

LAC
MINERALS (USA) LLC
CUNNINGHAM HILL MINE
RECLAMATION PROJECT
1655 Mountain City Hwy
Elko, NV 89801
TELEPHONE: 505.471.0434

May 27, 2022

Ms. Anne Maurer
New Mexico Environmental Department
Groundwater Quality Bureau
1190 South St. Francis Drive
Santa Fe, NM 87502

Ms. Carmen Rose Mining and Minerals Division Mining Act Reclamation Program 1220 South St. Francis Drive Santa Fe, NM 87505

RE: Waste Rock Pile Workplan Design Package

Discharge Permit 55 (DP-55) and Abatement Plan 27 (AP-27)

Cunningham Hill Mine Reclamation Project

Ms. Maurer and Ms. Rose,

On February 16, 2022, LAC Minerals USA LLC (LAC) received approval of the December 27, 2021 Waste Rock Pile Workplan. In the workplan LAC noted that engineering design documentation, including stockpile materials soil analysis, would be submitted to the agency for approval. Enclosed is the North Slope Cover Improvements design and supporting technical drawings prepared by Daniel B. Stephens & Associates, Inc.

Should you have any questions or require further information, you can contact Daniel Lattin at (775) 397-7215 or at dlattin@barrick.com.

Sincerely,

Jennifer L Ortega

Health, Safety and Environmental Superintendent

Enclosure

ec: Joe Fox, Acting Program Manager, NMED-MECS

Holland Shepherd, Program Manager, EMNRD-MMD

Kevin Myers, EMNRD-MMD

Friends of Santa Fe County (Charles de Saillan, cdesaillan@nmelc.org)

Daniel Lattin, LAC Brad Bingham, LAC

ennifer L'Ortega

May 25, 2022

Ms. Jennifer Ortega LAC Minerals (USA) LLC 582 County Road 55 Cerrillos, New Mexico 87010 Delivered by e-mail: Jennifer.Ortega@barrick.com

Re: North Slope Cover Improvements

Dear Ms. Ortega:

Daniel B. Stephens & Associates, Inc. (DBS&A) is pleased to provide LAC Minerals (USA) LLC (LAC) the attached drawing set (Attachment 1) for proposed cover and drainage improvements to the North Slope waste rock pile (WRP) at the Cunningham Hill Mine Reclamation Project located in Santa Fe County, New Mexico. Attachment 2 provides a bid table to use when bidding the work for construction. Attachments 3 and 4 provide soil testing results for samples collected from an on-site soil stockpile that will be used to provide soil to make the cover and drainage improvements. Soil chemistry analytical laboratory results demonstrate that the soil has low acid-generating potential and is suitable for cover placement (Attachment 4). Rock for a proposed riprap channel is stockpiled near the on-site soil stockpile. Attachment 5 provides a seed mix for revegetation of repaired areas.

Design Basis

The basis for the design is to improve stormwater drainage along selected areas of the North Slope WRP benches and to repair areas impacted by erosion. The design is based on site reconnaissance conducted by DBS&A on March 18 and April 5, 2022 and a topographic survey conducted and provided by Meridiam Partners, LLC. Key design elements are discussed in the following sections and presented in the drawing set (Attachment 1).

Grading of Benches

The seven benches on the North Slope WRP are intended to convey stormwater laterally toward a riprap channel located along the east side of the cover, commonly referred to as the east groin. The slopes of the benches were inspected during site reconnaissance and analyzed using AutoCAD to identify flatter or depressed areas where fill could be added to promote positive drainage. A total of 12 areas were identified where topographic depressions or flatter sections impede the flow of water. Locations and profiles of these areas are shown in Sheets 3 and 4, respectively, of the drawing set (Attachment 1).

Ms. Jennifer Ortega May 19, 2022 Page 2

To promote drainage along the benches, DBS&A proposes that 11 of the 12 areas be filled with soil from the on-site soil stockpile, and that the fill be compacted in place. The purpose of the fill is to remove the identified depressions and create a continuous slope that dips to the east. DBS&A calculated the volume of soil needed to appropriately fill the 11 areas. These volumes are presented on Sheet 4 of the drawing sheet (Attachment 1) and assume a fluff factor of 1.5. This factor was used to convert in-place cubic yardage to a loose cubic yardage equivalent. The total compacted fill volume is approximately 100 cubic yards, and will require approximately 150 cubic yards of loose soil from the on-site soil stockpile. One of the 12 areas (Section F-F') requires a small cut to increase slope.

In addition, four areas were identified during site reconnaissance where water is flowing off the edge of the benches and onto the cover. In these areas, the benches have flattened. DBS&A proposes to restore the bench slopes so that stormwater is directed toward the toe of the cover (i.e., south side of the bench), where it can then flow laterally toward the east groin. This design element is shown in Detail 2 on Sheet 5 of the design set (Attachment 1).

Rill Mitigation

During site reconnaissance, DBS&A identified two areas where erosion has resulted in the development of rills. The rills are small, and there appears to be minimal potential for their sizes to increase substantially due to the presence of healthy vegetation. However, DBS&A proposes to fill the rills in order to restore cover thickness and mitigate soil loss. The rills will be filled with soil from the on-site soil stockpile, and the fill will be compacted in place. The locations of the rills are shown on Sheet 3 of the design set (Attachment 1).

Road Swales

DBS&A identified three areas during site reconnaissance where road swales can be installed or improved. The purpose of the swales is to prevent stormwater from flowing onto the North Slope WRP cover. Two of the three swales are new. One of them will also help to convey stormwater associated with a proposed new, 18-inch-wide riprap channel. The other new swale is at the base of the cover (i.e., at its north end), and will help move water away from an area with clear signs of desiccation and soil ponding. One existing swale is showing signs of erosion and will be rebuilt to improve its functionality. The design for the swales is shown in Detail 1 on Sheet 5 of the design set (Attachment 1).

Revegetation of Improvement Areas

Areas where improvements are made or are disturbed during construction will be reseeded. Reseeding will be conducted using previously approved specifications and seed mix (Attachment 5).

Ms. Jennifer Ortega May 19, 2022 Page 3

Closing

DBS&A has developed the attached design set to improve drainage and repair erosion to the cover of the North Slope WRP. The design elements use soil from an existing on-site borrow source.

We appreciate the opportunity to support LAC at the Cunningham Hill Mine Reclamation Project. Please contact us at (505) 822-9400 with any questions or comments.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

John Ayarbe, P.G.

Senior Hydrogeologist

Jeffrey Samson, P.E.

Project Engineer

JA/JS/rpf Attachments

Attachment 1 Drawings

Attachment 2 Bid Table

Cunningham Hill Mine Reclamation Project

Waste Rock Pile Cover Improvements

Item No	Description	Quantity	Units	Unit Price	Extended Price
1.1	Mobilization/demobilization	1	LS		
1.2	Screen existing soils (no material larger than 3/4") in sufficient quantity to complete the work	1	LS		
1.3	Fill and compaction of rills, and cleanout inlet on Bench 1	1	LS		
1.4	Construction of two new swales (approximate total length - 75 ft)	1	LS		
1.5	Rehabilitation of existing swale (approximate length - 80 ft	1	LS		
1.6	Grading of benches, including approximately 100 CY of compacted fill, and 5 CY of cut	1	LS		
1.7	Construct 18" wide riprap channel by placing 6" minimum riprap and compacting in place (approximate length - 50 ft)	1	LS		
1.8	Rebuild the bench to slope water toward toe in 4 locations	1	LS		
1.9	Reseed improvement areas	0.25	Ac		
				Total	

Notes: LS = Lump sum

Ac = Acre

Attachment 3

DBS&A Soils Properties Laboratory Report

Laboratory Report for Barrick Gold Corporation

Cunningham Hill

August 24, 2017

Daniel B. Stephens & Associates, Inc.

4400 Alameda Blvd. NE, Suite C • Albuquerque, New Mexico 87113

David Wykoff Barrick Gold Corporation 582 County Road 55 Cerrillos, NM 87010 (505) 471-0434

Re: DBS&A Laboratory Report for the Barrick Gold Corporation Cunningham Hill Project

Dear Mr. Wykoff:

Enclosed is the report for the Barrick Gold Corporation, Cunningham Hill project samples. Please review this report and provide any comments as samples will be held for a maximum of 30 days. After 30 days samples will be returned or disposed of in an appropriate manner.

All testing results were evaluated subjectively for consistency and reasonableness, and the results appear to be reasonably representative of the material tested. However, DBS&A does not assume any responsibility for interpretations or analyses based on the data enclosed, nor can we guarantee that these data are fully representative of the undisturbed materials at the field site. We recommend that careful evaluation of these laboratory results be made for your particular application.

The testing utilized to generate the enclosed report employs methods that are standard for the industry. The results do not constitute a professional opinion by DBS&A, nor can the results affect any professional or expert opinions rendered with respect thereto by DBS&A. You have acknowledged that all the testing undertaken by us, and the report provided, constitutes mere test results using standardized methods, and cannot be used to disqualify DBS&A from rendering any professional or expert opinion, having waived any claim of conflict of interest by DBS&A.

We are pleased to provide this service to Barrick Gold Corporation and look forward to future laboratory testing on other projects. If you have any questions about the enclosed data, please do not hesitate to call.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC. SOIL TESTING & RESEARCH LABORATORY

Joleen Hines

Laboratory Manager

Enclosure

Summaries

Summary of Tests Performed

Laboratory		itial S		Н	aturate lydraul nductiv	ic				Moi Charac	sture			Particl Size ⁴	е	-	ecific	Air Perm-	Atterberg	Proctor
Sample Number	G	: -	VD				НС	PP	FP			WHC	K _{unsat}		Н	F	С	eability	_	Compaction
TP-1														Х	Х				Х	Х
TP-1 (85%)	Х	Х				Х														
TP-1 (90%)	Х	Χ				Х														
TP-2														Х	Х				Х	Х
TP-2 (85%)	Х	Χ				Х														
TP-2 (90%)	Х	Χ				Х														

¹ G = Gravimetric Moisture Content, VM = Volume Measurement Method, VD = Volume Displacement Method

² CH = Constant Head Rigid Wall, FH = Falling Head Rigid Wall, FW = Falling Head Rising Tail Flexible Wall

³ HC = Hanging Column, PP = Pressure Plate, FP = Filter Paper, DPP = Dew Point Potentiometer, RH = Relative Humidity Box,

EP = Effective Porosity, WHC = Water Holding Capacity, Kunsat = Calculated Unsaturated Hydraulic Conductivity

⁴ DS = Dry Sieve, WS = Wet Sieve, H = Hydrometer

⁵ F = Fine (<4.75mm), C = Coarse (>4.75mm)

Notes

Sample Receipt:

Two samples were hand delivered on July 19, 2017. Each sample arrived in two 5-gallon buckets sealed with lids. Both samples were received in good order.

Sample Preparation and Testing Notes:

The samples were subjected to particle size analysis and Atterberg limits testing.

Each sample was subjected to standard proctor compaction testing. A portion of each sample was remolded into a testing ring to target 85% and 90% of the respective maximum dry bulk density at the respective optimum moisture content. The sub-samples were then extruded from the testing rings and were subjected to saturated hydraulic conductivity testing via the flexible wall method. The actual percentage of maximum dry bulk density achieved was added to each sub-sample ID.

Particles larger than 4.75 mm were removed from the bulk material prior to remolding the subsamples. Oversize correction calculations are provided since the removed fraction is larger than 5% of the bulk sample mass.

Porosity calculations are based on the use of an assumed specific gravity value of 2.65.

Summary of Sample Preparation/Volume Changes

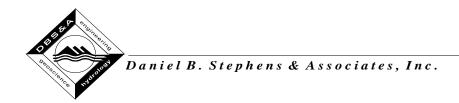
	Procto	or Data	Target R	Target Remold Parameters ¹			al Remold	Data	Volume Change Post Saturation ²		
	Optimum Moisture Content	Max. Dry Density	Moisture Content	Dry Bulk Density	% of Max. Density	Moistur e Content	Dry Bulk Density	% of Max. Density	Dry Bulk Density	% Volume Change	% of Max. Density
Sample Number	(%, g/g)	(g/cm ³)	(%, g/g)	(g/cm ³)	(%)	(%, g/g)	(g/cm ³)	(%)	(g/cm ³)	(%)	(%)
TP-1 85%	17.8	1.67	17.8	1.42	85%	17.8	1.42	85%	1.43	-0.8%	85.8%
TP-1 90%	17.8	1.67	17.8	1.50	90%	18.0	1.49	90%	1.50	-0.7%	90.3%
TP-2 85%	18.1	1.68	18.1	1.43	85%	18.4	1.43	85%	1.43	+0.1%	85.0%
TP-2 90%	18.1	1.68	18.1	1.51	90%	18.2	1.51	90%	1.49	+1.1%	89.0%

Notes:

¹Target Remold Parameters: Provided by the client: 85% and 90% of maximum dry density at optimum moisture content.

²Volume Change Post Saturation: Volume change measurements were obtained after saturated hydraulic conductivity testing.

[&]quot;+" indicates sample swelling, "-" indicates sample settling, and "---" indicates no volume change occurred.


Summary of Initial Moisture Content, Dry Bulk Density Wet Bulk Density and Calculated Porosity

Moisture Content

	Woldtare Content							
	As Re	eceived	Rem	olded	Dry Bulk	Wet Bulk	Calculated	
Sample Number	Gravimetric (%, g/g)	Volumetric (%, cm ³ /cm ³)	Gravimetric (%, g/g)	Volumetric (%, cm ³ /cm ³)	Density (g/cm ³)	Density (g/cm ³)	Porosity (%)	
TP-1	17.0	NA			NA	NA	NA	
TP-1 (85%)	NA	NA	17.8	25.2	1.42	1.67	46.5	
TP-1 (90%)	NA	NA	18.0	26.9	1.49	1.76	43.6	
TP-2	13.8	NA			NA	NA	NA	
TP-2 (85%)	NA	NA	18.4	26.3	1.43	1.69	46.1	
TP-2 (90%)	NA	NA	18.2	27.5	1.51	1.79	43.0	

NA = Not analyzed

^{--- =} This sample was not remolded

Summary of Saturated Hydraulic Conductivity Tests

		Oversize Corrected	Method of	f Analysis
	K_{sat}	K_{sat}	Constant Head	Falling Head
Sample Number	(cm/sec)	(cm/sec)	Flexible Wall	Flexible Wall
TP-1 85%	8.5E-04	6.9E-04		X
TP-1 90%	1.4E-04	1.2E-04		X
TP-2 85%	4.6E-04	4.1E-04		X
TP-2 90%	1.2E-04	1.0E-04		X

^{--- =} Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NR = Not requested NA = Not applicable

Summary of Particle Size Characteristics

Sample Number	d ₁₀ (mm)	d ₅₀ (mm)	d ₆₀ (mm)	C_{u}	C_c	Method	ASTM Classification	USDA Classification	_
TP-1	0.00038	0.070	0.14	368	12	WS/H	Sandy silt with gravel s(ML)g	Loam [†]	(Est)
TP-2	0.00067	0.055	0.076	113	9.5	WS/H	Sandy silt s(ML)	Loam [†]	(Est)

d₅₀ = Median particle diameter

$$C_{u} = \frac{d_{60}}{d_{10}}$$

DS = Dry sieve

[†] Greater than 10% of sample is coarse material

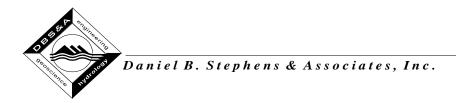
$$(d_{30})^2$$

WS = Wet sieve

H = Hydrometer

Percent Gravel, Sand, Silt and Clay*

	% Gravel	% Sand	% Silt	% Clay
Sample Number	(>4.75mm)	(<4.75mm, >0.075mm)	(<0.075mm, >0.002mm)	(<0.002mm)
TP-1	18.6	29.8	36.5	15.2
TP-2	10.2	30.0	45.0	14.9


^{*}USCS classification does not classify clay fraction based on particle size. USDA definition of clay (<0.002mm) used in this table.

