0.43	0,18	12.57
1994		-	0.77	0.52				1,50	1.42	1.82	1.84	0.30	11.69
1995			0.38	0.02	1					0.00	0.30	0.37	5.94
AVE	0.43		0.70					1021-01-025	1.27	0.88	0.87	0.83	11.48

	FREEZE-FREE	ANNUAL	TEMP., F
	DAYS	LOW	HIGH
1986	141	0	96
1987	132	-18	NA
1988	120	-6	94
1989	167	-15	101
1990	159	-33	99
1991	154	-7	98
1992	183	-9	99
1993	138	-4	98
1994	140	-3	101
1995	129	2	102
AVE	146.3	-9.3	98.7

SAN MATEO

	1	F	M	A	М	J	JL	A	S	0	N	D	Annual
1986	0.04	0.13		0.38	0,73	0.84	3.45	1.78	1.90	1.91	3.88	0.57	16.06
1987	0.92		0.84		0.78	0.73	0.39	3.97	0.23	0.72	0.54	2.00	14.07
1988	2.64										1000		10.22
1989		[agas d		6.82
1990		8,01.4											17.17
1991								3485					12.48
1992													14.66
1993		100		100									13.59
1994				92 	2004.X				1	L			12.63
1995					1.00.012.00.00								6.42
AVE	1.20	1.47	0.65	0,26	0.76	0.79	1.92	2.88	1.07	1.32	2.21	1.29	12.41

	FREEZE-FREE	ANNUAL	TEMP., F
	DAYS	LOW	HIGH
1986	155	4	89
1987	181	0	89
1988	146	5	87
1989	204	-4	94
1990	194	-22	92
1991	188	4	91
1992	223	2	92
1993	168	7	91
1994	171	8	94
1995	157	13	95
AVE	179	2	91

CORRECTION FACTORS LOW HIGH F-F DAYS -7 0.9097 4 0.7293 18 -7 -7 -7 -7 -7 -7 -7 -7 0.8195 11 0.8195 11

11 11

11

11

11

11

0.8195

0.8195

0.8195 0.8195

0.8195

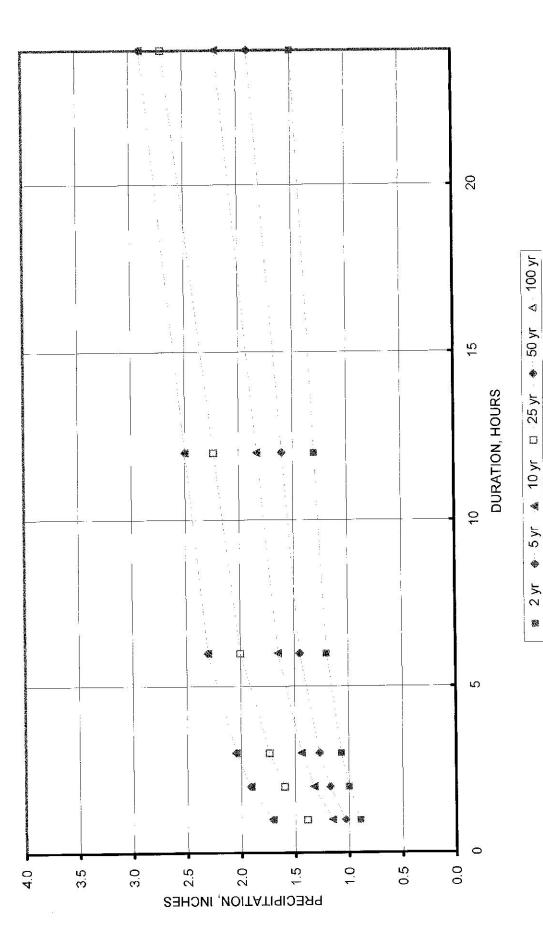
0.8195

RAINFALL PARAMETERS

Design Storm Precipitation (Inches) for Various Frequency Intervals and Durations

Interval	Duration in Hours								
years		2	3	6	12	24			
2	0.9	1.0	1.1	1.2	1.3	1.5			
5	1.0	1.2	1.3	1.45	1.6	1.9			
10	1.2	1.3	1.4	1.65	1.8	2.2			
25	1.4	1.6	1.7	2.0	2.2	2.7			
50	1.7	1.9	2.0	2.3	2.5	2.9			
100	2.0	2.1	2.3	2.5	2.7	3.2			

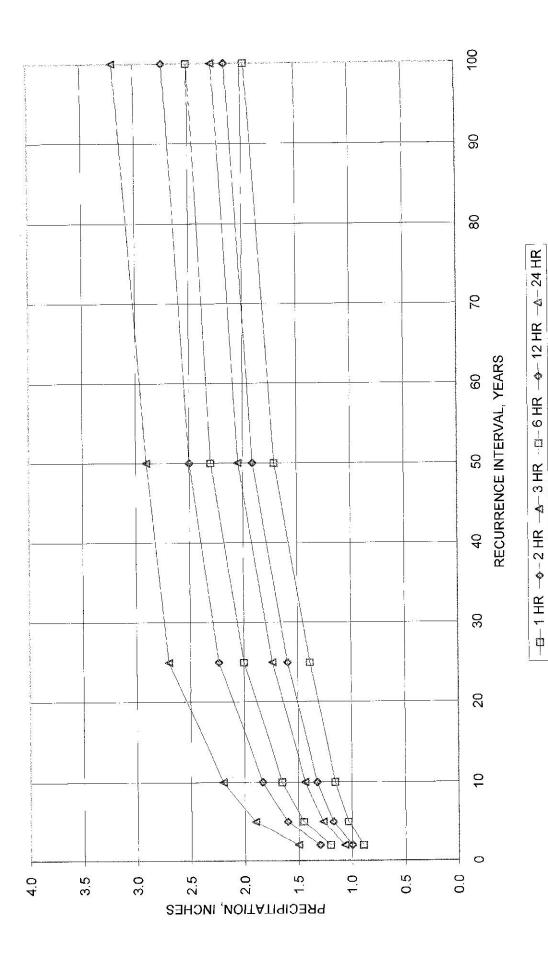
** Duration selected must be => time of concentration, Tc


Fraction of one hour

depth10 = 0.59 depth15 + 0.41 depth5 depth30 = 0.49 depth60 + 0.51 depth15

Minutes	Hours	Fraction of 1-Hr Depth inches
0	0	0.00
5	0.08	0.60
10	0.17	0.75
15	0.25	0.85
30	0.50	0.93
45	0.75	0.97
60	1.00	1.00

Triangular Precipitation Distribution for 24 hr/100 yr Event							
Time Step	Cum	Interval	Balanced				
hours	Precip	Depth	Storm				
		10000	Hyetograph				
0	Ö	0	0				
1	1.97	1.9686	0.0300				
2	2.15	0.1812	0.0367				
2 3	2.27	0.1212	0.0400				
4	2.35	0.0790	0.0400				
5	2.42	0.0700	0.0400				
6	2.50	0.0800	0.0400				
7	2.54	0.0400	0.0400				
8	2.58	0.0400	0.0400				
9	2.62	0.0400	0.0400				
10	2.66	0.0400	0.0700				
11	2.69	0.0300	0.0800				
12	2.73	0.0433	0.1812				
13	2.77	0.0367	1.9686				
14	2.81	0.0400	0.1212				
15	2.85	0.0400	0.0790				
16	2.89	0.0400	0.0433				
17	2.93	0.0400	0.0400				
18	2.97	0.0400	0.0400				
19	3.00	0.0300	0.0400				
20	3.04	0.0400	0.0400				
21	3.08	0.0400	0.0400				
22	3.12	0.0400	0.0400				
23	3.16	0.0400	0.0400				
24	3.20	0.0400	0.0300				


PRECIPITATION DEPTH VS DURATION MT TAYLOR MINE WATERSHED

9431HYD.XLS

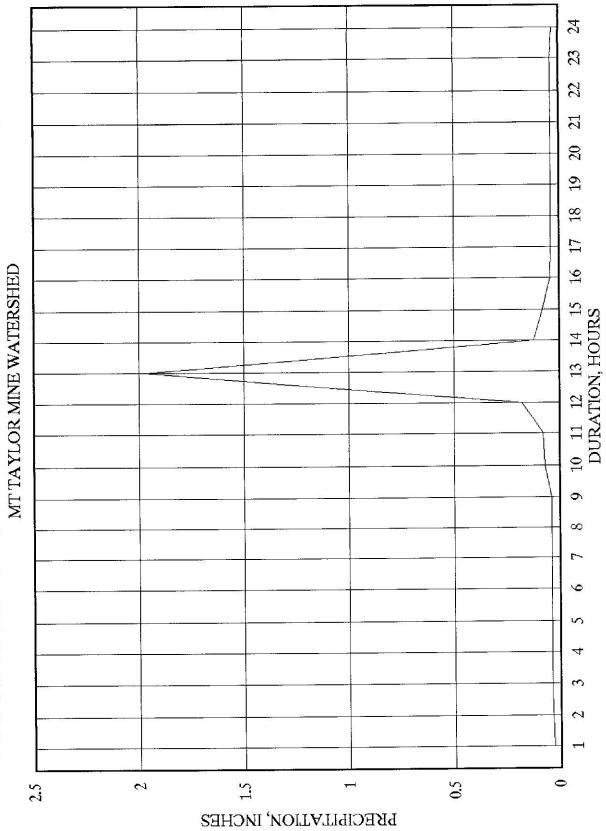
皺

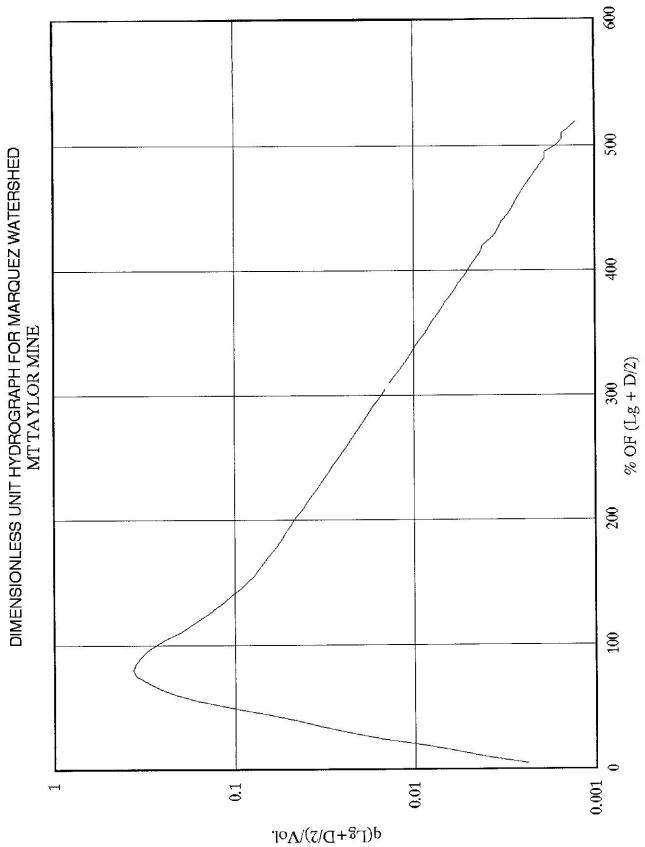
PRECIPITATION VS INTERVAL AND DURATION MT TAYLOR MINE WATERSHED

9431HVD.XLS

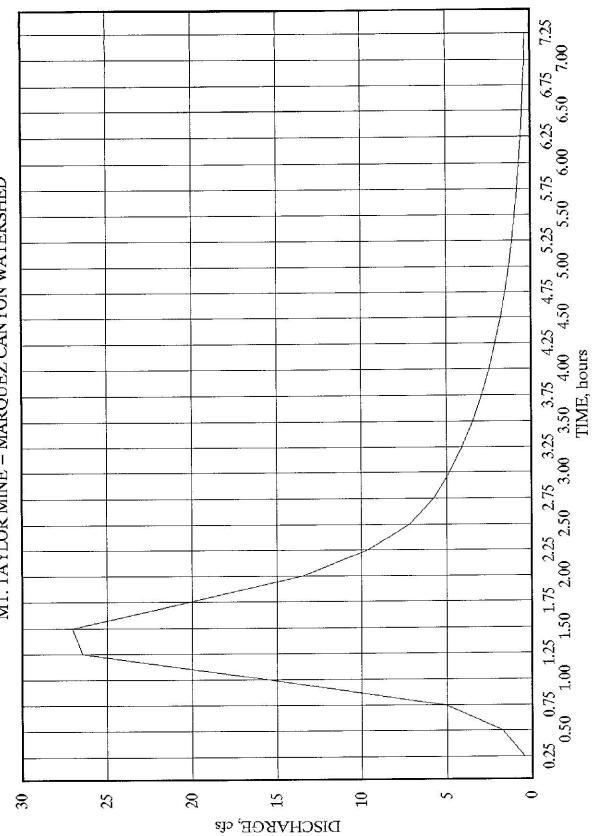
		Aprovin-/ M	aruco Posin	г	L	Hummer Bas	in	
	۲ ۱	Marquezi M	aru <u>ca</u> Basin					
PARAMETERS	Total Basin	Marquez Canyon above junction	Maruca Canyon	Lower Marquez Canyon	Total Basin	East Hummer	West Hummer	
L, length of longest watercourse, ft =	32312	26805	26214	7000	10481	9513	5644	
Maximum elevation Minimum elevation H, difference in elevation	9250 7260 1990	9250 7450 1800	9380 7450 1930	7928 7450 478	8300 7315 985	8300 7350 950	7810 7315 495	
S, slope gradient = in ft/mi =	0.062 325	0.067 355	0.074 389	0.068 361	0.094 496	0.100 527	0.088 463	
Time of Concentration, tc, hrs (watersheds < 10 sq. mi.) = 0.00013*(L^0.77/S^0.385) =	1.13	0.94	0.90	0.33	0.40	0.37	0.26	
Area, sq. mi.	5.02	2.76	1.63	0.63	0.54	0.4	0.14	
Lag Time, Lg, hrs								
USBR method, Lg = C*(L*Lc/S^.5)^N =	1.58	1.38	1.34	0.57	0.70	0.65	0.47	
Constant, C = 26*Kn =	1.56	1.56	1.56	1.56	1.56	1.56	1.56	
Constant, N =	0.33	0.33	0.33	0.33	0.33	0.33	0.33	
Length of Longest Watercourse, L, mi =	6.12	5.08	4.96	1.33	1.99	1.80	1.07	
Length Along L to Point Opposite Watershed Centroid, Lc, mi =	3.06	2.54	2.48	0.66	0.99	0.90	0.53	
Overall Slope of L, S, ft/mi =	325	355	389	361	496	527	463	
Average Manning's Coefficient, Kn = 0.06 average based on: For Southwest region 0.07 for coniferous forest 0.042 for desert terrain	0.06	0.06	0.06	0.06	0.06	0.06	0.06	
SCS Method, Lg = 0.6 Tc	0.68	0.57	0.54	0.20	0.24	0.22	0.15	
Unit Duration, dt, hours ~= Lg/5.5 rounded to	0.12 0.1	0.10 0.1	0.10 0.1	0.04 0.04	0.04 0.04	0.04 0.04	0.03 0.03	
Time to Peak Discharge, Tp, hours								
Tp = 0.5*dt+Lg	0.73	0.62	0.59	0.22	0.26	0.24	0.17	
Peak flow of unit hydrograph, Qp, cfs/in								
Qp = 484*Area*/Tp	3344	2166	1342	1384	999	810	401	
Vol. = volume of runoff, cfs-day from 1 inch rainfall	134.99	74.22	43.83	16.94	14.52	10.76	3.76	
Curve Number, CN	3. ⁹					*		
CN = 71 for P-J upland (Group D) = 78 for Group B/C soils						20 524		

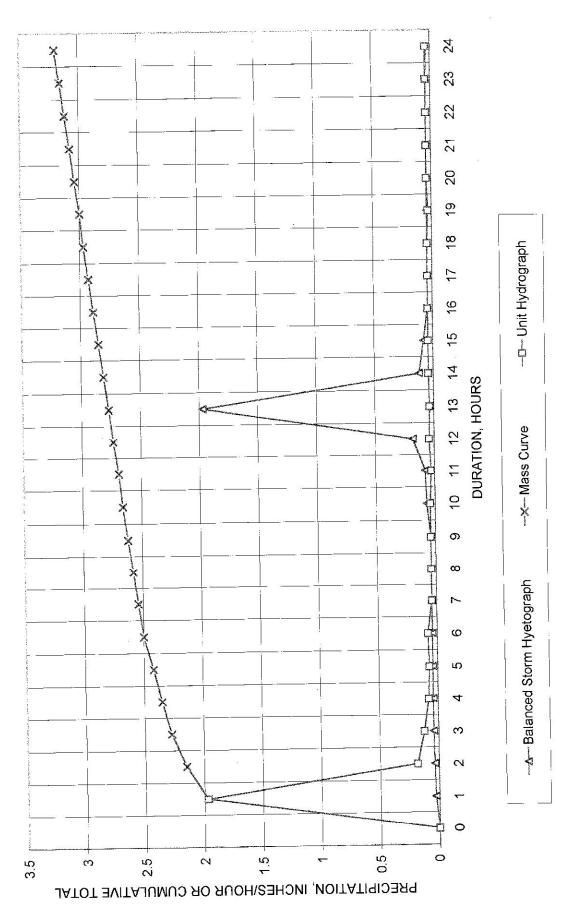
SURFACE WATER RUNOFF HYDROLOGIC ANALYSIS - MT. TAYLOR MINE WATERSHED PARAMETERS


SWHYDATA XLS


m1.u71

**	**	<u> </u>		Time	% of	Ordinate	Unit
% of	q	a*(Lg+D/2)/V	differential	hours	(Lg+D/2)		q
(Lg+D/2)	м	1 (-3/	q*(Lg+D/2)/Va				cfs
(19 012)							
5	0.19	0.0016		0.25	40.5	0.032	3.86
10	0.32	0.0027	0.0011	0.50	81.1	0.239	28.73
15	0.48	0.0040	0.0013	0.75	121.6	0.101	12.11 15.49
20	0.74	0.0061	0.0022	1.00	162.1 202.7	0.129 0.220	26.46
25	1.21	0.0101	0.0039	1.25 1.50	202.7	0.225	27.06
30	1.81	0.0150	0.0050 0.0068	1.75	283.7	0.167	20.13
35 40	2.63 3.68	0.0219	0.0087	2.00	324.3	0.112	13.46
40	5.47	0.0455	0.0149	2.25	364.8	0.080	9.61
50	8.41	0.0699	0.0244	2.50	405.3	0.060	7.16
55	12.61	0.1048	0.0349	2.75	445.9	0.048	5.74
60	16.5	0.1371	0.0323	3.00	486.4	0.040	4.79
65	20.5	0.1704	0.0332	3.25	526.9	0.034 0.029	4.07 3.46
70	23.97	0.1992	0.0288	3.50 3.75	567.5 608.0	0.029	2.93
75	27.75	0.2306	0.0314 0.0096	4.00	648.5	0.024	2.48
80 85	28.91 28.07	0.2403	-0.0070	4.00	689.1	0.018	2.12
90	26.38	0.2192	-0.0140	4.50	729.6	0.015	1.80
95	24.18	0.2009	-0.0183	4.75	770.1	0.013	1.52
100	21.55	0.1791	-0.0219	5.00	810.7	0.011	1.31
105	18.92	0.1572	-0.0219	5.25	851.2	0.009	1.11 0.94
110	16.08	0.1336	-0.0236	5.50	891.7 932.3	0.008 0.007	0.80
115	14.19	0.1179	-0.0157 -0.0131	5.75 6.00	972.8	0.006	0.68
120 125	12.61 11.04	0.1048 0.0917	-0.0131	6.25	1013.3	0.005	0.58
130	9.99	0.0830	-0.0087	6.50	1053.9	0.004	0.49
135	9.04	0.0751	-0.0079	6.75	1094.4	0.003	0.42
140	8.2	0.0681	-0.0070	7.00	1135.0	0.003	0.36
145	7.36	0.0612	-0.0070	7.25	1175.5	0.002	0.30
150	6.78	0.0563	-0.0048				
155 160	6.2 5.83	0.0515	-0.0048 -0.0031	4			
165	5.47	0.0455	-0.0030				
170	5.15	0.0428	-0.0027	2			
175	4.84	0.0402	-0.0026				
180	4.57	0.0380	-0.0022				
185	4.31	0.0358	-0.0022	÷			
190	4.1	0.0341	-0.0017 -0.0019				
195 200	3.87 3.68	0.0322 0.0306	-0.0016				
205	3.47	0.0288	-0.0017				
210	3.28	0.0273	-0.0016				
215	3.1	0.0258	-0.0015				
220	2.93	0.0243	-0.0014				
225	2.75	0.0229	-0.0015 -0.0010				
230	2.63	0.0219	-0.0010				
235 240	2.47	0.0205	-0.0013				
240	2.33	0.0184	-0.0009				
250	2.1	0.0175	-0.0010				
255	1.99	0.0165	-0.0009				
260	1.88	0.0156	-0.0009	1			
265	1.78	0.0148	-0.0008	1			
270	1.68	0.0140 0.0132	-0.0008 -0.0007				
275	1.59 1.5	0.0132	-0.0007	ļ			
285	1.43	0.0119	-0.0006	- 1X			
290	1.36	0.0113	-0.0006	Lg =	0.57	0.54	0.20
295	1.28	0.0106	-0.0007		0.1	0.1	0.04
300	1.21	0.0101	-0.0006	Lg+D/2 = Vol. =	0.62	0.59 43.83	0.22
305	1.15	0.0096	-0.0005	U			,0.01


** from Table 3-13, USBR 1987



24 HR/100YR RAINFALL DISTRIBUTION MT TAYLOR MINE - MARQUEZ CANYON WATERSHED

SWHYDATA.XLS

APPENDIX C

TECHNICAL SPECIFICATIONS

- C.1 SHAFT HEADFRAME AND COLLAR EQUIPMENT DEMOLITION
- C.2 BUILDINGS AND PIPELINE DEMOLITION
- C.3 SHAFT BACKFILL AND PLUGGING
- C.4 EARTHWORK
- C.5 REVEGETATION
- C.6 WELL AND CONDUIT PLUGGING

C.1 SHAFT HEADFRAME AND COLLAR EQUIPMENT DEMOLITION

1 GENERAL TECHNICAL REQUIREMENTS

1.1. Summary of Work

Rio Grande Resources Corporation (RGR) is owner and operator of the Mt. Taylor Uranium Mine located in Cibola County, New Mexico in Section 24, T13N, R8W, NMPM (Drawing #MT13-CL-01). The mine site is 1/2 mile northeast of the Village of San Mateo and is accessible from New Mexico State Route 605. At the time of this submittal, the mine remains on standby after mining operations were suspended in 1990 due to the depressed uranium market. The mine extracts uranium ore from depths of over 3,000 feet below ground surface that connect to two 3300-foot deep shafts from the mine surface. The shafts are located in the Service and Support Area (Drawings MT13-CL-02 and -04).

The included work consists of demolition of the two shaft headframes and materials within the shaft collars. The required work includes:

- Mobilization and demobilization of contractor's equipment
- Preparation of the work area
- Protection of potentially impacted facilities and structures
- De-energizing and removal of electric lines and equipment
- Dropping of both headframes to ground surface
- Cutting and stacking of headframe structural steel into lengths up to 40 feet
- Disposal of non-salvaged demolition debris in shafts below subcollar level.
- Removal of all fittings, equipment, and internal structures in the shafts from collar down to subcollar level, and disposal of selected non-rigid debris in shafts below subcollar level.
- Stacking of selected salvaged structural steel within 50 feet of each shaft, for use by others in shaft plug construction

The contractor may salvage the structural steel and other rigid materials for sale and re-use offsite, except for the selected structural steel needed for construction of the shaft plugs (Drawings #MT13-CL-05 and -06).

The work is represented in Drawings:

MT13-CL-01 Title Sheet

MT13-CL-02 Closeout Plan Index Sheet

MT13-CL-03 Gamma and Soil Radium Sample Locations

MT13-CL-04 Facility Disposition Plan

1.2. Site Survey

Prior to mobilizing to the mine, the Contractor shall perform its own survey of the headframes for the purposes of dimensional and volume measurements, assessment of hazards, and planning the work. The results of this site survey shall be submitted to the Project Manager and to a MSHA or OSHAqualified safety officer for review and approval before the work begins.

1.3. Site Restrictions

Access to the site is limited to ingress/ egress through the main gate. All Contractor personnel and visitors shall log in and out at the guardhouse. All personnel shall wear the required safety equipment as directed by the site Safety Officer while inside the mine perimeter fence.

1.4. Information on Existing Facilities

The production shaft is 24 feet in diameter below subcollar level with a headframe approximately 180 feet tall. The manway/ vent shaft is 14 feet in diameter below subcollar level with a headframe approximately 75 feet tall. Headframe elevation views of the 24-foot shaft headframe as well as shaft collar general arrangement, plan and section construction drawings are available for contractor use in planning demolition. However, no construction drawings of the 14-foot shaft headframe are available. Attached to this specification are inventories of structural steel in headframes by RGR, Tables C.1.1 and C.1.2. Most buildings close to the shafts will remain for post-mining land use and must be protected from damage during headframe demolition (see Drawing MT13-CL-04). Both shafts have reinforced concrete collars that will remain in place and will not be demolished.

1.5. Codes, Standards, and Regulatory Requirements

All work must be performed according to OSHA and/ or MSHA requirements. The Contractor is responsible for identifying and complying with the relevant standards and requirements.

The individual responsible for planning, placing and detonating explosives used in headframe demolition must have a current Blaster's Certificate, recognized in the State of New Mexico.

The contractor shall implement the applicable requirements for worker fall protection including, but not limited to, 29 CFR 1926:

- <u>1926.501</u>, Duty to have fall protection
- <u>1926.502</u>, Fall protection systems criteria and practices
- <u>1926.503</u>, Training requirements (Fall Protection)
- <u>1926.760</u>, Steel Erection (Fall protection)
- <u>1926.800</u>, Underground construction
- <u>1926.1051</u>, General requirements (Stairways and Ladders)

1.6. Site Investigation Reports & Data

Not applicable.

1.7. Health & Safety Practices

1.7.1. Health & Safety Practices

Work area safety is the responsibility of the contractor. The contractor shall submit and implement a Safety Plan that satisfies federal, state, and RGR requirements for the type of work being performed.

For the work under this specification, Level D PSE is required. All contractor personnel and others within the contractor' working area must be equipped with the required PSE and must comply with the requirements cited in section 1.5.

The contractor shall have a qualified Safety Officer on site during working hours. The Safety Officer shall be responsible for enforcing all safety requirements and shall have the authority to remove anyone not complying with those requirements from the contractor's working area.

1.7.2. Site Safety & Emergency Communication

The contractor shall post emergency response phone numbers in the worker break area. The contractor shall maintain an active phone line at all times. Cell phone service is not reliable at the mine site.

1.7.3. Radiological Materials

The contractor shall implement relevant portions of RGR's Radiation Safety Program Manual (RSPM) and corresponding procedures to provide for the radiation safety of workers, the public and environment. The RSPM and procedures topics include (but are not limited to) radiological work controls, development and use of non-routine procedures, access control and security, radiation monitoring surveys, radiation dose, and response to incidents and emergencies involving radioactive materials. RGR's Radiation Safety Officer and Mine Manager will provide the necessary training and oversight, but the contractor shall ensure worker compliance with the RSPM.

1.8. Field Engineering and Surveying

Not Applicable

1.9. General Submittals

Prior to commencing the work, the contractor shall submit, in a format acceptable to RGR, the following:

• Site Safety Plan – including name and qualifications of Safety Officer

- Demolition Plan including methods and equipment to be used, names and qualifications of key personnel, and schedule
- Blasting Plan if needed

1.10. Construction Facilities and Field Office

1.10.1. Site Access, Field Office, Storage, and Maintenance

RGR will provide space for the contractor's field office, laydown areas, sanitary facilities, and equipment maintenance. Existing buildings, if any, will not be available for contractor use. If needed, electrical power must be arranged by the contractor with Continental Divide Electrical Coop.

Water, both potable and non-potable, is available on site. The contractor must make arrangements with RGR for pumping, storing, and discharge of water needed by the contractor.

Explosive materials may not be stored on site. If needed, explosives shall be brought to the site, placed, and ignited in one continuous operation. If left in place between work shifts, the explosives will be placed under protection as required by federal and state law.

1.10.2. Protection of Existing Facilities

The contractor shall not use, damage, or block access to site buildings and other facilities that are in use at the time of the contractor's work or that are to remain intact for post-mining land use (Drawing MT13-CL-04). Any damage or loss of use shall be repaired or compensated at the contractor's cost.

1.10.3. Temporary Environmental Controls

The contractor shall be responsible for emplacing, utilizing, and removing those measures necessary to contain contaminants, surface water and fugitive dust releases generated by the contractor's work. Such measures may include, but are not limited to,

- Fuels, solvents and lubricants storage
- Surface water diversions and erosion control materials
- Dust suppression chemicals containers
- Sanitary wastes containments
- Trash containers
- Fire suppression equipment

Wildlife, including large game animals, frequently enters the site. The contractor's workers shall do nothing to attract, injure, or otherwise interfere with wildlife.

No firearms may be brought on the mine site.

2 SITE CONSTRUCTION

2.1 Site Preparation

The contractor shall de-energize and remove all electrical equipment and lines on the shaft headframes, in the shafts, and in the shaft tunnels from the subcollars to the first doors in the shaft tunnels.

If the contractor plans to drop the headframes, using explosives and/ or heavy equipment to topple them, the contractor shall remove all utilities and above-grade structures in the planned line of fall of the headframes, plus at least 100 feet to each side and beyond the lines of fall. Blasting mats or other protective measures shall be applied over any structures within the potentially impacted zone that cannot be removed.

2.2 Demolition

The contractor shall submit a demolition plan for RGR approval prior to beginning the work. The plan shall include methods and equipment to be used, names and qualifications of key personnel, and schedule. The plan shall also describe any salvage intended by the contractor, including materials and expected values.

2.2.1. Blasting

If the contractor uses blasting to bring down the headframes, it shall prepare a blasting plan. The blasting plan shall include description of types and amount of explosives, delays, initiating methods and equipment, protective measures, and personnel. The plan shall include a figure illustrating the placement of explosives. The person who prepares and executes the plan shall have a current Blaster's Certificate.

2.2.3. Other Methods

Other methods of demolition shall be described in the demolition plan required under section 1.9.

2.2.3. Separation of Salvaged Steel for Shaft Plugs

The contractor shall cut salvaged steel from each headframe for use by others for construction of the shaft plugs. See drawings MT13-CL-05 and -06 for quantities. The salvaged steel shall be selected, cut, and handled so that each beam is straight and intact along the entire required length, and the ends shall be cut square. The salvaged steel shall be stacked within 100 feet of each shaft.

2.2.4. Disposal and Salvage

Demolition debris in addition to steel salvaged for shaft plugs shall be salvaged for off-site use or recycling as the first priority. At the time of closeout, market conditions will indicate what materials have re-sale or salvage value. Materials that can be economically re-used or recycled will be stacked separately until they can be removed from the site.

Demolished materials not to be salvaged for off-site use or use in the shaft plugs shall be reduced in size sufficiently to be dropped down the shaft and free-fall to the bottom, taking into consideration the cage guides, ducts, and other structures remaining in place below the subcollar. Only non-rigid materials such as wood and rope guides, cables, ducts and flexible sheet metal may be dropped in the shaft. Rigid plate, metal grids, structural steel and similar hard materials shall be removed from the shafts and headframes for re-use or salvage.

The contractor shall dispose of demolition debris allowed to free-fall below the subcollar in such sizes and shapes that this debris will not become entangled with shaft structures below the subcollars nor be capable of damaging the shaft liner below subcollar level in each shaft. The nominal distance between cage guides, the narrowest opening in the center of the shaft, is 6 feet in the 14-foot diameter shaft and 13 feet in the 24-foot diameter shaft.

The contractor shall submit a description of disposal methods to be used that will be protective of the shaft liner.

3 GENERAL QUALITY ASSURANCE AND QUALITY CONTROL

3.1 Reviews

Not applicable

3.2 Inspection Reports

Contractor shall record in writing the structural steel salvaged for use in shaft plug construction as required in section 2.2.3. RGR shall inspect the salvaged steel and confirm or correct the contractor's written records as the basis for payment.

3.3 Test Reports

Not applicable

4 FINAL ACCEPTANCE AND CONTRACT CLOSEOUT

4.1 Substantial Completion

The work will be substantially complete when all work required under sections 2 and 3 has been completed by the contractor and accepted by RGR.

4.2 Close-Out Documentation

The contractor shall submit written documentation, in a form acceptable to RGR, that all units of work have been completed in accordance with this specification. This documentation shall include quantities of work performed in accordance with the line items in the contractor's bid schedule that have been approved in writing by RGR. The documentation shall also include the contractor's affirmation that all regulatory requirements and environmental standards applicable to the work have been met.

The documentation shall bear the signature of the contractor's officer with signatory authority.

4.3 Final Payment

Final payment shall be made after close-out documentation has been accepted and approved by RGR.

Table C.1.1 Headframe 14' S	HAFT - Structural Steel			
H,W, T in inches; L in feet				
Description	Description	Description		
I BEAMS	ANGLE IRON	TIRON		
H x W x T x L	HxWxTxL	HxWxTxL		
30 x 10 x 1 x 38	4 x 6 x 1/2 x 712	8 x 8 x 3/8 x 64		
36 x 12 x 1 x 19	3 1/2 x 5 x 1/2 x 252	7 x 7 x 1/2 x 84		
24 x 8 x 3/4 x 19				
30 x 10 x 3/4 x 33				
24 x 9 x 5/8 x 17				
14 x 8 x 5/8 x 28				
16 x 7 x 5/8 x 106				
25 x 7 x 5/8 x 72				
13 1/2 x 8 x 1/2 x 324				
12 x 8 x 1/2 x 189				
10 x 8 x 1/2 x 200				
6 x 4 x 1/2 x 120				
16 x 7 x 1/2 x 17				
24 x 7 x 1/2 x 20				
8 x 6 1/2 x 1/2 x 120				
6 x 8 x 1/2 x 20				
14 x 6 1/2 x 1/2 x 38				
14 x 7 x 1/2 x 90				
8 x 8 x 1/2 x 44				
8 x 7 x 1/2 x 20				
14 x 6 x 1/2 x 148				
10 x 7 x 1/2 x 68				
24 x 7 x 3/8 x 38				

Table C.1.2 24' SHAFT H	eadframe Structural	Steel	
H. W, T in inches; L in feet			
Description	Description	Description	
I BEAMS	I BEAMS	T IRON	
H x W x T x L	H x W x T x L	HxWxTxL	
$37 \times 16 \times 1 \ 1/2 \times 25$ $14 \ 1/2 \times 14 \ 5/8 \times 1 \times 552$ $14 \times 12 \times 3/4 \times 330$ $10 \times 8 \times 1/2 \times 668$ $10 \times 5 \ 1/2 \times 1/2 \times 288$ $16 \times 8 \times 1/2 \times 162$ $8 \times 6 \times 1/2 \times 40$ $14 \times 8 \times 1/2 \times 134$ $14 \times 6 \ 3/4 \times 1/2 \times 80$	$14 \times 10 \times 3/4 \times 8$ $30 \times 10 \ 1/2 \times 3/4 \times 50$ $30 \times 8 \times 3/4 \times 50$ $14 \times 7 \times 3/4 \times 37$ $16 \times 7 \times 3/4 \times 35$ $24 \times 9 \times 3/4 \times 38$ $21 \times 8 \times 3/4 \times 132$ $22 \times 8 \times 5/8 \times 66$ $14 \times 8 \times 5/8 \times 68$	8 x 8 x 1/2 x 204 Description ANGLE IRON H x W x T x L 6 x 6 x 1/2 x 2423	
14 x 6 x 1/2 x 20	24 x 7 x 5/8 x 225	4 x 3 x 1/2 x 552	
14 x 7 x 1/2 x 164	14 x 7 x 5/8 x 188	4 x 6 x 1/2 x 616	
10 x 6 x 1/2 x 70	8 x 7 x 5/8 x 24	6 x 6 x 3/8 x 184	
8 x 8 x 1/2 x 8	16 x 7 x 5/8 x 75	6 x 8 x 5/8 x 80	
16 x 6 x 1/2 x 25	8 x 5 x 3/8 x 6	6 x 6 x 5/8 x 64	
24 x 6 x 1/2 x 50	6 x 6 x 3/8 x 128		
18 x 7 x 1/2 x 25	10 x 8 x 3/8 x 174		
6 x 6 x 1/2 x 248	10 x 6 x 3/8 x 30		
8 x 6 1/2 x 1/2 x 32 36 x 12 x 1 x 288 36 x 14 x 1 x 50		Description C - CHANNEL H x W x T x L	
36 x 16 x 1 x 25 14 x 8 x 3/4 x 200 36 x 12 x 3/4 x 208 24 x 7 x 3/4 x 50 24 x 8 x 3/4 x 25 12 x 8 x 3/4 x 40	Description TUBING H x W x T x L 6 x 6 x 1/2 x 255 4 x 6 x 1/2 x 312	2 1/2 x 10 x 3/8 x 238 2 1/4 x 8 x 3/8 x 370 2 1/4 x 8 x 1/2 x 72 3 x 12 x 1/2 x 124	

C.2 BUILDINGS AND PIPELINE DEMOLITION

1 GENERAL TECHNICAL REQUIREMENTS

1.1. Summary of Work

Rio Grande Resources Corporation (RGR) is owner and operator of the Mt. Taylor Uranium Mine located in Cibola County, New Mexico in Section 24, T13N, R8W, NMPM (Drawing #MT13-CL-01). The mine site is 1/2 mile northeast of the Village of San Mateo and is accessible from New Mexico State Route 605. At the time of this submittal, the mine remains on standby after mining operations were suspended in 1990 due to the depressed uranium market. The mine extracts uranium ore from depths of over 3,000 feet below ground surface that connect to two 3300-foot deep shafts from the mine surface. The mine surface facilities are located on 285.6 acres, of which approximately 148 acres are disturbed land and the remaining 137.9 acres are undisturbed. The disturbed land consists of:

- Support (Service and Support) Facilities
- Mine Water Treatment Area
- Treated Water Discharge Pipeline
- Ore Stockpile
- Waste Pile
- Storm Water Retention Ponds (2)
- Access Road

The included work consists of demolition of buildings that will have no post-mining use and pipeline that will be salvaged. Other building and facilities that have post-mining use will not be demolished.

Facilities to be demolished are listed in Table C2.1

Scrap materials from demolition, with the exception of concrete, will be disposed of as scrap or structural elements for off-site sale. The surface landowner shall have the right to retain any demolition materials, other than concrete, for its own use, including but not limited to on-site use for post-mining applications or for off-site sale. Any demolition materials not retained on site at the written request of the surface landowner prior to demolition shall be removed by the contractor and may be used or sold by the contractor without compensation to RGR or the surface landowner. Subsequent to closeout, removal of remaining salvaged materials from the site will be at the landowners' discretion and cost.

Demolition of these facilities will include the concrete slabs or other foundations. The concrete shall be broken and separated from reinforcement by the contractor, then stockpiled at each location for later recycling by others as riprap in closure of the waste pile. Concrete hydraulic control structures (13) in the mine water treatment ponds shall be demolished and the concrete crushed and stacked for use by others.

The treated water discharge pipeline (Figure C.2-1) is 1/4 to 3/8 inch thick steel pipe. The in-place and spare lengths total approximately 23,000 feet. This pipe shall be removed from the site and sold for re-use or salvage.

The required work includes:

- Mobilization and demobilization of contractor's equipment
- Preparation of the work area
- Protection of potentially impacted facilities and structures
- De-energizing and removal of electric lines and equipment in facilities to be demolished
- Demolition of the buildings listed in the "demolish" column of Table C.2.1.
- Separation and stacking of demolition debris at locations on site designated by RGR.

Any demolition materials other than concrete that are declined in writing by the landowners may be salvaged for sale and re-use offsite by the contractor.

The work is represented in Drawings:

MT13-CL-01Title SheetMT13-CL-02Closeout Plan Index SheetMT13-CL-03Gamma and Soil Radium Sample LocationsMT13-CL-04Facility Disposition Plan

1.2. Site Survey

Prior to mobilizing to the mine, the Contractor shall perform its own survey of the facilities to be demolished for the purposes of dimensional and volume measurements, assessment of hazards, and planning the work. The results of this site survey shall be submitted to the Project Manager and to a MSHA or OSHA-qualified safety officer for review and approval before the work begins.

1.3. Site Restrictions

Access to the site is limited to ingress/ egress through the main gate. All Contractor personnel and visitors shall log in and out at the guardhouse. All personnel shall wear the required safety equipment as directed by the site Safety Officer while inside the mine perimeter fence.

1.4. Information on Existing Facilities

Facilities to be demolished include the buildings listed in Table C.2.1, the treated water pipeline shown on Figure C.2-1, mine car rails, mine water discharge pipe, and hydraulic control structures of the mine water treatment ponds represented in Figure C.2-2. Locations of these facilities are shown on Drawing MT13-CL-04. Photographs of facilities to be demolished will be available to the contractor.

1.5. Codes, Standards, and Regulatory Requirements

All work must be performed according to OSHA and/ or MSHA requirements. The Contractor is responsible for identifying and complying with the relevant standards and requirements.

1.6. Site Investigation Reports & Data

Not applicable.

1.7. Health & Safety Practices

1.7.1. Health & Safety Practices

Work area safety is the responsibility of the contractor. The contractor shall submit and implement a Safety Plan that satisfies federal, state, and RGR requirements for the type of work being performed.

For the work under this specification, Level D PSE is required. All contractor personnel and others within the contractor's working area must be equipped with the required PSE and must comply with the requirements cited in section 1.5.

The contractor shall have a qualified Safety Officer on site during working hours. The Safety Officer shall be responsible for enforcing all safety requirements and shall have the authority to remove anyone not complying with those requirements from the contractor's working area.

1.7.2. Site Safety & Emergency Communication

The contractor shall post emergency response phone numbers in the worker break area. The contractor shall maintain an active phone line at all times. Cell phone service is not reliable at the mine site.

1.7.3. Radiological Materials

Radiological contamination levels in these facilities do not exceed the NRC Regulatory Guide 1.86 criteria for unrestricted release and use. These facilities will not require decontamination prior to demolition. However, the contractor shall implement relevant portions of RGR's Radiation Safety Program Manual (RSPM) and corresponding procedures to provide for the radiation safety of workers, the public and environment. The RSPM and procedures topics include (but are not limited to) radiological work controls, development and use of non-routine procedures, access control and security, radiation monitoring surveys, radiation dose, and response to incidents and emergencies involving radioactive materials. RGR's Radiation Safety Officer and Mine Manager will provide the necessary training and oversight, but the contractor shall ensure worker compliance with the RSPM.

1.8. Field Engineering and Surveying

Not Applicable

1.9. General Submittals

Prior to commencing the work, the contractor shall submit, in a format acceptable to RGR, the following:

- Site Safety Plan including name and qualifications of Safety Officer
- Demolition Plan Methods of demolition shall be described in the demolition plan required under section 1.9 including methods and equipment to be used, names and qualifications of key personnel, and schedule.

1.10. Construction Facilities and Field Office

1.10.1. Site Access, Field Office, Storage, and Maintenance

RGR will provide space for the contractor's field office, laydown areas, sanitary facilities, and equipment maintenance. Existing buildings, if any, will not be available for contractor use. If needed, electrical power must be arranged by the contractor with Continental Divide Electrical Coop.

Water, both potable and non-potable, is available on site. The contractor must make arrangements with RGR for pumping, storing, and discharge of water needed by the contractor.

1.10.2. Protection of Existing Facilities

The contractor shall not use, damage, or block access to site buildings and other facilities that are in use at the time of the contractor's work or that are to remain intact for post-mining land use (Drawing MT-CL-04). Any damage or loss of use shall be repaired or compensated at the contractor's cost.

1.10.3. Temporary Environmental Controls

The contractor shall be responsible for emplacing, utilizing, and removing those measures necessary to contain contaminants, surface water and fugitive dust releases generated by the contractor's work. Such measures may include, but are not limited to,

- Fuels, solvents and lubricants storage
- Surface water diversions and erosion control materials
- Dust suppression chemicals containers
- Sanitary wastes containments
- Trash containers
- Fire suppression equipment

Wildlife, including large game animals, frequently enters the site. The contractor's workers shall do nothing to attract, injure, or otherwise interfere with wildlife.

No firearms may be brought on the mine site.

2 SITE CONSTRUCTION

2.1 Site Preparation

The contractor shall de-energize and remove all electrical equipment and lines in facilities to be demolished.

The contractor shall prepare its office, equipment, and laydown areas as approved by RGR so as not to obstruct or interfere with RGR site operations or other contractors' operations.

2.2 Demolition

The contractor shall submit a demolition plan for RGR approval prior to beginning the work per section 1.9. The plan shall include methods and equipment to be used, names and qualifications of key personnel, and schedule. The plan shall also describe any salvage proposed by the contractor, including materials and expected values. Facilities to be demolished listed in able C2.1.

2.2.1. Building Removal

The shaft vents and fans, the heating buildings, and the glycol heat exchanger shall be demolished first, so that these structures are removed before shaft headframe demolition (by others) begins.

The buildings shall be removed by mechanical or manual methods; no explosives may be used. Except for the chlorine building, which is a concrete block, the buildings are steel frame with metal siding and roofs.

No asbestos is known to be present in these facilities. However, the contractor shall perform inspections it considers necessary to confirm that asbestos is not present.

2.2.2. Debris Sizing and Stacking

The contractor shall prepare demolition debris for disposal. The contractor shall reduce the size of debris and sort it sufficiently for it to be classified and stacked by material type and potential re-use or salvage. With prior approval of RGR, uncontaminated non-rigid materials (other than concrete, structural steel or metal siding/roofing) that have no salvage value may be reduced in size and dropped down the shafts and free-fall to the bottom, taking into consideration the cage guides, ducts, and other structures remaining in place below the subcollar. The nominal distance between cage guides, the narrowest opening in the center of the shaft, is 6 feet in the 14-foot diameter shaft and 13 feet in the 24-foot diameter shaft.

Demolition debris other than concrete shall be cut, hauled, and stacked according to shape (e.g.; beams, sheet metal) in locations east of the waste pile as determined by RGR. Debris shall be reduced in size to fit into the likely transport vehicle for removal from the site, but in any case not longer than 40 feet.

2.2.3. Concrete Debris

The contractor shall demolish the concrete in floor slabs of demolished buildings, pond hydraulic control structures, ore bins next to the 24-foot shaft, aprons beyond the shaft collars, and subgrade of mine car rails. The concrete shall be broken into maximum 24-inch size and stacked at the demolition locations for subsequent collection and use by others. Scrap steel from the hydraulic control structures may be placed in the pond basins.

2.3 Treated Water Pipeline

The treated water discharge pipeline is 1/4 to 3/8 inch thick steel pipe. The in-place and spare lengths total approximately 23,000 feet. The pipeline extends from the mine water treatment area approximately 4.3 miles northward to the outfall at San Lucas Canyon. The pipeline runs roughly parallel to, and is accessible from, NM 605 (Figure C.2-1). The contractor shall remove the pipe from the site and sell for re-use or salvage.

The contractor shall use methods for cutting, removal and transport of the pipe in pieces of uniform length that preserve the structural and hydraulic integrity of each piece. Prior to removing any pipeline materials, the contractor shall complete a written agreement with RGR, or its successor in interest, regarding the salvage value of the pipe materials.

Ground disturbances created by accessing and removing the pipeline shall be minimized to the extent practicable. All such disturbances including fence cuts, removal of vegetation and equipment tracks in the soil shall be continuously repaired during pipe removal so that not more than one mile of disturbance accumulates before repairs in fences and soil grade are begun on the disturbed ground.

Revegetation ground preparation and reseeding must be completed on disturbed ground not more than one month after pipeline removal is complete. Revegetation shall conform to the requirements in Technical Specification C.5.

At each cut location along the pipe, lines at least 1.0 feet long shall be made with light color paint in each of the upper two quadrants of the pipe before the cut is made. Each section of pipe shall be identified by the same paint in numbers, not less than 6 inches high, applied along the top of the pipe and parallel to the pipe length. The pipe numbers shall start with 0001 at the south end.

3 GENERAL QUALITY ASSURANCE AND QUALITY CONTROL

3.1 Reviews

Not applicable

3.2 Inspection Reports

Contractor shall record in writing the lengths of each pipe section removed, as well as the unique number painted on each pipe section in its serial order in the pipeline from south to north. This record shall become the official inventory of the removed pipe and shall be the basis for both salvage value and contractor compensation. This record shall be subject to review and independent verification by RGR.

3.3 Test Reports

Not applicable

4 FINAL ACCEPTANCE AND CONTRACT CLOSEOUT

4.1 Substantial Completion

The work will be substantially complete when all work required under sections 2 and 3 has been completed by the contractor and accepted by RGR.

4.2 Close-Out Documentation

The contractor shall submit written documentation, in a form acceptable to RGR, that all units of work have been completed in accordance with this specification. This documentation shall include quantities of work

performed in accordance with the line items in the contractor's bid schedule that have been approved in writing by RGR. The documentation shall also include the contractor's affirmation that all regulatory requirements and environmental standards applicable to the work have been met.

The documentation shall bear the signature of the contractor's officer with signatory authority.

4.3 Final Payment

Final payment shall be made after close-out documentation has been accepted and approved by RGR.

Building Name		Dimensions	Volume, ft ³	Disposition at Closeout	
	Building Type			Demolish	Retain for Owner
Compressor Building	Steel frame and siding	40'4"x40'2"x16'	25921	Х	
York Chiller (Chill Water) Building	Steel frame and siding	100'x50'x30'	150000	Х	
Pump Building (Chill Water Pump House)	Steel frame and siding	40'x24'x16'	15360	Х	
Chlorine Building	Concrete Block	23'x50'6"x20'	23230	Х	
Shaft Heating Building	Steel frame and siding	50'x30'x16'	24000	Х	
Glycol Heat Exchanger	Steel frame and siding	50 x 30 x 16	24000	х	
Hoist House	Steel frame and siding	162'x120'x40'	777600	Х	
Cooling Tower	Steel frame and siding	75 x 25 x 25	46875	Х	
Guard House (Security Building)	Steel frame and siding	63'x20'6"x16'	20664		Х
Fire Equipment Building (Fire House)	Steel frame and siding	27'x24'x16'	10368		Х
Service Building (Office and Warehouse)	Steel frame and siding	194'x138'x24'	642528	Х	
Car (Maintenance) Shop	Steel frame and siding	150'x100'x30'	450000		Х
Carpenter Shop	Steel frame and siding	45'x24'x16'	17280		Х
Electrical Building	Steel frame and siding	62'x30'x16'	29760	Х	
Water Treatment and Boiler Building	Steel frame and siding	62'x50'x16'	49600	Х	
Core Storage Building	Steel frame and siding	100x38'x16'	60800		Х
Fan Shop	Steel frame and siding	40 x 30 x 12	14400		Х
Storage Building	Steel frame and siding	28'x30'x16'	13440	Х	
Flocculant Treatment Facility	Steel frame and siding	30'x23'x12'	8280	х	
Barium Chloride Treatment Facility	Steel frame and siding	40'x25'x16'	16000	X	
Ion Exchange Plant	Steel frame and siding	140'x70'x40'	392000	x	
Water Tank	Steel		300,000 gal		Х
Fuel Storage Tanks	Steel		various	Х	

Figure C.2-1 Treated Water Pipeline

Figure C.2-2 Hydraulic Control Structure on Mine Water Treatment Pond #2 (existing April 2013)

C.3 SHAFT PLUGGING AND BACKFILL

1 GENERAL TECHNICAL REQUIREMENTS

1.1. Summary of Work

Rio Grande Resources Corporation (RGR) is owner and operator of the Mt. Taylor Uranium Mine located in Cibola County, New Mexico in Section 24, T13N, R8W, NMPM (Drawing MT13-CL-01). The mine site is 1/2 mile northeast of the Village of San Mateo and is accessible from New Mexico State Route 605. At the time of this submittal, the mine remains on standby after mining operations were suspended in 1990 due to the depressed uranium market. The mine extracts uranium ore from depths of over 3,000 feet below ground surface that connect to two 3300-foot deep shafts from the mine surface. The water level in the shafts is approximately 820 feet below collar elevation.

The included work consists of disposing of selected demolition debris in the shafts below subcollar level, construction of a plug in each shaft at subcollar level, backfilling the collar and connected openings, and placement of concrete markers on the shaft caps.

Selected, non-rigid scrap materials from demolition of surface facilities and the headframes, with the exception of concrete, will be disposed of in the shafts by others prior to plugging.

The required work includes:

- Mobilization and demobilization of contractor's equipment,
- Preparation of the work area,
- Disposal of non-rigid, non-structural demolition debris from within the shaft collars,
- Placement of salvaged structural steel as the primary structural component of the shaft plugs,
- Mixing and placement of light weight concrete, cementitious slurry, and cap concrete
- Site cleanup and removal of work debris.

The work is represented in Drawings:

MT13-CL-01 Title SheetMT13-CL-02 Closeout Plan Index SheetMT13-CL-05 Shaft Closure Manway VentMT13-CL-06 Shaft Closure Production Shaft

1.2. Site Survey

The Contractor shall perform its own survey of the dimensions of the shaft collar, subcollar, and connected openings above subcollar level for the purposes of dimensional and volume measurements, assessment of hazards, and planning the work. This survey shall include an inventory of material in the shaft collars that can be dropped into the shafts and material that must be removed from the shafts for salvage (see section 2.2). The results of this site survey shall be submitted to the Project Manager and to a MSHA or OSHA-qualified safety officer for review and approval before the work begins.

1.3. Site Restrictions

Access to the site is limited to ingress/ egress through the main gate. All Contractor personnel and visitors shall log in and out at the guardhouse. All personnel shall wear the required safety equipment as directed by the site Safety Officer while inside the mine perimeter fence.

The contractor's work area shall be enclosed with temporary fencing, selected and provided by the contractor, to restrict access to the shafts to authorized personnel only. The contractor shall prohibit entry to anyone not trained and authorized to enter the enclosed area or accompanied at all times by an authorized person.

1.4. Work Performed by Others

Prior to the commencement of this work, the shafts headframes and shaft collar structures and equipment will be removed by others. Structural steel and other materials from demolition of the headframes will have been cut by others to fit in the shaft and stacked near each shaft. Structural steel to be used for construction of the shaft plugs (Drawings MT13-CL-05 and -06) will have been stacked separately from other steel that will be shipped offsite for salvage.

1.5. Codes, Standards, and Regulatory Requirements

All work must be performed according to OSHA and/ or MSHA requirements. The Contractor is responsible for identifying and complying with the relevant standards and requirements.

The contractor shall implement the applicable requirements for worker fall protection including, but not limited to, 29 CFR 1926:

- <u>1926.501</u>, Duty to have fall protection
- <u>1926.502</u>, Fall protection systems criteria and practices
- <u>1926.503</u>, Training requirements (Fall Protection)
- <u>1926.760</u>, Steel Erection (Fall protection)
- <u>1926.800</u>, Underground construction
- <u>1926.1051</u>, General requirements (Stairways and Ladders

1.6. Site Investigation Reports & Data

Not applicable.

1.7. Health & Safety Practices

1.7.1. Health & Safety Practices

Work area safety is the responsibility of the contractor. The contractor shall submit and implement a Safety Plan that satisfies federal, state, and RGR requirements for the type of work being performed.

For the work under this specification, at a minimum Level D PSE is required. In addition, safety measures required under section 1.5 and elsewhere in federal and state regulations shall be implemented.

All contractor personnel and others within the contractor' working area must be equipped with the required PSE and must comply with the requirements cited in section 1.5.

The contractor shall have a qualified Safety Officer on site during working hours. The Safety Officer shall be responsible for enforcing all safety requirements and shall have the authority to remove anyone not complying with those requirements from the contractor's working area.

1.7.2. Site Safety & Emergency Communication

The contractor shall post emergency response phone numbers in the worker break area. The contractor shall maintain an active phone line at all times. Cell phone service is not reliable at the mine site.

1.7.3. Radiological Materials

Radiological contamination levels in these facilities do not exceed the NRC Regulatory Guide 1.86 criteria for unrestricted release and use. These facilities will not require decontamination prior to demolition. However, the contractor shall implement relevant portions of RGR's Radiation Safety Program Manual (RSPM) and corresponding procedures to provide for the radiation safety of workers, the public and environment. The RSPM and procedures topics include (but are not limited to) radiological work controls, development and use of non-routine procedures, access control and security, radiation monitoring surveys, radiation dose, and response to incidents and emergencies involving radioactive materials. RGR's Radiation Safety Officer and Mine Manager will provide the necessary training and oversight, but the contractor shall ensure worker compliance with the RSPM.

1.8. Field Engineering and Surveying

The contractor shall perform surveys and measurements as required under section 1.2 to verify dimensions of work spaces and construction materials described in this specification and the referenced drawings (MT13-CL series) as well as the 1974 Dravo design drawings, which will be available to the contractor for planning the work.

1.9. General Submittals

Prior to commencing the work, the contractor shall submit, in a format acceptable to RGR, the following:

- Site Safety Plan including name and qualifications of Safety Officer
- Shaft Plug and Backfill Construction Plan Method of construction shall be described, including methods and equipment to be used, names and qualifications of key personnel, and schedule.

1.10. Construction Facilities and Field Office

1.10.1. Site Access, Field Office, Storage, and Maintenance

RGR will provide space for the contractor's field office, laydown areas, sanitary facilities, and equipment maintenance. Existing buildings, if any, will not be available for contractor use. If needed, electrical power must be arranged by the contractor with Continental Divide Electrical Coop.

Water, both potable and non-potable, is available on site. The contractor must make arrangements with RGR for pumping, storing, and discharge of water needed by the contractor.

1.10.2. Protection of Existing Facilities

The contractor shall not use, damage, or block access to site buildings and other facilities that are in use at the time of the contractor's work or that are to remain intact for post-mining land use (Drawing MT13-CL-04). Any damage or loss of use shall be repaired or compensated at the contractor's cost.

1.10.3. Temporary Environmental Controls

The contractor shall be responsible for emplacing, utilizing, and removing those measures necessary to contain contaminants, surface water and fugitive dust releases generated by the contractor's work. Such measures may include, but are not limited to,

- Fuels, solvents and lubricants storage
- Surface water diversions and erosion control materials
- Dust suppression chemicals containers
- Sanitary wastes containments
- Trash containers
- Fire suppression equipment

Wildlife, including large game animals, frequently enters the site. The contractor's workers shall do nothing to attract, injure, or otherwise interfere with wildlife.

No firearms may be brought on the mine site.

2 SITE CONSTRUCTION

2.1 Site Preparation

The contractor shall prepare its office, equipment, and laydown areas as approved by RGR so as not to obstruct or interfere with RGR site operations or other contractors' operations. The contractor shall stage and operate its equipment to allow setback distances from the shaft collars that are appropriate for the selected equipment size, weight, and operating radius. The contractor shall prepare its working area and equipment locations to minimize traffic or materials next to the shaft collars.

2.2 Debris Disposal

Prior to disposing of any demolition debris into the shafts, the contractor shall remove structures and equipment within the shaft collars that would obstruct the free-fall of materials discharged into the shafts at the collar. Materials that can be allowed to free-fall are rope and wooden guides, ductwork, electrical cable, pipe and conduit. Material that shall be removed includes sheet metal, fencing, and structural steel that would obstruct either debris discharge to the shafts or shaft plug construction. The referenced Dravo drawings describe some of these features, but the contractor shall perform its own survey and inventory as required under section 1.2.

At the time of closeout, market conditions will indicate what materials have re-sale or salvage value. Materials that can be economically re-used or recycled will be stacked separately until they can be removed from the site.

The contractor shall dispose of demolition debris allowed to free-fall below the subcollar in such sizes and shapes that this debris will not become entangled with shaft structures below the subcollars nor be capable of damaging the shaft liner below subcollar level in each shaft. The nominal distance between cage guides, the narrowest opening in the center of the shaft, is 6 feet in the 14-foot diameter shaft and 13 feet in the 24-foot diameter shaft. The contractor shall dispose of demolition debris in the mine shafts so that each piece is positioned before release to free-fall without hitting equipment, such as ductwork, cage guides, or other obstacles remaining in place below subcollar level.

The contractor shall submit a description of disposal methods to be used that will be protective of the shaft liner.

2.3 Shaft Plug Construction

Both the 24 ft diameter production or haulage shaft and the 14 ft diameter manway/ ventilation shaft will be closed in the same way, illustrated on Drawings MT13-CL-05 and -06, in the following sequence after the headframes and collar structures are removed (by others), the subcollar space has been freed of obstacles per section 2.2.1.

Selected structural steel I-beams and scrap metal plate, salvaged from headframe and other demolition, shall be welded at ground surface in sections consisting of two or more beams with scrap plate. The

plate of each section shall be shaped to fit flush with, or overlap, the plate of the next adjacent section. Each section shall be of a size that can be lowered into the shaft. Each section shall be lowered from ground surface to the subcollar and set onto the shaft subcollar to form the first layer of the support platform for the shaft plug and backfill. A second layer of I-beams shall be placed on top of, and perpendicular to, the lower layer to form an orthogonal support system for the shaft plug and backfill.

A plug of light-weight concrete meeting the requirements of ASTM C 330 shall be poured to encapsulate the platform steel. The concrete shall have an in-place density of 90-115 pcf and a minimum compressive strength of 2500 psi. The first lift shall fully encapsulate and cover the steel beams and shall be vibrated until the concrete level reaches the top of the second layer of I-beams. Successive lifts shall be not more than 1.0 feet thick.

The shaft plug concrete shall be allowed to cure for not less than 28 days before the shaft backfill is placed.

2.4. Shaft Backfill

The remainder of the shaft, as well as connecting tunnels and raises, shall be backfilled with a cementitious slurry of soil, Portland cement, fly ash, and water. The contractor shall determine proportions of these components using test batches of the available materials, for acceptance by RGR before placement. The selected mix shall have a cured compressive strength of not less than 75 pcf.

Sandy waste rock material from the waste pile may be substituted for the soil fraction of the mix.

2.5 Shaft Cap and Marker

The remaining space at the top of the shaft backfill, from top of slurried backfill to adjacent ground surface, shall be capped with not less than 1.0 feet of light-weight concrete, with a marker monument extending above ground surface. The marker monuments shall be pre-cast 2500-psi concrete, at least two feet high and four feet wide and long, with a hand finished top surface. Both shaft markers shall be inscribed with "Mt. Taylor Mine (name) Shaft, Closed (date)".

3 GENERAL QUALITY ASSURANCE AND QUALITY CONTROL

3.1 Reviews

Not applicable

3.2 Daily Reports

Contractor shall prepare a written daily report of each working day. This report shall include a record of the dimensions of the shaft plug components, the volumes of materials used, and any deviations from the drawings or this specification necessitated by conditions encountered. This record shall be subject to review and independent verification by RGR.

3.3 Test Reports

At least one test cylinder shall be cast for each lift of light-weight concrete poured. The contractor shall have each cylinder tested for density (unit weight) and unconfined compressive strength. Records of test cylinder tests shall be submitted to RGR.

4 FINAL ACCEPTANCE AND CONTRACT CLOSEOUT

4.1 Substantial Completion

The work will be substantially complete when all work required under sections 2 and 3 has been completed by the contractor and accepted by RGR.

4.2 Close-Out Documentation

The contractor shall submit written documentation, in a form acceptable to RGR, that all units of work have been completed in accordance with this specification. This documentation shall include quantities of work performed in accordance with the line items in the contractor's bid schedule that have been approved in writing by RGR. The documentation shall also include the contractor's affirmation that all regulatory requirements and environmental standards applicable to the work have been met.

The documentation shall bear the signature of the contractor's officer with signatory authority.

4.3 Final Payment

Final payment shall be made after close-out documentation has been accepted and approved by RGR.

C.4 EARTHWORK

1 GENERAL TECHNICAL REQUIREMENTS

1.1 Summary of Work

Rio Grande Resources Corporation (RGR) is owner and operator of the Mt. Taylor Uranium Mine located in Cibola County, New Mexico in Section 24, T13N, R8W, NMPM (Drawing MT13-CL-01). The mine site is 1/2 mile northeast of the Village of San Mateo and is accessible from New Mexico State Route 605. At the time of this submittal, the mine remains on standby after mining operations were suspended in 1990 due to the depressed uranium market. The mine extracts uranium ore from depths of over 3,000 feet below ground surface that connect to two 3300-foot deep shafts from the mine surface. The mine surface facilities are located on 285.6 acres, of which approximately 148 acres are disturbed land and the remaining 137.9 acres are undisturbed. The disturbed land consists of:

- Support (Service and Support) Facilities
- Mine Water Treatment Area
- Treated Water Discharge Pipeline (most beyond the mine surface area)
- Ore Pad
- Waste Pile
- Storm Water Retention Ponds (2)
- Access Road

The included work consists of excavation, hauling, placement, and compaction of soil and rippable rock within the mine area for the purposes removing contaminated soil, stabilizing slopes, and covering mine waste containment structures.

The required work includes:

- Mobilization and demobilization of contractor's equipment,
- Preparation of the work area,
- Excavation of pond sediments and site soil contaminated with low levels of radium and uranium,
- Construction of a pond sediment disposal cell on the waste rock pile,
- Disposal of pond sediment in the disposal cell,
- Disposal of contaminated soil in waste rock pile, or the shafts,
- Reshaping of the waste rock pile
- Reducing rock slopes
- Backfilling of the mine water treatment ponds,
- Placement of clean soil cover over the waste rock pile, and
- Backfilling of pond basins in the mine water treatment area,
- Finish grading of disturbed ground within the mine permit area

The work is represented in Drawings:

MT13-CL-01	Title Sheet
MT13-CL-02	Closeout Plan Index Sheet
MT13-CL-03	Gamma and Soil Radium Sample Locations
MT13-CL-04	Facility Disposition Plan
MT13-CL-07	Final Grading Plan Mine Water Treatment Pond and Ore Stockpile Area
MT13-CL-08	Typical Sections Mine Water Treatment Pond Infill
MT13-CL-09	Final Grading and Cover Plan South Waste Rock Pile Area
MT13-CL-10	Final Grading and Cover Sections South Waste Rock Pile Area
MT13-CL-13	Final Site Grading Plan

1.2 Site Survey

The Contractor shall perform its own survey or calculations to determine depths and volumes of excavated soil, field control for line and grade, and depths and volumes of soil placed. The results of this site survey shall be submitted to the Project Manager for review and approval of work performed and for verification of payment quantities.

1.3 Site Restrictions

Access to the site is limited to ingress/ egress through the main gate. All Contractor personnel and visitors shall log in and out at the guardhouse. All personnel shall wear the required safety equipment as directed by the site Safety Officer while inside the mine perimeter fence.

1.4 Work Performed by Others

Prior to the commencement of this work, the shaft headframes, hydraulic control structures, selected buildings, the treated water pipeline, mine car rail, and mine water discharge pipe will be removed and the shafts will be plugged and backfilled by others.

1.5 Codes, Standards, and Regulatory Requirements

All work must be performed according to OSHA and/ or MSHA requirements. The Contractor is responsible for identifying and complying with the relevant standards and requirements.

1.6 Site Investigation Reports & Data

RGR has conducted site investigations to characterize the waste rock pile materials, soil contamination, and geotechnical properties of on-site soil. Reports of these studies and related data are included in Appendix D of the Mt. Taylor Mine Closeout/ Closure Plan.

1.7 Health & Safety Practices

1.7.1 Health & Safety Plan

Work area safety is the responsibility of the contractor. The contractor shall submit and implement a Site Safety Plan that satisfies federal, state, and RGR requirements for the type of work being performed.

For the work under this specification, Level D PSE is required. In addition, safety measures required under section 1.5 and elsewhere in federal and state regulations shall be implemented.

All contractor personnel and others within the contractor' working area must be equipped with the required PSE and must comply with the requirements cited in section 1.5.

The contractor shall have a qualified Safety Officer on site during working hours. The Safety Officer shall be responsible for enforcing all safety requirements and shall have the authority to remove from the contractor's working area anyone not complying with those requirements.

1.7.2 Site Safety & Emergency Communication

The contractor shall post emergency response phone numbers in the worker break area. The contractor shall maintain an active phone line at all times. Cell phone service is not reliable at the mine site.

1.7.3 Radiological Materials

Radiological contamination levels on the mine site do not exceed the NRC Regulatory Guide 1.86 criteria for unrestricted release and use. However, the contractor shall implement relevant portions of RGR's Radiation Safety Program Manual (RSPM) and corresponding procedures to provide for the radiation safety of workers, the public and environment. The RSPM and procedures topics include (but are not limited to) radiological work controls, development and use of non-routine procedures, access control and security, radiation monitoring surveys, radiation Safety Officer and Mine Manager will provide the necessary training and oversight, but the contractor shall ensure worker compliance with the RSPM.

1.8 Field Engineering and Surveying

The contractor shall perform surveys and measurements as required under section 1.2 to verify dimensions, lines and grades, and construction materials described in this specification and the referenced drawings (MT13-CL series).

1.9 General Submittals

Prior to commencing the work, the contractor shall submit, in a format acceptable to RGR, the following:

- Site Safety Plan including name and qualifications of Safety Officer
- Contaminated Soil Excavation Plan Methods for excavating, hauling, and placing contaminated soil shall be described including measures to be taken to control spillage and fugitive dust release during handling. The plan shall also describe equipment to be used, names and qualifications of key personnel, and schedule.
- Soil Cover and Grading Plan Method of construction for excavation, hauling, placing and compacting clean fill soil shall be described, including equipment to be used, names and qualifications of key personnel, and schedule. The plan shall also include fugitive dust control and finish line and grade control.
- Stormwater Pollution Prevention Plan (SWPPP) that is compliant with the minimum requirements of EPA's 2012 Construction General Permit under the NPDES.

1.10 Construction Facilities and Field Office

1.10.1 Site Access, Field Office, Storage, and Maintenance

RGR will provide space for the contractor's field office, laydown areas, sanitary facilities, and equipment maintenance. Existing buildings, if any, will not be available for contractor use. If needed, electrical power must be arranged by the contractor with Continental Divide Electrical Coop.

Water, both potable and non-potable, is available on site. The contractor must make arrangements with RGR for pumping, storing, and discharge of water needed by the contractor.

1.10.2 Protection of Existing Facilities

The contractor shall not use, damage, or block access to site buildings and other facilities that are in use at the time of the contractor's work or that are to remain intact for post-mining land use (Drawing MT13-CL-04). Any damage or loss of use shall be repaired or compensated at the contractor's cost.

1.10.3 Temporary Environmental Controls

The contractor shall be responsible for emplacing, utilizing, and removing those measures necessary to contain contaminants, surface water and fugitive dust releases generated by the contractor's work. Such measures may include, but are not limited to,

- Spraying of clean water for dust suppression
- Storage of fuels, solvents and lubricants
- Surface water diversions and erosion control materials
- Sanitary wastes containments
- Trash containers
- Fire suppression equipment

Wildlife, including large game animals, frequently enters the site. The contractor's workers shall do nothing to attract, injure, or otherwise interfere with wildlife.

No firearms may be brought on the mine site.

2 SITE CONSTRUCTION

2.1 Site Preparation

The contractor shall prepare its office, equipment, and laydown areas as approved by RGR so as not to obstruct or interfere with RGR site operations or other contractors' operations.

2.2 Excavation and Disposal of Pond Sediments

Sediments above the liners in the mine water treatment ponds, the ore pad runoff ponds, and the south storm water pond shall be removed by dry excavation methods unless the sediments are too wet to excavate as dry material. It that case, the wet sediments may be removed by vacuum truck.

Excavated sediments shall be placed in the disposal cell on the waste pile in lifts of not more than 1.0 ft. loose thickness. When sufficiently dry, each sediment lift shall be tracked by at least three passes of a CAT D6 or equivalent dozer, or heavier. After removal of sediment by earthmoving or vacuum equipment, the surface of the HDPE liner shall be broom clean, as verified by radiological survey of the HDPE surface. Final removal of sediment from the clay liner of the south surface water runoff pond shall verified by radiological survey to background levels.

2.3 Removal of Pond Liner Anchor and Liner From Top of Slope

The contractor shall remove the HDPE liner system in mine water treatment ponds #1-8 and the ore pad runoff retention pond from the anchor trench and the upper portion of the pond slopes down to at least 2.0 feet below final grade (drawings MT13-CL-07 and -13). Similarly on the ore pad, the liner shall be removed from the anchor trench and to at least 2.0 feet on the pond slopes below final grade. The liner materials removed in the ponds shall be folded over into the ponds before the pond basins are backfilled.

2.4 Excavation and Disposal of Contaminated Soil

The contractor shall submit a Contaminated Soil Excavation Plan for excavating, excavating, hauling, and disposal of soil containing more than 6.8 pCi/g of Radium 226. RGR will provide field direction for the contractor in determining the lateral extent and depth of excavation required. Drawing MT13-CL-03 represents the existing data on soil radium content and the gamma radiation emanating from that

source. Contaminated soil shall be placed in lifts not to exceed 1.0 foot loose thickness and spread as needed to fill around obstacles, conform to the final site contours, or limit the design thickness of the entire fill section. Each lift shall be tracked by dozer, CAT D8 or larger, to compact the soil before the next lift is applied..

2.5 Pond Sediment Disposal Cell

The contractor shall construct a waste disposal cell on the south waster rock pile for disposal of pond sediments. The cell shall be located as shown on Drawings MT13-CL-09and -10. The pond shall be formed on the top of the pile surface existing at the time of closure, graded to a horizontal surface. The pond berms shall be constructed of contaminated soil excavated from site soil cleanup and from waste rock in place on the waste pile. The berm soil shall be constructed in lifts not more than 1.0 ft. loose thickness, compacted by at least three passes of a CAT D10 or equivalent dozer.

The inside slopes and bottom of the cell shall have a minimum 1.0 ft. thick compacted clay liner constructed of CH, CL, and SC soils from on-site sources. Compaction shall be not less than 90% maximum dry density per ASTM D-698.

2.6 Reshaping and Backfilling of the Mine Water Treatment Area Ponds

After removal of pond sediments and contaminated soil from the mine water treatment and ore pad runoff ponds, and after the top portions of liners have been folded into the pond basins, clean demolition debris may be disposed of in the pond basins. Debris shall be placed in lifts not to exceed the maximum thickness of 2.0 ft. Space around this debris shall be filled either by backfilling with dry clean soil or by flooding with a weak soil/cement slurry. In the case of slurry backfilling, the slurry lift shall take a firm set before the next lift is added.

Pond berms shall be the primary source of clean soil for pond infill material. Additional soil may be obtained from the borrow area, if needed. The pond basins shall be backfilled by a balance of cut and fill until the graded shown on Drawing MT13-CL-07 and -13 are achieved.

2.7 Reshaping of the Waste Pile

The waste rock is mostly cobble-size soft sandstone and sandy soil. Upon, reactivation of the mine, RGR will reshape the existing waste rock pile to 5H:1V slopes. The contractor shall complete whatever reshaping is yet to be completed at the time of mine closeout to achieve the lines and grades shown on Drawing MT13-CL-09 within the limits of available quantities of waste rock and contaminated materials disposed oin the pile.

The contractor shall reshape the waste rock pile from its existing contours to the lines and grades shown on Drawing MT13-CL-09. Waste rock materials beyond the final limit of the waste pile, if any, shall be excavated and placed within the final waste pile footprint. Contaminated soil from the CR 334 right-of-way and the Service and Support area shall be excavated and placed on the waste pile.

The existing mound of soil standing above the rest of the waste pile surface at the southwest corner of the pile is clean shaft muck. It shall not be used for reshaping the pile but shall be reserved for application to the reshaped pile surface as final cover.

The waste pile contains scrap metal, rock bolts and other debris from mining. The contractor can encountered these materials buried within the waste rock. If such debris is uncovered during reshaping, it shall be removed and reburied within the regraded waste rock material. Burial of non-rock waste generated during closeout will be controlled so that the material will be placed in lifts and either covered with soil after each lift or flooded with a soil/cement slurry to fill voids.

RGR will provide radiological screening support to guide the contractor in assessment of soil radium content and determination of areas and depths of excavation for soil removal and for relocation of waste rock from the existing pile periphery into the final pile footprint.

If the north waste rock pile is constructed during RGR's mine operations, this section also applies to that pile as illustrated by drawings MT13-CL-11 and -12.

2.8 Construction of Soil Cover

The contractor shall submit for RGR approval a Soil Cover and Grading Plan that describes the methods for excavation, hauling, placing and compacting clean fill soil and finish grading over the mine site. The plan shall include equipment to be used, names and qualifications of key personnel, and schedule. The plan shall also include fugitive dust control and methods to verify finish line and grade control.

Soil to be used for cover on the mine water treatment ponds shall be obtained from existing clean soil in the pond berm at elevations above the final cover grades. Clean soil for the waste rock pile cover shall be obtained from the shaft muck pile at the south side of the waste pile and any other clean soil adjacent to the waste pile. Additional clean soil shall be obtained from the borrow area east of the ore pad location after contaminated soils have been removed. No soil shall be used as cover or for filling depressions that contains competent rock fragments larger than three inches.

Cover soil material may be temporarily stockpiled at the location of placement, provided that it is protected from erosion by wind or surface water.

The contractor shall place not less than 2.0 feet of clean soil as a cover over the backfilled mine water treatment ponds and the reshaped waste rock pile. Soil placed for cover construction may be spread by any method in lifts not more than 1.0 feet loose thickness. Each lift shall be tracked by dozer, CAT D8 or larger, to compact the soil before the next lift is applied. Tolerances for cover thickness may be adjusted to accommodate special circumstances, but in general the soil cover shall be not less than 2.0 feet compacted thickness.

Clean soil may also be needed for filling depressions in the areas of contaminated soil removal.

If the north waste rock pile is constructed during RGR's mine operations, this section also applies to that pile as illustrated by drawings MT13-CL-11 and -12.

2.9 Finish Grading

All disturbed soil surfaces and constructed cover surfaces shall be finish graded to achieve the lines and grades shown on Drawings MT13-CL-07, -08, -09, -10 and -13. If the north waste rock pile is constructed during RGR's mine operations, this section also applies to that pile as illustrated by drawings MT13-CL-11 and -12. The elevation contours shown on these drawings are representational; final elevations will depend on actual quantities of contaminated soil and clean cover soil excavated and placed.

The finish-graded surface shall conform to the direction (line) and angle of slope (grade) shown on the drawings. Verification of line and grade shall be made by land surveys directed by a New Mexico License Professional Surveyor.

The finish-graded surfaces shall be free of demolition debris and depressions, ridges, rills, and other irregularities more than three inches in amplitude caused by either mining-related activities or closeout activities. On surfaces where rock will be placed for erosion protection (riprap), final grading need not achieve this standard but shall remove all irregularities of amplitude greater than the design thickness of the rock to be placed on such surfaces.

The surfaces of the disturbed areas and covers shall be bladed to provide a) smooth transitions to surrounding soil surfaces, b) gradual transitions in slope gradients, and c) free drainage of runoff (no depressions deeper than the amplitude of the surface roughness of the soil cover). On the final pass of surface grading, the grading equipment shall run along the contour of the slope, unless slope gradients are prohibitively steep, and shall blend the recontoured surfaces into adjacent undisturbed areas.

2.10 Erosion Control on Waste Rock Piles 2.10.1 General Site Drainage

The primary means of controlling erosion by runoff will be grading per section 2.8. Control of surface water runoff onto or from reclaimed areas will accomplished as part of the recontouring and final grading. Existing natural drainage courses will be preserved and improved as necessary to remove obstacles and trapped debris. In general, runoff will be directed to natural drainage courses and will follow natural surface gradients so that no control structures or energy dissipaters will be required. New drainage courses and swales will be not less than 10 feet wide at channel bed, not less than two feet deep, with side slopes not steeper than 4H: 1V. Diversion channels will be required only where actual cover or final slope gradients produce concentrated runoff and/or slope erosion.