Summary of Atterberg Tests

Sample Number	Liquid Limit	Plastic Limit	Plasticity Index	Classification
TP-1	38	25	13	ML
TP-2	36	25	11	ML

^{--- =} Soil requires visual-manual classification due to non-plasticity

Summary of Proctor Compaction Tests

	Meas	Measured		Corrected
Sample Number	Optimum Moisture Content (% g/g)	Maximum Dry Bulk Density (g/cm ³)	Optimum Moisture Content (% g/g)	Maximum Dry Bulk Density (g/cm³)
TP-1	17.8	1.67	14.6	1.79
TP-2	18.1	1.68	16.1	1.75

^{--- =} Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NR = Not requested

NA = Not applicable

Initial Properties


Summary of Initial Moisture Content, Dry Bulk Density Wet Bulk Density and Calculated Porosity

Moisture Content

	<u> </u>							
	As Re	As Received		olded	Dry Bulk	Wet Bulk	Calculated	
Sample Number	Gravimetric (%, g/g)	Volumetric (%, cm ³ /cm ³)	Gravimetric (%, g/g)	Volumetric (%, cm³/cm³)	Density (g/cm ³)	Density (g/cm³)	Porosity (%)	
TP-1	17.0	NA			NA	NA	NA	
TP-1 (85%)	NA	NA	17.8	25.2	1.42	1.67	46.5	
TP-1 (90%)	NA	NA	18.0	26.9	1.49	1.76	43.6	
TP-2	13.8	NA			NA	NA	NA	
TP-2 (85%)	NA	NA	18.4	26.3	1.43	1.69	46.1	
TP-2 (90%)	NA	NA	18.2	27.5	1.51	1.79	43.0	

NA = Not analyzed

^{--- =} This sample was not remolded

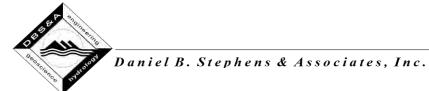
Job Name: Barrick Gold Corporation

Job Number: DB17.1190.00

Sample Number: TP-1

Project Name: Cunningham Hill

Date Sampled: 7/17/17


	As Received	Remolded
Test Date:	3-Aug-17	
Field weight* of sample (g):	1748.20	
Tare weight, ring (g):	0.00	
Tare weight, pan/plate (g):	389.37	
Tare weight, other (g):	0.00	
Dry weight of sample (g):	1161.41	
Sample volume (cm ³):	NA	
Assumed particle density (g/cm ³):	2.65	
, , ,		
Gravimetric Moisture Content (% g/g):	17.0	
Volumetric Moisture Content (% vol):	NA	
Dry bulk density (g/cm ³):	NA	
Wet bulk density (g/cm ³):	NA	
Calculated Porosity (% vol):	NA	
Percent Saturation:	NA	
·		

Laboratory analysis by: C. Krous
Data entered by: C. Krous
Checked by: J. Hines

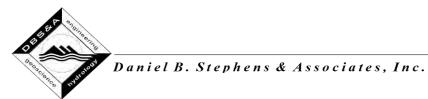
Comments:

* Weight including tares

NA = Not analyzed

Job Name: Barrick Gold Corporation

Job Number: DB17.1190.00 Sample Number: TP-1 (85%) Project Name: Cunningham Hill


Date Sampled: 7/17/17

	As Received	Remolded
Test Date:	NA	10-Aug-17
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g): Dry weight of sample (g): Sample volume (cm³): Assumed particle density (g/cm³):		376.21 0.00 0.00 0.00 319.46 225.43 2.65
Gravimetric Moisture Content (% g/g):		17.8
Volumetric Moisture Content (% vol):		25.2
Dry bulk density (g/cm ³):		1.42
Wet bulk density (g/cm ³):		1.67
Calculated Porosity (% vol):		46.5
Percent Saturation:		54.1
Laboratory analysis by: Data entered by: Checked by:		D. O'Dowd C. Krous J. Hines

Comments:

* Weight including tares

NA = Not analyzed

Job Name: Barrick Gold Corporation

Job Number: DB17.1190.00 Sample Number: TP-1 (90%) Project Name: Cunningham Hill

Date Sampled: 7/17/17

	As Received	Remolded
Test Date:	NA	10-Aug-17
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g): Dry weight of sample (g): Sample volume (cm³): Assumed particle density (g/cm³):		398.21 0.00 0.00 0.00 337.49 226.00 2.65
Gravimetric Moisture Content (% g/g):		18.0
Volumetric Moisture Content (% vol):		26.9
Dry bulk density (g/cm ³):		1.49
Wet bulk density (g/cm ³):		1.76
Calculated Porosity (% vol):		43.6
Percent Saturation:		61.6
Laboratory analysis by: Data entered by: Checked by:		D. O'Dowd C. Krous J. Hines

Comments:

* Weight including tares

NA = Not analyzed

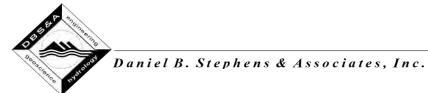
Job Name: Barrick Gold Corporation

Job Number: DB17.1190.00

Sample Number: TP-2

Project Name: Cunningham Hill

Date Sampled: 7/17/17


	As Received	Remolded
Test Date:	3-Aug-17	
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g): Dry weight of sample (g):	1344.78 0.00 268.11 0.00	
Sample volume (cm ³):	NA	
Assumed particle density (g/cm³):	2.65	
Gravimetric Moisture Content (% g/g):	13.8	
Volumetric Moisture Content (% vol):	NA	
Dry bulk density (g/cm ³):	NA	
Wet bulk density (g/cm ³):	NA	
Calculated Porosity (% vol):	NA	
Percent Saturation:	NA	

Laboratory analysis by: C. Krous
Data entered by: C. Krous
Checked by: J. Hines

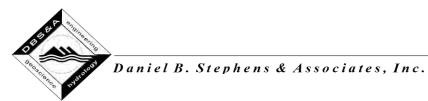
Comments:

* Weight including tares

NA = Not analyzed

Job Name: Barrick Gold Corporation

Job Number: DB17.1190.00 Sample Number: TP-2 (85%) Project Name: Cunningham Hill


Date Sampled: 7/17/17

	As Received	Remolded
Test Date:	NA	10-Aug-17
Field weight* of sample (g):		379.89
Tare weight, ring (g):		0.00
Tare weight, pan/plate (g):		0.00
Tare weight, other (g):		0.00
Dry weight of sample (g):		320.91
Sample volume (cm³):		224.49
Assumed particle density (g/cm ³):		2.65
Gravimetric Moisture Content (% g/g):		18.4
Volumetric Moisture Content (% vol):		26.3
Dry bulk density (g/cm ³):		1.43
Wet bulk density (g/cm ³):		1.69
Calculated Porosity (% vol):		46.1
Percent Saturation:		57.0
Laboratory analysis by: Data entered by: Checked by:		D. O'Dowd C. Krous J. Hines
Strooned by:		

Comments:

* Weight including tares

NA = Not analyzed

Job Name: Barrick Gold Corporation

Job Number: DB17.1190.00 Sample Number: TP-2 (90%) Project Name: Cunningham Hill

Date Sampled: 7/17/17


	As Received	Remolded
Test Date:	NA	10-Aug-17
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g): Dry weight of sample (g): Sample volume (cm³): Assumed particle density (g/cm³):		402.46 0.00 0.00 0.00 340.44 225.28 2.65
Gravimetric Moisture Content (% g/g):		18.2
Volumetric Moisture Content (% vol):		27.5
Dry bulk density (g/cm ³):		1.51
Wet bulk density (g/cm ³):		1.79
Calculated Porosity (% vol):		43.0
Percent Saturation:		64.1
Laboratory analysis by: Data entered by: Checked by:		D. O'Dowd C. Krous J. Hines

Comments:

* Weight including tares

NA = Not analyzed

Saturated Hydraulic Conductivity

Summary of Saturated Hydraulic Conductivity Tests

		Oversize Corrected	Method of	f Analysis	
	K_{sat}	K_{sat}	Constant Head	Falling Head	
Sample Number	(cm/sec)	(cm/sec)	Flexible Wall	Flexible Wall	
TP-1 85%	8.5E-04	6.9E-04		X	
TP-1 90%	1.4E-04	1.2E-04		Х	
TP-2 85%	4.6E-04	4.1E-04		X	
TP-2 90%	1.2E-04	1.0E-04		X	

^{--- =} Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NR = Not requested NA = Not applicable

Saturated Hydraulic Conductivity Flexible Wall Falling Head-Rising Tail Method

Job Name: Barrick Gold Corporation

Job Number: DB17.1190.00 Sample Number: TP-1 85%

Project Name: Cunningham Hill

Date Sampled: 7/17/17

Remolded or Initial Sample Properties	Post Permeation Sample Properties	Test and Sample Conditions				
Initial Mass (g): 376.21	Saturated Mass (g): 423.88	Permeant liquid used: Tap Water				
Diameter (cm): 6.141	Dry Mass (g): 319.46	Sample Preparation: In situ sample, extruded				
Length (cm): 7.611	Diameter (cm): 6.115	✓ Remolded Sample				
Area (cm²): 29.62	Length (cm): 7.612	Number of Lifts: 3				
Volume (cm ³): 225.43	Deformation (%)**: 0.01	Split: #4				
Dry Density (g/cm ³): 1.42	Area (cm²): 29.37	Percent Coarse Material (%): 18.6				
Dry Density (pcf): 88.5	Volume (cm ³): 223.55	Particle Density(g/cm ³): 2.65 ✓ Assumed Measured				
Water Content (%, g/g): 17.8	Dry Density (g/cm ³): 1.43	Cell pressure (PSI): 81.0				
Water Content (%, vol): 25.2	Dry Density (pcf): 89.2	Influent pressure (PSI): 80.0				
Void Ratio (e): 0.87	Water Content (%, g/g): 32.7	Effluent pressure (PSI): 80.0				
Porosity (%, vol): 46.5	Water Content (%, vol): 46.7	Panel Used: ☐ A ☐ B ✓ C				
Saturation (%): 54.1	Void Ratio(e): 0.85	Reading: ✓ Annulus ✓ Pipette				
	Porosity (%, vol): 46.1	Date/Time				
	Saturation (%)*: 101.4	B-Value (% saturation) prior to test*: 0.99 8/11/17 820				
		B-Value (% saturation) post to test: 0.99 8/11/17 901				

^{*} Per ASTM D5084 percent saturation is ensured (B-Value \geq 95%) prior to testing, as post test saturation values may be exaggerated or skewed during depressurizing and sample removal.

Laboratory analysis by: D. O'Dowd

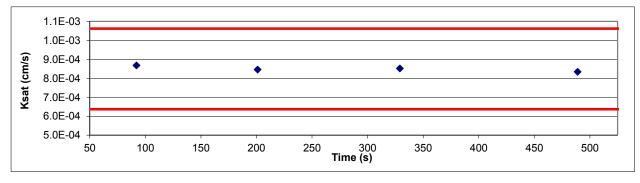
Data entered by: D. O'Dowd

Checked by: J. Hines

^{**}Percent Deformation: based on initial sample length and post permeation sample length.

Saturated Hydraulic Conductivity Flexible Wall Falling Head-Rising Tail Method

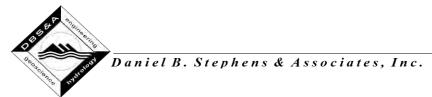
Job Name: Barrick Gold Corporation


Job Number: DB17.1190.00 Sample Number: TP-1 85% Project Name: Cunningham Hill

Date Sampled: 7/17/17

Date	Time	Temp (°C)	Influent Pipette Reading	Effluent Pipette Reading	Gradient (ΔH/ΔL)	Average Flow (cm ³)	Elapsed Time (s)	Ratio (outflow to inflow)	Change in Head (Not to exceed 25%)	k _{sat} T°C (cm/s)	k _{sat} Corrected (cm/s)
Test # 1: 11-Aug-17 11-Aug-17	08:50:22 08:51:54	21.5 21.5	11.00 11.50	19.00 18.50	1.21 1.06	2.39	92	1.00	12%	9.00E-04	8.68E-04
Test # 2: 11-Aug-17 11-Aug-17	08:51:54 08:53:43	21.5 21.5	11.50 12.00	18.50 18.00	1.06 0.91	2.39	109	1.00	14%	8.77E-04	8.46E-04
Test # 3: 11-Aug-17 11-Aug-17	08:53:43 08:55:51	21.5 21.5	12.00 12.50	18.00 17.50	0.91 0.76	2.39	128	1.00	17%	8.83E-04	8.52E-04
Test # 4: 11-Aug-17 11-Aug-17	08:55:51 08:58:31	21.5 21.5	12.50 13.00	17.50 17.00	0.76 0.61	2.39	160	1.00	20%	8.64E-04	8.34E-04

Average Ksat (cm/sec): 8.50E-04


Calculated Gravel Corrected Average Ksat (cm/sec): 6.92E-04

ASTM Required Range (+/- 25%)

Ksat (-25%) (cm/s): 6.37E-04

Ksat (+25%) (cm/s): 1.06E-03

Oversize Correction Data Sheet

Job Name: Barrick Gold Corporation

Job Number: DB17.1190.00 Sample Number: TP-1 85%

Project Name: Cunningham Hill

Date Sampled: 7/17/17

Split (3/4", 3/8", #4): #4 Calculated Porosity of Fines (% vol): 46.5

	Coarse Fraction*	Fines Fraction	Composite
Subsample Mass (g): Bulk Density (g/cm³): Volume of Solids (cm³): Volume of Voids (cm³):	18.57 2.65 7.01 0.00	81.43 1.42 30.73 26.73	100.00 1.55 37.74 26.73
Total Volume (cm ³):	7.01	57.46	64.47
Volumetric Fraction (%): Mass Fraction (%):	10.87 18.57	89.13 81.43	100.00 100.00
Ksat (cm/sec):	NM	8.5E-04	6.9E-04

^{--- =} Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NM = Not measured

Laboratory analysis by: D. O'Dowd

Data entered by: D. O'Dowd

Checked by: J. Hines

^{* =} Porosity and moisture content of coarse fraction assumed to be zero.

Saturated Hydraulic Conductivity Flexible Wall Falling Head-Rising Tail Method

Job Name: Barrick Gold Corporation

Job Number: DB17.1190.00 Sample Number: TP-1 90%

Project Name: Cunningham Hill

Date Sampled: 7/17/17

Remolded or Initial Sample Properties		Post Permeatio Sample Properti		Test and Sample Conditions				
Initial Mass (g):	398.21	Saturated Mass (g): 43	88.61	Permeant liquid used: Tap Water				
Diameter (cm):	6.148	Dry Mass (g): 33	37.49	Sample Preparation: In situ sample, extruded				
Length (cm):	7.613	Diameter (cm): 6.	125	✓ Remolded Sample				
Area (cm²):	29.69	Length (cm): 7.0	613	Number of Lifts: 3				
Volume (cm ³):	226.00	Deformation (%)**: 0.	00	Split: #4				
Dry Density (g/cm ³):	1.49	<i>Area (cm²):</i> 29	9.46	Percent Coarse Material (%): 18.6				
Dry Density (pcf):	93.2	Volume (cm³): 22	24.31	Particle Density(g/cm ³): 2.65 ✓ Assumed Measured				
Water Content (%, g/g):	18.0	Dry Density (g/cm ³): 1.	50	Cell pressure (PSI): 81.0				
Water Content (%, vol):	26.9	Dry Density (pcf): 93	3.9	Influent pressure (PSI): 80.0				
Void Ratio (e):	0.77	Water Content (%, g/g): 30	0.0	Effluent pressure (PSI): 80.0				
Porosity (%, vol):	43.6	Water Content (%, vol): 45	5.1	Panel Used: ☐ A 🗸 B ☐ C				
Saturation (%):	61.6	Void Ratio(e): 0.	76	Reading: ✓ Annulus ✓ Pipette				
		Porosity (%, vol): 43	3.2	Date/Time				
		Saturation (%)*: 10	04.3	B-Value (% saturation) prior to test*: 1.00 8/11/17 822				
		• •		B-Value (% saturation) post to test: 1.00 8/11/17 1005				

^{*} Per ASTM D5084 percent saturation is ensured (B-Value \geq 95%) prior to testing, as post test saturation values may be exaggerated or skewed during depressurizing and sample removal.

Laboratory analysis by: D. O'Dowd

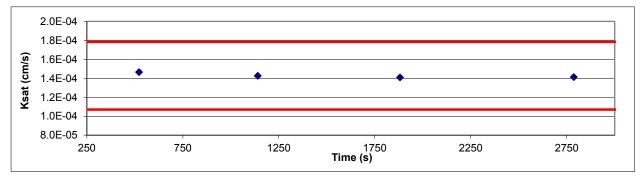
Data entered by: D. O'Dowd

Checked by: J. Hines

^{**}Percent Deformation: based on initial sample length and post permeation sample length.

Saturated Hydraulic Conductivity Flexible Wall Falling Head-Rising Tail Method

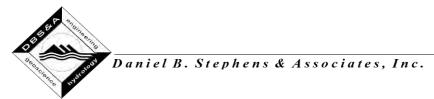
Job Name: Barrick Gold Corporation


Job Number: DB17.1190.00 Sample Number: TP-1 90% Project Name: Cunningham Hill

Date Sampled: 7/17/17

Date	Time	Temp (°C)	Influent Pipette Reading	Effluent Pipette Reading	Gradient (ΔH/ΔL)	Average Flow (cm ³)	Elapsed Time (s)	Ratio (outflow to inflow)	Change in Head (Not to exceed 25%)	k _{sat} T°C (cm/s)	k _{sat} Corrected (cm/s)
Test # 1: 11-Aug-17 11-Aug-17	09:14:18 09:23:00	21.5 21.5	11.00 11.50	19.00 18.50	1.21 1.06	2.31	522	1.00	12%	1.52E-04	1.46E-04
Test # 2: 11-Aug-17 11-Aug-17	09:23:00 09:33:19	21.5 21.5	11.50 12.00	18.50 18.00	1.06 0.91	2.31	619	1.00	14%	1.48E-04	1.43E-04
Test # 3: 11-Aug-17 11-Aug-17	09:33:19 09:45:40	21.5 21.5	12.00 12.50	18.00 17.50	0.91 0.76	2.31	741	1.00	17%	1.46E-04	1.41E-04
Test # 4: 11-Aug-17 11-Aug-17	09:45:40 10:00:45	21.5 21.5	12.50 13.00	17.50 17.00	0.76 0.61	2.31	905	1.00	20%	1.46E-04	1.41E-04

Average Ksat (cm/sec): 1.43E-04


Calculated Gravel Corrected Average Ksat (cm/sec): 1.16E-04

ASTM Required Range (+/- 25%)

Ksat (-25%) (cm/s): 1.07E-04

Ksat (+25%) (cm/s): 1.78E-04

Oversize Correction Data Sheet

Job Name: Barrick Gold Corporation

Job Number: DB17.1190.00 Sample Number: TP-1 90%

Project Name: Cunningham Hill

Date Sampled: 7/17/17

Split (3/4", 3/8", #4): #4
Calculated Porosity of Fines (% vol): 43.6

	Coarse Fraction*	Fines Fraction	Composite
Subsample Mass (g): Bulk Density (g/cm ³):	18.57	81.43	100.00
	2.65	1.49	1.63
Volume of Solids (cm ³):	7.01	30.73	37.74
Volume of Voids (cm ³):	0.00	23.80	23.80
Total Volume (cm ³):	7.01	54.53	61.54
Volumetric Fraction (%):	11.39	88.61	100.00
Mass Fraction (%):	18.57	81.43	100.00
Ksat (cm/sec):	NM	1.4E-04	1.2E-04

^{--- =} Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NM = Not measured

Laboratory analysis by: D. O'Dowd

Data entered by: D. O'Dowd

Checked by: J. Hines

^{* =} Porosity and moisture content of coarse fraction assumed to be zero.