2.10.2 Crushing and Screening

The contractor shall collect, crush, screen, and stockpile as necessary broken concrete and rock available

on site to be used for riprap. Concrete will be removed from facility demolition locations in the mine area, broken to minus 24 inch size, and stacked at the demolition locations by others. The contractor shall load and haul this broken concrete from the various stack locations on site to a crushing and screening plant to be located by the contractor near the waste rock pile.

If available quantities of sound crushed concrete, free of reinforcing bar or other non-concrete materials, are not sufficient, the contractor shall use durable rock. Suitable basalt cobbles and boulders are available within RGR property limits to the east of the mine site. The contractor may select alternative sources of comparable rock.

The contractor shall crush the broken concrete, and rock if necessary, to sizes needed for crusher fines and riprap as described in sections 2.9.3 and 2.9.4. The riprap and crusher fines shall be stockpiled separately and protected against erosion and release of fugitive dust and water-borne sediment as necessary until these materials are applied to the waste pile cover.

2.10.3 Crusher Fines

Crusher fines (0.38 inch and smaller) shall be applied to the surface of west- and south-facing slopes of the waste pile cover prior to riprap placement. The fines shall be spread at nominal 2 inches thickness over the top of the soil cover and mixed into the top lift (approximately top 0.5 feet) of the cover soil to create rock mulch. The final pass for this mixing shall be parallel to the slope contours, as required in section 2.8.

2.10.4 Riprap

On slopes of 5H:1V or steeper on waste pile surface, and where the New Mexico Mining and Minerals Division staff determine that vegetation is insufficient to control erosion, the contractor shall place broken concrete or basalt. This riprap material shall be not less than 0.5 feet thick consisting of sound fragments with d_{50} of at least 2.7 inches, maximum of 6.0 inches and minimum of 0.3 inches. Riprap shall be placed by dumping from haul trucks and spreading by dozer or grader.

The contractor shall place large broken concrete and rock (12 to 24 inches) along the north bank of the south arroyo, adjacent to the waste pile south toe. The riprap shall be placed from the toe of the north bank to not less than 10 vertical feet above the arroyo thalweg. The riprap thickness shall be not less than two times the average particle diameter and shall extend from the southwest corner of the waste pile eastward to the southeast corner of the waste pile at approximately where the arroyo crosses E 559450 (Drawing MT13-CL-09). Approximately 600 cubic yards of channel protection riprap has been estimated for this application; if suitable quantities of crushed concrete in these sizes are not available, the contractor may harvest cobble and boulder-size basalt from the slopes east of the mine.

The contractor shall measure and record the riprap thickness not less than once every 10,000 square feet of riprap area.

2.10.5 Erosion Control Blanket

The contractor shall procure and install erosion control blanket on soil cover surfaces steeper than 10H:1V and that are not covered by riprap. The blanket material shall be biodegradable wood fiber or vegetable fiber, seed-free, woven or contained within plastic netting.

The contractor shall propose the material to RGR for approval prior to procurement. Curlex [®], Rolled Erosion Control Products, or equivalent may be considered by RGR. The blanket material shall have the following minimum properties:

- Mass 9.2 oz/ square yard per ASTM D6475
- Thickness 0.25 inches per ATSM D6525
- Water absorption 300% per ASTM D1117

Alternatively, the contractor may propose other woven fabric materials, such as tobacco netting, that will provide comparable erosion protection, promote moisture retention in the cover soil, and protect seeds from birds and animals until germination.

The erosion control mat shall be installed by the contractor in coordination with revegetation by others (Specification C.5) and in accordance with the manufacturer's recommendations.

3 GENERAL QUALITY ASSURANCE AND QUALITY CONTROL

3.1 Reviews

RGR shall meet with the contractor at the start of work each day to review the previous day's Daily Report and any deliverable from the contractor.

3.2 Daily Reports

Contractor shall prepare a written daily report of each working day. This report shall include a record of the units and quantities of work performed, events or conditions adversely affecting the work, and any deviations from the drawings or this specification necessitated by conditions encountered. This record shall be subject to review and independent verification by RGR.

3.3 Test Reports

The contractor shall measure, record and report in writing the quantities of each size of concrete and rock crushed and screened.

The contractor shall report the measured volumes, locations and thicknesses of soil, rock, and erosion control materials placed each day.

4 FINAL ACCEPTANCE AND CONTRACT CLOSEOUT

4.1 Substantial Completion

The work will be substantially complete when all work required under sections 2 and 3 has been completed by the contractor and accepted by RGR.

4.2 Close-Out Documentation

The contractor shall submit written documentation, in a form acceptable to RGR, that all units of work have been completed in accordance with this specification. This documentation shall include quantities of work performed in accordance with the line items in the contractor's bid schedule that have been approved in writing by RGR. The documentation shall also include the contractor's affirmation that all regulatory requirements and environmental standards applicable to the work have been met.

The documentation shall bear the signature of the contractor's officer with signatory authority.

4.3 Final Payment

Final payment shall be made after close-out documentation has been accepted and approved by RGR.

C.5 REVEGETATION

1 GENERAL TECHNICAL REQUIREMENTS

1.1. Summary of Work

Rio Grande Resources Corporation (RGR) is owner and operator of the Mt. Taylor Uranium Mine located in Cibola County, New Mexico in Section 24, T13N, R8W, NMPM (Drawing #MT12-CL-O1). The mine site is 1/2 mile northeast of the Village of San Mateo and is accessible from New Mexico State Route 605. At the time of this submittal, the mine remains on standby after mining operations were suspended in 1990 due to the depressed uranium market. The mine extracts uranium ore from depths of over 3,000 feet below ground surface that connect to two 3300-foot deep shafts from the mine surface. The mine surface facilities are located on 285.6 acres, of which approximately 148 acres are disturbed land and the remaining 137.9 acres are undisturbed. The disturbed land consists of:

- Support (Service and Support) Facilities 93.0 acres
- Mine Water Treatment Area 28 acres
- Treated Water Discharge Pipeline 15 acres (most beyond the mine surface area)
- Ore Stockpile 6.8 acres
- Waste Pile 11.5 acres
- Storm Water Retention Ponds (2) 3.7 acres
- Access Road 4.7 acres

The included work consists of providing the equipment, personnel and materials for revegetation of the mine site and pipeline corridor after demolition and earthwork have been performed by others.

The required work includes:

- Mobilization and demobilization of contractor's equipment,
- Preparation of the work area,
- Preparation of disturbed soil surfaces for reseeding, including application of amendments and mulch.
- Reseeding of the disturbed soil areas
- Installing or replacing fencing needed to limit access to revegetation areas.

The work is represented in Drawings:

MT13-CL-01 Title Sheet

MT13-CL-02 Closeout Plan Index Sheet

MT13-CL-07 Final Grading Plan Mine Water Treatment Pond and Ore Stockpile Area

MT13-CL-08 Typical Sections - Mine Water Treatment Unit Infill

MT13-CL-09 Final Grading and Cover Plan – South Waste Rock Pile Area

MT13-CL-11 Final Grading and Cover Plan – North Waste Rock Pile Area

MT13-CL-13 Final Site Grading Plan

and in Figure C.5-1.

All areas that have been disturbed by Mt. Taylor mining operations and soil cleanup, approximately 133 acres, shall be revegetated except the storm water ponds and those areas where mining-related features, such as buildings and roads, are retained at the request of the surface owner. Regraded areas, the waste rock pile, the ore stockpile area, mine water treatment pond area, the treated water pipeline corridor, and locations of demolished facilities shall be revegetated.

Preparations for revegetation and the selected seed mix will be directed toward establishing a vegetation community that can thrive at this site and that can support grazing of livestock. Plants native to the general area shall be used as much as possible to provide for long-term stability of the soils and vegetation communities. Plant species that provide rapid initial cover shall be used in the seed mix to achieve initial soil stabilization. Species selected will not necessarily be found in the surrounding undisturbed area, but shall have been approved for use in reclamation by the Natural Resources Conservation Service (NRCS) and other appropriate government agencies.

1.2. Site Survey

The contractor shall perform its own survey to determine soil properties and site conditions that will affect revegetation efforts, native and other existing vegetation in the area, and any conditions that appear to differ from those represented in this specification and accompanying information provided by RGR. The results of this site survey shall be submitted to the Project Manager for review and approval of work performed and for verification of payment quantities.

1.3. Site Restrictions

Access to the site is limited to ingress/ egress through the main gate. All contractor personnel and visitors shall log in and out at the guardhouse. All personnel shall wear the required safety equipment as directed by the site Safety Officer while inside the mine perimeter fence.

1.4. Work Performed by Others

Prior to the commencement of this work, the shaft headframes, hydraulic control structures, selected buildings, the treated water pipeline, mine car rail, and mine water discharge pipe will be removed and the shafts will be plugged and backfilled by others. Ore from the stockpile will be removed by others for use in shaft plugging. Earthwork to backfill mine water treatment ponds, reshape the waste rock pile, place cover soil over the ponds and waste pile, erosion protection, and final grading will be performed by others.

1.5. Codes, Standards, and Regulatory Requirements

All work must be performed according to OSHA and/ or MSHA requirements. The Contractor is responsible for identifying and complying with the relevant standards and requirements.

1.6. Site Investigation Reports & Data

RGR has conducted site investigations to characterize the waste rock pile materials, soil contamination, and geotechnical properties of on-site soil. Reports of these studies and related data are included in Appendix D of the Mt. Taylor Mine Closeout/ Closure Plan.

1.7. Health & Safety Practices

1.7.1. Health & Safety Practices

Work area safety is the responsibility of the contractor. The contractor shall submit and implement a Site Safety Plan that satisfies federal, state, and RGR requirements for the type of work being performed.

For the work under this specification, Level D PSE is required. In addition, safety measures required under section 1.5 and elsewhere in federal and state regulations shall be implemented.

All contractor personnel and others within the contractor's working area must be equipped with the required PSE and must comply with the requirements cited in section 1.5.

The contractor shall have a qualified Safety Officer on site during working hours. The Safety Officer shall be responsible for enforcing all safety requirements and shall have the authority to remove from the contractor's working area anyone not complying with those requirements.

1.7.2. Site Safety & Emergency Communication

The contractor shall post emergency response phone numbers in the worker break area. The contractor shall maintain an active phone line at all times. Cell phone service is not reliable at the mine site.

1.7.3. Radiological Materials

Radiological contamination levels on the mine site do not exceed the NRC Regulatory Guide 1.86 criteria for unrestricted release and use. However, the contractor shall implement relevant portions of RGR's Radiation Safety Program Manual (RSPM) and corresponding procedures to provide for the radiation safety of workers, the public and environment. The RSPM and procedures topics include (but are not limited to) radiological work controls, development and use of non-routine procedures, access control and security, radiation monitoring surveys, radiation dose, and response to incidents and emergencies involving radioactive materials. RGR's Radiation Safety Officer and Mine Manager will provide the necessary training and oversight, but the contractor shall ensure worker compliance with the RSPM.

1.8. Field Engineering and Surveying

The contractor shall perform surveys and measurements as required under section 1.2 to verify dimensions, lines and grades, and revegetation materials described in this specification and the referenced drawings (MT12-CL series).

1.9. General Submittals

Prior to commencing the work, the contractor shall submit, in a format acceptable to RGR, the following:

- Site Safety Plan including name and qualifications of Safety Officer
- Revegetation Plan Methods, soil amendments and mulches, and seed mixes to be used for revegetation. The plan shall also describe equipment to be used, names and qualifications of key personnel, and schedule.

1.10. Construction Facilities and Field Office

1.10.1. Site Access, Field Office, Storage, and Maintenance

RGR will provide space for the contractor's field office, laydown areas, sanitary facilities, and equipment maintenance. Existing buildings, if any, will not be available for contractor use. If needed, electrical power must be arranged by the contractor with Continental Divide Electrical Coop.

Water, both potable and non-potable, is available on site. The contractor must make arrangements with RGR for pumping, storing, and discharge of water needed by the contractor.

1.10.2. Protection of Existing Facilities

The contractor shall not use, damage, or block access to site buildings and other facilities that are in use at the time of the contractor's work or that are to remain intact for post-mining land use (Drawing MT12-CL-04). Any damage or loss of use shall be repaired or compensated at the contractor's cost.

1.10.3. Temporary Environmental Controls

The contractor shall be responsible for emplacing, utilizing, and removing those measures necessary to contain contaminants, surface water and fugitive dust releases generated by the contractor's work. Such measures may include, but are not limited to,

- Spraying of clean water for dust suppression
- Storage of fuels, solvents and lubricants
- Surface water diversions and erosion control materials
- Sanitary wastes containments
- Trash containers
- Fire suppression equipment

Wildlife, including large game animals, frequently enters the site. The contractor's workers shall do nothing to attract, injure, or otherwise interfere with wildlife.

No firearms may be brought on the mine site.

2 SITE CONSTRUCTION

2.1 Site Preparation

The contractor shall prepare its office, equipment, and laydown areas as approved by RGR so as not to obstruct or interfere with RGR site operations or other contractors' operations.

2.2 Runoff Control

During the revegetation period temporary runoff controls will be used as necessary to impede or divert rainfall and snowmelt runoff from revegetated areas. Locations of temporary runoff controls shall be selected by the contractor to retard or divert runoff, trap sediment, and provide improved conditions for germination and plant establishment.

Runoff control during revegetation shall utilize the most appropriate technology available at that time, including methods recognized by the NRCS or the International Association for Erosion Control. Measures that use present technology include check dams constructed of hay bales, geotextile silt fences secured in shallow trenches, and water bars across the disturbed area and perpendicular to the slope. Tobacco net, Curlex or similar net-and-fiber mats might be used as required for protection of surfaces susceptible to rilling or wind erosion. The specific measures applied to revegetated surfaces shall be selected by the contractor based on the method most appropriate for the seeding method, erodibility and depth of the soils, degree of slope, proportion of large rocks at the surface, roughness of the surface, and anticipated rainfall.

2.3 Seed-Bed Preparation and Seeding

Seeding of the recontoured areas will employ a variety of methods, depending principally on the steepness of the slope. A large percentage of the total disturbed area will be revegetated using standard mine reclamation equipment; i.e., tracked and wheeled tractors, rangeland seed drill, and mulch applicator. In areas with slopes of 3H:1V or steeper (natural or cut slopes east of the shafts), a mixture of manual and mechanical application techniques will be used, including hand broadcasting and heavy chains dragged by a tracked dozer to incorporate the seed with the soil. When applying seed with a seed drill, the contractor shall follow the ground contours as much as possible in order to minimize the development of rills.

The contractor shall prepare surfaces for seeding by scarifying, as necessary, the surface finish-graded by others and by creating minor depressions to provide a proper seed bed. Seed shall then be applied by either rangeland drill or broadcast. Broadcast seed shall be incorporated into the growth medium by hand raking or some mechanical means such as heavy chains dragged behind tracked dozers. The disturbed surfaces shall be reseeded using the seed mix described in Table C.5.1. The method of reseeding shall be determined according to location and size of area to be reseeded. In general, drill seeding shall be used on flatter slopes covering larger areas. Broadcast seeding shall be used on shorter, steeper slopes. Hand seeding may be required on longer or very steep slopes.

2.4 Revegetation Species

The predominant native grass species in the area is blue grama (NMEI, 1974). Therefore, this species shall be the primary species in the revegetation seed mix if it is readily and economically available at the time of closeout. A species mix previously approved for use at the Mt. Taylor Mine is listed in Table C.5.1. Several cool-season and warm-season grass and shrub species are proposed in this plan to reestablish species that have been severely impacted by grazing and to optimize the chances for successful germination and establishment, regardless of the particular microclimate.

Other species in the mix may be selected or substituted on the basis of their suitability for the terrain and climate, compatibility with native species and nutrient value to livestock. If the contractor proposes other species, additional factors in the selection of species shall include (1) likelihood of becoming a "pest" species in the area, (2) ability to achieve quick cover with a minimum of care and moisture, (3) strength of their root system for stabilizing the soil, and (4) ability to act as a nurse crop for the later establishment of local grasses, shrubs and forbs.

2.5 Seed Origin and Quality

Seed shall be harvested from native stands within 200 miles north, 300 miles south, 200 miles west, and 100 miles east of Mt. Taylor. If seed from native stands is not available, seed of suitable quality grown under appropriate conditions, or seed of released cultivars known to be adapted to the San Mateo area, shall be used. All seed must be certified, and each seed bag must have attached to it a complete label with certification information.

2.6 Mulching

After seeding of the soil surface, that surface shall be mulched to slow runoff and provide temporary protection to newly emergent vegetation. Mulching in most cases will be accomplished by a mulch blower and crimped by a tracked dozer. Alternatively, the mulch may be tracked into the soil surface with a dozer, crimped by mechanical crimper, or crimped by hand. If hand application of mulch is required, crimping will be accomplished by hand as well.

Hay mulch will be acceptable, but other mulch types may also be used with prior approval. To reduce the likelihood of introducing small grain species to the area, native grass hay shall be used. Blue grama or similar hay may be available locally and would be preferable since its use would likely provide additional seed source to the revegetated areas. Alfalfa *(Medicago sativa)* shall be used if native grass hay is unavailable or impractical. Hay mulch shall be spread by means of a blower, or by hand on steep

slopes, applied at a rate of approximately 1-2.5 ton per acre.

Chipped vegetation may be used as mulch, with approval, after it has been aged. The amount of aging needed to make the chipped vegetation suitable for mulch shall be determined by field observations covering sufficient periods of time to determine aging requirements under the conditions prevailing at the site. Where rock (crusher fines) will be placed over the soil cover, actual organic mulch may be reduced to 80% of the amount that would be needed without rock.

2.7 Fencing

Upon completion of mulching, the contractor replace fence that was damaged or had to be removed for revegetation. The contractor shall also install 2 ¼ inch mesh chain link fences, eight feet high, to enclose the Mine Water Treatment Area and the waste rock pile. An additional 2000 feet of this fence shall be installed around the mine shafts area (#9 under Area Description in Drawing MT12-CL-02) to prevent entry to the shaft areas. Each fenced area shall have one hinged 12-feet wide gate. The materials and construction shall conform to RR-F-191/1D: FEDERAL SPECIFICATION RR-F-191K/GEN. FENCING, WIRE AND POST, METAL.

2.8 Monitoring

Monitoring of revegetated areas shall be conducted on a periodic basis to assess revegetation success against an interim standard (section 2.9). Success of both germination and establishment will be dependent in large part on the moisture received in the summer and winter months and variations from year to year. Monitoring activities shall be designed and scheduled to recognize this.

An annual survey of the revegetated areas shall be conducted to determine species composition and vegetation cover, frequency and density. Since establishment of vegetation is a function of its ability to reproduce, vegetation shall also be assessed for its reproductive status, as well as its overall vigor. The annual survey shall be conducted toward the end of the growing season, no later than early September by a botanist or other qualified vegetation specialist. Survey results shall be analyzed and summarized to aid in determining the need for any changes in management practices or the need for reseeding or other supplementary practices.

Less formal monitoring shall be conducted through the year by RGR personnel to identify conditions in the revegetated areas that may require attention.

2.9 Revegetation Success

An interim technical standard based on range site descriptions has been proposed and is described in Table C.5.2. Range site descriptions were obtained from the Natural Resource Conservation Service (NRCS, 1980) for soil mapping units existing on the mine site. This standard will remain in effect until either the volunteer revegetation success is determined to support a higher standard or a test plot program has produced acceptable results that support a more site-specific standard.

3 GENERAL QUALITY ASSURANCE AND QUALITY CONTROL

3.1 Reviews

RGR shall meet with the contractor at the start of work each day to review the previous day's Daily Report and any deliverable from the contractor.

3.2 Daily Reports

Contractor shall prepare a written daily report of each working day. This report shall include a record of the units and quantities of work performed, events or conditions adversely affecting the work, and any deviations from the drawings or this specification necessitated by conditions encountered. This record shall be subject to review and independent verification by RGR.

3.3 Test Reports

The contractor shall submit certifications from the vendor for all seed to be applied.

The contractor shall conduct and report the results of the annual survey for each year until the New Mexico MMD has determined that the vegetation success standards have been met. These standards will be determined in consultation with the contractor, RGR, and MMD.

4 FINAL ACCEPTANCE AND CONTRACT CLOSEOUT

4.1 Substantial Completion

The work will be substantially complete when all work required under sections 2 and 3 has been completed by the contractor and accepted by RGR.

4.2 Close-Out Documentation

The contractor shall submit written documentation, in a form acceptable to RGR, that all units of work have been completed in accordance with this specification. This documentation shall include quantities of work performed in accordance with the line items in the contractor's bid schedule that have been approved in writing by RGR. The documentation shall also include the contractor's affirmation that all regulatory requirements and environmental standards applicable to the work have been met.

The documentation shall bear the signature of the contractor's officer with signatory authority.

4.3 Final Payment

Final payment shall be made after close-out documentation has been accepted and approved by RGR.

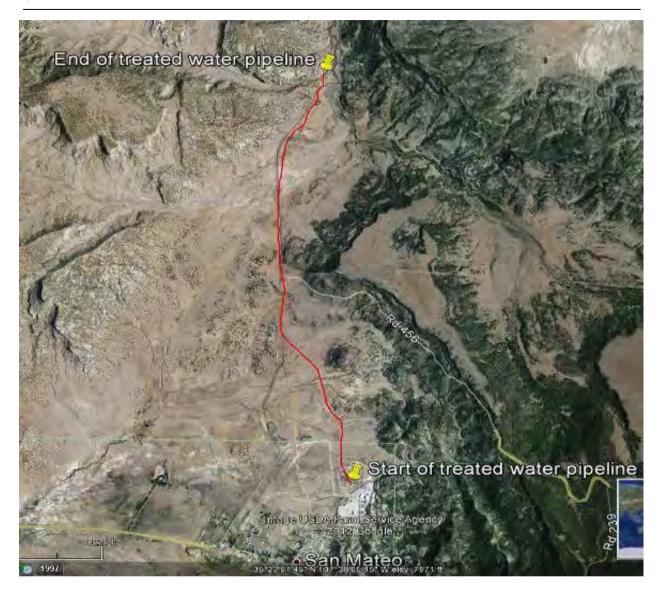


Figure C.5-1 Treated Water Pipeline

TABLE C.5.1SEED MIX: SELECTED SPECIES AND PLANTING RATES

1. Western wheatgrass (Agropyron smithii) Rate: 6 PLS/ft²

Cool season native perennial grass, reproduces from seeds and rhizomes, growth starts when daytime temperatures reach 12-13 C, grows in dry, rocky soils.

- 2. Winterfat (Ceratoides /anata)* Rate: 2 PLS/ft²
- 3. Blue grama (*Boute/oua gracilis*)* Rate: 6.0-6.5 PLS/ft²

Warm season native perennial grass, reproduces from seed, tillers, and rhizomes,

growth starts May-June, grows on rock slopes.

- 4. Galleta (Hilaria jamesii) Rate: 6 PLS/ft²
- 5. Alkali Sacaton (Sporobolus airoides) Rate: 6 PLS/ft²
- 6. Mountain mahogany (Cercocarpus montanus) Rate: 2 PLS/ft²
- 7. Fourwing saltbush (Atriplex canescens) Rate: 2 PLS/ft²

Evergreen native perennial shrub, reproduces from seeds, grows on grassy

uplands, excellent reclamation species.

- 8. Globemallow (Sphaeralcea fend/en) Rate: 2 PLS/ft²
- 9. Narrowleaf Penstemon (Penstemon angustifo/ia) Rate: 2 PLS/ft²
- 10. New Mexican feathergrass (Stipa neomexicana) Rate: 6 PLS/ft²

Cool season native perennial grass, reproduces by seed and tillers, growth starts mid-

spring, grows on rocky slopes.

 Perennial flower mix – as available, African Daisy, Cornflower, Perennial Gaillardia, Annual Gaillardia, Black-eyed Susan, Evening Primrose, Baby's Breath, Sweet William, Blue Flax, Shasta Daisy, Sweet Alyssum, Corn Poppy, California Poppy, Catchfly, Wall Flower, Siberian, Rocky Mtn. Penstemon, Prairie Coneflower, Spurred Snapdragon, Plains Coneflower, Purple Coneflower Rate: 6-8 lb./acre

* Black grama may be substituted for these species. Other variations and substitutions may be made based on cost and availability of seed at the time of closeout.

Seed origin and auality specifications: Seed should be harvested from native stands within 200 miles north. 300 miles south. 200 miles west and 100 miles east of Mt. Tavlor. If seed from native stands is not available. seed of suitable quality grown under appropriate conditions or seed of released cultivars known to be adapted to the San Mateo area may be used. All seed must be certified, and each seed bag must have attached to it a complete label with certification information.

TABLE C.5.2

INITIAL INTERIM REVEGETATION SUCCESS STANDARDS

MT. TAYLOR MINE CLOSEOUT PLAN

POTENTIAL PLANT COMMUNITY FROM NRCS RANGE SITE DESCRIPTIONS

Section IIE, Technical Guide

	Perce	ntage of Potential Pr	oduction
Natural Plant Species	Clayey Bottomland	Bottomland	Average
	Mapping Unit 257	Mapping Unit 57	
Western Wheatgrass	35-45	20-30	32
Alkali Sacaton	5-10	30-40	21
Vine Mesquite	10-15	1-5	7
Blue Grama, Spike Mulhy, Galleta	15-25	10-15	16
Bottlebrush Squirreltail	1-3	1-5	2
Fourwing Saltbush	3-10	3-10	6
Winterfat	1-3		2
Rabbitbush, Broom Snakeweed	1-5	1-5	3
Forbs	3-8	1-5	4
others	1	9	5
Ground Cover, %	50	55	52
Production, Ib./acre	1250-3200	1200-3000	2162

PROPOSED INITIAL INTERIM STANDARDS

Plant Species	Expected Percentage of Production	Standard
Western Wheatgrass	32	20-45
Alkali Sacaton	20	5-40
New Mexican Feathergrass	20	10-30
Blue Grama, Spike Mulhy, Galleta	16	10-25
Fourwing Saltbush	6	3-10
Winterf	2	1-3
Mountain Mahogany	1	0-5
Globemallow	1	0-5
Narrowleaf Penstemon	1	0-5
others	1	0-10
Ground Cover, 50% of potential		
Production, Ib./acre 70% of potential		

Variations and substitutions may be made in the seed mix, based on seed availability and cost at time of closeout.

(attach Revegetation and Weed Management Plan here)

C.6 WELL AND CONDUIT PLUGGING

1 GENERAL TECHNICAL REQUIREMENTS

1.1. Summary of Work

Rio Grande Resources Corporation (RGR) is owner and operator of the Mt. Taylor Uranium Mine located in Cibola County, New Mexico in Section 24, T13N, R8W, NMPM (Drawing #MT13-CL-01). The mine site is 1/2 mile northeast of the Village of San Mateo and is accessible from New Mexico State Route 605. At the time of this submittal, the mine remains on standby after mining operations were suspended in 1990 due to the depressed uranium market. The mine extracts uranium ore from depths of over 3,000 feet below ground surface that connect to two 3300-foot deep shafts from the mine surface

The included work consists of providing the equipment, personnel and materials for plugging water wells and utility conduits to depths of more than 3000 feet. The required work includes:

- Mobilization and demobilization of contractor's equipment,
- Preparation of the work area,
- Tremie grouting of approximately 20 deep (>2000 feet) wells
- Tremie grouting of shallow abatement monitoring wells
- Tremie grouting of two utility conduits.

The work is represented in Drawings:

MT13-CL-01 Title Sheet

MT13- CL-02 Closeout Plan Index Sheet

1.2. Site Survey

The Contractor shall perform its own survey to determine access to wells and water.

1.3. Site Restrictions

Access to the site is limited to ingress/ egress through the main gate. All Contractor personnel and visitors shall log in and out at the guardhouse. All personnel shall wear the required safety equipment as directed by the site Safety Officer while inside the mine perimeter fence.

1.4. Work Performed by Others

Not applicable.

1.5. Codes, Standards, and Regulatory Requirements

All work must be performed according to OSHA and/ or MSHA requirements. The Contractor is responsible for identifying and complying with the relevant standards and requirements.

1.6. Site Investigation Reports & Data

Not applicable.

1.7. Health & Safety Practices

1.7.1. Health & Safety Practices

Work area safety is the responsibility of the contractor. The contractor shall submit and implement a Site Safety Plan that satisfies federal, state, and RGR requirements for the type of work being performed.

For the work under this specification, Level D PSE is required. In addition, safety measures required under section 1.5 and elsewhere in federal and state regulations shall be implemented.

All contractor personnel and others within the contractor' working area must be equipped with the required PSE and must comply with the requirements cited in section 1.5.

1.7.2. Site Safety & Emergency Communication

The contractor shall post emergency response phone numbers in the worker break area. The contractor shall maintain an active phone line or mobile phone at all times. Cell phone service is not reliable at the mine site.

1.7.3. Radiological Materials

Radiological contamination levels on the mine site do not exceed the NRC Regulatory Guide 1.86 criteria for unrestricted release and use. However, the contractor shall implement relevant portions of RGR's Radiation Safety Program Manual (RSPM) and corresponding procedures to provide for the radiation safety of workers, the public and environment. The RSPM and procedures topics include (but are not limited to) radiological work controls, development and use of non-routine procedures, access control and security, radiation monitoring surveys, radiation dose, and response to incidents and emergencies involving radioactive materials. RGR's Radiation Safety Officer and Mine Manager will provide the necessary training and oversight, but the contractor shall ensure worker compliance with the RSPM.

1.8. Field Engineering and Surveying

Not applicable.

1.9. General Submittals

Prior to commencing the work, the contractor shall submit, in a format acceptable to RGR, the following:

- Site Safety Plan including name and qualifications of Safety Officer
- Well Plugging Plan Equipment, methods, and materials to be used for well and conduit plugging. The plan shall also describe names and qualifications of key personnel, and schedule for performance of the work. This plan shall be submitted for approval by the State Engineer before well plugging begins.

1.10. Construction Facilities and Field Office

1.10.1. Site Access, Field Office, Storage, and Maintenance

RGR will provide space for the contractor's field office, laydown areas, sanitary facilities, and equipment maintenance. Existing buildings, if any, will not be available for contractor use. If needed, electrical power must be arranged by the contractor with Continental Divide Electrical Co-op.

Water, both potable and non-potable, is available on site. The contractor must make arrangements with RGR for pumping, storing, and discharge of water needed by the contractor.

1.10.2. Protection of Existing Facilities

The contractor shall not use, damage, or block access to site buildings and other facilities that are in use at the time of the contractor's work or that are to remain intact for post-mining land use (Drawing MT13-CL-04). Any damage or loss of use shall be repaired or compensated at the contractor's cost.

1.10.3. Temporary Environmental Controls

The contractor shall be responsible for emplacing, utilizing, and removing those measures necessary to contain contaminants, surface water and fugitive dust releases generated by the contractor's work. Such measures may include, but are not limited to,

- Spraying of clean water for dust suppression
- Storage of fuels, solvents and lubricants
- Surface water diversions and erosion control materials
- Sanitary wastes containments
- Trash containers
- Fire suppression equipment

Wildlife, including large game animals, frequently enters the site. The contractor's workers shall do nothing to attract, injure, or otherwise interfere with wildlife.

No firearms may be brought on the mine site.

2 SITE CONSTRUCTION

2.1 Site Preparation

The contractor shall prepare its office, equipment, and laydown areas as approved by RGR so as not to obstruct or interfere with RGR site operations or other contractors' operations.

2.2 Utility Conduit Plugging

Two vertical utility conduits, 11.5-inch diameter steel casings extending from ground surface to mine level, shall be plugged. Both of these shall be grouted from bottom of casing to ground surface using tremie methods as required by 19.27.4.NMAC. The grout mix shall be 4:1 cement to bentonite; however, the contractor may propose an alternative mix that will develop at least equal properties when solidified.

Grouting shall be continuous in each conduit until the casing is filled to ground surface. Before the contractor leaves the site at the completion of all well plugging, it shall inspect each conduit I not sooner than 24 hours after the tremie filling of each conduit is complete. The contractor shall top off any casing that does not have a solid column of grout to ground surface.

If this procedure is not consistent with the well plugging plan approved by the Office of the State Engineer (OSE), the OSE-approved plan shall be applied.

2.3 Well Plugging

The contractor shall plug the deep wells listed on Table C.6.1. Each of these shall be grouted from bottom of casing to ground surface using tremie methods as required by 19.27.4.NMAC. The grout mix shall be 4:1 cement to bentonite; however, the contractor may propose an alternative mix that will develop at least equal properties when solidified. Grouting shall be continuous in each well until the well casing is filled to ground surface. Before the contractor leaves the site at the completion of all well plugging, it shall inspect each well not sooner than 24 hours after the tremie filling of each well is complete. The contractor shall top off any casing that does not have a solid column of grout to ground surface.

If this procedure is not consistent with the well plugging plan approved by the Office of the State Engineer (OSE), the OSE-approved plan shall be applied.

2.4 Abatement Monitoring Well Plugging

Up to five shallow monitoring wells may remain at the time of closeout, These 2-4 inch diameter wells with PVC casing are used during the NMED Stage 2 Abatement Plan to observe shallow perched water at the soil/ bedrock interface at depths up to 60 feet below and west of the waste rock pile. One or more of these wells will probably be decommissioned and plugged prior to mine site closure; those that remain shall be plugged using the same methods and materials used for the deep wells.

3 GENERAL QUALITY ASSURANCE AND QUALITY CONTROL

3.1 Reviews

RGR shall meet with the contractor at the start of work each day to review the previous day's Daily Report and any deliverable from the contractor.

3.2 Reports

Contractor shall prepare a written report documenting the plugging of each well in a form acceptable to the State Engineer. This report shall include a record of the units and quantities of work performed, events or conditions adversely affecting the work, and certification by a licensed well driller that all requirements of 19.27.4 NMAC have been satisfied. This record shall be subject to review and independent verification by RGR.

4 FINAL ACCEPTANCE AND CONTRACT CLOSEOUT

4.1 Substantial Completion

The work will be substantially complete when all work required under sections 2 and 3 has been completed by the contractor and accepted by RGR.

4.2 Close-Out Documentation

The contractor shall submit written documentation, in a form acceptable to RGR, that all units of work have been completed in accordance with this specification. This documentation shall include quantities of work performed in accordance with the line items in the contractor's bid schedule that have been approved in writing by RGR. The documentation shall also include the contractor's affirmation that all regulatory requirements and environmental standards applicable to the work have been met.

The documentation shall bear the signature of the contractor's officer with signatory authority.

4.3 Final Payment

Final payment shall be made after close-out documentation has been accepted and approved by RGR.

Table C.6.1	Wells and Conduits to Plu	Jg
-------------	---------------------------	----

Well No.		Coordinates D 83)	Collar Elevation, Feet AMSL	Depth (feet)	Casing/liner Size
	E	Ν			
2	2782597	1579115	7335	2920	9 5/8" casing
9	2782983	1579716	7333	2845	9 5/8" casing
11	2783246	1578843	7442	3028	9 5/8" casing
12	2783442	1579417	7414	2940	9 5/8" casing
13	2782068	1579376	7317	3185	10 3/4" casing , 7" liner
14	2782170	1578805	7331	3205	10 3/4" casing , 7" liner
15	2782520	1578497	7339	3205	10 3/4" casing , 7" liner
16	2782997	1578315	7388	3275	10 3/4" casing , 7" liner
17	2783566	1578569	7492	3342	10 3/4" casing , 7" liner
18	2783783	1578902	7495	3314	10 3/4" casing , 7" liner
19	2783783	1579490	7449	3274	10 3/4" casing , 7" liner
20	2783507	1579942	7381	3223	10 3/4" casing , 7" liner
21	2782967	1580148	7316	3184	10 3/4" casing , 7" liner
22	2782464	1579896	7302	3195	10 3/4" casing , 7" liner
SM-24-38	2783008	1579116	7390	3535	10 3/4" casing , 7" liner
SM-24-43	2782953	1579065	7347	3535	10 3/4" casing , 7" liner

Mine Utility Conduits (2) - on refrigeration bench

Observation Wells (5) - see Figure 1-4 of the July 2012 CCP , Rev.1 2013, or Figure 1-6 of the April 2013 CCP, Rev 1 2013

APPENDIX D

- D.1 2012 Soil Investigations
- D.2 Radiological Investigation
- D.3 Laboratory Test Results
- D.4 Original Closeout Plan Soil Data

At Taylo	r Mine	- Borrow Test	Pit Log		Pit #	MT-1-F
ocation			GPS N 35-20.578'	W 107-38.001'		
ocation De	1.1.1.1.1.1.1.1			– South East Side of F	ond # 1	
Field Engine		tan Fitch / Ed I			thod: Small Bok	ocat Backhoe
Date:		pril - 10-2012		Operator:		
1000	CALL AND		arm – Sunny – 60 to 3			
	Graphic	e conditions. vv			50 L	a desta de la compañía
0	Log	Sample #	Description (U	SCS, texture, density, co	olor, moisture, od	or, inclusions, etc.)
U		MT - 1- F Depth 6"	Silty Clay, mixed with	h some coarse sand, tra	ce gravel, dark bro	own
1						
2						
3						
4						
5						
6	-					
		_				Y 1
7						
8						
Fotal Depth Comments:	1.1	2" DEEP art of the sample	for sent for Geotechnical	testing - Part for Environn	nental Testing.	

Mt Taylor Min	e - Borrow Tes	t Pit Log		Pit #	MT-2-D
Location Pond #	2 berm	GPS N 35-20.541' W	107-38.057'		
Location Description	on	Top edges of Ponds –	South Side of Pond # 2		
Field Engineer:	Stan Fitch / Ed	Loescher	Excavation Method:	Small Bob	ocat Backhoe
Date:	April - 10-2012	10:15 am	Operator:		
1		/arm – Sunny – 60 to 700	d		
Graph	id		and a local real of	A	Sector of the
0 0	Sample #	Description (USC	S, texture, density, color, m	ioisture, odd	or, inclusions, etc.)
	MT - 2- D Depth 6"	Clayey Silt, some sand,	trace roots, medium brown	n	
1					
2					
3					
4					
5					
6					
7					
8					
Tetel Daniti	100 0555				
Total Depth: Comments:	12" DEEP Part of the sample	for sent for Geotechnical tes	ting - Part for Environmental	Testing.	
Checked:			Date:		
Approved:			Date:		

Vit Tayle	or Mine	- Borrow Tes	t Pit Log	Pit #	MT-3-F
Location Pond # 3 Berm GPS N 35-20.632' W				7-38.089'	
ocation D	escription		Top edges of Ponds – Nort	h East Corner of Pond # 3	
ield Engin	eer: S	tan Fitch / Ed	Loescher	Excavation Method: Small B	obcat Backhoe
Date:	A	pril - 10-2012	11:10 am	Operator:	
Neather a	nd Moistur	e Conditions: W	arm – Sunny – 60 to 70d		
	Graphic Log	Sample #	1 Constant of	tture, density, color, moisture, d	odor, inclusions, etc.)
0		MT -3-F Depth 6"	Silty Clay, some sand, trace	gravel, dark brown	
1		5.5			
2					
3		1.1	1		
4					
5					
6					
7					
8					
otal Depth	. 1	2" DEEP			
otal Deptr Comments	51		for sent for Geotechnical testing -	Part for Environmental Testing.	
Checked:				Date:	
Approved:				Date:	

Mt Taylo	r Mine	- Borrow Test		Pit #	MT-4-F	
Location I			GPS N 35-20.661' W	107-38.220'		
Location De			Top edges of Ponds – N		nd # 4	
Field Engine	er: S	tan Fitch / Ed I		Excavation Method:	110000	ocat Backhoe
Date:		pril - 10-2012		Operator:	ornan box	out buointoe
	1.1.1	A TY ST Y		operatori		
	Graphic	e Conditions: VV	arm – Sunny – 60 to 70d			
	Log	Sample #	Description (USCS,	texture, density, color, m	oisture, odd	or, inclusions, etc.)
0		MT -4-F Depth 6"	Sandy Clay, trace roots,	dark brown		
1		•				
2						
3						
	111		12			
4						
5						
5						
6						
7						
8						
Total Death						
Total Depth: Comments:		2" DEEP art of the sample	for sent for Geotechnical test	ng - Part for Environmental	Festing.	

ocation Por	Mine - Borrow Test	t Pit Log		Pit #	MT-5-F		
Location Por Location Descr Field Engineer:	ond #5 Berm	VIt Taylor Mine - Borrow Test Pit Log					
1201010		THE REPORT OF THE CONTRACT OF A LOCAL STREET	107-38.217'				
ield Engineer:	ription	Top edges of Ponds – S	outh West Corner of Po	nd # 5			
	: Stan Fitch / Ed	Loescher	Excavation Method:	Small Bob	ocat Backhoe		
Date:	April - 10-2012	9:45 am	Operator:				
Veather and N	Moisture Conditions: W	arm – Sunny – 60 to 70d					
Gr	raphic Log Sample #	1.	texture, density, color, m	oisture, odo	or, inclusions, etc.)		
0	MT -5-F Depth 6"	Clayey Silt, some sand, t	race roots, medium browr	6			
1							
2							
3							
4		· · · · · · · · · · · · · · · · · · ·					
5							
6							
7							
8							
atal Deaths	12" DEED						
otal Depth: omments: Part of t	12" DEEP the sample for sent for C	Geotechnical testing - Part for	Environmental Testing.				
hecked: pproved:			Date: Date:	_			

Mt Taylor Min	e - Borrow Tes	Pit Log	Pit	# MT-7-C
Location Pond #		GPS N 35-20.526' W	107-38.148'	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Location Description	on	Top edges of Ponds – S	outh East Corner of Pond # 7	,
Field Engineer:	Stan Fitch / Ed	oescher	Excavation Method: Sma	all Bobcat Backhoe
Date:	April - 10-2012	9:55 am	Operator:	
		arm – Sunny – 60 to 70d		
Graphi Log	ic Sample #	Description (USCS,	texture, density, color, moistur	re, odor, inclusions, etc.)
0	MT -7-C Depth 6"	Clayey Silt, some sand, t	race roots, light brown	
1				
2				
3		1		
4				
5				
6				
7				
8				
Total Depth:	12" DEEP			
Comments:	a care to a t	for sent for Geotechnical testi	ng - Part for Environmental Testing	g.
Checked:			Date:	
Approved:			Date:	

It Taylor Mine -	Borrow Test	Pit Log		Pit #	MT-8-F
ocation Pond #8 Ber	m	GPS N 35-20.693' W	107-38.108'	1000	
ocation Description		Top edges of Ponds –	South West Corner of Po	ond # 8	
ield Engineer: Sta	n Fitch / Ed I	oescher	Excavation Method:	Small Bob	ocat Backhoe
ate: Ap	ril - 10-2012	9:50 am	Operator:		
	Conditions: W	arm – Sunny – 60 to 70	d		
Graphic Log	Sample #	Description (USC	S, texture, density, color, r	noisture, odd	or, inclusions, etc.)
0	MT -8-F Depth 6"	Clayey Silt, some sand,	trace gravel, brown		
2					
3					
4					
5				<u>.</u>	
6	7.6.1	-			
7					
8					
otal Depth: 12"	DEEP			-	
	t of the sample	for sent for Geotechnical te	sting - Part for Environmental	Testing.	
necked:			Date:		

Mt Tayl	or Min	e - Borrow Test	Pit Log		Pit #	MT-Borrow
Location	Backgr	ound borrow area	GPS N 35-20.724' W	/ 107-38.759'		
Location D	Descriptio	on	NE Corner of the Property	in the main proposed borrow	area.	
Field Engir	neer:	Stan Fitch / Ed Lo	bescher	Excavation Method:	Small Bob	ocat Backhoe
Date:		April - 10-2012		Operator:		
	and Mois		rm – Sunny – 60 to 70)d		
1	Graphi	q		a and a state that		and the second second
	Log	Sample #	Description (USC	CS, texture, density, color, n	noisture, odo	or, inclusions, etc.)
			(0-24") Clayey Silt, so	me sand, trace roots grave	l, brown	
			Parket kara			
	1					
		1				
		LAT L	A			
	4	MT -borrow Composite Sample	(24"- 66") Silty Sand w	vith Clay, trace gravel, occa	sional gray sa	and seams, brown.
		24"-66"				
3	3					
L	4					
1	5	-				
_						
			(66" – 72") Clayey Sand	d, with silt, trace roots and	gravel, brow	n.
1	6		1			
-		V	-			
	7					
8	8					
Total Dept		72" DEEP				
Comments	5:	Part of the sample fo	r sent for Geotechnical te	sting - Part for Environmental	Testing.	
Checked:				Date:		

Mt Taylor Mi	ne - Borrow Tes	Pit #	MT-A-C	
Location Pond	# Area "A"	GPS N 35-20.650' W	107-38.046'	
Location Descript	tion	Top edges of Ponds – N	orth West Corner of Area A	
Field Engineer:	Stan Fitch / Ed	Loescher	Excavation Method: Small Bok	ocat Backhoe
Date:	April - 10-2012	10:55 am	Operator:	
Weather and Mo	isture Conditions: W	arm – Sunny – 60 to 70d		
Grap	hic		Anna danatar aslan matakuna ada	a baduatana ita b
0	g Sample #	Description (USCS,	texture, density, color, moisture, odo	or, inclusions, etc.)
	MT -A-C Depth 6"	Silty Sand, some clay, tra	ce gravel, light brown	
1				
2				
3				
4				
5		1		
6				
7				
8				
Total Depth: Comments:	12" DEEP			
comments.	Sample submitted	for Environmental Testing.		
Charlest			Data	
Checked: Approved:			Date: Date:	

Mt Taylor Mine - Borrow Test Pit Log					Pit #	MT-OP-E	
-		Ore Pile Pond)		07-38.062'			
ocation De		1	Top edges of Ponds – No		ond # OP		
		tan Fitch / Ed I		Excavation Method:		ocat Backhoe	
Field Engineer: Stan Fitch / Ed Loescher Date: April - 10-2012 9:10 am				Operator:	Sindi Dob	Cat Backhoc	
Date:				Operator.			
Veather ar	d Moistur Graphic	e Conditions: VV	arm – Sunny – 60 to 70d 				
	Log	Sample #	Description (USCS, t	exture, density, color, m	noisture, odo	or, inclusions, etc.)	
0		MT -OP-E Depth 6"	Sandy Clay, trace gravel, medium brown				
1							
2							
3							
4							
5							
6							
7							
8							
otal Depth	: 1:	2" DEEP					
omments:		1.1.1.1.1.1.1.1.1	for sent for Geotechnical testin	g - Part for Environmental	Testing.		
hecked:				Date:			
pproved: Date:							

Mt Tayl	or Mine V	Vater Treatn	nent Pond Test Pit Log		Pit #	1	
Location Pond 1 (GPS) N 35°20.579' W 107°3							
Location D	escription		MT-1-E				
Field Engineer: B. Everett			Excavation Method: Backhoe/Shovel				
Date:		4/10/2012		Operator: K. Stric	kland	•	
Weather a	nd Moisture	Conditions:	clear, sunny, warm; cool and	windy in afternoon			
	Graphic		1			. Industry	
Depth	Log	Sample #	Description (USCS, texture, density, color, moisture, odor, inclusions, e 0-6": Sediment, silty to sandy clay, slightly moist				
	111146	S1-01-01	Sample collected at 0-4" bgs a	at 10:45			
1		\$1-01-02	6"-26": Clay sediments, trace Sample collected at 16-18" bg		e silt lenses, dark	gray, dense, moist	
3		51-01-03	26-67": Sandy clay, hard, mo Sample collected at 44-48" bg				
			TD = 67" bgs				
			101				
6							
1							
8	-						
fotal Dept	h:	67" bgs					
Comments	: Po Cl	ative soil 26-67"					
checked:				Date:			
Approved:		Everett		Date:	5/7/2012		

Mt Taylo	r Mine	Nater Treat	ment Pond Test Pi	it Log		Pit #	2
Location		MT-1-D	(GPS) N	W	1		
Location De	escription		Distal to inlet				
Field Engin	eer:	B. Everett			Excavation N	lethod: Backhoe/Sho	vel
Date:		4/10/2012			Operator: K	. Strickland	
Weather a	nd Moistur	e Conditions:	clear, sunny, warm;	cool and win	dy in afternoo	n	
Depth 0	Graphic Log	Sample #	Description	(USCS, text	color, moisture, odo	, inclusions, etc.)	
		SL-02-01	Description (USCS, texture, density, color, moisture, odor, inclusions, 0-10": Pond sediment, silty sand, friable, mottled brown and gray, moist Sample collected at 0-4" bgs at 11:40				
1		SL-02-02	10"-30": Silty sand, Sample collected at			rown, moist	
3		SL-02-02	30-48": Silty sand, s	ome clay, fria	ble, yellow-br	own, slightly moist	
4		52 62 65	TD = 48" bgs				
5						-	
6							
7							
8							
Total Depth	:	48" bgs	A				
Comments:	N		clay liner at this locatic 10-inches	on.			
Checked:							

Mt Taylo	or Mine	Water Treat	ment Pond Test Pit Log Pit # 1
Location		Pond 3	(GPS) N 35°20.592' W 107°38.02'
Location D	escription		MT-3-E
Field Engin	eer:	B. Everett	Excavation Method: Backhoe/Shovel
Date:		4/10/2012	Operator: K. Strickland
	100 - 10 - 10 - 10 - 10 - 10 - 10 - 10	e Conditions:	clear, sunny, warm; cool and windy in afternoon
Depth 0	Graphic Log	Sample #	Description (USCS, texture, density, color, moisture, odor, inclusions, etc.) 0-4": Sediment and organic matter, clayey silt - siltiy sand, light gray, varved lenses of
1		53-01-01	settling 4"-20": Clay and bentonite, dark gray, with lenses of silt, pond liner material Sample collected at 0-12" bgs
		\$3-01-02	20"-22": Silt - clayey silt, dense, white, wet. Sample collected at 20-26" bgs at 08:50
2	111111		22"-26": Clayey Silt, brown, wet at 25 ft bgs
3		S3-01-03	26"-64": Clay, hard, dense, brown, moist, trace gravel and some silt/sand lenses. Sample collected at 26-36" bgs at 09:40
		\$3-01-04	64"-75": Silty Sand, friable, yellow-brown, trace gravel Sample collected at 64-75" bgs at 09:40
6			TD - 75" bgs
		0	
8			
otal Depth		75" bgs	
Comments:	Cl	ond sediments 0 ay 4-20" bgs ayey silt 20-26"	
		ay 26-64" bgs ative material 64	1" bgs

Mt Taylo	or Mine	Water Treatr	ment Pond Test Pit Log	Pit # 2	
Location		Pond 3	(GPS) N 35°20.605'	W 107°38.106'	
Location D	escription		MT-3-D		
Field Engin	eer:	B. Everett		Excavation Method: Backhoe/Shovel	
Date:		4/10/2012		Operator: K. Strickland	
Weather a	nd Moistur	e Conditions:	clear, sunny, warm; cool a	nd windy in afternoon	
Depth	Graphic Log	Sample #	Description (USCS	, texture, density, color, moisture, odor, inclusio	ons, etc.)
0		S3-02-01	0-13": Sediment, silty to sa Sample collected at 0-12"	ndy clay, slightly moist	
1			13"-19": Clay sediments, v	arved white and dark gray, dense, moist	
			19"-37": Clay, dense brown	n, moist	
2		\$3-02-02	Sample collected at 26-30'	bgs at 10:30	
3			37"-54": Silty sand, friable,	yellow-brown, moist, native soil	-
4		\$3-02-03	Sample collected at 50-54' TD = 54" bgs	bgs at 10:30	
5					
6					
/	1				
8					
Total Depti	1:	54" bgs			
Comments	Pc Cl	ond sediments 0 ay 19-37" bgs ative soil 37-54"			
Checked:				Date:	_
Approved:	-	Everett		Date: 5/7/2012	

Mt Taylo	or Mine	Water Treatm	ent Pond Test Pit Log		Pit #	MT-4-D
	Pond #4		GPS N 35-20.644' W	107-38.178'		
Location D			Bottom of Pond – North	No. of the second se		
Field Engin		Ed Loescher		Excavation Method:	Small Bol	ocat Backhoe
Date:		April - 10-2012	2:00 pm	Operator:		
			arm – Sunny – 70d			
weather a	Graphic	re conditions. vv	ann – Sunny – 700			57 T (* 6) ***
	Log	Sample #	Description (USCS,	texture, density, color, n	noisture, od	or, inclusions, etc.)
0 12″		MT -4-D-S1 Depth 6"	(0"-12") Pond Sediment	- Sandy Clay with some	silt– Dark B	rown
1		MT -4-D-S2 Depth 14"	(12"- 42") Soft –fine grai bobcat. (<i>Natural Soil)</i>	ined- Sandstone, highly fr	actured, wh	ite, easily excavated with
3 42" 48" 4		MT -4-D-S3 Depth 48"	(42"- 48") Sandy Silt Bro	own – trace gravel <i>(Natur</i>	al Soil)	
5						
7						
8						
Total Dept		18" DEEP				
Comments						
Checked:				Date:		
Approved:				Date:		

Mt Taylo	or Mine	Water Treatme	ent Pond Test Pit Log		Pit #	MT-4-E
Location	Pond # 4	1 Bottom	GPS N 35-20.522' W 10	7-38.170′		
Location D	escription	1	Bottom of Pond – South E	nd		
Field Engin	eer:	Ed Loescher		Excavation Method:	Small Bob	cat Backhoe
Date:		April - 10-2012	1:35 pm	Operator:	100 000 0000	
100 Com.	The second					
weather a	Graphic		rm – Sunny – 60d to 70d I			
	Log	Sample #	Description (USCS, te	xture, density, color, m	oisture, odo	or, inclusions, etc.)
6″		MT-4-E-S1 Depth 4"	(0"-6") Pond Sediment - Sil the silt lenses were dark Br		enses – the	sand was white/tan a
1 20″		MT -4-E-S2 Depth 10-12"	(6"- 20") Silty Clay, dark br	own, moist, hard (<i>Natu</i>	ral Soil or P	ossible liner)
2		MT -4-E-S3 Depth 36"	(20"-48") Sandy Clay, some	silt, trace gravel, brow	n, <i>(Natural</i>	Soil)
3 48″						
4 50″		MT-4-E-S4 Depth 48" -50"	(48"- 50") Clayey Sand, tra	ice gravel, brown (Natu	ural Soil)	
5				1		
6						
7						
8						
Tatal David						
Total Depth Comments		50" DEEP				
		Possible clay line	r from 6 to 20″ depth			
Checked:	_			Date:		

Mt Tayl	or Mine	Water Treatr	nent Pond Test Pit Log		Pit #	1
Location		Pond 5	(GPS) N 35°20.580'	W 107°38.150'		
Location [escription		MT-5-E			
Field Engi	neer:	B. Everett		Excavation Metho	d: Backhoe/Sho	vel
Date:		4/10/2012		Operator: K. Stri	ckland	
Weather a		re Conditions:	clear, sunny, warm; cool a	nd windy in afternoon		
Depth	Graphic Log	Sample #	Description (USC	S, texture, density, colo	r. moisture. odor	, inclusions, etc.)
(S5-01-01	0-22": Clayey silt with sam Sample collected at 0-12"	d, friable, brown, moist		
			22"-37": Silty sand, trace of	clay, friable, dry		
2						
		S5-01-02	Sample collected at 36-37 TD = 37" bgs	" bgs at 14:09		
5						
e						
7		1-1				
8						
Total Dept		37" bgs				
Comment	C	lo clay layer note layey silt with sa lative soil at 22" ilty sand with tra	nd 0-22" bgs			
Checked:				Date:		

	Water Treatr	nent Pond Test Pit Log		Pit #	2
Location	Pond 5	(GPS) N 35°20.595' W	(107°38.189'		
Location Description	1	MT-5-D	_		
Field Engineer:	B. Everett		Excavation Method:	Backhoe/Show	vel
Date:	4/10/2012		Operator: K. Stricklan	d	
Weather and Moistu	ure Conditions:	clear, sunny, warm; cool and win	dy in afternoon		
Graphic Depth Log	Sample #	Description (USCS, text	ure, density, color, mo	oisture, odor	, inclusions, etc.)
0	\$5-02-01	0-10": Silty sand, slightly clayey, slightly damp Sample collected at 0-12" bgs at		ite dense BaCl	l, friable,
1		10"-17": Clay with white precipa gray and white, dense, some silt	e BaCl, varved sediment	ts from settlin	g, dark brown
新國務	1.1 KGA	17"-24": Silty sand, friable, yellow			
2	\$5-02-02	Sample collected 17-24" bgs at 1 24"- 44": Silty sand, friable yellow			1
3					
	\$5-02-03	Sample collected at 40-44" bgs a TD = 45" bgs	t 14:20		
4	\$5-02-03		t 14:20		
	\$5-02-03		t 14:20		
	\$5-02-03		t 14:20		
5	\$5-02-03		t 14:20		
5	\$5-02-03		t 14:20		
6	\$5-02-03		t 14:20		

Mt Taylo	Mine	Water Treatm	ent Pond Test Pit Log	Pit	:# MT-6-A
Location F	Pond # (6 Bottom	GPS N 35-20.557' W	107-38.157'	
Location Des	scriptio	n	Bottom of Pond – East	end	
Field Engine	er:	Ed Loescher		Excavation Method: Sm	all Bobcat Backhoe
Date:		April - 10-2012	3:00 pm	Operator:	
4			arm – Sunny – 60d to 700	4	
	Graphic			4	Contract of the second
	Log	Sample #	Description (USCS,	texture, density, color, moistu	ure, odor, inclusions, etc.)
0 12″		MT -6-A-S1 Depth 0-5"	(0"-12") Pond Sediment (sand from erosion of po		
20"	10	MT -4-D-S2 Depth 12-20	(12"- 20") Silty Clay, darl – (Hypalon geomembrane	k gray and reddish brown silt s liner at 20" depth)	eams, moist (Pond sediment
2			(20"-40") River Rocks, ro	unded, 3″dia to 6″dia.	
3			(Hypalon geomembrane	liner at 40" depth)	
40"	E	K	40" - Hit hard rock surfac	e. Appears to be a sandstone	layer.
4					
5	-				
6					
7					
8					
Table	_	1011 0550			
Total Depth: Comments:	-	40" DEEP			
		Hypalon and riv	ver-rock liner.		

Mt Taylor M	line Water Treatn	nent Pond Test Pit Log		Pit #	MT-6-B
ocation Pon	d #6 Bottom	GPS N 35-20.560' W 107	38.174'		
ocation Descri	ption	Bottom of Pond West End	1		
ield Engineer:	Ed Loescher		Excavation Method:	Small Bob	cat Backhoe
Date:	April - 10-2012	2:30 pm	Operator:		
March 1997		/arm – Sunny –60d to 70d			
	phic				
4	og Sample #	Description (USCS, tex	ture, density, color, mo	oisture, odo	or, inclusions, etc.)
0	MT -6-B-S1 depth 8"- 10"	(0"-16") <i>Pond Sediment</i> - In (sand from erosion of pond s		lt, sand and	sandy Clay, light grav
1		 (Hypalon geomembrane liner (16"- 28") River Rocks, roun 			
2 28"		(Hypalon geomembrane line			
42"	MT -6-B-S2 Depth 30"	(28"- 42") Sandy Silt Brown 42" - Hit hard rock surface.			
5					
6					
7					
8					
otal Depth:	42" DEEP				
onments:	Hypalon and riv	ver-rock liner.			
de este d					
hecked: pproved:			Date: Date:		

Mt Tayl	or Mine	Water Treat	ment Pond Test Pit Lo	og		Pit #	1
Location		Pond 7	(GPS) N 35°20.544		7°38.171'		
Location D	escription		MT-7-A				
Field Engin	neer:	B. Everett		Ex	cavation Method:	Backhoe/Show	vel
Date:		4/10/2012		O	erator: K. Strickla	and	
Weather a	ind Moistu	re Conditions:	clear, sunny, warm; cool	and windy	in afternoon		
M	Graphic	Sector 1			Galactic Stre	Street 2	1. 17 Mart
Depth	Log	Sample #	Description (USCS 0-10": Sediments, clayey			moisture, odo	r, inclusions, etc.)
U		\$7-01-01	Sample collected at 0-10				
-			10"-12": Clay, soft red, m				
2		57-01-02	12"-30.5": Silty clay, den Sample collected at 24-3				
3		S7-01-03	30.5"-35": Silty sand, yel Sample collected at 30.5				
			TD = 35" bgs				
4							
4							
5							
6							
7							
	-						
8							
Total Dept	b:	35" bgs					
Comments	5: Ge 18 Ni	eolayer at 10" b 3" of dark brown	gs, 2" of moist red clay belo clay below red clay and below 30.5" bgs, slight gs				*
Checked:					Date:		
Approved:		Everett			Date:	5/7/2012	

Mt Taylor Mine	e Water Treat	ment Pond Test Pit Log Pit # 2
Location	Pond 7	(GPS) N 35°20.544 W 107°38.171'
Location Descriptio	n	MT-7-B
Field Engineer:	B. Everett	Excavation Method: Backhoe/Shovel
Date:	4/10/2012	Operator: K. Strickland
Weather and Moist	ure Conditions:	clear, sunny, warm; cool and windy in afternoon
Graphic		
Depth Log	Sample #	Description (USCS, texture, density, color, moisture, odor, inclusions, etc.) 0-23": Silty sand sediments, loose, light tan, some organic material, moist to 12" bgs,
1	\$7-02-01	dry below 12" bgs Sample collected at 0-12" bgs at 15:45
2	S7-02-02	23"-43": Pond sediments, silt varved from settling Sample collected at 23-43" bgs
	\$7-02-03	43"-45": Clay, red, moist, soft. Sample collected at 43-46" bgs
		45"-49": Clay and silt, brown, dense, moist
4		49"-50": Sandy silt, yellow brown, dry
		TD =50" bgs
5		
6		
7		
8		
Total Depth:	50" bgs	
Comments:		
Checked:		Date:
Approved:	Everett	Date: 5/7/2012

Field Engineer: B. Everett Excavation Method: Backhoe/Shovel Date: 4/10/2012 Operator: K. Strickland Weather and Molsture Conditions: clear, sunny, warm; cool and windy in afternoon Bepth Graphic Description (USCS, texture, density, color, molsture, odor, inclusions, or 0 0 Sample # Description (USCS, texture, density, color, molsture, odor, inclusions, or 0 1 S8-01-01 Sample collected at 0-8" bgs at 13:00 1 S8-01-02 Sample collected at 17-30" bgs 2 S8-01-02 Sample collected at 17-30" bgs 3 S8-01-03 Sample collected at 36-40" bgs at 13:09 3 S8-01-03 Sample collected at 36-40" bgs at 13:09 4 I I III 5 III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Mt Taylor	Mine	Water Treat	ment Pond Test Pit Lo	og	Pit #	1
Field Engineer: B. Everett Excavation Method: Backhoe/Shovel Date: 4/10/2012 Operator: K. Strickland Weather and Moisture Conditions: clear, sunny, warm; cool and windy in afternoon Oppth Log Sample # Description (USCS, texture, density, color, moisture, odor, inclusions, or 0 0 0 0.17": Clayey silt, pliable, brown, moist 1 58-01-01 Sample collected at 0-8" bgs at 13:00 1 58-01-02 Sample collected at 17-30" bgs 2 58-01-02 Sample collected at 36-40" bgs at 13:00 3 10 30"-40": Slity sand, friable, yellow brown, dry 3 30 Sample collected at 36-40" bgs at 13:09 4 10 10 40" bgs 5 11 10 10 6 11 10 10 6 11 11 10 7 11 11 11 8 11 11 11	Location		Pond 8	(GPS) N 35°20.708	w	107°38.129'	
Date: 4/10/2012 Operator: K. Strickland Weather and Moisture Conditions:: clear, sunny, warm; cool and windy in afternoon Depth Log Sample # Description (USCS, texture, density, color, moisture, odor, inclusions, or 0.17": Clayey silt, pilable, brown, moist 0 S8-01-01 Sample dat 0.8" bgs at 13:00 1 Increase in brown silty sand 2.30" bgs 2 S8-01-02 Sample collected at 17-30" bgs 1 S8-01-03 Sample collected at 36-40" bgs at 13:00 3 Increase in brown silty sand, friable, yellow brown, dry 3 S8-01-03 Sample collected at 36-40" bgs at 13:09 4 Increase in brown bigs Increase in brown in the sand 13:00 5 Increase in brown silty sand, friable, yellow brown, dry 3 Increase in brown silty sand 2:30" bgs 6 Increase in brown bigs 6 Increase in brown bigs 7 Increase in brown bigs 8 Increase in brown bigs	Location Desc	ription		MT-8-E			
Weather and Moisture Conditions: clear, sunny, warm; cool and windy in afternoon Opth Log Sample # Description (USCS, texture, density, color, moisture, odor, inclusions, or 0 0-17": Clayey silt, pliable, brown, moist 0-17": Clayey silt, pliable, brown, moist 1 38-01-01 Sample collected at 0-8" bgs at 13:00 2 38-01-02 Sample collected at 17-30" bgs increase in brown silty sand 23-30" bgs 3 38-01-03 Sample collected at 36-40" bgs at 13:09 7 38-01-03 Sample collected at 36-40" bgs at 13:09 7 1 10 10 6 1 10 10 7 1 10 10 8 1 10 10	Field Enginee	r:	B. Everett			Excavation Method: Backhoe/Sh	ovel
Graphic Sample # Description (USCS, texture, density, color, moisture, odor, inclusions, or 0-17": Clayey silt, pliable, brown, moist 0 Sample # 0-17": Clayey silt, pliable, brown, moist 1 Sample collected at 0-8" bgs at 13:00 1 10 17"-30": Clay, dense, gray brown, with white precipitate BaCl 6" layer from 17-23" I Sample collected at 17-30" bgs increase in brown silty sand 23-30" bgs 2 30"-40": Silty sand, friable, yellow brown, dry 3 S8-01-03 Sample collected at 36-40" bgs at 13:09 4 Sample collected at 36-40" bgs at 13:09 TD = 40" bgs 5 Sample collected at 36-40" bgs at 13:09 TD = 40" bgs 6 Sample collected at 36-40" bgs at 13:09 Sample collected at 36-40" bgs at 13:09 7 Sample collected at 36-40" bgs at 13:09 Sample collected at 36-40" bgs at 13:09 6 Sample collected at 36-40" bgs at 13:09 Sample collected at 36-40" bgs at 13:09 7 Sample collected at 36-40" bgs at 13:09 Sample collected at 36-40" bgs at 13:09 8 Sample collected at 36-40" bgs at 13:09 Sample collected at 36-40" bgs at 13:09 8 Sample collected at 36-40" bgs at 13:09 Sample collected at 36-40" bgs at 13:09 <td>Date:</td> <td></td> <td>4/10/2012</td> <td></td> <td></td> <td>Operator: K. Strickland</td> <td></td>	Date:		4/10/2012			Operator: K. Strickland	
Depth Log Sample # Description (USCS, texture, density, color, moisture, odor, inclusions, or 0-17": Clayey silt, pliable, brown, moist 0	Weather and	Moistur	e Conditions:	clear, sunny, warm; cool	l and wir	idy in afternoon	
0 0-17": Clayey silt, pliable, brown, moist 1 Sample collected at 0-8" bgs at 13:00 1 17"-30": Clay, dense, gray brown, with white precipitate BaCl 6" layer from 17-23" I Sample collected at 17-30" bgs 2 S8-01-02 2 S8-01-03 30"-40": Silty sand, friable, yellow brown, dry 3 S8-01-03 Sample collected at 36-40" bgs at 13:09 TD = 40" bgs 6 1 7 1 8 1	the second s						
1 S8-01-01 Sample collected at 0-8" bgs at 13:00 1 17"-30": Clay, dense, gray brown, with white precipitate BaCl 6" layer from 17-23" l 2 S8-01-02 Sample collected at 17-30" bgs 2 30"-40": Silty sand, friable, yellow brown, dry 3 S8-01-03 Sample collected at 36-40" bgs at 13:09 4 TD = 40" bgs 5 Sample collected at 36-40" bgs at 13:09 6 Sample collected at 36-40" bgs at 13:09 7 Sample collected at 36-40" bgs at 13:09	Depth I	.og	Sample #				or, inclusions, etc.)
1 17"-30": Clay, dense, gray brown, with white precipitate BaCl 6" layer from 17-23" I Sample collected at 17-30" bgs Increase in brown silty sand 23-30" bgs 2 30"-40": Silty sand, friable, yellow brown, dry 3 S8-01-03 Sample collected at 36-40" bgs at 13:09 TD = 40" bgs 4 1 5 1 6 1 8 1				o 17 . ciayey site, pilable	.,		
S8-01-02 Sample collected at 17-30" bgs 3 30"-40": Silty sand, friable, yellow brown, dry 3 S8-01-03 Sample collected at 36-40" bgs at 13:09 TD = 40" bgs 4 5 6 7 8 1			S8-01-01	Sample collected at 0-8"	' bgs at 1	3:00	
S8-01-02 Sample collected at 17-30" bgs 3 30"-40": Silty sand, friable, yellow brown, dry 3 S8-01-03 Sample collected at 36-40" bgs at 13:09 TD = 40" bgs 4 5 6 7 8 1	1						
S8-01-02 Sample collected at 17-30" bgs 3 30"-40": Silty sand, friable, yellow brown, dry 3 S8-01-03 Sample collected at 36-40" bgs at 13:09 TD = 40" bgs 4 5 6 7 8 1	1			· · · · · · · · · · · · · · · · · · ·			
2 Increase in brown silty sand 23-30" bgs 30"-40": Silty sand, friable, yellow brown, dry 3 S8-01-03 Sample collected at 36-40" bgs at 13:09 TD = 40" bgs 4 5 6 7 8						n, with white precipitate BaCl 6" la	yer from 17-23" bgs
3 30"-40": Silty sand, friable, yellow brown, dry 3 S8-01-03 Sample collected at 36-40" bgs at 13:09 TD = 40" bgs 4 5 6 7 8			S8-01-02			0" has	
3 S8-01-03 Sample collected at 36-40" bgs at 13:09 4 TD = 40" bgs 5	-			increase in brown sity s	anu 25-5	ou nga	
TD = 40" bgs 4 5 6 7 8				30"-40": Silty sand, friab	ole, yello	w brown, dry	
TD = 40" bgs 4 5 6 7 8			C9 01 02	Sample collected at 26 /	10" bas a	+ 12:00	
	3		58-01-03		40 bgs a	15:09	
5 6 7 8				10 10 200			
5 6 7 8		-			_		
	4	11					
6 7 8	5	-					
7	5						
7							
7	6						
	Ű						
	7						
Total Depth: 40" bgs	8			-			
Total Depth: 40" bgs							
Total Depth: 40" bgs	_						
	Total Depth:		40" bgs				
Comments: Moist to 20" bgs	Comments:			1			
BaCl layer 17-23" bgs in clay 17-30" bgs Native soil yellow brown, silty sand at 30" bgs					s		

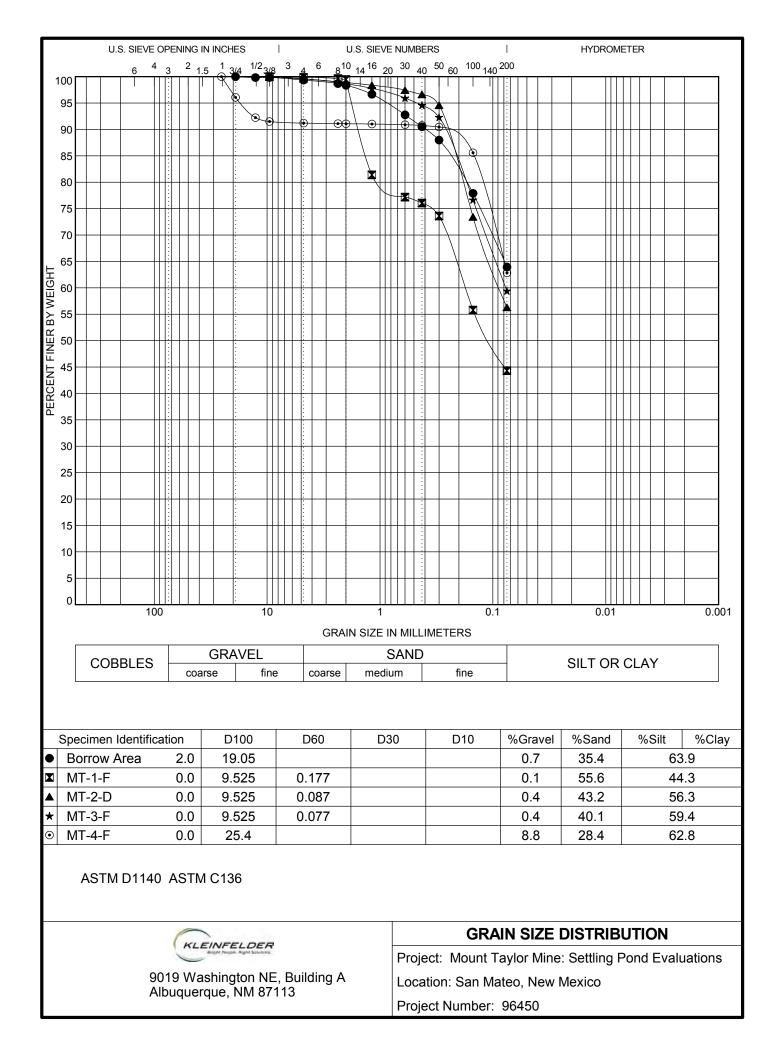
Mt Taylo	or Mine	Water Treatr	nent Pond Test Pit Log	Pit #	2
Location		Pond 8	(GPS) N 35°20.714'	W 107°38.150'	
Location De	escription	2.2	MT-8-D		
Field Engin	eer:	B. Everett		Excavation Method: Backhoe/Sh	novel
Date;		4/10/2012		Operator: K. Strickland	
Weather ar	nd Moistu	re Conditions:	clear, sunny, warm; cool and	l windy in afternoon	
Depth	Graphic Log	Sample #	Description (USCS,	texture, density, color, moisture, od	or, inclusions, etc.)
0		S8-02-01	0-18": Silty sand, trace grave Sample collected at 0-12" bg		(
		S8-02-02	18"-24": Clayey silt, varved g Sample collected 18-24" bgs	gray and white sediment settling at 13:36	
3		S8-02-03	24"-56": Clay, very dense, da Sample collected at 40-50" l	ark brown, slightly damp to dry ogs at 13:36	
		7.62	56"-62": Silty sand, yellow b		
5		<u>58-02-04</u>	Sample collected 58-62" bgs TD = 62" bgs	at 13:39	
6					
7					
8					
Total Depth	:	62" bgs			
Comments:	Si C C	ilty sand, brown, layey silt, gray w lay, very dense, o	friable, some gravel 0-18" bgs hite, varved pond sediments 18 dark brown, dry 24-56" bgs brown, silty sand 56-62" bgs	3-24" bgs	
Checked:	-			Date:	
Approved:		Everett		Date: 5/7/2012	 C.287

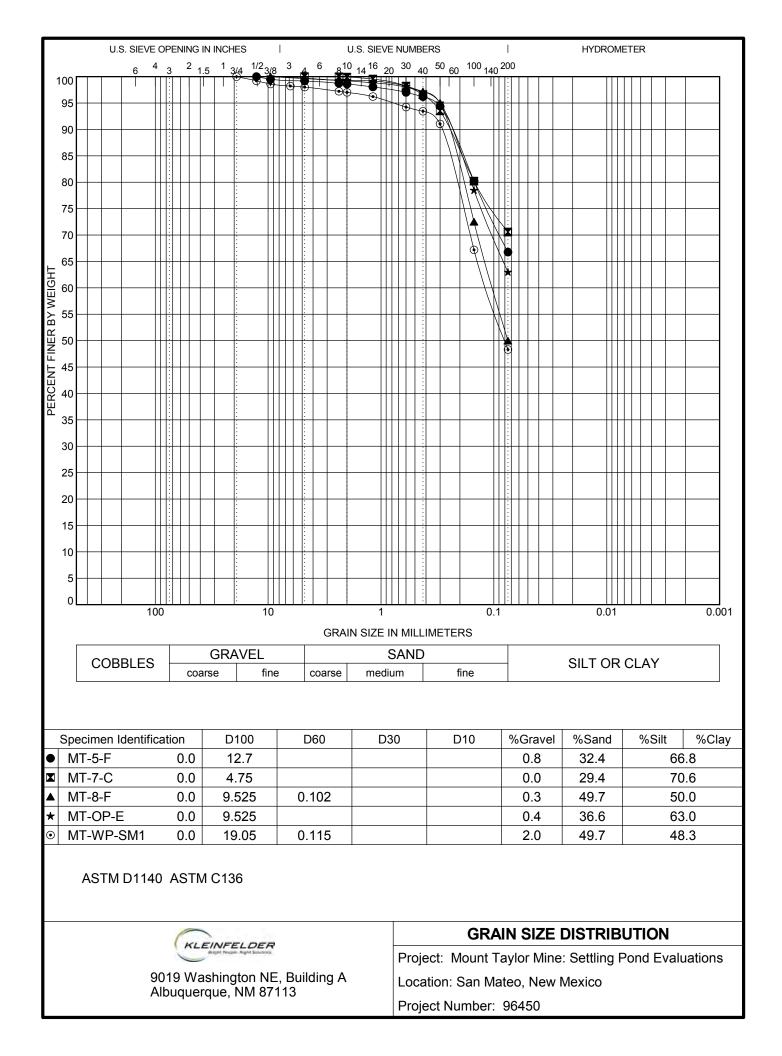
Mt Taylo	r Mine	Water Treatm	ent Pond Test Pit Log	Pit #	MT-A-A
ocation	Area "A"		GPS no reading W n	o reading	
ocation De			Bottom of Pond –North E		
ield Engine	er: I	Ed Loescher		Excavation Method: Smal	Bobcat Backhoe
Date:		April - 10-2012	11:45 am	Operator:	
No.			arm – Sunny – 60 to 70d		
	Graphic	re conditions. vv	ann-Sunny-001070u	ALC: NOT A DECK	
4" 0	Log	Sample #	Description (USCS, t	exture, density, color, moisture	e, odor, inclusions, etc.)
4" 0		MT -A-A-S1 Depth 4"	(0"-4") Pond Sediment - C	Clayey Silt with some silt– Dark	Brown
1		MT -A-A-S2 Depth 8"	(4"- 30") Sandy Clay, trace	gravel, brown, moist (<i>Natura</i>	ıl Soil)
30″2			(20) 20//) 5ilter Courd come		
36″			(30"-36") Silty Sand, some	e clay, trace gravel, tan (Nature	ai soii)
3			L MARINE CONTRACTOR		
-					
5					
1.1					
6					
7	-		1		
8					
otal Depth: comments:	3	36" DEEP	()		
omments:					
Checked:				Date:	
approved:	_			Date:	

Vit Taylo	r Mine	Water Treatme	ent Pond Test Pit Log		Pit #	MT-A-B
ocation	Area "A"		GPS no reading W no	reading		
ocation De	scription	1	Bottom of Pond –South Er			
ield Engine	er:	Ed Loescher		Excavation Method:	Small Bob	cat Backhoe
Date:		April - 10-2012	11:30 am	Operator:		
			rm – Sunny – 60 to 70d	0		
	Graphic	11623			1	
0	Log	Sample #	Description (USCS, tex	cture, density, color, mo	isture, odo	r, inclusions, etc.)
6″		MT -A-B-S1 Depth 4"	(0"-6") Pond Sediment - Cla	ayey Silt with some silt-	Dark Brow	n
1		MT -A-B-S2 Depth 8"	(6"- 28") Sandy Clay, trace g	gravel, brown, moist (A	latural Soil)	
28" 2		MT -A-B-S3				(
36″		Depth 30"	(28"-36") Silty Sand, some	clay, trace gravel, brown	n, moist (A	latural Soll)
3						
4	14					
5						
6						
7						
8		1				
otal Depth:		36" DEEP				
otal Depth: omments:		DO DEL				
hecked:				Date:		
pproved:				Date:	-	