Saturated Hydraulic Conductivity Flexible Wall Falling Head-Rising Tail Method

Job Name: Barrick Gold Corporation

Job Number: DB17.1190.00 Sample Number: TP-2 85%

Project Name: Cunningham Hill

Date Sampled: 7/17/17

	Remolded or Initial Sample Properties		tion erties	Test and Sample Conditions				
Initial Mass (g):	379.89	Saturated Mass (g):	426.42	Permeant liquid used:	Tap W	/ater		
Diameter (cm):	6.127	Dry Mass (g):	320.91	Sample Preparation:	☐ In	situ sampl	le, extruded	d
Length (cm):	7.614	Diameter (cm):	6.135		✓ Re	emolded Sa	ımple	
Area (cm²):	29.48	Length (cm):	7.603	Number of Lifts:	3			
Volume (cm³):	224.49	Deformation (%)**:	0.15	Split:	#4			
Dry Density (g/cm ³):	1.43	Area (cm²):	29.56	Percent Coarse Material (%):	10.2			
Dry Density (pcf):	89.2	Volume (cm³):	224.74	Particle Density(g/cm ³):	2.65	✓ Assu	med 🔲 N	Measured
Water Content (%, g/g):	18.4	Dry Density (g/cm ³):	1.43	Cell pressure (PSI):	81.0			
Water Content (%, vol):	26.3	Dry Density (pcf):	89.1	Influent pressure (PSI):	80.0			
Void Ratio (e):	0.85	Water Content (%, g/g):	32.9	Effluent pressure (PSI):	80.0			
Porosity (%, vol):	46.1	Water Content (%, vol):	46.9	Panel Used:	✓ D	E	F	
Saturation (%):	57.0	Void Ratio(e):	0.86	Reading:	✓ Ar	nnulus [✓ Pipette	е
		Porosity (%, vol):	46.1				Date/1	Time
		Saturation (%)*:	101.8	B-Value (% saturation) prior to test*:	0.	99 8	3/11/17 8	825
				B-Value (% saturation) post to test:	0.	99 8	3/11/17 9	922

^{*} Per ASTM D5084 percent saturation is ensured (B-Value ≥ 95%) prior to testing, as post test saturation values may be exaggerated during depressurizing and sample removal.

Laboratory analysis by: D. O'Dowd

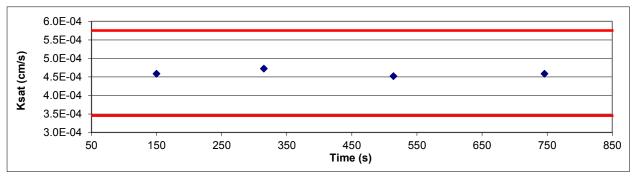
Data entered by: D. O'Dowd

Checked by: J. Hines

^{**}Percent Deformation: based on initial sample length and post permeation sample length.

Saturated Hydraulic Conductivity Flexible Wall Falling Head-Rising Tail Method

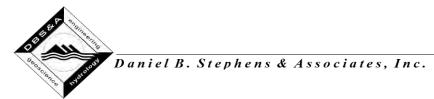
Job Name: Barrick Gold Corporation


Job Number: DB17.1190.00 Sample Number: TP-2 85% Project Name: Cunningham Hill

Date Sampled: 7/17/17

Date	Time	Temp (°C)	Influent Pipette Reading	Effluent Pipette Reading	Gradient (ΔH/ΔL)	Average Flow (cm ³)	Elapsed Time (s)	Ratio (outflow to inflow)	Change in Head (Not to exceed 25%)	k _{sat} T°C (cm/s)	k _{sat} Corrected (cm/s)
Test # 1: 11-Aug-17 11-Aug-17	09:07:18 09:09:48	21.5 21.5	10.00 10.50	19.00 18.50	1.37 1.22	2.35	150	1.00	11%	4.75E-04	4.58E-04
Test # 2: 11-Aug-17 11-Aug-17	09:09:48 09:12:33	21.5 21.5	10.50 11.00	18.50 18.00	1.22 1.06	2.35	165	1.00	13%	4.90E-04	4.72E-04
Test # 3: 11-Aug-17 11-Aug-17	09:12:33 09:15:52	21.5 21.5	11.00 11.50	18.00 17.50	1.06 0.91	2.35	199	1.00	14%	4.69E-04	4.52E-04
Test # 4: 11-Aug-17 11-Aug-17	09:15:52 09:19:44	21.5 21.5	11.50 12.00	17.50 17.00	0.91 0.76	2.35	232	1.00	17%	4.75E-04	4.59E-04

Average Ksat (cm/sec): 4.60E-04 cted Average Ksat (cm/sec): 4.14E-04


Calculated Gravel Corrected Average Ksat (cm/sec):

ASTM Required Range (+/- 25%)

Ksat (-25%) (cm/s): 3.45E-04

Ksat (+25%) (cm/s): 5.75E-04

Oversize Correction Data Sheet

Job Name: Barrick Gold Corporation

Job Number: DB17.1190.00 Sample Number: TP-2 85%

Project Name: Cunningham Hill

Date Sampled: 7/17/17

Split (3/4", 3/8", #4): #4
Calculated Porosity of Fines (% vol): 46.1

	Coarse Fraction*	Fines Fraction	<u>Composite</u>
Subsample Mass (g):	10.18	89.82	100.00
Bulk Density (g/cm ³):	2.65	1.43	1.50
Volume of Solids (cm ³):	3.84	33.89	37.74
Volume of Voids (cm ³):	0.00	28.94	28.94
Total Volume (cm³):	3.84	62.83	66.67
Volumetric Fraction (%):	5.76	94.24	100.00
Mass Fraction (%):	10.18	89.82	100.00
Ksat (cm/sec):	NM	4.6E-04	4.1E-04

^{--- =} Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NM = Not measured

Laboratory analysis by: D. O'Dowd

Data entered by: D. O'Dowd

Checked by: J. Hines

^{* =} Porosity and moisture content of coarse fraction assumed to be zero.

Saturated Hydraulic Conductivity Flexible Wall Falling Head-Rising Tail Method

Job Name: Barrick Gold Corporation

Job Number: DB17.1190.00 Sample Number: TP-2 90%

Project Name: Cunningham Hill

Date Sampled: 7/17/17

Remolded or Initial Sample Properties			Post Permeation Sample Properties			Test and Sample Conditions				
Initial Mass (g):	402.46	Saturated Mass (g): 4	440.85	Permeant liquid used:	Tap W	ater				
Diameter (cm):	6.139	Dry Mass (g): 3	340.44	Sample Preparation:	In	situ sample, extruded				
Length (cm):	7.611	Diameter (cm): (6.173		✓ Re	molded Sample				
Area (cm²):	29.60	Length (cm):	7.610	Number of Lifts:	3					
Volume (cm³):	225.28	Deformation (%)**:	0.01	Split:	#4					
Dry Density (g/cm ³):	1.51	Area (cm²): 2	29.93	Percent Coarse Material (%):	10.2					
Dry Density (pcf):	94.3	Volume (cm³): 2	227.75	Particle Density(g/cm ³):	2.65	Assumed Measured				
Water Content (%, g/g):	18.2	Dry Density (g/cm ³):	1.49	Cell pressure (PSI):	81.0					
Water Content (%, vol):	27.5	Dry Density (pcf): 9	93.3	Influent pressure (PSI):	80.0					
Void Ratio (e):	0.75	Water Content (%, g/g): 2	29.5	Effluent pressure (PSI):	80.0					
Porosity (%, vol):	43.0	Water Content (%, vol):	44.1	Panel Used:	D	☐ E ✓ F				
Saturation (%):	64.1	Void Ratio(e): (0.77	Reading:	✓ An	nulus 🗸 Pipette				
		Porosity (%, vol):	43.6			Date/Time				
		Saturation (%)*:	101.1	B-Value (% saturation) prior to test*:	0.9	98 8/11/17 828				
		,		B-Value (% saturation) post to test:	0.9	99 8/11/17 1022				

^{*} Per ASTM D5084 percent saturation is ensured (B-Value ≥ 95%) prior to testing, as post test saturation values may be exaggerated during depressurizing and sample removal.

Laboratory analysis by: D. O'Dowd

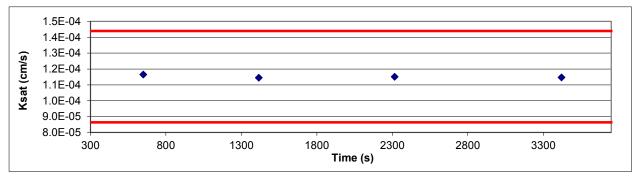
Data entered by: D. O'Dowd

Checked by: J. Hines

^{**}Percent Deformation: based on initial sample length and post permeation sample length.

Saturated Hydraulic Conductivity Flexible Wall Falling Head-Rising Tail Method

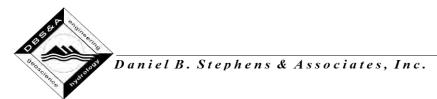
Job Name: Barrick Gold Corporation


Job Number: DB17.1190.00 Sample Number: TP-2 90% Project Name: Cunningham Hill

Date Sampled: 7/17/17

Date	Time	Temp (°C)	Influent Pipette Reading	Effluent Pipette Reading	Gradient (ΔH/ΔL)	Average Flow (cm ³)	Elapsed Time (s)	Ratio (outflow to inflow)	Change in Head (Not to exceed 25%)	k _{sat} T°C (cm/s)	k _{sat} Corrected (cm/s)
Test # 1: 11-Aug-17 11-Aug-17	09:21:54 09:32:45	21.5 21.5	11.00 11.50	19.00 18.50	1.21 1.06	2.32	651	1.00	12%	1.21E-04	1.17E-04
Test # 2: 11-Aug-17 11-Aug-17	09:32:45 09:45:30	21.5 21.5	11.50 12.00	18.50 18.00	1.06 0.91	2.32	765	1.00	14%	1.19E-04	1.14E-04
Test # 3: 11-Aug-17 11-Aug-17	09:45:30 10:00:30	21.5 21.5	12.00 12.50	18.00 17.50	0.91 0.76	2.32	900	1.00	17%	1.19E-04	1.15E-04
Test # 4: 11-Aug-17 11-Aug-17	10:00:30 10:18:55	21.5 21.5	12.50 13.00	17.50 17.00	0.76 0.61	2.32	1105	1.00	20%	1.19E-04	1.15E-04

Average Ksat (cm/sec): 1.15E-04
ected Average Ksat (cm/sec): 1.03E-04


Calculated Gravel Corrected Average Ksat (cm/sec):

ASTM Required Range (+/- 25%)

Ksat (-25%) (cm/s): 8.64E-05

Ksat (+25%) (cm/s): 1.44E-04

Oversize Correction Data Sheet

Job Name: Barrick Gold Corporation

Job Number: DB17.1190.00 Sample Number: TP-2 90%

Project Name: Cunningham Hill

Date Sampled: 7/17/17

Split (3/4", 3/8", #4): #4 Calculated Porosity of Fines (% vol): 43.0

	Coarse Fraction*	Fines Fraction	Composite
Subsample Mass (g): Bulk Density (g/cm³): Volume of Solids (cm³):	10.18 2.65 3.84	89.82 1.51 33.89	100.00 1.58 37.74
Volume of Voids (cm ³):	0.00	25.54	25.54
Total Volume (cm ³):	3.84	59.44	63.28
Volumetric Fraction (%): Mass Fraction (%):	6.07 10.18	93.93 89.82	100.00 100.00
Ksat (cm/sec):	NM	1.2E-04	1.0E-04

^{--- =} Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NM = Not measured

Laboratory analysis by: D. O'Dowd

Data entered by: D. O'Dowd

Checked by: J. Hines

^{* =} Porosity and moisture content of coarse fraction assumed to be zero.

Particle Size Analysis

Summary of Particle Size Characteristics

Sample Number	d ₁₀ (mm)	d ₅₀ (mm)	d ₆₀ (mm)	C_{u}	C_c	Method	ASTM Classification	USDA Classification	_
TP-1	0.00038	0.070	0.14	368	12	WS/H	Sandy silt with gravel s(ML)g	Loam [†]	(Est)
TP-2	0.00067	0.055	0.076	113	9.5	WS/H	Sandy silt s(ML)	Loam [†]	(Est)

d₅₀ = Median particle diameter

$$C_{u} = \frac{d_{60}}{d_{10}}$$

DS = Dry sieve

[†] Greater than 10% of sample is coarse material

$$(d_{30})^2$$

WS = Wet sieve

H = Hydrometer

Percent Gravel, Sand, Silt and Clay*

	% Gravel	% Sand	% Silt	% Clay
Sample Number	(>4.75mm)	(<4.75mm, >0.075mm)	(<0.075mm, >0.002mm)	(<0.002mm)
TP-1	18.6	29.8	36.5	15.2
TP-2	10.2	30.0	45.0	14.9

^{*}USCS classification does not classify clay fraction based on particle size. USDA definition of clay (<0.002mm) used in this table.

Particle Size Analysis Wet Sieve Data (#10 Split)

Job Name: Barrick Gold Corporation

Initial Dry Weight of Sample (g): 18129.39

Job Number: DB17.1190.00

Weight Passing #10 (g): 14280.67

Sample Number: TP-1

Weight Retained #10 (g): 3848.73 Weight of Hydrometer Sample (g): 74.85

Project Name: Cunningham Hill

Date Sampled: 7/17/17

Calculated Weight of Sieve Sample (g): 95.02

Test Date: 15-Aug-17

Shape: Angular

Hardness: Hard and durable

Test Fraction	Sieve Number	Diameter (mm)	Wt. Retained	Cum Wt. Retained	Wt. Passing	% Passing
Traction	Number	(111111)	rtetaineu	Retairied	i assiriy	70 1 d33111g
+10						
	3"	75	0.00	0.00	18129.39	100.00
	2"	50	1004.20	1004.20	17125.19	94.46
	1.5"	38.1	419.40	1423.60	16705.79	92.15
	1"	25	467.70	1891.30	16238.09	89.57
	3/4"	19.0	438.50	2329.80	15799.59	87.15
	3/8"	9.5	605.60	2935.40	15193.99	83.81
	4	4.75	431.00	3366.40	14762.99	81.43
	10	2.00	482.33	3848.73	14280.67	78.77
-10			(Based on calc	ulated sieve wt.)	
	20	0.85	3.30	23.47	71.55	75.30
	40	0.425	4.85	28.32	66.70	70.19
	60	0.250	4.11	32.43	62.59	65.87
	140	0.106	7.85	40.28	54.74	57.61
	200	0.075	5.64	45.92	49.10	51.67
	dry pan		1.76	47.68	47.34	
	wet pan			47.34	0.00	

d₁₀ (mm): 0.00038 d₅₀ (mm): 0.070 d₁₆ (mm): 0.0026 d₆₀ (mm): 0.14 d₃₀ (mm): 0.025 d₈₄ (mm): 9.9

Median Particle Diameter -- d₅₀ (mm): 0.070

Uniformity Coefficient, Cu--[d₆₀/d₁₀] (mm): 368

Coefficient of Curvature, Cc--[$(d_{30})^2/(d_{10}*d_{60})$] (mm): 12

Mean Particle Diameter -- [(d₁₆+d₅₀+d₈₄)/3] (mm): 3.3

Note: Reported values for d₁₀, C_u, C_c, and soil classification are estimates, since extrapolation was required to

obtain the d₁₀ diameter

Classification of fines: ML

ASTM Soil Classification: Sandy silt with gravel s(ML)g

USDA Soil Classification: Loam †

† Greater than 10% of sample is coarse material

Particle Size Analysis Hydrometer Data

Job Name: Barrick Gold Corporation Type of Water Used: DISTILLED

Job Number: DB17.1190.00 Reaction with H₂O₂: NA

Sample Number: TP-1

Project Name: Cunningham Hill Assumed particle density: 2.65

Date Sampled: 7/17/17

	Time	Temp	R	R_L	R_{corr}	L	D	Р	
Date	(min)	(°C)	(g/L)	(g/L)	(g/L)	(cm)	(mm)	(%)	% Finer
8-Aug-17	1	21.6	41.5	5.4	36.1	9.5	0.04117	48.3	38.0
	2	21.6	36.0	5.4	30.6	10.4	0.03047	40.9	32.2
	5	21.6	31.5	5.4	26.1	11.1	0.01994	34.9	27.5
	15	21.6	26.5	5.4	21.1	12.0	0.01193	28.2	22.2
	30	21.6	25.0	5.4	19.6	12.2	0.00852	26.2	20.7
	60	21.6	24.0	5.4	18.6	12.4	0.00607	24.9	19.6
	120	21.5	22.5	5.4	17.1	12.6	0.00434	22.9	18.0
	252	21.5	21.0	5.4	15.6	12.9	0.00302	20.9	16.4
	483	22.1	20.0	5.3	14.7	13.0	0.00218	19.6	15.5
9-Aug-17	1417	21.5	18.5	5.4	13.1	13.3	0.00129	17.5	13.8

Comments:

Laboratory analysis by: A. Bland Data entered by: C. Krous Checked by: J. Hines Dispersant*: (NaPO₃)₆

^{*} Dispersion device: mechanically operated stirring device

[†] Greater than 10% of sample is coarse material

Note: Reported values for d₁₀, C_u, C_c, and ASTM classification are estimates, since extrapolation was required to obtain the d₁₀ diameter

Daniel B. Stephens & Associates, Inc.