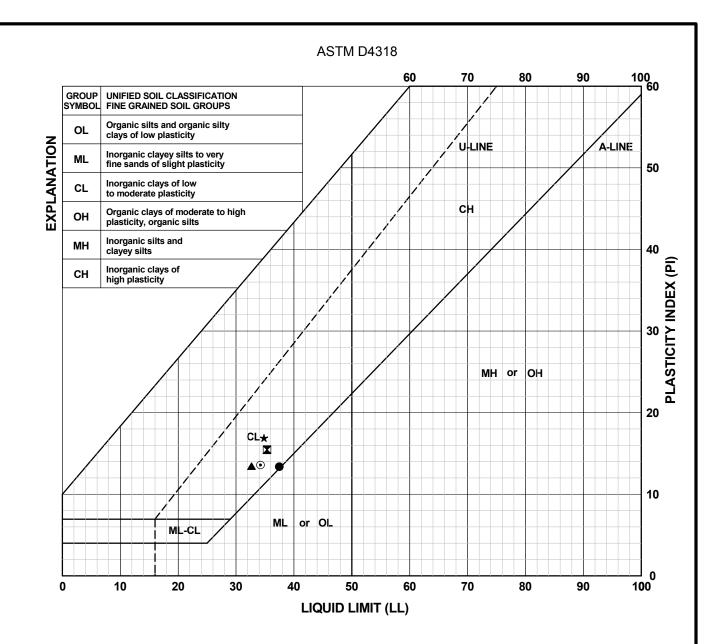
Mt Taylo	r Mine	e Water Treatme	ent Pond Test Pit Log	Pit #	MT-OP-D
Location (OP (ore	e pile pond)	GPS N 35-20.675' W 1	07-38.004′	
Location De	scriptio	n	Bottom of Pond - West	end	
Field Engine	er:	Ed Loescher		Excavation Method: Small Bobo	at Backhoe
Date:		April - 10-2012	12:45 pm	Operator:	
A	d Mater	and the second se	rm – Sunny – 60 -70d		
	Graphic				10 14 10 10
	Log	Sample #	Description (USCS, 1	exture, density, color, moisture, odor	, inclusions, etc.)
0		MT -OP-D-S1 Depth 6"		d, trace silt and gravel, tan, loose. n of inlet channel and pond side-banl	<s.)< td=""></s.)<>
1					
2					
3	-				
48″					
4	VIII	MT -OP-D-S2 Depth 48" -50"		silt seams, dark gray, moist. (possibl d underlain by a clay liner to 72")	e original pond
5					
72″		· · · · · · · · · · · · · · · · · · ·			
6		· · · · · · · · · · · · · · · · · · ·	(72"-76") Clayey Sand, t	race gravel, brown, moist (Natural So	pil)
76″	10000				
7					
8					
Total Depth:	1	76" DEEP			
Comments:		Upper layer of sa	and due to erosion from	due to the upper layer of sand ca pond inlet and side-banks. nto excavation at 50″ depth	ving into excavatio
Checked:	_			Date:	
Approved:				Date:	

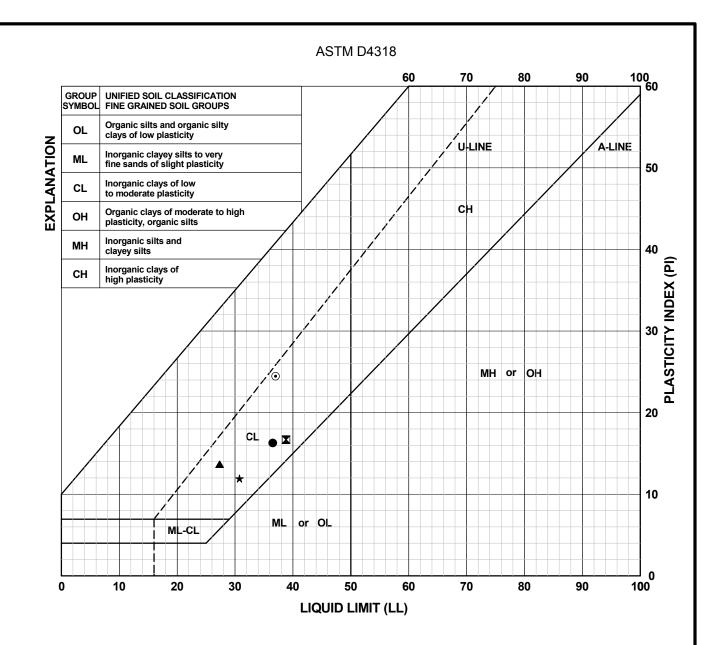
At Taylo	r Mine	Water Treatme	ent Pond Test Pit Log	Pit #	MT-OP-C
ocation	OP (ore	pile pond)	GPS N 35-20.680' W 107-	38.032'	
ocation De	scription	1	Bottom of Pond - East end		
ield Engine	er:	Ed Loescher		Excavation Method: Small Bobc	at Backhoe
ate:		April - 10-2012	1:20 pm	Operator:	
			rm – Sunny – 60 -70d		
	Graphic				
	Log	Sample #	Description (USCS, text	ture, density, color, moisture, odor	, inclusions, etc.)
0		MT -OP-C-S1 Depth 6"	(Pond Sediment 0-18") Mix (of Silt and Clay - Dark Gray- Trace (Gravel
1 18″					
2		MT -OP-C-S2 Depth 20"	(18"- 44") Clayey Sand with s	ome silt - Brown - Trace Gravel (N	latural Soil)
3					
44″					
4		MT -OP-C-S3 Depth 48" -50"	(44"- 72") Sandy Clay - Brow	n- Some Gravel – moist <i>(Natural S</i>	ioil)
5					
72"					
6		MT -OP-C-S4 Depth 72"	(72") Clayey Sand - Brown -	Some Gravel – moist <i>(Natural Soin</i>	0
7					
8					
otal Depth	:	72" DEEP			
omments:					
hecked:				Date:	
pproved:				Date:	

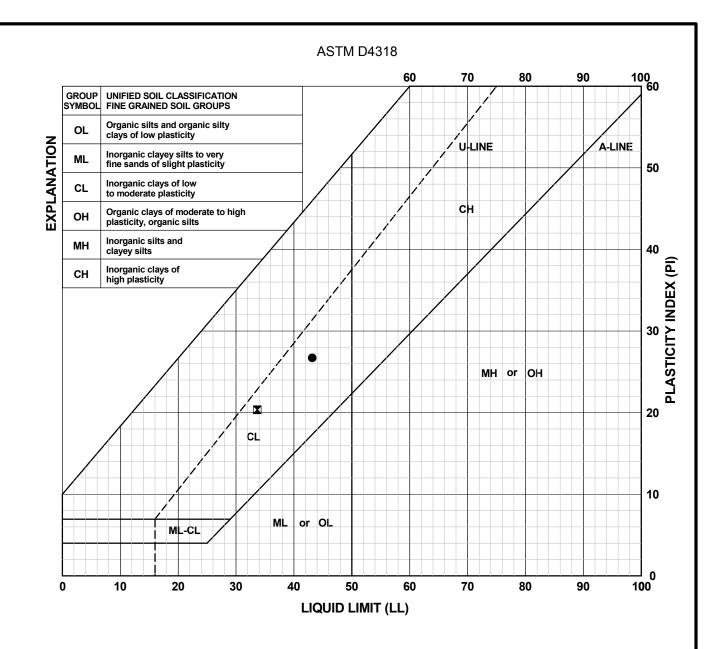

APPENDIX B


Kleinfelder Laboratory Results

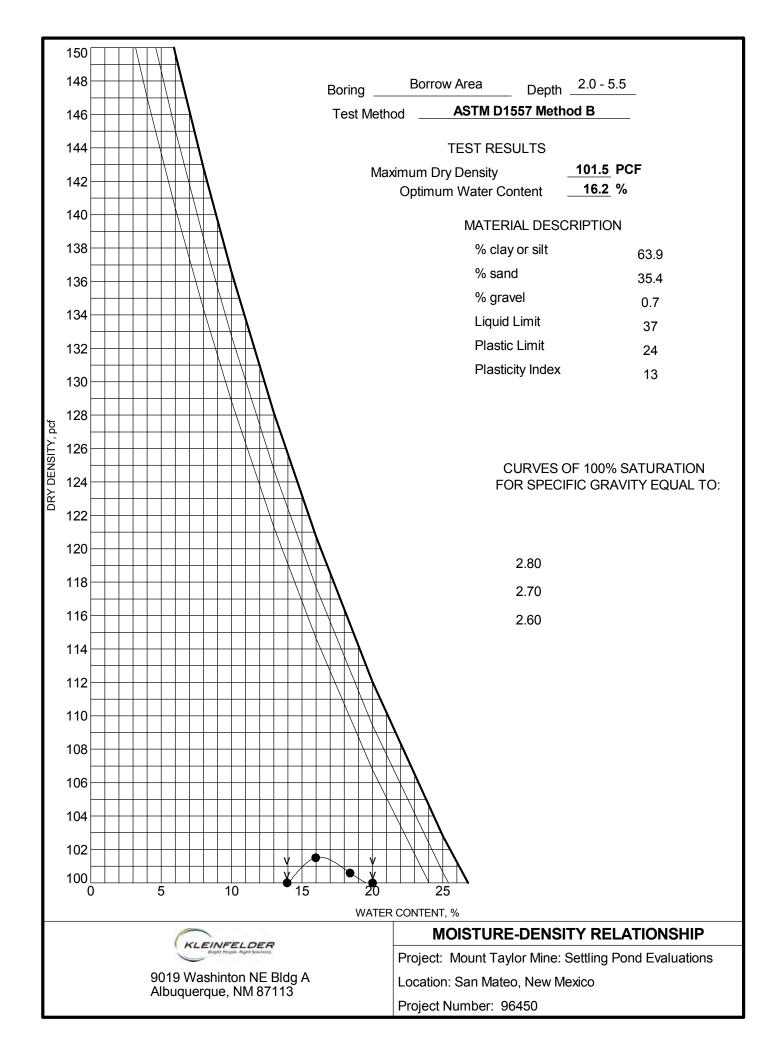
SUMMARY OF LABORATORY ANALYSIS

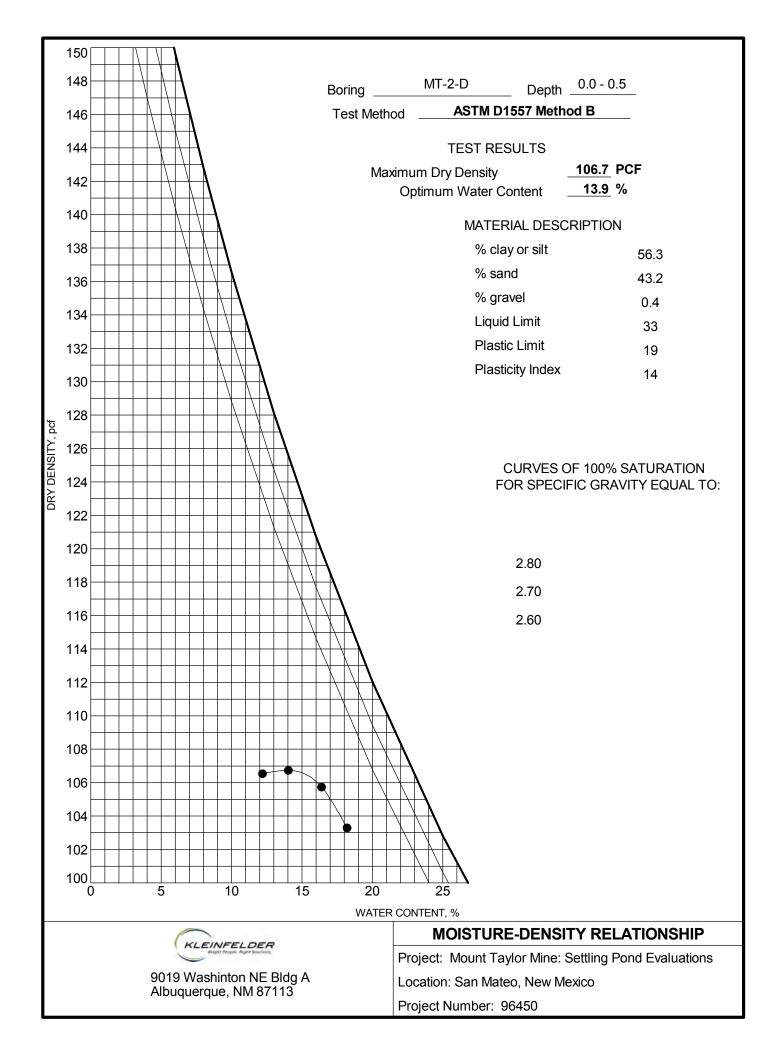

Boring	Depth	Soil Classification		Atterber	rg Limits		Sieve Analysis - Accumulative % Passing							Moisture Content	Dry Density	ity Comp.						
Number	(ft.)	USCS	AASHTO	PI	LL	No. 200	No. 100	No. 50	No. 40	No. 30	No. 16	No. 10	No. 8	No. 4	3/8 in	1/2 in	3/4 in	1 in	1 1/2 in	(%)	(pcf)	Strength (psi)
Borrow Area	2.0 - 5.5	CL	A-6	13	37	64	78	88	91	93	97	98	99	99	100	100	100			10.7		
MT-1-F	0.0 - 0.5	SC	A-6	15	35	44	56	74	76	77	81	99	100	100	100		-			13.7		
MT-2-D	0.0 - 0.5	CL	A-6	14	33	56	73	95	97	97	98	99	99	100	100		-			16.4		
MT-3-F	0.0 - 0.5	CL	A-6	17	35	59	77	92	95	96	98	99	99	100	100					17.3		
MT-4-F	0.0 - 0.5	CL	A-6	13	34	63	86	90	91	91	91	91	91	91	92	92	96	100		10.5		
MT-5-F	0.0 - 0.5	CL	A-6	17	37	67	80	94	96	97	98	99	99	99	100	100	-			17.6		
MT-7-C	0.0 - 0.5	CL	A-6	17	39	71	80	94	97	98	100	100	100	100			-			17.9		
MT-8-F	0.0 - 0.5	SC	A-6	13	27	50	73	95	97	98	99	99	99	100	100					12.9		
MT-OP-E	0.0 - 0.5	CL	A-6	12	31	63	79	95	97	98	99	99	99	100	100					10.3		
MT-WP-SM1	0.0 -	SC	A-6	24	37	48	67	91	93	94	96	97	97	98	99	99	100			5.9		
MT-WP-SM2	0.0 -	CL	A-7-6	27	43	70	78	85	86	87	89	91	92	96	98	100				10.9		
MT-WP-SM3	0.0 -	SC	A-6	21	34	46	63	89	93	95	96	97	97	98	98	99	100			3.0		

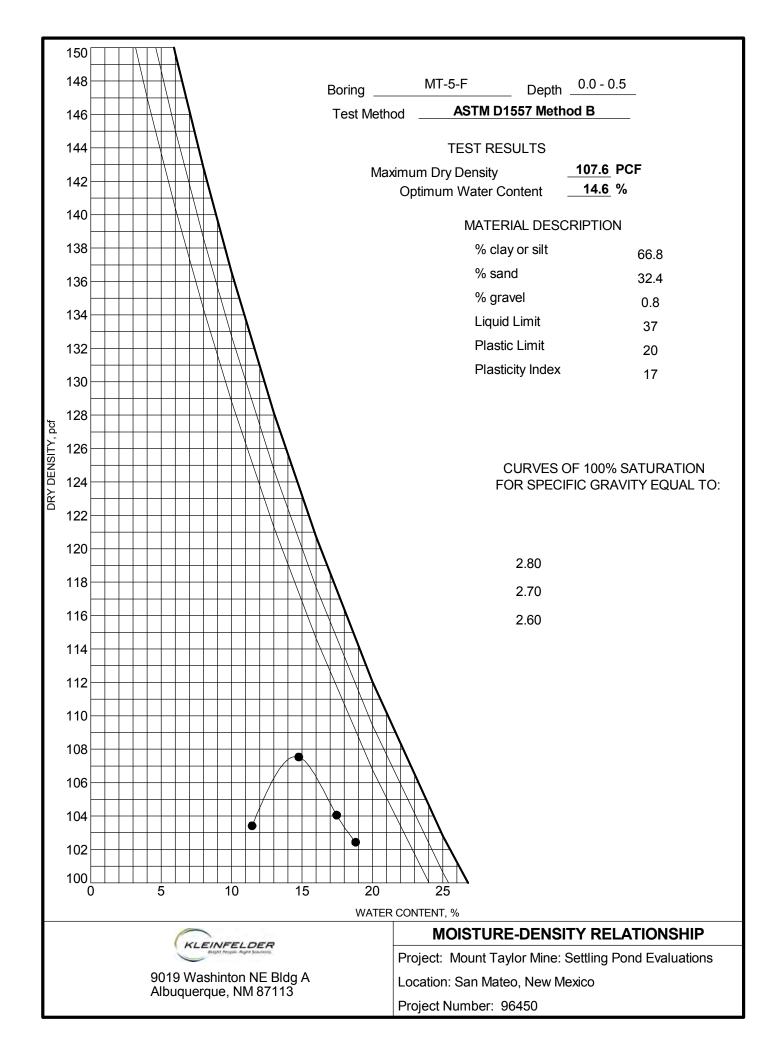


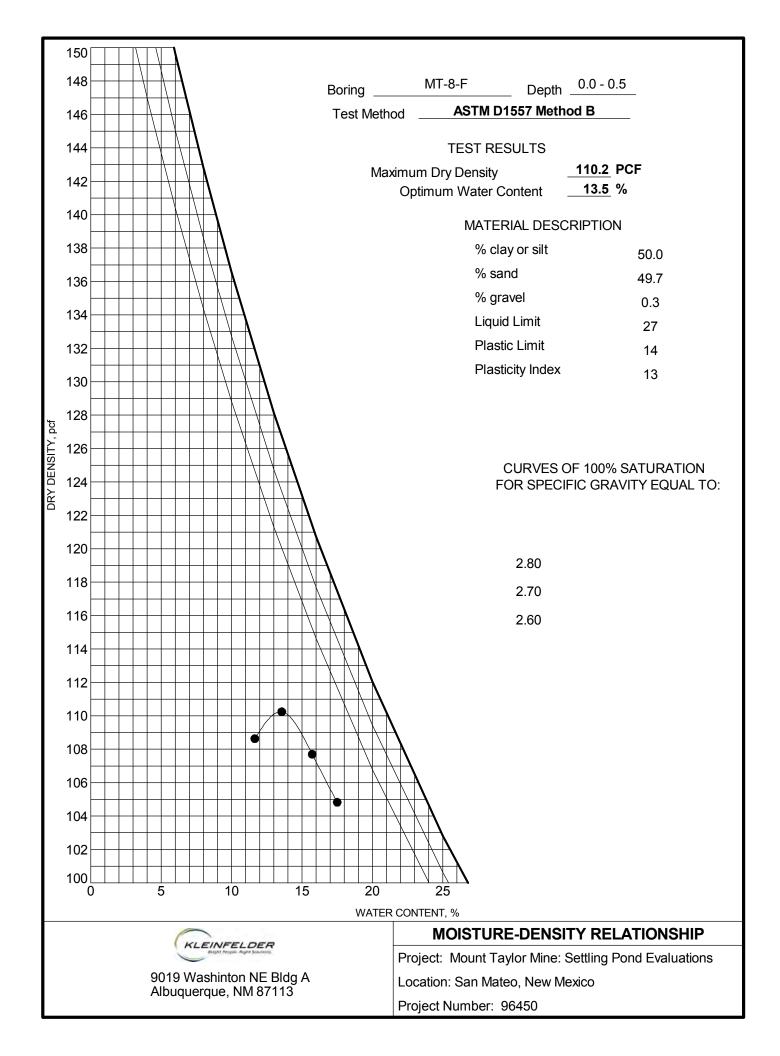

	Specimen Identifi	cation	Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)
\bullet	Borrow Area	2.0	37	24	13
	MT-1-F	0.0	35	20	15
	MT-2-D	0.0	33	19	14
*	MT-3-F	0.0	35	18	17
\odot	MT-4-F	0.0	34	21	13

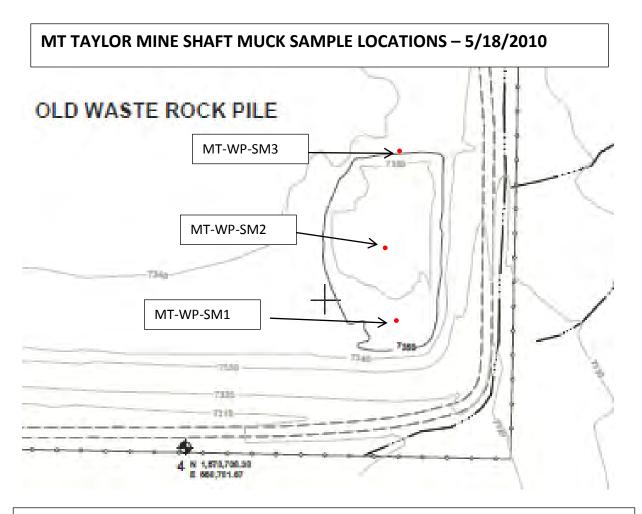
KLEINFELDER	ATTERBERG LIMITS
Bright People. Right Solutions	Project: Mount Taylor Mine: Settling Pond Evaluations
9019 Washington NE, Building A Albuquerque, NM 87113	Location: San Mateo, New Mexico
	Project Number: 96450

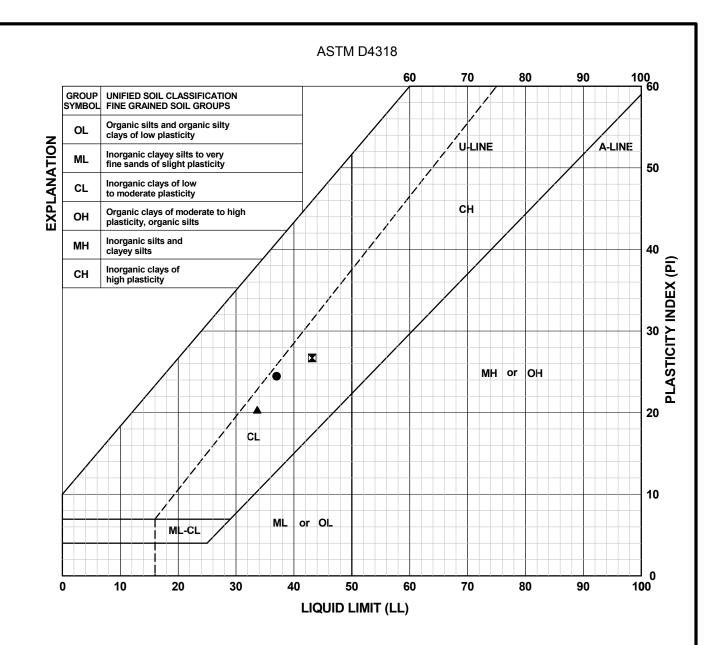

	Specimen Identific	cation	Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	
\bullet	MT-5-F	0.0	37	20	17	
X	MT-7-C	0.0	39	22	17	
	MT-8-F	0.0	27	14	13	
*	MT-OP-E	0.0	31	19	12	
\odot	MT-WP-SM1	0.0	37	13	24	

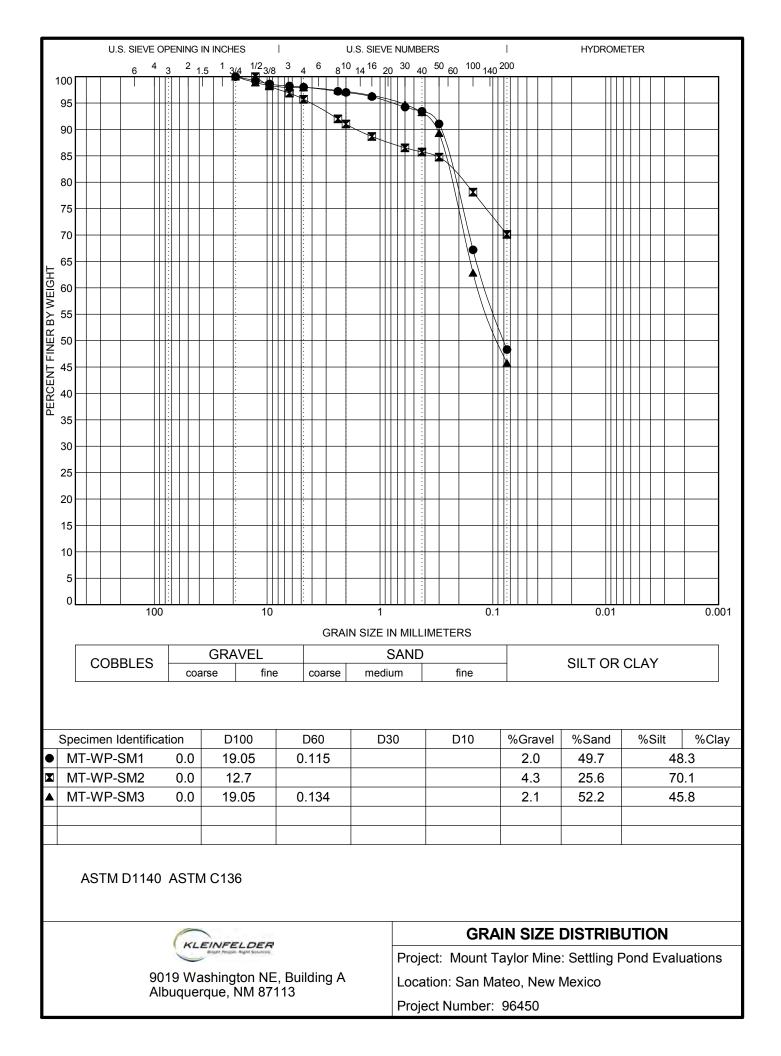

KLEINFELDER	ATTERBERG LIMITS
Bright height Aught Solutions	Project: Mount Taylor Mine: Settling Pond Evaluations
9019 Washington NE, Building A Albuquerque, NM 87113	Location: San Mateo, New Mexico
Abdquerque, NW 07 110	Project Number: 96450




	Specimen Identific	cation	Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)
ullet	MT-WP-SM2	0.0	43	16	27
	MT-WP-SM3	0.0	34	13	21


KLEINFELDER	ATTERBERG LIMITS
Bight Pegala Right Salutions	Project: Mount Taylor Mine: Settling Pond Evaluations
9019 Washington NE, Building A Albuguergue, NM 87113	Location: San Mateo, New Mexico
Albuquerque, Nin 67 113	Project Number: 96450





Bulk samples of shaft muck from Mt. Taylor Mine waste rock pile collected on 5/18/2012 by Alan Kuhn. Locations are approximate (+/- 50 ft) based on visual reference to slopes. Splits delivered 5/18/12 to Kleinfelder Albuquerque for grain size analysis and plasticity tests. Other splits left with RGR Mine office for shipment to Energy Labs for testing of U and Ra concentration.

	Specimen Identific	cation	Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)
\bullet	MT-WP-SM1	0.0	37	13	24
	MT-WP-SM2	0.0	43	16	27
	MT-WP-SM3	0.0	34	13	21

KLEINFELDER	ATTERBERG LIMITS
Bright Prepale Right Sources	Project: Mount Taylor Mine: Settling Pond Evaluations
9019 Washington NE, Building A Albuquerque, NM 87113	Location: San Mateo, New Mexico
	Project Number: 96450

SUMMARY OF LABORATORY ANALYSIS

Project: Mount Taylor Mine: Settling Pond Evaluations Project Number: 96450

Location: San Mateo, New Mexico

Boring	Depth	Soil Clas	ssification	Atterber	g Limits		Sieve Analysis - Accumulative % Passing								Moisture Content							
Number	(ft.)	USCS	AASHTO	PI	LL	No. 200	No. 100	No. 50	No. 40	No. 30	No. 16	No. 10	No. 8	No. 4	3/8 in	1/2 in	3/4 in	1 in	1 1/2 in	(%)	(pcf)	Strength (psi)
MT-WP-SM	0.0 -	SC	A-6	24	37	48	67	91	93	94	96	97	97	98	99	99	100		-	5.9		
MT-WP-SM	2 0.0 -	CL	A-7-6	27	43	70	78	85	86	87	89	91	92	96	98	100			-	10.9		
MT-WP-SM	B 0.0 -	SC	A-6	21	34	46	63	89	93	95	96	97	97	98	98	99	100			3.0		

MEMORANDUM

Date: June 6, 2012

From: Stanley Fitch, CHP, Radiation Safety Officer

To: Joel Lister, Mine Manager, Mt. Taylor Mine

Subject: April 2012 Soil Investigation

On April 23, 2012, a soil sampling campaign was performed to investigate possible environmental dispersal of uranium and its progeny from the Mt. Taylor Mine. A total of 16 samples were retrieved, 2 background locations and 14 locations along arroyos that drain the mine property. In addition, gamma dose rate measurements were taken.

The purpose of this investigation is to determine background radionuclide concentrations and to evaluate the potential spread of uranium and radium from the mine. To wit, soil samples were taken at various locations adjacent to drainage features (e.g., Marquez Arroyo) and in the thalwegs of these features. The background locations selected are locations MTE-1 (up Marquez Canyon next to the Forest Service Boundary) and MTE-7 (North ¼ Corner of Section 24) for grades above drainage features.

MTE-2 was selected as the background location for the Marquez Canyon drainage. However, because the steepness of the arroyo created a sandy bed with very limited organics that would retain background naturally occurring radioactive material (NORM), it is believed that MTE-2 is a poor representation of the remainder of the drainage.

An aerial map is attached depicting the sample locations. The soil sample locations are also attached in Table 2 (below) with their respective New Mexico State Plane Coordinates and sample analysis results. See also Table 3.

The following observations are made based on the radionuclide data in Table 2:

- There appears to be no discernible dispersal of uranium and uranium progeny off the mine property.
- The concentrations of radionuclides in the Marquez Canyon arroyo adjacent and below Pond 8 (MTE-3, MTE-4, MTE-5, MTE-6) are equivalent to or lower than the background concentrations (MTE-1, MTE-2, MTE-7), indicating: 1) no discernible spread of contamination north of the current boundary; and 2) seasonal water flows purge organics from the Marquez arroyo thalweg that would contain naturally occurring radioactive material (NORM) and radionuclides from the mine (TENORM).

- Radionuclide concentrations in the alluvial deposits north and northeast of San Mateo (MTE-8, MTE-9, MTE-10, MTE-11, MTE-13, MTE-14) are consistent with NORM concentrations typical for this region at locales away from uranium mining operations. There are no identifiable patterns that would indicate the dispersal of uranium and radium into the plain from Mt. Taylor Mine.
- The slightly elevated ambient radiation readings north of Pond 8 were not explained by the soil sample analyses performed for this investigation. Please compare the survey results for MTE-3 and MTE-4 against the survey results for the background locations:

Location	Dose Rate µrem/h	U-238 pCi/g	Ra-226 pCi/g		
MTE-1 (Surface Grade BKG)	18	1.6	1.7		
MTE-7 (Surface Grade BKG)	13	0.6	1.5		
MTE-3 (Surface Grade)	26	0.5	1.4		

Table 1

Regressional analysis of the data in Table 2 indicates very poor statistical correlation between the dose rates and the concentrations of Radium-226 in the soil.

The conclusions are that: 1) **radiation "shine" from nearby** and elevated rock and soils could be affecting the instrument readings; and 2) soil sample analyses must be performed along with dose rate surveys when evaluating remediation requirements.

Table 2RADIATION SURVEY AND SAMPLE RESULTSApril 23, 2012

Location #	Description	Sample Time	NAD 27 Northing	NAD 27 Easting	Dose Rate (µrem/h)	U-238 (pCi/g)	Ra-226 (pCi/g)	Gross Alpha (pCi/g)	
MTE-1	Marquez Arroyo Top of Grade; clay	10:20	1580869	561223	18	1.6	1.7	6.8	
MTE-2	Marquez Arroyo Thalweg; very sandy	10:25	1580963	561211	15	0.3	0.7	3.7	
MTE-3	Marquez Arroyo Top of Grade; clay	10:50	1581289	559191	26	0.5	1.4	7.6	
MTE-4	Marquez Arroyo Thalweg; sandy	10:58	1581226	559201	24	0.2	1.2	5.0	
MTE-5	Marquez Arroyo Top of Grade; clay	11:05	1581507	558551	18	O.4	1.4	4.6	
MTE-6	Marquez Arroyo Thalweg; sandy	11:10	1581479	558532	15	O.4	1.5	8.9	
MTE-7	N¼ Corner Section 24; clay	11:30	1582031	558654	13	0.6	1.5	12.4	
MTE-8	Drainage Top of Grade; clay	12:37	1579422	555004	14	1.2	2.8	9.8	
MTE-9	Drainage Thalweg; clay	12:40	1579428	555009	14	1.1	1.8	7.6	
MTE-10	Drainage Top of Grade; clay	12:52	1580023	555383	14	0.3	1.2	5.5	
MTE-11	Drainage Thalweg; clay	12:54	1580047	555376	13	O.4	1.2	4.5	
MTE-12	Marquez Arroyo fan; clay	13:40	1580724	556946	13	0.9	2.1	12.9	
MTE-13	Drainage Thalweg; sandy clay	13:55	1579390	557582	14	1.4	2.7	8.0	
MTE-14	Drainage Top of Grade; clay	14:05	1579410	557576	14	0.4	1.1	11.9	
MTE-15	Drainage Thalweg; sandy	14:45	1578344	557794	14	1.0	2.0	5.8	
MTE-16	Drainage Top of Grade; clay	14:50	1578386	557805	13	0.3	0.8	6.4	

Notes:

1. The term "grade" above refers to the natural surface outside of and atop the drainage feature.

2. Dose Rate Instrument: Eberline PRM-7 #182, BKG = 10-12 µrem/h

3. Coordinates reported are New Mexico State Plane Coordinates in the New Mexico West UTM projection.

Table 3 COORDINATE CONVERSIONS

) 83 inates	NAD 27 Coordinates	
Location #	Description	N	Е	Ν	E
MTE-1	Grade on South Side of Marquez Arroyo	1580937	2784129	1580869	561223
MTE-2	Thalweg of Marquez Arroyo	1581031	2784117	1580963	561211
MTE-3	Grade on North Side of Marquez Arroyo	1581357	2782097	1581289	559191
MTE-4	Thalweg of Marquez Arroyo	1581294	2782107	1581226	559201
MTE-5	Grade North Side of Marquez Arroyo	1581575	2781457	1581507	558551
MTE-6	Thalweg of Marquez Arroyo	1581547	2781438	1581479	558532
MTE-7	North 1/4 Corner Section 24	1582099	2781560	1582031	558654
MTE-8	Grade on South Side of Drainage	1579490	2777910	1579422	555004
MTE-9	Thalweg of Drainage	1579496	2777915	1579428	555009
MTE-10	Grade on South Side of Drainage	1580091	2778289	1580023	555383
MTE-11	Thalweg of Drainage	1580115	2778282	1580047	555376
MTE-12	Marquez Arroyo Fan	1580792	2779852	1580724	556946
MTE-13	Thalweg of Drainage	1579458	2780488	1579390	557582
MTE-14	Grade on North Side of Drainage	1579478	2780482	1579410	557576
MTE-15	Thalweg of Drainage	1578412	2780700	1578344	557794
MTE-16	Grade on North Side of Drainage	1578454	2780711	1578386	557805

Note: Coordinates reported are New Mexico State Plane Coordinates in the New Mexico West UTM projection.

June 01, 2012

Rio Grande Resources Corporation PO Box 1150 Grants, NM 87020

Workorder No.: C12041338

Project Name: Mt. Taylor Mine

Energy Laboratories, Inc. Casper WY received the following 16 samples for Rio Grande Resources Corporation on 4/30/2012 for analysis.

Sample ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
C12041338-001	MTE-1	04/23/12 10	:20 04/30/12	Soil	Digestion For RadioChemistry Gross Alpha, Gross Beta Sample Prep Gamma Sample Preparation Gross Alpha, Gross Beta Gross Gamma Uranium, Isotopic
C12041338-002	MTE-2	04/23/12 10	:25 04/30/12	Soil	Same As Above
C12041338-003	MTE-3	04/23/12 10	:50 04/30/12	Soil	Same As Above
C12041338-004	MTE-4	04/23/12 10	:58 04/30/12	Soil	Same As Above
C12041338-005	MTE-5	04/23/12 11	:05 04/30/12	Soil	Same As Above
C12041338-006	MTE-6	04/23/12 11	:10 04/30/12	Soil	Same As Above
C12041338-007	MTE-7	04/23/12 11	:30 04/30/12	Soil	Same As Above
C12041338-008	MTE-8	04/23/12 12	:37 04/30/12	Soil	Same As Above
C12041338-009	MTE-9	04/23/12 12	:40 04/30/12	Soil	Same As Above
C12041338-010	MTE-10	04/23/12 12	:52 04/30/12	Soil	Same As Above
C12041338-011	MTE-11	04/23/12 12	:56 04/30/12	Soil	Same As Above
C12041338-012	MTE-12	04/23/12 13	:40 04/30/12	Soil	Same As Above
C12041338-013	MTE-13	04/23/12 13	:55 04/30/12	Soil	Same As Above
C12041338-014	MTE-14	04/23/12 14	:05 04/30/12	Soil	Same As Above
C12041338-015	MTE-15	04/23/12 14	:45 04/30/12	Soil	Same As Above
C12041338-016	MTE-16	04/23/12 14	:50 04/30/12	Soil	Same As Above

The analyses presented in this report were performed at Energy Laboratories, Inc., 2393 Salt Creek Hwy., Casper, WY 82601, unless otherwise noted. Radiochemistry analyses were performed at Energy Laboratories, Inc., 2325 Kerzell Lane, Casper, WY 82601, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing. Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. Data corrected for moisture content are typically noted as - dry on the report. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

If you have any questions regarding these test results, please call.

CLIENT: Rio Grande Resources Corporation Project: Mt. Taylor Mine

Sample Delivery Group: C12041338

Report Date: 06/01/12

CASE NARRATIVE

ORIGINAL SAMPLE SUBMITTAL(S)

All original sample submittals have been returned with the data package.

SAMPLE TEMPERATURE COMPLIANCE: 4 ℃ (±2 ℃)

Temperature of samples received may not be considered properly preserved by accepted standards. Samples that are hand delivered immediately after collection shall be considered acceptable if there is evidence that the chilling process has begun.

GROSS ALPHA ANALYSIS

Method 900.0 for gross alpha and gross beta is intended as a drinking water method for low TDS waters. Data provided by this method for non potable waters should be viewed as inconsistent.

RADON IN AIR ANALYSIS

The desired exposure time is 48 hours (2 days). The time delay in returning the canister to the laboratory for processing should be as short as possible to avoid excessive decay. Maximum recommended delay between end of exposure to beginning of counting should not exceed 8 days.

SOIL/SOLID SAMPLES

All samples reported on an as received basis unless otherwise indicated.

ATRAZINE, SIMAZINE AND PCB ANALYSIS

Data for PCBs, Atrazine and Simazine are reported from EPA 525.2. PCB data reported by ELI reflects the results for seven individual Aroclors. When the results for all seven are ND (not detected), the sample meets EPA compliance criteria for PCB monitoring.

SUBCONTRACTING ANALYSIS

Subcontracting of sample analyses to an outside laboratory may be required. If so, ENERGY LABORATORIES will utilize its branch laboratories or qualified contract laboratories for this service. Any such laboratories will be indicated within the Laboratory Analytical Report.

BRANCH LABORATORY LOCATIONS

eli-b - Energy Laboratories, Inc. - Billings, MT eli-g - Energy Laboratories, Inc. - Gillette, WY eli-h - Energy Laboratories, Inc. - Helena, MT eli-r - Energy Laboratories, Inc. - Rapid City, SD eli-t - Energy Laboratories, Inc. - College Station, TX

CERTIFICATIONS:

USEPA: WY00002, Radiochemical WY00937; FL-DOH NELAC: E87641, Radiochemical E871017; California: 02118CA; Oregon: WY200001, Radiochemical WY200002; Utah: WY00002; Virginia: 00057; Washington: C836

ISO 17025 DISCLAIMER:

The results of this Analytical Report relate only to the items submitted for analysis.

ENERGY LABORATORIES, INC. - CASPER, WY certifies that certain method selections contained in this report meet requirements as set forth by the above accrediting authorities. Some results requested by the client may not be covered under these certifications. All analysis data to be submitted for regulatory enforcement should be certified in the sample state of origin. Please verify ELI's certification coverage by visiting www.energylab.com

ELI appreciates the opportunity to provide you with this analytical service. For additional information and services visit our web page www.energylab.com.

Prepared by Casper, WY Branch

Client:	Rio Grande Resources Corporation
Project:	Mt. Taylor Mine
Lab ID:	C12041338-001
Client Sample ID:	MTE-1

 Report Date:
 06/01/12

 Collection Date:
 04/23/12 10:20

 DateReceived:
 04/30/12

 Matrix:
 Soil

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
RADIONUCLIDES							
Gross Alpha	6.8	pCi/g-dry				E900.0	05/02/12 12:00 / ep
Gross Alpha precision (±)	0.8	pCi/g-dry				E900.0	05/02/12 12:00 / ep
Uranium 234	1.7	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 234 precision (±)	0.4	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 234 MDC	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 235	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 235 precision (±)	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 235 MDC	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238	1.6	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238 precision (±)	0.4	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238 MDC	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
RADIONUCLIDES - GAMMA							
Potassium 40	19.2	pCi/g-dry		0.5		E901.1	05/22/12 13:10 / dpb
Potassium 40 precision (±)	3.8	pCi/g-dry				E901.1	05/22/12 13:10 / dpb
Radium 226	1.7	pCi/g-dry		0.3		E901.1	05/22/12 13:10 / dpb
Radium 226 precision (±)	0.5	pCi/g-dry				E901.1	05/22/12 13:10 / dpb

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:	Rio Grande Resources Corporation
Project:	Mt. Taylor Mine
Lab ID:	C12041338-002
Client Sample ID:	MTE-2

 Report Date:
 06/01/12

 Collection Date:
 04/23/12 10:25

 DateReceived:
 04/30/12

 Matrix:
 Soil

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
RADIONUCLIDES							
Gross Alpha	3.7	pCi/g-dry				E900.0	05/02/12 12:00 / ep
Gross Alpha precision (±)	0.7	pCi/g-dry				E900.0	05/02/12 12:00 / ep
Uranium 234	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 234 precision (±)	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 234 MDC	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 235	0.06	pCi/g-dry	U			E908.0	05/08/12 08:58 / dmf
Uranium 235 precision (±)	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 235 MDC	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238 precision (±)	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238 MDC	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
RADIONUCLIDES - GAMMA							
Potassium 40	0.0	pCi/g-dry	U	0.5		E901.1	05/22/12 13:10 / dpb
Potassium 40 precision (±)	0.5	pCi/g-dry				E901.1	05/22/12 13:10 / dpb
Radium 226	0.7	pCi/g-dry		0.3		E901.1	05/22/12 13:10 / dpb
Radium 226 precision (±)	0.3	pCi/g-dry				E901.1	05/22/12 13:10 / dpb

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:	Rio Grande Resources Corporation
Project:	Mt. Taylor Mine
Lab ID:	C12041338-003
Client Sample ID:	MTE-3

 Report Date:
 06/01/12

 Collection Date:
 04/23/12 10:50

 DateReceived:
 04/30/12

 Matrix:
 Soil

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
RADIONUCLIDES							
Gross Alpha	7.6	pCi/g-dry				E900.0	05/02/12 12:00 / ep
Gross Alpha precision (±)	0.8	pCi/g-dry				E900.0	05/02/12 12:00 / ep
Uranium 234	0.6	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 234 precision (±)	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 234 MDC	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 235	-0.02	pCi/g-dry	U			E908.0	05/08/12 08:58 / dmf
Uranium 235 precision (±)	0.1	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 235 MDC	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238	0.5	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238 precision (±)	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238 MDC	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
RADIONUCLIDES - GAMMA							
Potassium 40	0.0	pCi/g-dry	U	0.5		E901.1	05/22/12 13:10 / dpb
Potassium 40 precision (±)	0.5	pCi/g-dry				E901.1	05/22/12 13:10 / dpb
Radium 226	1.4	pCi/g-dry		0.3		E901.1	05/22/12 13:10 / dpb
Radium 226 precision (±)	0.3	pCi/g-dry				E901.1	05/22/12 13:10 / dpb

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:	Rio Grande Resources Corporation
Project:	Mt. Taylor Mine
Lab ID:	C12041338-004
Client Sample ID:	MTE-4

 Report Date:
 06/01/12

 Collection Date:
 04/23/12 10:58

 DateReceived:
 04/30/12

 Matrix:
 Soil

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
RADIONUCLIDES							
Gross Alpha	5.0	pCi/g-dry				E900.0	05/02/12 12:00 / ep
Gross Alpha precision (±)	0.7	pCi/g-dry				E900.0	05/02/12 12:00 / ep
Uranium 234	0.5	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 234 precision (±)	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 234 MDC	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 235	0.07	pCi/g-dry	U			E908.0	05/08/12 08:58 / dmf
Uranium 235 precision (±)	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 235 MDC	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238	0.2	pCi/g-dry	U			E908.0	05/08/12 08:58 / dmf
Uranium 238 precision (±)	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238 MDC	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
RADIONUCLIDES - GAMMA							
Potassium 40	0.0	pCi/g-dry	U	0.5		E901.1	05/22/12 13:10 / dpb
Potassium 40 precision (±)	0.5	pCi/g-dry				E901.1	05/22/12 13:10 / dpb
Radium 226	1.2	pCi/g-dry		0.3		E901.1	05/22/12 13:10 / dpb
Radium 226 precision (±)	0.4	pCi/g-dry				E901.1	05/22/12 13:10 / dpb

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:	Rio Grande Resources Corporation
Project:	Mt. Taylor Mine
Lab ID:	C12041338-005
Client Sample ID:	MTE-5

 Report Date:
 06/01/12

 Collection Date:
 04/23/12 11:05

 DateReceived:
 04/30/12

 Matrix:
 Soil

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
RADIONUCLIDES							
Gross Alpha	4.6	pCi/g-dry				E900.0	05/02/12 12:00 / ep
Gross Alpha precision (±)	0.7	pCi/g-dry				E900.0	05/02/12 12:00 / ep
Uranium 234	0.6	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 234 precision (±)	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 234 MDC	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 235	0.03	pCi/g-dry	U			E908.0	05/08/12 08:58 / dmf
Uranium 235 precision (±)	0.1	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 235 MDC	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238	0.4	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238 precision (±)	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238 MDC	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
RADIONUCLIDES - GAMMA							
Potassium 40	0.0	pCi/g-dry	U	0.5		E901.1	05/22/12 13:10 / dpb
Potassium 40 precision (±)	0.5	pCi/g-dry				E901.1	05/22/12 13:10 / dpb
Radium 226	1.4	pCi/g-dry		0.3		E901.1	05/22/12 13:10 / dpb
Radium 226 precision (±)	0.3	pCi/g-dry				E901.1	05/22/12 13:10 / dpb

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:	Rio Grande Resources Corporation
Project:	Mt. Taylor Mine
Lab ID:	C12041338-006
Client Sample ID:	MTE-6

 Report Date:
 06/01/12

 Collection Date:
 04/23/12 11:10

 DateReceived:
 04/30/12

 Matrix:
 Soil

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
RADIONUCLIDES							
Gross Alpha	8.9	pCi/g-dry				E900.0	05/02/12 12:00 / ep
Gross Alpha precision (±)	0.8	pCi/g-dry				E900.0	05/02/12 12:00 / ep
Uranium 234	0.5	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 234 precision (±)	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 234 MDC	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 235	0.09	pCi/g-dry	U			E908.0	05/08/12 08:58 / dmf
Uranium 235 precision (±)	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 235 MDC	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238	0.4	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238 precision (±)	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238 MDC	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
RADIONUCLIDES - GAMMA							
Potassium 40	0.0	pCi/g-dry	U	0.5		E901.1	05/22/12 13:10 / dpb
Potassium 40 precision (±)	0.5	pCi/g-dry				E901.1	05/22/12 13:10 / dpb
Radium 226	1.5	pCi/g-dry		0.3		E901.1	05/22/12 13:10 / dpb
Radium 226 precision (±)	0.5	pCi/g-dry				E901.1	05/22/12 13:10 / dpb

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:	Rio Grande Resources Corporation
Project:	Mt. Taylor Mine
Lab ID:	C12041338-007
Client Sample ID:	MTE-7

 Report Date:
 06/01/12

 Collection Date:
 04/23/12 11:30

 DateReceived:
 04/30/12

 Matrix:
 Soil

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
Analyses	nosun	onits	Quanner	n.	4.01	Method	
RADIONUCLIDES							
Gross Alpha	12.4	pCi/g-dry				E900.0	05/02/12 12:00 / ep
Gross Alpha precision (±)	0.9	pCi/g-dry				E900.0	05/02/12 12:00 / ep
Uranium 234	0.6	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 234 precision (±)	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 234 MDC	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 235	0.02	pCi/g-dry	U			E908.0	05/08/12 08:58 / dmf
Uranium 235 precision (±)	0.1	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 235 MDC	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238	0.6	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238 precision (±)	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238 MDC	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
RADIONUCLIDES - GAMMA							
Potassium 40	0.0	pCi/g-dry	U	0.5		E901.1	05/22/12 13:10 / dpb
Potassium 40 precision (±)	0.5	pCi/g-dry				E901.1	05/22/12 13:10 / dpb
Radium 226	1.5	pCi/g-dry		0.3		E901.1	05/22/12 13:10 / dpb
Radium 226 precision (±)	0.5	pCi/g-dry				E901.1	05/22/12 13:10 / dpb

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:	Rio Grande Resources Corporation
Project:	Mt. Taylor Mine
Lab ID:	C12041338-008
Client Sample ID:	MTE-8

 Report Date:
 06/01/12

 Collection Date:
 04/23/12 12:37

 DateReceived:
 04/30/12

 Matrix:
 Soil

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
RADIONUCLIDES							
Gross Alpha	9.8	pCi/g-dry				E900.0	05/02/12 12:00 / ep
Gross Alpha precision (±)	0.8	pCi/g-dry				E900.0	05/02/12 12:00 / ep
Uranium 234	1.4	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 234 precision (±)	0.4	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 234 MDC	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 235	0.1	pCi/g-dry	U			E908.0	05/08/12 08:58 / dmf
Uranium 235 precision (±)	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 235 MDC	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238	1.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238 precision (±)	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238 MDC	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
RADIONUCLIDES - GAMMA							
Potassium 40	0.0	pCi/g-dry	U	0.5		E901.1	05/22/12 13:10 / dpb
Potassium 40 precision (±)	0.5	pCi/g-dry				E901.1	05/22/12 13:10 / dpb
Radium 226	2.8	pCi/g-dry		0.3		E901.1	05/22/12 13:10 / dpb
Radium 226 precision (±)	0.6	pCi/g-dry				E901.1	05/22/12 13:10 / dpb

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:	Rio Grande Resources Corporation
Project:	Mt. Taylor Mine
Lab ID:	C12041338-009
Client Sample ID:	MTE-9

 Report Date:
 06/01/12

 Collection Date:
 04/23/12 12:40

 DateReceived:
 04/30/12

 Matrix:
 Soil

Analyza	Desult		o	-	MCL/	Mathad	Analysia Data / Du
Analyses	Result	Units	Qualifier	RL	QCL	Method	Analysis Date / By
RADIONUCLIDES							
Gross Alpha	7.6	pCi/g-dry				E900.0	05/02/12 12:00 / ep
Gross Alpha precision (±)	0.8	pCi/g-dry				E900.0	05/02/12 12:00 / ep
Uranium 234	1.1	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 234 precision (±)	0.4	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 234 MDC	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 235	0.2	pCi/g-dry	U			E908.0	05/08/12 08:58 / dmf
Uranium 235 precision (±)	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 235 MDC	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238	1.1	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238 precision (±)	0.4	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238 MDC	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
RADIONUCLIDES - GAMMA							
Potassium 40	0.0	pCi/g-dry	U	0.5		E901.1	05/22/12 13:10 / dpb
Potassium 40 precision (±)	0.5	pCi/g-dry				E901.1	05/22/12 13:10 / dpb
Radium 226	1.8	pCi/g-dry		0.3		E901.1	05/22/12 13:10 / dpb
Radium 226 precision (±)	0.5	pCi/g-dry				E901.1	05/22/12 13:10 / dpb

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor MineLab ID:C12041338-010Client Sample ID:MTE-10

 Report Date:
 06/01/12

 Collection Date:
 04/23/12 12:52

 DateReceived:
 04/30/12

 Matrix:
 Soil

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
Analyses	nesun	Units	Quaimer	ΠL	GOL	Method	Analysis Date / Dy
RADIONUCLIDES							
Gross Alpha	5.5	pCi/g-dry				E900.0	05/02/12 12:00 / ep
Gross Alpha precision (±)	0.7	pCi/g-dry				E900.0	05/02/12 12:00 / ep
Uranium 234	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 234 precision (±)	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 234 MDC	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 235	0.08	pCi/g-dry	U			E908.0	05/08/12 08:58 / dmf
Uranium 235 precision (±)	0.1	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 235 MDC	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238 precision (±)	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238 MDC	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
RADIONUCLIDES - GAMMA							
Potassium 40	0.0	pCi/g-dry	U	0.5		E901.1	05/22/12 13:10 / dpb
Potassium 40 precision (±)	0.5	pCi/g-dry				E901.1	05/22/12 13:10 / dpb
Radium 226	1.2	pCi/g-dry		0.3		E901.1	05/22/12 13:10 / dpb
Radium 226 precision (±)	0.5	pCi/g-dry				E901.1	05/22/12 13:10 / dpb

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:	Rio Grande Resources Corporation
Project:	Mt. Taylor Mine
Lab ID:	C12041338-011
Client Sample ID:	MTE-11

 Report Date:
 06/01/12

 Collection Date:
 04/23/12 12:56

 DateReceived:
 04/30/12

 Matrix:
 Soil

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
RADIONUCLIDES							
Gross Alpha	4.5	pCi/g-dry				E900.0	05/02/12 12:00 / ep
Gross Alpha precision (±)	0.7	pCi/g-dry				E900.0	05/02/12 12:00 / ep
Uranium 234	0.4	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 234 precision (±)	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 234 MDC	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 235	0.02	pCi/g-dry	U			E908.0	05/08/12 08:58 / dmf
Uranium 235 precision (±)	0.1	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 235 MDC	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238	0.4	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238 precision (±)	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238 MDC	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
RADIONUCLIDES - GAMMA							
Potassium 40	0.0	pCi/g-dry	U	0.5		E901.1	05/22/12 13:10 / dpb
Potassium 40 precision (±)	0.5	pCi/g-dry				E901.1	05/22/12 13:10 / dpb
Radium 226	1.2	pCi/g-dry		0.3		E901.1	05/22/12 13:10 / dpb
Radium 226 precision (±)	0.4	pCi/g-dry				E901.1	05/22/12 13:10 / dpb

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor MineLab ID:C12041338-012Client Sample ID:MTE-12

 Report Date:
 06/01/12

 Collection Date:
 04/23/12 13:40

 DateReceived:
 04/30/12

 Matrix:
 Soil

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
Analyses	nesur	Units	Quaimer	nL	GOL	Method	Analysis Date / Dy
RADIONUCLIDES							
Gross Alpha	12.9	pCi/g-dry				E900.0	05/02/12 12:00 / ep
Gross Alpha precision (±)	0.9	pCi/g-dry				E900.0	05/02/12 12:00 / ep
Uranium 234	0.9	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 234 precision (±)	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 234 MDC	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 235	0.07	pCi/g-dry	U			E908.0	05/08/12 08:58 / dmf
Uranium 235 precision (±)	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 235 MDC	0.4	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238	0.9	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238 precision (±)	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238 MDC	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
RADIONUCLIDES - GAMMA							
Potassium 40	0.0	pCi/g-dry	U	0.5		E901.1	05/22/12 13:10 / dpb
Potassium 40 precision (±)	0.5	pCi/g-dry				E901.1	05/22/12 13:10 / dpb
Radium 226	2.1	pCi/g-dry		0.3		E901.1	05/22/12 13:10 / dpb
Radium 226 precision (±)	0.5	pCi/g-dry				E901.1	05/22/12 13:10 / dpb

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor MineLab ID:C12041338-013Client Sample ID:MTE-13

 Report Date:
 06/01/12

 Collection Date:
 04/23/12 13:55

 DateReceived:
 04/30/12

 Matrix:
 Soil

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
RADIONUCLIDES							
Gross Alpha	8.0	pCi/g-dry				E900.0	05/02/12 12:00 / ep
Gross Alpha precision (±)	0.8	pCi/g-dry				E900.0	05/02/12 12:00 / ep
Uranium 234	1.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 234 precision (±)	0.4	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 234 MDC	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 235	0.08	pCi/g-dry	U			E908.0	05/08/12 08:58 / dmf
Uranium 235 precision (±)	0.1	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 235 MDC	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238	1.4	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238 precision (±)	0.4	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238 MDC	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
RADIONUCLIDES - GAMMA							
Potassium 40	0.0	pCi/g-dry	U	0.5		E901.1	05/22/12 13:10 / dpb
Potassium 40 precision (±)	0.5	pCi/g-dry				E901.1	05/22/12 13:10 / dpb
Radium 226	2.7	pCi/g-dry		0.3		E901.1	05/22/12 13:10 / dpb
Radium 226 precision (±)	0.5	pCi/g-dry				E901.1	05/22/12 13:10 / dpb

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor MineLab ID:C12041338-014Client Sample ID:MTE-14

 Report Date:
 06/01/12

 Collection Date:
 04/23/12 14:05

 DateReceived:
 04/30/12

 Matrix:
 Soil

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
RADIONUCLIDES							
Gross Alpha	11.9	pCi/g-dry				E900.0	05/02/12 12:00 / ep
Gross Alpha precision (±)	0.9	pCi/g-dry				E900.0	05/02/12 12:00 / ep
Uranium 234	0.4	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 234 precision (±)	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 234 MDC	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 235	0.05	pCi/g-dry	U			E908.0	05/08/12 08:58 / dmf
Uranium 235 precision (±)	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 235 MDC	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238	0.4	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238 precision (±)	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238 MDC	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
RADIONUCLIDES - GAMMA							
Potassium 40	0.0	pCi/g-dry	U	0.5		E901.1	05/22/12 13:10 / dpb
Potassium 40 precision (±)	0.5	pCi/g-dry				E901.1	05/22/12 13:10 / dpb
Radium 226	1.1	pCi/g-dry		0.3		E901.1	05/22/12 13:10 / dpb
Radium 226 precision (±)	0.3	pCi/g-dry				E901.1	05/22/12 13:10 / dpb

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor MineLab ID:C12041338-015Client Sample ID:MTE-15

 Report Date:
 06/01/12

 Collection Date:
 04/23/12 14:45

 DateReceived:
 04/30/12

 Matrix:
 Soil

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
RADIONUCLIDES							
Gross Alpha	5.8	pCi/g-dry				E900.0	05/02/12 12:00 / ep
Gross Alpha precision (±)	0.7	pCi/g-dry				E900.0	05/02/12 12:00 / ep
Uranium 234	0.8	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 234 precision (±)	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 234 MDC	0.1	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 235	0.02	pCi/g-dry	U			E908.0	05/08/12 08:58 / dmf
Uranium 235 precision (±)	0.09	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 235 MDC	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238	1	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238 precision (±)	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238 MDC	0.1	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
RADIONUCLIDES - GAMMA							
Potassium 40	0.0	pCi/g-dry	U	0.5		E901.1	05/22/12 13:10 / dpb
Potassium 40 precision (±)	0.5	pCi/g-dry				E901.1	05/22/12 13:10 / dpb
Radium 226	2.0	pCi/g-dry		0.3		E901.1	05/22/12 13:10 / dpb
Radium 226 precision (±)	0.3	pCi/g-dry				E901.1	05/22/12 13:10 / dpb

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor MineLab ID:C12041338-016Client Sample ID:MTE-16

 Report Date:
 06/01/12

 Collection Date:
 04/23/12 14:50

 DateReceived:
 04/30/12

 Matrix:
 Soil

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
RADIONUCLIDES							
Gross Alpha	6.4	pCi/g-dry				E900.0	05/02/12 12:00 / ep
Gross Alpha precision (±)	0.8	pCi/g-dry				E900.0	05/02/12 12:00 / ep
Uranium 234	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 234 precision (±)	0.1	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 234 MDC	0.1	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 235	-0.01	pCi/g-dry	U			E908.0	05/08/12 08:58 / dmf
Uranium 235 precision (±)	0.06	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 235 MDC	0.2	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238	0.3	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238 precision (±)	0.1	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
Uranium 238 MDC	0.1	pCi/g-dry				E908.0	05/08/12 08:58 / dmf
RADIONUCLIDES - GAMMA							
Potassium 40	0.0	pCi/g-dry	U	0.5		E901.1	05/22/12 13:10 / dpb
Potassium 40 precision (±)	0.5	pCi/g-dry				E901.1	05/22/12 13:10 / dpb
Radium 226	0.8	pCi/g-dry		0.3		E901.1	05/22/12 13:10 / dpb
Radium 226 precision (±)	0.3	pCi/g-dry				E901.1	05/22/12 13:10 / dpb

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

QA/QC Summary Report

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine

Report Date: 06/01/12 Work Order: C12041338

Analyte	Count	Result	Units	RL	%REC	Low Limit	High	Limit	RPD	RPDLimit	Qual
Method: E900.0										Batch:	R159328
Sample ID: MB-R159328	2 Me	thod Blank				Run: G500	0W_12	20502A		05/02/	12 12:00
Gross Alpha		-0.03	pCi/g-dry								U
Gross Alpha precision (±)		0.6	pCi/g-dry								
Sample ID: LCS-R159328	La	boratory Co	ontrol Sample			Run: G5000	0W_12	20502A		05/02/	/12 12:00
Gross Alpha		487	pCi/g-dry		96	70		130			
Sample ID: C12040820-001ADU	P 2 Sa	mple Dupli	cate			Run: G5000	0W_12	20502A		05/02/	/12 12:00
Gross Alpha		3.28	pCi/g-dry			70		130	14	20	
Gross Alpha precision (±)		0.660	pCi/g-dry								
- Duplicate RPD for Gross Beta is out	tside of the	acceptance ra	ange for this analysis.								
Sample ID: C12041338-010ADU	P 2 Sa	mple Dupli	cate			Run: G500	0W_12	20502A		05/02/	12 12:00
Gross Alpha		6.25	pCi/g-dry			70		130	13	20	
Gross Alpha precision (±)		0.750	pCi/g-dry								

RL - Analyte reporting limit. MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

QA/QC Summary Report

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine

Report Date: 06/01/12 Work Order: C12041338

-) ,						_			
Analyte	Count Re	esult Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E901.1								Batch	R16012
Sample ID: LCS-R160127	Laborate	ory Control Sample			Run: GAM-	HPGE_120522B		05/22	/12 13:10
Bismuth 214		2.30 pCi/g-dry	0.30	89	70	130			
Sample ID: MB-R160127	4 Method	Blank			Run: GAM-	HPGE_120522B		05/22	/12 13:10
Potassium 40		ND pCi/g-dry							U
Potassium 40 precision (±)		ND pCi/g-dry							
Radium 226		ND pCi/g-dry							U
Radium 226 precision (±)		ND pCi/g-dry							
Sample ID: C12041338-010AD	UP 4 Sample	Duplicate			Run: GAM-	HPGE_120522B		05/22	/12 13:10
Potassium 40		ND pCi/g-dry	0.50					20	U
Potassium 40 precision (±)		ND pCi/g-dry							
Radium 226		1.80 pCi/g-dry	0.30				40	20	R
Radium 226 precision (±)	0).400 pCi/g-dry							
- Duplicate RPD for Ra226 is outsi	de of the acceptance	e range for this analysis.							
Sample ID: C12041338-016AD	UP 4 Sample	Duplicate			Run: GAM-	HPGE_120522B		05/22	/12 13:10
Potassium 40		ND pCi/g-dry	0.50					20	U
Potassium 40 precision (±)		ND pCi/g-dry							
Radium 226		1.00 pCi/g-dry	0.30				22	20	R
Radium 226 precision (±)	0).300 pCi/g-dry							

- Duplicate RPD for Ra226 is outside of the acceptance range for this analysis.

Qualifiers:

RL - Analyte reporting limit. MDC - Minimum detectable concentration U - Not detected at minimum detectable concentration

QA/QC Summary Report

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine

Report Date:	06/01/12
Work Order:	C12041338

Analyte	Count	Result	Units	RL %F	REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E908.0									Bat	ch: 33540
Sample ID: C12041338-016AMS	2 S	ample Matrix	Spike			Run: EGG-	ORTEC_120504B		05/08/	12 13:12
Uranium 234		29.3	pCi/g-dry		105	70	130			
Uranium 238		31.8	pCi/g-dry		112	70	130			
Sample ID: C12041338-016AMSE) 2 S	ample Matrix	Spike Duplicate			Run: EGG-(ORTEC_120504B		05/08/	/12 13:12
Uranium 234		30.7	pCi/g-dry		109	70	130	4.3	28.4	
Uranium 238		31.8	pCi/g-dry		111	70	130	0.1	28.1	
Sample ID: LCS-33540	2 L	aboratory Co	ntrol Sample			Run: EGG-	ORTEC_120504B		05/08/	12 13:12
Uranium 234		2.44	pCi/g-dry		105	80	120			
Uranium 238		2.53	pCi/g-dry		107	80	120			
Sample ID: MB-33540	9 N	lethod Blank				Run: EGG-	ORTEC_120504B		05/08/	/12 13:12
Uranium 234		0.002	pCi/g-dry							U
Uranium 234 precision (±)		0.02	pCi/g-dry							
Uranium 234 MDC		0.03	pCi/g-dry							
Uranium 235		-0.004	pCi/g-dry							U
Uranium 235 precision (±)		0.01	pCi/g-dry							
Uranium 235 MDC		0.03	pCi/g-dry							
Uranium 238		0.0001	pCi/g-dry							U
Uranium 238 precision (±)		0.009	pCi/g-dry							
Uranium 238 MDC		0.02	pCi/g-dry							

	www.energylab.com <i>Analytical Excellence Since 1952</i>	Gillette,			489 • Casper, WY 888-235-0515 College Station, TX 888-690-2218
Workorder	Receipt Chec	klist			
Rio Grande R	esources Corpo	ration		C1204	1338
Login completed by:	Corinne Wagner		Date	Received: 4/30/2012	
Reviewed by:	BL2000\cwagner		Red	ceived by: tj	
Reviewed Date:	5/2/2012			Carrier Ground name:	
Shipping container/cooler in	good condition?	Yes 🗸	No 🗌	Not Present	
Custody seals intact on ship	ping container/cooler?	Yes 🗹	No 🗌	Not Present	
Custody seals intact on sam	ple bottles?	Yes	No 🗌	Not Present 🗹	
Chain of custody present?		Yes 🗹	No 🗌		
Chain of custody signed whe	en relinquished and received?	Yes 🗹	No 🗌		
Chain of custody agrees with	n sample labels?	Yes 🗹	No 🗌		
Samples in proper container	/bottle?	Yes 🗹	No 🗌		
Sample containers intact?		Yes 🗹	No 🗌		
Sufficient sample volume for	indicated test?	Yes 🗹	No 🗌		
All samples received within h (Exclude analyses that are c such as pH, DO, Res CI, Su	onsidered field parameters	Yes 🗹	No 🗌		
Container/Temp Blank temp	erature:	14.2℃			
Water - VOA vials have zero	headspace?	Yes	No 🗌	No VOA vials submitted	
Water - pH acceptable upon	receipt?	Yes 🗌	No 🗌	Not Applicable 🗹	

Contact and Corrective Action Comments:

None

ENERGY

7 1 ¢ Chain of Custody and Analytical Ro

¢ .

LABORATORIES	RIES			PLEASE PRIN	CITATILO CUSICUY ATTU ATTAIY ILCAL PLEASE PRINT- Provide as much inform	OUY AIIU AIIAIY (ICAL NEQUESI NECOLU PLEASE PRINT- Provide as much information as possible.	ר ארר	7	1.	Page I of Z	
Company Name:	me:			Project Nam	Project Name, PWS, Permit, Etc.	Etc.		Sample Origin	 -	EPA/State Compliance:	
Rio Grande	Rio Grande Resources Corporation	ation #C11115		Mt. Taylor Mine	Mine			State:	NM Yes 🛛	No N	
Report Mail Address:				Contact Name:		Phone/Fax:		Email:	Sam	Sampler: (Please Print)	·
	Grants, NM 8/020-1150	0611-020/8		Joe Lister, Manager	_	(505) 287-7971			Stan	Stan Fitch	
Invoice Address:		Rio Grande Resources PO Box 1150 Grants. New mexico 87020		Invoice Con Joe Lister	Invoice Contact & Phone: Joe Lister 505-287-7971			Purcha	Purchase Order: Quo	Quote/Bottle Order: Soil Samples	
Special Re prior to sar	Special Report/Formats – ELI must be notified prior to sample submittal for the following:	Ll must be no the following:	otified :	er O	VNALT]3	S REQUESTED		2	Contact ELI prior to RUSH sample submittal	Shipped by: 05 C	
				v S V B V S V B Solids A <u>D</u> Oth					ror criarges and scheduling – See Instruction Page	35/39/ 29	
		A2LA EDD/EDT (Electronic Data)	sctronic Data)	r of Cor /Pe: Joy ter <u>S</u> oils n <u>B</u> ioas			stound TACH	_	Comments:	Receipt Temp	
	WWTP	Format:		im b e ple Ty ir <u>W</u> a etatio	0			S	Sample results	On Ice:	
		NELAC		nn Ms2 09⊻ 09⊻	nic Urar 82S-m 8-muis 81pha		Normal SEE	T	needed within 30 days.	es (
SAMPLE (Name, Loc	SAMPLE IDENTIFICATION (Name, Location, Interval, etc.)	Collection Date	Collection Time	MATRIX	uibeЯ Potes					Intact Signature Match	
¹ MTE-1		04/23/12	10:20	soil	X X X X		×			Â	
² MTE-2		04/23/12	10:25	soil	XXXX		\times			את	_
³ MTE-3		04/23/12	10:50	soil	XXXX		×			Ø	
⁴ MTE-4		04/23/12	10:58	soil	XXXX		×			ISC	
⁵ MTE-5		04/23/12	11:05	soil	XXXX		\times			D A	
⁶ МТЕ-6		04/23/12	11:10	soil	XXXX		\times			YO	
⁷ MTE-7		04/23/12	11:30	soil	XXXX		\times			₩A	
⁸ MTE-8		04/23/12	12:37	soil	XXXX		\times		4 2 4	NO	
⁹ MTE-9		04/23/12	12:40	soil	XXXX		\times			85	
¹⁰ MTE-10		04/23/12	12:52	soil	XXXX		X			77)	
Custody	Relinquished by (print): Stan Fitch	Date/Time 04/26/	Date/Time: 04/26/12 11:00	Ð	A	Received by (print):		Date/Time:	Sig	Signature:	
Record MUST be		Date/Time	:90	Signat	(ure:	Received by (print):	ă	Date/Time:	Sig	Signature:	
Signed	Sample Disposal:	Return to Client:		Lab Disposal:	iał: XXXX	Received by Laboratory.	Э Ч		THICH IN	Signature:	
	In certain circumstance	es, samples subr This sen Visit our w	nitted to Energy /es as notice of eh site at www	y Laboratories f this possibilit enerrovlab corr	s, Inc. may be subc ty. All sub-contract in for additional infe	In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis lequested. This serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report. Visit our web site at www energylah com for additional information, downloadable fee schedule, forms, and linke	laboratorie d on your a	s in order nalytical i forms	to complete the analysi eport.	s equested.	
							ם מכוובתתום	101112, 12			

.