Particle Size Analysis Wet Sieve Data (#10 Split)

Job Name: Barrick Gold Corporation

Initial Dry Weight of Sample (g): 17935.11

Job Number: DB17.1190.00

Weight Passing #10 (g): 15651.95

Sample Number: TP-2

Weight Retained #10 (g): 2283.16

Project Name: Cunningham Hill

Weight of Hydrometer Sample (g): 78.09

Date Sampled: 7/17/17

Calculated Weight of Sieve Sample (g): 89.48

Test Date: 15-Aug-17

Shape: Angular

Hardness: Hard and durable

Test Fraction	Sieve Number	Diameter (mm)	Wt. Retained	Cum Wt. Retained	Wt. Passing	% Passing
	Hamber	(11111)	retained	rectained	i doonig	70 T 433111g
+10						
	3"	75	0.00	0.00	17935.11	100.00
	2"	50	0.00	0.00	17935.11	100.00
	1.5"	38.1	0.00	0.00	17935.11	100.00
	1"	25	543.10	543.10	17392.01	96.97
	3/4"	19.0	202.39	745.49	17189.62	95.84
	3/8"	9.5	586.70	1332.19	16602.92	92.57
	4	4.75	494.10	1826.29	16108.82	89.82
	10	2.00	456.87	2283.16	15651.95	87.27
-10			(Based on calcu	ulated sieve wt.)	
	20	0.85	2.68	14.07	75.41	84.27
	40	0.425	3.46	17.53	71.95	80.41
	60	0.250	3.89	21.42	68.06	76.06
	140	0.106	8.27	29.69	59.79	66.82
	200	0.075	6.24	35.93	53.55	59.85
	dry pan		1.45	37.38	52.10	
	wet pan			52.10	0.00	

d₁₀ (mm): 0.00067 d₅₀ (mm): 0.055 d₁₆ (mm): 0.0024 d₆₀ (mm): 0.076 d₃₀ (mm): 0.022 d₈₄ (mm): 0.81

Median Particle Diameter -- d₅₀ (mm): 0.055

Uniformity Coefficient, Cu--[d₆₀/d₁₀] (mm): 113

Coefficient of Curvature, Cc--[(d_{30})²/(d_{10} * d_{60})] (mm): 9.5

Mean Particle Diameter -- [(d₁₆+d₅₀+d₈₄)/3] (mm): 0.29

Note: Reported values for d₁₀, C_u, C_c, and soil classification are estimates, since extrapolation was required to

obtain the d₁₀ diameter

Classification of fines: ML

ASTM Soil Classification: Sandy silt s(ML)

USDA Soil Classification: Loam †

[†] Greater than 10% of sample is coarse material

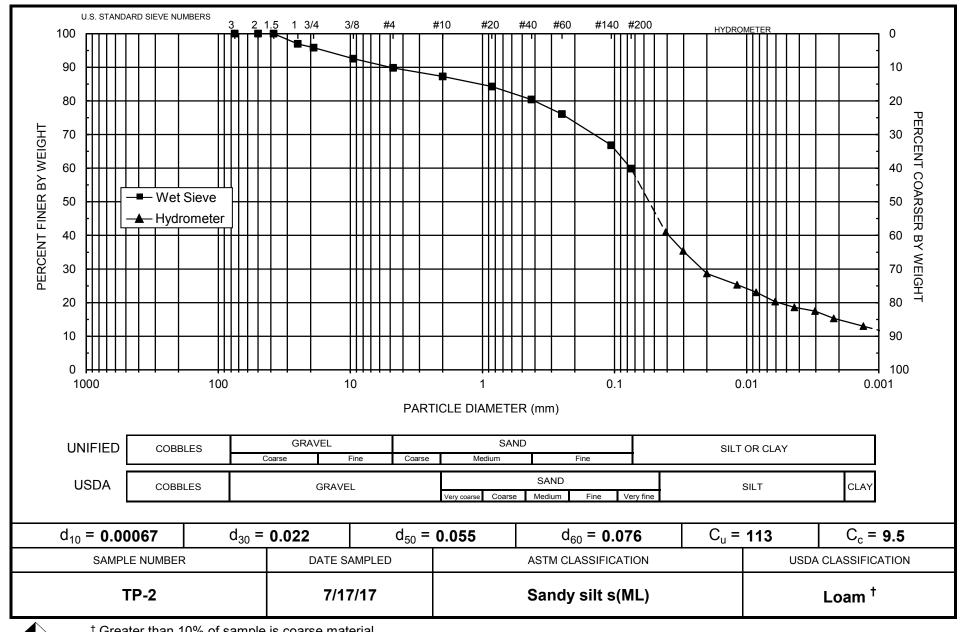
Particle Size Analysis Hydrometer Data

Type of Water Used: DISTILLED Job Name: Barrick Gold Corporation

Reaction with H₂O₂: NA Job Number: DB17.1190.00

Sample Number: TP-2

Dispersant*: (NaPO₃)₆ Project Name: Cunningham Hill Assumed particle density: 2.65


Date Sampled: 7/17/17

Initial Wt. (g): 78.09 Test Date: 8-Aug-17 Total Sample Wt. (g): 17935.11 Start Time: 9:06 Wt. Passing #10 (g): 15651.95

	Time	Temp	R	R_L	R_{corr}	L	D	Р	
Date	(min)	(°C)	(g/L)	(g/L)	(g/L)	(cm)	(mm)	(%)	% Finer
8-Aug-17	1	21.6	42.0	5.4	36.6	9.4	0.04100	46.9	40.9
	2	21.6	37.0	5.4	31.6	10.2	0.03022	40.5	35.4
	5	21.6	31.0	5.4	25.6	11.2	0.02001	32.8	28.7
	15	21.6	28.0	5.4	22.6	11.7	0.01181	29.0	25.3
	30	21.6	26.0	5.4	20.6	12.0	0.00846	26.4	23.1
	60	21.6	23.5	5.4	18.1	12.4	0.00609	23.2	20.3
	120	21.4	22.0	5.4	16.6	12.7	0.00436	21.3	18.6
	250	21.5	21.0	5.4	15.6	12.9	0.00303	20.0	17.5
	480	22.5	19.0	5.3	13.7	13.2	0.00219	17.5	15.3
9-Aug-17	1413	21.5	17.0	5.4	11.6	13.5	0.00131	14.9	13.0

Comments:

^{*} Dispersion device: mechanically operated stirring device

[†] Greater than 10% of sample is coarse material

Note: Reported values for d₁₀, C_u, C_c, and ASTM classification are estimates, since extrapolation was required to obtain the d₁₀ diameter

Daniel B. Stephens & Associates, Inc.

Atterberg Limits/ Identification of Fines

Summary of Atterberg Tests

Sample Number	Liquid Limit	Plastic Limit	Plasticity Index	Classification
TP-1	38	25	13	ML
TP-2	36	25	11	ML

^{--- =} Soil requires visual-manual classification due to non-plasticity

Atterberg Limits

Job Name: Barrick Gold Corporation

Job Number: DB17.1190.00

Sample Number: TP-1

Project Name: Cunningham Hill

Date Sampled: 7/17/17

Test Date: 11-Aug-17

Liquid Limit

	Trial 1	Trial 2	Trial 3
Number of drops:	26	25	18
Pan number:	LL1	LL2	LL3
Weight of pan plus moist soil (g):	121.58	120.14	117.35
Weight of pan plus dry soil (g)	120.40	119.12	116.39
Weight of pan (g):	117.28	116.40	113.88
Gravimetric moisture content (% g/g):	37.82	37.50	38.25

Liquid Limit: 38

Plastic Limit

	Trial 1	Trial 2
Pan number:	PL1	PL2
Weight of pan plus moist soil (g):	119.38	119.90
Weight of pan plus dry soil (g)	118.00	118.54
Weight of pan (g):	112.56	113.16
Gravimetric moisture content (% g/g):	25.37	25.28

Plastic Limit: 25

Results

Percent of Sample Retained on #40 Sieve:

Liquid Limit: 38
Plastic Limit: 25
Plasticity Index: 13
Classification: ML

Comments:

- --- = Soil requires visual-manual classification due to non-plasticity
- * = 1-point method requested by client

Atterberg Limits

Job Name: Barrick Gold Corporation

Job Number: DB17.1190.00

Sample Number: TP-2

Project Name: Cunningham Hill

Date Sampled: 7/17/17

Test Date: 11-Aug-17

Liquid Limit

	Trial 1	Trial 2	Trial 3
Number of drops:	35	23	16
Pan number:	LL1	LL2	LL3
Weight of pan plus moist soil (g):	121.12	121.18	120.42
Weight of pan plus dry soil (g)	119.96	119.62	118.46
Weight of pan (g):	116.65	115.31	113.22
Gravimetric moisture content (% g/g):	35.05	36.19	37.40

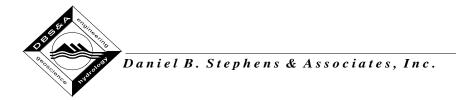
Liquid Limit: 36

Plastic Limit

	Trial 1	Trial 2
Pan number:	PL1	PL2
Weight of pan plus moist soil (g):	119.22	124.58
Weight of pan plus dry soil (g)	118.39	122.91
Weight of pan (g):	115.16	116.11
Gravimetric moisture content (% g/g):	25.70	24.56

Plastic Limit: 25

Results


Percent of Sample Retained on #40 Sieve:

Liquid Limit: 36
Plastic Limit: 25
Plasticity Index: 11
Classification: ML

Comments:

- --- = Soil requires visual-manual classification due to non-plasticity
- * = 1-point method requested by client

Proctor Compaction

Summary of Proctor Compaction Tests

	Measured		Oversize	Corrected
Sample Number	Optimum Moisture Content (% g/g)	Maximum Dry Bulk Density (g/cm ³)	Optimum Moisture Content (% g/g)	Maximum Dry Bulk Density (g/cm³)
TP-1	17.8	1.67	14.6	1.79
TP-2	18.1	1.68	16.1	1.75

^{--- =} Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NR = Not requested

NA = Not applicable

5

6169

Daniel B. Stephens & Associates, Inc.

Proctor Compaction Data

Job Name: Barrick Gold Corporation Split (3/4", 3/8", #4): #4

Job Number: DB17.1190.00 Mass of coarse material (g): 18.57 Mass of fines material (g): 81.43

Sample Number: TP-1

Project Name: Cunningham Hill Mold weight (g): 4371 Mold volume (cm³): 944.58 Date Sampled: 7/17/17

Compaction Method: Standard A Test Date: 8-Aug-17

210.03

Preparation Method: Dry

1.55

22.77

Type of Rammer: Mechanical

As Received Moisture Content (% g/g): NA

1040.06

	Weight of Mold and Compacted Soil	Weight of Container and Wet Soil	Weight of Container and Dry Soil	Weight of Container	Dry Bulk Density	Moisture Content
Trial	(g)	(g)	(g)	(g)	(g/cm ³)	(% g/g)
1	6035	954.51	865.80	210.00	1.55	13.53
2	6165	929.94	831.83	210.85	1.64	15.80
3	6225	1115.43	987.49	269.32	1.67	17.81
4	6229	1048.31	911.30	212.72	1.64	19.61

Soil Fractions **Properties of Coarse Material**

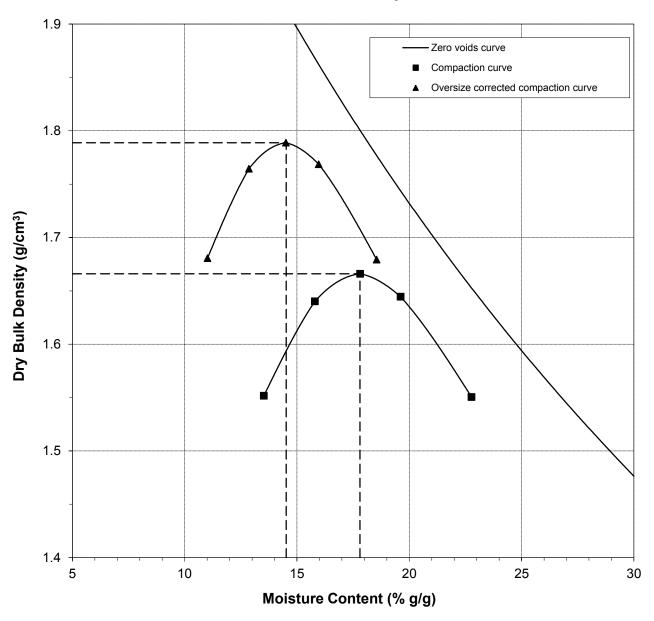
886.09

Assumed particle density (g/cm³): 2.65 Coarse Fraction (% g/g): 18.6 Fines Fraction (% g/g): 81.4 Assumed Initial Moisture Content (% g/g): 0.0

Oversize Corrected Values for Dry Bulk Density and Moisture Content

	Dry Bulk	Moisture
	Density of	Content of
	Composite	Composite
Trial	(g/cm ³)	(% g/g)
1	1.68	11.02
2	1.76	12.87
3	1.79	14.51
4	1.77	15.97
5	1.68	18.55

^{--- =} Oversize correction is unnecessary since coarse fraction < 5% of composite mass



Proctor Compaction Data Points with Fitted Curve

Sample Number: TP-1

	Measured	Corrected
Optimum Moisture Content (% g/g):	17.8	14.5
Maximum Dry Bulk Density (g/cm ³):	1.67	1.79

Test Date: 8-Aug-17

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data

Job Name: Barrick Gold Corporation Split (3/4", 3/8", #4): #4

Job Number: DB17.1190.00 Mass of coarse material (g): 10.18 Sample Number: TP-2 Mass of fines material (g): 89.82

Project Name: Cunningham Hill

Mold weight (g): 4371

Date Sampled: 7/17/17

Mold volume (cm³): 944.58

Test Date: 8-Aug-17 Compaction Method: Standard A

Preparation Method: Dry

As Received Moisture Content (% g/g): NA Type of Rammer: Mechanical

	Weight of Mold and Compacted Soil	Weight of Container and Wet Soil	Weight of Container and Dry Soil	Weight of Container	Dry Bulk Density	Moisture Content
Trial	(g)	(g)	(g)	(g)	(g/cm ³)	(% g/g)
1	6101	1183.06	1070.72	269.68	1.61	14.02
2	6187	1116.66	1002.02	293.40	1.65	16.18
3	6246	1057.25	935.96	268.89	1.68	18.18
4	6222	1085.88	938.68	210.76	1.63	20.22
5	6147	1070.52	919.71	266.50	1.53	23.09

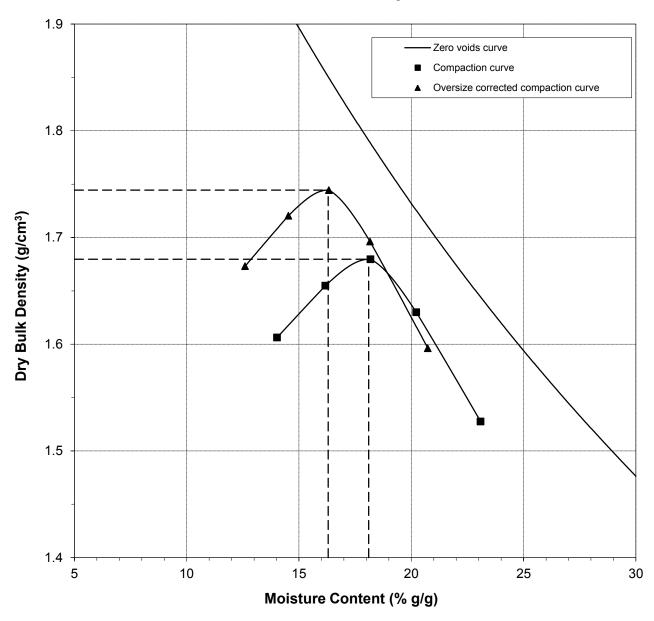
Soil Fractions Properties of Coarse Material

Coarse Fraction (% g/g): 10.2 Assumed particle density (g/cm³): 2.65 Fines Fraction (% g/g): 89.8 Assumed Initial Moisture Content (% g/g): 0.0

Oversize Corrected Values for Dry Bulk Density and Moisture Content

	Dry Bulk	Moisture
	Density of	Content of
	Composite	Composite
Trial	(g/cm ³)	(% g/g)
1	1.67	12.60
2	1.72	14.53
3	1.74	16.33
4	1.70	18.16
5	1.60	20.74

^{--- =} Oversize correction is unnecessary since coarse fraction < 5% of composite mass



Proctor Compaction Data Points with Fitted Curve

Sample Number: TP-2

	Measured	Corrected
Optimum Moisture Content (% g/g):	18.1	16.3
Maximum Dry Bulk Density (g/cm ³):	1.68	1.74

Test Date: 8-Aug-17

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Laboratory Tests and Methods

Tests and Methods

Dry Bulk Density: ASTM D7263

Moisture Content: ASTM D7263, ASTM D2216

Calculated Porosity: ASTM D7263

Saturated Hydraulic Conductivity:

Falling Head Rising Tail: ASTM D5084

(Flexible Wall)

Particle Size Analysis: ASTM D7928, ASTM D6913

USCS (ASTM) Classification: ASTM D7928, ASTM D6913, ASTM D2487

USDA Classification: ASTM D7928, ASTM D6913, USDA Soil Textural Triangle

Atterberg Limits: ASTM D4318

Standard Proctor Compaction: ASTM D698

Attachment 4

Soil Chemistry and Particle Size Analysis

ANALYTICAL SUMMARY REPORT

December 19, 2021

Meridiam Partners LLC PO Box 102380 Denver, CO 80210-2380

Work Order: H21110626

Project Name: Cunningham Hill WRP

Energy Laboratories Inc Helena MT received the following 2 samples for Meridiam Partners LLC on 11/24/2021 for analysis.

Lab ID	Client Sample ID	Collect Date R	Receive Date	Matrix	Test
H21110626-001	BP-1	09/21/21 15:00	11/24/21	Soil	Metals by ICP/ICPMS, Total Metals, NH4OAC Extractable Metals, Saturated Paste Acid/Base Potential Conductivity, Saturated Paste Extra Fertilizer Recommendation Anions, Saturated Paste Extract Lime as CaCO3 Moisture Nitrate as N, KCL Extract Organic Carbon/Matter Walkley- Black Net Acid Generation pH, Saturated Paste Phosphorus-Olsen Total Metals Digestion by SW3050E KCL Soil Extract ASA33-3 Lime Percentage USDA23c NaHCO3 Soil Extract ASA24-5 Ammonium Acetate Extraction ASA13-3 Total Organic Matter Prep ASA29-3 Particle Size Analysis / Texture Prep ASA15-5 Saturated Paste Extraction ASA Particle Size Analysis / Texture Sulfur Forms Soil Preparation USDA1
H21110626-002	BP-2	09/21/21 15:00	11/24/21	Soil	Same As Above

The analyses presented in this report were performed by Energy Laboratories, Inc., 3161 E. Lyndale Ave., Helena, MT 59604, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

Billings, MT **800.735.4489** • Casper, WY **888.235.0515** Gillette, WY **866.686.7175** • Helena, MT **877.472.0711**

CLIENT: Meridiam Partners LLC

Project: Cunningham Hill WRP

Report Date: 12/19/21

Work Order: H21110626 CASE NARRATIVE

The soil analyses were given to Neal Fehringer, an independent Certified Agronomist. Neal has prepared your fertilizer recommendation based upon these analyses and your proposed use and yield. If you have any quesitons Mr. Fehringer can be reached at (406) 373-5985 or (406) 860-3647.

TO:

ADDRESS:

HELENA, MT

Toll Free: **877.472.0711 • 406.442.0711 •** F: **406.442.0712**PO Box 5688, Helena, MT 59604-5688 • 3161 E. Lyndale Ave (59601)

Meridiam Partners LLC LAB NO.: H21110626-001-002

DATE: 12/17/21

1001 W. Arizona Ave Denver, CO 80223

Attn: Dan Duche

Cunningham Hill WRP FERTILIZER RECOMMENDATIONS

Fertilizer Suggested in Actual Pounds per Acre

FIELD	BP-1	BP-2
CROP	Grass	Grass
PROJECTED YIELD	1/2T	1/2T
Nitrogen Total Preplant Banded	0	20
Phosphrus (P ₂ O ₅) Broadcast Banded	0	40
Potassium (K ₂ O) Broadcast Banded	0	0
Gypsum Compost	0 0	0 5 tons

COMMENTS:

No issues with BP-1 except extractable iron seems high. Conductivity is 2.0 mmhos/cm but that should not be an issue for native vegetation. BP-2 is extremely low in organic matter and N, P & K. Conductivity is only 0.4 mmhos/cm for this sample. Iron is twice that of BP-1. I do not know what the toxicity level of extractable iron is.

PREPARED BY: Neal Fehringer, Certified Professional Agronomist, C.C.A., (406) 860-3647.

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

 Client:
 Meridiam Partners LLC
 Report Date:
 12/19/21

 Project:
 Cunningham Hill WRP
 Collection Date:
 09/21/21 15:00

 Lab ID:
 H21110626-001
 DateReceived:
 11/24/21

 Client Sample ID:
 BP-1
 Matrix:
 Soil

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
NET ACID GENERATION							
	0.0	s.u.		0.01		AADP-NAG	12/10/21 15:06 / out
NAG pH	0.0	5.u.		0.01		AADF-NAG	12/10/21 15:06 / swj
PHYSICAL CHARACTERISTICS							
Moisture	2.9	wt%		0.2		D2974	11/30/21 00:00 / iej
Sand	46	%		1		ASA15-5	12/03/21 09:08 / sah
Silt	30	%		1		ASA15-5	12/03/21 09:08 / sah
Clay	24	%		1		ASA15-5	12/03/21 09:08 / sah
Texture	L			1		ASA15-5	12/03/21 09:08 / sah
SATURATED PASTE							
pH, sat. paste	7.6	s.u.		0.1		ASA10-3	12/07/21 08:39 / jjp
SATURATED PASTE EXTRACT							
Conductivity, sat. paste	2.0	mmhos/cm		0.1		ASA10-3	12/07/21 13:00 / jjp
Calcium		mg/L		1		SW6010B	12/08/21 16:28 / sld
Calcium, sat. paste		meq/L		0.05		SW6010B	12/08/21 16:28 / sld
Sodium		mg/L		1		SW6010B	12/08/21 16:28 / sld
Sodium, sat. paste		meq/L		0.04		SW6010B	12/08/21 16:28 / sld
Sulfate	128	mg/L		1		E300.0	12/07/21 15:54 / JAR
CHEMICAL CHARACTERISTICS							
Potassium, Available	289	mg/kg	D	3		SW6010B	12/03/21 22:36 / sld
Organic Matter	3.5	%		0.2		ASA29-3	12/08/21 08:43 / sah
Lime as CaCO3	4.60	%		0.01		USDA23c	12/03/21 14:33 / SRW
ACID BASE							
Neutralization Potential	45	t/kt				Sobek Modifie	12/03/21 13:51 / SRW
Acid Potential	2.5	t/kt		0.01		Sobek Modifie	12/07/21 09:33 / stp
Acid/Base Potential	_	t/kt					12/07/21 09:33 / stp
Sulfur, Total	0.08			0.01			12/07/21 15:18 / stp
Sulfur, Hot Water Extractable	0.06			0.01			12/07/21 15:18 / stp
Sulfur, HCI Extractable	ND	%		0.01			12/07/21 15:18 / stp
Sulfur, HNO3 Extractable	ND	%		0.01			12/07/21 15:18 / stp
Sulfur, Residual	0.01	%		0.01		Sobek Modifie	12/07/21 15:18 / stp
NUTRIENTS							
Phosphorus, Olsen		mg/kg-dry		1		ASA24-5	12/06/21 12:31 / GEM
Nitrate as N, KCL Extract	65	mg/kg-dry		1		ASA33-8	12/06/21 10:44 / GEM
3050 EXTRACTABLE METALS							
Arsenic		mg/kg		1		SW6020	12/02/21 17:46 / dck
Boron		mg/kg	D	4		SW6010B	12/02/21 13:31 / sld
Cadmium		mg/kg		1		SW6020	12/02/21 17:46 / dck
Copper		mg/kg	D	3		SW6020	12/02/21 17:46 / dck
Iron	19600	mg/kg	D	200		SW6010B	12/03/21 12:39 / sld

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

ND - Not detected at the Reporting Limit (RL)

D - Reporting Limit (RL) increased due to sample matrix

MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

Client: Meridiam Partners LLC Project: Cunningham Hill WRP Lab ID: H21110626-001

Collection Date: 09/21/21 15:00 DateReceived: 11/24/21

Client Sample ID: BP-1

Matrix: Soil

Report Date: 12/19/21

					MCL/	
Analyses	Result	Units	Qualifiers	RL	QCL Method	Analysis Date / By
050 EXTRACTABLE METALS						
ead	16	mg/kg		1	SW6020	12/02/21 17:46 / dck
langanese	441	mg/kg	D	3	SW6020	12/02/21 17:46 / dck
lolybdenum	1	mg/kg		1	SW6020	12/02/21 17:46 / dck
ickel	11	mg/kg		1	SW6020	12/02/21 17:46 / dck
elenium	ND	mg/kg		1	SW6020	12/02/21 17:46 / dck
linc	43	mg/kg	D	5	SW6010B	12/02/21 13:31 / sld

Report RL - Analyte Reporting Limit Definitions:

QCL - Quality Control Limit

D - Reporting Limit (RL) increased due to sample matrix

MCL - Maximum Contaminant Level

ND - Not detected at the Reporting Limit (RL)

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

 Client:
 Meridiam Partners LLC
 Report Date:
 12/19/21

 Project:
 Cunningham Hill WRP
 Collection Date:
 09/21/21 15:00

 Lab ID:
 H21110626-002
 DateReceived:
 11/24/21

 Client Sample ID:
 BP-2
 Matrix:
 Soil

	MCL/						
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
NET ACID GENERATION							
NAG pH	9.1	s.u.		0.01		AADP-NAG	12/10/21 15:07 / swj
PHYSICAL CHARACTERISTICS							
Moisture	2.6	wt%		0.2		D2974	11/30/21 00:00 / iej
Sand	68	%		1		ASA15-5	12/03/21 09:08 / sah
Silt	16	%		1		ASA15-5	12/03/21 09:08 / sah
Clay	16	%		1		ASA15-5	12/03/21 09:08 / sah
Texture	SL			1		ASA15-5	12/03/21 09:08 / sah
SATURATED PASTE							
pH, sat. paste	8.1	s.u.		0.1		ASA10-3	12/07/21 08:40 / jjp
SATURATED PASTE EXTRACT							
Conductivity, sat. paste	0.4	mmhos/cm		0.1		ASA10-3	12/07/21 13:01 / jjp
Calcium	57	mg/L		1		SW6010B	12/08/21 16:42 / sld
Calcium, sat. paste	2.83	meq/L		0.05		SW6010B	12/08/21 16:42 / sld
Sodium	6	mg/L		1		SW6010B	12/08/21 16:42 / sld
Sodium, sat. paste		meq/L		0.04		SW6010B	12/08/21 16:42 / sld
Sulfate	20	mg/L		1		E300.0	12/07/21 16:09 / JAR
CHEMICAL CHARACTERISTICS							
Potassium, Available	160	mg/kg	D	3		SW6010B	12/03/21 22:58 / sld
Organic Matter	0.2			0.2		ASA29-3	12/08/21 08:43 / sah
Lime as CaCO3	3.91	%		0.01		USDA23c	12/03/21 14:51 / SRW
ACID BASE							
Neutralization Potential	44	t/kt				Sobek Modifie	12/03/21 13:59 / SRW
Acid Potential	ND	t/kt		0.01		Sobek Modifie	12/07/21 09:33 / stp
Acid/Base Potential	39	t/kt					12/07/21 09:33 / stp
Sulfur, Total	ND			0.01			12/07/21 15:32 / stp
Sulfur, Hot Water Extractable	ND	%		0.01			12/07/21 15:32 / stp
Sulfur, HCI Extractable	ND	%		0.01			12/07/21 15:32 / stp
Sulfur, HNO3 Extractable	ND	%		0.01			12/07/21 15:32 / stp
Sulfur, Residual	ND	%		0.01		Sobek Modifie	12/07/21 15:32 / stp
NUTRIENTS							
Phosphorus, Olsen		mg/kg-dry		1		ASA24-5	12/06/21 12:28 / GEM
Nitrate as N, KCL Extract	1	mg/kg-dry		1		ASA33-8	12/06/21 10:45 / GEM
3050 EXTRACTABLE METALS							
Arsenic		mg/kg		1		SW6020	12/02/21 17:51 / dck
Boron		mg/kg	D	4		SW6010B	12/02/21 13:49 / sld
Cadmium		mg/kg		1		SW6020	12/02/21 17:51 / dck
Copper		mg/kg	D	3		SW6020	12/02/21 17:51 / dck
Iron	39200	mg/kg	D	200		SW6010B	12/03/21 12:58 / sld

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

ND - Not detected at the Reporting Limit (RL)

MCL - Maximum Contaminant Level

D - Reporting Limit (RL) increased due to sample matrix

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: Meridiam Partners LLC Report Date: 12/19/21 Project: Cunningham Hill WRP Collection Date: 09/21/21 15:00 Lab ID: H21110626-002 DateReceived: 11/24/21

Client Sample ID: BP-2 Matrix: Soil

	MCL/						
Analyses	Result	Units	Qualifiers	RL	QCL Method	Analysis Date / By	
3050 EXTRACTABLE METALS							
Lead	33 ו	mg/kg		1	SW6020	12/02/21 17:51 / dck	
Manganese	1850 ו	mg/kg	D	3	SW6020	12/02/21 17:51 / dck	
Molybdenum	4 1	mg/kg		1	SW6020	12/02/21 17:51 / dck	
Nickel	53 ।	mg/kg		1	SW6020	12/02/21 17:51 / dck	
Selenium	ND i	mg/kg		1	SW6020	12/02/21 17:51 / dck	
Zinc	85 ।	mg/kg	D	5	SW6010B	12/02/21 13:49 / sld	

Report RL - Analyte Reporting Limit Definitions: QCL - Quality Control Limit

D - Reporting Limit (RL) increased due to sample matrix

MCL - Maximum Contaminant Level

ND - Not detected at the Reporting Limit (RL)

Prepared by Helena, MT Branch

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	AADP-NAG					al R	un: SOIL PH	METER - C	RION A211_	_211213B
Lab ID:	ICV_1_211210_1	Initial Calibration	on Verifica	ation Standard					12/10	/21 15:00
NAG pH		7.0	s.u.	0.010	100	98	102			
Lab ID:	CCV_1_211210_1	Continuing Cal	ibration V	erification Standa	ard				12/10	/21 15:01
NAG pH		7.0	s.u.	0.010	100	98	102			
Lab ID:	CCV1_1_211210_1	Continuing Cal	ibration V	erification Standa	ard				12/10	/21 15:02
NAG pH		4.0	s.u.	0.010	100	90	110			
Method:	AADP-NAG							Batch:	211210_1_P	H-NAG-S
Lab ID:	H21110626-002ADUP	Sample Duplic	ate			Run: SOIL	PH METER -	ORION A2	2 12/10	/21 15:09
NAG pH		9.1	s.u.	0.010				0.3	20	

Prepared by Helena, MT Branch

Client: Meridiam Partners LLC Work Order: H21110626 Report Date: 12/19/21

Analyte	Result Units	RL %RE	C Low Limit	High Limit	RPD RPDLimit Qual
Method: ASA10-3				Anal	ytical Run: SOIL EC_211208A
Lab ID: ICV_1_211206_1	Initial Calibration Verification Sta	andard			12/07/21 12:57
Conductivity, sat. paste	1.44 mmhos/cm	0.10 10	2 90	110	
Lab ID: CCV_1_211206_1	Continuing Calibration Verification	on Standard			12/07/21 12:57
Conductivity, sat. paste	4.72 mmhos/cm	0.10 9	4 90	110	
Lab ID: CCV1_1_211206_1	Continuing Calibration Verification	on Standard			12/07/21 12:59
Conductivity, sat. paste	0.971 mmhos/cm	0.10 9	7 90	110	
Method: ASA10-3					Batch: 59339
Lab ID: MB-59339	Method Blank		Run: SOIL	EC_211208A	12/07/21 12:59
Conductivity, sat. paste	ND mmhos/cm	0.05			
Lab ID: LCS-59339	Laboratory Control Sample		Run: SOIL	EC_211208A	12/07/21 13:00
Conductivity, sat. paste	4.66 mmhos/cm	0.10 11	1 80	120	
Lab ID: H21110626-002ADUP	Sample Duplicate		Run: SOIL	EC_211208A	12/07/21 13:01
Conductivity, sat. paste	0.362 mmhos/cm	0.10			4.7 20
Method: ASA10-3			al F	Run: SOIL PH ME	TER - ORION A211_211207B
Lab ID: ICV_1_211206_1	Initial Calibration Verification Sta	andard			12/07/21 08:33
pH, sat. paste	7.02 s.u.	0.10 10	0 98.6	101.4	
Lab ID: CCV_1_211206_1	Continuing Calibration Verification	on Standard			12/07/21 08:36
pH, sat. paste	7.02 s.u.	0.10 10	0 98.6	101.4	
Lab ID: CCV1_1_211206_1	Continuing Calibration Verification	on Standard			12/07/21 08:37
pH, sat. paste	4.00 s.u.	0.10 10	0 97.5	102.5	
Method: ASA10-3					Batch: 59339
Lab ID: LCS-59339	Laboratory Control Sample		Run: SOIL	. PH METER - OF	RION A2 12/07/21 08:38
pH, sat. paste	7.93 s.u.	0.10 9	9 95	105	
Lab ID: H21110626-002ADUP	Sample Duplicate		Run: SOIL	. PH METER - OF	RION A2 12/07/21 08:41
pH, sat. paste	8.07 s.u.	0.10			0.0 20

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

Prepared by Helena, MT Branch

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	ASA15-5								Bato	ch: 59300
Lab ID:	H21110626-002ADUP	Sample Duplic	ate			Run: SOIL	HYDROMETE	R_211206	12/03	/21 09:08
Sand		70.0	%	1.0				2.9	20	
Silt		14.0	%	1.0				13	20	
Clay		16.0	%	1.0				0.0	20	
Texture		SL		1.0						
Lab ID:	LCS-59300	Laboratory Co	ntrol Sample			Run: SOIL	HYDROMETE	R_211206	12/03	/21 09:08
Sand		48.0	%	1.0	114	70	130			
Silt		28.0	%	1.0	88	70	130			
Clay		24.0	%	1.0	92	70	130			

Prepared by Helena, MT Branch

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	ASA24-5						Analytic	al Run: S	SEAL AA500	_211206A
Lab ID:	CCV	Continuing (Calibration Verificat	tion Standa	ard				12/06	6/21 12:47
Phosphorus	, Olsen	2.5	mg/kg-dry	1.0	99	85	115			
Lab ID:	ССВ	Continuing (Calibration Blank						12/06	6/21 12:49
Phosphorus	, Olsen	0.026	mg/kg-dry	1.0						
Method:	ASA24-5								Bat	ch: 59298
Lab ID:	MB-59298	Method Blar	nk			Run: SEAL	_ AA500_21120	6A	12/06	6/21 12:25
Phosphorus	, Olsen	0.6	mg/kg-dry	0.05						
Lab ID:	LCS-59298	Laboratory (Control Sample			Run: SEAL	_ AA500_21120	6A	12/06	6/21 12:26
Phosphorus	, Olsen	53	mg/kg-dry	1.0	122	70	130			
Lab ID:	H21110626-002AMS	Sample Mat	rix Spike			Run: SEAL	_ AA500_21120	6A	12/06	6/21 12:29
Phosphorus	, Olsen	36	mg/kg-dry	1.0	85	80	120			
Lab ID:	H21110628-005Adup	Sample Dup	licate			Run: SEAL	_ AA500_21120	6A	12/06	6/21 12:34
Phosphorus	, Olsen	1.9	mg/kg-dry	1.0				7.8	30	

Prepared by Helena, MT Branch

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	ASA29-3								Bate	ch: 59303
Lab ID: Organic Ma	LCS-59303 atter	Laboratory Cor 1.13	itrol Sample %	0.17	116	Run: MISC 70	SOILS_211208 130	В	12/08	3/21 08:43
Lab ID: Organic Ma	MB-59303 atter	Method Blank ND	%	0.2		Run: MISC	SOILS_211208	В	12/08	3/21 08:43
Lab ID: Organic Ma	H21110626-002ADUP atter	Sample Duplica	ate %	0.17		Run: MISC	SOILS_211208	В	12/08	3/21 08:43