Chain of Custody and Analytical Request Record

LABORATORIES	ORIES		Pliant of Oustouy and Allary lical Request Record	UUY allu Allaly ucal Request		llaly.	LCal I			vect	DIG		Page	e 2 of 2	
Company Name:	ame:			Project Name, PWS, Permit, Etc.	ne, PWS	, Permit			sicie.		Samo	Sampla Orinin	to/VGE	to Compliance.	E
Rio Grand	Rio Grande Resources Corporation	ation #C1115	15	Mt. Taylor Mine	Mine	-					State -	WN NW			
Report Mail Address				Control Namo											
-	Grants, NM 87020-1150	7020-1150		Joe Lister, Manager	Manaq.	Б	(505) 287-7971	x: 17-7971			Email:		Sampler: (I	Sampler: (Please Print) Ston Eitob	· · · · ·
-															
Invoice Address:	ress: PO Box 1150 Grants. New Mexico 87020	fexico 87020		Invoice Contact & Phone:	tact & P	hone:					Purch	Purchase Order:	Quote/E	Quote/Bottle Order.	1
				1/6/-/82-COC Jave Tool	187-000	1/6/-							Soil Samples	mples	
Special Re	Special Report/Formats – ELI must be notified prior to sample submittal for the following:	.I must be no the following	btified	C	AN1/	ANAL 7818		REQUESTED			1	Contact ELI prior to	to	Shipped by:	T
				Othei VB(NB(NB(Y	for charges and	חווונופו	Cooler ID(s):	
	[niejno 2 W J 102\sli vess								scneduling – See Instruction Page			
		A2LA FDD/FDT/Flectronic Data	actronic Data)	of Co A :90 io <u>2</u> r Bioa			<u> </u>		1.5 v)	Comments:		Receipt Temp	T
	POTWWTP	Format:		ation Wate Wate notion	ur				<u> </u>		U		<u></u>	On lee:	· · · · · -
Other:		LEVEL IV NFI AC		nun Iqms∂ n <u>iA</u> t∋ge⊻	Jranic 926	07-u	10110		v =:	N 33)	Sample results needed within 30	ts 30	Yes No	
]		2		3		inis			10		I	days.	_ _	Custody Seal Y N	
	SAMPLE IDENTIFICATION	Collection	Collection	MATON	nipe doto	sete	SSO.			1		1		Intact Y N	
(Name, Loc	Location, Interval, etc.)	Date	Time	MAIRIX		ЪЧ	10							Signature Y N Match	
MTE-11		04/23/12	12:56	soil	X X	X X				Х					
² MTE-12		04/23/12	13:40	soil	XX	X				×				ארא	
³ MTE-13		04/23/12	13:55	soil	XX	XX				$(\times$				10	
⁴ MTE-14		04/23/12	14:05	soil	XX	X				$\langle \times$	-			IS	
⁵ MTE-15		04/23/12	14:45	soil	XX	X			+	$\langle \times$					_ <u>_</u>
⁶ MTE-16		04/23/12	14:50	soil	XX	XX				$\langle \times$					
7					-										
60														7 Y C	
6	<u>u</u> ,													ରାମ	
10									-	1				1	
Custody	Relinquished by (print): Stan Fitch	Date/Time: 04/26/12	i/12 11:00	Signature	le C		Recei	Received by (print):	1	ă	Date/Time:		Signature	ä	
Record MUST be	L E	Date/Time	l	Signer,	ieur		Recei	Received by (print):			Date/Time:		Signature		
Signed	Sample Disposal: Re	Return to Client:		Lab Disposal:	1	XXXXX	Recal	Received by Laboratory:		9.20 Detertime	tertime	new the	Signature:	ė	
	In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested. This serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report	s, samples subn This serv	itted to Energy es as notice of	/ Laboratories this possibility	, Inc. ma	y be subc	ontracted data will t	to other cert ie clearly no	ified lab tated or	oratorie 1 your al	s in orde nalytical	r to complete the a report.	nalysis re	quested.	_
		Visit our we	Visit our web site at <u>www.energylab.com</u> for additional information. downloadable fee schedule forms and linke	energylab.con	<u>n</u> for add	itional infe	ormation. c	lownloadabl	le fee sr	hadula	forme	ind linke			

TABLE 1
Soil Physical Properties Analytical Results - April 2012
RIO GRANDE RESOURCES SOIL SAMPLING AND TESTING FOR CLOSEOUT PLAN
MT. TAYLOR MINE, SAN MATEO, NEW MEXICO

Boring ID	Approximate Collection Depth (inches bgs)	Collection Date	Soil Classification	Atterber	g Limits	Moisture Content (%)
	Analytical Method		USCS	PI	LL	D2216A
MT-WP-SM1	0-6	4/10/2012	SC	24	37	7.1
MT-WP-SM2	0-6	4/10/2012	CL	27	43	7.9
MT-WP-SM3	0-6	4/10/2012	SC	21	34	2.5
BORROW	24-66	4/10/2012	CL	13	37	10.7
MT-1-F	0-6	4/10/2012	SC	15	35	13.7
MT-2-D	0-6	4/10/2012	CL	14	33	16.4
MT-3-F	0-6	4/10/2012	CL	17	35	17.3
MT-4-F	0-6	4/10/2012	CL	13	34	10.5
MT-5-F	0-6	4/10/2012	CL	17	37	17.6
MT-7-C	0-6	4/10/2012	CL	17	39	17.9
MT-8-F	0-6	4/10/2012	SC	13	27	12.9
MT-OP-E	0-6	4/10/2012	CL	12	31	10.3

Notes: bgs = below ground surface PI = Plastic Index LL = Liquid Limit

TABLE 2	
Soil Chemical Analytical Results - April 2012	
Total Metals by SW 6010/SW 6020 and Radiochemistry by E903.0/RA-05	
RIO GRANDE RESOURCES SOIL SAMPLING AND TESTING FOR CLOSEOUT PLAN	
MT. TAYLOR MINE. SAN MATEO, NEW MEXICO	

	Location	Collection Depth		Arsenic	Barium	Cadmium	Chromium	Lead	Mercurv	Radium 226	Radium 228	Selenium	Silver	Uranium
Sample ID		(inchesbgs)	Date	Alacine	Barram			Leuu	moreary	-	-	Scientani	-	oraniani
		CONCENTRATION	1			mç			-	pCi/g	pCi/g		mg/L	
	Analytical M			SW 6020	SW 6010B	SW 6010B		SW 6020	SW 7470A	E903.0	RA-05	SW 6020	SW 6020	SW 6020
	NMED SSL			1.31E-02	3.01E+02	1.37E+00	9.86E+07	NA	5.71E-01		0 ³	9.65E-01	1.57E+00	4.93E+01
S1-01-01	MT-1-E	0-4	4/10/2012	0.014	0.28	<0.001	0.014 B	0.014	<0.002	124	1.8	0.26	<0.002 D	2.2 D
S1-01-02	MT-1-E	16-18	4/10/2012	0.048	3.8	0.001	0.040 B	0.078	<0.002	113	1.3	0.49	<0.002 D	5.3 D
S1-01-03	MT-1-E	44-48	4/10/2012	0.010	0.34	<0.001	0.027 B	0.023	< 0.002	12.6	0.8	0.14	0.002 D	0.094 D
S1-02-01	MT-1-D	0-4	4/10/2012	0.023	0.39	<0.001	0.014 B	0.021	<0.002	224	2.3	0.19	<0.002 D	1.5 D
S1-02-02	MT-1-D	26-30	4/10/2012	0.003	<0.05	<0.001	0.007 B	0.004	< 0.002	0.9	0.8	0.11	<0.002 D	0.24 D
S1-02-03	MT-1-D	44-48	4/10/2012	0.003	< 0.05	< 0.001	0.006 B	0.003	< 0.002	0.6	0.6	0.012	<0.002 D	0.050 D
S3-01-01	MT-3-E	0-12	4/10/2012	0.007	0.31	0.002	< 0.005	0.002	<0.002	21.0	1.5	0.19	<0.001	9.7 B
S3-01-02	MT-3-E	20-26	4/10/2012	0.014	2.3	0.001	0.050	0.064	<0.002	6.2	0.7	0.036	<0.001	5.7 B
S3-01-03	MT-3-E	26-36	4/10/2012	0.005	0.14	<0.001	0.013	0.012	< 0.002	4.5	0.8	0.053	<0.001	0.47 B
S3-01-04	MT-3-E	64-75	4/10/2012	0.003	0.07	<0.001	0.011	0.005	<0.002	1.7	0.7	0.032	<0.001	0.036 B
S3-02-01	MT-3-D	0-12	4/10/2012	0.018	6.6	0.002	0.015	0.028	<0.002	6.4	2.2	0.15	<0.001	7.8 B
S3-02-02	MT-3-D	26-30	4/10/2012	0.002	<0.05	<0.001	0.009	0.001	<0.002	3.0	0.7	0.023	<0.001	0.18 B
S3-02-03	MT-3-D	50-54	4/10/2012	0.006	0.27	<0.001	0.018	0.016	<0.002	2.4	0.3	0.003	<0.001	0.022 B
S5-01-01	MT-5-E	0-12	4/10/2012	0.009	5.5	<0.001	0.027 B	0.028	< 0.002	11.3	0.3	0.010	<0.002 D	0.11
S5-01-02	MT-5-E	36-37	4/10/2012	0.004	0.07	< 0.001	0.012	0.005	< 0.002	1.7	0.6	0.004	< 0.002	0.0054
S5-02-01	MT-5-D	0-12	4/10/2012	<0.001	0.10	<0.001	0.008	< 0.001	< 0.002	0.8	0.2	0.40	<0.002	1.5
S5-02-02	MT-5-D	17-24	4/10/2012	<0.001	0.08	< 0.001	0.005	< 0.001	< 0.002	2.1	0.2	0.15	< 0.002	1.1
S5-02-03	MT-5-D	40-44	4/10/2012	0.006	0.62	<0.001	0.017	0.013	< 0.002	4.1	0.5	0.012	<0.002	0.011 D
S7-01-01	MT-7-A	0-12	4/10/2012	0.004	0.06	<0.001	0.005	< 0.001	<0.002	10.4	0.1	0.26	<0.002	0.37
S7-01-02	MT-7-A	24-30	4/10/2012	0.002	0.06	<0.001	0.009	0.003	<0.002	1.1	0.6	0.002	<0.002	0.0047
S7-01-03	MT-7-A	30-35	4/10/2012	< 0.001	0.05	< 0.001	0.009	0.001	< 0.002	1.5	0.2	0.002	< 0.002	0.0049
S7-02-01	MT-7-B	0-12	4/10/2012	0.013	0.76	<0.001	0.006	0.001	< 0.002	2.6	0.5	0.22	<0.001	0.18
S7-02-02	MT-7-B	23-43	4/10/2012	0.007	0.31	< 0.001	0.013	0.020	< 0.002	1.9	0.2	0.13	< 0.001	0.014
S7-02-03	MT-7-B	43-46	4/10/2012	0.003	0.16	<0.001	0.010	0.005	< 0.002	1.1	0.3	0.003	<0.001	0.0053
S8-01-01	MT-8-E	0-8	4/10/2012	0.008	0.91	<0.001	0.012	0.009	<0.002	27.2	0.2	0.007	< 0.002	0.016
S8-01-02	MT-8-E	17-30	4/10/2012	0.004	0.09	<0.001	0.006	< 0.001	< 0.002	2.5	0.6	0.30	0.002	3.8
S8-01-03	MT-8-E	36-40	4/10/2012	0.032	0.16	<0.001	0.010	0.006	<0.002	24.5	0.5	0.036	<0.002	0.022
S8-02-01	MT-8-D	0-12	4/10/2012	0.004	0.12	< 0.001	0.009	0.005	< 0.002	10.6	0.1	0.22	< 0.002	0.12
S8-02-02	MT-8-D	18-24	4/10/2012	0.006	0.06	< 0.001	0.006	< 0.001	< 0.002	1.7	1.5	1.0	< 0.002	6.7
S8-02-03	MT-8-D	40-50	4/10/2012	0.011	0.98	< 0.001	0.028	0.013	< 0.002	14.0	0.2	0.063	< 0.002	0.19
S8-02-04	MT-8-D	58-62	4/10/2012	0.004	0.15	< 0.001	0.011	0.005	< 0.002	2.0	0.6	< 0.001	<0.002	0.0056 D
SA-01-01	MT-A-A	0-4	4/10/2012	0.036	0.31	< 0.001	0.014 B	0.021	< 0.002	152	1.8	0.046	<0.002 D	0.44 D
SA-01-02	MT-A-A	6-8	4/10/2012	0.006	0.11	< 0.001	0.010 B	0.009	< 0.002	8.7	0.7	0.051	<0.002 D	0.45 D
SA-01-03	MT-A-A	28-30	4/10/2012	0.003	< 0.05	< 0.001	0.005 B	0.003	< 0.002	1.7	0.6	0.095	<0.002 D	0.030 D
SA-02-01	MT-A-B	0-4	4/10/2012	0.025	0.25	< 0.001	0.011 B	0.010	< 0.002	275	3.5	0.014	<0.002 D	0.37 D
SA-02-02	MT-A-B	8-10	4/10/2012	0.006	0.15	< 0.001	0.013 B	0.010	< 0.002	5.4	0.7	0.003	<0.002 D	0.11 D
SA-02-03	MT-A-B	30-33	4/10/2012	0.006	0.09	< 0.001	0.013 B	0.006	< 0.002	29.3	1.3	0.003	<0.002 D	0.088 D
MT-1-F (6" B.G.)	MT-1-F	6	4/10/2012	0.006	0.17	<0.001	0.014	0.016	< 0.002	2.0	0.6	0.005	< 0.001	0.077 B
MT-2-D (6" B.G.)	MT-2-D	6	4/10/2012	0.002	0.06	< 0.001	0.005	0.003	< 0.002	0.6	0.6	< 0.001	<0.001	0.0098 B
MT-3-F (6" B.G.)	MT-3-F	6	4/10/2012	0.002	< 0.05	< 0.001	< 0.005	0.001	< 0.002	0.9	0.5	0.001	<0.002 D	0.0090 D
MT-4-D-S1 (0-6" B.G.)	MT-4-D	0-6	4/10/2012	0.008	1.0	< 0.001	0.008	0.003	< 0.002	18.1	0.9	0.015	<0.002 D	0.033 D
MT-4-D-S2 (14" B.G.)	MT-4-D	14	4/10/2012	0.007	<0.05	<0.001	0.006	0.001	<0.002	2.8	0.2	0.39	<0.002 D	0.20 D

TABLE 2 I ABLE 2 Soil Chemical Analytical Results - April 2012 Total Metals by SW 6010/SW 6020 and Radiochemistry by E903.0/RA-05 RIO GRANDE RESOURCES SOIL SAMPLING AND TESTING FOR CLOSEOUT PLAN MT. TAYLOR MINE, SAN MATEO, NEW MEXICO

Sample ID	Location	Collection Depth (inches bgs)	Collection Date	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Radium 226	Radium 228	Selenium	Silver	Uranium
·		CONCENTRATION				mg	j/L			pCi/g	pCi/g		mg/L	
	Analytical M	ethod		SW 6020	SW 6010B	SW 6010B	SW 6010B	SW 6020	SW 7470A	E903.0	RA-05	SW 6020	SW 6020	SW 6020
	NMED SSL I	DAF 1		1.31E-02	3.01E+02	1.37E+00	9.86E+07	NA	5.71E-01	3	0 ³	9.65E-01	1.57E+00	4.93E+01
MT-4-D-S3 (48" B.G.)	MT-4-D	48	4/10/2012	0.003	0.88	<0.001	0.009	0.003	< 0.002	6.7	0.8	0.020	<0.002 D	0.013 D
MT-4-E-S1 (0-4" B.G.)	MT-4-E	0-4	4/10/2012	0.034	34	<0.001	0.007	0.008	< 0.002	8.7	1.5	0.15	<0.002 D	0.39 D
MT-4-E-S2 (10-12" B.G.)	MT-4-E	10-12	4/10/2012	0.005	0.22	<0.001	0.011	0.005	< 0.002	4.8	0.4	0.072	<0.002 D	0.014 D
MT-4-E-S3 (36" B.G.)	MT-4-E	36	4/10/2012	0.003	0.13	<0.001	0.007	0.003	< 0.002	2.9	0.7	0.026	0.003 D	0.0043 D
MT-4-E-S4 (48" B.G.)	MT-4-E	48	4/10/2012	0.005 B	0.06	<0.001	0.006	0.002	< 0.002	6.2	0.4	0.011	< 0.001	0.027
MT-4-F (6" B.G.)	MT-4-F	6	4/10/2012	0.005	< 0.05	< 0.001	< 0.005	0.003	< 0.002	0.8	1.0	0.002	<0.002 D	0.0027 D
MT-5-F (6" B.G.)	MT-5-F	6	4/10/2012	0.002	< 0.05	<0.001	< 0.005	0.001	< 0.002	2.0	0.8	0.001	0.003 D	0.0029 D
MT-6-A-S1 (0-5" B.G.)	MT-6-A	0-5	4/10/2012	0.012	7.3	< 0.001	0.007	0.016	< 0.002	6.4	0.2	0.007	< 0.001	0.044
MT-6-A-S2 (12-20" B.G.)	MT-6-B	12-20	4/10/2012	0.003 B	0.05	<0.001	0.007	<0.001	< 0.002	0.4	0.1	0.15	< 0.001	0.26 U
MT-6-B-S1 (8-10" B.G.)	MT-6-B	8-10	4/10/2012	0.004 B	0.05	< 0.001	0.007	< 0.001	< 0.002	0.8	0.2	0.16	< 0.001	0.26
MT-6-B-S2 (30" B.G.)	MT-6-B	30	4/10/2012	0.002 B	0.06	<0.001	< 0.005	< 0.001	<0.002	4.1	0.8	0.003	<0.001	0.014
MT-7-C (6" B.G.)	MT-7-C	6	4/10/2012	0.002	< 0.05	<0.001	0.006	0.002	< 0.002	0.6	0.8	<0.001	<0.002 D	0.0023 D
MT-8-F (6" B.G.)	MT-8-F	6	4/10/2012	0.001	0.05	0.001	0.005	0.001	0.002	-1000	-1000	0.001	0.002 D	0.0006 D
MT-A-C (6" B.G.)	MT-A-C	6	4/10/2012	0.003	< 0.05	<0.001	< 0.005	0.001	< 0.002	1.7	0.5	0.044	<0.002 D	0.14
	MT-Borrow	24-66	4/10/2012	0.001	< 0.05	<0.001	< 0.005	<0.001	< 0.002	0.7	0.7	0.001	<0.002 D	0.0007
MT-OP-C-S1 (0-6" B.G.)	MT-OP-C	0-6	4/10/2012	0.015	0.05	<0.001	0.010	0.001	<0.002	53.3	2.1	0.052	< 0.001	1.8
MT-OP-C-S2 (20" B.G.)	MT-OP-C	20	4/10/2012	0.005	0.05	<0.001	0.007	0.002	< 0.002	1.7	0.6	0.018	<0.002 D	0.14
MT-OP-C-S3 (48-50' B.G.	MT-OP-C	48-50	4/10/2012	0.004	<0.05	<0.001	< 0.005	<0.001	< 0.002	0.8	0.8	0.028	<0.002 D	0.049
MT-OP-C-S4 (72" B.G.)	MT-OP-C	72	4/10/2012	0.004	< 0.05	<0.001	< 0.005	<0.001	< 0.002	1.5	0.6	0.025	<0.002 D	0.0064
MT-OP-D-S1 (0-6" B.G.)	MT-OP-D	0-6	4/10/2012	0.013	1.3	<0.001	0.007	0.008	< 0.002	51.9	0.5	0.009	<0.002 D	0.23
MT-OP-D-S2 (48-50" B.G.	MT-OP-D	48-50	4/10/2012	0.001	0.05	<0.001	< 0.005	<0.001	< 0.002	1.9	0.6	0.005	<0.002 D	0.10
MT-OP-D-S3 (76" B.G.)	MT-OP-D	76	4/10/2012	0.006	0.11	<0.001	0.012	0.009	< 0.002	0.6	0.5	0.002	<0.002 D	0.0034
MT-OP-E (6" B.G.)	MT-OP-E	6	4/10/2012	0.004	0.05	<0.001	0.006	0.003	< 0.002	1.1	0.8	0.005	<0.002 D	0.0056

Total metals concentrations should be compared to background soil sample concentrations before comparing to Soil Screening Levels (SSL). Only metal concentrations above background should be considered for comparison to SSLs. NMED considers a DAF=20 to be protective of groundwater for a 0.5 acre source. SSL values are included for reference only, as they are applicable for reclamation, not for mines that are active or on stand-by status. B = The analyte was detected in the method blank. D = Reporting limit increased due to sample matrix. U = Not detected at minimum detectable concentration.

Notes: bgs = bokow ground surface mg/Kg = milligrams per killogram DAF=Dilution Attenuation Factor NA = No DAF values available, NMED 2012, rev6

TABLE 3 Sediment Analytical Results Cloride and Sulfate Detections - April 2012 RIO GRANDE RESOURCES SOIL SAMPLING AND TESTING FOR CLOSEOUT PLAN MT. TAYLOR MINE, SAN MATEO, NEW MEXICO

ClientSampID	Location	Sample Interval (inches below grade)	Method	Analyte	Value (mg/kg)	Analyte	Value (mg/kg)
Berms							
		•	•				
MT-4-F	MT-4-F	6	E300.1	Chloride	51.2	Sulfate	405
MT-5-F	MT-5-F	6	E300.2	Chloride	37.0	Sulfate	183
MT-8F	MT-8F	6	E300.3	Chloride	14.2	Sulfate	28.9
Ponds							
MT-4-D-S1	MT-4-D	0-6	E300.0	Chloride	7.76	Sulfate	77
MT-4-D-S2	MT-4-D	14	E300.0	Chloride	92.00	Sulfate	1840
MT-4-D-S3	MT-4-D	48	E300.0	Chloride	6.49	Sulfate	132
MT-4-E-S1	MT-4-E	0-4	E300.0	Chloride	46.40	Sulfate	853
MT-4-E-S2	MT-4-E	10-12	E300.0	Chloride	34.10	Sulfate	1150
MT-4-E-S3	MT-4-E	36	E300.0	Chloride	13.10	Sulfate	184
MT-4-E-S4	MT-4-E	48	E300.0	Chloride	4.51	Sulfate	131
S5-01-01	MT-5-E	0-12	E300.0	Chloride	9.64	Sulfate	113
S5-01-02	MT-5-E	30-37	E300.0	Chloride	7.87	Sulfate	261
S5-02-01	MT-5-D	0-12	E300.1	Chloride	17.2	Sulfate	2860
S5-02-02	MT-5-D	17-24	E300.2	Chloride	23.1	Sulfate	2530
S5-02-03	MT-5-D	40-44	E300.3	Chloride	5.10	Sulfate	279
S8-01-01	MT-8-E	0-8	E300.0	Chloride	29.3	Sulfate	35.3
S8-01-02	MT-8-E	17-30	E300.0	Chloride	39.6	Sulfate	2750
S8-01-03	MT-8-E	36-40	E300.0	Chloride	12.0	Sulfate	197
S8-02-01	MT-8-D	0-12	E300.0	Chloride	58.6	Sulfate	1660
S8-02-02	MT-8-D	18-24	E300.0	Chloride	44.6	Sulfate	2480
S8-02-03	MT-8-D	40-50	E300.0	Chloride	9.13	Sulfate	536
S8-02-04	MT-8-D	56-62	E300.0	Chloride	3.01	Sulfate	31.2

July 05, 2012

Rio Grande Resources Corporation PO Box 1150 Grants, NM 87020

Workorder No.: C12040804

Quote ID: C3778 - Mt Taylor Mine Closure Plan

Project Name: Mt. Taylor Mine Closure Plan

Energy Laboratories, Inc. Casper WY received the following 37 samples for Rio Grande Resources Corporation on 4/13/2012 for analysis.

Sample ID	Client Sample ID	Collect Date Receive Date	e Matrix	Test
C12040804-001	S1-01-01	04/10/12 10:45 04/13/12	Sediment	Metals, SPLP Extractable Mercury, SPLP Mercury Analysis Prep Filterability Digestion, Total Metals Digestion For RadioChemistry Radium 226 Radium 228 SPLP Extraction, Regular
C12040804-002	S1-01-02	04/10/12 10:50 04/13/12	Sediment	Same As Above
C12040804-003	S1-01-03	04/10/12 11:00 04/13/12	Sediment	Same As Above
C12040804-004	S1-02-01	04/10/12 11:40 04/13/12	Sediment	Same As Above
C12040804-005	S1-02-02	04/10/12 11:43 04/13/12	Sediment	Same As Above
C12040804-006	S1-02-03	04/10/12 11:45 04/13/12	Sediment	Same As Above
C12040804-007	SA-01-01	04/10/12 11:30 04/13/12	Sediment	Same As Above
C12040804-008	SA-01-02	04/10/12 11:35 04/13/12	Sediment	Same As Above
C12040804-009	SA-01-03	04/10/12 11:45 04/13/12	Sediment	Same As Above
C12040804-010	SA-02-01	04/10/12 11:48 04/13/12	Sediment	Same As Above
C12040804-011	SA-02-02	04/10/12 11:48 04/13/12	Sediment	Same As Above
C12040804-012	SA-02-03	04/10/12 11:48 04/13/12	Sediment	Same As Above
C12040804-013	S8-01-01	04/10/12 13:00 04/13/12	Sediment	Metals, SPLP Extractable Mercury, SPLP Mercury Analysis Prep Filterability E300.0 Anions Digestion, Total Metals Digestion For RadioChemistry DI Water Soil Extract Radium 226 Radium 228 SPLP Extraction, Regular
C12040804-014	S8-01-02	04/10/12 13:09 04/13/12	Sediment	Same As Above
C12040804-015	S8-01-03	04/10/12 13:09 04/13/12	Sediment	Same As Above
C12040804-016	S8-02-01	04/10/12 13:26 04/13/12	Sediment	Same As Above

C12040804-017	S8-02-02	04/10/12 13:36 0)4/13/12	Sediment	Same As Above
C12040804-018	S8-02-03	04/10/12 13:36 0)4/13/12	Sediment	Same As Above
C12040804-019	S8-02-04	04/10/12 13:39 0)4/13/12	Sediment	Same As Above
C12040804-020	S5-01-01	04/10/12 14:05 0)4/13/12	Sediment	Same As Above
C12040804-021	S7-01-01	04/10/12 15:12 0)4/13/12	Sediment	Metals, SPLP Extractable Mercury, SPLP Mercury Analysis Prep Filterability Digestion, Total Metals Digestion For RadioChemistry Radium 226 Radium 228 SPLP Extraction, Regular
C12040804-022	S7-01-02	04/10/12 15:17 0)4/13/12	Sediment	Same As Above
C12040804-023	S7-01-03	04/10/12 15:22 0)4/13/12	Sediment	Same As Above
C12040804-024	S5-02-02	04/10/12 14:15 0)4/13/12	Sediment	Metals, SPLP Extractable Mercury, SPLP Mercury Analysis Prep Filterability E300.0 Anions Digestion, Total Metals Digestion For RadioChemistry DI Water Soil Extract Radium 226 Radium 228 SPLP Extraction, Regular
C12040804-025	S5-02-03	04/10/12 14:20 0	04/13/12	Sediment	Same As Above
C12040804-026	S5-02-01	04/10/12 14:30 0)4/13/12	Sediment	Same As Above
C12040804-027	S5-01-02	04/10/12 14:09 0	04/13/12	Sediment	Same As Above
C12040804-028	S3-01-01	04/10/12 9:15 0)4/13/12	Sediment	Metals, SPLP Extractable Mercury, SPLP Mercury Analysis Prep Filterability Digestion, Total Metals Digestion For RadioChemistry Radium 226 Radium 228 SPLP Extraction, Regular
C12040804-029	S3-01-02	04/10/12 8:50 0	04/13/12	Sediment	Same As Above
C12040804-030	S3-01-03	04/10/12 9:40 0	04/13/12	Sediment	Same As Above
C12040804-031	S3-02-01	04/10/12 10:22 0	04/13/12	Sediment	Same As Above
C12040804-032	S3-02-02	04/10/12 10:30 0	04/13/12	Sediment	Same As Above
C12040804-033	S3-02-03	04/10/12 10:30 0	04/13/12	Sediment	Same As Above
C12040804-034	S7-02-01	04/10/12 15:45 0	04/13/12	Sediment	Same As Above
	S7-02-02	04/10/12 15:50 0	04/13/12	Sediment	Same As Above
C12040804-035					
C12040804-035 C12040804-036	S7-02-03	04/10/12 15:55 0	04/13/12	Sediment	Same As Above

The results as reported relate only to the item(s) submitted for testing. The analyses presented in this report were performed at Energy Laboratories, Inc., 2393 Salt Creek Hwy., Casper, WY 82601, unless otherwise noted. Radiochemistry analyses were performed at Energy Laboratories, Inc., 2325 Kerzell Lane, Casper, WY 82601, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

If you have any questions regarding these test results, please call.

Report Approved By:

CLIENT: Rio Grande Resources Corporation

Project:

ect: Mt. Taylor Mine Closure Plan

Sample Delivery Group: C12040804

Report Date: 06/13/12

CASE NARRATIVE

REVISED/SUPPLEMENTAL REPORT

The attached analytical report has been revised from a previously submitted report due to the request by the client for the analysis of Radium 226 and Radium 228 on the Sediment on all samples and Chloride and Sulfate on the Sediment on samples -013 through -020 and -024 through -027. The data presented here is from that analysis.

PREP COMMENTS

The prep hold time for Mercury analysis was exceeded by up to 10.2 days. The prep hold time for Chloride and Sulfate analysis was exceeded by 38.8 days.

ORIGINAL SAMPLE SUBMITTAL(S)

All original sample submittals have been returned with the data package.

SAMPLE TEMPERATURE COMPLIANCE: 4 ℃ (±2 ℃)

Temperature of samples received may not be considered properly preserved by accepted standards. Samples that are hand delivered immediately after collection shall be considered acceptable if there is evidence that the chilling process has begun.

GROSS ALPHA ANALYSIS

Method 900.0 for gross alpha and gross beta is intended as a drinking water method for low TDS waters. Data provided by this method for non potable waters should be viewed as inconsistent.

RADON IN AIR ANALYSIS

The desired exposure time is 48 hours (2 days). The time delay in returning the canister to the laboratory for processing should be as short as possible to avoid excessive decay. Maximum recommended delay between end of exposure to beginning of counting should not exceed 8 days.

SOIL/SOLID SAMPLES

All samples reported on an as received basis unless otherwise indicated.

ATRAZINE, SIMAZINE AND PCB ANALYSIS

Data for PCBs, Atrazine and Simazine are reported from EPA 525.2. PCB data reported by ELI reflects the results for seven individual Aroclors. When the results for all seven are ND (not detected), the sample meets EPA compliance criteria for PCB monitoring.

SUBCONTRACTING ANALYSIS

Subcontracting of sample analyses to an outside laboratory may be required. If so, ENERGY LABORATORIES will utilize its branch laboratories or qualified contract laboratories for this service. Any such laboratories will be indicated within the Laboratory Analytical Report.

BRANCH LABORATORY LOCATIONS

eli-b - Energy Laboratories, Inc. - Billings, MT eli-g - Energy Laboratories, Inc. - Gillette, WY eli-h - Energy Laboratories, Inc. - Helena, MT eli-r - Energy Laboratories, Inc. - Rapid City, SD eli-t - Energy Laboratories, Inc. - College Station, TX

CERTIFICATIONS:

USEPA: WY00002, Radiochemical WY00937; FL-DOH NELAC: E87641, Radiochemical E871017; California: 02118CA; Oregon: WY200001, Radiochemical WY200002; Utah: WY00002; Virginia: 00057; Washington: C836

ISO 17025 DISCLAIMER:

The results of this Analytical Report relate only to the items submitted for analysis.

ENERGY LABORATORIES, INC. - CASPER, WY certifies that certain method selections contained in this report meet requirements as set forth by the above accrediting authorities. Some results requested by the client may not be covered under these certifications. All analysis data to be submitted for regulatory enforcement should be certified in the sample state of origin. Please verify ELI's certification coverage by visiting www.energylab.com

ELI appreciates the opportunity to provide you with this analytical service. For additional information and services visit our web page www.energylab.com.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-001Client Sample ID:S1-01-01

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 10:45

 DateReceived:
 04/13/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.014	mg/L		0.001		SW6020	04/20/12 13:36 / smm
Barium	0.28	mg/L		0.05		SW6020	04/20/12 13:36 / smm
Cadmium	ND	mg/L		0.001		SW6020	04/20/12 13:36 / smm
Chromium	0.014	mg/L	В	0.005		SW6020	04/20/12 13:36 / smm
Lead	0.014	mg/L		0.001		SW6020	04/20/12 13:36 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 07:52 / rdw
Selenium	0.26	mg/L		0.001		SW6020	04/20/12 13:36 / smm
Silver	ND	mg/L	D	0.002		SW6020	04/20/12 13:36 / smm
Uranium	2.2	mg/L	D	0.0006		SW6020	04/20/12 13:36 / smm
RADIONUCLIDES							
Radium 226	124	pCi/g-dry				E903.0	07/02/12 22:18 / plj
Radium 226 precision (±)	1	pCi/g-dry				E903.0	07/02/12 22:18 / plj
Radium 226 MDC	0.03	pCi/g-dry				E903.0	07/02/12 22:18 / plj
Radium 228	1.8	pCi/g-dry				RA-05	06/25/12 12:20 / plj
Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	06/25/12 12:20 / plj
Radium 228 MDC	0.3	pCi/g-dry				RA-05	06/25/12 12:20 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration D - RL increased due to sample matrix.

ND - Not detected at the reporting limit.

B - The analyte was detected in the method blank.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-002Client Sample ID:S1-01-02

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 10:50

 DateReceived:
 04/13/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.048	mg/L		0.001		SW6020	04/20/12 12:57 / smm
Barium	3.8	mg/L		0.05		SW6020	04/20/12 12:57 / smm
Cadmium	0.001	mg/L		0.001		SW6020	04/20/12 12:57 / smm
Chromium	0.040	mg/L	В	0.005		SW6020	04/20/12 12:57 / smm
Lead	0.078	mg/L		0.001		SW6020	04/20/12 12:57 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 07:56 / rdw
Selenium	0.49	mg/L		0.001		SW6020	04/20/12 12:57 / smm
Silver	ND	mg/L	D	0.002		SW6020	04/20/12 12:57 / smm
Uranium	5.3	mg/L	D	0.0006		SW6020	04/20/12 12:57 / smm
RADIONUCLIDES							
Radium 226	113	pCi/g-dry				E903.0	07/02/12 22:18 / plj
Radium 226 precision (±)	0.9	pCi/g-dry				E903.0	07/02/12 22:18 / plj
Radium 226 MDC	0.03	pCi/g-dry				E903.0	07/02/12 22:18 / plj
Radium 228	1.3	pCi/g-dry				RA-05	06/25/12 12:20 / plj
Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	06/25/12 12:20 / plj
Radium 228 MDC	0.2	pCi/g-dry				RA-05	06/25/12 12:20 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration D - RL increased due to sample matrix. MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

B - The analyte was detected in the method blank.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-003Client Sample ID:S1-01-03

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 11:00

 DateReceived:
 04/13/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.010	mg/L		0.001		SW6020	04/20/12 13:14 / smm
Barium	0.34	mg/L		0.05		SW6020	04/20/12 13:14 / smm
Cadmium	ND	mg/L		0.001		SW6020	04/20/12 13:14 / smm
Chromium	0.027	mg/L	В	0.005		SW6020	04/20/12 13:14 / smm
Lead	0.023	mg/L		0.001		SW6020	04/20/12 13:14 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 07:57 / rdw
Selenium	0.14	mg/L		0.001		SW6020	04/20/12 13:14 / smm
Silver	0.002	mg/L	D	0.002		SW6020	04/20/12 13:14 / smm
Uranium	0.094	mg/L	D	0.0006		SW6020	04/20/12 13:14 / smm
RADIONUCLIDES							
Radium 226	12.6	pCi/g-dry				E903.0	07/02/12 22:18 / plj
Radium 226 precision (±)	0.3	pCi/g-dry				E903.0	07/02/12 22:18 / plj
Radium 226 MDC	0.03	pCi/g-dry				E903.0	07/02/12 22:18 / plj
Radium 228	0.8	pCi/g-dry				RA-05	06/25/12 12:20 / plj
Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	06/25/12 12:20 / plj
Radium 228 MDC	0.3	pCi/g-dry				RA-05	06/25/12 12:20 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration D - RL increased due to sample matrix. MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

B - The analyte was detected in the method blank.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-004Client Sample ID:S1-02-01

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 11:40

 DateReceived:
 04/13/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.023	mg/L		0.001		SW6020	04/20/12 13:17 / smm
Barium	0.39	mg/L		0.05		SW6020	04/20/12 13:17 / smm
Cadmium	ND	mg/L		0.001		SW6020	04/20/12 13:17 / smm
Chromium	0.014	mg/L	В	0.005		SW6020	04/20/12 13:17 / smm
Lead	0.021	mg/L		0.001		SW6020	04/20/12 13:17 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 07:58 / rdw
Selenium	0.19	mg/L		0.001		SW6020	04/20/12 13:17 / smm
Silver	ND	mg/L	D	0.002		SW6020	04/20/12 13:17 / smm
Uranium	1.5	mg/L	D	0.0006		SW6020	04/20/12 13:17 / smm
RADIONUCLIDES							
Radium 226	224	pCi/g-dry				E903.0	07/02/12 22:18 / plj
Radium 226 precision (±)	1.3	pCi/g-dry				E903.0	07/02/12 22:18 / plj
Radium 226 MDC	0.03	pCi/g-dry				E903.0	07/02/12 22:18 / plj
Radium 228	2.3	pCi/g-dry				RA-05	06/25/12 12:20 / plj
Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	06/25/12 12:20 / plj
Radium 228 MDC	0.3	pCi/g-dry				RA-05	06/25/12 12:20 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration D - RL increased due to sample matrix.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-005Client Sample ID:S1-02-02

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 11:43

 DateReceived:
 04/13/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.003	mg/L		0.001		SW6020	04/20/12 13:19 / smm
Barium	ND	mg/L		0.05		SW6020	04/20/12 13:19 / smm
Cadmium	ND	mg/L		0.001		SW6020	04/20/12 13:19 / smm
Chromium	0.007	mg/L	В	0.005		SW6020	04/20/12 13:19 / smm
Lead	0.004	mg/L		0.001		SW6020	04/20/12 13:19 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 08:00 / rdw
Selenium	0.11	mg/L		0.001		SW6020	04/20/12 13:19 / smm
Silver	ND	mg/L	D	0.002		SW6020	04/20/12 13:19 / smm
Uranium	0.24	mg/L	D	0.0006		SW6020	04/20/12 13:19 / smm
RADIONUCLIDES							
Radium 226	0.9	pCi/g-dry				E903.0	07/02/12 22:18 / plj
Radium 226 precision (±)	0.09	pCi/g-dry				E903.0	07/02/12 22:18 / plj
Radium 226 MDC	0.03	pCi/g-dry				E903.0	07/02/12 22:18 / plj
Radium 228	0.8	pCi/g-dry				RA-05	06/25/12 12:20 / plj
Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	06/25/12 12:20 / plj
Radium 228 MDC	0.3	pCi/g-dry				RA-05	06/25/12 12:20 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration D - RL increased due to sample matrix.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-006Client Sample ID:S1-02-03

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 11:45

 DateReceived:
 04/13/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.003	mg/L		0.001		SW6020	04/20/12 13:22 / smm
Barium	ND	mg/L		0.05		SW6020	04/20/12 13:22 / smm
Cadmium	ND	mg/L		0.001		SW6020	04/20/12 13:22 / smm
Chromium	0.006	mg/L	В	0.005		SW6020	04/20/12 13:22 / smm
Lead	0.003	mg/L		0.001		SW6020	04/20/12 13:22 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 08:20 / rdw
Selenium	0.012	mg/L		0.001		SW6020	04/20/12 13:22 / smm
Silver	ND	mg/L	D	0.002		SW6020	04/20/12 13:22 / smm
Uranium	0.050	mg/L	D	0.0006		SW6020	04/20/12 13:22 / smm
RADIONUCLIDES							
Radium 226	0.6	pCi/g-dry				E903.0	07/02/12 22:18 / plj
Radium 226 precision (±)	0.07	pCi/g-dry				E903.0	07/02/12 22:18 / plj
Radium 226 MDC	0.03	pCi/g-dry				E903.0	07/02/12 22:18 / plj
Radium 228	0.6	pCi/g-dry				RA-05	06/25/12 12:20 / plj
Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	06/25/12 12:20 / plj
Radium 228 MDC	0.3	pCi/g-dry				RA-05	06/25/12 12:20 / plj

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-007Client Sample ID:SA-01-01

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 11:30

 DateReceived:
 04/13/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.036	mg/L		0.001		SW6020	04/20/12 13:25 / smm
Barium	0.31	mg/L		0.05		SW6020	04/20/12 13:25 / smm
Cadmium	ND	mg/L		0.001		SW6020	04/20/12 13:25 / smm
Chromium	0.014	mg/L	В	0.005		SW6020	04/20/12 13:25 / smm
Lead	0.021	mg/L		0.001		SW6020	04/20/12 13:25 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 08:22 / rdw
Selenium	0.046	mg/L		0.001		SW6020	04/20/12 13:25 / smm
Silver	ND	mg/L	D	0.002		SW6020	04/20/12 13:25 / smm
Uranium	0.44	mg/L	D	0.0006		SW6020	04/20/12 13:25 / smm
RADIONUCLIDES							
Radium 226	152	pCi/g-dry				E903.0	07/02/12 22:18 / plj
Radium 226 precision (±)	1.1	pCi/g-dry				E903.0	07/02/12 22:18 / plj
Radium 226 MDC	0.03	pCi/g-dry				E903.0	07/02/12 22:18 / plj
Radium 228	1.8	pCi/g-dry				RA-05	06/25/12 12:20 / plj
Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	06/25/12 12:20 / plj
Radium 228 MDC	0.3	pCi/g-dry				RA-05	06/25/12 12:20 / plj

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-008Client Sample ID:SA-01-02

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 11:35

 DateReceived:
 04/13/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.006	mg/L		0.001		SW6020	04/20/12 13:28 / smm
Barium	0.11	mg/L		0.05		SW6020	04/20/12 13:28 / smm
Cadmium	ND	mg/L		0.001		SW6020	04/20/12 13:28 / smm
Chromium	0.010	mg/L	В	0.005		SW6020	04/20/12 13:28 / smm
Lead	0.009	mg/L		0.001		SW6020	04/20/12 13:28 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 08:23 / rdw
Selenium	0.051	mg/L		0.001		SW6020	04/20/12 13:28 / smm
Silver	ND	mg/L	D	0.002		SW6020	04/20/12 13:28 / smm
Uranium	0.45	mg/L	D	0.0006		SW6020	04/20/12 13:28 / smm
RADIONUCLIDES							
Radium 226	8.7	pCi/g-dry				E903.0	07/02/12 23:06 / plj
Radium 226 precision (±)	0.4	pCi/g-dry				E903.0	07/02/12 23:06 / plj
Radium 226 MDC	0.05	pCi/g-dry				E903.0	07/02/12 23:06 / plj
Radium 228	0.7	pCi/g-dry				RA-05	06/25/12 12:20 / plj
Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	06/25/12 12:20 / plj
Radium 228 MDC	0.3	pCi/g-dry				RA-05	06/25/12 12:20 / plj

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-009Client Sample ID:SA-01-03

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 11:45

 DateReceived:
 04/13/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.003	mg/L		0.001		SW6020	04/20/12 13:31 / smm
Barium	ND	mg/L		0.05		SW6020	04/20/12 13:31 / smm
Cadmium	ND	mg/L		0.001		SW6020	04/20/12 13:31 / smm
Chromium	0.005	mg/L	В	0.005		SW6020	04/20/12 13:31 / smm
Lead	0.003	mg/L		0.001		SW6020	04/20/12 13:31 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 08:24 / rdw
Selenium	0.095	mg/L		0.001		SW6020	04/20/12 13:31 / smm
Silver	ND	mg/L	D	0.002		SW6020	04/20/12 13:31 / smm
Uranium	0.030	mg/L	D	0.0006		SW6020	04/20/12 13:31 / smm
RADIONUCLIDES							
Radium 226	1.7	pCi/g-dry				E903.0	07/02/12 23:06 / plj
Radium 226 precision (±)	0.2	pCi/g-dry				E903.0	07/02/12 23:06 / plj
Radium 226 MDC	0.05	pCi/g-dry				E903.0	07/02/12 23:06 / plj
Radium 228	0.6	pCi/g-dry				RA-05	06/25/12 12:20 / plj
Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	06/25/12 12:20 / plj
Radium 228 MDC	0.3	pCi/g-dry				RA-05	06/25/12 12:20 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration D - RL increased due to sample matrix. MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-010Client Sample ID:SA-02-01

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 11:48

 DateReceived:
 04/13/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.025	mg/L		0.001		SW6020	04/20/12 13:33 / smm
Barium	0.25	mg/L		0.05		SW6020	04/20/12 13:33 / smm
Cadmium	ND	mg/L		0.001		SW6020	04/20/12 13:33 / smm
Chromium	0.011	mg/L	В	0.005		SW6020	04/20/12 13:33 / smm
Lead	0.010	mg/L		0.001		SW6020	04/20/12 13:33 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 08:26 / rdw
Selenium	0.014	mg/L		0.001		SW6020	04/20/12 13:33 / smm
Silver	ND	mg/L	D	0.002		SW6020	04/20/12 13:33 / smm
Uranium	0.37	mg/L	D	0.0006		SW6020	04/20/12 13:33 / smm
RADIONUCLIDES							
Radium 226	275	pCi/g-dry				E903.0	07/02/12 23:06 / plj
Radium 226 precision (±)	2.0	pCi/g-dry				E903.0	07/02/12 23:06 / plj
Radium 226 MDC	0.05	pCi/g-dry				E903.0	07/02/12 23:06 / plj
Radium 228	3.5	pCi/g-dry				RA-05	06/25/12 12:20 / plj
Radium 228 precision (±)	0.3	pCi/g-dry				RA-05	06/25/12 12:20 / plj
Radium 228 MDC	0.2	pCi/g-dry				RA-05	06/25/12 12:20 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration D - RL increased due to sample matrix. MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-011Client Sample ID:SA-02-02

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 11:48

 DateReceived:
 04/13/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.006	mg/L		0.001		SW6020	04/20/12 14:40 / smm
Barium	0.15	mg/L		0.05		SW6020	04/20/12 14:40 / smm
Cadmium	ND	mg/L		0.001		SW6020	04/20/12 14:40 / smm
Chromium	0.013	mg/L	В	0.005		SW6020	04/20/12 14:40 / smm
Lead	0.010	mg/L		0.001		SW6020	04/20/12 14:40 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 08:31 / rdw
Selenium	0.003	mg/L		0.001		SW6020	04/20/12 14:40 / smm
Silver	ND	mg/L	D	0.002		SW6020	04/20/12 14:40 / smm
Uranium	0.11	mg/L	D	0.0006		SW6020	04/20/12 14:40 / smm
RADIONUCLIDES							
Radium 226	5.4	pCi/g-dry				E903.0	07/02/12 23:06 / plj
Radium 226 precision (±)	0.3	pCi/g-dry				E903.0	07/02/12 23:06 / plj
Radium 226 MDC	0.05	pCi/g-dry				E903.0	07/02/12 23:06 / plj
Radium 228	0.7	pCi/g-dry				RA-05	06/25/12 13:54 / plj
Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	06/25/12 13:54 / plj
Radium 228 MDC	0.3	pCi/g-dry				RA-05	06/25/12 13:54 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration D - RL increased due to sample matrix.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-012Client Sample ID:SA-02-03

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 11:48

 DateReceived:
 04/13/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.006	mg/L		0.001		SW6020	04/20/12 14:06 / smm
Barium	0.09	mg/L		0.05		SW6020	04/20/12 14:06 / smm
Cadmium	ND	mg/L		0.001		SW6020	04/20/12 14:06 / smm
Chromium	0.013	mg/L	В	0.005		SW6020	04/20/12 14:06 / smm
Lead	0.006	mg/L		0.001		SW6020	04/20/12 14:06 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 08:37 / rdw
Selenium	0.003	mg/L		0.001		SW6020	04/20/12 14:06 / smm
Silver	ND	mg/L	D	0.002		SW6020	04/20/12 14:06 / smm
Uranium	0.088	mg/L	D	0.0006		SW6020	04/20/12 14:06 / smm
RADIONUCLIDES							
Radium 226	29.3	pCi/g-dry				E903.0	07/02/12 23:06 / plj
Radium 226 precision (±)	0.7	pCi/g-dry				E903.0	07/02/12 23:06 / plj
Radium 226 MDC	0.05	pCi/g-dry				E903.0	07/02/12 23:06 / plj
Radium 228	1.3	pCi/g-dry				RA-05	06/25/12 13:54 / plj
Radium 228 precision (±)	0.3	pCi/g-dry				RA-05	06/25/12 13:54 / plj
Radium 228 MDC	0.3	pCi/g-dry				RA-05	06/25/12 13:54 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration D - RL increased due to sample matrix. MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-013Client Sample ID:S8-01-01

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 13:00

 DateReceived:
 04/13/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
SATURATED PASTE EXTRACT							
Chloride	29.3	mg/kg		1.00		E300.0	06/27/12 21:54 / ljl
Chloride, 1:1	0.827	meq/L		0.0282		E300.0	06/27/12 21:54 / ljl
Sulfate	35.3	mg/kg		1.00		E300.0	06/27/12 21:54 / ljl
Sulfate, 1:1	0.735	meq/L		0.0208		E300.0	06/27/12 21:54 / Iji
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.008	mg/L		0.001		SW6020	04/20/12 14:12 / smm
Barium	0.91	mg/L		0.05		SW6020	04/20/12 14:12 / smm
Cadmium	ND	mg/L		0.001		SW6020	04/20/12 14:12 / smm
Chromium	0.012	mg/L	В	0.005		SW6020	04/20/12 14:12 / smm
Lead	0.009	mg/L		0.001		SW6020	04/20/12 14:12 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 08:39 / rdw
Selenium	0.007	mg/L		0.001		SW6020	04/20/12 14:12 / smm
Silver	ND	mg/L	D	0.002		SW6020	04/20/12 14:12 / smm
Uranium	0.016	mg/L	D	0.0006		SW6020	04/20/12 14:12 / smm
RADIONUCLIDES							
Radium 226	27.2	pCi/g-dry				E903.0	07/02/12 23:06 / plj
Radium 226 precision (±)	0.6	pCi/g-dry				E903.0	07/02/12 23:06 / plj
Radium 226 MDC	0.04	pCi/g-dry				E903.0	07/02/12 23:06 / plj
Radium 228	0.2	pCi/g-dry	U			RA-05	06/25/12 13:54 / plj
Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	06/25/12 13:54 / plj
Radium 228 MDC	0.3	pCi/g-dry				RA-05	06/25/12 13:54 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration D - RL increased due to sample matrix. MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

B - The analyte was detected in the method blank.

U - Not detected at minimum detectable concentration

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-014Client Sample ID:S8-01-02

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 13:09

 DateReceived:
 04/13/12

 Matrix:
 Sediment

	MCL/								
Analyses	Result	Units	Qualifier	RL	QCL	Method	Analysis Date / By		
SATURATED PASTE EXTRACT									
Chloride	38.9	mg/kg		1.00		E300.0	06/27/12 22:10 / ljl		
Chloride, 1:1	1.10	meq/L		0.0282		E300.0	06/27/12 22:10 / ljl		
Sulfate	2750	mg/kg		1.00		E300.0	06/28/12 13:59 / ljl		
Sulfate, 1:1	57.2	meq/L		0.0208		E300.0	06/28/12 13:59 / ljl		
PHYSICAL CHARACTERISTICS									
Filterable	No					SW1311	04/18/12 08:51 / dcj		
METALS - SPLP EXTRACTABLE									
Arsenic	0.004	mg/L		0.001		SW6020	04/20/12 14:26 / smm		
Barium	0.09	mg/L		0.05		SW6020	04/20/12 14:26 / smm		
Cadmium	ND	mg/L		0.001		SW6020	04/20/12 14:26 / smm		
Chromium	0.006	mg/L	В	0.005		SW6020	04/20/12 14:26 / smm		
Lead	ND	mg/L		0.001		SW6020	04/20/12 14:26 / smm		
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 08:40 / rdw		
Selenium	0.30	mg/L		0.001		SW6020	04/20/12 14:26 / smm		
Silver	0.002	mg/L	D	0.002		SW6020	04/20/12 14:26 / smm		
Uranium	3.8	mg/L	D	0.0006		SW6020	04/20/12 14:26 / smm		
RADIONUCLIDES									
Radium 226	2.5	pCi/g-dry				E903.0	07/02/12 23:06 / plj		
Radium 226 precision (±)	0.2	pCi/g-dry				E903.0	07/02/12 23:06 / plj		
Radium 226 MDC	0.05	pCi/g-dry				E903.0	07/02/12 23:06 / plj		
Radium 228	0.6	pCi/g-dry				RA-05	06/25/12 13:54 / plj		
Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	06/25/12 13:54 / plj		
Radium 228 MDC	0.3	pCi/g-dry				RA-05	06/25/12 13:54 / plj		

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration D - RL increased due to sample matrix.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-015Client Sample ID:S8-01-03

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 13:09

 DateReceived:
 04/13/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
SATURATED PASTE EXTRACT							
Chloride	12.0	mg/kg		1.00		E300.0	06/27/12 22:27 / Ijl
Chloride, 1:1	0.340	meq/L		0.0282		E300.0	06/27/12 22:27 / ljl
Sulfate	197	mg/kg		1.00		E300.0	06/27/12 22:27 / ljl
Sulfate, 1:1	4.11	meq/L		0.0208		E300.0	06/27/12 22:27 / ljl
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.032	mg/L		0.001		SW6020	04/20/12 14:29 / smm
Barium	0.16	mg/L		0.05		SW6020	04/20/12 14:29 / smm
Cadmium	ND	mg/L		0.001		SW6020	04/20/12 14:29 / smm
Chromium	0.010	mg/L	В	0.005		SW6020	04/20/12 14:29 / smm
Lead	0.006	mg/L		0.001		SW6020	04/20/12 14:29 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 08:41 / rdw
Selenium	0.036	mg/L		0.001		SW6020	04/20/12 14:29 / smm
Silver	ND	mg/L	D	0.002		SW6020	04/20/12 14:29 / smm
Uranium	0.022	mg/L	D	0.0006		SW6020	04/20/12 14:29 / smm
RADIONUCLIDES							
Radium 226	24.5	pCi/g-dry				E903.0	07/02/12 23:06 / plj
Radium 226 precision (±)	0.6	pCi/g-dry				E903.0	07/02/12 23:06 / plj
Radium 226 MDC	0.05	pCi/g-dry				E903.0	07/02/12 23:06 / plj
Radium 228	0.5	pCi/g-dry				RA-05	06/25/12 13:54 / plj
Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	06/25/12 13:54 / plj
Radium 228 MDC	0.3	pCi/g-dry				RA-05	06/25/12 13:54 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration D - RL increased due to sample matrix. MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-016Client Sample ID:S8-02-01

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 13:26

 DateReceived:
 04/13/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
SATURATED PASTE EXTRACT							
Chloride	58.6	mg/kg		1.00		E300.0	06/27/12 22:43 / ljl
Chloride, 1:1	1.65	meq/L		0.0282		E300.0	06/27/12 22:43 / ljl
Sulfate	1660	mg/kg		1.00		E300.0	06/27/12 22:43 / ljl
Sulfate, 1:1	34.5	meq/L		0.0208		E300.0	06/27/12 22:43 / ljl
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.004	mg/L		0.001		SW6020	04/20/12 14:32 / smm
Barium	0.12	mg/L		0.05		SW6020	04/20/12 14:32 / smm
Cadmium	ND	mg/L		0.001		SW6020	04/20/12 14:32 / smm
Chromium	0.009	mg/L	В	0.005		SW6020	04/20/12 14:32 / smm
Lead	0.005	mg/L		0.001		SW6020	04/20/12 14:32 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 08:43 / rdw
Selenium	0.22	mg/L		0.001		SW6020	04/20/12 14:32 / smm
Silver	ND	mg/L	D	0.002		SW6020	04/20/12 14:32 / smm
Uranium	0.12	mg/L	D	0.0006		SW6020	04/20/12 14:32 / smm
RADIONUCLIDES							
Radium 226	10.6	pCi/g-dry				E903.0	07/02/12 23:06 / plj
Radium 226 precision (±)	0.4	pCi/g-dry				E903.0	07/02/12 23:06 / plj
Radium 226 MDC	0.05	pCi/g-dry				E903.0	07/02/12 23:06 / plj
Radium 228	0.1	pCi/g-dry	U			RA-05	06/25/12 13:54 / plj
Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	06/25/12 13:54 / plj
Radium 228 MDC	0.3	pCi/g-dry				RA-05	06/25/12 13:54 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration D - RL increased due to sample matrix.

- MCL Maximum contaminant level.
- ND Not detected at the reporting limit.
- B The analyte was detected in the method blank.

U - Not detected at minimum detectable concentration

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-017Client Sample ID:S8-02-02

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 13:36

 DateReceived:
 04/13/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
SATURATED PASTE EXTRACT							
Chloride	44.6	mg/kg		1.00		E300.0	06/27/12 23:00 / Ijl
Chloride, 1:1	1.26	meq/L		0.0282		E300.0	06/27/12 23:00 / ljl
Sulfate	2480	mg/kg		1.00		E300.0	06/27/12 23:00 / ljl
Sulfate, 1:1	51.7	meq/L		0.0208		E300.0	06/27/12 23:00 / Ijl
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.006	mg/L		0.001		SW6020	04/20/12 14:34 / smm
Barium	0.06	mg/L		0.05		SW6020	04/20/12 14:34 / smm
Cadmium	ND	mg/L		0.001		SW6020	04/20/12 14:34 / smm
Chromium	0.006	mg/L	В	0.005		SW6020	04/20/12 14:34 / smm
Lead	ND	mg/L		0.001		SW6020	04/20/12 14:34 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 08:44 / rdw
Selenium	1.0	mg/L		0.001		SW6020	04/20/12 14:34 / smm
Silver	ND	mg/L	D	0.002		SW6020	04/20/12 14:34 / smm
Uranium	6.7	mg/L	D	0.0006		SW6020	04/20/12 14:34 / smm
RADIONUCLIDES							
Radium 226	1.7	pCi/g-dry				E903.0	07/02/12 23:06 / plj
Radium 226 precision (±)	0.2	pCi/g-dry				E903.0	07/02/12 23:06 / plj
Radium 226 MDC	0.05	pCi/g-dry				E903.0	07/02/12 23:06 / plj
Radium 228	1.5	pCi/g-dry				RA-05	06/25/12 13:54 / plj
Radium 228 precision (±)	0.3	pCi/g-dry				RA-05	06/25/12 13:54 / plj
Radium 228 MDC	0.3	pCi/g-dry				RA-05	06/25/12 13:54 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration D - RL increased due to sample matrix. MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-018Client Sample ID:S8-02-03

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 13:36

 DateReceived:
 04/13/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
SATURATED PASTE EXTRACT							
Chloride	9.13	mg/kg		1.00		E300.0	06/27/12 23:49 / ljl
Chloride, 1:1	0.258	meg/L		0.0282		E300.0	06/27/12 23:49 / ljl
Sulfate	536	mg/kg		1.00		E300.0	06/27/12 23:49 / ljl
Sulfate, 1:1	11.2	meq/L		0.0208		E300.0	06/27/12 23:49 / Ijl
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.011	mg/L		0.001		SW6020	04/20/12 14:37 / smm
Barium	0.98	mg/L		0.05		SW6020	04/20/12 14:37 / smm
Cadmium	ND	mg/L		0.001		SW6020	04/20/12 14:37 / smm
Chromium	0.028	mg/L	В	0.005		SW6020	04/20/12 14:37 / smm
Lead	0.013	mg/L		0.001		SW6020	04/20/12 14:37 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 08:45 / rdw
Selenium	0.063	mg/L		0.001		SW6020	04/20/12 14:37 / smm
Silver	ND	mg/L	D	0.002		SW6020	04/20/12 14:37 / smm
Uranium	0.19	mg/L	D	0.0006		SW6020	04/20/12 14:37 / smm
RADIONUCLIDES							
Radium 226	14.0	pCi/g-dry				E903.0	07/03/12 01:58 / plj
Radium 226 precision (±)	0.3	pCi/g-dry				E903.0	07/03/12 01:58 / plj
Radium 226 MDC	0.03	pCi/g-dry				E903.0	07/03/12 01:58 / plj
Radium 228	0.2	pCi/g-dry	U			RA-05	06/25/12 13:54 / plj
Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	06/25/12 13:54 / plj
Radium 228 MDC	0.3	pCi/g-dry				RA-05	06/25/12 13:54 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration D - RL increased due to sample matrix. MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

B - The analyte was detected in the method blank.

U - Not detected at minimum detectable concentration

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-019Client Sample ID:S8-02-04

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 13:39

 DateReceived:
 04/13/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
SATURATED PASTE EXTRACT							
Chloride	3.01	mg/kg		1.00		E300.0	06/28/12 14:14 / ljl
Chloride, 1:1	0.0850	meq/L		0.0282		E300.0	06/28/12 14:14 / ljl
Sulfate	31.2	mg/kg		1.00		E300.0	06/28/12 14:14 / ljl
Sulfate, 1:1	0.650	meq/L		0.0208		E300.0	06/28/12 14:14 / ljl
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.004	mg/L		0.001		SW6020	04/26/12 19:47 / smm
Barium	0.15	mg/L		0.05		SW6020	04/26/12 19:47 / smm
Cadmium	ND	mg/L		0.001		SW6020	04/26/12 19:47 / smm
Chromium	0.011	mg/L	В	0.005		SW6020	04/26/12 19:47 / smm
Lead	0.005	mg/L		0.001		SW6020	04/26/12 19:47 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 08:53 / rdw
Selenium	ND	mg/L		0.001		SW6020	04/26/12 19:47 / smm
Silver	ND	mg/L	D	0.002		SW6020	04/26/12 19:47 / smm
Uranium	0.0056	mg/L	D	0.0006		SW6020	05/02/12 14:20 / smm
RADIONUCLIDES							
Radium 226	2.0	pCi/g-dry				E903.0	07/03/12 01:58 / plj
Radium 226 precision (±)	0.1	pCi/g-dry				E903.0	07/03/12 01:58 / plj
Radium 226 MDC	0.03	pCi/g-dry				E903.0	07/03/12 01:58 / plj
Radium 228	0.6	pCi/g-dry				RA-05	06/25/12 12:20 / plj
Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	06/25/12 12:20 / plj
Radium 228 MDC	0.3	pCi/g-dry				RA-05	06/25/12 12:20 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration D - RL increased due to sample matrix. MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-020Client Sample ID:S5-01-01

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 14:05

 DateReceived:
 04/13/12

 Matrix:
 Sediment

					MCL/		
Analyses	Result	Units	Qualifier	RL	QCL	Method	Analysis Date / By
SATURATED PASTE EXTRACT							
Chloride	9.64	mg/kg		1.00		E300.0	06/28/12 00:22 / ljl
Chloride, 1:1	0.272	meq/L		0.0282		E300.0	06/28/12 00:22 / ljl
Sulfate	113	mg/kg		1.00		E300.0	06/28/12 00:22 / ljl
Sulfate, 1:1	2.35	meq/L		0.0208		E300.0	06/28/12 00:22 / ljl
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.009	mg/L		0.001		SW6020	04/26/12 19:13 / smm
Barium	5.5	mg/L		0.05		SW6020	04/26/12 19:13 / smm
Cadmium	ND	mg/L		0.001		SW6020	04/26/12 19:13 / smm
Chromium	0.027	mg/L	В	0.005		SW6020	04/26/12 19:13 / smm
Lead	0.028	mg/L		0.001		SW6020	04/26/12 19:13 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 08:57 / rdw
Selenium	0.010	mg/L		0.001		SW6020	04/26/12 19:13 / smm
Silver	ND	mg/L	D	0.002		SW6020	04/26/12 19:13 / smm
Uranium	0.11	mg/L	D	0.0006		SW6020	05/02/12 14:00 / smm
RADIONUCLIDES							
Radium 226	11.3	pCi/g-dry				E903.0	07/02/12 23:59 / plj
Radium 226 precision (±)	0.3	pCi/g-dry				E903.0	07/02/12 23:59 / plj
Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/02/12 23:59 / plj
Radium 228	0.3	pCi/g-dry				RA-05	06/25/12 15:52 / plj
Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	06/25/12 15:52 / plj
Radium 228 MDC	0.2	pCi/g-dry				RA-05	06/25/12 15:52 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration D - RL increased due to sample matrix. MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-021Client Sample ID:S7-01-01

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 15:12

 DateReceived:
 04/13/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.004	mg/L		0.001		SW6020	04/26/12 19:18 / smm
Barium	0.06	mg/L		0.05		SW6020	04/26/12 19:18 / smm
Cadmium	ND	mg/L		0.001		SW6020	04/26/12 19:18 / smm
Chromium	0.005	mg/L	В	0.005		SW6020	04/26/12 19:18 / smm
Lead	ND	mg/L		0.001		SW6020	04/26/12 19:18 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 08:59 / rdw
Selenium	0.26	mg/L		0.001		SW6020	04/26/12 19:18 / smm
Silver	ND	mg/L	D	0.002		SW6020	04/26/12 19:18 / smm
Uranium	0.37	mg/L	D	0.0006		SW6020	05/02/12 14:04 / smm
RADIONUCLIDES							
Radium 226	10.4	pCi/g-dry				E903.0	07/02/12 23:59 / plj
Radium 226 precision (±)	0.2	pCi/g-dry				E903.0	07/02/12 23:59 / plj
Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/02/12 23:59 / plj
Radium 228	0.1	pCi/g-dry	U			RA-05	06/25/12 15:52 / plj
Radium 228 precision (±)	0.1	pCi/g-dry				RA-05	06/25/12 15:52 / plj
Radium 228 MDC	0.2	pCi/g-dry				RA-05	06/25/12 15:52 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration D - RL increased due to sample matrix.

- MCL Maximum contaminant level.
- ND Not detected at the reporting limit.
- B The analyte was detected in the method blank.
- U Not detected at minimum detectable concentration

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-022Client Sample ID:S7-01-02

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 15:17

 DateReceived:
 04/13/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.002	mg/L		0.001		SW6020	04/26/12 19:21 / smm
Barium	0.06	mg/L		0.05		SW6020	04/26/12 19:21 / smm
Cadmium	ND	mg/L		0.001		SW6020	04/26/12 19:21 / smm
Chromium	0.009	mg/L	В	0.005		SW6020	04/26/12 19:21 / smm
Lead	0.003	mg/L		0.001		SW6020	04/26/12 19:21 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 09:00 / rdw
Selenium	0.002	mg/L		0.001		SW6020	04/26/12 19:21 / smm
Silver	ND	mg/L	D	0.002		SW6020	04/26/12 19:21 / smm
Uranium	0.0047	mg/L	D	0.0006		SW6020	05/02/12 14:12 / smm
RADIONUCLIDES							
Radium 226	1.1	pCi/g-dry				E903.0	07/02/12 23:59 / plj
Radium 226 precision (±)	0.08	pCi/g-dry				E903.0	07/02/12 23:59 / plj
Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/02/12 23:59 / plj
Radium 228	0.6	pCi/g-dry				RA-05	06/25/12 15:52 / plj
Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	06/25/12 15:52 / plj
Radium 228 MDC	0.2	pCi/g-dry				RA-05	06/25/12 15:52 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration D - RL increased due to sample matrix. MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-023Client Sample ID:S7-01-03

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 15:22

 DateReceived:
 04/13/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	ND	mg/L		0.001		SW6020	05/01/12 16:45 / cp
Barium	0.05	mg/L		0.05		SW6020	05/01/12 16:45 / cp
Cadmium	ND	mg/L		0.001		SW6020	05/01/12 16:45 / cp
Chromium	0.009	mg/L	В	0.005		SW6020	05/01/12 16:45 / cp
Lead	0.001	mg/L		0.001		SW6020	05/01/12 16:45 / cp
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 09:01 / rdw
Selenium	0.002	mg/L		0.001		SW6020	05/01/12 16:45 / cp
Silver	ND	mg/L	D	0.002		SW6020	05/01/12 16:45 / cp
Uranium	0.0049	mg/L	D	0.0006		SW6020	05/01/12 16:45 / cp
RADIONUCLIDES							
Radium 226	1.5	pCi/g-dry				E903.0	07/02/12 23:59 / plj
Radium 226 precision (±)	0.1	pCi/g-dry				E903.0	07/02/12 23:59 / plj
Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/02/12 23:59 / plj
Radium 228	0.2	pCi/g-dry	U			RA-05	06/25/12 15:52 / plj
Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	06/25/12 15:52 / plj
Radium 228 MDC	0.2	pCi/g-dry				RA-05	06/25/12 15:52 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration D - RL increased due to sample matrix.

- MCL Maximum contaminant level.
- ND Not detected at the reporting limit.
- B The analyte was detected in the method blank.
- U Not detected at minimum detectable concentration

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-024Client Sample ID:S5-02-02

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 14:15

 DateReceived:
 04/13/12

 Matrix:
 Sediment

					MCL/		
Analyses	Result	Units	Qualifier	RL	QCL	Method	Analysis Date / By
SATURATED PASTE EXTRACT							
Chloride	23.1	mg/kg		1.00		E300.0	06/28/12 00:38 / ljl
Chloride, 1:1	0.653	meq/L		0.0282		E300.0	06/28/12 00:38 / ljl
Sulfate	2530	mg/kg		1.00		E300.0	06/28/12 00:38 / ljl
Sulfate, 1:1	52.7	meq/L		0.0208		E300.0	06/28/12 00:38 / ljl
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	ND	mg/L		0.001		SW6020	04/26/12 19:24 / smm
Barium	0.08	mg/L		0.05		SW6020	04/26/12 19:24 / smm
Cadmium	ND	mg/L		0.001		SW6020	04/26/12 19:24 / smm
Chromium	0.005	mg/L	В	0.005		SW6020	04/26/12 19:24 / smm
Lead	ND	mg/L		0.001		SW6020	04/26/12 19:24 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 09:03 / rdw
Selenium	0.15	mg/L		0.001		SW6020	04/26/12 19:24 / smm
Silver	ND	mg/L	D	0.002		SW6020	04/26/12 19:24 / smm
Uranium	1.1	mg/L	D	0.0006		SW6020	05/02/12 14:14 / smm
RADIONUCLIDES							
Radium 226	2.1	pCi/g-dry				E903.0	07/02/12 23:59 / plj
Radium 226 precision (±)	0.1	pCi/g-dry				E903.0	07/02/12 23:59 / plj
Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/02/12 23:59 / plj
Radium 228	0.2	pCi/g-dry	U			RA-05	06/25/12 15:52 / plj
Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	06/25/12 15:52 / plj
Radium 228 MDC	0.3	pCi/g-dry				RA-05	06/25/12 15:52 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration D - RL increased due to sample matrix. MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

B - The analyte was detected in the method blank.

U - Not detected at minimum detectable concentration

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-025Client Sample ID:S5-02-03

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 14:20

 DateReceived:
 04/13/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
SATURATED PASTE EXTRACT							
Chloride	5.10	mg/kg		1.00		E300.0	06/28/12 00:55 / ljl
Chloride, 1:1	0.144	meq/L		0.0282		E300.0	06/28/12 00:55 / ljl
Sulfate	279	mg/kg		1.00		E300.0	06/28/12 00:55 / ljl
Sulfate, 1:1	5.80	meq/L		0.0208		E300.0	06/28/12 00:55 / Ijl
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.006	mg/L		0.001		SW6020	04/26/12 19:38 / smm
Barium	0.62	mg/L		0.05		SW6020	04/26/12 19:38 / smm
Cadmium	ND	mg/L		0.001		SW6020	04/26/12 19:38 / smm
Chromium	0.017	mg/L	В	0.005		SW6020	04/26/12 19:38 / smm
Lead	0.013	mg/L		0.001		SW6020	04/26/12 19:38 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 09:04 / rdw
Selenium	0.012	mg/L		0.001		SW6020	04/26/12 19:38 / smm
Silver	ND	mg/L	D	0.002		SW6020	04/26/12 19:38 / smm
Uranium	0.011	mg/L	D	0.0006		SW6020	05/02/12 14:15 / smm
RADIONUCLIDES							
Radium 226	4.1	pCi/g-dry				E903.0	07/02/12 23:59 / plj
Radium 226 precision (±)	0.2	pCi/g-dry				E903.0	07/02/12 23:59 / plj
Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/02/12 23:59 / plj
Radium 228	0.5	pCi/g-dry				RA-05	06/25/12 15:52 / plj
Radium 228 precision (±)	0.1	pCi/g-dry				RA-05	06/25/12 15:52 / plj
Radium 228 MDC	0.2	pCi/g-dry				RA-05	06/25/12 15:52 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration D - RL increased due to sample matrix. MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-026Client Sample ID:S5-02-01

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 14:30

 DateReceived:
 04/13/12

 Matrix:
 Sediment

					MCL/		
Analyses	Result	Units	Qualifier	RL	QCL	Method	Analysis Date / By
SATURATED PASTE EXTRACT							
Chloride	17.2	mg/kg		1.00		E300.0	06/28/12 01:11 / ljl
Chloride, 1:1	0.485	meq/L		0.0282		E300.0	06/28/12 01:11 / ljl
Sulfate	2860	mg/kg		1.00		E300.0	06/28/12 01:11 / ljl
Sulfate, 1:1	59.6	meq/L		0.0208		E300.0	06/28/12 01:11 / ljl
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	ND	mg/L		0.001		SW6020	04/26/12 19:41 / smm
Barium	0.10	mg/L		0.05		SW6020	04/26/12 19:41 / smm
Cadmium	ND	mg/L		0.001		SW6020	04/26/12 19:41 / smm
Chromium	0.008	mg/L	В	0.005		SW6020	04/26/12 19:41 / smm
Lead	ND	mg/L		0.001		SW6020	04/26/12 19:41 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 09:08 / rdw
Selenium	0.40	mg/L		0.001		SW6020	04/26/12 19:41 / smm
Silver	ND	mg/L	D	0.002		SW6020	04/26/12 19:41 / smm
Uranium	1.5	mg/L	D	0.0006		SW6020	05/02/12 14:17 / smm
RADIONUCLIDES							
Radium 226	0.8	pCi/g-dry				E903.0	07/02/12 23:59 / plj
Radium 226 precision (±)	0.07	pCi/g-dry				E903.0	07/02/12 23:59 / plj
Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/02/12 23:59 / plj
Radium 228	0.2	pCi/g-dry	U			RA-05	06/25/12 15:52 / plj
Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	06/25/12 15:52 / plj
Radium 228 MDC	0.2	pCi/g-dry				RA-05	06/25/12 15:52 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration D - RL increased due to sample matrix. MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

B - The analyte was detected in the method blank.

U - Not detected at minimum detectable concentration

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-027Client Sample ID:S5-01-02

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 14:09

 DateReceived:
 04/13/12

 Matrix:
 Sediment

SATURATED PASTE EXTRACT Chloride 7.87 mg/kg 1.00 E300.0 06/28/12 01:44 / lji Chloride 1.1 0.222 meq/L 0.0282 E300.0 06/28/12 01:44 / lji Sulfate 261 mg/kg 1.00 E300.0 06/28/12 01:44 / lji Sulfate 261 mg/kg 1.00 E300.0 06/28/12 01:44 / lji Sulfate, 1:1 5.43 meq/L 0.0208 E300.0 06/28/12 01:44 / lji PHYSICAL CHARACTERISTICS Filterable No SW 1311 04/18/12 08:51 / dcj METALS - SPLP EXTRACTABLE Arsenic 0.004 mg/L 0.001 SW 6020 04/26/12 19:44 / smm Chromium 0.07 mg/L 0.001 SW 6020 04/26/12 19:44 / smm Chromium 0.012 mg/L 0.001 SW 6020 04/26/12 19:44 / smm Chromium 0.012 mg/L 0.001 SW 6020 04/26/12 19:44 / smm Lead 0.005 mg/L 0.001 SW 6020 04/26/12 19:44 / smm <th></th> <th></th> <th></th> <th></th> <th></th> <th>MCL/</th> <th></th> <th></th>						MCL/		
Chloride 7.87 mg/kg 1.00 E300.0 06/28/12 01:44 / lji Chloride, 1:1 0.222 meq/L 0.0282 E300.0 06/28/12 01:44 / lji Sulfate 261 mg/kg 1.00 E300.0 06/28/12 01:44 / lji Sulfate, 1:1 5.43 meq/L 0.0208 E300.0 06/28/12 01:44 / lji PHYSICAL CHARACTERISTICS Filterable No SW1311 04/18/12 08:51 / dcj METALS - SPLP EXTRACTABLE Arsenic 0.001 SW6020 04/26/12 19:44 / smm Gadmium 0.07 mg/L 0.001 SW6020 04/26/12 19:44 / smm Cadmium ND mg/L 0.001 SW6020 04/26/12 19:44 / smm Lead 0.005 mg/L 0.001 SW6020 04/26/12 19:44 / smm Mercury ND mg/L 0.001 SW6020 04/26/12 19:44 / smm Lead 0.005 mg/L 0.001 SW6020 04/26/12 19:44 / smm Selenium 0.004 mg/L 0.001	Analyses	Result	Units	Qualifier	RL	QCL	Method	Analysis Date / By
Chloride, 1:1 0.222 meq/L 0.0282 E300.0 06/28/12 01:44 / ljl Sulfate 261 mg/kg 1.00 E300.0 06/28/12 01:44 / ljl Sulfate, 1:1 5.43 meq/L 0.0208 E300.0 06/28/12 01:44 / ljl PHYSICAL CHARACTERISTICS Filterable No SW1311 04/18/12 08:51 / dcj METALS - SPLP EXTRACTABLE No SW1311 04/18/12 08:51 / dcj Arsenic 0.004 mg/L 0.001 SW6020 04/26/12 19:44 / smm Gadmium 0.07 mg/L 0.001 SW6020 04/26/12 19:44 / smm Chromium 0.012 mg/L 0.001 SW6020 04/26/12 19:44 / smm Lead 0.005 mg/L 0.001 SW6020 04/26/12 19:44 / smm Mercury ND mg/L 0.001 SW6020 04/26/12 19:44 / smm Selenium 0.004 mg/L 0.001 SW6020 04/26/12 19:44 / smm Silver ND mg/L 0.001 SW6020 04/26/12 19:44 / smm </td <td>SATURATED PASTE EXTRACT</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	SATURATED PASTE EXTRACT							
Chloride, 1:1 0.222 meq/L 0.0282 E300.0 06/28/12 01:44 / ljl Sulfate 261 mg/kg 1.00 E300.0 06/28/12 01:44 / ljl Sulfate, 1:1 5.43 meq/L 0.0208 E300.0 06/28/12 01:44 / ljl PHYSICAL CHARACTERISTICS Filterable No SW1311 04/18/12 08:51 / dcj METALS - SPLP EXTRACTABLE No SW1311 04/18/12 08:51 / dcj Arsenic 0.004 mg/L 0.001 SW6020 04/26/12 19:44 / smm Gadmium 0.07 mg/L 0.001 SW6020 04/26/12 19:44 / smm Chromium 0.012 mg/L 0.001 SW6020 04/26/12 19:44 / smm Lead 0.005 mg/L 0.001 SW6020 04/26/12 19:44 / smm Mercury ND mg/L 0.001 SW6020 04/26/12 19:44 / smm Selenium 0.004 mg/L 0.001 SW6020 04/26/12 19:44 / smm Silver ND mg/L 0.001 SW6020 04/26/12 19:44 / smm </td <td>Chloride</td> <td>7.87</td> <td>mg/kg</td> <td></td> <td>1.00</td> <td></td> <td>E300.0</td> <td>06/28/12 01:44 / ljl</td>	Chloride	7.87	mg/kg		1.00		E300.0	06/28/12 01:44 / ljl
Sulfate, 1:1 5.43 meq/L 0.0208 E300.0 06/28/12 01:44 / ji PHYSICAL CHARACTERISTICS Filterable No SW1311 04/18/12 08:51 / dcj METALS - SPLP EXTRACTABLE Arsenic 0.004 mg/L 0.001 SW6020 04/26/12 19:44 / smm Barium 0.07 mg/L 0.001 SW6020 04/26/12 19:44 / smm Cadmium ND mg/L 0.001 SW6020 04/26/12 19:44 / smm Chromium 0.012 mg/L B 0.005 SW6020 04/26/12 19:44 / smm Lead 0.005 mg/L 0.001 SW6020 04/26/12 19:44 / smm Mercury ND mg/L 0.001 SW6020 04/26/12 19:44 / smm Silver ND mg/L 0.002 SW7470A 05/19/12 09:09 / rdw Selenium 0.004 mg/L D 0.002 SW6020 04/26/12 19:44 / smm Uranium 0.0054 mg/L D 0.002 SW6020 04/26/12 19:4	Chloride, 1:1	0.222			0.0282		E300.0	06/28/12 01:44 / ljl
PHYSICAL CHARACTERISTICS Filterable No SW 1311 04/18/12 08:51 / dcj METALS - SPLP EXTRACTABLE Arsenic 0.004 mg/L 0.001 SW 6020 04/26/12 19:44 / smm Barium 0.07 mg/L 0.001 SW 6020 04/26/12 19:44 / smm Cadmium 0.07 mg/L 0.001 SW 6020 04/26/12 19:44 / smm Chromium 0.012 mg/L 0.001 SW 6020 04/26/12 19:44 / smm Lead 0.005 mg/L 0.001 SW 6020 04/26/12 19:44 / smm Lead 0.005 mg/L 0.001 SW 6020 04/26/12 19:44 / smm Selenium 0.004 mg/L 0.001 SW 6020 04/26/12 19:44 / smm Silver ND mg/L D 0.002 SW 7470A 05/19/12 09:09 / rdw Silver ND mg/L D 0.001 SW 6020 04/26/12 19:44 / smm Uranium 0.0054 mg/L D 0.002 SW 6020 04/26/12	Sulfate	261	mg/kg		1.00		E300.0	06/28/12 01:44 / ljl
Filterable No SW1311 04/18/12 08:51 / dcj METALS - SPLP EXTRACTABLE	Sulfate, 1:1	5.43	meq/L		0.0208		E300.0	06/28/12 01:44 / ljl
METALS - SPLP EXTRACTABLE Arsenic 0.004 mg/L 0.001 SW 6020 04/26/12 19:44 / smm Barium 0.07 mg/L 0.05 SW 6020 04/26/12 19:44 / smm Cadmium ND mg/L 0.001 SW 6020 04/26/12 19:44 / smm Cadmium ND mg/L 0.001 SW 6020 04/26/12 19:44 / smm Chromium 0.012 mg/L B 0.005 SW 6020 04/26/12 19:44 / smm Lead 0.005 mg/L 0.001 SW 6020 04/26/12 19:44 / smm Mercury ND mg/L 0.001 SW 6020 04/26/12 19:44 / smm Silver ND mg/L 0.002 SW 7470A 05/19/12 09:09 / rdw Silver ND mg/L D 0.002 SW 6020 04/26/12 19:44 / smm Uranium 0.004 mg/L D 0.002 SW 6020 04/26/12 19:44 / smm Uranium 0.0054 mg/L D 0.0006 SW 6020 05/02/12 11:40 / plj	PHYSICAL CHARACTERISTICS							
Arsenic 0.004 mg/L 0.001 SW 6020 04/26/12 19:44 / smm Barium 0.07 mg/L 0.05 SW 6020 04/26/12 19:44 / smm Cadmium ND mg/L 0.001 SW 6020 04/26/12 19:44 / smm Cadmium ND mg/L 0.001 SW 6020 04/26/12 19:44 / smm Chromium 0.012 mg/L B 0.005 SW 6020 04/26/12 19:44 / smm Lead 0.005 mg/L 0.001 SW 6020 04/26/12 19:44 / smm Mercury ND mg/L 0.001 SW 6020 04/26/12 19:44 / smm Selenium 0.005 mg/L 0.001 SW 6020 04/26/12 19:44 / smm Silver ND mg/L 0.001 SW 6020 04/26/12 19:44 / smm Uranium 0.004 mg/L D 0.002 SW 6020 04/26/12 19:44 / smm Radium 226 ND mg/L D	Filterable	No					SW1311	04/18/12 08:51 / dcj
Barium 0.07 mg/L 0.05 SW6020 04/26/12 19:44 smm Cadmium ND mg/L 0.001 SW6020 04/26/12 19:44 smm Chromium 0.012 mg/L B 0.005 SW6020 04/26/12 19:44 smm Lead 0.005 mg/L B 0.001 SW6020 04/26/12 19:44 smm Mercury ND mg/L 0.001 SW6020 04/26/12 19:44 smm Mercury ND mg/L 0.001 SW6020 04/26/12 19:44 smm Mercury ND mg/L 0.002 SW7470A 05/19/12 09:09 / rdw Selenium 0.004 mg/L D 0.002 SW6020 04/26/12 19:44 / smm Silver ND mg/L D 0.002 SW6020 04/26/12 19:44 / smm Uranium 0.0054 mg/L D 0.002 SW6020 04/26/12	METALS - SPLP EXTRACTABLE							
ND mg/L 0.001 SW6020 04/26/12 19:44 / smm Chromium 0.012 mg/L B 0.005 SW6020 04/26/12 19:44 / smm Lead 0.005 mg/L B 0.001 SW6020 04/26/12 19:44 / smm Lead 0.005 mg/L 0.001 SW6020 04/26/12 19:44 / smm Mercury ND mg/L 0.002 SW7470A 05/19/12 09:09 / rdw Selenium 0.004 mg/L 0.001 SW6020 04/26/12 19:44 / smm Silver ND mg/L 0.002 SW7470A 05/19/12 09:09 / rdw Silver 0.004 mg/L 0.001 SW6020 04/26/12 19:44 / smm Uranium 0.004 mg/L D 0.002 SW6020 04/26/12 19:44 / smm RADIONUCLIDES ND mg/L D 0.002 SW6020 05/02/12 13:40 / plj Radium 226 1.7 pCi/g-dry E903.0 07/03/12 01:40 / plj Radium 226 MDC 0.02 pCi/g-dry E903	Arsenic	0.004	mg/L		0.001		SW6020	04/26/12 19:44 / smm
Chromium 0.012 mg/L B 0.005 SW6020 04/26/12 19:44 / smm Lead 0.005 mg/L 0.001 SW6020 04/26/12 19:44 / smm Mercury ND mg/L 0.002 SW7470A 05/19/12 09:09 / rdw Selenium 0.004 mg/L 0.001 SW6020 04/26/12 19:44 / smm Silver ND mg/L 0.001 SW6020 04/26/12 19:44 / smm Uranium 0.004 mg/L 0.001 SW6020 04/26/12 19:44 / smm Uranium 0.004 mg/L D 0.002 SW6020 04/26/12 19:44 / smm Uranium 0.0054 mg/L D 0.002 SW6020 04/26/12 19:44 / smm Radium 226 mg/L D 0.002 SW6020 05/02/12 19:44 / smm Radium 226 MDC 1.7 pCi/g-dry E903.0 07/03/12 01:40 / plj Radium 226 MDC 0.02 pCi/g-dry	Barium	0.07	mg/L		0.05		SW6020	04/26/12 19:44 / smm
Lead 0.005 mg/L 0.001 SW 6020 04/26/12 19:44 / smm Mercury ND mg/L 0.002 SW7470A 05/19/12 09:09 / rdw Selenium 0.004 mg/L 0.001 SW 6020 04/26/12 19:44 / smm Silver 0.004 mg/L 0.001 SW 6020 04/26/12 19:44 / smm Silver ND mg/L D 0.002 SW 6020 04/26/12 19:44 / smm Uranium 0.0054 mg/L D 0.002 SW 6020 04/26/12 19:44 / smm Wranium 0.0054 mg/L D 0.002 SW 6020 04/26/12 19:44 / smm Wranium 0.0054 mg/L D 0.002 SW 6020 05/02/12 19:44 / smm Radium 226 precision (±) 0.1 pCi/g-dry E 903.0 07/03/12 01:40 / plj Radium 226 MDC 0.02 pCi/g-dry E 903.0 07/03/12 01:40 / plj Radium 228 0.6 pCi/g-dry RA-05 06/25/12 15:52 / plj Radium 228 precision (±) 0.2<	Cadmium	ND	mg/L		0.001		SW6020	04/26/12 19:44 / smm
Mercury ND mg/L 0.002 SW7470A 05/19/12 09:09 / rdw Selenium 0.004 mg/L 0.001 SW6020 04/26/12 19:44 / smm Silver ND mg/L D 0.002 SW6020 04/26/12 19:44 / smm Uranium 0.0054 mg/L D 0.002 SW6020 04/26/12 19:44 / smm RADIONUCLIDES Radium 226 1.7 pCi/g-dry E903.0 07/03/12 01:40 / plj Radium 226 precision (±) 0.1 pCi/g-dry E903.0 07/03/12 01:40 / plj Radium 226 MDC 0.02 pCi/g-dry E903.0 07/03/12 01:40 / plj Radium 228 0.6 pCi/g-dry E903.0 07/03/12 01:40 / plj Radium 228 precision (±) 0.2 pCi/g-dry RA-05 06/25/12 15:52 / plj Radium 228 precision (±) 0.2 pCi/g-dry RA-05 06/25/12 15:52 / plj	Chromium	0.012	mg/L	В	0.005		SW6020	04/26/12 19:44 / smm
Selenium 0.004 mg/L 0.001 SW 6020 04/26/12 19:44 / smm Silver ND mg/L D 0.002 SW 6020 04/26/12 19:44 / smm Uranium 0.0054 mg/L D 0.002 SW 6020 04/26/12 19:44 / smm RADIONUCLIDES Radium 226 1.7 pCi/g-dry E903.0 07/03/12 01:40 / plj Radium 226 precision (±) 0.1 pCi/g-dry E903.0 07/03/12 01:40 / plj Radium 226 MDC 0.02 pCi/g-dry E903.0 07/03/12 01:40 / plj Radium 228 0.6 pCi/g-dry E903.0 07/03/12 01:40 / plj Radium 228 precision (±) 0.2 pCi/g-dry RA-05 06/25/12 15:52 / plj Radium 228 precision (±) 0.2 pCi/g-dry RA-05 06/25/12 15:52 / plj	Lead	0.005	mg/L		0.001		SW6020	04/26/12 19:44 / smm
ND mg/L D 0.002 SW6020 04/26/12 19:44 / smm Uranium 0.0054 mg/L D 0.002 SW6020 05/02/12 19:44 / smm RADIONUCLIDES Fraction (±) 1.7 pCi/g-dry E903.0 07/03/12 01:40 / plj Radium 226 precision (±) 0.1 pCi/g-dry E903.0 07/03/12 01:40 / plj Radium 226 MDC 0.02 pCi/g-dry E903.0 07/03/12 01:40 / plj Radium 228 0.6 pCi/g-dry E903.0 07/03/12 01:40 / plj Radium 228 precision (±) 0.2 pCi/g-dry RA-05 06/25/12 15:52 / plj Radium 228 precision (±) 0.2 pCi/g-dry RA-05 06/25/12 15:52 / plj	Mercury	ND	mg/L		0.002		SW7470A	05/19/12 09:09 / rdw
Uranium 0.0054 mg/L D 0.0006 SW6020 05/02/12 14:19 / smm RADIONUCLIDES Fadium 226 1.7 pCi/g-dry E903.0 07/03/12 01:40 / plj Radium 226 precision (±) 0.1 pCi/g-dry E903.0 07/03/12 01:40 / plj Radium 226 MDC 0.02 pCi/g-dry E903.0 07/03/12 01:40 / plj Radium 226 MDC 0.02 pCi/g-dry E903.0 07/03/12 01:40 / plj Radium 228 0.6 pCi/g-dry E903.0 07/03/12 01:40 / plj Radium 228 precision (±) 0.2 pCi/g-dry RA-05 06/25/12 15:52 / plj Radium 228 precision (±) 0.2 pCi/g-dry RA-05 06/25/12 15:52 / plj	Selenium	0.004	mg/L		0.001		SW6020	04/26/12 19:44 / smm
RADIONUCLIDES E903.0 07/03/12 01:40 / plj Radium 226 precision (±) 0.1 pCi/g-dry E903.0 07/03/12 01:40 / plj Radium 226 MDC 0.02 pCi/g-dry E903.0 07/03/12 01:40 / plj Radium 226 MDC 0.02 pCi/g-dry E903.0 07/03/12 01:40 / plj Radium 228 0.6 pCi/g-dry RA-05 06/25/12 15:52 / plj Radium 228 precision (±) 0.2 pCi/g-dry RA-05 06/25/12 15:52 / plj	Silver	ND	mg/L	D	0.002		SW6020	04/26/12 19:44 / smm
Radium 226 1.7 pCi/g-dry E903.0 07/03/12 01:40 / plj Radium 226 precision (±) 0.1 pCi/g-dry E903.0 07/03/12 01:40 / plj Radium 226 MDC 0.02 pCi/g-dry E903.0 07/03/12 01:40 / plj Radium 228 0.6 pCi/g-dry RA-05 06/25/12 15:52 / plj Radium 228 precision (±) 0.2 pCi/g-dry RA-05 06/25/12 15:52 / plj	Uranium	0.0054	mg/L	D	0.0006		SW6020	05/02/12 14:19 / smm
Radium 226 precision (±) 0.1 pCi/g-dry E903.0 07/03/12 01:40 / plj Radium 226 MDC 0.02 pCi/g-dry E903.0 07/03/12 01:40 / plj Radium 228 0.6 pCi/g-dry RA-05 06/25/12 15:52 / plj Radium 228 precision (±) 0.2 pCi/g-dry RA-05 06/25/12 15:52 / plj	RADIONUCLIDES							
Radium 226 precision (±) 0.1 pCi/g-dry E903.0 07/03/12 01:40 / plj Radium 226 MDC 0.02 pCi/g-dry E903.0 07/03/12 01:40 / plj Radium 228 0.6 pCi/g-dry RA-05 06/25/12 15:52 / plj Radium 228 precision (±) 0.2 pCi/g-dry RA-05 06/25/12 15:52 / plj	Radium 226	1.7	pCi/g-dry				E903.0	07/03/12 01:40 / plj
Radium 226 MDC 0.02 pCi/g-dry E903.0 07/03/12 01:40 / plj Radium 228 0.6 pCi/g-dry RA-05 06/25/12 15:52 / plj Radium 228 precision (±) 0.2 pCi/g-dry RA-05 06/25/12 15:52 / plj	Radium 226 precision (±)	0.1					E903.0	07/03/12 01:40 / plj
Radium 228 precision (±) 0.2 pCi/g-dry RA-05 06/25/12 15:52 / plj	Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/03/12 01:40 / plj
Radium 228 precision (±) 0.2 pCi/g-dry RA-05 06/25/12 15:52 / plj	Radium 228	0.6	pCi/g-dry				RA-05	06/25/12 15:52 / plj
Radium 228 MDC 0.2 pCi/g-dry RA-05 06/25/12 15:52 / plj	Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	06/25/12 15:52 / plj
	Radium 228 MDC	0.2	pCi/g-dry				RA-05	06/25/12 15:52 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration D - RL increased due to sample matrix. MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-028Client Sample ID:S3-01-01