Prepared by Helena, MT Branch

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	ASA33-8						Analyti	cal Run	: FIA203-HE	_211206A
Lab ID:	ICV	Initial Calibra	tion Verification Sta	ndard					12/06	6/21 11:58
Nitrate as N	, KCL Extract	1.0	mg/kg-dry	1.0	102	90	110			
Lab ID:	ICV	Initial Calibra	tion Verification Sta	ndard					12/06	5/21 10:31
Nitrate as N	, KCL Extract	0.951	mg/kg-dry	1.0	95	90	110			
Lab ID:	CCV	Continuing C	alibration Verification	n Standa	ard				12/06	5/21 10:53
Nitrate as N	, KCL Extract	0.453	mg/kg-dry	1.0	91	90	110			
Method:	ASA33-8								Bat	ch: 59304
Lab ID:	MB-59304	Method Blan	k			Run: FIA20)3-HE_211206A		12/06	5/21 10:35
Nitrate as N	, KCL Extract	0.4	mg/kg-dry	0.1						
Lab ID:	LCS-59304	Laboratory C	ontrol Sample			Run: FIA20	03-HE_211206A		12/06	5/21 10:36
Nitrate as N	, KCL Extract	6.05	mg/kg-dry	1.0	90	70	130			
Lab ID:	H21110608-001CMS	Sample Matr	ix Spike			Run: FIA20	03-HE_211206A		12/06	3/21 10:38
Nitrate as N	, KCL Extract	5.37	mg/kg-dry	1.0	85	80	120			
Lab ID:	H21110626-002ADUP	Sample Dup	icate			Run: FIA20	03-HE_211206A		12/06	6/21 10:47
Nitrate as N	, KCL Extract	0.903	mg/kg-dry	1.0					30	

Prepared by Helena, MT Branch

Client: Meridiam Partners LLC Work Order: H21110626 Report Date: 12/19/21

Analyte		Result Units	RL %RE	C Low Limit High Limit	RPD RPDL	imit Qual
Method:	D2974				Batch: PMC	DIST_211130_A
Lab ID: Moisture	H21110626-001A DUP	Sample Duplicate 2.85 wt%	0.20	Run: SOIL DRYING OVEN	2_21113 0.4	11/30/21 00:00 20

Qualifiers:

RL - Analyte Reporting Limit

Meridiam Partners LLC

Client:

Trust our People. Trust our Data. www.energylab.com

QA/QC Summary Report

Prepared by Helena, MT Branch

Work Order: H21110626 Report Date: 12/19/21

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E300.0						Analytica	l Run: IC	METROHM_	_211206A
Lab ID:	ICV	Initial Calibrati	on Verification	Standard					12/06	3/21 13:52
Sulfate		393	mg/L	1.0	98	90	110			
Lab ID:	CCV	Continuing Ca	libration Verific	ation Standa	ard				12/06	6/21 14:35
Sulfate		204	mg/L	1.0	102	90	110			
Lab ID:	ССВ	Continuing Ca	libration Blank						12/06	6/21 15:04
Sulfate		0.0140	mg/L	1.0						
Method:	E300.0								Bat	ch: 59339
Lab ID:	MB-59339	Method Blank				Run: IC M	ETROHM_2112	06A	12/07	7/21 15:26
Sulfate, me	eq	ND	meq/L	0.002						
Lab ID:	LCS-59339	Laboratory Co	ntrol Sample			Run: IC M	ETROHM_2112	06A	12/07	7/21 15:40
Sulfate, me	eq	29.9	meq/L	0.021	97	70	130			
Lab ID:	H21110626-002ADUP	Sample Duplic	ate			Run: IC ME	ETROHM_2112	06A	12/07	7/21 16:23
Sulfate, me	eq	0.391	meq/L	0.021				7.7	20	
Lab ID:	H21120029-002AMS	Sample Matrix	Spike			Run: IC ME	ETROHM_2112	06A	12/07	7/21 19:45
Sulfate, me	eq	760	meq/L	0.22	109	90	110			

Prepared by Helena, MT Branch

Client: Meridiam Partners LLC Work Order: H21110626 Report Date: 12/19/21

Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: Sobek Modified						Analyt	ical Rur	n: LECO632_	211208A
Lab ID: 502-671 1.16	Initial Calibrati	on Verification	n Standard					12/07	/21 09:28
Sulfur, Total	1.2	%	0.010	100	90	110			
Lab ID: AR-1685 .164	Initial Calibrati	on Verification	n Standard					12/07	/21 09:35
Sulfur, Total	0.16	%	0.010	96	90	110			
Lab ID: AR-1683 .052	Continuing Ca	libration Verifi	cation Standar	rd				12/07	/21 09:38
Sulfur, Total	0.050	%	0.010	97	90	110			
Lab ID: AR-1700 .35	Continuing Ca	libration Verifi	cation Standar	rd				12/07	/21 09:42
Sulfur, Total	0.33	%	0.010	95	90	110			
Method: Sobek Modified								Batch:	R170770
Lab ID: LCS-211207	Laboratory Co	ntrol Sample			Run: LECC	0632_211208A		12/07	/21 13:57
Sulfur, Total	0.47	%	0.010	104	80	120			
Sulfur, Hot Water Extractable	0.15	%	0.010	103	70	130			
Sulfur, HCI Extractable	0.040	%	0.010	134	52	148			
Sulfur, HNO3 Extractable	0.18	%	0.010	90	69	131			
Sulfur, Residual	0.099	%	0.010	129	70	130			
Lab ID: H21110626-002ADUP	Sample Duplic	ate			Run: LECC	0632_211208A		12/07	/21 15:45
Sulfur, Total	ND	%	0.010					30	
Sulfur, Hot Water Extractable	ND	%	0.010					30	
Sulfur, HCI Extractable	ND	%	0.010					30	
Sulfur, HNO3 Extractable	ND	%	0.010					30	
Sulfur, Residual	ND	%	0.010					30	
Method: Sobek Modified								Bato	ch: 59310
Lab ID: MB-59310	Method Blank				Run: MAN-	TECH_211206A		12/03	/21 12:01
Neutralization Potential	0.2	t/kt							
Lab ID: LCS-59310	Laboratory Co	ntrol Sample			Run: MAN-	TECH_211206A		12/03	/21 12:08
Neutralization Potential	53	t/kt		112	70	130			
Lab ID: H21110626-002ADUP	Sample Duplic	cate			Run: MAN-	TECH_211206A		12/03	/21 14:08
Neutralization Potential	45	t/kt					1.9	20	
Method: Sobek Modified								Bato	ch: 59310
Lab ID: H21110626-002ADUP	Sample Duplic	cate			Run: SOIL	CALC_211208B		12/07	/21 09:33
Acid Potential	ND	t/kt	0.010					20	
Acid/Base Potential	45	t/kt					14	20	

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

Prepared by Helena, MT Branch

Client: Meridiam Partners LLC Work Order: H21110626 Report Date: 12/19/21

	V6010B									
							Ana	lytical Rur	n: ICP2-HE_	_211202B
Lab ID: IC	CV	Initial Calibrat	ion Verification	Standard					12/02	/21 08:42
Boron		0.795	mg/L	0.10	99	90	110			
Zinc		0.798	mg/L	0.010	100	90	110			
Lab ID: CO	cv	Continuing Ca	alibration Verifica	ation Standa	ard				12/02	/21 08:45
Boron		2.51	mg/L	0.10	100	90	110			
Zinc		2.50	mg/L	0.010	100	90	110			
Lab ID: IC	СВ	Continuing Ca	alibration Blank						12/02	/21 08:56
Boron		0.000370	mg/L	0.10						
Zinc		0.000630	mg/L	0.010						
Lab ID: IC	CSA	Interference C	heck Sample A						12/02	/21 09:04
Boron		0.00277	mg/L	0.10		0	0			
Zinc		0.00571	mg/L	0.010		0	0			
Lab ID: IC	CSAB	Interference C	Check Sample A	В					12/02	/21 09:08
Boron		1.02	mg/L	0.10	102	80	120			
Zinc		1.02	mg/L	0.010	102	80	120			
Method: SW	W6010B								Bato	ch: 59281
Lab ID: ME	IB-59281	Method Blank				Run: ICP2-	HE_211202B		12/02	/21 13:19
Boron		ND	mg/kg	0.7						
Iron		ND	mg/kg	20						
Manganese		ND	mg/kg	0.4						
Zinc		ND	mg/kg	1						
Iron as Fe2O3		ND	mg/kg	30						
Lab ID: LF	FB-59281	Laboratory Fo	rtified Blank			Run: ICP2-	HE_211202B		12/02	/21 13:23
Boron		49.3	mg/kg	1.0	100	80	120			
Iron		245	mg/kg	22	99	80	120			
Manganese		249	mg/kg	1.0	101	80	120			
Zinc		50.2	mg/kg	1.0	101	80	120			
Lab ID: LC	CS-59281	Laboratory Co	ontrol Sample			Run: ICP2-	HE_211202B		12/02	/21 13:27
Boron		109	mg/kg	3.8	85	59.5	106.2			
Iron		15400	mg/kg	110	94	51.7	131.9			
Manganese		422	mg/kg	1.9	97	81.1	116.6			
Zinc		236	mg/kg	5.2	102	75.3	111.7			
Lab ID: H2	21110626-001ADIL	Serial Dilution	l			Run: ICP2-	HE_211202B		12/02	/21 13:34
Boron		ND	mg/kg	19		0	0		10	
Iron		21300	mg/kg	550		0	0	12	10	R
Manganese		435	mg/kg	9.5		0	0	11	10	R
Zinc		48.6	mg/kg	26		0	0		10	N
Iron as Fe2O3		30400	mg/kg	790		0	0			

Qualifiers:

RL - Analyte Reporting Limit

N - Analyte concentration was not sufficiently high to calculate a Relative Percent Difference (RPD) for the serial dilution test

ND - Not detected at the Reporting Limit (RL)

R - Relative Percent Difference (RPD) exceeds advisory limit

Prepared by Helena, MT Branch

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6010B								Bat	ch: 59281
Lab ID:	H21110626-001APDS	Post Digestion	n/Distillation Spike			Run: ICP2-	HE_211202B		12/02	2/21 13:38
Boron		239	mg/kg	3.9	90	75	125			
Iron		20500	mg/kg	110		75	125			Α
Manganese)	1520	mg/kg	1.9	88	75	125			
Zinc		274	mg/kg	5.4	90	75	125			
Lab ID:	H21110626-001AMS	Sample Matri	x Spike			Run: ICP2-	HE_211202B		12/02	2/21 13:42
Boron		55.7	mg/kg	3.8	97	75	125			
Iron		20200	mg/kg	110		75	125			Α
Manganese)	629	mg/kg	1.9	96	75	125			
Zinc		91.3	mg/kg	5.2	99	75	125			
Lab ID:	H21110626-001AMSD	Sample Matri	x Spike Duplicate			Run: ICP2-	HE_211202B		12/02	2/21 13:45
Boron		54.8	mg/kg	3.8	95	75	125	1.6	20	
Iron		20300	mg/kg	110		75	125	0.0	20	Α
Manganese)	613	mg/kg	1.9	90	75	125	2.4	20	
Zinc		90.0	mg/kg	5.2	96	75	125	1.4	20	

Prepared by Helena, MT Branch

Client: Meridiam Partners LLC Work Order: H21110626 Report Date: 12/19/21

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6010B						Anal	ytical R	un: ICP2-HE	211203A
Lab ID:	ICV	Initial Calibra	tion Verification S	tandard					12/03	3/21 09:12
Iron		3.86	mg/L	0.030	97	90	110			
Manganese)	3.94	mg/L	0.010	99	90	110			
Potassium		40.1	mg/L	1.0	100	90	110			
Lab ID:	ccv	Continuing C	alibration Verifica	tion Standa	ard				12/03	3/21 09:16
Iron		2.42	mg/L	0.030	97	90	110			
Manganese)	2.46	mg/L	0.010	99	90	110			
Potassium		24.2	mg/L	1.0	97	90	110			
Lab ID:	ICB	Continuing C	alibration Blank						12/03	3/21 09:19
Iron		0.00224	mg/L	0.030						
Manganese)	0.000460	mg/L	0.010						
Potassium		0.00655	mg/L	1.0						
Lab ID:	ICSA	Interference (Check Sample A						12/03	3/21 09:27
Iron		176	mg/L	0.030	88	80	120			
Manganese)	-0.0260	mg/L	0.010		0	0			
Potassium		0.00279	mg/L	1.0		0	0			
Lab ID:	ICSAB	Interference (Check Sample AE	3					12/03	3/21 09:31
Iron		177	mg/L	0.030	88	80	120			
Manganese)	0.449	mg/L	0.010	90	80	120			
Potassium		19.5	mg/L	1.0	98	80	120			
Method:	SW6010B								Bat	ch: 59299
Lab ID:	MB-59299	Method Blank	<			Run: ICP2	-HE_211203A		12/03	3/21 22:24
Potassium		0.4	mg/kg	0.3					, 50	, _ · ·
Lab ID:	LFB-59299	Laboratory Fo	ortified Blank			Run: ICP2	-HE_211203A		12/03	3/21 22:28
Potassium		2810	mg/kg	3.2	112	80	120			
Lab ID:	LCS-59299	Laboratory C	ontrol Sample			Run: ICP2	-HE_211203A		12/03	3/21 22:32
Potassium		661	mg/kg	3.1	101	70	130		, 00	
Lab ID:	H21110626-001AMS2	Sample Matri	x Spike			Run: ICP2	-HE_211203A		12/03	3/21 22:51
Potassium,		3250	mg/kg	3.2	118	75	125			
-	Extractable		meq/100g	0.0082	119	75	125			
Lab ID:	H21110626-001AMSD2	Sample Matri	x Spike Duplicate			Run: ICP2	-HE_211203A		12/03	3/21 22:55
Potassium,		3100	mg/kg	3.2	112	75	125	4.7	20	
	Extractable		meq/100g	0.0082	113	75	125	4.7	20	
Lab ID:	H21110626-002Adup	Sample Dupl	cate			Run: ICP2	-HE_211203A		12/03	3/21 23:02
Potassium,	•	148	mg/kg	3.1			_	8.2	20	
-	Extractable		meq/100g	0.0080				8.2	20	
·· ,									-	

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

Prepared by Helena, MT Branch

Client: Meridiam Partners LLC Work Order: H21110626 Report Date: 12/19/21

Calcium 40.1 mg/L 1.0 100 90 110 Sodium 39.7 mg/L 1.0 99 90 110 Lab ID: CCV Continuing Calibration Verification Standard 12/1 Calcium 25.0 mg/L 1.0 100 90 110 Sodium 25.0 mg/L 1.0 100 90 110 Lab ID: ICB Continuing Calibration Blank 12/1 Calcium 0.0706 mg/L 1.0 Sodium 0.00103 mg/L 1.0 Lab ID: ICSA Interference Check Sample A 12/1 Calcium 459 mg/L 1.0 92 80 120 Sodium 0.0400 mg/L 1.0 92 80 120 Lab ID: ICSAB Interference Check Sample AB 12/1 Calcium 463 mg/L 1.0 93 80 120 Sodium 20.0 mg/L 1.0 100 80 120	E_211208B 08/21 12:28
Calcium 40.1 mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	08/21 12:28
Sodium 39.7 mg/L 1.0 99 90 110 Lab ID: CCV Continuing Calibration Verification Standard 12/2 Calcium 25.0 mg/L 1.0 100 90 110 Sodium 25.0 mg/L 1.0 100 90 110 Lab ID: ICB Continuing Calibration Blank 12/2 Calcium 0.0706 mg/L 1.0 Sodium 0.00103 mg/L 1.0 Lab ID: ICSA Interference Check Sample A 12/2 Calcium 459 mg/L 1.0 92 80 120 Sodium 0.0400 mg/L 1.0 0 0 0 0 Lab ID: ICSAB Interference Check Sample AB 12/2 Calcium 463 mg/L 1.0 93 80 120 Sodium 20.0 mg/L 1.0 100 80 120 Method: SW6010B E Lab ID: MB-59339 Method Blank Run: ICP2-HE_211208B 12/2	
Lab ID: CCV Continuing Calibration Verification Standard 12/ Calcium 25.0 mg/L 1.0 100 90 110 Sodium 25.0 mg/L 1.0 100 90 110 Lab ID: ICB Continuing Calibration Blank 12/ Calcium 0.0706 mg/L 1.0 Sodium 0.00103 mg/L 1.0 Lab ID: ICSA Interference Check Sample A 12/ Calcium 459 mg/L 1.0 92 80 120 Sodium 0.0400 mg/L 1.0 92 80 120 Sodium 0.0400 mg/L 1.0 93 80 120 Calcium 463 mg/L 1.0 93 80 120 Sodium 20.0 mg/L 1.0 100 80 120 Method: SW6010B B Lab ID: MB-59339 Method Blank Run: ICP2-HE_211208B 12/	
Calcium 25.0 mg/L 1.0 100 90 110 Sodium 25.0 mg/L 1.0 100 90 110 Lab ID: ICB Continuing Calibration Blank 12/ Calcium 0.0706 mg/L 1.0 Sodium 0.00103 mg/L 1.0 Lab ID: ICSA Interference Check Sample A 12/ Calcium 459 mg/L 1.0 92 80 120 Sodium 0.0400 mg/L 1.0 0 0 0 Lab ID: ICSAB Interference Check Sample AB 12/ Calcium 463 mg/L 1.0 93 80 120 Sodium 20.0 mg/L 1.0 100 80 120 Method: SW6010B Run: ICP2-HE_211208B 12/ Lab ID: MB-59339 Method Blank Run: ICP2-HE_211208B 12/	
Sodium 25.0 mg/L 1.0 100 90 110 Lab ID: ICB Continuing Calibration Blank 12/2 Calcium 0.0706 mg/L 1.0 1.0 Sodium 0.00103 mg/L 1.0 92 80 120 Calcium Sodium 459 mg/L 1.0 92 80 120 Sodium 0.0400 mg/L 1.0 92 80 120 Calcium Calcium Sodium 10.0 93 80 120 Sodium 463 mg/L 1.0 93 80 120 Sodium 20.0 mg/L 1.0 100 80 120 Method: SW6010B Run: ICP2-HE_211208B 12/2	08/21 12:32
Lab ID: ICB Continuing Calibration Blank 12/2 Calcium 0.0706 mg/L 1.0 Sodium 0.00103 mg/L 1.0 Lab ID: ICSA Interference Check Sample A 12/2 Calcium 459 mg/L 1.0 92 80 120 Sodium 0.0400 mg/L 1.0 0 0 Lab ID: ICSAB Interference Check Sample AB 12/2 Calcium 463 mg/L 1.0 93 80 120 Sodium 20.0 mg/L 1.0 100 80 120 Method: SW6010B B Lab ID: MB-59339 Method Blank Run: ICP2-HE_211208B 12/2	
Calcium 0.0706 mg/L 1.0 Sodium 0.00103 mg/L 1.0 Lab ID: ICSA Interference Check Sample A 12/ Calcium 459 mg/L 1.0 92 80 120 Sodium 0.0400 mg/L 1.0 0 0 Lab ID: ICSAB Interference Check Sample AB 12/ Calcium 463 mg/L 1.0 93 80 120 Sodium 20.0 mg/L 1.0 100 80 120 Method: SW6010B Lab ID: MB-59339 Method Blank Run: ICP2-HE_211208B 12/	
Sodium 0.00103 mg/L 1.0 Lab ID: ICSA Interference Check Sample A 12/ Calcium 459 mg/L 1.0 92 80 120 Sodium 0.0400 mg/L 1.0 0 0 0 Lab ID: ICSAB Interference Check Sample AB 120 120 120 Calcium 463 mg/L 1.0 93 80 120 Sodium 20.0 mg/L 1.0 100 80 120 Method: SW6010B B Lab ID: MB-59339 Method Blank Run: ICP2-HE_211208B 12/	08/21 12:35
Lab ID: ICSA Interference Check Sample A 12/2 Calcium 459 mg/L 1.0 92 80 120 Sodium 0.0400 mg/L 1.0 0 0 0 Lab ID: ICSAB Interference Check Sample AB 12/2 Calcium 463 mg/L 1.0 93 80 120 Sodium 20.0 mg/L 1.0 100 80 120 Method: SW6010B Lab ID: MB-59339 Method Blank Run: ICP2-HE_211208B 12/2	
Calcium 459 mg/L output 1.0 mg/L output 92 mg/L output 80 mg/L output 120 mg/L output Lab ID: ICSAB Interference Check Sample AB calcium output 1.0 mg/L output 1.0 mg/L output 93 mg/L output 80 mg/L output 120 mg/L output Sodium 20.0 mg/L output 1.0 mg/L output	
Sodium 0.0400 mg/L 1.0 0 0 Lab ID: ICSAB Interference Check Sample AB 12/ Calcium 463 mg/L 1.0 93 80 120 Sodium 20.0 mg/L 1.0 100 80 120 Method: SW6010B E Run: ICP2-HE_211208B 12/	08/21 12:43
Lab ID: ICSAB Interference Check Sample AB 12/2 Calcium Sodium 463 mg/L 1.0 93 80 120 Method: 20.0 mg/L 1.0 100 80 120 Method: SW6010B Lab ID: MB-59339 Method Blank Run: ICP2-HE_211208B	
Calcium Sodium 463 mg/L 20.0 mg/L 1.0 93 80 120 Method: SW6010B B Lab ID: MB-59339 Method Blank Run: ICP2-HE_211208B 12/12/12/12/12/12/12/12/12/12/12/12/12/1	
Calcium Sodium 463 mg/L 20.0 mg/L 1.0 93 80 120 Method: SW6010B B Lab ID: MB-59339 Method Blank Run: ICP2-HE_211208B 12/12/12/12/12/12/12/12/12/12/12/12/12/1	08/21 12:47
Sodium 20.0 mg/L 1.0 100 80 120 Method: SW6010B B Lab ID: MB-59339 Method Blank Run: ICP2-HE_211208B 12/1	
Lab ID: MB-59339 Method Blank Run: ICP2-HE_211208B 12/	
	atch: 59339
Calcium ND mg/l 0.1	08/21 16:16
Sodium ND mg/L 0.02	
Calcium, sat. paste ND meq/L 0.007	
Sodium, sat. paste ND meq/L 0.0009	
Lab ID: LFB-59339 Laboratory Fortified Blank Run: ICP2-HE_211208B 12/	08/21 16:20
Calcium 50.5 mg/L 1.0 101 80 120	
Sodium 49.9 mg/L 1.0 100 80 120	
Calcium, sat. paste 2.52 meq/L 0.050 101 80 120	
Sodium, sat. paste 2.17 meq/L 0.043 100 80 120	
Lab ID: LCS-59339 Laboratory Control Sample Run: ICP2-HE_211208B 12/	08/21 16:24
Calcium 256 mg/L 1.0 118 70 130	
Sodium 737 mg/L 1.0 120 70 130	
Calcium, sat. paste 12.8 meq/L 0.050 118 70 130	
Sodium, sat. paste 32.0 meq/L 0.043 120 70 130	
Lab ID: H21110626-001AMS2 Sample Matrix Spike Run: ICP2-HE_211208B 12/	08/21 16:35
Calcium 420 mg/L 1.0 100 70 130	
Sodium 142 mg/L 1.0 109 70 130	
Calcium, sat. paste 20.9 meq/L 0.050 100 70 130	
Sodium, sat. paste 6.18 meq/L 0.043 109 70 130	
Lab ID: H21110626-001AMSD2 Sample Matrix Spike Duplicate Run: ICP2-HE_211208B 12/	
Calcium 421 mg/L 1.0 101 70 130 0.4 20	08/21 16:39

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

Prepared by Helena, MT Branch

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6010B								Bato	ch: 59339
Lab ID:	H21110626-001AMSD2	Sample Matrix	x Spike Duplicate			Run: ICP2-	-HE_211208B		12/08	/21 16:39
Sodium		143	mg/L	1.0	110	70	130	0.3	20	
Calcium, sa	at. paste	21.0	meq/L	0.050	101	70	130	0.4	20	
Sodium, sa	at. paste	6.20	meq/L	0.043	110	70	130	0.3	20	
Lab ID:	H21110626-002Adup	Sample Dupli	cate			Run: ICP2-	-HE_211208B		12/08	/21 16:54
Calcium		53.2	mg/L	1.0				6.5	30	
Sodium		5.38	mg/L	1.0				4.0	30	
Calcium, sa	at. paste	2.65	meq/L	0.050				6.5	30	
Sodium, sa	at. paste	0.234	meq/L	0.043				4.0	30	

Prepared by Helena, MT Branch

Client: Meridiam Partners LLC Work Order: H21110626 Report Date: 12/19/21

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD RPDLimit	Qual
Method:	SW6020						Analytic	cal Run: ICPMS205-H	_211202B
Lab ID:	ICV	Initial Calibra	tion Verifica	tion Standard				12/02	2/21 11:13
Arsenic		0.0594	mg/L	0.0010	99	90	110		
Cadmium		0.0295	mg/L	0.0010	98	90	110		
Copper		0.0595	mg/L	0.0010	99	90	110		
Lead		0.0570	mg/L	0.0010	95	90	110		
Manganese		0.292	mg/L	0.0010	97	90	110		
Molybdenur	n	0.0562	mg/L	0.0010	94	90	110		
Nickel		0.0598	mg/L	0.0010	100	90	110		
Selenium		0.0568	mg/L	0.0010	95	90	110		
Lab ID:	ICSA	Interference (Check Sam	ple A				12/02	2/21 11:20
Arsenic		0.0000714	mg/L	0.0010					
Cadmium		0.000141	mg/L	0.0010					
Copper		-0.00124	mg/L	0.0010					
Lead		-0.000281	mg/L	0.0010					
Manganese		0.000175	mg/L	0.0010		0	0		
Molybdenur	n	0.835	mg/L	0.0010	104	70	130		
Nickel		-0.0000395	mg/L	0.0010		0	0		
Selenium		0.0000620	mg/L	0.0010					
Lab ID:	ICSAB	Interference (Check Sam	ple AB				12/02	2/21 11:24
Arsenic		0.0105	mg/L	0.0010	105	70	130		
Cadmium		0.0105	mg/L	0.0010	105	70	130		
Copper		0.0200	mg/L	0.0010	100	70	130		
Lead		-0.000294	mg/L	0.0010		0	0		
Manganese		0.0221	mg/L	0.0010	110	70	130		
Molybdenur	n	0.843	mg/L	0.0010	105	70	130		
Nickel		0.0212	mg/L	0.0010	106	70	130		
Selenium		0.0103	mg/L	0.0010	103	70	130		
Lab ID:	ccv	Continuing C	alibration V	erification Standa	ard			12/02	2/21 11:31
Arsenic		0.0539	mg/L	0.0010	108	90	110		
Cadmium		0.0530	mg/L	0.0010	106	90	110		
Copper		0.0536	mg/L	0.0010	107	90	110		
Lead		0.0524	mg/L	0.0010	105	90	110		
Manganese		0.0535	mg/L	0.0010	107	90	110		
Molybdenur	m	0.0527	mg/L	0.0010	105	90	110		
Nickel		0.0537	mg/L	0.0010	107	90	110		
Selenium		0.0523	mg/L	0.0010	105	90	110		
Lab ID:	ССВ	Continuing C	alibration B	lank				12/02	2/21 11:33
Arsenic		0.0000531	mg/L	0.0010					
Cadmium		0.0000286	mg/L	0.0010					
Copper		-0.000851	mg/L	0.0010					
Lead		-0.000253	mg/L	0.0010					
Manganese		0.000118	mg/L	0.0010					
-									

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

Prepared by Helena, MT Branch

Client: Meridiam Partners LLC Work Order: H21110626 Report Date: 12/19/21

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD RPDLimit	Qual
Method:	SW6020						Analytic	al Run: ICPMS205-H	_211202B
Lab ID:	ССВ	Continuing C	alibration B	llank				12/02	2/21 11:33
Molybdenur	m	0.000364	mg/L	0.0010					
Nickel		0.0000143	mg/L	0.0010					
Selenium		0.0000799	mg/L	0.0010					
Lab ID:	ICV	Initial Calibra	tion Verifica	ation Standard				12/02	2/21 15:14
Arsenic		0.0597	mg/L	0.0010	100	90	110		
Cadmium		0.0299	mg/L	0.0010	100	90	110		
Copper		0.0595	mg/L	0.0010	99	90	110		
Lead		0.0574	mg/L	0.0010	96	90	110		
Manganese	•	0.295	mg/L	0.0010	98	90	110		
Molybdenur	m	0.0563	mg/L	0.0010	94	90	110		
Nickel		0.0589	mg/L	0.0010	98	90	110		
Selenium		0.0581	mg/L	0.0010	97	90	110		
Lab ID:	ICSA	Interference (Check Sam	ple A				12/02	2/21 15:21
Arsenic		0.0000468	mg/L	0.0010					
Cadmium		0.000177	mg/L	0.0010					
Copper		-0.000966	mg/L	0.0010					
Lead		-1.55E-06	mg/L	0.0010					
Manganese	:	0.000204	mg/L	0.0010		0	0		
Molybdenur	m	0.859	mg/L	0.0010	107	70	130		
Nickel		0.0000812	mg/L	0.0010		0	0		
Selenium		0.000260	mg/L	0.0010					
Lab ID:	ICSAB	Interference (Check Sam	ple AB				12/02	2/21 15:25
Arsenic		0.0104	mg/L	0.0010	104	70	130		
Cadmium		0.0109	mg/L	0.0010	109	70	130		
Copper		0.0197	mg/L	0.0010	99	70	130		
Lead		7.73E-06	mg/L	0.0010		0	0		
Manganese	•	0.0215	mg/L	0.0010	107	70	130		
Molybdenur	m	0.852	mg/L	0.0010	107	70	130		
Nickel		0.0203	mg/L	0.0010	102	70	130		
Selenium		0.0105	mg/L	0.0010	105	70	130		
Method:	SW6020							Bat	ch: 59281
Lab ID:	MB-59281	Method Blank	<			Run: ICPM	IS205-H_21120	2B 12/02	2/21 17:40
Arsenic		ND	mg/kg	0.2					
Cadmium		ND	mg/kg	0.04					
Copper		ND	mg/kg	1					
Lead		ND	mg/kg	0.5					
Manganese	•	ND	mg/kg	1					
Molybdenur	m	ND	mg/kg	0.2					
Nickel		ND	mg/kg	0.5					
Selenium		ND	mg/kg	0.1					
-									

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

Prepared by Helena, MT Branch

Client: Meridiam Partners LLC Work Order: H21110626 Report Date: 12/19/21

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6020								Bat	ch: 59281
Lab ID:	LCS-59281	Laboratory Co	ontrol Sample			Run: ICPM	S205-H_211202	2B	12/02	/21 17:42
Arsenic		166	mg/kg	1.0	85	66.4	104			
Cadmium		101	mg/kg	1.0	102	79.2	121			
Copper		131	mg/kg	3.2	96	73.9	113			
Lead		110	mg/kg	1.3	105	71.6	128			
Manganese)	433	mg/kg	3.0	100	74.4	123			
Molybdenur	m	123	mg/kg	1.0	97	61.3	124			
Nickel		83.5	mg/kg	1.2	97	70.6	116			
Selenium		184	mg/kg	1.0	90	72.3	111			
Lab ID:	H21110626-001ADIL	Serial Dilution	1			Run: ICPM	S205-H_211202	2B	12/02/21 17:49	
Arsenic		6.68	mg/kg	2.0		0	0		10	N
Cadmium		ND	mg/kg	1.0		0	0		10	
Copper		23.2	mg/kg	16		0	0		10	N
Lead		15.1	mg/kg	6.4		0	0		10	N
Manganese)	439	mg/kg	15		0	0	0.3	10	
Molybdenur	m	ND	mg/kg	3.0		0	0		10	
Nickel		11.0	mg/kg	6.2		0	0		10	N
Selenium		ND	mg/kg	1.7		0	0		10	
Lab ID:	LFB-59281	Laboratory Fo	ortified Blank		Run: ICPMS205-H_211202B		12/02	/21 17:53		
Arsenic		50.5	mg/kg	1.0	102	80	120			
Cadmium		25.9	mg/kg	1.0	105	80	120			
Copper		50.5	mg/kg	3.2	102	80	120			
Lead		52.2	mg/kg	1.3	105	80	120			
Manganese		248	mg/kg	3.0	100	80	120			
Molybdenur	m	49.3	mg/kg	1.0	100	80	120			
Nickel		50.0	mg/kg	1.2	101	80	120			
Selenium		48.4	mg/kg	1.0	98	80	120			
Lab ID:	H21110626-001APDS1	_	n/Distillation Spike				S205-H_211202	2B	12/02	/21 17:55
Arsenic		18.5	mg/kg	1.0	96	75	125			
Cadmium		12.9	mg/kg	1.0	102	75	125			
Copper		35.4	mg/kg	3.2	97	75	125			
Lead		28.2	mg/kg	1.3	100	75 	125			_
Manganese		458	mg/kg	3.0		75 	125			Α
Molybdenur	m	14.5	mg/kg	1.0	107	75 	125			
Nickel		23.6	mg/kg	1.2	99	75 	125			
Selenium		12.3	mg/kg	1.0	99	75	125			
Lab ID:	H21110626-001AMS	Sample Matri	•				S205-H_211202	2B	12/02	/21 17:57
Arsenic		55.8	mg/kg	1.0	100	75	125			
Cadmium		25.8	mg/kg	1.0	104	75	125			
Copper		73.0	mg/kg	3.2	100	75	125			
Lead		70.2	mg/kg	1.3	110	75	125			
Manganese	•	744	mg/kg	3.0	123	75	125			

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

A - Analyte level was greater than four times the spike level - in accordance with the method, percent recovery is not calculated

N - Analyte concentration was not sufficiently high to calculate a Relative Percent Difference (RPD) for the serial dilution test

Prepared by Helena, MT Branch

Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW6020								Bate	ch: 59281
Lab ID: H21110626-001AMS	Sample Matri	x Spike			Run: ICPIV	IS205-H_211202	В	12/02	2/21 17:57
Molybdenum	49.5	mg/kg	1.0	98	75	125			
Nickel	61.5	mg/kg	1.2	102	75	125			
Selenium	45.7	mg/kg	1.0	92	75	125			
Lab ID: H21110626-001AMSD	Sample Matri	x Spike Duplicate			Run: ICPM	IS205-H_211202	В	12/02	2/21 17:59
Arsenic	56.4	mg/kg	1.0	100	75	125	1.0	20	
Cadmium	25.6	mg/kg	1.0	102	75	125	8.0	20	
Copper	82.0	mg/kg	3.2	118	75	125	12	20	
Lead	69.8	mg/kg	1.3	109	75	125	0.6	20	
Manganese	739	mg/kg	3.0	120	75	125	0.7	20	
Molybdenum	49.2	mg/kg	1.0	97	75	125	0.7	20	
Nickel	61.5	mg/kg	1.2	101	75	125	0.1	20	
Selenium	46.6	mg/kg	1.0	94	75	125	2.0	20	

Billings, MT **800.735.4489** • Casper, WY **888.235.0515** Gillette, WY **866.686.7175** • Helena, MT **877.472.0711**

QA/QC Summary Report

Prepared by Helena, MT Branch

Analyte		Result Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	USDA23c							Bat	ch: 59311
Lab ID: Neutralizat Lime as Ca	MB-59311 ion Potential aCO3	Method Blank ND Tons/1000T ND %	0.05 0.005		Run: MAN	-TECH_211206A		12/03	3/21 14:16
Lab ID: Neutralizati Lime as Ca	LCS-59311 ion Potential aCO3	Laboratory Control Samp 50.8 Tons/1000T 5.08 %	0.10 0.010	95 95	Run: MAN- 80 80	-TECH_211206A 120 120		12/03	3/21 14:24
Lab ID: Neutralizati Lime as Ca	H21110626-001ADUP ion Potential aCO3	Sample Duplicate 46.4 Tons/1000T 4.64 %	0.10 0.010		Run: MAN	-TECH_211206A	0.9 0.9	12/03 20 20	3/21 14:43