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 09:15

 DateReceived:
 04/13/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.007	mg/L		0.001		SW6020	04/25/12 20:23 / smm
Barium	0.31	mg/L		0.05		SW6020	04/25/12 20:23 / smm
Cadmium	0.002	mg/L		0.001		SW6020	04/25/12 20:23 / smm
Chromium	ND	mg/L		0.005		SW6020	04/25/12 20:23 / smm
Lead	0.002	mg/L		0.001		SW6020	04/25/12 20:23 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 09:15 / rdw
Selenium	0.19	mg/L		0.001		SW6020	04/25/12 20:23 / smm
Silver	ND	mg/L		0.001		SW6020	04/25/12 20:23 / smm
Uranium	9.7	mg/L	В	0.0003		SW6020	04/25/12 20:23 / smm
RADIONUCLIDES							
Radium 226	21.0	pCi/g-dry				E903.0	07/03/12 01:40 / plj
Radium 226 precision (±)	0.4	pCi/g-dry				E903.0	07/03/12 01:40 / plj
Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/03/12 01:40 / plj
Radium 228	1.5	pCi/g-dry				RA-05	06/25/12 15:52 / plj
Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	06/25/12 15:52 / plj
Radium 228 MDC	0.2	pCi/g-dry				RA-05	06/25/12 15:52 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-029Client Sample ID:S3-01-02

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 08:50

 DateReceived:
 04/13/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.014	mg/L		0.001		SW6020	04/25/12 20:37 / smm
Barium	2.3	mg/L		0.05		SW6020	04/25/12 20:37 / smm
Cadmium	0.001	mg/L		0.001		SW6020	04/25/12 20:37 / smm
Chromium	0.050	mg/L		0.005		SW6020	04/25/12 20:37 / smm
Lead	0.064	mg/L		0.001		SW6020	04/25/12 20:37 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 09:19 / rdw
Selenium	0.036	mg/L		0.001		SW6020	04/25/12 20:37 / smm
Silver	ND	mg/L		0.001		SW6020	04/25/12 20:37 / smm
Uranium	5.7	mg/L	В	0.0003		SW6020	04/25/12 20:37 / smm
RADIONUCLIDES							
Radium 226	6.2	pCi/g-dry				E903.0	07/03/12 01:40 / plj
Radium 226 precision (±)	0.2	pCi/g-dry				E903.0	07/03/12 01:40 / plj
Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/03/12 01:40 / plj
Radium 228	0.7	pCi/g-dry				RA-05	06/25/12 15:52 / plj
Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	06/25/12 15:52 / plj
Radium 228 MDC	0.2	pCi/g-dry				RA-05	06/25/12 15:52 / plj

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-030Client Sample ID:S3-01-03

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 09:40

 DateReceived:
 04/13/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.005	mg/L		0.001		SW6020	04/25/12 20:41 / smm
Barium	0.14	mg/L		0.05		SW6020	04/25/12 20:41 / smm
Cadmium	ND	mg/L		0.001		SW6020	04/25/12 20:41 / smm
Chromium	0.013	mg/L		0.005		SW6020	04/25/12 20:41 / smm
Lead	0.012	mg/L		0.001		SW6020	04/25/12 20:41 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 09:20 / rdw
Selenium	0.053	mg/L		0.001		SW6020	04/25/12 20:41 / smm
Silver	ND	mg/L		0.001		SW6020	04/25/12 20:41 / smm
Uranium	0.47	mg/L	В	0.0003		SW6020	04/25/12 20:41 / smm
RADIONUCLIDES							
Radium 226	4.5	pCi/g-dry				E903.0	07/03/12 01:40 / plj
Radium 226 precision (±)	0.2	pCi/g-dry				E903.0	07/03/12 01:40 / plj
Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/03/12 01:40 / plj
Radium 228	0.8	pCi/g-dry				RA-05	06/25/12 17:32 / plj
Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	06/25/12 17:32 / plj
Radium 228 MDC	0.3	pCi/g-dry				RA-05	06/25/12 17:32 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-031Client Sample ID:S3-02-01

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 10:22

 DateReceived:
 04/13/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.018	mg/L		0.001		SW6020	04/25/12 21:04 / smm
Barium	6.6	mg/L		0.05		SW6020	04/25/12 21:04 / smm
Cadmium	0.002	mg/L		0.001		SW6020	04/25/12 21:04 / smm
Chromium	0.015	mg/L		0.005		SW6020	04/25/12 21:04 / smm
Lead	0.028	mg/L		0.001		SW6020	04/25/12 21:04 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 09:24 / rdw
Selenium	0.15	mg/L		0.001		SW6020	04/25/12 21:04 / smm
Silver	ND	mg/L		0.001		SW6020	04/25/12 21:04 / smm
Uranium	7.8	mg/L	В	0.0003		SW6020	04/25/12 21:04 / smm
RADIONUCLIDES							
Radium 226	6.4	pCi/g-dry				E903.0	07/03/12 01:40 / plj
Radium 226 precision (±)	0.2	pCi/g-dry				E903.0	07/03/12 01:40 / plj
Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/03/12 01:40 / plj
Radium 228	2.2	pCi/g-dry				RA-05	06/25/12 17:32 / plj
Radium 228 precision (±)	0.3	pCi/g-dry				RA-05	06/25/12 17:32 / plj
Radium 228 MDC	0.3	pCi/g-dry				RA-05	06/25/12 17:32 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-032Client Sample ID:S3-02-02

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 10:30

 DateReceived:
 04/13/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.002	mg/L		0.001		SW6020	04/25/12 21:08 / smm
Barium	ND	mg/L		0.05		SW6020	04/25/12 21:08 / smm
Cadmium	ND	mg/L		0.001		SW6020	04/25/12 21:08 / smm
Chromium	0.009	mg/L		0.005		SW6020	04/25/12 21:08 / smm
Lead	0.001	mg/L		0.001		SW6020	04/25/12 21:08 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 09:25 / rdw
Selenium	0.023	mg/L		0.001		SW6020	04/25/12 21:08 / smm
Silver	ND	mg/L		0.001		SW6020	04/25/12 21:08 / smm
Uranium	0.18	mg/L	В	0.0003		SW6020	04/25/12 21:08 / smm
RADIONUCLIDES							
Radium 226	3.0	pCi/g-dry				E903.0	07/03/12 01:40 / plj
Radium 226 precision (±)	0.2	pCi/g-dry				E903.0	07/03/12 01:40 / plj
Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/03/12 01:40 / plj
Radium 228	0.7	pCi/g-dry				RA-05	06/25/12 17:32 / plj
Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	06/25/12 17:32 / plj
Radium 228 MDC	0.3	pCi/g-dry				RA-05	06/25/12 17:32 / plj

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-033Client Sample ID:S3-02-03

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 10:30

 DateReceived:
 04/13/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.006	mg/L		0.001		SW6020	04/25/12 21:13 / smm
Barium	0.27	mg/L		0.05		SW6020	04/25/12 21:13 / smm
Cadmium	ND	mg/L		0.001		SW6020	04/25/12 21:13 / smm
Chromium	0.018	mg/L		0.005		SW6020	04/25/12 21:13 / smm
Lead	0.016	mg/L		0.001		SW6020	04/25/12 21:13 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 09:27 / rdw
Selenium	0.003	mg/L		0.001		SW6020	04/25/12 21:13 / smm
Silver	ND	mg/L		0.001		SW6020	04/25/12 21:13 / smm
Uranium	0.022	mg/L	В	0.0003		SW6020	04/25/12 21:13 / smm
RADIONUCLIDES							
Radium 226	2.4	pCi/g-dry				E903.0	07/03/12 01:40 / plj
Radium 226 precision (±)	0.1	pCi/g-dry				E903.0	07/03/12 01:40 / plj
Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/03/12 01:40 / plj
Radium 228	0.3	pCi/g-dry				RA-05	06/25/12 17:32 / plj
Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	06/25/12 17:32 / plj
Radium 228 MDC	0.3	pCi/g-dry				RA-05	06/25/12 17:32 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-034Client Sample ID:S7-02-01

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 15:45

 DateReceived:
 04/13/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.013	mg/L		0.001		SW6020	04/25/12 21:17 / smm
Barium	0.76	mg/L		0.05		SW6020	04/25/12 21:17 / smm
Cadmium	ND	mg/L		0.001		SW6020	04/25/12 21:17 / smm
Chromium	0.006	mg/L		0.005		SW6020	04/25/12 21:17 / smm
Lead	0.001	mg/L		0.001		SW6020	04/25/12 21:17 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 09:28 / rdw
Selenium	0.22	mg/L		0.001		SW6020	04/25/12 21:17 / smm
Silver	ND	mg/L		0.001		SW6020	04/25/12 21:17 / smm
Uranium	0.18	mg/L	В	0.0003		SW6020	04/25/12 21:17 / smm
RADIONUCLIDES							
Radium 226	2.6	pCi/g-dry				E903.0	07/03/12 01:40 / plj
Radium 226 precision (±)	0.1	pCi/g-dry				E903.0	07/03/12 01:40 / plj
Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/03/12 01:40 / plj
Radium 228	0.5	pCi/g-dry				RA-05	06/25/12 17:32 / plj
Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	06/25/12 17:32 / plj
Radium 228 MDC	0.3	pCi/g-dry				RA-05	06/25/12 17:32 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-035Client Sample ID:S7-02-02

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 15:50

 DateReceived:
 04/13/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.007	mg/L		0.001		SW6020	04/25/12 21:22 / smm
Barium	0.31	mg/L		0.05		SW6020	04/25/12 21:22 / smm
Cadmium	ND	mg/L		0.001		SW6020	04/25/12 21:22 / smm
Chromium	0.013	mg/L		0.005		SW6020	04/25/12 21:22 / smm
Lead	0.020	mg/L		0.001		SW6020	04/25/12 21:22 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 09:29 / rdw
Selenium	0.13	mg/L		0.001		SW6020	04/25/12 21:22 / smm
Silver	ND	mg/L		0.001		SW6020	04/25/12 21:22 / smm
Uranium	0.014	mg/L	В	0.0003		SW6020	04/25/12 21:22 / smm
RADIONUCLIDES							
Radium 226	1.9	pCi/g-dry				E903.0	07/03/12 01:40 / plj
Radium 226 precision (±)	0.1	pCi/g-dry				E903.0	07/03/12 01:40 / plj
Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/03/12 01:40 / plj
Radium 228	0.2	pCi/g-dry	U			RA-05	06/25/12 17:32 / plj
Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	06/25/12 17:32 / plj
Radium 228 MDC	0.3	pCi/g-dry				RA-05	06/25/12 17:32 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration U - Not detected at minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-036Client Sample ID:S7-02-03

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 15:55

 DateReceived:
 04/13/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.003	mg/L		0.001		SW6020	04/25/12 21:26 / smm
Barium	0.16	mg/L		0.05		SW6020	04/25/12 21:26 / smm
Cadmium	ND	mg/L		0.001		SW6020	04/25/12 21:26 / smm
Chromium	0.010	mg/L		0.005		SW6020	04/25/12 21:26 / smm
Lead	0.005	mg/L		0.001		SW6020	04/25/12 21:26 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 09:31 / rdw
Selenium	0.003	mg/L		0.001		SW6020	04/25/12 21:26 / smm
Silver	ND	mg/L		0.001		SW6020	04/25/12 21:26 / smm
Uranium	0.0053	mg/L	В	0.0003		SW6020	04/25/12 21:26 / smm
RADIONUCLIDES							
Radium 226	1.1	pCi/g-dry				E903.0	07/03/12 01:40 / plj
Radium 226 precision (±)	0.09	pCi/g-dry				E903.0	07/03/12 01:40 / plj
Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/03/12 01:40 / plj
Radium 228	0.3	pCi/g-dry				RA-05	06/25/12 17:32 / plj
Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	06/25/12 17:32 / plj
Radium 228 MDC	0.3	pCi/g-dry				RA-05	06/25/12 17:32 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12040804-037Client Sample ID:S3-01-04

 Revised Date:
 07/05/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 09:46

 DateReceived:
 04/13/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/18/12 08:51 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.003	mg/L		0.001		SW6020	04/25/12 21:31 / smm
Barium	0.07	mg/L		0.05		SW6020	04/25/12 21:31 / smm
Cadmium	ND	mg/L		0.001		SW6020	04/25/12 21:31 / smm
Chromium	0.011	mg/L		0.005		SW6020	04/25/12 21:31 / smm
Lead	0.005	mg/L		0.001		SW6020	04/25/12 21:31 / smm
Mercury	ND	mg/L		0.002		SW7470A	05/19/12 09:32 / rdw
Selenium	0.032	mg/L		0.001		SW6020	04/25/12 21:31 / smm
Silver	ND	mg/L		0.001		SW6020	04/25/12 21:31 / smm
Uranium	0.036	mg/L	В	0.0003		SW6020	04/25/12 21:31 / smm
RADIONUCLIDES							
Radium 226	1.7	pCi/g-dry				E903.0	07/03/12 03:34 / plj
Radium 226 precision (±)	0.1	pCi/g-dry				E903.0	07/03/12 03:34 / plj
Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/03/12 03:34 / plj
Radium 228	0.7	pCi/g-dry				RA-05	06/25/12 17:32 / plj
Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	06/25/12 17:32 / plj
Radium 228 MDC	0.3	pCi/g-dry				RA-05	06/25/12 17:32 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

QA/QC Summary Report

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine Closure Plan

Revised Date: 07/05/12 Report Date: 06/13/12 Work Order: C12040804

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E300.0								Analytica	I Run: IC2-C	_120626A
Sample ID: ICV-062612-10	2 li	nitial Calibratio	on Verification	Standard					06/26	/12 15:31
Chloride		9.60	mg/L	1.0	96	90	110			
Sulfate		38.7	mg/L	1.0	97	90	110			
Method: E300.0									Bat	tch: 34002
Sample ID: MB-34002	2 N	lethod Blank				Run: IC2-C	_120626A		06/27	/12 21:21
Chloride		ND	mg/kg	1.0						
Sulfate		0.0820	mg/kg	1.0						
Sample ID: LCS1-34002	2 L	aboratory Cor	ntrol Sample			Run: IC2-C	_120626A		06/27	/12 21:37
Chloride		42.9	mg/kg	1.0	121	70	130			
Sulfate		1910	mg/kg	1.0	105	70	130			
Sample ID: C12040804-026CPDS	3 2 F	Post Digestion	/Distillation Spi	ike		Run: IC2-C	_120626A		06/28	/12 01:27
Chloride		487	mg/kg	1.0	94	80	120			
Sulfate		4670	mg/kg	1.0	90	80	120			
Sample ID: C12040804-027CDUF	2 2 5	Sample Duplica	ate			Run: IC2-C	_120626A		06/28	/12 02:00
Chloride		7.34	mg/kg	1.0				6.9	20	
Sulfate		251	mg/kg	1.0				3.8	20	

QA/QC Summary Report

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine Closure Plan

Revised Date: 07/05/12 Report Date: 06/13/12 Work Order: C12040804

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E903.0									Bat	ch: 34003
Sample ID: MB-34003	3 Me	ethod Blank				Run: BERT	HOLD 770-1_	_120620B	07/02	/12 22:18
Radium 226		0.003	pCi/g-dry							U
Radium 226 precision (±)		0.005	pCi/g-dry							
Radium 226 MDC		0.007	pCi/g-dry							
Sample ID: LCS-34003	La	boratory Co	ntrol Sample			Run: BERT	HOLD 770-1_	_120620B	07/02/	/12 22:18
Radium 226		2.4	pCi/g-dry		793	70	130			S
- LCS response is outside of the acce Since the MB, MS, and MSD are acce				l amount	of the pre	cipitate from C	212040804-001	B being trans	ferred to the pl	anchet.
Sample ID: C12040804-019BMS	Sa	ample Matrix	Spike			Run: BERT	HOLD 770-1_	_120620B	07/03/	/12 01:58
Radium 226		3.2	pCi/g-dry		83	70	130			
Sample ID: C12040804-019BMS	D Sa	ample Matrix	Spike Duplicate			Run: BERT	HOLD 770-1_	_120620B	07/03/	/12 01:58
Radium 226		3.3	pCi/g-dry		90	70	130	2.6	19.7	
Method: E903.0									Bat	ch: 34004
Sample ID: MB-34004	3 Me	ethod Blank				Run: BERT	HOLD 770-2_	_120620A	07/02/	/12 23:59
Radium 226		0.1	pCi/g-dry							
Radium 226 precision (±)		0.03	pCi/g-dry							
Radium 226 MDC		0.02	pCi/g-dry							
Sample ID: LCS-34004	La	boratory Co	ntrol Sample			Run: BERT	HOLD 770-2_	_120620A	07/02/	/12 23:59
Radium 226		1.4	pCi/g-dry		87	70	130			
Sample ID: C12041044-003BMS	Sa	ample Matrix	Spike			Run: BERT	HOLD 770-2_	_120620A	07/03/	/12 03:34
Radium 226		2.5	pCi/g-dry		104	70	130			
Sample ID: C12041044-003BMS	D Sa	ample Matrix	Spike Duplicate			Run: BERT	HOLD 770-2_	_120620A	07/03/	/12 03:34
Radium 226		2.2	pCi/g-dry		87	70	130	12	20.8	

- ND Not detected at the reporting limit.
- S Spike recovery outside of advisory limits.

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine Closure Plan

Revised Date: 07/05/12 Report Date: 06/13/12 Work Order: C12040804

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: RA-05									Bat	tch: 34003
Sample ID: LCS-34003	La	aboratory Co	ontrol Sample			Run: TENN	ELEC-3_120620A	4	06/25	/12 12:20
Radium 228		1.5	pCi/g-dry		104	70	130			
Sample ID: MB-34003	3 M	ethod Blank				Run: TENN	ELEC-3_1206204	A	06/25	/12 12:20
Radium 228		-0.02	pCi/g-dry							U
Radium 228 precision (±)		0.2	pCi/g-dry							
Radium 228 MDC		0.3	pCi/g-dry							
Sample ID: C12040804-019BMS	Sa	ample Matrix	k Spike			Run: TENN	ELEC-3_1206204	4	06/25	/12 12:20
Radium 228		2.1	pCi/g-dry		109	70	130			
Sample ID: C12040804-019BMSI	D Sa	ample Matrix	s Spike Duplicate			Run: TENN	ELEC-3_1206204	4	06/25	/12 12:20
Radium 228		1.9	pCi/g-dry		94	70	130	10	33.9	
Method: RA-05									Bat	tch: 34004
Sample ID: LCS-34004	La	aboratory Co	ontrol Sample			Run: TENN	ELEC-3_120620E	3	06/25	/12 15:52
Radium 228		1.5	pCi/g-dry		104	70	130			
Sample ID: MB-34004	3 M	ethod Blank				Run: TENN	ELEC-3_120620E	3	06/25	/12 15:52
Radium 228		0.07	pCi/g-dry							U
Radium 228 precision (±)		0.2	pCi/g-dry							
Radium 228 MDC		0.3	pCi/g-dry							
Sample ID: C12041044-003BMS	Sa	ample Matrix	k Spike			Run: TENN	ELEC-3_120620E	3	06/25	/12 15:52
Radium 228		1.8	pCi/g-dry		93	70	130			
Sample ID: C12041044-003BMSI	D Sa	ample Matrix	s Spike Duplicate			Run: TENN	ELEC-3_120620E	3	06/25	/12 15:52
Radium 228		1.9	pCi/g-dry		101	70	130	6.0	33.5	

U - Not detected at minimum detectable concentration

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine Closure Plan

Revised Date: 07/05/12 Report Date: 06/13/12 Work Order: C12040804

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit		RPDLimit	Qual
Method: SW6020						Analy	tical Run	: ICPMS2-C	1204204
Sample ID: ICV	8 Initial Calibrat	ion Verificati	on Standard					04/20	/12 12:15
Arsenic	0.0502	mg/L	0.0010	100	90	110			
Barium	0.0500	mg/L	0.0010	100	90	110			
Cadmium	0.0501	mg/L	0.0010	100	90	110			
Chromium	0.0508	mg/L	0.0010	102	90	110			
Lead	0.0492	mg/L	0.0010	98	90	110			
Selenium	0.0513	mg/L	0.0010	103	90	110			
Silver	0.0206	mg/L	0.0010	103	90	110			
Uranium	0.0506	mg/L	0.00030	101	90	110			
Sample ID: ICSA	8 Interference C	heck Sampl	e A					04/20	/12 12:18
Arsenic	2.10E-05	mg/L	0.0010						
Barium	2.84E-05	mg/L	0.0010						
Cadmium	4.02E-05	mg/L	0.0010						
Chromium	0.000116	mg/L	0.0010						
Lead	3.52E-05	mg/L	0.0010						
Selenium	-0.000115	mg/L	0.0010						
Silver	0.000711	mg/L	0.0010						
Uranium	8.01E-05	mg/L	0.00030						
Sample ID: ICSAB	8 Interference C	heck Sampl	e AB					04/20	/12 12:21
Arsenic	0.0101	mg/L	0.0010	101	70	130			
Barium	1.24E-05	mg/L	0.0010						
Cadmium	0.0102	mg/L	0.0010	102	70	130			
Chromium	0.0102	mg/L	0.0010	102	70	130			
Lead	1.20E-05	mg/L	0.0010						
Selenium	5.51E-05	mg/L	0.0010						
Silver	0.0101	mg/L	0.0010	101	70	130			
Uranium	2.09E-05	mg/L	0.00030						
Method: SW6020								Bat	ch: 3338
Sample ID: MB-33385	8 Method Blank				Run: ICPM	S2-C_120420A		04/20	/12 12:46
Arsenic	0.0007	mg/L	6E-05						
Barium	0.002	mg/L	3E-05						
Cadmium	ND	mg/L	1E-05						
Chromium	0.005	mg/L	4E-05						
Lead	0.0001	mg/L	3E-05						
Selenium	ND	mg/L	0.0002						
Silver	0.001	mg/L	3E-05						
Uranium	5E-05	mg/L	1E-05						
Sample ID: LCS3-33385	8 Laboratory Co	ontrol Sample	e		Run: ICPM	S2-C_120420A		04/20	/12 12:49
Arsenic	0.47	mg/L	0.0010	95	80	120			
Barium	0.50	mg/L	0.050	99	80	120			
Cadmium	0.24	mg/L	0.0010	98	80	120			
Chromium	0.49	mg/L	0.0050	98	80	120			
Lead	0.51	mg/L	0.0010	102	80	120			

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine Closure Plan

Revised Date: 07/05/12 Report Date: 06/13/12 Work Order: C12040804

V6020 S3-33385 SD3-33385		0.46 0.052 0.52	ntrol Sample mg/L mg/L mg/L	0.0010 0.0020 0.00060	91 101	Run: ICPMS 80	52-C_120420A 120			ch: 33385 /12 12:49
		0.46 0.052 0.52 poratory Cor	mg/L mg/L mg/L	0.0020					04/20/	/12 12:49
SD3-33385	8 Lat	0.052 0.52 poratory Cor	mg/L mg/L	0.0020		80	120			
SD3-33385	8 Lat	0.52 poratory Cor	mg/L		101		-			
SD3-33385	8 Lab	oratory Cor	-	0.00060		80	120			
SD3-33385	8 Lab	-			105	80	120			
		-	ntrol Sample I	Duplicate		Run: ICPM	S2-C_120420A		04/20/	/12 12:52
		0.40	mg/L	0.0010	96	80	120	1.3	20	
		0.50	mg/L	0.050	100	80	120	1.0	20	
		0.25	mg/L	0.0010	98	80	120	0.7	20	
		0.50	mg/L	0.0050	98	80	120	0.4	20	
		0.52	mg/L	0.0010	104	80	120	1.2	20	
		0.46	mg/L	0.0010	92	80	120	1.2	20	
		0.053	mg/L	0.0020	105	80	120	3.3	20	
		0.53	mg/L	0.00060	106	80	120	0.9	20	
2040804-002ADIL	8 Sor	rial Dilution					S2-C_120420A		04/20	/12 13:00
2040004-002ADIL	0 36	0.052	mg/L	0.0050			0 0	8.3	20	12 13.00
		4.0	•	0.0050		0	0	5.3	20 20	
		4.0 0.0015	mg/L					5.3		N
			mg/L	0.0050		0	0	0.0	20	Ν
		0.044	mg/L	0.0050		0	0	9.3	20	
		0.080	mg/L	0.0050		0	0	1.4	20	
		0.57	mg/L	0.0050		0	0	14	20	
		ND	mg/L	0.010		0	0		20	
		5.3	mg/L	0.0030		0	0	1.4	20	
2040804-001 AMS3	8 Sar	mple Matrix	Spike			Run: ICPMS	32-C_120420A		04/20/	/12 13:50
		0.49	mg/L	0.0010	96	75	125			
		1.8	mg/L	0.050	303	75	125			S
		0.25	mg/L	0.0010	99	75	125			
		0.49	mg/L	0.0050	96	75	125			
		0.57	mg/L	0.0010	111	75	125			
		0.71	mg/L	0.0010	90	75	125			
		0.054		0.0020	22	75	125			S
		4.5	mg/L	0.00060		75	125			А
V6020									Bate	ch: 33386
-33386	8 Me	thod Blank				Run: ICPMS	32-C_120420A		04/20/	/12 13:56
		0.0006	mg/L	6E-05						
		0.003	mg/L	3E-05						
		2E-05	mg/L	1E-05						
		0.006	mg/L	4E-05						
		0.0001		3E-05						
			-							
			-							
V6(020	020	10804-001AMS3 8 Sample Matrix 0.49 1.8 0.25 0.49 0.57 0.71 0.054 4.5 020 3386 8 3386 8 Method Blank 0.0006 0.003 2E-05 0.006 0.006 0.006	5.3 mg/L 5.3 mg	5.3 mg/L 0.0030 5.3 mg/L 0.0030 5.3 mg/L 0.0010 1.8 mg/L 0.0010 1.8 mg/L 0.0050 0.25 mg/L 0.0010 0.49 mg/L 0.0050 0.57 mg/L 0.0010 0.57 mg/L 0.0010 0.57 mg/L 0.0010 0.54 mg/L 0.0020 4.5 mg/L 0.0020 4.5 mg/L 0.0006 520 521 521 521 521 521 521 521 521	5.3 mg/L 0.0030 40804-001 AMS3 8 Sample Matrix Spike 0.49 mg/L 0.0010 96 1.8 mg/L 0.050 303 0.25 mg/L 0.0010 99 0.49 mg/L 0.0050 96 0.57 mg/L 0.0010 111 0.71 mg/L 0.0010 90 0.054 mg/L 0.0020 22 4.5 mg/L 0.00060 020 386 8 Method Blank 0.0006 mg/L 6E-05 0.003 mg/L 3E-05 2E-05 mg/L 1E-05 0.0006 mg/L 4E-05 0.0001 mg/L 3E-05 0.0001 mg/L 3E-05 0.0001 mg/L 0.0002	5.3 mg/L 0.0030 0 10804-001AMS3 8 Sample Matrix Spike Run: ICPMS 0.49 mg/L 0.0010 96 75 1.8 mg/L 0.0010 96 75 0.25 mg/L 0.0010 99 75 0.49 mg/L 0.0050 96 75 0.25 mg/L 0.0010 111 75 0.57 mg/L 0.0010 90 75 0.57 mg/L 0.0010 111 75 0.71 mg/L 0.0010 90 75 0.54 mg/L 0.0020 22 75 0.54 mg/L 0.0020 22 75 0.50 mg/L 0.0020 22 75 0.386 8 Method Blank Run: ICPMS 0.003 mg/L 3E-05 2E-05 mg/L 1E-05 0.0006 mg/L 4E-05 0.0002 0.0002	5.3 mg/L 0.0030 0 0 10804-001 AMS3 8 Sample Matrix Spike Run: ICPMS2-C_120420A 0.49 mg/L 0.0010 96 75 125 1.8 mg/L 0.050 303 75 125 </td <td>5.3 mg/L 0.0030 0 0.49 1.4 10804-001AMS3 8 Sample Matrix Spike Run: ICPMS2-C_120420A 0.49 mg/L 0.0010 96 75 125</td> <td>5.3 mg/L 0.0030 0 0 1.4 20 10804-001AMS3 8 Sample Matrix Spike Run: ICPMS2-C_120420A 04/20/ 0.49 mg/L 0.0010 96 75 125 04/20/ 1.8 mg/L 0.0010 96 75 125 04/20/ 0.25 mg/L 0.0010 99 75 125 0.25 0.49 mg/L 0.0050 96 75 125 0.57 0.57 mg/L 0.0010 111 75 125 0.57 125 0.54 mg/L 0.0020 22 75 125 125 0.54 mg/L 0.0020 22 75 125 125 0.054 mg/L 0.0020 22 75 125 04/20/ 0.006 mg/L 6E-05 0.003 mg/L 04/20/ 04/20/ 0.006 mg/L 3E-05 0.003 mg/L 3E-05</td>	5.3 mg/L 0.0030 0 0.49 1.4 10804-001AMS3 8 Sample Matrix Spike Run: ICPMS2-C_120420A 0.49 mg/L 0.0010 96 75 125	5.3 mg/L 0.0030 0 0 1.4 20 10804-001AMS3 8 Sample Matrix Spike Run: ICPMS2-C_120420A 04/20/ 0.49 mg/L 0.0010 96 75 125 04/20/ 1.8 mg/L 0.0010 96 75 125 04/20/ 0.25 mg/L 0.0010 99 75 125 0.25 0.49 mg/L 0.0050 96 75 125 0.57 0.57 mg/L 0.0010 111 75 125 0.57 125 0.54 mg/L 0.0020 22 75 125 125 0.54 mg/L 0.0020 22 75 125 125 0.054 mg/L 0.0020 22 75 125 04/20/ 0.006 mg/L 6E-05 0.003 mg/L 04/20/ 04/20/ 0.006 mg/L 3E-05 0.003 mg/L 3E-05

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated. MDC - Minimum detectable concentration

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine Closure Plan

Revised Date: 07/05/12 Report Date: 06/13/12 Work Order: C12040804

Method: SW6020 Batch: 33386 Batch: 33386	Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Arsenic 0.49 mg/L 0.010 98 80 120 Barlum 0.51 mg/L 0.050 101 80 120 Cadmlum 0.55 mg/L 0.0010 100 80 120 Chromium 0.50 mg/L 0.0010 105 80 120 Selenium 0.48 mg/L 0.0010 95 80 120 Silver 0.054 mg/L 0.0020 105 80 120 Samel DI: LCSD3-3336 8 Laboratory Comtrol Sample Duplicate Run: ICPMS2-C, 120420A 04/20/12 14:01 Arsenic 0.49 mg/L 0.0010 100 80 120 0.4 Cadmium 0.51 mg/L 0.0010 102 80 120 0.4 20 Cadmium 0.55 mg/L 0.0010 105 80 120 0.4 20 120 Laboratory 0.0110 105 80 120 0.1 20 12 120 120 120 120 120 120 1	Method: SW6020									Bat	ch: 33386
Barlum 0.51 mg/L 0.050 101 80 120 Chomium 0.25 mg/L 0.0010 100 80 120 Chomium 0.52 mg/L 0.0010 105 80 120 Lead 0.52 mg/L 0.0010 95 80 120 Silver 0.054 mg/L 0.0020 105 80 120 Vanium 0.53 mg/L 0.0000 106 80 120 0.42 20 Barlum 0.53 mg/L 0.0000 97 80 120 0.2 20 Barlum 0.51 mg/L 0.0010 97 80 120 0.1 20 Cadmium 0.51 mg/L 0.0010 100 80 120 0.1 20 120	Sample ID: LCS3-33386	8 Lat	poratory Co	ntrol Sample			Run: ICPM	S2-C_120420A		04/20/	12 13:58
Cadmium 0.25 mg/L 0.0010 100 80 120 Chromium 0.50 mg/L 0.0050 100 80 120 Selenium 0.648 mg/L 0.0010 105 80 120 Selenium 0.648 mg/L 0.0020 105 80 120 Silver 0.653 mg/L 0.0000 106 80 120 0.42 22 Karsenic 0.649 mg/L 0.0000 97 80 120 0.4 20 14 20<	Arsenic		0.49	mg/L	0.0010	98	80	120			
Chromium 0.50 mg/L 0.0050 100 80 120 Lead 0.52 mg/L 0.0010 105 80 120 Selenium 0.48 mg/L 0.0020 105 80 120 Silver 0.054 mg/L 0.0020 106 80 120 04/20/12 14.01 Arsenic 0.49 mg/L 0.0006 106 80 120 0.2 20 Barlum 0.51 mg/L 0.0010 97 80 120 0.4 20 Cadmium 0.51 mg/L 0.0010 100 80 120 0.1 20 Lead 0.53 mg/L 0.0010 105 80 120 0.0 20 Selenium 0.055 mg/L 0.0020 107 80 120 0.2 20 14.00 Silver 0.055 mg/L 0.0020 107 80 120 0.2 20 14.00 Selenium 0.0075 mg/L 0.0020 0 0 <td>Barium</td> <td></td> <td>0.51</td> <td>mg/L</td> <td>0.050</td> <td>101</td> <td>80</td> <td>120</td> <td></td> <td></td> <td></td>	Barium		0.51	mg/L	0.050	101	80	120			
Lead 0.52 mg/L 0.0010 105 80 120 Selenium 0.48 mg/L 0.0020 105 80 120 Uranium 0.53 mg/L 0.0020 106 80 120 Semple D: LCS03-33386 8 Laboratory Control Sample U: Run: ICPMS2-C_120420A 0.4/20/12 14:01 Arsenic 0.49 mg/L 0.0010 97 80 120 0.2 20 Barium 0.55 mg/L 0.0010 100 80 120 0.0 20 Cadmium 0.55 mg/L 0.0010 100 80 120 0.0 20 Lead 0.53 mg/L 0.0010 105 80 120 0.0 20 20 Selenium 0.48 mg/L 0.0010 105 80 120 0.0 20 20 Silver 0.055 mg/L 0.0020 107 80 120 0.0 20 120 20 120 20 120 120	Cadmium		0.25	mg/L	0.0010	100	80	120			
Selenium 0.48 mg/L 0.001 95 80 120 Silver 0.054 mg/L 0.0000 105 80 120 Sample D: LCSD3-33366 8 Laboratory Control Sample Duplicate Run: ICPMS2-C_120420A 04/20/12 14:01 Arsenic 0.49 mg/L 0.0010 97 80 120 0.2 20 Barium 0.51 mg/L 0.0010 97 80 120 0.4 20 Cadmium 0.51 mg/L 0.0010 100 80 120 0.4 20 Cadmium 0.25 mg/L 0.0010 105 80 120 0.6 20 Lead 0.53 mg/L 0.0010 105 80 120 0.9 20 Silver 0.635 mg/L 0.0001 107 80 120 0.9 20 Sample D: C12040804-012ADIL 8 Serial Dilutor Fun/L 0.0005 0	Chromium		0.50	mg/L	0.0050	100	80	120			
Silver 0.054 mg/L 0.0020 105 80 120 Uranium 0.53 mg/L 0.0066 106 80 120 0.420/12 14:01 Arsenic 0.44 mg/L 0.0010 97 80 120 0.2 22 Barium 0.55 mg/L 0.000 97 80 120 0.4 0.420/12 14:01 Arsenic 0.44 mg/L 0.000 97 80 120 0.2 20 Cadmium 0.25 mg/L 0.0010 100 80 120 0.1 20 Cadmium 0.55 mg/L 0.0010 105 80 120 0.2 20 Selenium 0.48 mg/L 0.0010 105 80 120 0.2 20 Silver 0.055 mg/L 0.0000 107 80 120 0.2 20 Selenium 0.054 mg/L 0.0050 0 0 20 N Arsenic 0.0075 mg/L 0.0050 0 <th0< td=""><td>Lead</td><td></td><td>0.52</td><td>mg/L</td><td>0.0010</td><td>105</td><td>80</td><td>120</td><td></td><td></td><td></td></th0<>	Lead		0.52	mg/L	0.0010	105	80	120			
Luranium 0.53 mg/L 0.00060 106 80 120 Sample ID: LCSD3-33366 8 Laboratory Control Sample Dupleate Run: ICPMS2-C_120420A 04/20/12 14:01 Arsenic 0.49 mg/L 0.0010 97 80 120 0.2 20 Barium 0.51 mg/L 0.0050 100 80 120 0.4 20 Cadmium 0.55 mg/L 0.0050 100 80 120 0.1 20 Cadmium 0.50 mg/L 0.0010 105 80 120 0.0 20 100 Cadmium 0.55 mg/L 0.0010 105 80 120 0.2 20 100 Silver 0.055 mg/L 0.0000 107 80 120 0.2 20 100 Silver 0.055 mg/L 0.0050 107 80 120 0.1 20 N Gardium 0.054 mg/L 0.0050 0 0 20 N 20 N 20 <td>Selenium</td> <td></td> <td>0.48</td> <td>mg/L</td> <td>0.0010</td> <td>95</td> <td>80</td> <td>120</td> <td></td> <td></td> <td></td>	Selenium		0.48	mg/L	0.0010	95	80	120			
Sample ID: LCSD3-33386 8 Laboratory Control Sample Duplicate Run: RUN: ICPMS2-C_120420A 04/20/12 14.01 Arsenic 0.49 mg/L 0.0010 97 80 120 0.2 20 Barium 0.51 mg/L 0.0050 100 80 120 0.4 20 Cadmium 0.25 mg/L 0.0050 100 80 120 0.0 20 Chromium 0.50 mg/L 0.0050 107 80 120 0.6 20 Lead 0.53 mg/L 0.0020 107 80 120 0.2 20 Silver 0.055 mg/L 0.0020 107 80 120 0.9 20 10 Arsenic 0.054 mg/L 0.0050 0 0.9 20 N Silver 0.0075 mg/L 0.0050 0 0 4 20 N Gadmium <td< td=""><td>Silver</td><td></td><td>0.054</td><td>mg/L</td><td>0.0020</td><td>105</td><td>80</td><td>120</td><td></td><td></td><td></td></td<>	Silver		0.054	mg/L	0.0020	105	80	120			
Arsenic 0.49 mg/L 0.0010 97 80 120 0.2 20 Barium 0.51 mg/L 0.050 102 80 120 0.4 20 Cadmium 0.25 mg/L 0.0010 100 80 120 0.4 20 Chromium 0.55 mg/L 0.0010 100 80 120 0.0 20 Lead 0.53 mg/L 0.0010 105 80 120 0.2 20 Selenium 0.48 mg/L 0.0010 95 80 120 0.2 20 Varaium 0.48 mg/L 0.0010 95 80 120 0.2 20 120	Uranium		0.53	mg/L	0.00060	106	80	120			
Barium 0.51 mg/L 0.050 102 80 120 0.4 20 Cadmium 0.25 mg/L 0.0010 100 80 120 0.1 20 Chromium 0.50 mg/L 0.0050 100 80 120 0.0 20 Lead 0.53 mg/L 0.0010 95 80 120 0.2 20 Selenium 0.48 mg/L 0.0010 95 80 120 0.2 20 Silver 0.055 mg/L 0.0020 107 80 120 0.9 20 14:09 Arsenic 0.0075 mg/L 0.0050 0 0 20 N Barium 0.0044 mg/L 0.0050 0 0 4.1 20 N Chromium 0.013 mg/L 0.0050 0 0 4.1 20 N Gadmium 0.0044 mg/L 0.0050 0 0 1.5 20 N Lead 0.0069 mg/L <t< td=""><td>Sample ID: LCSD3-33386</td><td>8 Lat</td><td>poratory Co</td><td>ntrol Sample E</td><td>Duplicate</td><td></td><td>Run: ICPM</td><td>S2-C_120420A</td><td></td><td>04/20/</td><td>/12 14:01</td></t<>	Sample ID: LCSD3-33386	8 Lat	poratory Co	ntrol Sample E	Duplicate		Run: ICPM	S2-C_120420A		04/20/	/12 14:01
Cadmium 0.25 mg/L 0.0010 100 80 120 0.1 20 Chromium 0.50 mg/L 0.0050 100 80 120 0.0 20 Lead 0.53 mg/L 0.0010 105 80 120 0.6 20 Selenium 0.48 mg/L 0.0010 107 80 120 0.2 20 Uranium 0.54 mg/L 0.0020 107 80 120 0.2 20 Sample ID: C12040804-012ADIL 8 Serial Dilution Run: ICPMS2-C_120420A 04/20/12 14:09 Arsenic 0.0075 mg/L 0.0050 0 0 20 N Barium 0.0044 mg/L 0.0050 0 0 20 N Selenium 0.0069 mg/L 0.0050 0 0 20 N Silver 0.086 mg/L 0.0050 0 0 20 N <td< td=""><td>Arsenic</td><td></td><td>0.49</td><td>mg/L</td><td>0.0010</td><td>97</td><td>80</td><td>120</td><td>0.2</td><td>20</td><td></td></td<>	Arsenic		0.49	mg/L	0.0010	97	80	120	0.2	20	
Chromium 0.50 mg/L 0.0050 100 80 120 0.0 20 Lead 0.53 mg/L 0.0010 105 80 120 0.6 20 Selenium 0.48 mg/L 0.0010 95 80 120 0.2 20 Silver 0.055 mg/L 0.0020 107 80 120 0.2 20 Varanium 0.54 mg/L 0.0020 107 80 120 0.9 20 Sample ID: C12040804-012ADIL 8 Serial Dilution Run: ICPMS2-C_120420A 04/20/12 14:09 Arsenic 0.0075 mg/L 0.0050 0 0 42 20 Cadmium 0.0049 mg/L 0.0050 0 0 41 20 Lead 0.0068 mg/L 0.0050 0 0 20 N Silver ND mg/L 0.0010 0 0 20 N Jur	Barium		0.51	mg/L	0.050	102	80	120	0.4	20	
Lead 0.53 mg/L 0.0010 105 80 120 0.6 20 Selenium 0.48 mg/L 0.0010 95 80 120 0.2 20 Silver 0.055 mg/L 0.0020 107 80 120 21 20 Uranium 0.54 mg/L 0.00060 107 80 120 0.9 20 Sample ID: C12040804-012ADL 8 Serial Dilution Rum: ICPMS2-C_120420A 04/20/12 14:09 Arsenic 0.0075 mg/L 0.0050 0 0 4.2 20 Cadmium 0.094 mg/L 0.050 0 0 4.1 20 N Cadmium 0.0049 mg/L 0.0050 0 0 4.1 20 N Lead 0.0044 mg/L 0.0050 0 0 20 N Silver ND mg/L 0.010 0 0 125	Cadmium		0.25	mg/L	0.0010	100	80	120	0.1	20	
Selenium 0.48 mg/L 0.0010 95 80 120 0.2 20 Silver 0.055 mg/L 0.0020 107 80 120 2.1 20 Uranium 0.54 mg/L 0.0000 107 80 120 0.9 20 Sample ID: C12040804-012ADIL 8 Serial Dilution Run: ICPMS2-C_120420A 04/20/12 14:09 Arsenic 0.0075 mg/L 0.0050 0 0 20 N Barium 0.0094 mg/L 0.0050 0 0 4.2 20 N Cadmium 0.0044 mg/L 0.0050 0 0 4.1 20 N Gadmium 0.0044 mg/L 0.0050 0 0 20 N Selenium 0.0044 mg/L 0.0050 0 0 20 N Silver ND mg/L 0.0010 0 0 20 N Arsenic	Chromium		0.50	mg/L	0.0050	100	80	120	0.0	20	
Silver 0.055 mg/L 0.0020 107 80 120 2.1 20 Uranium 0.54 mg/L 0.00060 107 80 120 0.9 20 Sample ID: C12040804-012ADIL 8 Serial Dilution Run: ICPMS2-C_120420A 04/20/12 14:09 Arsenic 0.0075 mg/L 0.0050 0 0 20 N Barium 0.0049 mg/L 0.0050 0 0 4.2 20 N Cadmium 0.0013 mg/L 0.0050 0 0 4.1 20 N Chromium 0.013 mg/L 0.0050 0 0 20 N Selenium 0.0044 mg/L 0.0050 0 0 20 N Silver ND mg/L 0.0010 0 0 20 N Varanium 0.086 mg/L 0.0030 0 0 1.5 20 Varanium 0.	Lead		0.53	mg/L	0.0010	105	80	120	0.6	20	
Uranium 0.54 mg/L 0.0000 107 80 120 0.9 20 Sample ID: C12040804-012ADIL 8 Serial Dilution Run: ICPMS2-C_120420A 04/20/12 14:09 Arsenic 0.0075 mg/L 0.0050 0 0 20 N Barium 0.094 mg/L 0.0050 0 0 4.2 20 Cadmium 0.0049 mg/L 0.0050 0 0 4.2 20 N Chromium 0.0049 mg/L 0.0050 0 0 4.2 20 N Lead 0.0069 mg/L 0.0050 0 0 4.1 20 Selenium 0.0044 mg/L 0.0050 0 0 20 N Silver ND mg/L 0.0010 0 0 20 N Sample ID: C12040804-011AMS3 8 Sample Matrix Spike Run: ICPMS2-C_120420A 04/20/12 14:43 Arsenic 0.49	Selenium		0.48	mg/L	0.0010	95	80	120	0.2	20	
Sample ID: C12040804-012ADIL 8 Serial Dilution Run: ICPMS2-C_120420A 04/20/12 14:09 Arsenic 0.0075 mg/L 0.0050 0 0 20 N Barium 0.094 mg/L 0.0050 0 0 4.2 20 N Gadmium 0.0049 mg/L 0.0050 0 0 4.2 20 N Chromium 0.013 mg/L 0.0050 0 0 4.1 20 N Lead 0.0069 mg/L 0.0050 0 0 9.6 20 N Silver ND mg/L 0.0050 0 0 20 N Uranium 0.086 mg/L 0.0050 0 0 20 N Silver ND mg/L 0.0010 0 1.5 20 N Sample ID: C12040804-011AMS3 8 Sample Matrix Spike Run: ICPMS2-C_120420A 04/20/12 14:43 Arsenic 0.49 mg/L 0.0010 98 75 125 Gadmium 0.25	Silver		0.055	mg/L	0.0020	107	80	120	2.1	20	
Arsenic 0.0075 mg/L 0.0050 0 0 20 N Barium 0.094 mg/L 0.050 0 0 4.2 20 Cadmium 0.00049 mg/L 0.0050 0 0 4.1 20 N Chromium 0.013 mg/L 0.0050 0 0 4.1 20 N Lead 0.0069 mg/L 0.0050 0 0 9.6 20 N Selenium 0.0044 mg/L 0.0050 0 0 20 N Silver ND mg/L 0.010 0 0 20 N Uranium 0.086 mg/L 0.030 0 1.5 20 N Arsenic 0.49 mg/L 0.0010 98 75 125 12:4 14:43 Barium 0.61 mg/L 0.0010 101 75 125 14:43 Cadmium 0.25 mg/L 0.0010 101 75 125 14:43 Lead<	Uranium		0.54	mg/L	0.00060	107	80	120	0.9	20	
Barium 0.094 mg/L 0.050 0 4.2 20 Cadmium 0.00049 mg/L 0.0050 0 0 20 N Chromium 0.013 mg/L 0.0050 0 0 4.1 20 N Lead 0.0069 mg/L 0.0050 0 0 9.6 20 N Selenium 0.0044 mg/L 0.0050 0 0 20 N Silver ND mg/L 0.010 0 0 20 N Uranium 0.086 mg/L 0.0030 0 0 1.5 20 N Arsenic 0.49 mg/L 0.0010 98 75 125 14:43 14:43 Arsenic 0.49 mg/L 0.0010 101 75 125 14:43 Gadmium 0.25 mg/L 0.0010 101 75 125 14:43 Lead 0.53	Sample ID: C12040804-012ADIL	8 Sei	rial Dilution				Run: ICPM	S2-C_120420A		04/20/	/12 14:09
Cadmium 0.00049 mg/L 0.0050 0 0 20 N Chromium 0.013 mg/L 0.0050 0 0 4.1 20 Lead 0.0069 mg/L 0.0050 0 0 9.6 20 N Selenium 0.0044 mg/L 0.0050 0 0 20 N Silver ND mg/L 0.0010 0 0 20 N Uranium 0.086 mg/L 0.0010 0 0 1.5 20 N Sample ID: C12040804-011AMS3 8 Sample Matrix Spike Run: ICPMS2-C_120420A 04/20/12 14:43 04/20/12 14:43 Arsenic 0.49 mg/L 0.0010 98 75 125 4/20 14:43 Arsenic 0.49 mg/L 0.0010 101 75 125 5 125 5 Gadmium 0.25 mg/L 0.0010 104 75 125 5 5	Arsenic		0.0075	mg/L	0.0050		0	0		20	Ν
Chromium 0.013 mg/L 0.0050 0 4.1 20 Lead 0.0069 mg/L 0.0050 0 9.6 20 Selenium 0.0044 mg/L 0.0050 0 0 20 N Silver ND mg/L 0.010 0 0 20 N Uranium 0.086 mg/L 0.0030 0 0 1.5 20 Sample ID: C12040804-011AMS3 8 Sample Matrix Spike Run: ICPMS2-C_120420A 04/20/12 14:43 Arsenic 0.49 mg/L 0.0010 98 75 125 40/20/12 14:43 Barium 0.61 mg/L 0.0050 92 75 125 5 125 Cadmium 0.25 mg/L 0.0010 101 75 125 5 125 5 125 5 125 5 125 5 125 5 125 5 125 5 125 5 125 5 5 125 5 5 5 125	Barium		0.094	mg/L	0.050		0	0	4.2	20	
Lead 0.0069 mg/L 0.0050 0 0 9.6 20 Selenium 0.0044 mg/L 0.0050 0 0 20 N Silver ND mg/L 0.010 0 0 20 V Uranium 0.086 mg/L 0.0030 0 0 1.5 20 Sample ID: C12040804-011AMS3 8 Sample Matrix Spike Run: ICPMS2-C_120420A 04/20/12 14:43 Arsenic 0.49 mg/L 0.0010 98 75 125 Barium 0.61 mg/L 0.0010 101 75 125 Cadmium 0.25 mg/L 0.0010 101 75 125 Lead 0.53 mg/L 0.0010 104 75 125 Selenium 0.48 mg/L 0.0010 96 75 125 Silver 0.053 mg/L 0.0010 96 75 125	Cadmium		0.00049	mg/L	0.0050		0	0		20	Ν
Selenium 0.0044 mg/L 0.0050 0 0 20 N Silver ND mg/L 0.010 0 0 20 N Uranium 0.086 mg/L 0.0030 0 0 1.5 20 N Sample ID: C12040804-011AMS3 8 Sample Matrix Spike Run: ICPMS2-C_120420A 04/20/12 14:43 Arsenic 0.49 mg/L 0.0010 98 75 125 04/20/12 14:43 Barium 0.61 mg/L 0.050 92 75 125 5 125 5 125 <td< td=""><td>Chromium</td><td></td><td>0.013</td><td>mg/L</td><td>0.0050</td><td></td><td>0</td><td>0</td><td>4.1</td><td>20</td><td></td></td<>	Chromium		0.013	mg/L	0.0050		0	0	4.1	20	
Silver ND mg/L 0.010 0 0 20 Uranium 0.086 mg/L 0.0030 0 1.5 20 Sample ID: C12040804-011AMS3 8 Sample Matrix Spike Run: ICPMS2-C_120420A 04/20/12 14:43 Arsenic 0.49 mg/L 0.0010 98 75 125 Barium 0.61 mg/L 0.0010 101 75 125 Cadmium 0.25 mg/L 0.0010 101 75 125 Chromium 0.49 mg/L 0.0050 95 75 125 Lead 0.53 mg/L 0.0010 104 75 125 Selenium 0.48 mg/L 0.0010 96 75 125 Silver 0.053 mg/L 0.0020 21 75 125	Lead		0.0069	mg/L	0.0050		0	0	9.6	20	
Uranium 0.086 mg/L 0.0030 0 0 1.5 20 Sample ID: C12040804-011AMS3 8 Sample Matrix Spike Run: ICPMS2-C_120420A 04/20/12 14:43 Arsenic 0.49 mg/L 0.0010 98 75 125 Barium 0.61 mg/L 0.0010 92 75 125 Cadmium 0.25 mg/L 0.0010 101 75 125 Chromium 0.49 mg/L 0.0050 95 75 125 Lead 0.53 mg/L 0.0010 104 75 125 Selenium 0.48 mg/L 0.0010 96 75 125 Silver 0.053 mg/L 0.0020 21 75 125	Selenium		0.0044	mg/L	0.0050		0	0		20	Ν
Sample ID: C12040804-011AMS3 8 Sample Matrix Spike Run: ICPMS2-C_120420A 04/20/12 14:43 Arsenic 0.49 mg/L 0.0010 98 75 125 Barium 0.61 mg/L 0.0010 101 75 125 Cadmium 0.25 mg/L 0.0010 101 75 125 Chromium 0.49 mg/L 0.0050 95 75 125 Lead 0.53 mg/L 0.0010 104 75 125 Selenium 0.48 mg/L 0.0010 96 75 125 Silver 0.053 mg/L 0.0020 21 75 125	Silver		ND	mg/L	0.010		0	0		20	
Arsenic0.49mg/L0.00109875125Barium0.61mg/L0.0509275125Cadmium0.25mg/L0.001010175125Chromium0.49mg/L0.00509575125Lead0.53mg/L0.001010475125Selenium0.48mg/L0.00109675125Silver0.053mg/L0.00202175125	Uranium		0.086	mg/L	0.0030		0	0	1.5	20	
Barium0.61mg/L0.0509275125Cadmium0.25mg/L0.001010175125Chromium0.49mg/L0.00509575125Lead0.53mg/L0.001010475125Selenium0.48mg/L0.00109675125Silver0.053mg/L0.00202175125	Sample ID: C12040804-011AMS3	3 8 Sa	mple Matrix	Spike			Run: ICPM	S2-C_120420A		04/20/	/12 14:43
Cadmium 0.25 mg/L 0.0010 101 75 125 Chromium 0.49 mg/L 0.0050 95 75 125 Lead 0.53 mg/L 0.0010 104 75 125 Selenium 0.48 mg/L 0.0010 96 75 125 Silver 0.053 mg/L 0.0020 21 75 125	Arsenic		0.49	mg/L	0.0010	98	75	125			
Chromium 0.49 mg/L 0.0050 95 75 125 Lead 0.53 mg/L 0.0010 104 75 125 Selenium 0.48 mg/L 0.0010 96 75 125 Silver 0.053 mg/L 0.0020 21 75 125	Barium		0.61	mg/L	0.050	92	75	125			
Lead 0.53 mg/L 0.0010 104 75 125 Selenium 0.48 mg/L 0.0010 96 75 125 Silver 0.053 mg/L 0.0020 21 75 125 S	Cadmium		0.25	mg/L	0.0010	101	75	125			
Selenium 0.48 mg/L 0.0010 96 75 125 Silver 0.053 mg/L 0.0020 21 75 125 S	Chromium		0.49	mg/L	0.0050	95	75	125			
Silver 0.053 mg/L 0.0020 21 75 125 S	Lead		0.53	mg/L	0.0010	104	75	125			
	Selenium		0.48	mg/L	0.0010	96	75	125			
Uranium 0.62 mg/L 0.00060 100 75 125	Silver		0.053	mg/L	0.0020	21	75	125			S
	Uranium		0.62	mg/L	0.00060	100	75	125			

Qualifiers:

RL - Analyte reporting limit. MDC - Minimum detectable concentration

S - Spike recovery outside of advisory limits.

ND - Not detected at the reporting limit.

 ${\sf N}$ - The analyte concentration was not sufficiently high to calculate a RPD for the serial dilution test.

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine Closure Plan

Revised Date: 07/05/12 Report Date: 06/13/12 Work Order: C12040804

Analyte	Count R	esult	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW6020							Analy	tical Run	: ICPMS2-C	120426A
Sample ID: ICV	7 Initial C	Calibratio	n Verificatio	n Standard					04/26/	/12 16:00
Arsenic	0	.0480	mg/L	0.0010	96	90	110			
Barium	0	.0492	mg/L	0.0010	98	90	110			
Cadmium	0	.0490	mg/L	0.0010	98	90	110			
Chromium	0	.0481	mg/L	0.0010	96	90	110			
Lead		.0491	mg/L	0.0010	98	90	110			
Selenium		.0483	mg/L	0.0010	97	90	110			
Silver	0	.0200	mg/L	0.0010	100	90	110			
Sample ID: ICSA	7 Interfer	ence Ch	eck Sample	A					04/26/	/12 16:03
Arsenic	7.41	1E-05	mg/L	0.0010						
Barium	5.47	7E-05	mg/L	0.0010						
Cadmium	4.03	3E-05	mg/L	0.0010						
Chromium	7.06	6E-05	mg/L	0.0010						
Lead	4.98	8E-05	mg/L	0.0010						
Selenium	0.00	00241	mg/L	0.0010						
Silver	0.00	0479	mg/L	0.0010						
Sample ID: ICSAB	7 Interfer	ence Ch	eck Sample	AB					04/26/	/12 16:06
Arsenic	0	.0107	mg/L	0.0010	107	70	130			
Barium	2.06	6E-05	mg/L	0.0010						
Cadmium	0	.0108	mg/L	0.0010	107	70	130			
Chromium	0	.0106	mg/L	0.0010	106	70	130			
Lead	1.68	8E-05	mg/L	0.0010						
Selenium	0.00	00166	mg/L	0.0010						
Silver	0	.0101	mg/L	0.0010	101	70	130			
Method: SW6020									Bat	ch: 33455
Sample ID: MB-33455	7 Method	l Blank				Run: ICPM	S2-C_120426A		04/26/	/12 19:02
Arsenic	0	.0002	mg/L	6E-05						
Barium		0.007	mg/L	3E-05						
Cadmium	2	2E-05	mg/L	1E-05						
Chromium		0.005	mg/L	4E-05						
Lead		ND	mg/L	3E-05						
Selenium		ND	mg/L	0.0002						
Silver		0.001	mg/L	3E-05						
Sample ID: LCS3-33455	7 Laborat	tory Con	trol Sample			Run: ICPM	S2-C_120426A		04/26/	/12 19:05
Arsenic		0.46	mg/L	0.0010	91	80	120			
Barium		0.50	mg/L	0.050	99	80	120			
Cadmium		0.23	mg/L	0.0010	92	80	120			
Chromium		0.49	mg/L	0.0050	96	80	120			
Lead		0.51	mg/L	0.0010	102	80	120			
Selenium		0.42	mg/L	0.0010	83	80	120			
Silver		0.050	mg/L	0.0020	97	80	120			

Qualifiers:

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine Closure Plan

Revised Date: 07/05/12 Report Date: 06/13/12 Work Order: C12040804

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW6020									Bat	ch: 33455
Sample ID: LCSD3-33455	7 Lal	poratory Co	ntrol Sample	Duplicate		Run: ICPM	S2-C_120426A		04/26/	/12 19:07
Arsenic		0.44	mg/L	0.0010	89	80	120	2.9	20	
Barium		0.49	mg/L	0.050	97	80	120	2.8	20	
Cadmium		0.23	mg/L	0.0010	90	80	120	1.6	20	
Chromium		0.47	mg/L	0.0050	94	80	120	2.4	20	
Lead		0.49	mg/L	0.0010	98	80	120	3.6	20	
Selenium		0.40	mg/L	0.0010	80	80	120	3.7	20	
Silver		0.050	mg/L	0.0020	96	80	120	1.0	20	
Sample ID: C12040804-020ADIL	7 Se	rial Dilution				Run: ICPM	S2-C_120426A		04/26/	/12 19:16
Arsenic		0.0094	mg/L	0.0050		0	0	7.4	20	
Barium		5.7	mg/L	0.050		0	0	4.0	20	
Cadmium		0.00065	mg/L	0.0050		0	0		20	Ν
Chromium		0.030	mg/L	0.0050		0	0	11	20	
Lead		0.027	mg/L	0.0050		0	0	1.5	20	
Selenium		0.011	mg/L	0.0050		0	0		20	Ν
Silver		ND	mg/L	0.010		0	0		20	
Sample ID: C12040804-019AMS	3 7 Sa	mple Matrix	Spike			Run: ICPM	S2-C_120426A		04/26/	/12 19:49
Arsenic		0.45	mg/L	0.0010	89	75	125			
Barium		0.65	mg/L	0.050	100	75	125			
Cadmium		0.23	mg/L	0.0010	93	75	125			
Chromium		0.45	mg/L	0.0050	87	75	125			
Lead		0.51	mg/L	0.0010	102	75	125			
Selenium		0.41	mg/L	0.0010	81	75	125			
Silver		0.049	mg/L	0.0020	20	75	125			S

Qualifiers:

RL - Analyte reporting limit. MDC - Minimum detectable concentration

S - Spike recovery outside of advisory limits.

ND - Not detected at the reporting limit.

 $^{{\}sf N}$ - The analyte concentration was not sufficiently high to calculate a RPD for the serial dilution test.

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine Closure Plan

Revised Date: 07/05/12 Report Date: 06/13/12 Work Order: C12040804

Analyte	Count Result	t Units	RL	%REC	Low Limit	High Limit		RPDLimit	Qual
Method: SW6020						Analy	tical Run:	ICPMS2-C	
Sample ID: ICV	8 Initial Calibra							05/01	/12 13:14
Arsenic	0.0490	0	0.0010	98	90	110			
Barium	0.0486	0	0.0010	97	90	110			
Cadmium	0.0491	0	0.0010	98	90	110			
Chromium	0.0501	1 mg/L	0.0010	100	90	110			
Lead	0.0483	3 mg/L	0.0010	97	90	110			
Selenium	0.0501	1 mg/L	0.0010	100	90	110			
Silver	0.0207	7 mg/L	0.0010	103	90	110			
Uranium	0.0485	5 mg/L	0.00030	97	90	110			
Sample ID: ICSA	8 Interference	Check Sam	ple A					05/01	/12 13:16
Arsenic	0.0103	3 mg/L	0.0010						
Barium	3.16E-05	5 mg/L	0.0010						
Cadmium	0.0104	-	0.0010						
Chromium	0.0104	-	0.0010						
Lead	3.39E-05	-	0.0010						
Selenium	8.30E-06		0.0010						
Silver	0.0108		0.0010						
Uranium	6.80E-05	-	0.00030						
Sample ID: ICSAB	8 Interference	Check Sam	ple AB					05/01	/12 13:19
Arsenic	0.0103	3 mg/L	0.0010	103	70	130			
Barium	4.64E-05	-	0.0010						
Cadmium	0.0106	-	0.0010	106	70	130			
Chromium	0.0105	-	0.0010	105	70	130			
Lead	3.92E-05	-	0.0010						
Selenium	1.39E-05	-	0.0010						
Silver	0.0107	-	0.0010	107	70	130			
Uranium	1.47E-05	-	0.00030						
Method: SW6020								Bat	ch: 33487
Sample ID: MB-33487	8 Method Blar	۱k			Run: ICPM	S2-C_120501A		05/01	/12 16:23
Arsenic	0.0005	5 mg/L	6E-05			—			
Barium	300.0	0	3E-05						
Cadmium	0.0001	0	1E-05						
Chromium	0.006	0	4E-05						
Lead	0.0006	-	3E-05						
Selenium	0.0003		0.0002						
Silver	0.001		3E-05						
Uranium	0.002		1E-05						
Sample ID: LCS3-33487	8 Laboratory (Control Sam	ble		Bun: ICPM	S2-C_120501A		05/01	/12 16:37
Arsenic	0.48		0.0010	95	80	120		00/01/	
Barium	0.52	-	0.0010	102	80 80	120			
Cadmium	0.25	-	0.0010	99	80	120			
Chromium	0.50	-	0.0010	99 98	80 80	120			
Lead	0.52	2 mg/L	0.0010	103	80	120			

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine Closure Plan

Revised Date: 07/05/12 Report Date: 06/13/12 Work Order: C12040804

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW6020									Bate	ch: 33487
Sample ID: LCS3-33487	8 Lal	boratory Co	ntrol Sample			Run: ICPM	S2-C_120501A		05/01/	12 16:37
Selenium		0.45	mg/L	0.0010	90	80	120			
Silver		0.058	mg/L	0.0020	113	80	120			
Uranium		0.52	mg/L	0.00060	105	80	120			
Sample ID: LCSD3-33487	8 Lal	boratory Co	ntrol Sample I	Duplicate		Run: ICPM	S2-C_120501A		05/01/	12 16:40
Arsenic		0.47	mg/L	0.0010	93	80	120	2.4	20	
Barium		0.52	mg/L	0.050	102	80	120	0.7	20	
Cadmium		0.24	mg/L	0.0010	97	80	120	2.0	20	
Chromium		0.49	mg/L	0.0050	98	80	120	0.3	20	
Lead		0.51	mg/L	0.0010	101	80	120	1.6	20	
Selenium		0.44	mg/L	0.0010	89	80	120	1.9	20	
Silver		0.056	mg/L	0.0020	109	80	120	3.5	20	
Uranium		0.51	mg/L	0.00060	102	80	120	2.2	20	
Sample ID: C12040804-023AD	IL 8 Se	rial Dilution				Run: ICPM	S2-C_120501A		05/01/	12 16:48
Arsenic		0.0014	mg/L	0.0050		0	0		20	Ν
Barium		0.060	mg/L	0.050		0	0	10	20	
Cadmium		0.00043	mg/L	0.0050		0	0		20	Ν
Chromium		0.011	mg/L	0.0050		0	0	19	20	
Lead		0.0016	mg/L	0.0050		0	0		20	Ν
Selenium		0.0027	mg/L	0.0050		0	0		20	Ν
Silver		ND	mg/L	0.010		0	0		20	
Uranium		0.0056	mg/L	0.0030		0	0	13	20	
Sample ID: C12040804-023AM	53 8 Sa	mple Matrix	Spike			Run: ICPM	S2-C_120501A		05/01/	12 16:51
Arsenic		0.56	mg/L	0.0010	112	75	125			
Barium		0.65	mg/L	0.050	119	75	125			
Cadmium		0.29	mg/L	0.0010	115	75	125			
Chromium		0.57	mg/L	0.0050	112	75	125			
Lead		0.60	mg/L	0.0010	119	75	125			
Selenium		0.53	mg/L	0.0010	105	75	125			
Silver		0.063	mg/L	0.0020	25	75	125			S
Uranium		0.52	mg/L	0.00060	102	75	125			

Qualifiers:

RL - Analyte reporting limit. MDC - Minimum detectable concentration

S - Spike recovery outside of advisory limits.

ND - Not detected at the reporting limit.

 ${\sf N}$ - The analyte concentration was not sufficiently high to calculate a RPD for the serial dilution test.

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine Closure Plan

Revised Date: 07/05/12 Report Date: 06/13/12 Work Order: C12040804

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW6020							Analyt	ical Run	: ICPMS2-C_	_120502A
Sample ID: ICV	Init	ial Calibratio	on Verificatio	on Standard					05/02/	/12 11:37
Uranium		0.0486	mg/L	0.00030	97	90	110			
Method: SW6020									Bate	ch: 33505
Sample ID: MB-33505	Me	thod Blank				Run: ICPM	S2-C_120502A		05/02/	12 13:54
Uranium		0.002	mg/L	1E-05						
Sample ID: LCS3-33505	Lat	poratory Cor	ntrol Sample			Run: ICPM	S2-C_120502A		05/02/	12 13:55
Uranium		0.47	mg/L	0.00060	93	80	120			
Sample ID: LCSD3-33505	Lat	poratory Cor	ntrol Sample	Duplicate		Run: ICPM	S2-C_120502A		05/02/	12 13:57
Uranium		0.48	mg/L	0.00060	96	80	120	2.7	20	
Sample ID: C12040804-020ADIL	Se	rial Dilution				Run: ICPM	S2-C_120502A		05/02/	/12 14:02
Uranium		0.12	mg/L	0.0030		0	0	1.9	20	
Sample ID: C12040804-019AMS	3 Sa	mple Matrix	Spike			Run: ICPM	S2-C_120502A		05/02/	12 14:22
Uranium		0.50	mg/L	0.00060	98	75	125			

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine Closure Plan

Revised Date: 07/05/12 Report Date: 06/13/12 Work Order: C12040804

nalyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD RPDLimit	Qual
ethod: SW6020						Analyt	tical Run: ICPMS4-C	
mple ID: ICV	8 Initial Calibration						04/25	/12 11:08
senic	0.0486	mg/L	0.0010	97	90	110		
arium	0.0497	mg/L	0.0010	99	90	110		
admium	0.0501	mg/L	0.0010	100	90	110		
nromium	0.0491	mg/L	0.0010	98	90	110		
ad	0.0497	mg/L	0.0010	99	90	110		
elenium	0.0485	mg/L	0.0010	97	90	110		
lver	0.0193	mg/L	0.0010	97	90	110		
anium	0.0481	mg/L	0.00030	96	90	110		
mple ID: ICSA	8 Interference Cl	neck Sampl	e A				04/25	/12 11:12
senic	2.21E-05	mg/L	0.0010					
arium	2.39E-05	mg/L	0.0010					
admium	4.21E-05	mg/L	0.0010					
nromium	2.05E-05	mg/L	0.0010					
ad	1.30E-05	mg/L	0.0010					
elenium	7.84E-05	mg/L	0.0010					
lver	-0.000229	mg/L	0.0010					
anium	2.36E-05	mg/L	0.00030					
mple ID: ICSAB	8 Interference Cl	neck Sampl	e AB				04/25	/12 11:17
senic	0.0113	mg/L	0.0010	113	70	130		
arium	1.46E-05	mg/L	0.0010					
admium	0.0109	mg/L	0.0010	109	70	130		
nromium	0.0115	mg/L	0.0010	115	70	130		
ad	5.40E-06	mg/L	0.0010					
elenium	7.00E-07	mg/L	0.0010					
lver	0.00988	mg/L	0.0010	99	70	130		
anium	8.30E-06	mg/L	0.00030					
ethod: SW6020							Bat	ch: 33440
mple ID: MB-33440	8 Method Blank				Run: ICPM	S4-C_120425B	04/25	/12 19:38
senic	0.0004	mg/L	7E-05					
arium	0.01	mg/L	0.0001					
admium	0.0001	mg/L	4E-05					
nromium	ND	mg/L	0.001					
ad	0.0002	mg/L	3E-05					
elenium	0.0001	mg/L	6E-05					
lver	0.001	mg/L	2E-05					
anium	0.004	mg/L	5E-05					
mple ID: LCS3-33440	8 Laboratory Cor	ntrol Sample	9		Run: ICPM	S4-C_120425B	04/25	/12 19:43
senic	0.46	mg/L	0.0010	91	80	120		
arium	0.50	mg/L	0.050	98	80	120		
admium	0.24	mg/L	0.0010	97	80	120		
aromium ad	0.24 0.50 0.51	mg/L mg/L	0.0050 0.0010	101 103	80 80 80	120 120 120		

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine Closure Plan

Revised Date: 07/05/12 Report Date: 06/13/12 Work Order: C12040804

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW6020									Bat	ch: 33440
Sample ID: LCS3-33440	8 Lab	oratory Cor	ntrol Sample			Run: ICPMS	S4-C_120425B		04/25/	/12 19:43
Selenium		0.44	mg/L	0.0010	87	80	120			
Silver		0.053	mg/L	0.0010	104	80	120			
Uranium		0.50	mg/L	0.00030	99	80	120			
Sample ID: LCSD3-33440	8 Lab	oratory Co	ntrol Sample	Duplicate		Run: ICPMS	S4-C_120425B		04/25/	/12 20:05
Arsenic		0.47	mg/L	0.0010	94	80	120	2.8	20	
Barium		0.50	mg/L	0.050	99	80	120	1.0	20	
Cadmium		0.25	mg/L	0.0010	98	80	120	1.0	20	
Chromium		0.52	mg/L	0.0050	104	80	120	3.4	20	
Lead		0.51	mg/L	0.0010	103	80	120	0.0	20	
Selenium		0.44	mg/L	0.0010	89	80	120	1.5	20	
Silver		0.054	mg/L	0.0010	106	80	120	1.7	20	
Uranium		0.51	mg/L	0.00030	100	80	120	1.0	20	
Sample ID: C12041044-002ADIL	8 Ser	ial Dilution				Run: ICPM	S4-C_120425B		04/25/	/12 20:19
Arsenic		0.0017	mg/L	0.0010		0	0		20	Ν
Barium		0.065	mg/L	0.050		0	0	2.8	20	
Cadmium		ND	mg/L	0.0010		0	0		20	
Chromium		ND	mg/L	0.011		0	0		20	
Lead		0.0028	mg/L	0.0010		0	0		20	Ν
Selenium		ND	mg/L	0.0010		0	0		20	
Silver		ND	mg/L	0.0010		0	0		20	
Uranium		0.010	mg/L	0.00052		0	0	5.8	20	
Sample ID: C12040804-028AMS	3 8 Sar	nple Matrix	Spike			Run: ICPM	S4-C_120425B		04/25/	/12 20:28
Arsenic		0.49	mg/L	0.0010	97	75	125			
Barium		0.77	mg/L	0.050	91	75	125			
Cadmium		0.25	mg/L	0.0010	101	75	125			
Chromium		0.54	mg/L	0.0050	107	75	125			
Lead		0.53	mg/L	0.0010	105	75	125			
Selenium		0.68	mg/L	0.0010	97	75	125			
Silver		0.054	mg/L	0.0010	22	75	125			S
Uranium		11	mg/L	0.00030		75	125			А
Sample ID: C12041044-001AMS	3 8 Sar	nple Matrix	Spike			Run: ICPMS	S4-C_120425B		04/25/	/12 21:40
Arsenic		0.48	mg/L	0.0010	94	75	125			
Barium		0.68	mg/L	0.050	102	75	125			
Cadmium		0.25	mg/L	0.0010	98	75	125			
Chromium		0.55	mg/L	0.0050	107	75	125			
Lead		0.54	mg/L	0.0010	105	75	125			
Selenium		0.46	mg/L	0.0010	92	75	125			
Silver		0.053	mg/L	0.0010	21	75	125			S
Uranium		0.60	mg/L	0.00030	104	75	125			

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated. MDC - Minimum detectable concentration

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine Closure Plan

Revised Date: 07/05/12 Report Date: 06/13/12 Work Order: C12040804

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimi	t Qual
Method: SW7470A							Analytical	Run: (CVAA_C20	3_120519A
Sample ID: ICV	Init	ial Calibratio	on Verification	Standard					05/	9/12 07:43
Mercury		0.00500	mg/L	0.00010	100	90	110			
Method: SW7470A									B	atch: 33699
Sample ID: MB-33699	Me	thod Blank				Run: CVAA	_C203_120519A		05/	9/12 07:48
Mercury		ND	mg/L	3E-05						
Sample ID: LCS-33699	Lat	poratory Cor	ntrol Sample			Run: CVAA	_C203_120519A		05/	19/12 07:49
Mercury		0.0052	mg/L	0.0020	103	85	115			
Sample ID: LCSD-33699	Lat	poratory Cor	ntrol Sample I	Duplicate		Run: CVAA	_C203_120519A		05/	19/12 07:50
Mercury		0.0052	mg/L	0.0020	104	85	115	0.9	10	
Sample ID: C12040804-00	D1ASD Se	rial Dilution				Run: CVAA	_C203_120519A		05/	19/12 07:53
Mercury		ND	mg/L	0.0020					10	
Sample ID: C12040804-00)1AMS Sa	mple Matrix	Spike			Run: CVAA	_C203_120519A		05/	19/12 07:54
Mercury		0.0051	mg/L	0.0020	102	85	115			
Method: SW7470A									В	atch: 33700
Sample ID: MB-33700	Me	thod Blank				Run: CVAA	_C203_120519A		05/	19/12 08:27
Mercury	-	ND	mg/L	3E-05						
Sample ID: LCS-33700	Lat	poratory Cor	ntrol Sample			Run: CVAA	C203 120519A		05/	19/12 08:28
Mercury		0.0050	mg/L	0.0020	100	85	115		00,	0,1200.20
Sample ID: LCSD-33700	Lat	poratory Cor	ntrol Sample I	Duplicate		Run: CVAA	_C203_120519A		05/	19/12 08:29
Mercury		0.0053	mg/L	0.0020	107	85	115	6.0	10	
Sample ID: C12040804-01	I 1ASD Se	rial Dilution				Run: CVAA	_C203_120519A		05/	19/12 08:32
Mercury		ND	mg/L	0.0020					10	
Sample ID: C12040804-01	I 1AMS Sa	mple Matrix	Spike			Run: CVAA	_C203_120519A		05/	19/12 08:36
Mercury		0.0050	mg/L	0.0020	101	85	115			
Method: SW7470A									В	atch: 33701
Sample ID: MB-33701	Me	thod Blank				Run: CVAA	_C203_120519A		05/	19/12 08:47
Mercury		ND	mg/L	3E-05						
Sample ID: LCS-33701	Lat	poratory Cor	ntrol Sample			Run: CVAA	_C203_120519A		05/	19/12 08:48
Mercury		0.0050	mg/L	0.0020	100	85	115			
Sample ID: LCSD-33701	Lat	ooratory Cou	ntrol Sample I	Duplicate		Bun: CVAA	_C203_120519A		05/	19/12 08:52
Mercury		0.0050	mg/L	0.0020	100	85	115	0.0	10	
Sample ID: C12040804-01	I 9ASD Se	rial Dilution				Run: CVAA	_C203_120519A		05/	19/12 08:55
Mercury		ND	mg/L	0.0020					10	
Sample ID: C12040804-01	I 9AMS Sa	mple Matrix	Spike			Run: CVAA	C203 120519A		05/	19/12 08:56
Mercury	- 04	0.0053	mg/L	0.0020	105	85	115		00/	
-			-							

Qualifiers:

RL - Analyte reporting limit. MDC - Minimum detectable concentration ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine Closure Plan

Revised Date: 07/05/12 Report Date: 06/13/12 Work Order: C12040804

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW7470A									Bate	ch: 33702
Sample ID: MB-33702	Me	thod Blank				Run: CVAA	_C203_120519A		05/19/	12 09:11
Mercury		ND	mg/L	3E-05						
Sample ID: LCS-33702	Lal	boratory Cor	trol Sample			Run: CVAA	_C203_120519A		05/19/	12 09:12
Mercury		0.0051	mg/L	0.0020	103	85	115			
Sample ID: LCSD-33702	Lal	boratory Cor	trol Sample	Duplicate		Run: CVAA	_C203_120519A		05/19/	12 09:13
Mercury		0.0051	mg/L	0.0020	101	85	115	1.8	10	
Sample ID: C12040804-028ASD	Se	rial Dilution				Run: CVAA	_C203_120519A		05/19/	12 09:16
Mercury		ND	mg/L	0.0020					10	
Sample ID: C12040804-028AMS	Sa	mple Matrix	Spike			Run: CVAA	_C203_120519A		05/19/	12 09:17
Mercury		0.0052	mg/L	0.0020	103	85	115			

C12040804

Standard Reporting Procedures

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

Workorder Receipt Checklist

Rio Grande Resources Corporation

Login completed by:	Kristy Gisse		Date	Received: 4/13/2012	
Reviewed by:	BL2000\tedwards		Re	ceived by: kg	
Reviewed Date:	4/24/2012			Carrier FedEx name:	
Shipping container/cooler in	good condition?	Yes 🗹	No 🗌	Not Present	
Custody seals intact on ship	oping container/cooler?	Yes	No 🗌	Not Present 🗹	
Custody seals intact on san	nple bottles?	Yes	No 🗌	Not Present 🗹	
Chain of custody present?		Yes 🗹	No 🗌		
Chain of custody signed wh	en relinquished and received?	Yes 🗹	No 🗌		
Chain of custody agrees wit	th sample labels?	Yes 🗹	No 🗌		
Samples in proper containe	r/bottle?	Yes 🗹	No 🗌		
Sample containers intact?		Yes 🗹	No 🗌		
Sufficient sample volume fo	r indicated test?	Yes 🗹	No 🗌		
All samples received within (Exclude analyses that are of such as pH, DO, Res CI, S	considered field parameters	Yes 🗹	No 🗌		
Container/Temp Blank temp	perature:	18.2℃			
Water - VOA vials have zer	o headspace?	Yes 🗌	No 🗌	No VOA vials submitted	
Water - pH acceptable upor	n receipt?	Yes	No 🗌	Not Applicable	

Contact and Corrective Action Comments:

None

Company Name	ompany Name:			PLEASE PR	INT- Prov	ride as m	uch inform	PLEASE PRINT- Provide as much information as possible.	ssible.)	5	3	rage _	
Rio Grande Resources Corp	ources Corp			Project Name, PWS, Permit, Etc. Mt. Taylor Mine Closure Plan	me, PW; Mine Clo	S, Permi sure Pla	t, Etc.				Samp	Sample Origin	EPA/St	EPA/State Compliance:
Report Mail Address: Additional e-mail conv	Report Mail Address: PO Box 1150 Grants, NM 87020	0 87020		Contact Name: Barbara Everett	ame: /erett		Phone/Fax: (505) 344-7	ax: -7373			Email:	WN	Yes 🕅 Sample	Yes X No Sampler: (Please Print)
		#Kieinteider.con	د د	(Kleinfelder)	<u>ڊ</u>		(505) 280	(505) 280-1079 (Cell)	<u> </u>		Com	uevereti @ kieinteider, com	Barbara Eve Ed Loecher	Barbara Everett ^{Ed L} oescher
PO Box 1150 Grants, NM 87020	20			Invoice Contact & Phone: Jeanette Lister 505-287-7971	ntact & F ister 505	hone: -287-79	7				Purcha	Purchase Order:	Quote/E C3778	Quote/Bottle Order: C3778
Special Repo	Special Report/Formats – ELI must be notified	I must be no	vified		VINV	ANAL YSR		REGUITER				Contract El 1	A S S S S S S S S S S S S S S S S S S S	Kerny Juneary
vrior to sampl	prior to sample submittal for the following:	the following		ntainers W S V B O s/Solids s/Solids	·				a]		2	Provinsed ELI prior to RUSH sample submittal for charges and scheduing – See		anipped by: 左丘 - 左人 Cooler ID(s):
		A2LA FDD/FDT		A :6 No2 No2 Soli5			///				D	Commenter:		Receipt Tomo
	3	EUU/EU I (Electronic Data) Format: excel	ectronic Data)	ber o Mater Mater		8	1/7					FER EX TRACK	ť	13. 2 °C
State: NM Other:		LEVEL IV NELAC		muN biqms2 / n <u>A</u> 51909 <u>V</u>	Extract Metals	& Ra22			SEE A	ונוגא דער		34	785	CH ICS: Yes Yes
SAMPLE IDENTIFICATION (Name, Location, Interval, etc.)	VTIFICATION 3, Interval, etc.)	Collection Date	Collection	MATRIX		Ra226			<u> </u>		C.	(J) (J)		Custody Seal Y (N) Intact Y N
-10-15	· 10	4-10-12	ן היע ומייים	Sediment	- <u> </u>								σ ¥	Signature Y N Match Y N
51-01	-02.	4-10-12	as:01	Sediment	- 	47				×				
51-01-	. 60.	4-10-17	90,11	Sediment				-+		×			1IN	
51-02-		4 10-1	47:11	Sediment		_				×	-+		O I	
51-00		21-01-4	1:43	Sediment	× 7 / 7	× >				× ,			ISA I	
20-15	2-03 .	4-10-12	11:45	Sediment		د ب			+-	<	_		122	
34-01	. 10-	4-10-12	02:11	Sediment		×			+	< >	+		101	10.
54-01	- 02.	4-10-12	11:36	Sediment	+	د >			_	< ,			<u>r</u> ya I	C125 10804
54-0	01-031	4-10-1	11:4	Sediment		1 Y				<	-		<u>9</u> 0	
SA-0	10-20	4-10-12	37:11						-	× ,			87	
	Relinquished by (print): Date/Time:	Date/Time:	1.1/12				Receive	Received by (print):		> Date	Date/Time:		Sinnah Inc.	
MUST be	Helinquished by (print): KENTOIU WANS	Date/Time: 4-12-12	0	Signal		7	Receive	Received by (print):		1-1 Date	4-12-12 @ 0700 Date/Time:	ľ	Signature	5
	Sample Disposal: Re	5					Receive	Received by Laboratory:	×	,Date/Time:	ime:			

Visit nir weh site at www enernvlah com for architicnal information data will be clearly notated on your analytical report.

LABORATORIES PLEASE PRINT- I	PLEASE PRINT	- Provide as much information as possible.	PLEASE PRINT- Provide as much information as possible.			
Company Name: Rio Grande Resources Corp	Project Name Mt. Taylor Mi	Project Name, PWS, Permit, Etc. Mt. Taylor Mine Closure Plan	ä	0 0	Sample Origin State: NM	EPA/State Compliance: Yes 🛛 No 🗍
Report Mail Address: PO Box 1150 Grants, NM 87020 Additional e-mail copy to beverett@kleinfelder.com	Contact Name: Barbara Everett (Kleinfelder)		Phone/Fax: (505) 344-7373 (505) 280-1079 (Cell)	Ξŭ Ϋ́ς	Email: beverett@kleinfelder. com	Sampler: (Please Print) Barbara Everett Ed Loescher
Invoice Address: PO Box 1150 Grants, NM 87020	Invoice Contact & Phone Jeanette Lister 505-287-	ict & Phone: ar 505-287-7971		4	Purchase Order:	Quote/Bottle Order: C3778
Special Report/Formats – ELI must be notified prior to sample submittal for the following:	siners S V B O Solids A <u>O</u> ther	ANALYSIS	ANALYSIS REQUESTED	(TAT	Contact ELI prior to RUSH sample submittal for charges and scheduling – See	to Shipped by: bmittal <i>ドビー 任イ</i> Cooler ID(s):
DW A2LA GSA EDD/EDT(Electronic Data) POTW/WWTP Format: excel State: I Other: I	Humber of Cont WA: Barple Type: Air Water Soils/S ⊻egetation Bioasse	P Extract 36 & Ra228 56 & Ra228 56 & Pa228			L Instruction Page Comments: FED EX TRA 8735 9342	Receipt Temp Receipt Temp On Los: 7 3 2 0 7 2 48 NG
SAMPLE IDENTIFICATION Collection Collection (Name, Location, Interval, etc.) Date Time 1 54 - 02 - 02 1 1	MATRIX Sediment	✓ Bas	198-	~		Intact Y N Signature Y N Match
1-02-03, 4/10/n	Sediment	1 -		×		27F
58-01-01.	Sediment	メイメ		×		<u>vo</u> 5
58-01-02. 4/10/12:07	Sediment Sediment	メ メ ソ ソ ソ ソ ン ン ン ン		× ×		esn .
4/10/12	Sediment	メメ		×		ANC
58-02-02.	Sediment	メナメン		×		Por otac 1
1	Sediment	X X X X		×		AC.
	Sed	メメメ		×		
" 55-01-01 · 4/10/12 1473	Sediment	イドイグ		×		×
Helinquished by (primit: RAPSALA EVEREN	4/11/12	12:00	Received by (print): HEHTON WATS		Re: 2-12 @ 0700	Signature:
MUST be HEAT A TO A	0930 JUC	ار م	Received by (print):	Date/Time	me:	Signature:
Signed Samula Discussi: Bettim to Clicati	Lah Disnosal [.]	9	Received by Laboratory:	Date/Time:	Te: C	Signature:

Į

This serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report.

Company Name:	Project Name, PWS, Permit, Etc.	VS, Permit, El	Project Name, PWS, Permit, Etc.		Samole Orioin	EPA/State Complement
*	Mt. Taylor Mine C	łosure Plan			State: NM	Yes X No
Report Mail Address: PO Box 1150 Grants, NM 87020 Additional e-mail copy to beverett@kleinfelder.com	Contact Name: Barbara Everett (Kleinfelder)	(2 (2 H	Phone/Fax: (505) 344-7373 (505) 280-1079 (Cell)		Email: beverett@kleinfelder, com	: (Ple. Fver
Invoice Address: PO Box 1150 Grants, NM 87020	Invoice Contact & Phone: Jeanette Lister 505-287-7971	Phone:)5-287-7971			Purchase Order:	Quote/Bottle Order: C3778
Special Report/Formats – ELI must be notified prior to sample submittal for the following:		AMALYSIS	Requested		Contact ELI prior to RUSH sample submittal for charges and scheduling – See	to stripped by: bmittal <u>F.K E.K</u> Cooler (12(s):
DW A2LA GSA BDD/EDT (Electronic Data) POTW/WVTP Format: excel State: NM LEVEL IV Dther: NELAC	Number of Con Warper Type: A W Airper Yours <u>V</u> egetation Bioass <u>V</u> egetation Bioass <u>V</u> egetation Bioass	A Metals + Uranium 6 & Ra228 504 by IC 300.0	ංද	SEE ATTACHE	L Instruction Page Comments: FEDEX TRACK 4 8747 6695 1300	t t Hecelat Temp A t Mocelat Temp 300 Yes Mo
SAMPLE IDENTIFICATION Collection Collection (Name, Location, Interval, etc.) Date Time		228A 3				Intact Y Signature Y Match
	× 5	× > × 1		××		
u/a/h . 20-		+		×		NO.
35-02-02 4/10/12 14:15 35-02-02 4/10/12 14:15	Sediment	× × × ×		× >		ISN
2/0/1 . 10-	- >	L X		< ×		<u> </u>
5-07-02 · U/2/2	Sediment Sediment			×		
		× × ×		< ×	_	100 Clark &
	Sediment			×		7
Custody <u>BARPARA EVERT 4////17</u> Record Relinquished by (pmin): Date/Time: MUST be KEIUTD/P WATE 4/-12 @ 0433	Signature		Received by (print): 人気イわん どん Received by (print):		Date/Time: イートイン んぷのこ Date/Time:	Signatuge; /// Signature:
Sample Disposal: Return to Client:	-	7	Hecelved by Laboratory:	Date/Time	Time:	Signature

will be clearly notated on your analytical report. פרו המוס . . . -10-01

- UK 10

٢

ENERGY LABORATORIES		Chain (Chain of Custody	ody and Analytical Request	A bi	Na	Analytical	cal R	Request	est	Ъе́	Record	And 20 P	Pa	Page 4 of 4	- I
Company Name:	ne:			Project Name, PWS, Permit, Etc.	PW W	'S, Pe	mit, El		10 80 1001 10 1001			S	Sample Origin	EPA/S	EPA/State Compliance:	
HIO Grande H	HIO GRANGE HESOURCES LOD			Mt. Laylor A		osure	Plan					<u>ہ</u>	State: NM	Yes 🛛	□ °N N	
Report Mail Av Additional e-m	Report Mail Address: PO Box 1150 Grants, NM 87020 Additional e-mail copy to beverett@kleinfelder.com) 87020 kleinfelder.con	E	Contact Name: Barbara Everett (Kleinfelder)	me: erett		<u>9</u> 9 9	Phone/Fax: (505) 344-7373 (505) 280-1079 (Cell)	: 7373 1079 (C€	(j)		ŏŏ	Email: beverett@kleinfelder. com		Sampler: (Please Print) Barbara Everett Ed Loescher	1
Invoice Address: PO Box 1150 Grants, NM 87020	ss: 7020			Invoice Contact & Phone: Jeanette Lister 505-287-7971	itact & ster 50	Phone 5-287	-7971			-		<u> </u>	Purchase Order:	Quote/ C3778	Quote/Bottle Order: C3778	1
Special Rep	Special Report/Formats – ELI must be not	ELI must be notified	btified		NV	JAL Y	7818	ANALYSIS REQUESTED	UEST	0 E			Contact ELI prior to RUSH sample submittal	ior to submittal	Shipped by:	1
				rtainers W S V B C s/Solids say <u>O</u> ther		ι ι		_ ·					for charges and scheduling – See Instruction Page	d ge e	Cooler (D(s):	I
		A2LA FDD/FDT/Electronic Parto	extronic Data)	of Co Ne: Soil Bioas		uniue.	0.0								Receipt Temp	
► POTW/WWTP		EVEL IV		Number Sample Tyle Air Wate Air Wate Moifstegenn		etals + Ur Ra228	P ^A IC 300					entu T len	S FED EX TRACK	X TRACK H 6695 (300		ł
				3	e Ext								I		dy Seal Y	
SAMPLE II (Name, Loca	SAMPLE IDENTIFICATION (Name, Location, Interval, etc.)	Collection Date	Collection Time	MATRIX				ICH							Intact Y N Signature Y N Match	
10-10-25	- 10-1	21/00/2	0515	Sediment	X	* *						×			4	
253-0	. 20-10	2/0/2	08.20	Sediment	۶	r K						×			אדא	[
3 53-1	01-03 .	2/0/4	0440	Sediment	×	* *						×				
* S 3 1	0.10-20	4/10/12	10:22	Sediment	*	*									IS	1
л З Ч	120-00	[10:30	Sediment	۶.	*						×			n &	
° 53.	OT IN FEELMUN		10:30	Sediment	メ	メメ						×			YC.	1
757-1	02-01.	4/10/12	12:45	Sediment	2	メン						×			12040304	1
° 57-	. 20-20	4/0/2	12:50	Sediment	۲	<u>ل</u> ر لر					^	×				
° 57 -	. 20-20	4/1/m	الانك	Sediment	۲. ۲	イイ						×) Jan	
10 - 23 - 01		4/10/12	0946	Sediment		X X					^	×	HOLD PENDI CONFERM, 84	PENDENG C	77	ł
Custody	Relinquished by (print): BARBAA CVBCN	Date Time;	//1	Signature				Lace 上	Heceived by (print) 大のこちい			Date/Time:	ime: -17 @ 0700	Signature	<u>ة</u> م	
Record MUST be	Relinquished by (print): KENTON W	WATTS 4-12-12	me: 2-12 e 05	P3C Signature:	Mer c	۱L	1	Receiv	Received by (print).			Date/Time		Signature:	I.e.	
Signed		Return to Client:		Lab Disposal:		X		Receiv	Received by Laboratory:	ratory:		Date/Time: 4 - 13-1	me: 2-10 9:40	Signature:	ة: لاگ ر	
																1

5

>

Page 61 of 61

5

In certain circumstances, samples submitted to Energy Laboratories, inc. may be subcontracted to other certified laboratories in order to complete the analysis requested. This serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report.

ANALYTICAL SUMMARY REPORT

July 10, 2012

Rio Grande Resources Corporation PO Box 1150 Grants, NM 87020

Workorder No.: C12041044

Quote ID: C3778 - Mt Taylor Mine Closure Plan

Project Name: Mt. Taylor Mine Closure Plan

Energy Laboratories, Inc. Casper WY received the following 28 samples for Rio Grande Resources Corporation on 4/20/2012 for analysis.

Sample ID	Client Sample ID	Collect Date Receive Date	Matrix	Test
C12041044-001	MT-1-F (6" B.G.)	04/10/12 10:45 04/20/12	Sediment	Metals, SPLP Extractable Mercury, SPLP Mercury Analysis Prep Filterability Digestion, Total Metals Digestion For RadioChemistry Radium 226 Radium 228 SPLP Extraction, Regular
C12041044-002	MT-2-D (6" B.G.)	04/10/12 10:15 04/20/12	Sediment	Same As Above
C12041044-003	MT-3-F (6" B.G.)	04/10/12 11:10 04/20/12	Sediment	Same As Above
C12041044-004	MT-4-F (6" B.G.)	04/10/12 9:35 04/20/12	Sediment	Metals, SPLP Extractable Mercury, SPLP Mercury Analysis Prep Filterability E300.0 Anions Digestion, Total Metals Digestion For RadioChemistry DI Water Soil Extract Radium 226 Radium 228 SPLP Extraction, Regular
C12041044-005	MT-5-F (6" B.G.)	04/10/12 10:00 04/20/12	Sediment	Same As Above
C12041044-006	MT-7-C (6" B.G.)	04/10/12 9:45 04/20/12	Sediment	Metals, SPLP Extractable Mercury, SPLP Mercury Analysis Prep Filterability Digestion, Total Metals Digestion For RadioChemistry Radium 226 Radium 228 SPLP Extraction, Regular
C12041044-007	MT-OP-E (6" B.G.)	04/10/12 9:00 04/20/12	Sediment	Same As Above
C12041044-008	MT-A-C (6" B.G.)	04/10/12 10:55 04/20/12	Sediment	Same As Above
C12041044-009	MT-Borrow/Background	04/10/12 11:00 04/20/12	Sediment	Same As Above

ENERGY www.energylab.com Helena, MT 877-472-0711 • Billings LABORATORIES Analytical Excellence Since 1952 Gillette, WY 866-686-7175 • Rapid City, SD 88 ANALYTICAL SUMMARY REPORT

C12041044-010	MT-4-D-S1 (0-6" B.G.)	04/10/12 14:05 04/20/12	2 Sediment	Metals, SPLP Extractable Mercury, SPLP Mercury Analysis Prep Filterability E300.0 Anions Digestion, Total Metals Digestion For RadioChemistry DI Water Soil Extract Radium 226 Radium 228 SPLP Extraction, Regular
C12041044-011	MT-4-D-S2 (14" B.G.)	04/10/12 14:10 04/20/12	2 Sediment	Same As Above
C12041044-012	MT-4-D-S3 (48" B.G.)	04/10/12 14:20 04/20/12	2 Sediment	Same As Above
C12041044-013	MT-4-E-S1 (0-4" B.G.)	04/10/12 13:35 04/20/12	2 Sediment	Same As Above
C12041044-014	MT-4-E-S2 (10-12" B.G.)	04/10/12 13:40 04/20/12	2 Sediment	Same As Above
C12041044-015	MT-4-E-S3 (36" B.G.)	04/10/12 13:42 04/20/12	2 Sediment	Same As Above
C12041044-016	MT-4-E-S4 (48" B.G.)	04/10/12 13:45 04/20/12	2 Sediment	Same As Above
C12041044-017	MT-6-A-S1 (0-5" B.G.)	04/10/12 15:05 04/20/12	2 Sediment	Metals, SPLP Extractable Mercury, SPLP Mercury Analysis Prep Filterability Digestion, Total Metals Digestion For RadioChemistry Radium 226 Radium 228 SPLP Extraction, Regular
C12041044-018	MT-6-A-S2 (12-20" B.G.)	04/10/12 15:10 04/20/12	2 Sediment	Same As Above
C12041044-019	MT-6-B-S1 (8-10" B.G.)	04/10/12 14:30 04/20/12	2 Sediment	Same As Above
C12041044-020	MT-6-B-S2 (30" B.G.)	04/10/12 14:35 04/20/12	2 Sediment	Same As Above
C12041044-021	MT-OP-C-S1 (0-6" B.G.)	04/10/12 13:20 04/20/12	2 Sediment	Same As Above
C12041044-022	MT-OP-C-S2 (20" B.G.)	04/10/12 13:25 04/20/12	2 Sediment	Same As Above
C12041044-023	MT-OP-C-S3 (48-50' B.G.)	04/10/12 13:25 04/20/12	2 Sediment	Same As Above
C12041044-024	MT-OP-C-S4 (72" B.G.)	04/10/12 13:30 04/20/12	2 Sediment	Same As Above
C12041044-025	MT-OP-D-S1 (0-6" B.G.)	04/10/12 12:45 04/20/12	2 Sediment	Same As Above
C12041044-026	MT-OP-D-S2 (48-50" B.G.)	04/10/12 12:45 04/20/12	2 Sediment	Same As Above
C12041044-027	MT-OP-D-S3 (76" B.G.)	04/10/12 12:50 04/20/12	2 Sediment	Same As Above
C12041044-028	MT-8-F (6" B.G.)	04/10/12 9:25 04/20/12	2 Sediment	Metals, SPLP Extractable Mercury, SPLP Mercury Analysis Prep Filterability E300.0 Anions Digestion, Total Metals Digestion For RadioChemistry DI Water Soil Extract Radium 226 Radium 228 SPLP Extraction, Regular

ANALYTICAL SUMMARY REPORT

The results as reported relate only to the item(s) submitted for testing. The analyses presented in this report were performed at Energy Laboratories, Inc., 2393 Salt Creek Hwy., Casper, WY 82601, unless otherwise noted. Radiochemistry analyses were performed at Energy Laboratories, Inc., 2325 Kerzell Lane, Casper, WY 82601, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

If you have any questions regarding these test results, please call.

Report Approved By:

CLIENT: Rio Grande Resources Corporation

Project:

ect: Mt. Taylor Mine Closure Plan

Sample Delivery Group: C12041044

Report Date: 06/13/12

CASE NARRATIVE

REVISED/SUPPLEMENTAL REPORT

The attached analytical report has been revised from a previously submitted report due to the request by the client for the analysis of Radium 226 and Radium 228 on the Sediment on all samples and Chloride and Sulfate on the Sediment on samples -004 through -005, -010 through -016, and -028. The data presented here is from that analysis.

PREP COMMENTS

The prep hold time for the SPLP extraction was exceeded by up to 6 days. The prep hold time for Chloride and Sulfate analysis was exceeded by 39 days.

ORIGINAL SAMPLE SUBMITTAL(S)

All original sample submittals have been returned with the data package.

SAMPLE TEMPERATURE COMPLIANCE: 4 ℃ (±2 ℃)

Temperature of samples received may not be considered properly preserved by accepted standards. Samples that are hand delivered immediately after collection shall be considered acceptable if there is evidence that the chilling process has begun.

GROSS ALPHA ANALYSIS

Method 900.0 for gross alpha and gross beta is intended as a drinking water method for low TDS waters. Data provided by this method for non potable waters should be viewed as inconsistent.

RADON IN AIR ANALYSIS

The desired exposure time is 48 hours (2 days). The time delay in returning the canister to the laboratory for processing should be as short as possible to avoid excessive decay. Maximum recommended delay between end of exposure to beginning of counting should not exceed 8 days.

SOIL/SOLID SAMPLES

All samples reported on an as received basis unless otherwise indicated.

ATRAZINE, SIMAZINE AND PCB ANALYSIS

Data for PCBs, Atrazine and Simazine are reported from EPA 525.2. PCB data reported by ELI reflects the results for seven individual Aroclors. When the results for all seven are ND (not detected), the sample meets EPA compliance criteria for PCB monitoring.

SUBCONTRACTING ANALYSIS

Subcontracting of sample analyses to an outside laboratory may be required. If so, ENERGY LABORATORIES will utilize its branch laboratories or qualified contract laboratories for this service. Any such laboratories will be indicated within the Laboratory Analytical Report.

BRANCH LABORATORY LOCATIONS

eli-b - Energy Laboratories, Inc. - Billings, MT eli-g - Energy Laboratories, Inc. - Gillette, WY eli-h - Energy Laboratories, Inc. - Helena, MT eli-r - Energy Laboratories, Inc. - Rapid City, SD eli-t - Energy Laboratories, Inc. - College Station, TX

CERTIFICATIONS:

USEPA: WY00002, Radiochemical WY00937; FL-DOH NELAC: E87641, Radiochemical E871017; California: 02118CA; Oregon: WY200001, Radiochemical WY200002; Utah: WY00002; Virginia: 00057; Washington: C836

ISO 17025 DISCLAIMER:

The results of this Analytical Report relate only to the items submitted for analysis.

ENERGY LABORATORIES, INC. - CASPER, WY certifies that certain method selections contained in this report meet requirements as set forth by the above accrediting authorities. Some results requested by the client may not be covered under these certifications. All analysis data to be submitted for regulatory enforcement should be certified in the sample state of origin. Please verify ELI's certification coverage by visiting www.energylab.com

ELI appreciates the opportunity to provide you with this analytical service. For additional information and services visit our web page www.energylab.com.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12041044-001Client Sample ID:MT-1-F (6" B.G.)

 Revised Date:
 07/10/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 10:45

 DateReceived:
 04/20/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/24/12 16:14 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.006	mg/L		0.001		SW6020	04/25/12 21:35 / smm
Barium	0.17	mg/L		0.05		SW6020	04/25/12 21:35 / smm
Cadmium	ND	mg/L		0.001		SW6020	04/25/12 21:35 / smm
Chromium	0.014	mg/L		0.005		SW6020	04/25/12 21:35 / smm
Lead	0.016	mg/L		0.001		SW6020	04/25/12 21:35 / smm
Mercury	ND	mg/L		0.002		SW7470A	04/26/12 12:36 / rdw
Selenium	0.005	mg/L		0.001		SW6020	04/25/12 21:35 / smm
Silver	ND	mg/L		0.001		SW6020	04/25/12 21:35 / smm
Uranium	0.077	mg/L	В	0.0003		SW6020	04/25/12 21:35 / smm
RADIONUCLIDES							
Radium 226	2.0	pCi/g-dry				E903.0	07/10/12 13:40 / trs
Radium 226 precision (±)	0.1	pCi/g-dry				E903.0	07/10/12 13:40 / trs
Radium 226 MDC	0.03	pCi/g-dry				E903.0	07/10/12 13:40 / trs
Radium 228	0.6	pCi/g-dry				RA-05	07/05/12 21:06 / gb
Radium 228 precision (±)	0.1	pCi/g-dry				RA-05	07/05/12 21:06 / gb
Radium 228 MDC	0.2	pCi/g-dry				RA-05	07/05/12 21:06 / gb

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

B - The analyte was detected in the method blank.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12041044-002Client Sample ID:MT-2-D (6" B.G.)

 Revised Date:
 07/10/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 10:15

 DateReceived:
 04/20/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/24/12 16:14 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.002	mg/L		0.001		SW6020	04/25/12 20:14 / smm
Barium	0.06	mg/L		0.05		SW6020	04/25/12 20:14 / smm
Cadmium	ND	mg/L		0.001		SW6020	04/25/12 20:14 / smm
Chromium	0.005	mg/L		0.005		SW6020	04/25/12 20:14 / smm
Lead	0.003	mg/L		0.001		SW6020	04/25/12 20:14 / smm
Mercury	ND	mg/L		0.002		SW7470A	04/26/12 12:43 / rdw
Selenium	ND	mg/L		0.001		SW6020	04/25/12 20:14 / smm
Silver	ND	mg/L		0.001		SW6020	04/25/12 20:14 / smm
Uranium	0.0098	mg/L	В	0.0003		SW6020	04/25/12 20:14 / smm
RADIONUCLIDES							
Radium 226	0.6	pCi/g-dry				E903.0	07/03/12 03:34 / plj
Radium 226 precision (±)	0.07	pCi/g-dry				E903.0	07/03/12 03:34 / plj
Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/03/12 03:34 / plj
Radium 228	0.6	pCi/g-dry				RA-05	06/25/12 17:32 / plj
Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	06/25/12 17:32 / plj
Radium 228 MDC	0.3	pCi/g-dry				RA-05	06/25/12 17:32 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

B - The analyte was detected in the method blank.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12041044-003Client Sample ID:MT-3-F (6" B.G.)

 Revised Date:
 07/10/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 11:10

 DateReceived:
 04/20/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/24/12 16:14 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.002	mg/L		0.001		SW6020	05/01/12 14:24 / cp
Barium	ND	mg/L		0.05		SW6020	05/01/12 14:24 / cp
Cadmium	ND	mg/L		0.001		SW6020	05/01/12 14:24 / cp
Chromium	ND	mg/L		0.005		SW6020	05/01/12 14:24 / cp
Lead	0.001	mg/L		0.001		SW6020	05/01/12 14:24 / cp
Mercury	ND	mg/L		0.002		SW7470A	04/30/12 15:16 / rdw
Selenium	0.001	mg/L		0.001		SW6020	05/01/12 14:24 / cp
Silver	ND	mg/L	D	0.002		SW6020	05/01/12 14:24 / cp
Uranium	0.0090	mg/L	D	0.0006		SW6020	05/01/12 14:24 / cp
RADIONUCLIDES							
Radium 226	0.9	pCi/g-dry				E903.0	07/03/12 03:34 / plj
Radium 226 precision (±)	0.08	pCi/g-dry				E903.0	07/03/12 03:34 / plj
Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/03/12 03:34 / plj
Radium 228	0.5	pCi/g-dry				RA-05	06/25/12 15:52 / plj
Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	06/25/12 15:52 / plj
Radium 228 MDC	0.3	pCi/g-dry				RA-05	06/25/12 15:52 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12041044-004Client Sample ID:MT-4-F (6" B.G.)

 Revised Date:
 07/10/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 09:35

 DateReceived:
 04/20/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
SATURATED PASTE EXTRACT							
Chloride	51.2	mg/kg		1.00		E300.0	06/28/12 03:22 / ljl
Chloride, 1:1	1.44	meq/L		0.0282		E300.0	06/28/12 03:22 / ljl
Sulfate	405	mg/kg		1.00		E300.0	06/28/12 03:22 / Ijl
Sulfate, 1:1	8.43	meq/L		0.0208		E300.0	06/28/12 03:22 / ljl
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/24/12 16:14 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.005	mg/L		0.001		SW6020	05/01/12 13:55 / cp
Barium	ND	mg/L		0.05		SW6020	05/01/12 13:55 / cp
Cadmium	ND	mg/L		0.001		SW6020	05/01/12 13:55 / cp
Chromium	ND	mg/L		0.005		SW6020	05/02/12 21:42 / smm
Lead	0.003	mg/L		0.001		SW6020	05/01/12 13:55 / cp
Mercury	ND	mg/L		0.002		SW7470A	04/30/12 15:20 / rdw
Selenium	0.002	mg/L		0.001		SW6020	05/01/12 13:55 / cp
Silver	ND	mg/L	D	0.002		SW6020	05/01/12 13:55 / cp
Uranium	0.0027	mg/L	D	0.0006		SW6020	05/01/12 13:55 / cp
RADIONUCLIDES							
Radium 226	0.8	pCi/g-dry				E903.0	07/10/12 13:40 / trs
Radium 226 precision (±)	0.08	pCi/g-dry				E903.0	07/10/12 13:40 / trs
Radium 226 MDC	0.03	pCi/g-dry				E903.0	07/10/12 13:40 / trs
Radium 228	1.0	pCi/g-dry				RA-05	07/05/12 21:06 / gb
Radium 228 precision (±)	0.1	pCi/g-dry				RA-05	07/05/12 21:06 / gb
Radium 228 MDC	0.2	pCi/g-dry				RA-05	07/05/12 21:06 / gb

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12041044-005Client Sample ID:MT-5-F (6" B.G.)

 Revised Date:
 07/10/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 10:00

 DateReceived:
 04/20/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
SATURATED PASTE EXTRACT							
Chloride	37.0	mg/kg		1.00		E300.0	06/28/12 03:39 / ljl
Chloride, 1:1	1.04	meq/L		0.0282		E300.0	06/28/12 03:39 / ljl
Sulfate	183	mg/kg		1.00		E300.0	06/28/12 03:39 / ljl
Sulfate, 1:1	3.82	meq/L		0.0208		E300.0	06/28/12 03:39 / ljl
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/24/12 16:14 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.002	mg/L		0.001		SW6020	05/01/12 14:12 / cp
Barium	ND	mg/L		0.05		SW6020	05/01/12 14:12 / cp
Cadmium	ND	mg/L		0.001		SW6020	05/01/12 14:12 / cp
Chromium	ND	mg/L		0.005		SW6020	05/02/12 22:05 / smm
Lead	0.001	mg/L		0.001		SW6020	05/01/12 14:12 / cp
Mercury	ND	mg/L		0.002		SW7470A	04/30/12 15:22 / rdw
Selenium	0.001	mg/L		0.001		SW6020	05/01/12 14:12 / cp
Silver	0.003	mg/L	D	0.002		SW6020	05/01/12 14:12 / cp
Uranium	0.0029	mg/L	D	0.0006		SW6020	05/01/12 14:12 / cp
RADIONUCLIDES							
Radium 226	2.0	pCi/g-dry				E903.0	07/10/12 13:40 / trs
Radium 226 precision (±)	0.1	pCi/g-dry				E903.0	07/10/12 13:40 / trs
Radium 226 MDC	0.03	pCi/g-dry				E903.0	07/10/12 13:40 / trs
Radium 228	0.8	pCi/g-dry				RA-05	07/05/12 21:06 / gb
Radium 228 precision (±)	0.1	pCi/g-dry				RA-05	07/05/12 21:06 / gb
Radium 228 MDC	0.2	pCi/g-dry				RA-05	07/05/12 21:06 / gb

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12041044-006Client Sample ID:MT-7-C (6" B.G.)

 Revised Date:
 07/10/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 09:45

 DateReceived:
 04/20/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/24/12 16:14 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.002	mg/L		0.001		SW6020	05/01/12 14:15 / cp
Barium	ND	mg/L		0.05		SW6020	05/01/12 14:15 / cp
Cadmium	ND	mg/L		0.001		SW6020	05/01/12 14:15 / cp
Chromium	0.006	mg/L		0.005		SW6020	05/01/12 14:15 / cp
Lead	0.002	mg/L		0.001		SW6020	05/01/12 14:15 / cp
Mercury	ND	mg/L		0.002		SW7470A	04/30/12 15:23 / rdw
Selenium	ND	mg/L		0.001		SW6020	05/01/12 14:15 / cp
Silver	ND	mg/L	D	0.002		SW6020	05/01/12 14:15 / cp
Uranium	0.0023	mg/L	D	0.0006		SW6020	05/01/12 14:15 / cp
RADIONUCLIDES							
Radium 226	0.6	pCi/g-dry				E903.0	07/10/12 13:40 / trs
Radium 226 precision (±)	0.07	pCi/g-dry				E903.0	07/10/12 13:40 / trs
Radium 226 MDC	0.03	pCi/g-dry				E903.0	07/10/12 13:40 / trs
Radium 228	0.8	pCi/g-dry				RA-05	07/05/12 21:06 / gb
Radium 228 precision (±)	0.1	pCi/g-dry				RA-05	07/05/12 21:06 / gb
Radium 228 MDC	0.1	pCi/g-dry				RA-05	07/05/12 21:06 / gb

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12041044-007Client Sample ID:MT-OP-E (6" B.G.)

 Revised Date:
 07/10/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 09:00

 DateReceived:
 04/20/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/24/12 16:14 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.004	mg/L		0.001		SW6020	05/01/12 14:18 / cp
Barium	0.05	mg/L		0.05		SW6020	05/01/12 14:18 / cp
Cadmium	ND	mg/L		0.001		SW6020	05/01/12 14:18 / cp
Chromium	0.006	mg/L		0.005		SW6020	05/01/12 14:18 / cp
Lead	0.003	mg/L		0.001		SW6020	05/01/12 14:18 / cp
Mercury	ND	mg/L		0.002		SW7470A	04/30/12 15:24 / rdw
Selenium	0.005	mg/L		0.001		SW6020	05/01/12 14:18 / cp
Silver	ND	mg/L	D	0.002		SW6020	05/01/12 14:18 / cp
Uranium	0.0056	mg/L	D	0.0006		SW6020	05/01/12 14:18 / cp
RADIONUCLIDES							
Radium 226	1.1	pCi/g-dry				E903.0	07/10/12 13:40 / trs
Radium 226 precision (±)	0.1	pCi/g-dry				E903.0	07/10/12 13:40 / trs
Radium 226 MDC	0.03	pCi/g-dry				E903.0	07/10/12 13:40 / trs
Radium 228	0.8	pCi/g-dry				RA-05	07/05/12 21:06 / gb
Radium 228 precision (±)	0.1	pCi/g-dry				RA-05	07/05/12 21:06 / gb
Radium 228 MDC	0.2	pCi/g-dry				RA-05	07/05/12 21:06 / gb

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12041044-008Client Sample ID:MT-A-C (6" B.G.)

 Revised Date:
 07/10/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 10:55

 DateReceived:
 04/20/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/24/12 16:14 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.003	mg/L		0.001		SW6020	05/01/12 14:21 / cp
Barium	ND	mg/L		0.05		SW6020	05/01/12 14:21 / cp
Cadmium	ND	mg/L		0.001		SW6020	05/01/12 14:21 / cp
Chromium	ND	mg/L		0.005		SW6020	05/01/12 14:21 / cp
Lead	0.001	mg/L		0.001		SW6020	05/01/12 14:21 / cp
Mercury	ND	mg/L		0.002		SW7470A	04/30/12 15:28 / rdw
Selenium	0.044	mg/L		0.001		SW6020	05/01/12 14:21 / cp
Silver	ND	mg/L	D	0.002		SW6020	05/01/12 14:21 / cp
Uranium	0.14	mg/L	D	0.0006		SW6020	05/01/12 14:21 / cp
RADIONUCLIDES							
Radium 226	1.7	pCi/g-dry				E903.0	07/10/12 13:40 / trs
Radium 226 precision (±)	0.1	pCi/g-dry				E903.0	07/10/12 13:40 / trs
Radium 226 MDC	0.03	pCi/g-dry				E903.0	07/10/12 13:40 / trs
Radium 228	0.5	pCi/g-dry				RA-05	07/05/12 21:06 / gb
Radium 228 precision (±)	0.1	pCi/g-dry				RA-05	07/05/12 21:06 / gb
Radium 228 MDC	0.2	pCi/g-dry				RA-05	07/05/12 21:06 / gb

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:	Rio Grande Resources Corporation
Project:	Mt. Taylor Mine Closure Plan
Lab ID:	C12041044-009
Client Sample ID:	MT-Borrow/Background

 Revised Date:
 07/10/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 11:00

 DateReceived:
 04/20/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/24/12 16:14 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.001	mg/L		0.001		SW6020	05/01/12 15:27 / cp
Barium	ND	mg/L		0.05		SW6020	05/01/12 15:27 / cp
Cadmium	ND	mg/L		0.001		SW6020	05/01/12 15:27 / cp
Chromium	ND	mg/L		0.005		SW6020	05/01/12 15:27 / cp
Lead	ND	mg/L		0.001		SW6020	05/01/12 15:27 / cp
Mercury	ND	mg/L		0.002		SW7470A	04/30/12 15:34 / rdw
Selenium	0.001	mg/L		0.001		SW6020	05/01/12 15:27 / cp
Silver	ND	mg/L	D	0.002		SW6020	05/01/12 15:27 / cp
Uranium	0.0007	mg/L	D	0.0006		SW6020	05/01/12 15:27 / cp
RADIONUCLIDES							
Radium 226	0.7	pCi/g-dry				E903.0	07/10/12 13:40 / trs
Radium 226 precision (±)	0.07	pCi/g-dry				E903.0	07/10/12 13:40 / trs
Radium 226 MDC	0.03	pCi/g-dry				E903.0	07/10/12 13:40 / trs
Radium 228	0.7	pCi/g-dry				RA-05	07/05/12 22:57 / gb
Radium 228 precision (±)	0.1	pCi/g-dry				RA-05	07/05/12 22:57 / gb
Radium 228 MDC	0.2	pCi/g-dry				RA-05	07/05/12 22:57 / gb

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12041044-010Client Sample ID:MT-4-D-S1 (0-6" B.G.)

 Revised Date:
 07/10/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 14:05

 DateReceived:
 04/20/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
SATURATED PASTE EXTRACT							
Chloride	7.76	mg/kg		1.00		E300.0	06/28/12 03:55 / ljl
Chloride, 1:1	0.219	meq/L		0.0282		E300.0	06/28/12 03:55 / ljl
Sulfate	77.0	mg/kg		1.00		E300.0	06/28/12 03:55 / Ijl
Sulfate, 1:1	1.60	meq/L		0.0208		E300.0	06/28/12 03:55 / ljl
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/24/12 16:14 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.008	mg/L		0.001		SW6020	05/01/12 14:56 / cp
Barium	1.0	mg/L		0.05		SW6020	05/01/12 14:56 / cp
Cadmium	ND	mg/L		0.001		SW6020	05/01/12 14:56 / cp
Chromium	0.008	mg/L		0.005		SW6020	05/01/12 14:56 / cp
Lead	0.003	mg/L		0.001		SW6020	05/01/12 14:56 / cp
Mercury	ND	mg/L		0.002		SW7470A	04/30/12 15:38 / rdw
Selenium	0.015	mg/L		0.001		SW6020	05/01/12 14:56 / cp
Silver	ND	mg/L	D	0.002		SW6020	05/01/12 14:56 / cp
Uranium	0.033	mg/L	D	0.0006		SW6020	05/01/12 14:56 / cp
RADIONUCLIDES							
Radium 226	18.1	pCi/g-dry				E903.0	07/10/12 13:40 / trs
Radium 226 precision (±)	0.3	pCi/g-dry				E903.0	07/10/12 13:40 / trs
Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/10/12 13:40 / trs
Radium 228	0.9	pCi/g-dry				RA-05	07/05/12 22:57 / gb
Radium 228 precision (±)	0.1	pCi/g-dry				RA-05	07/05/12 22:57 / gb
Radium 228 MDC	0.2	pCi/g-dry				RA-05	07/05/12 22:57 / gb

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12041044-011Client Sample ID:MT-4-D-S2 (14" B.G.)

 Revised Date:
 07/10/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 14:10

 DateReceived:
 04/20/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
SATURATED PASTE EXTRACT							
Chloride	92.0	mg/kg		1.00		E300.0	06/28/12 04:12 / ljl
Chloride, 1:1	2.60	meq/L		0.0282		E300.0	06/28/12 04:12 / ljl
Sulfate	1840	mg/kg		1.00		E300.0	06/28/12 04:12 / ljl
Sulfate, 1:1	38.2	meq/L		0.0208		E300.0	06/28/12 04:12 / ljl
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/24/12 16:14 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.007	mg/L		0.001		SW6020	05/01/12 15:02 / cp
Barium	ND	mg/L		0.05		SW6020	05/01/12 15:02 / cp
Cadmium	ND	mg/L		0.001		SW6020	05/01/12 15:02 / cp
Chromium	0.006	mg/L		0.005		SW6020	05/01/12 15:02 / cp
Lead	0.001	mg/L		0.001		SW6020	05/01/12 15:02 / cp
Mercury	ND	mg/L		0.002		SW7470A	04/30/12 15:39 / rdw
Selenium	0.39	mg/L		0.001		SW6020	05/01/12 15:02 / cp
Silver	ND	mg/L	D	0.002		SW6020	05/01/12 15:02 / cp
Uranium	0.20	mg/L	D	0.0006		SW6020	05/01/12 15:02 / cp
RADIONUCLIDES							
Radium 226	2.8	pCi/g-dry				E903.0	07/10/12 13:40 / trs
Radium 226 precision (±)	0.1	pCi/g-dry				E903.0	07/10/12 13:40 / trs
Radium 226 MDC	0.03	pCi/g-dry				E903.0	07/10/12 13:40 / trs
Radium 228	0.2	pCi/g-dry				RA-05	07/05/12 22:57 / gb
Radium 228 precision (±)	0.1	pCi/g-dry				RA-05	07/05/12 22:57 / gb
Radium 228 MDC	0.2	pCi/g-dry				RA-05	07/05/12 22:57 / gb

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12041044-012Client Sample ID:MT-4-D-S3 (48" B.G.)

 Revised Date:
 07/10/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 14:20

 DateReceived:
 04/20/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
SATURATED PASTE EXTRACT							
Chloride	6.49	mg/kg		1.00		E300.0	06/28/12 04:44 / ljl
Chloride, 1:1	0.183	meq/L		0.0282		E300.0	06/28/12 04:44 / ljl
Sulfate	132	mg/kg		1.00		E300.0	06/28/12 04:44 / ljl
Sulfate, 1:1	2.74	meq/L		0.0208		E300.0	06/28/12 04:44 / ljl
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/24/12 16:14 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.003	mg/L		0.001		SW6020	05/01/12 15:05 / cp
Barium	0.88	mg/L		0.05		SW6020	05/01/12 15:05 / cp
Cadmium	ND	mg/L		0.001		SW6020	05/01/12 15:05 / cp
Chromium	0.009	mg/L		0.005		SW6020	05/01/12 15:05 / cp
Lead	0.003	mg/L		0.001		SW6020	05/01/12 15:05 / cp
Mercury	ND	mg/L		0.002		SW7470A	04/30/12 15:41 / rdw
Selenium	0.020	mg/L		0.001		SW6020	05/01/12 15:05 / cp
Silver	ND	mg/L	D	0.002		SW6020	05/01/12 15:05 / cp
Uranium	0.013	mg/L	D	0.0006		SW6020	05/01/12 15:05 / cp
RADIONUCLIDES							
Radium 226	6.7	pCi/g-dry				E903.0	07/10/12 14:44 / trs
Radium 226 precision (±)	0.2	pCi/g-dry				E903.0	07/10/12 14:44 / trs
Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/10/12 14:44 / trs
Radium 228	0.8	pCi/g-dry				RA-05	07/05/12 22:57 / gb
Radium 228 precision (±)	0.1	pCi/g-dry				RA-05	07/05/12 22:57 / gb
Radium 228 MDC	0.2	pCi/g-dry				RA-05	07/05/12 22:57 / gb

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:	Rio Grande Resources Corporation
Project:	Mt. Taylor Mine Closure Plan
Lab ID:	C12041044-013
Client Sample ID:	MT-4-E-S1 (0-4" B.G.)

 Revised Date:
 07/10/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 13:35

 DateReceived:
 04/20/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
SATURATED PASTE EXTRACT							
Chloride	46.4	mg/kg		1.00		E300.0	06/28/12 05:01 / ljl
Chloride, 1:1	1.31	meq/L		0.0282		E300.0	06/28/12 05:01 / ljl
Sulfate	853	mg/kg		1.00		E300.0	06/28/12 05:01 / ljl
Sulfate, 1:1	17.8	meq/L		0.0208		E300.0	06/28/12 05:01 / ljl
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/24/12 16:14 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.034	mg/L		0.001		SW6020	05/01/12 15:08 / cp
Barium	34	mg/L		0.05		SW6020	05/01/12 15:08 / cp
Cadmium	ND	mg/L		0.001		SW6020	05/01/12 15:08 / cp
Chromium	0.007	mg/L		0.005		SW6020	05/02/12 22:19 / smm
Lead	0.008	mg/L		0.001		SW6020	05/01/12 15:08 / cp
Mercury	ND	mg/L		0.002		SW7470A	04/30/12 15:48 / rdw
Selenium	0.15	mg/L		0.001		SW6020	05/01/12 15:08 / cp
Silver	ND	mg/L	D	0.002		SW6020	05/01/12 15:08 / cp
Uranium	0.39	mg/L	D	0.0006		SW6020	05/01/12 15:08 / cp
RADIONUCLIDES							
Radium 226	8.7	pCi/g-dry				E903.0	07/10/12 14:44 / trs
Radium 226 precision (±)	0.2	pCi/g-dry				E903.0	07/10/12 14:44 / trs
Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/10/12 14:44 / trs
Radium 228	1.5	pCi/g-dry				RA-05	07/05/12 22:57 / gb
Radium 228 precision (±)	0.1	pCi/g-dry				RA-05	07/05/12 22:57 / gb
Radium 228 MDC	0.1	pCi/g-dry				RA-05	07/05/12 22:57 / gb

- Sample matrix interference resulted in high chemical recoveries which has likely biased the Ra226 and Ra228 results low.

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:	Rio Grande Resources Corporation
Project:	Mt. Taylor Mine Closure Plan
Lab ID:	C12041044-014
Client Sample ID:	MT-4-E-S2 (10-12" B.G.)

 Revised Date:
 07/10/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 13:40

 DateReceived:
 04/20/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
SATURATED PASTE EXTRACT							
Chloride	34.1	mg/kg		1.00		E300.0	06/28/12 05:17 / ljl
Chloride, 1:1	0.963	meq/L		0.0282		E300.0	06/28/12 05:17 / ljl
Sulfate	1150	mg/kg		1.00		E300.0	06/28/12 05:17 / ljl
Sulfate, 1:1	23.8	meq/L		0.0208		E300.0	06/28/12 05:17 / ljl
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/24/12 16:14 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.005	mg/L		0.001		SW6020	05/01/12 15:10 / cp
Barium	0.22	mg/L		0.05		SW6020	05/01/12 15:10 / cp
Cadmium	ND	mg/L		0.001		SW6020	05/01/12 15:10 / cp
Chromium	0.011	mg/L		0.005		SW6020	05/01/12 15:10 / cp
Lead	0.005	mg/L		0.001		SW6020	05/01/12 15:10 / cp
Mercury	ND	mg/L		0.002		SW7470A	04/30/12 15:49 / rdw
Selenium	0.072	mg/L		0.001		SW6020	05/01/12 15:10 / cp
Silver	ND	mg/L	D	0.002		SW6020	05/01/12 15:10 / cp
Uranium	0.014	mg/L	D	0.0006		SW6020	05/01/12 15:10 / cp
RADIONUCLIDES							
Radium 226	4.8	pCi/g-dry				E903.0	07/10/12 14:44 / trs
Radium 226 precision (±)	0.2	pCi/g-dry				E903.0	07/10/12 14:44 / trs
Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/10/12 14:44 / trs
Radium 228	0.4	pCi/g-dry				RA-05	07/05/12 22:57 / gb
Radium 228 precision (±)	0.1	pCi/g-dry				RA-05	07/05/12 22:57 / gb
Radium 228 MDC	0.2	pCi/g-dry				RA-05	07/05/12 22:57 / gb

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12041044-015Client Sample ID:MT-4-E-S3 (36" B.G.)

 Revised Date:
 07/10/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 13:42

 DateReceived:
 04/20/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
SATURATED PASTE EXTRACT							
Chloride	13.1	mg/kg		1.00		E300.0	06/28/12 05:34 / ljl
Chloride, 1:1	0.371	meq/L		0.0282		E300.0	06/28/12 05:34 / ljl
Sulfate	184	mg/kg		1.00		E300.0	06/28/12 05:34 / ljl
Sulfate, 1:1	3.84	meq/L		0.0208		E300.0	06/28/12 05:34 / ljl
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/24/12 16:14 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.003	mg/L		0.001		SW6020	05/01/12 15:24 / cp
Barium	0.13	mg/L		0.05		SW6020	05/01/12 15:24 / cp
Cadmium	ND	mg/L		0.001		SW6020	05/01/12 15:24 / cp
Chromium	0.007	mg/L		0.005		SW6020	05/01/12 15:24 / cp
Lead	0.003	mg/L		0.001		SW6020	05/01/12 15:24 / cp
Mercury	ND	mg/L		0.002		SW7470A	04/30/12 15:51 / rdw
Selenium	0.026	mg/L		0.001		SW6020	05/01/12 15:24 / cp
Silver	0.003	mg/L	D	0.002		SW6020	05/01/12 15:24 / cp
Uranium	0.0043	mg/L	D	0.0006		SW6020	05/01/12 15:24 / cp
RADIONUCLIDES							
Radium 226	2.9	pCi/g-dry				E903.0	07/10/12 14:44 / trs
Radium 226 precision (±)	0.1	pCi/g-dry				E903.0	07/10/12 14:44 / trs
Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/10/12 14:44 / trs
Radium 228	0.7	pCi/g-dry				RA-05	07/05/12 22:57 / gb
Radium 228 precision (±)	0.1	pCi/g-dry				RA-05	07/05/12 22:57 / gb
Radium 228 MDC	0.2	pCi/g-dry				RA-05	07/05/12 22:57 / gb

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:	Rio Grande Resources Corporation
Project:	Mt. Taylor Mine Closure Plan
Lab ID:	C12041044-016
Client Sample ID:	MT-4-E-S4 (48" B.G.)

 Revised Date:
 07/10/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 13:45

 DateReceived:
 04/20/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
SATURATED PASTE EXTRACT							
Chloride	4.51	mg/kg		1.00		E300.0	06/28/12 05:50 / ljl
Chloride, 1:1	0.127	meq/L		0.0282		E300.0	06/28/12 05:50 / ljl
Sulfate	131	mg/kg		1.00		E300.0	06/28/12 05:50 / ljl
Sulfate, 1:1	2.72	meq/L		0.0208		E300.0	06/28/12 05:50 / ljl
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/24/12 16:14 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.005	mg/L	В	0.001		SW6020	05/02/12 21:10 / smm
Barium	0.06	mg/L		0.05		SW6020	05/02/12 21:10 / smm
Cadmium	ND	mg/L		0.001		SW6020	05/02/12 21:10 / smm
Chromium	0.006	mg/L		0.005		SW6020	05/02/12 21:10 / smm
Lead	0.002	mg/L		0.001		SW6020	05/02/12 21:10 / smm
Mercury	ND	mg/L		0.002		SW7470A	04/30/12 16:01 / rdw
Selenium	0.011	mg/L		0.001		SW6020	05/02/12 21:10 / smm
Silver	ND	mg/L		0.001		SW6020	05/02/12 21:10 / smm
Uranium	0.027	mg/L		0.0003		SW6020	05/02/12 21:10 / smm
RADIONUCLIDES							
Radium 226	6.2	pCi/g-dry				E903.0	07/10/12 14:44 / trs
Radium 226 precision (±)	0.2	pCi/g-dry				E903.0	07/10/12 14:44 / trs
Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/10/12 14:44 / trs
Radium 228	0.4	pCi/g-dry				RA-05	07/05/12 22:57 / gb
Radium 228 precision (±)	0.1	pCi/g-dry				RA-05	07/05/12 22:57 / gb
Radium 228 MDC	0.1	pCi/g-dry				RA-05	07/05/12 22:57 / gb

- Sample matrix interference resulted in high chemical recoveries which has likely biased the Ra226 and Ra228 results low.

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12041044-017Client Sample ID:MT-6-A-S1 (0-5" B.G.)

 Revised Date:
 07/10/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 15:05

 DateReceived:
 04/20/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/24/12 16:14 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.012	mg/L		0.001		SW6020	05/02/12 20:29 / smm
Barium	7.3	mg/L		0.05		SW6020	05/02/12 20:29 / smm
Cadmium	ND	mg/L		0.001		SW6020	05/02/12 20:29 / smm
Chromium	0.007	mg/L		0.005		SW6020	05/02/12 20:29 / smm
Lead	0.016	mg/L		0.001		SW6020	05/02/12 20:29 / smm
Mercury	ND	mg/L		0.002		SW7470A	04/30/12 16:05 / rdw
Selenium	0.007	mg/L		0.001		SW6020	05/02/12 20:29 / smm
Silver	ND	mg/L		0.001		SW6020	05/02/12 20:29 / smm
Uranium	0.044	mg/L		0.0003		SW6020	05/02/12 20:29 / smm
RADIONUCLIDES							
Radium 226	6.4	pCi/g-dry				E903.0	07/10/12 14:44 / trs
Radium 226 precision (±)	0.2	pCi/g-dry				E903.0	07/10/12 14:44 / trs
Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/10/12 14:44 / trs
Radium 228	0.2	pCi/g-dry				RA-05	07/05/12 22:56 / gb
Radium 228 precision (±)	0.1	pCi/g-dry				RA-05	07/05/12 22:56 / gb
Radium 228 MDC	0.1	pCi/g-dry				RA-05	07/05/12 22:56 / gb

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12041044-018Client Sample ID:MT-6-A-S2 (12-20" B.G.)

 Revised Date:
 07/10/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 15:10

 DateReceived:
 04/20/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/24/12 16:14 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.003	mg/L	В	0.001		SW6020	05/02/12 20:33 / smm
Barium	0.05	mg/L		0.05		SW6020	05/02/12 20:33 / smm
Cadmium	ND	mg/L		0.001		SW6020	05/02/12 20:33 / smm
Chromium	0.007	mg/L		0.005		SW6020	05/02/12 20:33 / smm
Lead	ND	mg/L		0.001		SW6020	05/02/12 20:33 / smm
Mercury	ND	mg/L		0.002		SW7470A	04/30/12 16:06 / rdw
Selenium	0.15	mg/L		0.001		SW6020	05/02/12 20:33 / smm
Silver	ND	mg/L		0.001		SW6020	05/02/12 20:33 / smm
Uranium	0.26	mg/L		0.0003		SW6020	05/02/12 20:33 / smm
RADIONUCLIDES							
Radium 226	0.4	pCi/g-dry				E903.0	07/10/12 14:44 / trs
Radium 226 precision (±)	0.05	pCi/g-dry				E903.0	07/10/12 14:44 / trs
Radium 226 MDC	0.03	pCi/g-dry				E903.0	07/10/12 14:44 / trs
Radium 228	0.1	pCi/g-dry	U			RA-05	07/05/12 22:56 / gb
Radium 228 precision (±)	0.1	pCi/g-dry				RA-05	07/05/12 22:56 / gb
Radium 228 MDC	0.2	pCi/g-dry				RA-05	07/05/12 22:56 / gb

Report Definitions: RL - Analyte reporting limit.QCL - Quality control limit.MDC - Minimum detectable concentrationU - Not detected at minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12041044-019Client Sample ID:MT-6-B-S1 (8-10" B.G.)

 Revised Date:
 07/10/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 14:30

 DateReceived:
 04/20/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/24/12 16:14 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.004	mg/L	в	0.001		SW6020	05/02/12 20:38 / smm
Barium	0.05	mg/L		0.05		SW6020	05/02/12 20:38 / smm
Cadmium	ND	mg/L		0.001		SW6020	05/02/12 20:38 / smm
Chromium	0.007	mg/L		0.005		SW6020	05/02/12 20:38 / smm
Lead	ND	mg/L		0.001		SW6020	05/02/12 20:38 / smm
Mercury	ND	mg/L		0.002		SW7470A	04/30/12 16:08 / rdw
Selenium	0.16	mg/L		0.001		SW6020	05/02/12 20:38 / smm
Silver	ND	mg/L		0.001		SW6020	05/02/12 20:38 / smm
Uranium	0.26	mg/L		0.0003		SW6020	05/02/12 20:38 / smm
RADIONUCLIDES							
Radium 226	0.8	pCi/g-dry				E903.0	07/10/12 14:44 / trs
Radium 226 precision (±)	0.08	pCi/g-dry				E903.0	07/10/12 14:44 / trs
Radium 226 MDC	0.03	pCi/g-dry				E903.0	07/10/12 14:44 / trs
Radium 228	0.2	pCi/g-dry				RA-05	07/05/12 22:56 / gb
Radium 228 precision (±)	0.1	pCi/g-dry				RA-05	07/05/12 22:56 / gb
Radium 228 MDC	0.2	pCi/g-dry				RA-05	07/05/12 22:56 / gb

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12041044-020Client Sample ID:MT-6-B-S2 (30" B.G.)

 Revised Date:
 07/10/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 14:35

 DateReceived:
 04/20/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/24/12 16:14 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.002	mg/L	В	0.001		SW6020	05/02/12 20:43 / smm
Barium	0.06	mg/L		0.05		SW6020	05/02/12 20:43 / smm
Cadmium	ND	mg/L		0.001		SW6020	05/02/12 20:43 / smm
Chromium	ND	mg/L		0.005		SW6020	05/02/12 20:43 / smm
Lead	ND	mg/L		0.001		SW6020	05/02/12 20:43 / smm
Mercury	ND	mg/L		0.002		SW7470A	04/30/12 16:09 / rdw
Selenium	0.003	mg/L		0.001		SW6020	05/02/12 20:43 / smm
Silver	ND	mg/L		0.001		SW6020	05/02/12 20:43 / smm
Uranium	0.014	mg/L		0.0003		SW6020	05/02/12 20:43 / smm
RADIONUCLIDES							
Radium 226	4.1	pCi/g-dry				E903.0	07/10/12 14:44 / trs
Radium 226 precision (±)	0.2	pCi/g-dry				E903.0	07/10/12 14:44 / trs
Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/10/12 14:44 / trs
Radium 228	0.8	pCi/g-dry				RA-05	07/05/12 22:56 / gb
Radium 228 precision (±)	0.1	pCi/g-dry				RA-05	07/05/12 22:56 / gb
Radium 228 MDC	0.2	pCi/g-dry				RA-05	07/05/12 22:56 / gb

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12041044-021Client Sample ID:MT-OP-C-S1 (0-6" B.G.)

 Revised Date:
 07/10/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 13:20

 DateReceived:
 04/20/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/24/12 16:14 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.015	mg/L		0.001		SW6020	05/02/12 21:06 / smm
Barium	0.05	mg/L		0.05		SW6020	05/02/12 21:06 / smm
Cadmium	ND	mg/L		0.001		SW6020	05/02/12 21:06 / smm
Chromium	0.010	mg/L		0.005		SW6020	05/02/12 21:06 / smm
Lead	0.001	mg/L		0.001		SW6020	05/02/12 21:06 / smm
Mercury	ND	mg/L		0.002		SW7470A	04/30/12 16:10 / rdw
Selenium	0.052	mg/L		0.001		SW6020	05/02/12 21:06 / smm
Silver	ND	mg/L		0.001		SW6020	05/02/12 21:06 / smm
Uranium	1.8	mg/L		0.0003		SW6020	05/02/12 21:06 / smm
RADIONUCLIDES							
Radium 226	53.3	pCi/g-dry				E903.0	07/10/12 14:44 / trs
Radium 226 precision (±)	0.6	pCi/g-dry				E903.0	07/10/12 14:44 / trs
Radium 226 MDC	0.03	pCi/g-dry				E903.0	07/10/12 14:44 / trs
Radium 228	2.1	pCi/g-dry				RA-05	07/05/12 22:56 / gb
Radium 228 precision (±)	0.2	pCi/g-dry				RA-05	07/05/12 22:56 / gb
Radium 228 MDC	0.2	pCi/g-dry				RA-05	07/05/12 22:56 / gb

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12041044-022Client Sample ID:MT-OP-C-S2 (20" B.G.)

 Revised Date:
 07/10/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 13:25

 DateReceived:
 04/20/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/24/12 16:14 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.005	mg/L		0.001		SW6020	05/04/12 14:22 / cp
Barium	0.05	mg/L		0.05		SW6020	05/04/12 14:22 / cp
Cadmium	ND	mg/L		0.001		SW6020	05/04/12 14:22 / cp
Chromium	0.007	mg/L		0.005		SW6020	05/04/12 14:22 / cp
Lead	0.002	mg/L		0.001		SW6020	05/04/12 14:22 / cp
Mercury	ND	mg/L		0.002		SW7470A	05/02/12 11:26 / rdw
Selenium	0.018	mg/L		0.001		SW6020	05/04/12 14:22 / cp
Silver	ND	mg/L	D	0.002		SW6020	05/04/12 14:22 / cp
Uranium	0.14	mg/L	D	0.0006		SW6020	05/04/12 14:22 / cp
RADIONUCLIDES							
Radium 226	1.7	pCi/g-dry				E903.0	07/10/12 16:03 / trs
Radium 226 precision (±)	0.1	pCi/g-dry				E903.0	07/10/12 16:03 / trs
Radium 226 MDC	0.03	pCi/g-dry				E903.0	07/10/12 16:03 / trs
Radium 228	0.6	pCi/g-dry				RA-05	07/05/12 21:05 / gb
Radium 228 precision (±)	0.1	pCi/g-dry				RA-05	07/05/12 21:05 / gb
Radium 228 MDC	0.2	pCi/g-dry				RA-05	07/05/12 21:05 / gb

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12041044-023Client Sample ID:MT-OP-C-S3 (48-50' B.G.)

 Revised Date:
 07/10/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 13:25

 DateReceived:
 04/20/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/24/12 16:14 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.004	mg/L		0.001		SW6020	05/04/12 14:41 / cp
Barium	ND	mg/L		0.05		SW6020	05/04/12 14:41 / cp
Cadmium	ND	mg/L		0.001		SW6020	05/04/12 14:41 / cp
Chromium	ND	mg/L		0.005		SW6020	05/04/12 14:41 / cp
Lead	ND	mg/L		0.001		SW6020	05/04/12 14:41 / cp
Mercury	ND	mg/L		0.002		SW7470A	05/02/12 11:29 / rdw
Selenium	0.028	mg/L		0.001		SW6020	05/04/12 14:41 / cp
Silver	ND	mg/L	D	0.002		SW6020	05/04/12 14:41 / cp
Uranium	0.049	mg/L	D	0.0006		SW6020	05/04/12 14:41 / cp
RADIONUCLIDES							
Radium 226	0.8	pCi/g-dry				E903.0	07/03/12 05:26 / trs
Radium 226 precision (±)	0.07	pCi/g-dry				E903.0	07/03/12 05:26 / trs
Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/03/12 05:26 / trs
Radium 228	0.8	pCi/g-dry				RA-05	06/26/12 17:02 / plj
Radium 228 precision (±)	0.09	pCi/g-dry				RA-05	06/26/12 17:02 / plj
Radium 228 MDC	0.1	pCi/g-dry				RA-05	06/26/12 17:02 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12041044-024Client Sample ID:MT-OP-C-S4 (72" B.G.)

 Revised Date:
 07/10/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 13:30

 DateReceived:
 04/20/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/24/12 16:14 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.004	mg/L		0.001		SW6020	05/04/12 14:44 / cp
Barium	ND	mg/L		0.05		SW6020	05/04/12 14:44 / cp
Cadmium	ND	mg/L		0.001		SW6020	05/04/12 14:44 / cp
Chromium	ND	mg/L		0.005		SW6020	05/04/12 14:44 / cp
Lead	ND	mg/L		0.001		SW6020	05/04/12 14:44 / cp
Mercury	ND	mg/L		0.002		SW7470A	05/02/12 11:30 / rdw
Selenium	0.025	mg/L		0.001		SW6020	05/04/12 14:44 / cp
Silver	ND	mg/L	D	0.002		SW6020	05/04/12 14:44 / cp
Uranium	0.0064	mg/L	D	0.0006		SW6020	05/04/12 14:44 / cp
RADIONUCLIDES							
Radium 226	1.5	pCi/g-dry				E903.0	07/03/12 05:26 / trs
Radium 226 precision (±)	0.1	pCi/g-dry				E903.0	07/03/12 05:26 / trs
Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/03/12 05:26 / trs
Radium 228	0.6	pCi/g-dry				RA-05	06/26/12 17:02 / plj
Radium 228 precision (±)	0.09	pCi/g-dry				RA-05	06/26/12 17:02 / plj
Radium 228 MDC	0.1	pCi/g-dry				RA-05	06/26/12 17:02 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12041044-025Client Sample ID:MT-OP-D-S1 (0-6" B.G.)

 Revised Date:
 07/10/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 12:45

 DateReceived:
 04/20/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/24/12 16:14 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.013	mg/L		0.001		SW6020	05/04/12 14:47 / cp
Barium	1.3	mg/L		0.05		SW6020	05/04/12 14:47 / cp
Cadmium	ND	mg/L		0.001		SW6020	05/04/12 14:47 / cp
Chromium	0.007	mg/L		0.005		SW6020	05/04/12 14:47 / cp
Lead	0.008	mg/L		0.001		SW6020	05/04/12 14:47 / cp
Mercury	ND	mg/L		0.002		SW7470A	05/02/12 11:31 / rdw
Selenium	0.009	mg/L		0.001		SW6020	05/04/12 14:47 / cp
Silver	ND	mg/L	D	0.002		SW6020	05/04/12 14:47 / cp
Uranium	0.23	mg/L	D	0.0006		SW6020	05/04/12 14:47 / cp
RADIONUCLIDES							
Radium 226	51.9	pCi/g-dry				E903.0	07/03/12 05:26 / trs
Radium 226 precision (±)	0.5	pCi/g-dry				E903.0	07/03/12 05:26 / trs
Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/03/12 05:26 / trs
Radium 228	0.5	pCi/g-dry				RA-05	06/26/12 17:02 / plj
Radium 228 precision (±)	0.07	pCi/g-dry				RA-05	06/26/12 17:02 / plj
Radium 228 MDC	0.09	pCi/g-dry				RA-05	06/26/12 17:02 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12041044-026Client Sample ID:MT-OP-D-S2 (48-50" B.G.)

 Revised Date:
 07/10/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 12:45

 DateReceived:
 04/20/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/24/12 16:14 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.001	mg/L		0.001		SW6020	05/04/12 14:49 / cp
Barium	0.05	mg/L		0.05		SW6020	05/04/12 14:49 / cp
Cadmium	ND	mg/L		0.001		SW6020	05/04/12 14:49 / cp
Chromium	ND	mg/L		0.005		SW6020	05/04/12 14:49 / cp
Lead	ND	mg/L		0.001		SW6020	05/04/12 14:49 / cp
Mercury	ND	mg/L		0.002		SW7470A	05/02/12 11:35 / rdw
Selenium	0.005	mg/L		0.001		SW6020	05/04/12 14:49 / cp
Silver	ND	mg/L	D	0.002		SW6020	05/04/12 14:49 / cp
Uranium	0.10	mg/L	D	0.0006		SW6020	05/04/12 14:49 / cp
RADIONUCLIDES							
Radium 226	1.9	pCi/g-dry				E903.0	07/03/12 05:26 / trs
Radium 226 precision (±)	0.1	pCi/g-dry				E903.0	07/03/12 05:26 / trs
Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/03/12 05:26 / trs
Radium 228	0.6	pCi/g-dry				RA-05	06/26/12 17:02 / plj
Radium 228 precision (±)	0.09	pCi/g-dry				RA-05	06/26/12 17:02 / plj
Radium 228 MDC	0.1	pCi/g-dry				RA-05	06/26/12 17:02 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12041044-027Client Sample ID:MT-OP-D-S3 (76" B.G.)

 Revised Date:
 07/10/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 12:50

 DateReceived:
 04/20/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/24/12 16:14 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.006	mg/L		0.001		SW6020	05/04/12 14:52 / cp
Barium	0.11	mg/L		0.05		SW6020	05/04/12 14:52 / cp
Cadmium	ND	mg/L		0.001		SW6020	05/04/12 14:52 / cp
Chromium	0.012	mg/L		0.005		SW6020	05/04/12 14:52 / cp
Lead	0.009	mg/L		0.001		SW6020	05/04/12 14:52 / cp
Mercury	ND	mg/L		0.002		SW7470A	05/02/12 11:37 / rdw
Selenium	0.002	mg/L		0.001		SW6020	05/04/12 14:52 / cp
Silver	ND	mg/L	D	0.002		SW6020	05/04/12 14:52 / cp
Uranium	0.0034	mg/L	D	0.0006		SW6020	05/04/12 14:52 / cp
RADIONUCLIDES							
Radium 226	0.6	pCi/g-dry				E903.0	07/03/12 05:26 / trs
Radium 226 precision (±)	0.06	pCi/g-dry				E903.0	07/03/12 05:26 / trs
Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/03/12 05:26 / trs
Radium 228	0.5	pCi/g-dry				RA-05	06/26/12 17:02 / plj
Radium 228 precision (±)	0.08	pCi/g-dry				RA-05	06/26/12 17:02 / plj
Radium 228 MDC	0.1	pCi/g-dry				RA-05	06/26/12 17:02 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Rio Grande Resources CorporationProject:Mt. Taylor Mine Closure PlanLab ID:C12041044-028Client Sample ID:MT-8-F (6" B.G.)

 Revised Date:
 07/10/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 09:25

 DateReceived:
 04/20/12

 Matrix:
 Sediment

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
SATURATED PASTE EXTRACT							
Chloride	14.2	mg/kg		1.00		E300.0	06/28/12 06:07 / ljl
Chloride, 1:1	0.402	meq/L		0.0282		E300.0	06/28/12 06:07 / ljl
Sulfate	28.9	mg/kg		1.00		E300.0	06/28/12 06:07 / ljl
Sulfate, 1:1	0.602	meq/L		0.0208		E300.0	06/28/12 06:07 / ljl
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/24/12 16:14 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.003	mg/L		0.001		SW6020	05/04/12 14:55 / cp
Barium	ND	mg/L		0.05		SW6020	05/04/12 14:55 / cp
Cadmium	ND	mg/L		0.001		SW6020	05/04/12 14:55 / cp
Chromium	ND	mg/L		0.005		SW6020	05/04/12 14:55 / cp
Lead	0.002	mg/L		0.001		SW6020	05/04/12 14:55 / cp
Mercury	ND	mg/L		0.002		SW7470A	05/02/12 11:38 / rdw
Selenium	0.002	mg/L		0.001		SW6020	05/04/12 14:55 / cp
Silver	ND	mg/L	D	0.002		SW6020	05/04/12 14:55 / cp
Uranium	0.010	mg/L	D	0.0006		SW6020	05/04/12 14:55 / cp
RADIONUCLIDES							
Radium 226	2.3	pCi/g-dry				E903.0	07/03/12 05:26 / trs
Radium 226 precision (±)	0.1	pCi/g-dry				E903.0	07/03/12 05:26 / trs
Radium 226 MDC	0.02	pCi/g-dry				E903.0	07/03/12 05:26 / trs
Radium 228	0.6	pCi/g-dry				RA-05	06/26/12 17:02 / plj
Radium 228 precision (±)	0.09	pCi/g-dry				RA-05	06/26/12 17:02 / plj
Radium 228 MDC	0.1	pCi/g-dry				RA-05	06/26/12 17:02 / plj

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine Closure Plan

Revised Date: 07/10/12 Report Date: 06/13/12 Work Order: C12041044

-]							-			
Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E300.0								Analytica	Run: IC2-C	_120626A
Sample ID: ICV-062612-10	2 In	itial Calibratio	on Verification	Standard					06/26	/12 15:31
Chloride		9.60	mg/L	1.0	96	90	110			
Sulfate		38.7	mg/L	1.0	97	90	110			
Method: E300.0									Bat	ch: 34007
Sample ID: MB-34007	2 M	ethod Blank				Run: IC2-C	_120626A		06/28	/12 02:17
Chloride		ND	mg/kg	0.04						
Sulfate		0.08	mg/kg	0.06						
Sample ID: LCS1-34007	2 La	aboratory Cor	ntrol Sample			Run: IC2-C	_120626A		06/28	/12 02:33
Chloride		35.9	mg/kg	1.0	101	70	130			
Sulfate		1730	mg/kg	1.0	95	70	130			
Sample ID: C12041044-011CPDS	3 2 Po	ost Digestion	/Distillation Spi	ike		Run: IC2-C	_120626A		06/28	/12 04:28
Chloride		280	mg/kg	1.0	94	80	120			
Sulfate		2570	mg/kg	1.0	92	80	120			
Sample ID: C12041044-028CDU	2 2 Sa	ample Duplic	ate			Run: IC2-C	_120626A		06/28	/12 06:23
Chloride		14.0	mg/kg	1.0				1.8	20	
Sulfate		28.1	mg/kg	1.0				2.9	20	

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine Closure Plan

Revised Date: 07/10/12 Report Date: 06/13/12 Work Order: C12041044

Analyte	Count Resu	ult Units	RL %REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E903.0							Bat	ch: 34025
Sample ID: C12041044-023BMS	Sample M	atrix Spike		Run: BERT	HOLD 770-1_	_120621B	07/03/	12 05:26
Radium 226	2	2.9 pCi/g-dry	85	70	130			
Sample ID: C12041044-023BMS	D Sample M	atrix Spike Duplicate		Run: BERT	HOLD 770-1_	_120621B	07/03/	12 05:26
Radium 226	2	2.8 pCi/g-dry	85	70	130	3.6	22.9	
Sample ID: LCS-34025	Laboratory	Control Sample		Run: BERT	HOLD 770-1_	_120621B	07/03/	12 05:26
Radium 226	0.4	41 pCi/g-dry	85	70	130			
Sample ID: MB-34025	3 Method Bl	ank		Run: BERT	HOLD 770-1_	_120621B	07/03/	12 07:45
Radium 226	0.00	09 pCi/g-dry						U
Radium 226 precision (±)	0.0	04 pCi/g-dry						
Radium 226 MDC	0.0	06 pCi/g-dry						
Method: E903.0							Bat	ch: 34023
Sample ID: C12041044-022BMS	Sample M	atrix Spike		Run: BER1	HOLD 770-1_	_120621C	07/10/	12 16:03
Radium 226	3	3.6 pCi/g-dry	80	70	130			
Sample ID: C12041044-022BMS	D Sample M	atrix Spike Duplicate		Run: BERT	HOLD 770-1_	_120621C	07/10/	12 16:03
Radium 226	3	3.7 pCi/g-dry	85	70	130	2.9	22.7	
Sample ID: LCS-34023	Laboratory	Control Sample		Run: BERT	HOLD 770-1_	_120621C	07/10/	12 16:03
Radium 226		33 pCi/g-dry	69	70	130			S
- LCS response is outside of the acce	ptance range for this	analysis. Since the ME	3, MS, and MSD are a	cceptable the b	atch is approve	d.		
Sample ID: MB-34023	3 Method Bl	ank		Run: BERT	HOLD 770-1_	_120621C	07/10/	12 16:03
Radium 226	-0.0	1 0 7						U
Radium 226 precision (±)	0.0	06 pCi/g-dry						
Radium 226 MDC	0.	01 pCi/g-dry						
Method: E903.0							Bat	ch: 34004
Sample ID: MB-34004	3 Method Bl	ank		Run: BER1	HOLD 770-2_	120620A	07/02/	12 23:59
Radium 226	C).1 pCi/g-dry						
Radium 226 precision (±)	0.	03 pCi/g-dry						
Radium 226 MDC	0.	02 pCi/g-dry						
Sample ID: LCS-34004	Laboratory	Control Sample		Run: BER1	HOLD 770-2_	_120620A	07/02/	12 23:59
Radium 226	1	1.4 pCi/g-dry	87	70	130			
Sample ID: C12041044-003BMS	Sample M	atrix Spike		Run: BERT	HOLD 770-2_	_120620A	07/03/	12 03:34
Radium 226	2	2.5 pCi/g-dry	104	70	130			
Sample ID: C12041044-003BMS	D Sample M	atrix Spike Duplicate		Run: BERT	HOLD 770-2_	_120620A	07/03/	12 03:34
Radium 226	2	2.2 pCi/g-dry	87	70	130	12	20.8	

Qualifiers:

RL - Analyte reporting limit. MDC - Minimum detectable concentration U - Not detected at minimum detectable concentration ND - Not detected at the reporting limit.

S - Spike recovery outside of advisory limits.

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine Closure Plan

Revised Date: 07/10/12 Report Date: 06/13/12 Work Order: C12041044

Analyte	Count	Result	Units	RL %R	EC	Low Limit	High I	_imit	RPD	RPDLimit	Qual
Method: RA-05										Bate	ch: 34004
Sample ID: LCS-34004	La	boratory Co	ontrol Sample			Run: TENN	ELEC-3	3_120620B		06/25/	12 15:52
Radium 228		1.5	pCi/g-dry	1	04	70		130			
Sample ID: MB-34004	3 Me	ethod Blank				Run: TENN	ELEC-3	3_120620B		06/25/	12 15:52
Radium 228		0.07	pCi/g-dry								U
Radium 228 precision (±)		0.2	pCi/g-dry								
Radium 228 MDC		0.3	pCi/g-dry								
Sample ID: C12041044-003BMS	Sa	mple Matrix	Spike			Run: TENN	ELEC-3	3_120620B		06/25/	12 15:52
Radium 228		1.8	pCi/g-dry		93	70		130			
Sample ID: C12041044-003BMSI) Sa	mple Matrix	Spike Duplicate			Run: TENN	ELEC-3	3_120620B		06/25/	12 15:52
Radium 228		1.9	pCi/g-dry	1	01	70		130	6.0	33.5	
Method: RA-05										Bate	ch: 34025
Sample ID: LCS-34025	La	boratory Co	ontrol Sample			Run: TENN	ELEC-3	3 120621B		06/26/	/12 17:02
Radium 228		0.24	pCi/g-dry		83	70		130			
Sample ID: MB-34025	3 Me	ethod Blank				Run: TENN	ELEC-3	3 120621B		06/26/	/12 17:02
Radium 228		0.002	pCi/g-dry					_			U
Radium 228 precision (±)		0.03	pCi/g-dry								
Radium 228 MDC		0.04	pCi/g-dry								
Sample ID: C12041044-028BMS	Sa	mple Matrix	Spike			Run: TENN	ELEC-3	3_120621B		06/26/	/12 17:02
Radium 228		1.7	pCi/g-dry		71	70		130			
Sample ID: C12041044-028BMSI) Sa	mple Matrix	Spike Duplicate			Run: TENN	ELEC-3	3_120621B		06/26/	/12 17:02
Radium 228		1.7	pCi/g-dry		78	70		130	3.0	32.3	
Method: RA-05										Batch: Ra	228-4136
Sample ID: LCS-34023	La	boratory Co	ontrol Sample			Run: TENN	ELEC-3	3_120621D		07/05/	12 21:05
Radium 228		0.36	pCi/g-dry	1	29	70		130			
Sample ID: MB-34023	3 Me	ethod Blank				Run: TENN	ELEC-3	3_120621D		07/05/	/12 21:05
Radium 228		-0.010	pCi/g-dry								U
Radium 228 precision (±)		0.04	pCi/g-dry								
Radium 228 MDC		0.06	pCi/g-dry								
Sample ID: C12041044-022BMS	Sa	mple Matrix	Spike			Run: TENN	ELEC-3	3_120621D		07/05/	/12 21:06
Radium 228		-	pCi/g-dry		80	70		130			
Sample ID: C12041044-022BMSI) Sa	mple Matrix	Spike Duplicate			Run: TENN	ELEC-3	3_120621D		07/05/	/12 21:06
Radium 228		. 2.1		1				130	19	36.9	

Qualifiers:

RL - Analyte reporting limit. MDC - Minimum detectable concentration ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine Closure Plan

Revised Date: 07/10/12 Report Date: 06/13/12 Work Order: C12041044

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD R	PDLimit	Qual
Method: SW6020						Analy	tical Run: IC	CPMS2-C	_120501A
Sample ID: ICV	8 Initial Calibrati		on Standard					05/01/	/12 13:14
Arsenic	0.0490	mg/L	0.0010	98	90	110			
Barium	0.0486	mg/L	0.0010	97	90	110			
Cadmium	0.0491	mg/L	0.0010	98	90	110			
Chromium	0.0501	mg/L	0.0010	100	90	110			
Lead	0.0483	mg/L	0.0010	97	90	110			
Selenium	0.0501	mg/L	0.0010	100	90	110			
Silver	0.0207	mg/L	0.0010	103	90	110			
Uranium	0.0485	mg/L	0.00030	97	90	110			
Sample ID: ICSA	8 Interference C	heck Sampl	e A					05/01/	/12 13:16
Arsenic	0.0103	mg/L	0.0010						
Barium	3.16E-05	mg/L	0.0010						
Cadmium	0.0104	mg/L	0.0010						
Chromium	0.0104	mg/L	0.0010						
Lead	3.39E-05	mg/L	0.0010						
Selenium	8.30E-06	mg/L	0.0010						
Silver	0.0108	mg/L	0.0010						
Uranium	6.80E-05	mg/L	0.00030						
Sample ID: ICSAB	8 Interference C	heck Sampl	e AB					05/01/	/12 13:19
Arsenic	0.0103	mg/L	0.0010	103	70	130			
Barium	4.64E-05	mg/L	0.0010						
Cadmium	0.0106	mg/L	0.0010	106	70	130			
Chromium	0.0105	mg/L	0.0010	105	70	130			
Lead	3.92E-05	mg/L	0.0010						
Selenium	1.39E-05	mg/L	0.0010						
Silver	0.0107	mg/L	0.0010	107	70	130			
Uranium	1.47E-05	mg/L	0.00030						
Method: SW6020								Bat	ch: 33469
Sample ID: MB-33469	8 Method Blank				Run: ICPM	S2-C_120501A		05/01/	/12 13:45
Arsenic	ND	mg/L	6E-05						
Barium	0.005	mg/L	3E-05						
Cadmium	0.0001	mg/L	1E-05						
Chromium	0.002	mg/L	4E-05						
Lead	0.0001	mg/L	3E-05						
Selenium	0.0002	mg/L	0.0002						
Silver	0.002	mg/L	3E-05						
Uranium	0.001	mg/L	1E-05						
Sample ID: LCS3-33469	8 Laboratory Co	ntrol Sample)		Run: ICPM	S2-C_120501A		05/01/	/12 13:47
Arsenic	0.47	mg/L	0.0010	93	80	120			
Barium	0.51	mg/L	0.050	100	80	120			
Cadmium	0.24	mg/L	0.0010	96	80	120			
Chromium	0.49	mg/L	0.0050	98	80	120			

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine Closure Plan

Revised Date: 07/10/12 Report Date: 06/13/12 Work Order: C12041044

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW6020									Bat	ch: 33469
Sample ID: LCS3-33469	8 Lab	oratory Cor	ntrol Sampl	e		Run: ICPM	S2-C_120501A		05/01/	/12 13:47
Lead		0.51	mg/L	0.0010	101	80	120			
Selenium		0.43	mg/L	0.0010	86	80	120			
Silver		0.054	mg/L	0.0020	104	80	120			
Uranium		0.51	mg/L	0.00060	101	80	120			
Sample ID: LCSD3-33469	8 Lab	oratory Cor	ntrol Sampl	e Duplicate		Run: ICPM	S2-C_120501A		05/01/	/12 13:50
Arsenic		0.47	mg/L	0.0010	94	80	120	0.9	20	
Barium		0.51	mg/L	0.050	101	80	120	1.1	20	
Cadmium		0.24	mg/L	0.0010	96	80	120	0.1	20	
Chromium		0.49	mg/L	0.0050	97	80	120	0.4	20	
Lead		0.51	mg/L	0.0010	102	80	120	0.8	20	
Selenium		0.43	mg/L	0.0010	86	80	120	0.6	20	
Silver		0.055	mg/L	0.0020	106	80	120	2.1	20	
Uranium		0.51	mg/L	0.00060	101	80	120	0.0	20	
Sample ID: C12041044-004ADII	- 8 Ser	ial Dilution				Run: ICPM	S2-C_120501A		05/01/	/12 13:58
Arsenic		0.0054	mg/L	0.0050		0	0		20	Ν
Barium		0.037	mg/L	0.050		0	0		20	
Cadmium		0.00042	mg/L	0.0050		0	0		20	Ν
Chromium		0.0071	mg/L	0.0050		0	0	5.0	20	
Lead		0.0028	mg/L	0.0050		0	0		20	Ν
Selenium		0.0026	mg/L	0.0050		0	0		20	Ν
Silver		0.00070	mg/L	0.010		0	0		20	Ν
Uranium		0.0029	mg/L	0.0030		0	0		20	
Sample ID: C12041044-003AMS	3 8 Sar	nple Matrix	Spike			Run: ICPM	S2-C_120501A		05/01/	/12 14:26
Arsenic		0.47	mg/L	0.0010	94	75	125			
Barium		0.53	mg/L	0.050	103	75	125			
Cadmium		0.24	mg/L	0.0010	98	75	125			
Chromium		0.50	mg/L	0.0050	98	75	125			
Lead		0.52	mg/L	0.0010	103	75	125			
Selenium		0.44	mg/L	0.0010	88	75	125			
Silver		0.054	mg/L	0.0020	22	75	125			S
Uranium		0.54	mg/L	0.00060	106	75	125			
Method: SW6020									Bat	ch: 33470
Sample ID: MB-33470	8 Met	thod Blank				Run: ICPM	S2-C_120501A		05/01/	12 14:35
Arsenic		0.0003	mg/L	6E-05						
Barium		0.005	mg/L	3E-05						
Cadmium		0.0001	mg/L	1E-05						
Chromium		0.004	mg/L	4E-05						
Lead		9E-05	mg/L	3E-05						
Selenium		0.0003	mg/L	0.0002						
Silver		0.0006	mg/L	3E-05						
Uranium		0.0006	mg/L	1E-05						

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

S - Spike recovery outside of advisory limits.

ND - Not detected at the reporting limit.

N - The analyte concentration was not sufficiently high to calculate a RPD for the serial dilution test.

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine Closure Plan

Revised Date: 07/10/12 Report Date: 06/13/12 Work Order: C12041044

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW6020									Bate	ch: 33470
Sample ID: LCS3-33470	8 Lat	poratory Cor	ntrol Sample			Run: ICPM	S2-C_120501A		05/01/	12 14:49
Arsenic		0.47	mg/L	0.0010	95	80	120			
Barium		0.52	mg/L	0.050	102	80	120			
Cadmium		0.24	mg/L	0.0010	98	80	120			
Chromium		0.49	mg/L	0.0050	97	80	120			
Lead		0.51	mg/L	0.0010	103	80	120			
Selenium		0.45	mg/L	0.0010	89	80	120			
Silver		0.057	mg/L	0.0020	112	80	120			
Uranium		0.52	mg/L	0.00060	104	80	120			
Sample ID: LCSD3-33470	8 Lat	poratory Cor	ntrol Sample I	Duplicate		Run: ICPM	S2-C_120501A		05/01/	12 14:51
Arsenic		0.47	mg/L	0.0010	94	80	120	1.1	20	
Barium		0.52	mg/L	0.050	103	80	120	0.4	20	
Cadmium		0.24	mg/L	0.0010	98	80	120	0.0	20	
Chromium		0.49	mg/L	0.0050	98	80	120	1.0	20	
Lead		0.51	mg/L	0.0010	103	80	120	0.2	20	
Selenium		0.44	mg/L	0.0010	89	80	120	0.3	20	
Silver		0.056	mg/L	0.0020	110	80	120	1.9	20	
Uranium		0.52	mg/L	0.00060	103	80	120	0.7	20	
Sample ID: C12041044-010ADIL	8 Sei	rial Dilution				Run: ICPM	S2-C_120501A		05/01/	12 14:59
Arsenic		0.0083	mg/L	0.0050		0	0	8.8	20	
Barium		1.1	mg/L	0.050		0	0	3.4	20	
Cadmium		0.00051	mg/L	0.0050		0	0		20	Ν
Chromium		0.0088	mg/L	0.0050		0	0	10	20	
Lead		0.0032	mg/L	0.0050		0	0		20	Ν
Selenium		0.019	mg/L	0.0050		0	0		20	Ν
Silver		ND	mg/L	0.010		0	0		20	
Uranium		0.033	mg/L	0.0030		0	0	0.5	20	
Sample ID: C12041044-009AMS	3 8 Sa	mple Matrix	Spike				S2-C_120501A		05/01/	12 15:30
Arsenic		0.47	mg/L	0.0010	95	75	125			
Barium		0.54	mg/L	0.050	103	75	125			
Cadmium		0.25	mg/L	0.0010	99	75	125			
Chromium		0.49	mg/L	0.0050	98	75	125			
Lead		0.51	mg/L	0.0010	102	75	125			
Selenium		0.45	mg/L	0.0010	90	75	125			
Silver		0.054	mg/L	0.0020	21	75	125			S
Uranium		0.52	mg/L	0.00060	105	75	125			

Qualifiers:

RL - Analyte reporting limit. MDC - Minimum detectable concentration

S - Spike recovery outside of advisory limits.

ND - Not detected at the reporting limit.

N - The analyte concentration was not sufficiently high to calculate a RPD for the serial dilution test.

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine Closure Plan

Revised Date: 07/10/12 Report Date: 06/13/12 Work Order: C12041044

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD RPDLimit	Qual
Method: SW6020						Analy	tical Run: ICPMS2-C	_120504A
Sample ID: ICV	8 Initial Calibrati		on Standard				05/04	/12 13:40
Arsenic	0.0494	mg/L	0.0010	99	90	110		
Barium	0.0500	mg/L	0.0010	100	90	110		
Cadmium	0.0497	mg/L	0.0010	99	90	110		
Chromium	0.0490	mg/L	0.0010	98	90	110		
Lead	0.0497	mg/L	0.0010	99	90	110		
Selenium	0.0498	mg/L	0.0010	100	90	110		
Silver	0.0209	mg/L	0.0010	105	90	110		
Uranium	0.0510	mg/L	0.00030	102	90	110		
Sample ID: ICSA	8 Interference C	heck Sampl	e A				05/04	/12 13:43
Arsenic	0.0106	mg/L	0.0010					
Barium	8.40E-06	mg/L	0.0010					
Cadmium	0.0106	mg/L	0.0010					
Chromium	0.0105	mg/L	0.0010					
Lead	3.57E-05	mg/L	0.0010					
Selenium	0.000221	mg/L	0.0010					
Silver	0.0109	mg/L	0.0010					
Uranium	6.77E-05	mg/L	0.00030					
Sample ID: ICSAB	8 Interference C	heck Sampl	e AB				05/04	/12 13:46
Arsenic	0.0104	mg/L	0.0010	104	70	130		
Barium	7.45E-05	mg/L	0.0010					
Cadmium	0.0104	mg/L	0.0010	104	70	130		
Chromium	0.0104	mg/L	0.0010	104	70	130		
Lead	3.87E-05	mg/L	0.0010					
Selenium	3.16E-05	mg/L	0.0010					
Silver	0.0106	mg/L	0.0010	105	70	130		
Uranium	1.56E-05	mg/L	0.00030					
Method: SW6020							Ba	tch: 33541
Sample ID: MB-33541	8 Method Blank				Run: ICPM	S2-C_120504A	05/04	/12 14:11
Arsenic	0.0005	mg/L	6E-05			_		
Barium	0.006	mg/L	3E-05					
Cadmium	0.0001	mg/L	1E-05					
Chromium	0.003	mg/L	4E-05					
Lead	0.0002	mg/L	3E-05					
Selenium	ND	mg/L	0.0002					
Silver	0.002	mg/L	3E-05					
Uranium	0.0003	mg/L	1E-05					
Sample ID: LCS3-33541	8 Laboratory Co	ntrol Sample	9		Run: ICPM	S2-C_120504A	05/04	/12 14:14
Arsenic	0.46	mg/L	0.0010	93	80	120		
Barium	0.49	mg/L	0.050	96	80	120		
Cadmium	0.23	mg/L	0.0010	94	80	120		
Chromium	0.48	mg/L	0.0050	95	80	120		

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine Closure Plan

Revised Date: 07/10/12 Report Date: 06/13/12 Work Order: C12041044

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW6020									Bat	ch: 33541
Sample ID: LCS3-33541	8 Lat	ooratory Co	ntrol Sample			Run: ICPM	S2-C_120504A		05/04/	/12 14:14
Lead		0.49	mg/L	0.0010	97	80	120			
Selenium		0.44	mg/L	0.0010	89	80	120			
Silver		0.051	mg/L	0.0020	97	80	120			
Uranium		0.50	mg/L	0.00060	99	80	120			
Sample ID: LCSD3-33541	8 Lat	poratory Co	ntrol Sample [Duplicate		Run: ICPM	S2-C_120504A		05/04/	/12 14:16
Arsenic		0.48	mg/L	0.0010	95	80	120	2.6	20	
Barium		0.50	mg/L	0.050	98	80	120	1.9	20	
Cadmium		0.24	mg/L	0.0010	96	80	120	2.3	20	
Chromium		0.49	mg/L	0.0050	98	80	120	3.7	20	
Lead		0.50	mg/L	0.0010	100	80	120	2.8	20	
Selenium		0.46	mg/L	0.0010	91	80	120	2.4	20	
Silver		0.053	mg/L	0.0020	101	80	120	4.0	20	
Uranium		0.50	mg/L	0.00060	99	80	120	0.1	20	
Sample ID: C12041044-022AMS	3 8 Sa	mple Matrix	Spike			Run: ICPM	S2-C_120504A		05/04/	/12 14:25
Arsenic		0.48	mg/L	0.0010	94	75	125			
Barium		0.55	mg/L	0.050	100	75	125			
Cadmium		0.24	mg/L	0.0010	96	75	125			
Chromium		0.48	mg/L	0.0050	95	75	125			
Lead		0.50	mg/L	0.0010	100	75	125			
Selenium		0.47	mg/L	0.0010	91	75	125			
Silver		0.050	mg/L	0.0020	20	75	125			S
Uranium		0.64	mg/L	0.00060	100	75	125			
Sample ID: C12041044-028ADIL	- 8 Se	rial Dilution				Run: ICPM	S2-C_120504A		05/04/	/12 14:58
Arsenic		0.0038	mg/L	0.0050		0	0		20	Ν
Barium		0.029	mg/L	0.050		0	0		20	
Cadmium		0.00016	mg/L	0.0050		0	0		20	Ν
Chromium		0.0040	mg/L	0.0050		0	0		20	Ν
Lead		0.0018	mg/L	0.0050		0	0		20	Ν
Selenium		0.0079	mg/L	0.0050		0	0		20	Ν
Silver		ND	mg/L	0.010		0	0		20	
Uranium		0.011	mg/L	0.0030		0	0	5.0	20	

Qualifiers:

RL - Analyte reporting limit. MDC - Minimum detectable concentration

S - Spike recovery outside of advisory limits.

ND - Not detected at the reporting limit.

N - The analyte concentration was not sufficiently high to calculate a RPD for the serial dilution test.

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine Closure Plan

Revised Date: 07/10/12 Report Date: 06/13/12 Work Order: C12041044

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD RPDLimit	Qual
Method: SW6020						Analy	tical Run: ICPMS4-C	_120425E
Sample ID: ICV	8 Initial Calibra						04/25	/12 11:08
Arsenic	0.0486	mg/L	0.0010	97	90	110		
Barium	0.0497	mg/L	0.0010	99	90	110		
Cadmium	0.0501	mg/L	0.0010	100	90	110		
Chromium	0.0491	mg/L	0.0010	98	90	110		
Lead	0.0497	mg/L	0.0010	99	90	110		
Selenium	0.0485	mg/L	0.0010	97	90	110		
Silver	0.0193	mg/L	0.0010	97	90	110		
Uranium	0.0481	mg/L	0.00030	96	90	110		
Sample ID: ICSA	8 Interference	Check Samp	le A				04/25	/12 11:12
Arsenic	2.21E-05	mg/L	0.0010					
Barium	2.39E-05	mg/L	0.0010					
Cadmium	4.21E-05	mg/L	0.0010					
Chromium	2.05E-05	mg/L	0.0010					
Lead	1.30E-05	mg/L	0.0010					
Selenium	7.84E-05	mg/L	0.0010					
Silver	-0.000229	mg/L	0.0010					
Uranium	2.36E-05	mg/L	0.00030					
Sample ID: ICSAB	8 Interference	Check Samp	le AB				04/25	/12 11:17
Arsenic	0.0113	mg/L	0.0010	113	70	130		
Barium	1.46E-05	mg/L	0.0010					
Cadmium	0.0109	mg/L	0.0010	109	70	130		
Chromium	0.0115	mg/L	0.0010	115	70	130		
Lead	5.40E-06	mg/L	0.0010					
Selenium	7.00E-07	mg/L	0.0010					
Silver	0.00988	mg/L	0.0010	99	70	130		
Uranium	8.30E-06	mg/L	0.00030					
Method: SW6020							Ba	tch: 33440
Sample ID: MB-33440	8 Method Blank	κ			Run: ICPM	S4-C_120425B	04/25	/12 19:38
Arsenic	0.0004	mg/L	7E-05					
Barium	0.01	mg/L	0.0001					
Cadmium	0.0001	mg/L	4E-05					
Chromium	ND	mg/L	0.001					
Lead	0.0002	mg/L	3E-05					
Selenium	0.0001	mg/L	6E-05					
Silver	0.001	mg/L	2E-05					
Uranium	0.004	mg/L	5E-05					
Sample ID: LCS3-33440	8 Laboratory C	ontrol Sampl	e		Run: ICPM	S4-C_120425B	04/25	/12 19:43
Arsenic	0.46	mg/L	0.0010	91	80	 120		
Barium	0.50	mg/L	0.050	98	80	120		
Cadmium	0.24	mg/L	0.0010	97	80	120		
Chromium	0.50	mg/L	0.0050	101	80	120		

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine Closure Plan

Revised Date: 07/10/12 Report Date: 06/13/12 Work Order: C12041044

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW6020									Bat	ch: 33440
Sample ID: LCS3-33440	8 Lab	poratory Cor	ntrol Sample			Run: ICPM	S4-C_120425B		04/25/	/12 19:43
Lead		0.51	mg/L	0.0010	103	80	120			
Selenium		0.44	mg/L	0.0010	87	80	120			
Silver		0.053	mg/L	0.0010	104	80	120			
Uranium		0.50	mg/L	0.00030	99	80	120			
Sample ID: LCSD3-33440	8 Lat	poratory Cor	ntrol Sample I	Duplicate		Run: ICPM	S4-C_120425B		04/25/	/12 20:05
Arsenic		0.47	mg/L	0.0010	94	80	120	2.8	20	
Barium		0.50	mg/L	0.050	99	80	120	1.0	20	
Cadmium		0.25	mg/L	0.0010	98	80	120	1.0	20	
Chromium		0.52	mg/L	0.0050	104	80	120	3.4	20	
Lead		0.51	mg/L	0.0010	103	80	120	0.0	20	
Selenium		0.44	mg/L	0.0010	89	80	120	1.5	20	
Silver		0.054	mg/L	0.0010	106	80	120	1.7	20	
Uranium		0.51	mg/L	0.00030	100	80	120	1.0	20	
Sample ID: C12041044-002ADIL	8 Sei	rial Dilution				Run: ICPM	S4-C_120425B		04/25/	/12 20:19
Arsenic		0.0017	mg/L	0.0010		0	0		20	Ν
Barium		0.065	mg/L	0.050		0	0	2.8	20	
Cadmium		ND	mg/L	0.0010		0	0		20	
Chromium		ND	mg/L	0.011		0	0		20	
Lead		0.0028	mg/L	0.0010		0	0		20	Ν
Selenium		ND	mg/L	0.0010		0	0		20	
Silver		ND	mg/L	0.0010		0	0		20	
Uranium		0.010	mg/L	0.00052		0	0	5.8	20	
Sample ID: C12041044-001AMS	3 8 Sa	mple Matrix	Spike			Run: ICPM	S4-C_120425B		04/25/	/12 21:40
Arsenic		0.48	mg/L	0.0010	94	75	125			
Barium		0.68	mg/L	0.050	102	75	125			
Cadmium		0.25	mg/L	0.0010	98	75	125			
Chromium		0.55	mg/L	0.0050	107	75	125			
Lead		0.54	mg/L	0.0010	105	75	125			
Selenium		0.46	mg/L	0.0010	92	75	125			
Silver		0.053	mg/L	0.0010	21	75	125			S
Uranium		0.60	mg/L	0.00030	104	75	125			

Qualifiers:

RL - Analyte reporting limit. MDC - Minimum detectable concentration

S - Spike recovery outside of advisory limits.

ND - Not detected at the reporting limit.

N - The analyte concentration was not sufficiently high to calculate a RPD for the serial dilution test.

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine Closure Plan

Revised Date: 07/10/12 Report Date: 06/13/12 Work Order: C12041044

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD RPDLimi	Qual
Method: SW6020						Analy	tical Run: ICPMS4-	C_120502A
Sample ID: ICV	8 Initial Calibra						05/0	2/12 11:40
Arsenic	0.0474	mg/L	0.0010	95	90	110		
Barium	0.0493	mg/L	0.0010	99	90	110		
Cadmium	0.0496	mg/L	0.0010	99	90	110		
Chromium	0.0478	mg/L	0.0010	96	90	110		
Lead	0.0491	mg/L	0.0010	98	90	110		
Selenium	0.0481	mg/L	0.0010	96	90	110		
Silver	0.0199	mg/L	0.0010	99	90	110		
Uranium	0.0480	mg/L	0.00030	96	90	110		
Sample ID: ICSA	8 Interference	Check Samp	le A				05/0	2/12 11:44
Arsenic	0.00936	mg/L	0.0010					
Barium	2.85E-05	mg/L	0.0010					
Cadmium	0.00986	mg/L	0.0010					
Chromium	0.00959	mg/L	0.0010					
Lead	2.17E-05	mg/L	0.0010					
Selenium	5.69E-05	mg/L	0.0010					
Silver	0.00979	mg/L	0.0010					
Uranium	2.50E-05	mg/L	0.00030					
Sample ID: ICSAB	8 Interference (Check Samp	le AB				05/0	2/12 11:49
Arsenic	0.0100	mg/L	0.0010	100	70	130		
Barium	4.90E-05	mg/L	0.0010					
Cadmium	0.00995	mg/L	0.0010	99	70	130		
Chromium	0.0102	mg/L	0.0010	102	70	130		
Lead	8.90E-06	mg/L	0.0010					
Selenium	1.01E-05	mg/L	0.0010					
Silver	0.00963	mg/L	0.0010	96	70	130		
Uranium	4.30E-06	mg/L	0.00030					
Method: SW6020							В	atch: 33486
Sample ID: MB-33486	8 Method Blank	(Run: ICPM	S4-C_120502A	05/0	2/12 20:11
Arsenic	0.001	mg/L	7E-05					
Barium	0.004	mg/L	0.0001					
Cadmium	0.0001	mg/L	4E-05					
Chromium	0.003	mg/L	0.001					
Lead	0.0001	mg/L	3E-05					
Selenium	0.0001	mg/L	6E-05					
Silver	0.0002	mg/L	2E-05					
Uranium	0.0004	mg/L	5E-05					
Sample ID: LCS3-33486	8 Laboratory C	ontrol Sampl	e		Run: ICPM	S4-C_120502A	05/0	2/12 20:16
Arsenic	0.47	mg/L	0.0010	94	80	 120		
Barium	0.52	mg/L	0.050	102	80	120		
Cadmium	0.26	mg/L	0.0010	103	80	120		
	0.53	mg/L	0.0050	104	80	120		

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine Closure Plan

Revised Date: 07/10/12 Report Date: 06/13/12 Work Order: C12041044

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW6020									Bat	ch: 33486
Sample ID: LCS3-33486	8 La	boratory Co	ntrol Sample			Run: ICPM	S4-C_120502A		05/02	/12 20:16
Lead		0.54	mg/L	0.0010	108	80	120			
Selenium		0.45	mg/L	0.0010	90	80	120			
Silver		0.052	mg/L	0.0010	104	80	120			
Uranium		0.51	mg/L	0.00030	101	80	120			
Sample ID: LCSD3-33486	8 La	boratory Co	ntrol Sample D	uplicate		Run: ICPM	S4-C_120502A		05/02	/12 20:20
Arsenic		0.50	mg/L	0.0010	101	80	120	6.7	20	
Barium		0.54	mg/L	0.050	107	80	120	4.1	20	
Cadmium		0.27	mg/L	0.0010	106	80	120	3.5	20	
Chromium		0.58	mg/L	0.0050	115	80	120	9.7	20	
Lead		0.57	mg/L	0.0010	114	80	120	4.6	20	
Selenium		0.48	mg/L	0.0010	96	80	120	7.2	20	
Silver		0.055	mg/L	0.0010	110	80	120	5.5	20	
Uranium		0.52	mg/L	0.00030	104	80	120	3.0	20	
Sample ID: C12041044-016AMS	3 8 Sa	mple Matrix	Spike			Run: ICPM	S4-C_120502A		05/02	/12 21:15
Arsenic		0.50	mg/L	0.0010	99	75	125			
Barium		0.60	mg/L	0.050	108	75	125			
Cadmium		0.26	mg/L	0.0010	106	75	125			
Chromium		0.57	mg/L	0.0050	113	75	125			
Lead		0.56	mg/L	0.0010	112	75	125			
Selenium		0.49	mg/L	0.0010	96	75	125			
Silver		0.054	mg/L	0.0010	21	75	125			S
Uranium		0.56	mg/L	0.00030	106	75	125			

S - Spike recovery outside of advisory limits.

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine Closure Plan

Revised Date: 07/10/12 Report Date: 06/13/12 Work Order: C12041044

	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimi	t Qual
SW7470A							Analytica	Run:	CVAA_C20	3_120426A
ICV	Initi	ial Calibrati	on Verificatio	n Standard					04/2	26/12 11:49
		0.00526	mg/L	0.00010	105	90	110			
SW7470A									В	atch: 33421
MB-33421	Me	thod Blank				Run: CVAA	_C203_120426A		04/2	26/12 12:32
		ND	mg/L	3E-05						
LCS-33421	Lab	oratory Co	ntrol Sample			Run: CVAA	C203 120426A		04/2	26/12 12:33
		0.0053	mg/L	0.0020	106	85	115			
LCSD-33421	Lab	oratory Co	ntrol Sample	Duplicate		Run: CVAA	C203 120426A		04/2	26/12 12:35
		0.0054	mg/L	0.0020	108	85	115	1.1	10	
C12041044-001ASD	Ser	ial Dilution				Run: CVAA	C203 120426A		04/2	26/12 12:37
		ND	mg/L	0.0020						
SW7470A							Analytica	Run: (CVAA C20	3 120430A
	Initi	ial Calibrati	on Verificatio	n Standard			, inaly iou			30/12 13:50
		0.00522	mg/L	0.00010	104	90	110		04/0	0/12 10.00
SW7470A									B	atch: 33433
	Mo	thad Blank					C202 120/20A			30/12 15:12
MD-33433	IVIE	ND	mg/L	3E-05			_0203_120430A		04/3	50/12 13.12
1 65-33433	Lah	oratory Co	ntrol Sampla				C202 120420A		04/3	30/12 15:14
200-00400	Lat	-	-	0 0020	104	-			04/3	50/12 15.14
	_		-	0.0020	101					
C12041044-003AMS	Sar	-							04/3	30/12 15:19
		0.00519	mg/L	0.0020	104	85	115			
SW7470A									В	atch: 33434
MB-33434	Me	thod Blank				Run: CVAA	_C203_120430A		04/3	30/12 15:30
		ND	mg/L	3E-05						
C12041044-009AMS	Sar	nple Matrix	Spike			Run: CVAA	_C203_120430A		04/3	30/12 15:36
		0.00996	mg/L	0.0020	100	85	115			
LCS-33434	Lab	oratory Co	ntrol Sample			Run: CVAA	C203 120430A		04/3	30/12 15:45
		0.00504	mg/L	0.0020	101	85	115			
SW7470A									В	atch: 33465
MB-33465	Me	thod Blank				Run: CVAA	C203 120430A			30/12 15:52
		ND	mg/L	3E-05						
LCS-33465	Lah	oratory Co	ntrol Sample			Run: CVAA	C203 120430A		04/?	30/12 15:55
	Lac	0.00497	mg/L	0.0020	99	85	_0200_120400/(115		0 // 0	10.00
C12041044-016AMS	Sar	nnle Matriv	Snike				C203 1204304		04/2	30/12 16:04
012071077-010AM3	Jai	0.0105	mg/L	0.0020	105	85	_0203_120430A 115		04/3	10.04
	ICV SW7470A MB-33421 LCS-33421 LCSD-33421 C12041044-001ASD SW7470A ICV SW7470A MB-33433 LCS-33433 C12041044-003AMS SW7470A MB-33434 C12041044-009AMS LCS-33434	ICV Initial SW7470A Me MB-33421 Lab LCS-33421 Lab LCSD-33421 Lab C12041044-001ASD Ser SW7470A Initial SW7470A Me ICV Initial SW7470A Me ICS-33433 Me LCS-33433 Lab C12041044-003AMS Sar SW7470A Me G12041044-009AMS Sar SW7470A Me MB-33434 Me C12041044-009AMS Sar SW7470A Me MB-33465 Me LCS-33465 Lab	ICV Initial Calibration 0.00526 SW7470A MB-33421 Method Blank ND LCS-33421 Laboratory Co 0.0053 LCSD-33421 Laboratory Co 0.0054 C12041044-001 ASD Serial Dilution ND SW7470A ICV Initial Calibration 0.00522 SW7470A MB-33433 Method Blank ND LCS-33433 Laboratory Co 0.00519 SW7470A Method Blank ND C12041044-003AMS Sample Matrix 0.00519 SW7470A Method Blank ND C12041044-009AMS Sample Matrix 0.00996 LCS-33434 Laboratory Co 0.00504 SW7470A Method Blank ND C12041044-009AMS Sample Matrix 0.00996 LCS-33434 Laboratory Co 0.00504	ICV Initial Calibration Verification 0.00526 mg/L SW7470A MB-33421 Method Blank ND mg/L LCS-33421 Laboratory Control Sample 0.0053 mg/L LCSD-33421 Laboratory Control Sample 0.0054 mg/L C12041044-001 ASD Serial Dilution ND mg/L SW7470A ICV Initial Calibration Verification 0.00522 mg/L SW7470A MB-33433 Method Blank ND mg/L LCS-33433 Laboratory Control Sample 0.00520 mg/L C12041044-003AMS Sample Matrix Spike 0.00519 mg/L SW7470A MB-33434 Method Blank ND mg/L C12041044-009AMS Sample Matrix Spike 0.00996 mg/L LCS-33434 Laboratory Control Sample 0.00504 mg/L LCS-33434 Method Blank ND mg/L C12041044-009AMS Sample Matrix Spike 0.00996 mg/L LCS-33434 Laboratory Control Sample 0.00504 mg/L LCS-33435 Method Blank ND mg/L LCS-33465 Laboratory Control Sample 0.00497 mg/L C12041044-016AMS Sample Matrix Spike	SW7470A Initial Calibration Verification Standard ICV Initial Calibration mg/L 0.00010 SW7470A MB-33421 Method Blank ND mg/L 3E-05 LCS-33421 Laboratory Control Sample 0.0020 0.0020 LCSD-33421 Laboratory Control Sample Duplicate 0.0020 0.0054 mg/L 0.0020 C12041044-001ASD Serial Dilution mg/L 0.0020 SW7470A Initial Calibration Verification Standard 0.0020 SW7470A Method Blank ND mg/L 3E-05 LCS-33433 Laboratory Control Sample 0.0020 SW7470A Method Blank ND mg/L 0.0020 SW7470A Method Blank ND mg/L 0.0020 SW7470A	SW7470A Initial Calibration Verification Standard 0.00010 105 SW7470A MB-33421 Method Blank ND mg/L 3E-05 LCS-33421 Laboratory Control Sample 0.0053 mg/L 0.0020 106 LCSD-33421 Laboratory Control Sample Duplicate 0.0054 0.0020 108 C12041044-001ASD Serial Dilution ND mg/L 0.0020 108 SW7470A Initial Calibration Verification Standard 0.00522 0.00010 104 SW7470A Method Blank ND mg/L 0.0020 104 SW7470A Sample Matrix Spike 0.0020 104 SW7470A Method Blank ND mg/L 0.0020 104 SW7470A Method Blank ND mg/L 0.0020 104 SW7470A Method Blank ND ND 0.0020	SW7470A Initial Calibration Verification Standard 0.00010 105 90 SW7470A MB-33421 Method Blank Run: CVAA ND mg/L 3E-05 Run: CVAA LCS-33421 Laboratory Control Sample Run: CVAA 0.0053 mg/L 0.0020 106 85 LCSD-33421 Laboratory Control Sample Duplicate Run: CVAA 0.0054 mg/L 0.0020 108 85 C12041044-001ASD Serial Dilution Run: CVAA ND mg/L 0.0020 108 85 C12041044-001ASD Serial Dilution Run: CVAA ND mg/L 0.0020 104 85 SW7470A ICV Initial Calibration Verification Standard 0.0020 104 85 SW7470A MB-33433 Method Blank Run: CVAA ND mg/L 3E-05 LCS-33433 Laboratory Control Sample Run: CVAA 0.00520 mg/L 0.0020 104 85 SW7470A MB-33434 Method Blank Run: CVAA 0.0020	SW7470A Analytica ICV Initial Calibration Verification Standard 0.00526 mg/L 0.00010 105 90 110 SW7470A MB-33421 Method Blank Run: CVAA_C203_120426A Run: CVAA_C203_120426A LCS-33421 Laboratory Control Sample Run: CVAA_C203_120426A 0.0053 mg/L 0.0020 106 85 115 LCSD-33421 Laboratory Control Sample Duplicate Run: CVAA_C203_120426A 0.0054 mg/L 0.0020 108 85 115 C12041044-001ASD Serial Dilution Run: CVAA_C203_120426A Analytica Run: CVAA_C203_120426A ND mg/L 0.0020 Run: CVAA_C203_120426A Analytica ICV Initial Calibration Verification Standard 0.0020 104 85 115 SW7470A Intital Calibration Verification Standard 0.0020 104 85 115 ICV Initial Calibration Verification Standard 0.00520 mg/L 0.0020 104 85 115 ICV40A Sou520 mg/L <td>SW7470A Analytical Run: 4 ICV Initial Calibration Verification Standard 0.00010 105 90 110 SW7470A MB-33421 Method Blank Run: CVAA_C203_120426A Run: CVAA_C203_120426A ND mg/L 3E-05 85 115 LCS-33421 Laboratory Control Sample 0.0053 Run: CVAA_C203_120426A 0.0054 0.0054 mg/L 0.0020 106 85 115 LCS-33421 Laboratory Control Sample Duplicate 0.0054 Run: CVAA_C203_120426A 0.0054 85 1.1 C12041044-001ASD Serial Dilution 0.0052 mg/L 0.0020 108 85 1.1 CV Initial Calibration Verification Standard 0.0052 mg/L 0.0020 104 90 110 SW7470A Method Blank Run: CVAA_C203_120430A 104 90 110 SW7470A MB-33433 Laboratory Control Sample Run: CVAA_C203_120430A 105 115 Strapple Matrix Spike Run: CVAA_C203_120430A 0.00519 mg/L 0.0020</td> <td>SW7470A Analytical Run: CVAA_C220 ICV Initial Calibration Verification Standard 0.42 0.00526 mg/L 0.00010 105 90 110 SW7470A Method Blank Run: CVAA_C203_120426A 0.42 ND mg/L 3E-05 Run: CVAA_C203_120426A 0.42 LCS-33421 Laboratory Control Sample Run: CVAA_C203_120426A 0.42 0.0053 mg/L 0.0020 106 85 115 LCSD-33421 Laboratory Control Sample Duplicate Run: CVAA_C203_120426A 0.42 0.0054 mg/L 0.0020 108 85 115 14 C12041044-001ASD Serial Dilution Run: CVAA_C203_120426A 0.42 ND<mg l<="" td=""> 0.0020 108 85 115 042 SW7470A Malytical Run: CVAA_C203_120426A 0.42 0.42 ND<mg l<="" td=""> 0.0020 104 85 115 042 SW7470A Method Blank Run: CVAA_C203_120430A 042 0.42 0.42 <</mg></mg></td>	SW7470A Analytical Run: 4 ICV Initial Calibration Verification Standard 0.00010 105 90 110 SW7470A MB-33421 Method Blank Run: CVAA_C203_120426A Run: CVAA_C203_120426A ND mg/L 3E-05 85 115 LCS-33421 Laboratory Control Sample 0.0053 Run: CVAA_C203_120426A 0.0054 0.0054 mg/L 0.0020 106 85 115 LCS-33421 Laboratory Control Sample Duplicate 0.0054 Run: CVAA_C203_120426A 0.0054 85 1.1 C12041044-001ASD Serial Dilution 0.0052 mg/L 0.0020 108 85 1.1 CV Initial Calibration Verification Standard 0.0052 mg/L 0.0020 104 90 110 SW7470A Method Blank Run: CVAA_C203_120430A 104 90 110 SW7470A MB-33433 Laboratory Control Sample Run: CVAA_C203_120430A 105 115 Strapple Matrix Spike Run: CVAA_C203_120430A 0.00519 mg/L 0.0020	SW7470A Analytical Run: CVAA_C220 ICV Initial Calibration Verification Standard 0.42 0.00526 mg/L 0.00010 105 90 110 SW7470A Method Blank Run: CVAA_C203_120426A 0.42 ND mg/L 3E-05 Run: CVAA_C203_120426A 0.42 LCS-33421 Laboratory Control Sample Run: CVAA_C203_120426A 0.42 0.0053 mg/L 0.0020 106 85 115 LCSD-33421 Laboratory Control Sample Duplicate Run: CVAA_C203_120426A 0.42 0.0054 mg/L 0.0020 108 85 115 14 C12041044-001ASD Serial Dilution Run: CVAA_C203_120426A 0.42 ND <mg l<="" td=""> 0.0020 108 85 115 042 SW7470A Malytical Run: CVAA_C203_120426A 0.42 0.42 ND<mg l<="" td=""> 0.0020 104 85 115 042 SW7470A Method Blank Run: CVAA_C203_120430A 042 0.42 0.42 <</mg></mg>

Qualifiers:

RL - Analyte reporting limit. MDC - Minimum detectable concentration ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine Closure Plan

Revised Date: 07/10/12 Report Date: 06/13/12 Work Order: C12041044

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW7470A							Analytica	al Run:	CVAA_C203_	_120502A
Sample ID: ICV	Init	tial Calibratio	on Verificatio	n Standard					05/02/	/12 10:05
Mercury		0.00516	mg/L	0.00010	103	90	110			
Method: SW7470A									Bat	ch: 33523
Sample ID: MB-33523	Me	thod Blank				Run: CVAA	_C203_120502A	1	05/02/	12 11:22
Mercury		ND	mg/L	3E-05						
Sample ID: LCS-33523	Lal	boratory Cor	ntrol Sample			Run: CVAA	_C203_120502A	۱	05/02/	/12 11:23
Mercury		0.00530	mg/L	0.0020	106	85	115			
Sample ID: LCSD-33523	Lal	boratory Cor	ntrol Sample	Duplicate		Run: CVAA	_C203_120502A	۱	05/02/	/12 11:25
Mercury		0.00541	mg/L	0.0020	108	85	115	2.1	10	
Sample ID: C12041044-022AMS	Sa	mple Matrix	Spike			Run: CVAA	_C203_120502A	۱	05/02/	/12 11:27
Mercury		0.00534	mg/L	0.0020	107	85	115			
Sample ID: C12041044-028ADIL	. Se	rial Dilution				Run: CVAA	_C203_120502A	۱.	05/02/	/12 11:39
Mercury		ND	mg/L	0.0020					10	

C12041044

Standard Reporting Procedures

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as -dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

Workorder Receipt Checklist

Rio Grande Resources Corporation

Login completed by:	Kristy Gisse		Date F	Received: 4/20/2012
Reviewed by:	BL2000\kschroeder		Rec	ceived by: kg
Reviewed Date:	4/26/2012			Carrier FedEx name:
Shipping container/cooler in	good condition?	Yes 🗹	No 🗌	Not Present
Custody seals intact on ship	ping container/cooler?	Yes	No 🗌	Not Present 🗸
Custody seals intact on sam	ple bottles?	Yes	No 🗌	Not Present 🔽
Chain of custody present?		Yes 🔽	No 🗌	
Chain of custody signed whe	en relinquished and received?	Yes 🔽	No 🗌	
Chain of custody agrees with	n sample labels?	Yes 🔽	No 🗌	
Samples in proper container	/bottle?	Yes 🔽	No 🗌	
Sample containers intact?		Yes 🔽	No 🗌	
Sufficient sample volume for	indicated test?	Yes	No 🗹	
All samples received within h (Exclude analyses that are c such as pH, DO, Res CI, Su	onsidered field parameters	Yes 🗹	No 🗌	
Container/Temp Blank temp	erature:	11.2℃ No Ice		
Water - VOA vials have zero	headspace?	Yes	No 🗌	No VOA vials submitted
Water - pH acceptable upon	receipt?	Yes 🗌	No 🗌	Not Applicable

Contact and Corrective Action Comments:

Sample MT-6-A-S3 insufficient volume for testing. Cancelled per phone conversation with Barbara Everett.

Rin Granda Decourses Com		Project Name, PWS, Permit, Etc.	S, Permit, E	Project Name, PWS, Permit, Etc.	26	Sam	Sample Orioin	EDA (Stata Camelia
		Mt. 1aylor Mine Closure Plan	sure Plan			State	State: NM	
report Mail Address: PO Box 1150 Grants, NM 87020 Additional e-mail copy to beverett@kleinfelder.com		Contact Name: Barbara Everett (Kleinfelder)	<u>a 0 0</u>	Phone/Fax: (505) 344-7373 (505) 280-1079 (Cell)		Email: bevere com	Email: beverett@kleinfelder. com	n Ever
Invoice Address: PO Box 1150 Grants, NM 87020		Invoice Contact & Phone: Jeanette Lister 505-287-7971	hone: -287-7971			Purch	Purchase Order:	Quote/Bottle Order: C3778
Special Report/Formats – ELI must be notified prior to sample submittal for the following:	ified	l	ANALY313	REQUESTED			Contact ELI prior to	to Snipped by:
		ritatiners N S V B I issay Othe				¥ :	for charges and for charges and scheduling – See Instruction Page	
GSA DD/ED/EDT(Electronic Data)	tronic Data)	·	8		· · · · · · · · · · · · · · · · · · ·		Comments:	Heceipt Temp
Other: Detroits		Numi Sample Air <u>v</u> <u>V</u> egeta Extract Extract	04 ph IC		SEE A	U I		Vn ice: Yes No
TIFICATION Collection Interval, etc.) Date	Collection Time	alas X	Ra226	IDE	N 			Intact Y N Signature Y N
MT-1-F - 4-10-12	54:01	Sediment X K	x		×		6" B.G.	•
-2-0	10:15	Sedment X X	×		×		+	ATR
-3-F - 4-0-12	01;11	Sodimont X K	×		×		6" B.6	10
-4-F · · 4-10-D	9:35	Sediment X X	*		×			<u>ISI</u>
	10:0	Sodiment X X	* ×		×		6" 8.6.	n A
0,0- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	C7:1	<u>y</u>	×		×		6" B.4.	¥0.
2+016 7-4	10:55		* >		× >			TAS
	14:00	Sediment X X	x x		< ×		6' 0'0'	108
		Sediment			×	,-		
Custody ED US Scitter Data Internet Record Reinquistred by (print): Data Internet Building Data Internet Internet Parts Intern	2102/	signature:		Received by (gnmt):	Levent Date		1	Signature:
Sample Disposal: Return to Olien		- June	5	Received by Laboratory:		Date/Time:		Signature

This serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report.

Company Name: Rio Grande Resources Corp	Corb			Project Name, PWS, Permit, Etc.	e, PWS	. Permit	Name, PWS, Permit, Etc.	a possible.		Samp	Sample Origin	EPA/State Compliance:	npliance:
							_			State: NM	NM :	Yes 🛛	⊡ ²
ress: copy	PU Box 1150 Grants, NM 87020 to beverett@kleinfe	87020 kleinfelder.com		Contact Name: Barbara Evereti (Kleinfelder)	Name: Everett der)		Phone/Fax: (505) 344-7373 (505) 280-1079 (Cell)	(Cell)		Email bever com	Email: be verett @ kleinfeider. com	Sampler: (Please Barbara Everett Ed Loescher	se Print) tt
Invoice Address: PO Box 1150 Grants, NM 87020				Invoice Contact & Phone: Jeanette Lister 505-287-7971	tact & P ter 505	hone: -287-797	-			Purch	Purchase Order:	Quote/Bottle Order. C3778	rder:
Special Report/Formats – ELI must be not prior to sample submittal for the following:	mats – ELI mittal for th	ELI must be notified or the following:		L L	ANNI ANNI	WINNT WEIS	s requested	STED			Contact ELI prior to	Shipped by	DA: NOL
		D	· <u> </u>	tainers V S V B Solids Aft <u>O</u> the		<u> </u>				2	for charges and scheduling – See		
		A2LA EDD/EDT(Electronic Data)		of Con NA :90 slio <u>3</u> f slio3ss	muiner					D	Instruction Page Comments:	6 Out Perceipt Temp	->
Other:		Format: <u>excel</u> LEVEL IV NELAC		Number Telqms2 Mutur Notistege⊻ Notistege	xtract Metals + U	4 PÀ IC 30 1 H9558		TTA 33.	emuT lem	S		Ves Yes	
SAMPLE IDENTIFICATION (Name, Location, Interval, etc.)	ATION Ival, etc.)	Collection 0 Date	Collection Time	MATRIX	а ча са Ва са	8 922eA		<u> </u>		L		Custody S Intact Signature	
MF40-S1.		71-0-4	2.05	Sediment	<u>ح</u> بر	। २			×	1	0.6"8.6	Match	•
MT-4-0-		2 21-01-h	2:10	Sediment	४ ४	<u>א</u> ג			×	1	14" 8.6.	<u> </u>	
	۲ ۲	2 21-01-4		Sediment	r R	ע ע			×	-		<u>vo</u>	
					X X	アイ			×		2		
mT-4-E-	. 23				بر بر	X X			×		10-12" B.G		
2-7-0	i				K K	<u>×</u> ×			×		36" 3,6,		
" my - c - sy					<u>x</u> V	א א			×	- +			
1 4 9	1	21-2-	505	Sediment		<u>بر</u>			×		0-5° 0,6.	<u>¥0</u>	
- +	X	< 71-2-h	2 L		<u>א א</u> א ז	25			×		12-20" 96.		
Heinquish		Date/Tir		12 \	- (Heceived by (print):			Date/Time:	5	Superie:	
l.	Relinquished by (print): BARBARP	CVPC CTT	419	16 DC	\mathcal{B}	R	Received by (print):	т		Date/Time:	00: () 71/11/		Ų
Signed Samole Discosat:		Dottion to Closef.	•	Ņ	\ \		Received by Laboratory:	boratory:	Dat	Date/Time:		Signature.	

This serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report.

	Company Name:			Droiort Nam	DIAN	0						(
Rio Grande	Hio Grande Resources Corp			Mt. Taylor M	Name, rws, remit, Etc. for Mine Closure Plan	s, rei	mr, FI	ပံ	ı			Sample O	Sample Origin	EPA/Sta	EPA/State Compliance:
Report Mail Address:	Address: PO Box 1150 Grants, NM 87020	50 A 87020		Contact Name: Barhara Everett	ne:	[)E £	Phone/Fax:	2			Email:	MN .	sampler	Sampler: (Please Print)
Additional e-	copy	t@kleinfelder.col	F	(Kleinfelder)			Э Ч Ч	(505) 280-1079 (Cell)	79 (Cell)			com	Deverett & kleinfelder, com	Ed Loescher	Barbara Everett Ed Loescher
Invoice Address: PO Box 1150 Grants, NM 87020	ess: 0 87020			Invoice Contact & Phone: Jeanette Lister 505-287-7971	lact & F ter 505	& Phone 505-287-	7971					Purch	Purchase Order:	Quote/B C3778	Quote/Bottle Order: C3778
Special Reprior to say	Special Report/Formats – ELI must be notified prior to sample submittal for the following:	ELI must be no	otified	נ ס	ANJ2	<u>a</u> ll V	ANAL VSIS		REQUESTED			1	Contact ELI prior to RUSH cample submitted		Shipped by: F = N(D)
			<u>.</u>	tainers V S V B (Solids eay <u>O</u> the						ED	(TAT)	z	for charges and scheduling – See		Cooler ID(s):
				n oʻ) to V A :94 Rio <u>č</u> 1 Reio <u>č</u>			0.			HO/) punc	D	Comments:		<u> </u>
	NTP		ectronic Uata)	e Typer o Wate Witen			006 (111	JEUJI	U,			
Other:] LEVEL IV		nuN Pams2 NA NA	xtract Metals	S. Ra22	N PÀ IC			∀ ∃∃9	IT lemi				Yes NG
SAMPLE	SAMPLE IDENTIFICATION	Collection	Collection	MATRIX	SPLP E		08 8 K			5	٥N	٢		0 = 0	Custody Seal Y (N) Intact Y N
MT-6-3-	MT-6-B-SI	Uate 44/0-12	7 : 30	Sediment	_		>			_	;				Natch Y N
2 mT-6-3-	1	2rol-h	2.35		<u><</u> ג א	-					*		204 01 010.		л с ,
3 MT-00-	- 12-2-1	21-01-4	1:20	Sediment	<u>ト</u> メ	- 					×		0-64 2.6		
1 mT- 00-		21014	1:27	Sediment	7 7	X					×			<u></u> 38	
	1	21.01-6	1:25	Sediment	x >	S					×	+	48250" B.6.		
m1-00-C	0- (- 54 -	2-10-4	1:30	Sediment	2	×					×				
mi-op-	D - 51	2-01-6	12:45	Sediment	メメ	×					×		0-6" 3.6.		
2	- 75- 0-00	71-0-4	12:45	Sediment		×					×	 -	46-50" B.C.		
mI- sp	- 0-53	2-0/-1	12,50	Sediment	k K	¥					×		76" 0.4.		
-LW	6 - F	オービ	52:60	Sediment	xx	×	×	 			×	<u></u> 			
Custody	EU Loca CHEN	,	e: 12	Signature.	ie (Received by (print)		010	126	Date/Time:	10.1 10/11	Signature	
MUST be	PARCARCA EX (print):	EVEREN 4	21151	16:00 Hatur	R	Ŋ		Received b				Ditertime		iii iii	
Signed	Sample Disposal:	Return to Client:	-	Lab Disposal:	5			Received to	Received by Laboratory:		Dat	Date/Time:		Signature:	

This serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report. Visit nur web site at www enermidah com for architional information chuminadiable fee schedule former and infor

ANALYTICAL SUMMARY REPORT

July 05, 2012

Rio Grande Resources Corporation PO Box 1150 Grants, NM 87020

Workorder No.: C12050924

Project Name: Mt. Taylor Mine

Energy Laboratories, Inc. Casper WY received the following 3 samples for Rio Grande Resources Corporation on 5/24/2012 for analysis.

Sample ID	Client Sample ID	Collect Date Receive Date	e Matrix	Test
C12050924-001	MT-WP-SM1	05/18/12 9:30 05/24/12	Soil	Digestion For RadioChemistry Radium 226 Uranium, Isotopic
C12050924-002	MT-WP-SM2	05/18/12 9:40 05/24/12	Soil	Same As Above
C12050924-003	MT-WP-SM3	05/18/12 10:00 05/24/12	Soil	Same As Above

The results as reported relate only to the item(s) submitted for testing. The analyses presented in this report were performed at Energy Laboratories, Inc., 2393 Salt Creek Hwy., Casper, WY 82601, unless otherwise noted. Radiochemistry analyses were performed at Energy Laboratories, Inc., 2325 Kerzell Lane, Casper, WY 82601, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

If you have any questions regarding these test results, please call.

Report Approved By:

Reporting Supervisor

Digitally signed by Stephanie Waldrop Date: 2012.07.05 16:09:59 -06:00

CLIENT:Rio Grande Resources CorporationProject:Mt. Taylor Mine

Sample Delivery Group: C12050924

Report Date: 07/05/12

CASE NARRATIVE

ORIGINAL SAMPLE SUBMITTAL(S)

All original sample submittals have been returned with the data package.

SAMPLE TEMPERATURE COMPLIANCE: 4 ℃ (±2 ℃)

Temperature of samples received may not be considered properly preserved by accepted standards. Samples that are hand delivered immediately after collection shall be considered acceptable if there is evidence that the chilling process has begun.

GROSS ALPHA ANALYSIS

Method 900.0 for gross alpha and gross beta is intended as a drinking water method for low TDS waters. Data provided by this method for non potable waters should be viewed as inconsistent.

RADON IN AIR ANALYSIS

The desired exposure time is 48 hours (2 days). The time delay in returning the canister to the laboratory for processing should be as short as possible to avoid excessive decay. Maximum recommended delay between end of exposure to beginning of counting should not exceed 8 days.

SOIL/SOLID SAMPLES

All samples reported on an as received basis unless otherwise indicated.

ATRAZINE, SIMAZINE AND PCB ANALYSIS

Data for PCBs, Atrazine and Simazine are reported from EPA 525.2. PCB data reported by ELI reflects the results for seven individual Aroclors. When the results for all seven are ND (not detected), the sample meets EPA compliance criteria for PCB monitoring.

SUBCONTRACTING ANALYSIS

Subcontracting of sample analyses to an outside laboratory may be required. If so, ENERGY LABORATORIES will utilize its branch laboratories or qualified contract laboratories for this service. Any such laboratories will be indicated within the Laboratory Analytical Report.

BRANCH LABORATORY LOCATIONS

eli-b - Energy Laboratories, Inc. - Billings, MT eli-g - Energy Laboratories, Inc. - Gillette, WY eli-h - Energy Laboratories, Inc. - Helena, MT eli-r - Energy Laboratories, Inc. - Rapid City, SD eli-t - Energy Laboratories, Inc. - College Station, TX

CERTIFICATIONS:

USEPA: WY00002, Radiochemical WY00937; FL-DOH NELAC: E87641, Radiochemical E871017; California: 02118CA; Oregon: WY200001, Radiochemical WY200002; Utah: WY00002; Virginia: 00057; Washington: C836

ISO 17025 DISCLAIMER:

The results of this Analytical Report relate only to the items submitted for analysis.

ENERGY LABORATORIES, INC. - CASPER, WY certifies that certain method selections contained in this report meet requirements as set forth by the above accrediting authorities. Some results requested by the client may not be covered under these certifications. All analysis data to be submitted for regulatory enforcement should be certified in the sample state of origin. Please verify ELI's certification coverage by visiting www.energylab.com

ELI appreciates the opportunity to provide you with this analytical service. For additional information and services visit our web page www.energylab.com.

Prepared by Casper, WY Branch

Client:	Rio Grande Resources Corporation
Project:	Mt. Taylor Mine
Lab ID:	C12050924-001
Client Sample ID:	MT-WP-SM1

 Report Date:
 07/05/12

 Collection Date:
 05/18/12 09:30

 DateReceived:
 05/24/12

 Matrix:
 Soil

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
RADIONUCLIDES							
Radium 226	0.7	pCi/g-dry				E903.0	06/20/12 01:37 / dmf
Radium 226 precision (±)	0.08	pCi/g-dry				E903.0	06/20/12 01:37 / dmf
Radium 226 MDC	0.04	pCi/g-dry				E903.0	06/20/12 01:37 / dmf
Uranium 234	0.6	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 234 precision (±)	0.3	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 234 MDC	0.3	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 235	0.03	pCi/g-dry	U			E908.0	06/18/12 08:39 / dmf
Uranium 235 precision (±)	0.09	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 235 MDC	0.2	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 238	0.6	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 238 precision (±)	0.2	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 238 MDC	0.2	pCi/g-dry				E908.0	06/18/12 08:39 / dmf

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

Prepared by Casper, WY Branch

Client:	Rio Grande Resources Corporation
Project:	Mt. Taylor Mine
Lab ID:	C12050924-002
Client Sample ID:	MT-WP-SM2

 Report Date:
 07/05/12

 Collection Date:
 05/18/12 09:40

 DateReceived:
 05/24/12

 Matrix:
 Soil

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
RADIONUCLIDES							
Radium 226	0.7	pCi/g-dry				E903.0	06/20/12 01:37 / dmf
Radium 226 precision (±)	0.08	pCi/g-dry				E903.0	06/20/12 01:37 / dmf
Radium 226 MDC	0.03	pCi/g-dry				E903.0	06/20/12 01:37 / dmf
Uranium 234	0.8	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 234 precision (±)	0.3	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 234 MDC	0.3	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 235	0.1	pCi/g-dry	U			E908.0	06/18/12 08:39 / dmf
Uranium 235 precision (±)	0.2	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 235 MDC	0.3	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 238	0.4	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 238 precision (±)	0.2	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 238 MDC	0.3	pCi/g-dry				E908.0	06/18/12 08:39 / dmf

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:	Rio Grande Resources Corporation
Project:	Mt. Taylor Mine
Lab ID:	C12050924-003
Client Sample ID:	MT-WP-SM3

 Report Date:
 07/05/12

 Collection Date:
 05/18/12 10:00

 DateReceived:
 05/24/12

 Matrix:
 Soil

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
RADIONUCLIDES							
Radium 226	1.1	pCi/g-dry				E903.0	06/20/12 01:37 / dmf
Radium 226 precision (±)	0.09	pCi/g-dry				E903.0	06/20/12 01:37 / dmf
Radium 226 MDC	0.03	pCi/g-dry				E903.0	06/20/12 01:37 / dmf
Uranium 234	1.1	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 234 precision (±)	0.3	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 234 MDC	0.2	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 235	-0.02	pCi/g-dry	U			E908.0	06/18/12 08:39 / dmf
Uranium 235 precision (±)	0.09	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 235 MDC	0.2	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 238	0.9	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 238 precision (±)	0.3	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 238 MDC	0.2	pCi/g-dry				E908.0	06/18/12 08:39 / dmf

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

QA/QC Summary Report

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine

Report Date: 07/05/12 Work Order: C12050924

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E903.0									Batch:	R161002
Sample ID: LCS-33822	Lal	ooratory Co	ntrol Sample			Run: BERT	HOLD 770-1_	120612A	06/20/	/12 01:37
Radium 226		0.29	pCi/g-dry		60	70	130			S
- LCS response is outside of the accept	ptance rang	e for this ana	lysis. Since the MB,	MS, and M	SD are ac	ceptable the b	atch is approved	i.		
Sample ID: MB-33822	3 Me	thod Blank				Run: BERT	HOLD 770-1_	120612A	06/20/	/12 01:37
Radium 226		-0.003	pCi/g-dry							U
Radium 226 precision (±)		0.003	pCi/g-dry							
Radium 226 MDC		0.006	pCi/g-dry							
Sample ID: C12050924-003AMS	Sa	mple Matrix	Spike			Run: BERT	HOLD 770-1_	120612A	06/20/	/12 01:37
Radium 226		4.6	pCi/g-dry		72	70	130			
Sample ID: C12050924-003AMSI) Sa	mple Matrix	Spike Duplicate			Run: BERT	HOLD 770-1_	120612A	06/20/	/12 01:37
Radium 226		4.5	pCi/g-dry		71	70	130	2.5	23.8	

Qualifiers:

RL - Analyte reporting limit. MDC - Minimum detectable concentration U - Not detected at minimum detectable concentration ND - Not detected at the reporting limit.

S - Spike recovery outside of advisory limits.

QA/QC Summary Report

Prepared by Casper, WY Branch

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine

Report Date:	07/05/12
Work Order:	C12050924

Analyte	Count	Result	Units	RL %F	REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E908.0									Batch:	R160930
Sample ID: C12050924-003AMS	2 S	ample Matrix	Spike			Run: EGG-	ORTEC_120614A		06/18/	12 08:39
Uranium 234		52.2	pCi/g-dry		115	70	130			
Uranium 238		53.1	pCi/g-dry		115	70	130			
Sample ID: C12050924-003AMSE) 2 S	ample Matrix	Spike Duplicate			Run: EGG-	ORTEC_120614A		06/18/	12 08:39
Uranium 234		51.9	pCi/g-dry		110	70	130	0.6	28	
Uranium 238		54.9	pCi/g-dry		114	70	130	3.3	27.8	
Sample ID: LCS-33822	2 L;	aboratory Co	ntrol Sample			Run: EGG-	ORTEC_120614A		06/18/	/12 08:39
Uranium 234		2.52	pCi/g-dry		108	80	120			
Uranium 238		2.59	pCi/g-dry		109	80	120			
Sample ID: MB-33822	9 M	lethod Blank				Run: EGG-	ORTEC_120614A		06/18/	/12 08:39
Uranium 234		0.01	pCi/g-dry							U
Uranium 234 precision (±)		0.02	pCi/g-dry							
Uranium 234 MDC		0.03	pCi/g-dry							
Uranium 235		0.0009	pCi/g-dry							U
Uranium 235 precision (±)		0.01	pCi/g-dry							
Uranium 235 MDC		0.03	pCi/g-dry							
Uranium 238		0.007	pCi/g-dry							U
Uranium 238 precision (±)		0.01	pCi/g-dry							
Uranium 238 MDC		0.03	pCi/g-dry							

C12050924

Standard Reporting Procedures

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

Workorder Receipt Checklist

Rio Grande Resources Corporation

Login completed by:	Brian H. Cody		Date	Received: 5/24/2012	
Reviewed by:	BL2000\kschroeder		Re	ceived by: kg	
Reviewed Date:	5/25/2012			Carrier Ground name:	
Shipping container/cooler in	good condition?	Yes 🗹	No 🗌	Not Present	
Custody seals intact on ship	oping container/cooler?	Yes 🗹	No 🗌	Not Present	
Custody seals intact on san	nple bottles?	Yes	No 🗌	Not Present 🗹	
Chain of custody present?		Yes 🗹	No 🗌		
Chain of custody signed wh	en relinquished and received?	Yes 🗹	No 🗌		
Chain of custody agrees wit	h sample labels?	Yes 🗹	No 🗌		
Samples in proper containe	r/bottle?	Yes 🗹	No 🗌		
Sample containers intact?		Yes 🗹	No 🗌		
Sufficient sample volume fo	r indicated test?	Yes 🗹	No 🗌		
All samples received within (Exclude analyses that are of such as pH, DO, Res Cl, S	considered field parameters	Yes 🗹	No 🗌		
Container/Temp Blank temp	perature:	22.3℃			
Water - VOA vials have zer	o headspace?	Yes	No 🗌	No VOA vials submitted	\checkmark
Water - pH acceptable upor	n receipt?	Yes 🗌	No 🗌	Not Applicable	

Contact and Corrective Action Comments:

None

Page <u>1</u> of <u>2</u>					Quote/Bottle Order.	ior to Shipped by:			11 1 2	Custody Seal	Signature		& 776	¥0	38	30 2		0	11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	020	77	Signature:	Signature:	Signature:	
ord	Samola Origin	State: NM	Email	joe.lister@riograndereso	Purchase Order:	Contact ELI prior to	2:	D		T												Date/Time:	Date/Time:	Date/Time: 5-24-129:15	a in andar to an an an an
al Request Record	nrormation as possible.		Phone/Fax:	(505)287-7971 jc		riequester 1			EE AT													Received by (print): D	Received by (print): D	Received by Laboratory: D	acted to other certified laboratorie
Chain of Custody and Analytical Request	Project Name, PWS, Permit, Etc.	MT. TAYLOR MINE	Contact Name: Ph	Joe Lister - Mine Manage	Invoice Contact & Phone: Joe Lister - Mine Managr	AMALYSIS	rtainers W S V B (s/Solids s/Solids s/sy <u>O</u> the	ype: A tter <u>S</u> oil: an <u>B</u> ioas	Γ əlqms2 <u>Air W</u> ≤ <u>V</u> egetatio Uranium	- 1-		soil XX	soil XX	soil								Signatural Prod	Signature:	Lab Disposal: XXXX	In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories
Chain of Cust					oration	tified	л ,	A2LA EDD/EDT(Electronic Data)	Format: LEVEL IV NELAC	Collection Collection	-+	05/18/12 09:30	05/18/12 09:40	05/18/12 10:00								05/22/12 09:19	Date/Time:	Return to Cilent:	samples submitted to Energy I
ENERGY LABORATORIES	Company Name:	Rio Grande Resources Corporation - NM #C11115	Report Mail Address:	PU Box 1150 Grants, New Mexico 87020	Invoice Address: Rio grande Resources Corp PO Box 1150	Special Report/Formats – ELI must be notified prior to sample submittal for the following:			Cother:	SAMPLE IDENTIFICATION	(Name, Location, Interval, etc.)	MT - WP - SM1	² MT - WP - SM2	³ MT - WP - SM3	4	Q	G	Δ		10	Balinon (shood he (asiab).			Signed Sample Disposai: Re	In certain circumstances,

This serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report. Visit our web site at <u>www.energylab.com</u> for additional information, downloadable fee schedule, forms, and links.

MT. TAYLOR ORE CHEMICAL ANALYSIS MARCH 18, 1986

& BY WEIGHT

	Les nestra	
Sodium		1.62
Magnesium		0.605
Aluminum		< 0.01
Silicon		33.40
Sulfur		0.118
Chlorine		0.030
Calcium		1.06
Titanium		0,149
Vanadium		0.091
Chromium		< 0.01
Manganese		0.03
Iron		1.52
Cobalt		< 0.01
Nickel		< 0.01
Copper		< 0.01
Zinc		< 0.01
Arsenic		< 0.01
Selenium		0.009
Bromide		< 0.01
Rubidium		0.016
Strontium		0.012
Zirconium		0.009
Molybdenum	-	0.003
Lead		. 0.012
Thorium	•	0.009
Uranium		0.420

Vinyard & Associates, Inc.

4415-D Hawkins, NE Albuquerque, New Mexico 87109 (505) 345-1937

Geotechnical Engineering • Materials Testing • Environmental Engineering

November 6, 1995

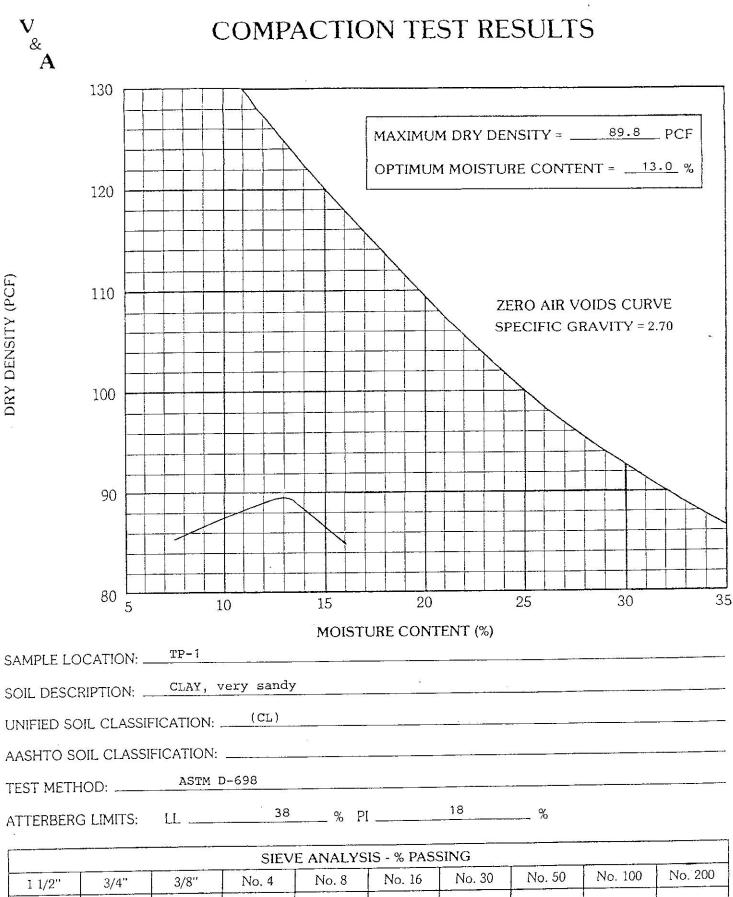
AK GeoConsult, Inc. 13212 Manitoba Drive, NE Albuquerque, NM 87111

Attn: Mr. Alan K. Kuhn, PhD, PE

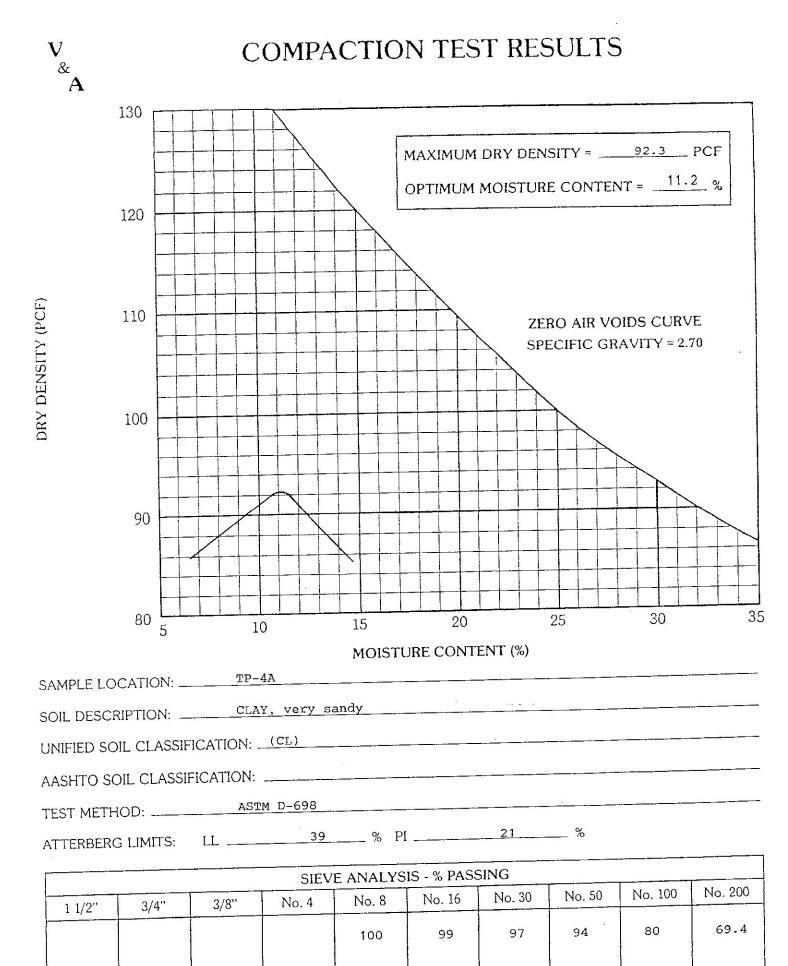
Subject: Mt. Taylor Mine Soil Samples V & A Project No. 95-1-245

Gentlemen:

Attached are copies of the Proctor, Sieve Analysis and Atterberg Limits Test Results for the Mt. Taylor Mine Soil Samples.

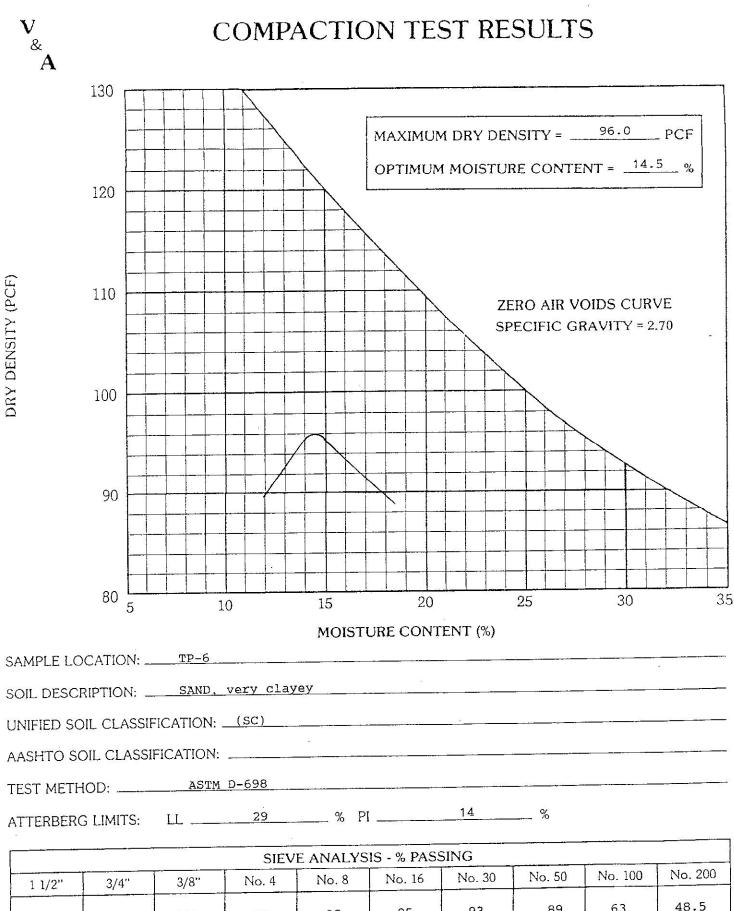

Should you have any questions regarding this data, please do not hesitate to call.

Sincerely


Martin D. Vinyard, PE

Attachments: Data Sheets (10)

cc: Addressee (1)



					and the second		and the second design of the s		A DATA AND AND AND AND AND AND AND AND AND AN
1 1/2"	3/4"	3/8''	No. 4	No. 8	No. 16	No. 30	No. 50	No. 100	No. 200
					100	99	96	79	66.4
	0				1	<u> </u>		<u> </u>	

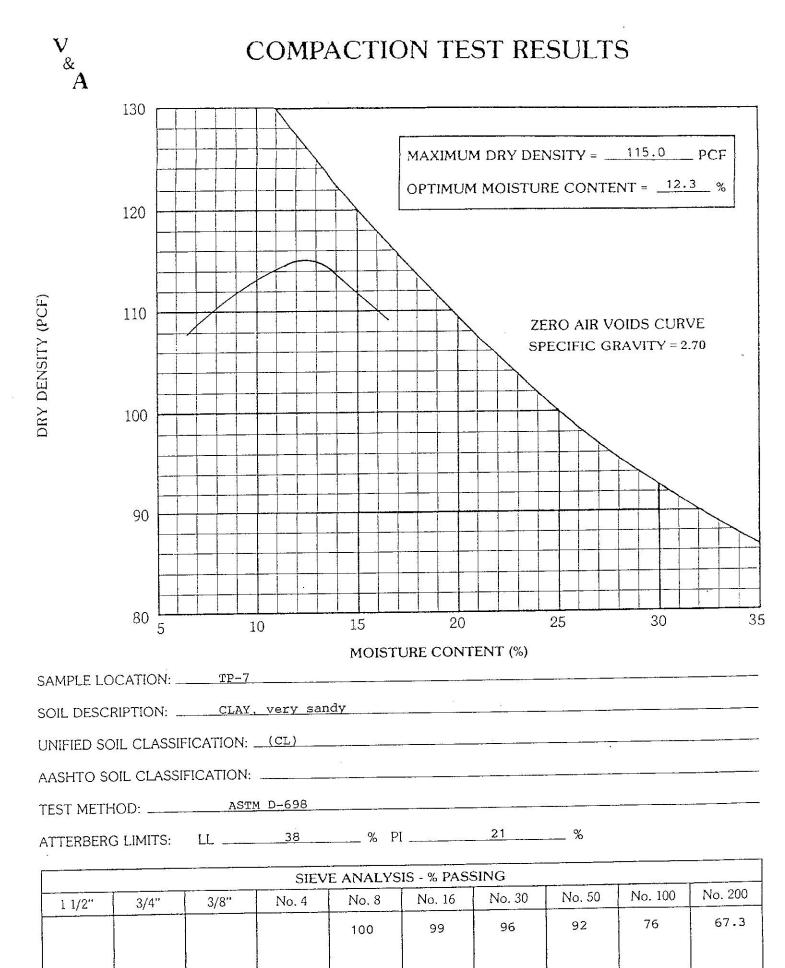

Project No: _____95-1-245

Figure ____

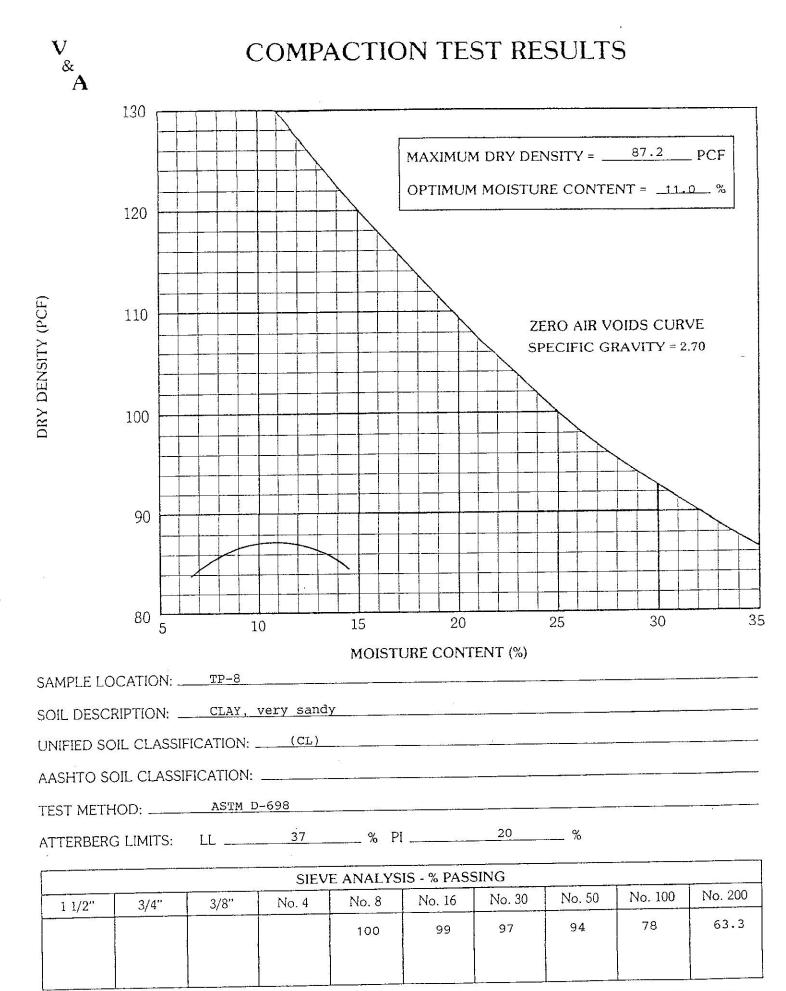
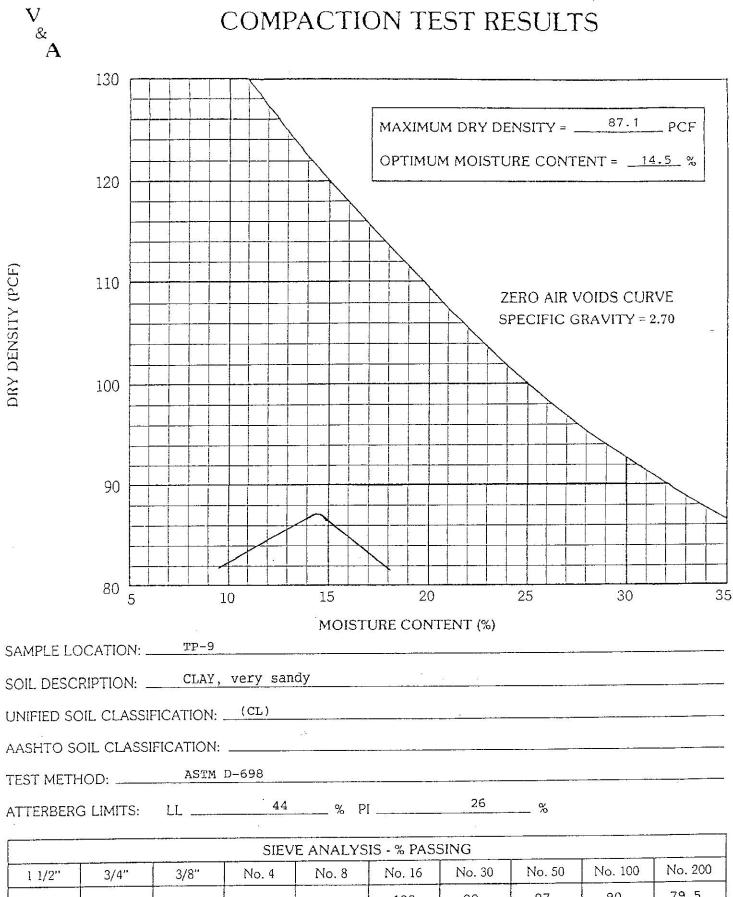
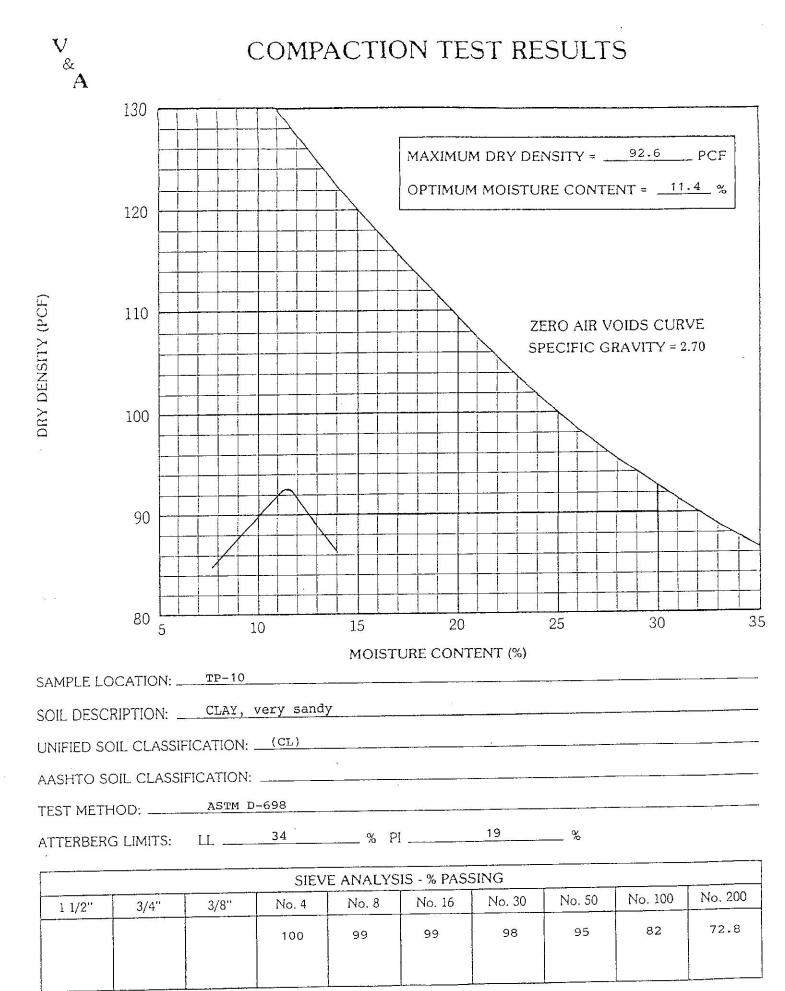

1 1/2"	3/4"	3/8''	No. 4	No. 8	No. 16	No. 30	No. 50	No. 100	
		100	99	98	95	93	89	63	4

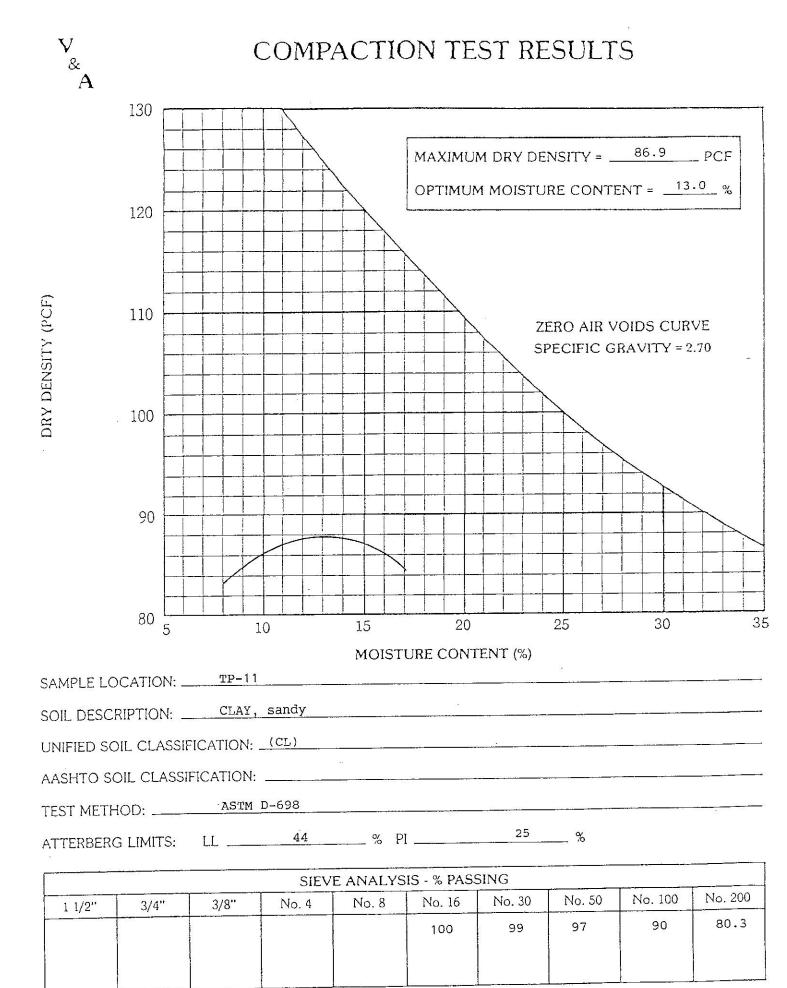
Figure _____



 _ <u></u> l	
Project No:	95-1-245


Figure _____

Project No: _	95-1-245
Figure	



1 1/2"	3/4"	3/8"	No. 4	No. 8	No. 16	No. 30	No. 50	No. 100	No. 200
					100	99	97	90	79.5

Project No:	95-1-245
Cimuna	

Figure _____

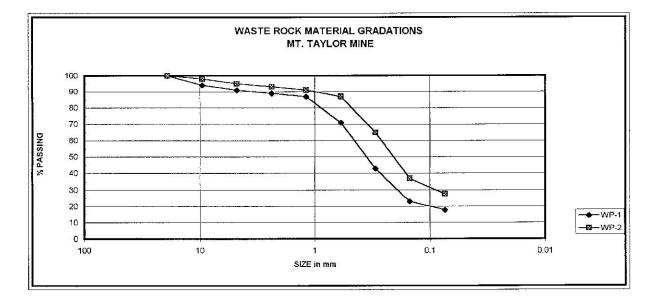
Project No:	95-1-245
Figure	<u> </u>

SUMMARY OF LABORATORY TEST DATA

95-1-245 Project No. Table DESCRIPTION SAND, very clayey SAND, very clayey CLAY, very sandy 65.0 63.3 79.5 72.8 80.3 75.7 48.5 67.3 45.3 51.9 69.4 Nc. 200 66.4 No. 20 78 90 82 90 60 68 80 88 76 17 63 <u>7</u>9 50 No. 16 16 94 89 92 94 97 95 16 96 94 94 % PASSING BY WEIGHT %. 80. 80. 96 66 66 98 63 16 66 96 98 16 98 98 SIEVE ANALYSIS 100 100 No. 16 100 66 66 66 66 61 66 66 66 66 100 80. 80 100 100 100 100 98 99 98 66 ī. 1 100 100 °Z ¬ 66 66 1 1 I. f Ē I 1 3/8,. 100 100 1 1 3/4" 1 1 T. 1 1 1 1 1 I, 1 ĩ. 11%" ł I ι 1 1 1 I. T 1 1 T 19 26 25 16 14 20 Atterberg Limits Ч 18 13 21 21 21 30 29 44 28 38 37 44 34 Ξ 28 39 38 38 Moisture Natural Natural Density Content (8) Dry (pcf) L ŧ 1 ŧ 1 1 1 fication Unified Classi-1 \$ t 1 1 (Feet) Depth R. L TP10 TP11 TP4A TP4B Test Hole No. TP9 **TP5** 7P6 TP7 TP8 Ш TP2 TP3

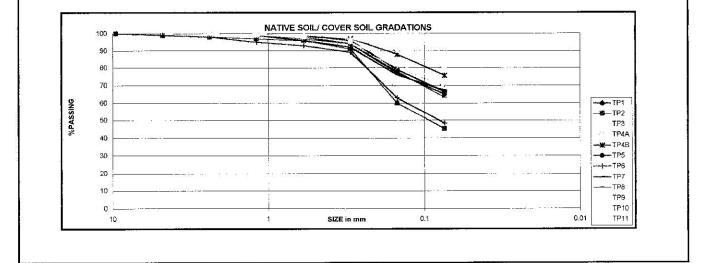
>[%]

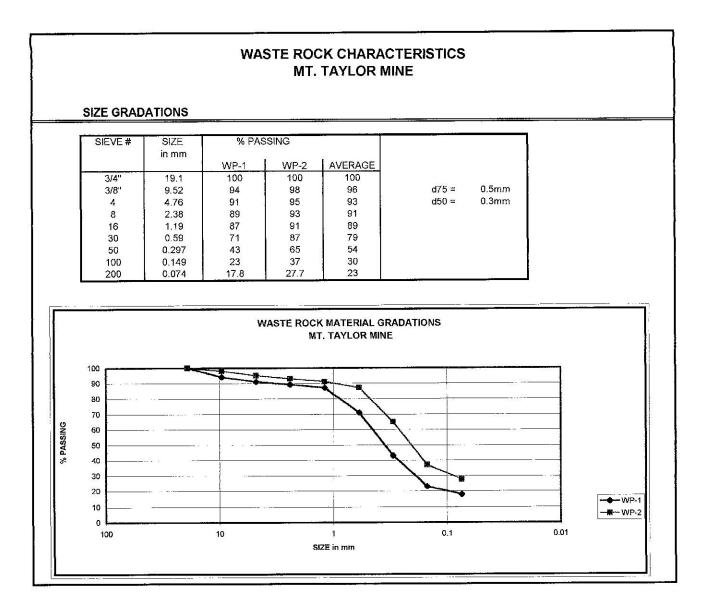
SIEVE ANALYSIS TEST RESULTS

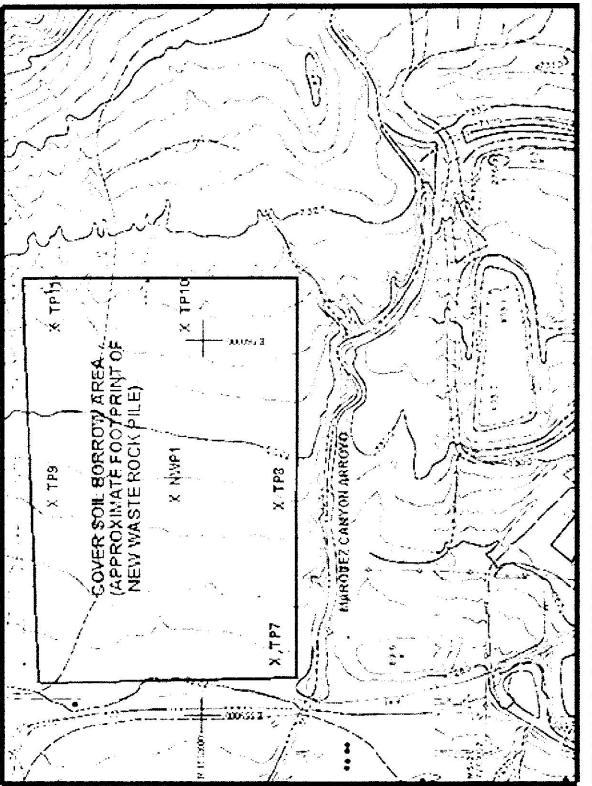

Percent Passing Following	
	WP-2
	100
94	98
91	95
89	93
87	91
81	87
43	65
23	37
17.8	27.7
	Scalping over a 3/4" Sieve <u>WP-1</u> 100 94 91 89 87 81 43 23

WP-1	+ 3/4" material	= 2.7% of total sample weight
WP-2	+ 3/4" material	= 6.8% of total sample weight

WASTE ROCK CHARACTERISTICS MT. TAYLOR MINE


SIZE GRADATIONS


SIEVE #	SIZE in mm	% PA	SSING
		WP-1	WP-2
3/4"	19.1	100	100
3/8"	9.52	94	98
4	4.76	91	95
8	2.38	89	93
16	1.19	87	91
30	0.59	71	87
50	0.297	43	65
100	0.149	23	37
200	0.074	17.8	27.7



NATIVE SOIL - COVER SOIL CHARACTERISTICS MT. TAYLOR MINE

SIEVE #	SIZE % PASSING FOR SAMPLE #:													
	Den of Conservation	TP1	TP2	TP3	TP4A	TP4B	TP5	TP6	TP7	TP8	TP9	TP10	TP11	AVERAGE
3/4"	19.1													
3/8"	9.52		100					100						100
4	4.76		99	100				99		2010 2010 - 201				99
8	2.38		98	99	100	100	100	98	100	100		100		99
16	1.19	100	97	99	99	99	99	95	99	99	100	99	100	99
30	0.59	99	96	98	97	98	98	93	96	97	99	98	99	97
50	0.297	96	91	94	94	97	94	89	92	94	97	95	97	94
100	0.149	79	60	68	80	88	77	63	76	78	90	82	90	78
200	0.074	66.4	45.3	51.9	69.4	75.7	65	48.5	67.3	63.3	79.5	72.6	80.3	65
USCS =		CL	SC	CL	CL	CL	CL	SC	CL	CL	CL	CL	CL	CL
LL =		38	28	28	39	38	30	29	38	37	44	34	44	36
PI ≕		18	11	13	21	21	16	14	21	20	26	19	25	19
d75 =		0,15	0.2	0.19	0.1	0.06	0.13	0.2	0.14	0.15	0.05	0.09	0.18	0.14

Selenium

Zinc

Client: Project:	Rio Grande Resources Corp. Mt. Taylor Mine			Fsmington, Ne	w Mexico 87401
Sample ID:	Composite			Date Received:	09/16/98
Lab ID:	0398S05459			Date Reported:	09/17/98
Matrix:				Date Sampled:	NG
Condition:					
		Analytical			
Para	meter	Result	Onits	U	nis
PH		9.2	S.U.		
Solids - Total [Dissolved	170	mg/L		
Nitrogen - Nitra	ate	0.17	mg/L		
Sulfate		11	mg/L		
Arsenic		0.013	mg/L		
Cadmium		<0.004	mg/L		
Chromium		< 0.01	mg/L		
Iron		0.92	mg/L		
Lead		<0.05	mg/L		
Molybdenum		0.02	mg/L		
Calasian			- 		

0.034

0.10

mg/L

mg/L

2506 W. Main Street

Reference: EPA - "Methods for Chemical Analysis of Water and Wastes (MCAWW)" - EPA/600/4-79-020 - March, 1983.

Ł Reviewed By:

		2506 W. Ma: Farmington, New Mexico		
Client:	Rio Grande Resources Corp.			
Project:	Mt. Taylor Mine			
Sample ID:	WP #3 NW	Date Received: 0	8/20/98	
Lab ID:	0398804751	Date Reported: 0	9/17/98	
Matrix:	Soil	Date Sampled: 0	8/19/98	
Condition:	Cool/Intact	Time Sampled: 1	000	

Sulfur forms - Total	0.00	%
Acid Base-TS	0.0	t/kt
Neutralization Potential (NP)	10	t/kt
Acid Base Potential-TS	10.2	t/kt

Reference:

Reviewed By:

Client:	Rio Grande Resources Corp.	Farmington, New Mexico 87401
Project:	Mt. Taylor Mine	
Sample ID:	WP #1 SW	Date Received: 08/20/98
Lab iD:	0398S04749	Date Reported: 09/17/98
Matrix:	Soil	Date Sampled: 08/19/98
Condition:	Cool/Intact	Time Sampled: 0930
Para		lyticat suit Units Units

Sulfur forms - Total	0.01	%
Acid Base-TS	0.31	t/kt
Neutralization Potential (NP)	30	t/kt
Acid Base Potential-TS	29.9	t/ixt

Reference:

Reviewed By:

Client:	Rio Grande Resources Corp.	2506 W. Main Strei Farmington, New Mexico 8740
Project:	Mt. Taylor Mine	
Sample ID:	WP #2 Center	Date Received: 08/20/98
Lab ID:	0398S04750	Date Reported: 09/17/98
Matrix:	Soit	Date Sampled: 08/19/98
Condition:	Cooi/Intact	Time Sampled: 0945

Sulfur forms - Total	0.03	%
Acid Base-TS	0.94	t/kt
Neutralization Potential (NP)	24	t/kt
Acid Base Potential-TS	23.1	ť/kt

Reference:

Reviewed By:	82	
	A	

APPENDIX E

COST ESTIMATE FOR MT. TAYLOR MINE CLOSEOUT/ DP-61 CLOSURE

COST	ESTIMATE	MT TAYLOR	MINE	CLOSE	OUT/ DP-	61 CLOSURE		
Rev.1	November 2013							
Item #	Description	Material(s)	Units	\$/Unit	Quantity	Cost, \$	Cost Reference	Quantity Reference
1	Direct Reclamation Costs							
1.1	Shaft Closures							
1.1.1	Production/ Haulage (24 ft) Shaft Shaft Fittings and Equipment							Remove to plug level; Cut and drop in shaft
		crane	day	\$ 1,245	10	\$ 12,450	RSM 01 54 19.50 0100	12-ton crane with crew
		demo crew	day	\$ 1,156	10	\$ 11,560	RSM Crew B-1A	
1.1.2	2 24 ft Shaft Headframe						-	
	24 ft Production Shaft Headframe - drop using explosives, dozers	structural steel	leg	\$ 1,785	8	\$ 14,280	RSM 31 23 16.30; RSM 02 41 13.78 0800; WYDEQ, App. E	Assume each leg of headframe is equivalent to one radio tower 120 ft high
	Cut and remove to shaft, 20 ft max lengths	cut structural steel	hour	\$ 220.70	53	\$ 11,697	Piñon Ridge Mill Decommissioning and Reclamation Cost Estimate, Attachment G, item 8a2	http://www.structural-drafting-net-expert.com/steel- sections-i-beam-w-shape.html; estimated 10 cuts per hour by CAT 365 with hydraulic shear
	Cut vent pipe, decking, stairs, railing, cable, sheet metal, etc. to size	fabricated metal materials	SF	\$ 0.29	3750	\$ 1,088	RSM 02 41 16.13 0500	Wheel skidder with grapple, same production as CAT 365
	Load, haul, dump in shaft	steel, scrap	hour	\$ 59	40	\$ 2,360	Piñon Ridge Mill Decommissioning and Reclamation Cost Estimate, Attachment G: RSM 01 54 33 20 4896	Wheel skidder with grapple, same production as CAT 365
	Remove concrete from slab outside of collar, ore loading area	concrete	СҮ	\$ 264.06	226.90	\$ 59,916	RSM 02 41 16.17 0420	AutoCad base dimensions; concrete re-cycled for erosion protection per 1.4.4
1.1.3	3 24 ft Shaft Plug						·	
	Backfill Slurry batch plant		mo	\$ 4,600.00	3	\$ 13,800	RSM 01 54 33 50 0300	
	Set steel support	crane	day	\$ 1,245.00	5	\$ 6,225	RSM 01 54 19.50 0100	12-ton crane with crew
		crew	day	\$ 1,434.00	5	\$ 7,170	RSM B-2 crew	
	Cast Plug	concrete	CY	\$ 94.50	215	\$ 20,318	RSM 03 31 05.35 4350	1000 psi flowable; includes vent raise and tunnel to bulkhead
		placement	СҮ	\$ 13.27	215	\$ 2,853	RSM 03 31 05.70 3000	
		crane	day	\$ 1,245	5	\$ 6,225	RSM 01 54 19.50 0100	12-ton crane with crew
	Backfill (Shaft above plug, tunnel and vent raise)	mix	СҮ	\$ 81.50	2847	\$ 232,031	RSM 03 31 05.35 4100	Slurry of ore/cement/water. Includes vent raise and shaft tunnel to bulkhead at utility tunnel
		pumped placement	СҮ	\$ 5.29	2847	\$ 15,061	RSM 03 31 05.70 2900	
1.1.4	4 Manway/ Ventilation (14 ft) Shaft Fittings and Equipment				<u>.</u>			Remove to plug level; Cut and drop in shaft
		crane	day	\$ 1,245	5	\$ 6,225	RSM 01 54 19.50 0100	12-ton crane with crew
		crew	day	\$ 1,156	5	\$ 5,780	RSM Crew B-1A	

Item #	Description	Material(s)	Units	\$/Unit	Quantity	Cost, \$	Cost Reference	Quantity Reference
1.1.5	14 ft Shaft Headframe		-					
	14 ft Vent/ Manway Shaft Headframe - drop using explosives, dozers	structural steel	leg	\$ 1,590	6	\$ 9,540	RSM 31 23 16.30; RSM 02 41 13.78 0700; WYDEQ, App. E	Assume each leg of headframe is equivalent to one radio tower 60 ft high
	Cut and remove to shaft, 10 ft max lengths	structural steel	hour	\$ 220.70	29	\$ 6,400	Piñon Ridge Mill Decommissioning and Reclamation Cost Estimate, Attachment G, item 8a2	http://www.structural-drafting-net-expert.com/steel- sections-i-beam-w-shape.html; estimated 10 cuts per hour by CAT 365 with hydraulic shear
	Cut vent pipe, decking, stairs, railing, cable, sheet metal, etc. to size	fabricated metal materials	SF	\$ 0.29	1215	\$ 352	RSM 02 41 16.13 0500	Estimated 200 SF per hour cutting with CAT 365 with hydraulic shear and crew support: Includes heater buildings.
	Load, haul, dump in shaft	steel, scrap	hour	\$	24	\$ 1,416	Piñon Ridge Mill Decommissioning and Reclamation Cost Estimate, Attachment G: RSM 01 54 33 20 4896	Wheel skidder with grapple, same production as CAT 365
	Remove concrete slab outside of collar	concrete	СҮ	\$ 264.06	29.64	\$ 7,827	RSM 02 41 16.17 0420	AutoCad base dimensions; concrete re-cycled for erosion protection per 1.4.4
1.1.6	14 ft Shaft Plug and Backfill							
	Set steel support	crane	day	\$ 1,245.00	4	\$ 4,980	RSM 01 54 19.50 0100	12-ton crane with crew
		crew	day	\$ 1,434.00	4	\$ 5,736	RSM B-2 crew	
	Cast Plug	concrete	CY	\$ 94.50	153	\$ 14,459	RSM 03 31 05.35 4350	1000 psi flowable
		placement	CY	\$ 13.27	153	\$ 2,030	RSM 03 31 05.70 3000	
		crane	day	\$ 1,245.00	3	\$ 3,735	RSM 01 54 19.50 0100	12-ton crane with crew
	Backfill (Shaft above plug, vent raise and tunnel)	mix	СҮ	\$ 81.50	764	\$ 62,266	RSM 03 31 05.35 4100	Slurry of ore/cement/water. Includes vent raise and shaft tunnel to bulkhead at utility tunnel
		pumped placement	CY	\$ 5.29	764	\$ 4,042	RSM 03 31 05.70 2900	
1.1.7	Access/ Utility Tunnels Backfill	mix	СҮ	\$ 81.50	3480	\$ 283,620	RSM 03 31 05.35 4100	Slurry of ore/cement/water. Includes all tunnels except shaft tunnels
		pumped placement	СҮ	\$ 5.29	3480	\$ 18,409	RSM 03 31 05.70 2900	
1.2	Well and Conduit Plugging							
1.2.1	Mine Conduit							
	Conduits (2)	4 ;1 cement bentonite grout mix	LF	\$ 6.60	6400	\$ 42,240	WYDEQ, App. L	10.5 inch ID x 3200 ft; plugging per 19.27.4 NMAC
1.2.2	Well Abandonment							
	Deep wells (21)	4 ;1 cement bentonite grout mix	LF	\$ 6.60	67205	\$ 443,403	WYDEQ, App. L	7 inch to 9 5/8 inch diameter casing grouted in all wells; plugging per 19.27.4 NMAC
	Abatement monitoring wells (5)	cement bentonite grout	ft	\$ 4.20	180	\$ 756	WYDEQ, App. L	2 to 6 inch diameter casing
~								

Item #	Description	Material(s)	Units	\$/Unit	Quantity	Cost, \$	Cost Reference	Quantity Reference
1.3	Surface Facilities Demolition							
1.3.1	Compressor Building	Steel Frame (2)	CF	\$ 0.145	25921	\$ 3,759	RSM 02 41 16.13 0500, 5000	
		equipment, various	CF	\$ 1.56	1620	\$ 2,527	Note 3	Estimated 200 SF per hour cutting with CAT 365 with hydraulic shear and crew support
		concrete slab	SF	\$ 4.89	1620	\$ 7,922	RSM 02 41 16.17 0420	assume 0.5 ft thickness
1.3.2	York Chiller Refrigeration Equipment and Building	Steel Frame (2)	CF	\$ 0.145	150000	\$ 21,750	RSM 02 41 16.13 0500, 5000	
		equipment, various	CF	\$ 1.56	5000	\$ 7,800	Note 3	Estimated 200 SF per hour cutting with CAT 365 with hydraulic shear and crew support
		concrete slab	SF	\$ 4.89	5000	\$ 24,450	RSM 02 41 16.17 0420	assume 0.5 ft thickness
1.3.3	Pump Building (Chill Water Pump House)	Steel Frame (2)	CF	\$ 0.145	15360	\$ 2,227	RSM 02 41 16.13 0500, 5000	
		equipment, various	CF	\$ 1.56	960	\$ 1,498	Note 3	Estimated 200 SF per hour cutting with CAT 365 with hydraulic shear and crew support
		concrete slab	SF	\$ 4.89	960	\$ 4,694	RSM 02 41 16.17 0420	assume 0.5 ft thickness
1.3.4	Shaft Heating Building	Steel Frame (2)	CF	\$ 0.145	24000	\$ 3,480	RSM 02 41 16.13 0500, 5000	
		equipment, various	CF	\$ 1.56	1500	\$ 2,340	Note 3	Estimated 200 SF per hour cutting with CAT 365 with hydraulic shear and crew support
		concrete slab	SF	\$ 4.89	1500	\$ 7,335	RSM 02 41 16.17 0420	assume 0.5 ft thickness
1.3.5	Hoist House	Steel Frame (2)	CF	\$ 0.145	24000	\$ 3,480	RSM 02 41 16.13 0500, 5000	
		equipment, various	CF	\$ 1.56	1500	\$ 2,340	Note 3	Estimated 200 SF per hour cutting with CAT 365 with hydraulic shear and crew support
		concrete hoist pedestals	СҮ	\$ 207.50	148	\$ 30,741	RSM 03 05 05.10 0070	Excavator with hydraulic hammer; tow heavily reinforced concrete pedestals 20' x 10' x 10'
		concrete slab	SF	\$ 4.89	1500	\$ 7,335	RSM 02 41 16.17 0420	assume 0.5 ft thickness
1.3.6	Service Building (Office and Warehouse)	Steel Frame (2)	CF	\$ 0.145	642528	\$ 93,167	RSM 02 41 16.13 0500, 5000	
		equipment, various	CF	\$ 1.56	53544	\$ 83,529	Note 3	Estimated 200 SF per hour cutting with CAT 365 with hydraulic shear and crew support
		concrete slab	SF	\$ 4.89	53544	\$ 261,830	RSM 02 41 16.17 0420	assume 0.5 ft thickness
1.3.7	Electrical Building	Steel Frame (2)	CF	\$ 0.145	29760	\$ 4,315	RSM 02 41 16.13 0500, 5000	
		equipment, various	CF	\$ 1.56	1860	\$ 2,902	Note 3	Estimated 200 SF per hour cutting with CAT 365 with hydraulic shear and crew support
		concrete slab	SF	\$ 4.89	1860	\$ 9,095	RSM 02 41 16.17 0420	assume 0.5 ft thickness

Item #	Description	Material(s)	Units	\$/Uı	nit	Quantity	Cost, \$	Cost Reference	Quantity Reference
1.3.8	Water Treatment and Boiler Building	Steel Frame (2)	CF	\$	0.145	49600	\$ 7,19	2 RSM 02 41 16.13 0500, 5000	
		equipment, various	SF	\$	1.56	3100	\$ 4,83	5 Note 3	Estimated 200 SF per hour cutting with CAT 365 with hydraulic shear and crew support
		concrete slab	SF	\$	4.89	3100	\$ 15,15	9 RSM 02 41 16.17 0420	assume 0.5 ft thickness
1.3.9	Fuel Storage Tanks	Steel tanks at surface	EA	\$ 1,0	00.00	7	\$ 7,00	0 RSM 02 65 10.30 1029	7 tanks @30' x 8 '
1.3.10	Storage Building	Steel Frame (2)	CF	\$	0.145	13440	\$ 1,94	9 RSM 02 41 16.13 0500, 5000	
		equipment, various	CF	\$	1.56	840	\$ 1,31	0 Note 3	Estimated 200 SF per hour cutting with CAT 365 with hydraulic shear and crew support
		concrete slab	SF	\$	4.89	840	\$ 4,10	3 RSM 02 41 16.17 0420	assume 0.5 ft thickness
1.3.11	Glycol Heat Exchanger	Steel Frame (2)	CF	\$	0.145	24000	\$ 3,48	0 RSM 02 41 16.13 0500, 5000	
		equipment, various	CF	\$	1.56	1500	\$ 2,34	0 Note 3	assume 1 ft ³ volume per ft ² gutted area
		concrete slab	SF	\$	4.89	1500	\$ 7,33	5 RSM 02 41 16.17 0420, 5000	assume 0.5 ft thickness
1.3.12	Chlorine Building	concrete block	CF	\$	0.145	6120	\$ 88	7 RSM 02 41 16.13 0080	
		equipment, various	CF	\$	1.56	360	\$ 56	2 Note 3	assume 1 ft ³ volume per ft ² gutted area
		concrete slab	SF	\$	4.89	360	\$ 1,76	0 RSM 02 41 16.17 0420, 5000	assume 0.5 ft thickness
1.3.13	Flocculant Treatment Building	Steel Frame (2)	CF	\$	0.145	8280	\$ 1,20	L RSM 02 41 16.13 0500, 5000	
		equipment, various	CF	\$	1.56	690	\$ 1,07	5 Note 3	assume 1 ft ³ volume per ft ² gutted area
		concrete slab	SF	\$	4.89	690	\$ 3,37	4 RSM 02 41 16.17 0420, 5000	assume 0.5 ft thickness
1.3.14	Barium Chloride Treatment Building	Steel Frame (2)	CF	\$	0.145	16000	\$ 2,32	0 RSM 02 41 16.13 0500, 5000	
		equipment, various	CF	\$	1.56	1000	\$ 1,56	0 Note 3	assume 1 ft ³ volume per ft ² gutted area
		concrete slab	SF	\$	4.89	1000	\$ 4,89	0 RSM 02 41 16.17 0420, 5000	assume 0.5 ft thickness
1.3.15	Ion Exchange Building								Radiological D&D, including removal of resins and IX equipment, is covered under separate FA with NMED Radiation Control Bureau
		Steel Frame (2)	CF	\$	0.145	392000	\$ 56,84	RSM 02 41 16.13 0500, 5000	
		concrete slab	SF	\$	4.89	9800	\$ 47,92	2 RSM 02 41 16.17 0420, 5000	assume 0.5 ft thickness
1.3.16	Mine Water Treatment Pond Hydraulic Structures	concrete	CY	\$	69.45	80	\$ 5,55	5 RSM 03 05 05.10 0050	Disposed in pond basins
1.3.17	Mine Car Rails	90 lb steel rail	lineal ft	\$	8.76	8787	\$ 76,97	4 WYDEQ, App. K; RSM 02 41 13.33 3500	Dwg C-159, -160, F-119; field survey "Rail Footage"; assume 4 lineal ft = 1 ft ³ volume
	Concrete base for rail	low strength concrete	SF	\$	4.89	8569	\$ 41,90	3 RSM 02 41 16.17 0420, 5000	assume 0.5 ft thickness

ltem #	Description	Material(s)	Units	\$/Unit	Quantity	Cost, \$	Cost Reference	Quantity Reference
1.3.18	Shaft Exhaust Fans and Vents	light structural steel, sheet metal	CF	\$ 0.145	18750	\$ 2,719	RSM 02 41 16.13 0500, 5000	
1.3.19	Cooling Towers	Steel frame and plate	CF	\$ 0.145	46875	\$ 6,797	RSM 02 41 16.13 0500, 5001	
		equipment, various	CF	\$ 1.56	5625	\$ 8,775	RSM 02 41 19.21 1000	assume 3 ft ³ volume per ft ² gutted area
		concrete slab	SF	\$ 4.89	1875	\$ 9,169	RSM 02 41 16.17 0420, 5000	assume 0.5 ft thickness
1.3.20	Nine Water Discharge Pipes	12in. Sch 40 PVC	LF	\$ 3.18	3000	\$ 9,540	RSM 02 41 13.38 1800	Remove only the portions of pipes extending beyond the tunnel. 0.1 ft3/ ft volume
1.3.21	Freated Water Discharge Pipeline	steel	LF	\$ 23.96	23000	\$ 551,080	RSM 22 05 05.10 2155; http://www.engineeringtoolbox.com/ansi-steel-pipes- d_305.html; RSM 22 05 05.10 2220	Assume scrap at \$180/ton, 2.56 tons per 30 ft length = \$352,280. Pipeline will be cut in 30 ft lengths and staged on site for sale and removal by purchaser.
1.3.22	Fruck Wash	plumbing, frame, siding, roof (2)	SF	\$ 1.55	10295	\$ 15,957	Piñon Ridge Mill Decommissioning and Reclamation Cost Estimate, Attachment G, item 8a2 x 12.55% of 2009 Unit \$; RSM Crew B-1A	Estimated 200 SF per hour cutting with CAT 365 with hydraulic shear and crew support
		concrete slab	SF	\$ 4.89	14875	\$ 72,739	RSM 02 41 16.17 0420, 5000	assume 0.5 ft thickness
1.3.23	Manholes and culverts						•	
	Remove manholes and catch basins	steel, concrete	ea	\$ 186	2	\$ 371	RSM 02 41 13.33 0030	Remove only above final grade in ore pad and truck wash areas. Backfill below grade with soil/cement slurry.
	Remove culverts		LF	\$ 23.00	1220	\$ 28,060	RSM 02 41 13.33 2960	Trench to remove, then backfill
I	Backfill trench		СҮ	\$ 2.04	1084	\$ 2,212	RSM 31 23 16.13 3020	
1.3.22	Non-contaminated debris hauling and dumping/ stacking for salvage or disposal in pond basins		СҮ	\$ 2.78	3897	\$ 10,834	RSM 31 23 23.20 5130	Assume 1 cf debris per 1sf of buidling floor area. 2000 ft average cycle distance
1.4	Earthwork							15 % swell of BCY to LCY assumed
1.4.1	Dre Pad							
	Excavate, load, haul, dump Travel Course/ Drainage Layer		LCY	\$ 4.05	15906	\$ 64,419	RSM 31 23 16.50 2100; Caterpillar Performance Handbook	21 CY scraper 3000 ft haul;
	Remove catch basins and culverts, dispose in Pond #1 basin		LF	\$ 36.92	1220	\$ 45,042	RSM G1030 805 1430; RSM 02 41 13.33 2960	Trench to remove, then backfill
1.4.2	Excavation and Disnosal of Contaminated Soil	soil above 23 mR/hr, 6.8 pCi/g Ra						Disposal in pond basins and waste pile
	Mine Water Treatment Pond Area (less pond basins)	total pond area less pond basins	BCY	\$ 4.31	24943	\$ 107,504	RSM 31 23 16.50 2430: Caterpillar Performance Handbook	21 CY scraper, 3000 ft haul; 2000 CY/day; calc MT12.08-B
	County Road ROW		BCY	\$ 3.31	3791	\$ 12,548	RSM 31 23 16.50 2420: Caterpillar Performance Handbook	21 CY scraper, 1500 ft haul; calc MT12.08-B
	Borrow Soil Area		BCY	\$ 4.31	7395	\$ 31,872	RSM 31 23 16.50 2430: Caterpillar Performance Handbook	21 CY scraper, 3000 ft haul; 2000 CY/day; calc MT12.08-B
	North of Marquez Arroyo		BCY	\$ 4.31	12707	\$ 54,767	RSM 31 23 16.50 2430: Caterpillar Performance Handbook	21 CY scraper, 3000 ft haul; 2000 CY/day; calc MT12.08-B
	Service and Support Area		BCY	\$ 3.31	34104	\$ 112,884	RSM 31 23 16.50 2420: Caterpillar Performance Handbook	21 CY scraper, 1500 ft haul; calc MT12.08-B
	South Storm Water Pond		BCY	\$ 2.81	1514	\$ 4,254	RSM 31 23 16.42 1601; RSM 31 23 23.20 4014	Assume 1 ft of contaminated sediment; CAT 980 loader 3 cy bucket, 20 cy truck 0.5 mi cycle

Item #	Description	Material(s)	Units	\$/Unit	Quantity	Cost, \$	Cost Reference	Quantity Reference
1.4.3	HDPE-Liner Ponds -Water Treatment (MWTU) Ponds and Ore Runoff R	etention Pond Backfill						
	Pond sediment excavate, load, haul dump on waste pile	Contaminated pond sediments	BCY	\$ 7.33	7716	\$ 56,558	RSM G1030 140 4400	CAT 960 with 4.5 CY bucket and 20 CY trucks with 2 mi RT; calc MT13.07 and .08
	Remove HDPE liner from anchor trenches and tops of pond slopes	Fold HPDE membrane intp pond to 4 ft below final grade	SF	\$ 0.081	121778	\$ 9,864	RSM B-6 Crews	laborers, operator, backhoe, truck, dozer for 2000 SF/hr; calc MT13.07
	Pond backfill by pond berm excavation and placement as backfill	large scale earthwork	BCY	\$ 2.54	170,060	\$ 431,952	RSM 31 23 16.46 6035; Caterpillar Performance Handbook	CAT D11, < 200 ft push
	Mine Water Treatment Pond Area cut/fill	total pond area less pond basins	BCY	\$ 3.31	58,195	\$ 192,625	RSM 31 23 16.50 2420: Caterpillar Performance Handbook	21 CY scraper, up to 1500 ft haul; calc MT12.08-B
	Waste Pile Buildout Stabilization (4)							Progessive buildout to final 5H:1V slopes with contemporaneous cover, erosion protection and revegetation
	Disposal Cell for final pond sediments Place and compact disposal cell berms	contaminated soil	ВСҮ	\$ 1.46	17,400	\$ 25,404	RSM 31 23 16.46 6036; Caterpillar Performance Handbook	Cell and berm dimensions per MT13Drawing - dozer tread compaction on 50 ft haul. Construct with contaminated soil from site cleanup.
	Excavate, load , haul and place liner soil	clean clayey soil	ВСҮ	\$ 4.31	2,489	\$ 10,727	RSM 31 23 16.50 2430: Caterpillar Performance Handbook	21 CY scraper, 3000 ft haul; 2000 CY/day; calc MT12.08-B; Clean soil fro m borrow area.
	Place and compact disposal cell liner	clean clayey soil	LCY	\$ 2.43	2,862	\$ 6,955	RSM 31 23 16.46 6006 and 31 23 23 23 5620; Caterpillar Performance Handbook	CAT D11, max. 50 ft push; 1.0 ft across cell surface; sheepsfoot compaction; calc MT12-08-F
	Cover soil excavate, load, haul, and place	clean soil	ВСҮ	\$ 4.31	34,905	\$ 150,442	RSM 31 23 16.50 2430: Caterpillar Performance Handbook	21 CY scraper, 3000 ft haul; 2000 CY/day; calc MT12.08-B; Clean soil fro m borrow area.
	Cover placement - disposal cell and top of pile	stockpiled shaft muck, clean soil	LCY	\$ 1.46	40,141	\$ 58,606	RSM 31 23 16.46 6036; Caterpillar Performance Handbook	Cell and berm dimensions per MT13Drawing - dozer tread compaction on 50 ft haul. Construct with contaminated soil from site cleanup.
	Cover grading	grade to design slope	acre	\$ 936.54	8.30	\$ 7,770	RSM 31 22 16.10 3312	AutoCad measured
	Erosion control mat	tobacco netting	SY	\$ 0.50	26614	\$ 13,307	RSM 31 25 14.16 0300	Exposed slope during buildout, after reshaping for activation
1.4.5	Riprap and Water Bars							Placed as needed on waste pile and channels, using all recycled concrete from facilities demolition.
	Rock and concrete crushing	concrete, rock	СҮ	\$ 1.67	2496	\$ 4,178	MB America Robbett Eyler, pers comm Nov 2013; RSM 31 23 16.42 0300	MB America BF90 crusher bucket on CAT 320 excavator, minus 4 inches at 46 CY/hr
	Concrete debris, rock loading and hauling	concrete, rock	СҮ	\$ 8.22	2496	\$ 20,514	RSM G1030 150 7000	Concrete broken by hydraulic pulverizer during facility demolition; CAT 980 with 5 cy bucket, D250E truck
	Screening	concrete, rock	day	\$ 532.20	14.26	\$ 7,590	RSM 01 54 33 3710	150-200 CY/day
	Placing channel riprap	concrete, rock	SY	\$ 28.50	889	\$ 25,333	RSM 31 37 13.10 0200	1500 CY machine placed, 2 ft thick
	Placing on waste pile slope	concrete, rock	СҮ	\$ 25.87	1607	\$ 41,568	RSM 31 37 13.10 0300	Placed on slope for rock mulch or spreading in finish grading

ltem #	Description	Material(s)	Units	\$/Unit	Quantity	Cost, \$	Cost Reference	Quantity Reference
1.4.6	Finish grading							pond/ ore pad/ borrow area +surface facilities + waste pile
	Mine Water Treatment Pond area		acres	\$ 75.25	28.0	\$ 2,107	WYDEQ, App. G	AutoCad measured
	County road ROW		acres	\$ 75.25	4.7	\$ 354	WYDEQ, App. G	AutoCad measured
	Ore pad and borrow soil area		acres	\$ 75.25	19.0	\$ 1,430	WYDEQ, App. G	AutoCad measured
	Waste pile area	waste pile and adjacent area	acres	\$ 75.27	14.7	\$ 1,109	WYDEQ, App. G	AutoCad measured: calc MT12-08-B
	Pipeline corridor		acres	\$ 75.25	15.6	\$ 1,177	WYDEQ, App. G	Estimated
	Bench wall slope reduction		ВСҮ	\$ 2.78	1852	\$ 5,148	RSM 31 23 16.42 0300; RSM 01 54 33 0347; Caterpillar Performance Handbook Model 160 hammer in massive sandstone	Drag slope to flatten from vertical to 1H:1V, all rock. CAT 320 excavator with hydraulic hammer, 200 CY/day
	North of Marquez Arroyo		acres	\$ 75.25	17.6	\$ 1,326	WYDEQ, App. G	AutoCad measured
	Service and Support Area		acres	\$ 73.79	39.3	\$ 2,902	WYDEQ, App. G	AutoCad measured
1.5	Revegetation							
1.5.1	Seeding		acres	\$ 871.20	100	\$ 107,158	RSM 32 91 19.14	finish-graded area
	Mulching and Fertilizing		acres	\$ 1,933.63	100	\$ 192,748	RSM 32 91 13.16 0350, RSM 32 01 90.13 0140	finish-graded area
	Fencing		LF	\$ 1.49	10000	\$ 14,892	WYDEQ, App. H	Chain link fence around final pond and waste pile areas
1.5.2	Fencing		LF	\$ 1.49	10000	\$ 14,892	WYDEQ, App. H	Chain link fence around final pond and waste pile areas
1.6	Environmental Controls (temporary)							
1.6.1	Dust control	water truck	hours	\$ 89.15	1600	\$ 142,640	RSM 01 54 33 40 6950	earthwork periods, 200 days
1.6.2	SWPPP implementation	silt fence	LF	\$ 0.60	3000	\$ 1,800	RSM 31 25 14.16 1000	
Total	Direct					\$ 4,934,919		

2	Indirect Reclamation Costs (3)	% of Direct Cost (3)					
2.1	Mobilization and Demobilization	2%				\$	98,69
2.2	Contingencies	10%				\$	493,49
2.3	Redesign Costs	6%				\$	296,09
2.4	Profit and Overhead	18%				\$	888,28
2.5	Contract Management Fee	7%				\$	345,44
2.6	MMD Procurement Cost (2%-10%)	6%				\$	296,09
Tota	Indirect					\$	2,418,110
NOTES:							
(1)	RSM = RS Means Heavy Construction Cost Data 2013						
(2)	Cost includes loading and hauling 1 mi. RT						
(3)	Demolition cost per cubic foot = excavator \$81.05/hr (RSM 01 54	33 20 0200) + Shear \$1	4.05/hr (R	SM 01 54 33 20	0347) + two ope	erators (\$48.80/hr @ (
	+ Skid steer with grapple \$46/hr (RSM 01 54 33 4890), = \$311.60,	/hr, 200 cf/hr=\$1.56/cf.	Volume b	base on 1 cf/sf o	of floor area.		
(4)	No costs for reclamation of the North (future) waste pile are inclu	uded. If this pile is need	led, costs v	will be included	in a future upda	te of th	e Financial As
Tota	Direct + Indirect					\$	7,353,029
Location (ost Index - Cost adjustment to RS Means 2013 costs based on locat	ion versus national ave	rages,			J	0.879
Total Dir	ect + Indirect, Present Cost P, Location-adjusted					\$	6,463,312
				6.6875%		٠ خ	
New Me	kico Gross Receipts Tax (NMGRT)			0.0873%		ې 	432,234
Total Dir	ect + Indirect, Present Cost P, Location-adjusted, with NI	MGRT				\$	6,895,547
Ecolot	ion (Inflation)						
Localat		2.00/					
	Rate, i, per CPI-U, updated 4/2/2013	2.0%					
	Future cost, F=P*(1+i) ⁿ	n, years from 2013				F, F	uture Cost
1	in 2013	0				\$	6,895,54
		1				\$	7,033,45
	in 2014	1					
	in 2014 in 2015	2				\$	7,174,12

APPENDIX F

REVEGETATION AND WEED MANAGEMENT PLAN

MT. TAYLOR MINE

RIO GRANDE RESOURCES

November 2013

PURPOSE AND SCOPE

This Plan, part of the Closeout/ Closure Plan (CCP) for the Mt. Taylor Mine, describes the measures that Rio Grande Resources (RGR) will take to re-establish vegetation on disturbed areas within the mine permit area that will minimize additional disturbance, mitigate impacts to affected environmental resources, rehabilitate disturbed areas as concurrently as practical to support postmining land use (PMLU), and provide protection of soil and runoff comparable to the natural conditions in the local area.

The requirements of this Plan will be implemented primarily by a contractor at the time of mine closeout, but increments will be implemented during mine operations. Specifically, to achieve revegetation as early as possible on final surfaces, the lower slopes of the south waste pile will be reshaped to final grade and revegetated as part of mine reactivation. Additionally, a test plot will be established on the cover of the reactivation waste disposal cell located on the south waste pile. This test plot will be used to verify and refine revegetation methods and seed mixes proposed in this Plan. The areas to be revegetated include:

The mine surface facilities are located on 285.6 acres, of which approximately 148 acres are disturbed land and the remaining 137.9 acres are undisturbed. Of that area, 117 acres will be revegetated consisting of:

- Support (Service and Support) Facilities 55.7 acres
- Mine Water Treatment Area 28 acres
- Treated Water Discharge Pipeline 15 acres (most beyond the mine surface area)
- Ore Stockpile 6.8 acres
- Waste Pile 11.5 acres

The remainder of the disturbed area not to be revegetated includes the buildings, roads and storm water ponds preserved for PMLU.

GROUND PREPARATION

To prepare the mine site ground surfaces for revegetation, mine facilities not preserved for PMLU will be removed (Specification C.2) and the disturbed areas within the mine permit area will be regraded (Specification C.4), including backfill of mine water treatment pond basins, to approximate original grades.

Regraded material will be placed to minimize potential adverse effects to surface water, ground water and natural conditions of areas outside of the mine area. All surfaces will be graded to a final surface configuration which will support the approved post-mining land use, which will be grazing. Temporary runoff and erosion controls, specified in the Stormwater Pollution Prevention Plan

(SWPPP) prepared by the earthwork contractor, will be employed to management sediment generated during closeout earthwork.

Grading operations will be performed by dozers, scrapers, graders or other support equipment. An excavator with hydraulic hammer will be used to reduce the high wall to 1H:1V slope. Finish grading will create the grades and slope directions shown on the drawings (MT13-CL-07 through -13), which may include shallow depressions and will have a roughened surface suitable for seed nesting and resistance to erosion.

REVEGETATION

Revegetation will be performed in accordance with this Plan and Technical Specification C.5 of the CCP. Details of the execution of the following activities are provided in that specification.

Topdressing (Topsoil) Removal, Stockpiling, and Redistribution

At the Mt. Taylor Mine, the bedrock outcrops in many places and is otherwise covered with a thin blanket of colluvial, alluvial, or residual soil. The soil profile is typically 0-24 inches of "A" horizon over "C" horizon (bedrock). The exception is the buried paleochannels where alluvial soil with "A" horizon characteristics overlies bedrock. Consequently, the topdressing or topsoil consists of "A" horizon soils. All site soils fit this definition of topsoil. The agronomic descriptions of these soils are given in the CCP, Section 4.4.

During mine construction, site soils were excavated to create pond basins and other surficial features on the site. Most of the excavated soil was used to construction pond berms and to adjust grades for mine surfaces facilities. Excess excavated soil was stockpiles in the borrow area east of the ore stockpile (Drawing MT13-CL-04). Topdressing soil will be obtained from regrading of pond berms, the borrow area, and other grading performed during ground preparation. Table 4.2 (CCP) lists the available soil volumes versus borrow soil required for closeout; ample soil is available from these various sources, all on site.

When the excavation of contaminated soil has been finished, RGR will determine whether at least six inches of clean soil remains in place in areas to be revegetated. Where additional soil is needed to provide this minimum soil thickness, the excess borrow soil (Table 4.2 of the CCP) will be applied as necessary.

The nutrient level in the topdressing will be determined through soils analysis. Where needed, custom fertilizer blends will be applied to the topdressing to enhance deficient nutrient levels based on this testing. Fertilizer will be applied using either a spreader or broadcaster. Fertilization will occur during the season most conducive to application of the elements involved. For instance, stable elements (phosphorus) may be applied during the second or third growing season. Application rate and timing will be chosen to maximize the effectiveness of the nutrient being applied. Any topdressing materials that have been stockpiled for over a year will

be analyzed for nutrient content. Any fertilizers deemed necessary to enhance plant growth will be distributed and disked into the topdressing.

The surfaces of the topdressed areas will be scarified or disced as necessary to prepare for application of amendments and seeding. Traffic on the prepared surfaces will be limited to equipment directly engaged in revegetation work.

Revegetation Species and Planting Rates

Species of plants selected for seeding are compatible with the pre-mining and post-mining land use of grazing. Seed for the dominant species of grasses and shrubs that are indigenous to the mine area are available commercially and will be secured through such sources. The proposed seed mixture for permanent seeding and planting rates are contained in Table F.1.

Methods of Revegetation

Revegetation methods will follow established techniques and basic agronomic principles. Primary revegetation methods objectives are to:

- reduce plant competition and prepare a good seedbed;
- provide sufficient plant nutrients;
- seed at the proper time and depth; and
- modify the moisture regime to supply sufficient water.

Seedbed preparation will be conducted on the contour to reduce erosion. Discing will be utilized to:

- ameliorate compaction of the topdressing to facilitate penetration of roots by seedlings;
- prevent surface crusting of the topdressing; and
- eliminate large clods of soil.

Seeding will employ a variety of methods, depending principally on the steepness of the slope. A large percentage of the total disturbed area will be seeded using standard mine reclamation equipment; i.e., tracked and wheeled tractors, rangeland seed drill, and mulch applicator. In areas with slopes of 3H:1V or steeper (natural or cut slopes east of the shafts), a mixture of manual and mechanical application techniques will be used, including hand broadcasting and heavy chains dragged by a tracked dozer to incorporate the seed with the soil.

Before seed is applied, the ground surfaces will be scarified to provide a proper seed bed. Seed will then be applied by either rangeland drill or broadcast. Broadcast seed will be incorporated into the growth medium by hand raking or some mechanical means such as heavy chains dragged behind tracked dozers.

The disturbed surfaces will be reseeded using the seed mix described in Table F.1. The method of reseeding will be determined according to location and size of area to be reseeded. In general, drill seeding will be used on flatter slopes covering larger areas. Broadcast seeding will be used on shorter, steeper slopes. Hand seeding may be required on longer or very steep slopes.

All reseeded areas will be mulched utilizing native grass mulch, straw or other approvable mulch material at an application rate of 1.5 to 2.0 tons per acre. The mulch will be mechanically applied and subsequently crimped to reduce wind loss and stacking. The benefits from the utilization of mulch include:

- great reduction in wind and water erosion of soil, especially prior to the establishment of vegetation;
- increased infiltration and enhanced retention of soil moisture levels to facilitate germination of seed; and
- reduction of soil surface temperatures.

Runoff Control

During the revegetation period, temporary runoff controls will be used as necessary to impede or divert rainfall and snowmelt runoff from revegetated areas. Locations of temporary runoff controls will be selected to retard or divert runoff, trap sediment, and provide improved conditions for germination and plant establishment.

Runoff control during revegetation will include methods recognized by the NRCS or the International Association for Erosion Control. Measures that use present technology include check dams constructed of hay bales, geotextile silt fences secured in shallow trenches, and water bars across the disturbed area and perpendicular to the slope. Tobacco net, Curlex or similar net-and-fiber mats might be used as required for protection of surfaces susceptible to rilling or wind erosion. The specific measures applied to revegetated surfaces will be based on the method most appropriate for the seeding method, erodibility and depth of the soils, degree of slope, proportion of large rocks at the surface, roughness of the surface, and anticipated rainfall.

REVEGETATION SUCCESS

Revegetation success will be evaluated using a two phase approach. The initial phase will use an interim technical standard based on range site descriptions described in Table C.5.2.

The second phase will be a test plot program. This program will begin at the time of mine reactivation, well before closeout, providing ample time for the test plot to be planned,

implemented, and evaluated before site revegetation occurs at closeout.

Interim Technical Standard

An initial interim technical standard for revegetation success has been developed based on range site descriptions obtained from the Natural Resource Conservation Service (NRCS, 1980) for soil mapping units existing on the mine site (Table E.2). This standard will remain in effect until either the volunteer revegetation success is determined to support a higher standard or a test plot program has produced acceptable results that support a more site-specific standard. The NRCS information will be coupled with data collected from undisturbed vegetation types on the area north of Marquez Canyon arroyo to estimate appropriate standards for cover, which could include:

- % by species,
- production in lbs/ac,
- density (number of shrubs/ac), and
- diversity (richness and/or evenness).

Range sites described in accordance with the Soil Conservation Service, 1976, National Range Handbook, U.S. Department of Agriculture, as amended, may also be used in part to develop the technical standards.

The initial interim technical standard will be refined by results from a vegetation survey on 40 acres of undisturbed land north of Marquez Canyon arroyo. Sites for each vegetation type to be sampled will be at least one acre in size. Vegetation types to be sampled for developing the technical standard will be representative of mine area and in as good or better condition than existing vegetation in the mine area. To the extent possible, vegetation sampling will be done during a normal precipitation year and during the peak period of the growing season.

This information will be combined with the NRCS information to make the interim standard specific to the Mt. Taylor Mine site and will also be used to plan the test plot program.

When the interim technical standards has been developed then reviewed and approved by the MMD, a plan for periodic monitoring of the vegetation in the technical standards area will be proposed. This monitoring program will provide the basis for comparison between the vegetation of the test plot and the natural vegetation of the technical standard area. If justified by these comparisons, the test plot program can be revised or the revegetation standards can be revised. All data and copies of all documents and reports used to develop the technical standards used to develop and evaluate or monitor the technical standard will be made available to the MMD. Vegetation types to be sampled for developing the technical standard should be in as good or better condition and should be representative of areas to be disturbed.

Test Plots

A test plot will be developed on the cover of the activation waste disposal cell on the south waste rock pile. This plot will serve several purposes:

- Demonstrate and document the success of selected plant species, amendments, and planting methods
- Verify adequacy of 2.0 ft of cover thickness for support of vegetation
- Measure and document the radon attenuation of the cover with vegetation

The test plot area, approximately 1.6 acres, will occupy the entire cover of the activation waste disposal cells, as shown on Figures 3-2 and 3-3 of Revision 1 of the Application for MMD Permit Revision and Modification of DP-61 (RGR 2013b). Once this cover is in place, this area will not have any traffic and will be fenced to prevent casual access.

The test plot area will be subdivided into not fewer than 10 individual plots, each not more than 30 feet wide by not less than 100 feet long. Two plots, one without amendments and the other with amendments to be determined, will be used for each of the following seed mixes:

- Western Wheatgrass
- Alkali Sacation
- New Mexican Feathergrass
- Blue Grama, Spike Mulhy Galleta
- Fourwing Saltbush
- The proposed Initial Interim Standard mix on Table F.2

The planting rates for each species will be those listed in Table F.1

The test plots will be monitored by RGR will assistance from a vegetation consultant. Less formal monitoring shall be conducted through the year by RGR personnel to identify conditions in the revegetated areas that may require attention. The test plot program will continue until the three purposes of the program, listed above, have been achieved to the satisfaction of MMD.

The monitoring data will include measurements of species composition and vegetation cover, frequency, density, reproductive status, and overall vigor. Vegetation sampling should be done during a normal precipitation year and during the peak period of the growing season (i. e. summer). These data will be compared to the interim success standards for refinement of those standards and for making adjustments in the test program. For at least the first two years, these data will be collected in the spring, summer and fall (end of growing season). Thereafter, an annual survey of the revegetated areas shall be conducted toward the end of the growing season, no later than early September by a qualified vegetation specialist. Survey results

shall be analyzed and summarized to aid in determining the need for any changes in management practices or the need for reseeding or other supplementary practices. All data used to develop and evaluate or monitor the test plots, and copies of all documents and reports used to develop the interim technical standards, will be made available to the MMD.

IMPLEMENTATION

Revegetation will occur incrementally over the life of the mine on the waste pile slopes and after completion of other closeout activities on the other disturbed land surfaces. Implementation of revegetation will be performed in accordance with this Plan and Technical Specification C.5. Subsequently, a period of revegetation success monitoring will occur during the last 2 years of bonding period. The period of responsibility will continue after completion of closeout until release of the bond.

SUCCESS CRITERIA

The vegetation success standards, determined through refinement of the interim standards by results of the test plots, will be used as the basis for determining revegetation success for perennial vegetation cover and herbaceous productivity. Revegetation will be considered successful for vegetation cover and herbaceous productivity if the reclaimed area and cover and productivity are not significantly different from 90% of the success standard at a 90% level of statistical confidence.

Sample Adequacy

Reclaimed and test plot areas will be sampled separately to allow separate determination of sample adequacy. A minimum of 20 cover transects and 20 productivity quadrats will be sampled in the test plot area. On the revegetated disturbed areas, a minimum of 15 transects, 100 m long, will be located randomly, and for consistency these transects will be revisited for each sampling event.

The minimum sample size will be the larger of:

- The N_{min} value using the methods of Cochran, W.G., 1977. *Sampling Techniques*, 3rd ed. John Wiley and Sons, New York, N.Y. or
- The minimum size required for the specific sampling method

All parameters should be tested at the 90% confidence level with a 10% change in the mean (d=.1).

Sampling Methods

The following sampling methods for conducting vegetation studies will be used for

determining revegetation success of test plots and reclaimed areas.

For sampling methods that require the use of quadrats, each quadrat will be rectangular or square plots of m², or $\frac{1}{4}$ m² or 20 x 50cm in size or a $\frac{1}{4}$ m² - m² circular plot.

Species Diversity

Vegetation cover data will be used for determining revegetation success with respect to species diversity. A technical standard for diversity will be applied which will include the following criteria:

- The revegetated area will have at least three perennial grass, two perennial forbs, and two shrub species.
- The diversity of species will be similar to the NRCS Range Site Descriptions.

Cover

Cover will be sampled by the line interception method, in which percent cover is obtained by summing the relative lengths of the transect that are covered, including vegetation, litter, rock, bare ground. Transects will be 100m long, randomly placed within the test plot area and revegetated areas. This method will follow the procedures of Canfield, R.H., 1941. *Application of the Line Interception Method in Sampling Range Vegetation*. For. 39:388-394.

Cover classes, listed in the table below, will be used to supplement the line intercept method in the test plots. A minimum of two quadrats will be randomly placed within each individual test plot. The percent of ground covered by vegetation to the nearest cover class will be estimated for each quadrat, and values will be reported by species and total vegetation cover. Each quadrat or frame plot is considered one sampling unit. The mid-point of each class is used to calculate the mean and standard deviation.

Cover Class	Range, %	Mid-point, %
1	0-1.0	0.4
2	1.1-3.0	2.0
3	3.1-5.0	4.0
4	5.1-10.0	7.5
5	10.1-15.0	12.5
6	15.1-25.0	20.0
7	25.1-35.0	30.0
8	35.1-45.0	40.0
9	45.1-55.0	50.0
10	55.1-65.0	60.0
11	65.1-75.0	70.0
12	75.1-85.0	80.0
13	85.1-95.0	90.0
14	95.1-100	97.5

Reference: Daubenmire, R., 1959. *A Canopy-Cover Method of Vegetational Analysis.* Northwest Science 33:43-63.

Density

Because of the sparsity of natural trees and shrubs in the area, density will be measured by exact count. In test plots, the entire plot will be counted. In revegetated areas, the counts will be made the line interception transects.

Productivity

Productivity will be measured by clipping from quadrats established for cover classes. Plants will be clipped by life form (e.g., herbaceous or woody) to a three inch stubble height. All standing biomass will be clipped for grasses and forbs; for shrubs, only current year's growth will be clipped. Noxious weeds will not be clipped. Samples will be oven dried and weighed to the nearest 0.1 gram. For sample adequacy, the combined weight of each life form at each plot will be used. Report Productivity will be reported as pounds/acre.

The minimum samples size for the test plots will be two quadrats per plot or a total of 20 quadrats. For the revegetated areas the minimum sample size will be 10 quadrats.

Similarity/ Diversity Indices

Either Jacard's Community Coefficient or Sorensen's Similarity Index will be used to evaluate diversity.

BOND RELEASE

Revegetation sampling will be conducted during the last year of the responsibility period for bond release purposes. A formal application requesting bond release and a report describing the revegetation will be submitted to the Director of MMD for approval. Release application will be submitted no sooner than the end of the 12th growing season. The report will include a description of acreage, and mine soils or topdressing materials used in reclamation. Data will be tabulated to demonstrate that revegetation success criteria have been met for the reclaimed area. The data will include comprehensive species lists and grass species seasonality. Successional development will be discussed in terms of reclamation techniques, potential climate and recognized successional stages of natural vegetation of the area. A post-mining vegetation map will depict location, size, shape and proportion of cover and forage areas.

REVEGETATION SCHEDULE

After disturbed lands have been regraded and topdressed, the seedbed will be prepared and the permanent seed mixture planted during the first normal planting season. Since most precipitation as rainfall occurs in the summer and in order to favor the establishment of warm season species, the normal planting season will occur from late spring through summer. Ongoing research, field experience, or variations in normal weather patterns may require planting and seeding operation to be conducted at other times of year.

The overall timetable for revegetation is dependent on the rate at which the mine water treatment ponds can be dried through evaporation. All other closeout activities involving demolition and earthwork outside of the pond basins can be completed within the time that will be required to dry the treatment ponds. Assuming that all residual water in those ponds can be evaporated during the year in which other facilities demolition and earthwork is accomplished, the pond earthwork will be completed in the second year of closeout. Therefore, revegetation of the entire mine area should be completed in the late summer or fall of that year.

WEED MANAGEMENT

Overview

This plan is based on encouraging desired plant species as well as eliminating weeds. Preventive programs will be implemented to keep the mine area free of pest species that occur in the vicinity. This plan follows an adaptive management approach:

- Weed species are identified through an inventory on the mine area and from information on neighboring areas.
- Land management goals and weed management practices are developed for the mine area.
- Priorities are assigned to eradicate or reduce weed species and weed patches based on their impacts as well as the ability to control them.
- Control methods are identified.
- Integrated Weed Management (IWM) plans are developed
- IWM plans are implemented
- IWN results are monitored and evaluated
- Modifications are made to improve IWM plans and actions

Management Area

The area for this program includes the disturbed lands within the mine permit area as well as adjacent undisturbed portions of the permit area that could contribute to, or be impacted by weeds in the disturbed area.

Resource Base

Upon reactivation of the mine, a biological resource study will be performed to document the biological communities and valued species, weed species, land-use histories, major threats and other notable characteristics of the mine area.

Inventory of Weed Species

The inventory plan as well as results of the inventory will be presented, emphasizing those found on the mine site as well as those likely to invade the site. A map of the weed infestations will be prepared.

Weed Management Objectives and Goals

The objectives of weed management are broader than simply weed control and include the desired biological communities, forage production, and land stewardship. Potential impacts of weeds will be described. Objectives will be specific, measurable and achievable within the timeframe related to mine operations and closeout. Specific weed management goals that serve these objectives will be identified for each weed species.

Weed Management Priorities

Prevention – The first priority is to prevent weeds from becoming established.

Species Priority – The species posing the greatest threat to management goals or those most difficult to control will receive priority.

Infestation Priorities – Locations of infestations that pose the greatest threat to high-value resources will receive priority. These locations will be identified and monitored during weed management actions.

Weed Management Actions

Prevention – RGR will perform periodic inspections of revegetated land to identity weeds and mark them for eradication. Bare ground will be re-seeded to reduce the likelihood of weed invasion. A list of the most important weed species will provide the basis for prioritizing eradication actions.

Weed Control – Based on the results of the resource base study and inventory of weed species, RGR will develop a weed control program using IWM principles and species-specific control measures. These measures could include application of herbicides, mechanical removal, or burning.

Monitoring

The effectiveness of the weed control efforts will be evaluated through annual monitoring usually at he peak of the growing season (July-September). Monitoring measures will include visual examination of vegetation species and densities along the line intercept transects as well as random observations beyond the transects, especially in those areas where weeds were identified or where eradication measures were taken previously. Weed species and distributions will be mapped each year, providing a reference for control measures as well as locations to revisit for further assessment in succeeding years.

The results of monitoring will be used to refine the IWM program and to adjust future weed management actions.

Table F.1 Seed Mix: Selected Species and Planting Rates

1. Western wheatgrass (Agropyron smithii) Rate: 6 PLS/ft²

Cool season native perennial grass, reproduces from seeds and rhizomes, growth starts when daytime temperatures reach 12-13 C, grows in dry, rocky soils.

- 2. Winterfat (Ceratoides /anata)* Rate: 2 PLS/ft²
- 3. Blue grama (Boute/oua gracilis)* Rate: 6.0-6.5 PLS/ft²

Warm season native perennial grass, reproduces from seed, tillers, and rhizomes,

growth starts May- June, grows on rock slopes.

- 4. Galleta (Hilaria jamesii) Rate: 6 PLS/ft²
- 5. Alkali Sacaton (Sporobolus airoides) Rate: 6 PLS/ft²
- 6. Mountain mahogany (*Cercocarpus montanus*) Rate: 2 PLS/ft²
- 7. Fourwing saltbush (Atriplex canescens) Rate: 2 PLS/ft²

Evergreen native perennial shrub, reproduces from seeds, grows on grassy

uplands, excellent reclamation species.

- 8. Globemallow (Sphaeralcea fend/en) Rate: 2 PLS/ft²
- 9. Narrowleaf Penstemon (Penstemon angustifo/ia) Rate: 2 PLS/ft²
- 10. New Mexican feathergrass (Stipa neomexicana) Rate: 6 PLS/ft²

Cool season native perennial grass, reproduces by seed and tillers, growth starts mid-

spring, grows on rocky slopes.

 Perennial flower mix – as available, African Daisy, Cornflower, Perennial Gaillardia, Annual Gaillardia, Black-eyed Susan, Evening Primrose, Baby's Breath, Sweet William, Blue Flax, Shasta Daisy, Sweet Alyssum, Corn Poppy, California Poppy, Catchfly, Wall Flower, Siberian, Rocky Mtn. Penstemon, Prairie Coneflower, Spurred Snapdragon, Plains Coneflower, Purple Coneflower Rate: 6-8 lb./acre

* Black grama may be substituted for these species. Other variations and substitutions may be made based on cost and availability of seed at the time of closeout.

Seed origin and quality specifications: Seed should be harvested from native stands within 200 miles north. 300 miles south. 200 miles west and 100 miles east of Mt. Taylor. If seed from native stands is not available. seed of suitable quality grown under appropriate conditions or seed of released cultivars known to be adapted to the San Mateo area may be used. All seed must be certified, and each seed bag must have attached to it a complete label with certification information.

TABLE F.2

INITIAL INTERIM REVEGETATION SUCCESS STANDARDS

MT. TAYLOR MINE CLOSEOUT PLAN

POTENTIAL PLANT COMMUNITY FROM NRCS RANGE SITE DESCRIPTIONS

Section IIE, Technical Guide						
	Percentage of Potential Production					
Natural Plant Species	Clayey Bottomland Mapping Unit 257	Bottomland Mapping Unit 57	Average			
Western Wheatgrass	35-45	20-30	32			
Alkali Sacaton	5-10	30-40	21			
Vine Mesquite	10-15	1-5	7			
Blue Grama, Spike Mulhy, Galleta	15-25	10-15	16			
Bottlebrush Squirreltail	1-3	1-5	2			
Fourwing Saltbush	3-10	3-10	6			
Winterfat	1-3		2			
Rabbitbush, Broom Snakeweed	1-5	1-5	3			
Forbs	3-8	1-5	4			
others	1	9	5			
Ground Cover, %	50	55	52			
Production, Ib./acre	1250-3200	1200-3000	2162			

PROPOSED INITIAL INTERIM STANDARDS

Plant Species	Expected Percentage of Production	Standard
Western Wheatgrass	32	20-45
Alkali Sacaton New Mexican Feathergrass	20 20	5-40 10-30
Blue Grama, Spike Mulhy, Galleta	16	10-25
Fourwing Saltbush	6	3-10
Winterfat Mountain Mahogany	2 1	1-3 0-5
Globemallow Narrowleaf Penstemon	1 1	0-5 0-5
others	1	0-10
Ground Cover, 50% of potential		
Production, Ib./acre 70% of potential		
Variations and substitutions may be made in cost at time of closeout.	the seed mix, based on	seed availability and