Work Order Receipt Checklist

Meridiam Partners LLC

H21110626

Login completed by:	Jessica C. Smith	h Date Received: 11/24/2021					
Reviewed by:	Wanda Johnson		Re	eceived by: RMF			
Reviewed Date:	12/19/2021		Carrier name: FedEx Ground				
Shipping container/cooler in	good condition?	Yes ✓	No 🗌	Not Present			
Custody seals intact on all sl	hipping container(s)/cooler(s)?	Yes	No 🗌	Not Present 🗹			
Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present ✓			
Chain of custody present?		Yes ✓	No 🗌				
Chain of custody signed whe	en relinquished and received?	Yes	No 🗹				
Chain of custody agrees with	n sample labels?	Yes	No 🗹				
Samples in proper container	/bottle?	Yes ✓	No 🗌				
Sample containers intact?		Yes ✓	No 🗌				
Sufficient sample volume for	indicated test?	Yes ✓	No 🗌				
All samples received within h (Exclude analyses that are c such as pH, DO, Res CI, Su	onsidered field parameters	Yes ✓	No 🗌				
Temp Blank received in all s	hipping container(s)/cooler(s)?	Yes	No 🔽	Not Applicable			
Container/Temp Blank tempe	erature:	9.5°C No Ice					
Containers requiring zero he bubble that is <6mm (1/4").	adspace have no headspace or	Yes	No 🗌	No VOA vials submitted ✓			
Water - pH acceptable upon	receipt?	Yes 🗌	No 🗌	Not Applicable 🔽			

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

Contact and Corrective Action Comments:

The Chain of Custody was not signed and there is no date and time on the COC when the client relinquished the COC. No collection date or time on samples -Used date and time from COC. Emailed client for list of metals. jcs 11/24/2021

Chain of Custody & Analytical Request Record

<u>www.energylab.com</u> Page of

Account Information (Billing information)	Report Informat	ion (if differen	t than Account Information)	Comments	
Company/Name Meridiam Partners, LLC	Company/Name				ations for soil amendments
Contact Dan Duche'	Contact		- · · · · · · · · · · · · · · · · · · ·		ea is mountain/Desert Santa Fe. Native vegetation
Phone 720-636-1831	Phone		-	is grass, sage, pin	
Mailing Address 1001 W. Arizona Ave	Mailing Address				• •
City, State, Zip Denver CO 80223	City, State, Zip	· · - · ·]	
Email dduche@meridiampartners.com	Email]]	
Receive Invoice DHard Copy SEmall Receive Report DHard Copy DEmail	Receive Report □Hard	Copy DEmail			
Purchase Order Quote Bottle Order	Special Report/Formats:	□ EDD/EDT (contact laboratory)	.]	
Project Information	Matrix Codes	1 .	Analysis Requeste	ad	
Project Name, PWSID, Permit, etc. Cunningham Hill WRP	A - Air	ج ا			All turnaround times are
Sampler Name Dan Duche' Sampler Phone 720-636-1831	W- Water	(Law ing			standard unless marked as RUSH
Sample Origin State New Mexico EPA/State Compliance ☐ Yes ■ N	II Solids	Analysis (Lawn Accounting	Paste		Energy Laboratories MUST be contacted prior to
URANIUM MINING CLIENTS MUST Indicate sample type ☐ Unprocessed Ore ☐ Processed Ore (Ground or Refined) **CALL BEFORE SENDING ☐ 11(e)2 Byproduct Material (Can ONLY be Submitted to ELI Casper Location)	B - * Bloassay O - Oil DW - Drinking Water	Complete Analysis (La & Garden) Acid Base Accounting	pH Saturated Paste Extractable Metals	Attached	RUSH sample submittal for charges and scheduling – See Instructions Page
- Sample Identification Collection (Name, Location, Interval, etc.) Date Time	Number of Containers (See Codes Above)	Comp & Ga Acid	pH S	See	RUSH EL! LAB ID TAT Laboratory Use Only
1 BP-1 , 09/21/2021 3:00 p	em 1 S 🔽	·	'	•	H21110626
2 BP-2 09/21/2021 3.00 p	m 1 S 🔽	1 / /	' V V	•	
3 , ,		 			
4		1			
5		1			
6		 -			
7					
8		 			
9		1.			
ELI is REQUIRED to provide preservative traceability. If the	e preservatives supplie	d with the bott	ile order were NOT used, please a	ttach your preservative inf	formation with this COC
Custody Reflinguished by (print) Date/Time . Record	Signature	١	Received by (print)	Date/Time	Signature
MUST Refinquished by (print) Date/Time be signed	Signature	\	Received by Laboratory (print)	Pate#Im /2 810	Signature
Shipped By Cooler ID(s) Custody Seals ' Intact Receip	LABOF	On Ice	Payment Type	Amount Rece	eipt Number (cash/check only)
FERENCI BOX Y O C B YN 9.5	5°C Y (N)	On Ice Y (V)	CC Cash Check	_ \$	

SOILS RECOMMENDATIONS FOR SAMPLING AND METHODS LISTINGS, continued

MEASUREMENT	Extraction Method	Analysis Method	Minimum As Received Sample Required for Analysis
Organic Carbon & Organic Matter (Walkley-Black)	ASA Mono. #9, Part 2, Method 29-3.5.2	Spectrophotometer	100 g (soil jar)
Organic Nitrogen	Calculation from TKN-NH₃	Calculation	100 g (soil jar)
pH, Saturated Paste	ASA Mono. #9, Part 2, Method 10-3.2	pH Meter	1500 g (half of gallon resealable bag)
Particle Size Analysis (PSA) includes % sand, silt, clay	ASA Mono. #9, Part 1, Method 15-5	Hydrometer	1500 g (half of gallon resealable bag)
Phosphorus, NaHCO ₃ (Olsen)	ASA Mono. #9, Part 2, Method 24-5.4	E365.1	100 g (soil jar)
Phosphorus, (Bray)	ASA Mono. #9, Part 2, Method 24-5.1	E365.1	100 g (soil jar)
Potassium (NH ₄ Oac)	ASA Mono. #9, Part 2, Method 13-3.5	E6010/E6020	100 g (soil jar)
Saturated Paste Extracts	ASA Mono #9, Part 2, Method 10-2.3.1	E6010/E6020	1500 g (half of gallon resealable bag)
Saturation Percentage	USDA Handbook 60, Method 27A	N/A	1500 g (half of gallon resealable bag)
Sieve Analysis	ASA Mono. #9, Part 1, Method 15-2,2	Specified Sieve Sizes	1500 g (half of gallon resealable bag)
Sodium Adsorption Ratio (SAR-Ca, Mg, Na)	ASA Mono. #9, Part 2, Method 10-3.4	E6010/E6020	1500 g (half of gallon resealable bag)
Sodium, extractable (NH ₄ OAc)	ASA Mono #9, Part 2, Method 13-4.3	E6010/E6020	100 g (soil jar)
Sodium, available	ASA Mono. #9, Part 2, Method 13-4.5	E6010/E6020	100 g (soil jar)
Sodium, soluble (saturated paste)	ASA Mono. #9, Part 2, Method 10-3.4	E6010/E6020	100 g (soil jar)
Sulfate, water, soluble	ASA Mono. #9, Part 2, Method 28-5.1	E300.0	100 g (soil jar)
Sulfate, HCl soluble (geochemical)	Montana Statè Department of Highways	Gravimetric	100 g (soil jar)
Sulfur Forms (Modified Sobek)	Field & Lab. Methods Applicable to Overburdens & Mine Spoil, Sobek, 1978 pp60-62	LECO SC-444 (203-601-222)	100 g (soil jar)
Total Nitrogen	Calculation from	Calculation	100 g (soil jar)
Total Kjeldahl Nitrogen (TKN)	ASA Mono. #9, Part 2, Method 31-3.1	A 4500 N org	100 g (soil jar)
Total Sulfur	N/A	LECO SC-444 (203-601-222)	100 g (soil jar)
Very Fine Sands (VFS)	ASA Mono, #9, Part 1, Method 15-5	140 mesh sieve	1500 g (half of gallon resealable bag)
ABDTPA Extracts	ASA Mono. #9, Part 2, Method 3-5.2	E6010/E6020	100 g (soil jar)
DTPA Extracts	ASA Mono. #9, Part 2, Method 19-3 3	E6010/E6020	100 g (soil jar)
Saturated Paste Extracts (H ₂ O)	ASA Mono. #9, Part 2, Method 10-2.3.1	E6010/E6020	1500 g (half of gallon resealable bag)
HCI Extracts	ASA Mono. #9, Part 2. Method 19-3.4	E6010/E6020	100 g (soil jar)

4. SOIL AND OVERBURDEN – METALS, continued

PARAMETER	DETECTION LIMIT, TOTALS	DETECTION LIMIT, EXTRACTABLES	UNITS
Manganese	1	0.1	mg/Kg
Mercury	1	0.1	mg/Kg
Molybdenum	1	0.1	mg/Kg
Nickel	1	0.1	mg/Kg
Selenium	1	0.01	mg/Kg
Silver	1	0.5	mg/Kg
Zinc	1	0.1	mg/Kg

5. SOIL AND OVERBURDEN CYANIDES

PARAMETER	DETECTION LIMIT	UNIT
Cyanide, Total	0.5	mg/Kg
Cyanide, Weak Acid Dissociable	0.5	mg/Kg
Cyanide, Frée	2.0	mg/Kg

6. SOIL AND OVERBURDEN - GEOTECHNICAL SOILS ANALYSES

PARAMETER	DETECTION LIMIT	UNIT, ⁽⁻⁾
pH 💢	, 0.1	s.u.
Marble pH	0.1	ſş.u.
Sulfate ,	~ 0.01	%
Conductivity, Saturated Paste Extract	0.01	mmhos/cm .
Resistivity, Calculated	CONTRACT OF A STATE OF STATE O	ohm-cm
Minimum Resistivity	100	Ohm X cm

7. SOIL AND OVERBURDEN - ICP SCAN

Aluminum	Calcium	Lead	Phosphorus	Strontium
Barium	Chromium	Magnesium	Potassium	Thallium
Beryllium	Cobalt	Manganese	Silicon	Titanium
Boron	Copper	Molybdenum	Silver	Vanadium
Cadmium	Iron	Nickel	Sodium	Zinc
	e elements analyzed in ble on request)	solids by ICP to 50 mg/l	Kg reporting limit. (Othe	r elements are

ORGANIC CONTAMINANTS - see Organic Chemistry section
PETROLEUM CONTAMINATED SOILS - see Organic Chemistry section
RADIOCHEMISTRY - see Radiochemistry section

SOILS RECOMMENDATIONS FOR SAMPLING AND METHODS LISTINGS

MEASUREMENT	Extraction Method	Analysis Method	Minimum As Received Sample Required for Analysis
Acid Base Potential (ABP)	Calculated from Acid & Neutralization Potential	Calculation	100 g (soil jar)
Acid Potential	Calculated from Non- Sulfate Sulfur	Calculation	100 g (soil jar)
Alkalinity, saturated paste	ASA Mono. #9, Part 2, Method 10-3.2	A 2320B	1500 g (half of gallon resealable bag)
Ammonia as N, KCl Extract	ASA Mono. #9, Part 2, Method 37-7	E350.1	100 g (soil jar)
Base Saturation	Calculation from NH₄Oac Ca, Mg, Na, K, and CEC	Calculation	1500 g (half of gallon resealable bag)
Carbon, Total	NA.	LECO SC-444 (203-601-222)	100 g (soil jar)
Cation Exchange Capacity (CEC)	USDA Handbook 60, Method 19	E6010/E6020	100 g (soil jar)
Chloride (H₂O Extract)	ASA Mono. #9, Part 2, Method 10-2.3.2	E300.0 (Ion Chromatography)	100 g (soil jar)
Coarse Fragments	ASA Mono #9, Part 1, Method 15-5	2 mm sieve	1500 g (haif of gallon resealable bag)
Conductivity (EC), saturated paste	ASA Mono. #9, Part 2, Method 10-3.3	Conductivity Meter	1500 g (half of gallon resealable bag)
Cyanide Total	E335.2 (Sed.) Mod.	E335.4 (midi)	100 g (soil jar)
Cyanide, Weak Acid Dissociable	ASTM D2036 Mod.	NA	100 g (soil jar)
Cyanide, Free	ASA Mono. #9, Part 2, Method 10-2.3.1	Electrode Manufacturer's Instructions	100 g (soil jar)
Exchangeable Acidity	ASA Mono. #9, Part 2, Method 9-4.1	Titration	1500 g (half of gallon résealable bag)
Exchangeable Sodium Percentage (ESP)	Calculated from CEC, soluble sodium, & extractable sodium	E6010/E6020	1500 g (half of gallon resealable bag)
Lime as CaCO ₃	USDA Handbook 60. Method 23C	Titration	100 g (soil jar)
Lime Requirement, SMP Single Buffer	ASA Mono. #9, Part 2, Method 12-3.4.4	pH meter	100 g (soil jar)
Moisture (dry basis)	USDA Handbook 60, Method 26	NA	1500 g (half of gallon resealable bag)
iver Acid Generating Potential. (NAG)	Field & Lab. Methods Applicable to Overburdens & Mine Spoil, Sobek, 1978 pp69-72	Titration	100 g (soil jar)
Méurralization Potentiar	USDA Handbook 60, Method 23C	NA	100 g (soil jar)
Nitrate as N (NO ₃ + NO ₂)	ASA Mono #9, Part 2, Method 33-8.1	E353.2	100 g (soil jar)
Minimum Resistivity	-	California 643	1500 g (half of gallon resealable bag)

3. SOIL AND OVERBURDEN - NON-METALS

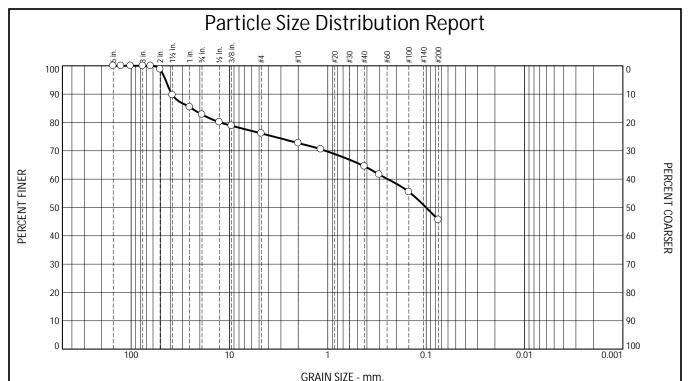
PARAMETER	DETECTION LIMIT	UNIT
Sample Preparation	-	-
Sample Crushing	-	-
Other extractions (Acetic Acid, HCI, DTPA, Water, etc.)	-	-
Acid-Base Potential	-	T CaCO ₃ /1000 T
Acid Potential	0.01	T CaCO ₃ /1000 T
Ammonia as N	1	mg/Kg
Available Lime Index	0.1	weight %
Base Saturation	0.1	%
Bicarbonate, Saturated Paste	0.01	meq/L
Bromide	0.5	mg/Kg
Bulk Density	0.01	g/cc
Calcium, Saturated Paste	10:1	meq/L
Calcium Oxide by Rapid Sugar Method	0.1 "."	weight %
Carbon, Total	0.05	'- , %
Cation Exchange Capacity	0.1	meq/100 g
Chloride 1	1	mg/Kg
Coarse Fragments + 10 mesh, 2 mm	2	% .
Conductivity, paste extract	0.1	mmhos/cm
Exchange Sodium Percentage – includes CEC, soluble sodium, available sodium, saturation %	0.1	%
Exchangeable Acidity	1	meq/100 g ;
Fertilizer Recommendation	NA	NA j^{-j}
Lime '	0.1	% <i>;</i> .
Lime Requirement, SMP Buffer Method	· ·1	T CaCO ₃ /1000 T
Loss on lignition	0.1	-%
Magnesium, Saturated Paste	0.1	meq/L
Moisture	0.1	-* %
Neutralization Potential		T CaCO ₃ /1000,T
Net Acid Generating Potential with Peroxide (includes pH and EC after reaction)	The same and the same of the s	T CaCO₃/1000 T. (
Nitrate as N (NO₃)	1	mg/Kg
Nitrogen, Total Kjeldahl (TKN)	1	mg/Kg
Nitrogen, Total (TKN+ NO₃)	1	mg/Kg
Nitrogen, Organic (TKN – NH₄)	1	mg/Kg
Organic Carbon	0.1	%
Organic Matter	0.1	%
pH saturated paste	, , O, 1 , , , , , , , , , , , , , , , ,	Std. units
Phosphorus Absorption Capacity	1	mg/Kg
Phosphorus, NaHCO ₃ (Olsen)	1	mg/Kg
Phosphorus (Bray)	1	mg/Kg
Potassium	1	mg/Kg
Potassium, Saturated Paste	0.1	meq/L

3. SOIL AND OVERBURDEN - NON-METALS, continued

PARAMETER	DETECTION LIMIT	UNIT
SAR (includes Ca, Mg, Na)	0.01	unitless
Saturation Percentage	0.1	%
Sieve Analysis	0.1	%
Sodium, extractable	0.1	meq/100 g
Sodium, available	0.1	meq/100 g
Sodium, sat. paste	0.1	meq/L
Sulfate	1	mg/Kg
Sulfur Forms		%
Sulfur, Total	0.01	%
e se		
Texture (PSA) sand, silt, clay	1	%
Very Fine Sand	0.01	%.
Water Holding Capacity	0.1	NA

4. SOIL AND OVERBURDEN - METALS

iPARAMETER	DETECTION LIMIT, TOTALS	DETECTION LIMIT, EXTRACTABLES	UNITS '
Total Metals Digestion (Method SW 3050)	-		ŅĄ.
Total Metals Digestion, Mercury (Method SW 7471)	•	-	, NA
Aluminum	5	0.1	. f mg/Kg
Arsenic	1	0.02	mg/Kg
Barium	The same of the sa	The separate and the second of	mg/Kg
Beryllium	1	0 1	mg/Kg
Boron	1	0.1	mg/Kg
Cadmium	1	0.1	mg/Kg
Calcium	5	1	mg/Kg
Chromium	1	0.1	mg/Kg
Copper	1	0.1	mg/Kg *
Iron	5	1	mg/Kg
Lead	1	0.1	mg/Kg
Magnesium	5	1	mg/Kg


1. AGRICULTURAL SOILS

· 	ANALYSIS PACKAGE
COMPLETE ANALYSIS (2 depths)	
Hope Depth (0-6")	pH, sitrate-sedium sulfate salt-hazard (conductivity), texture, lime,
Lower Depth (6-24")	Nitrate, sulfate, and texture
COMPLETE ANALYSIS - Lawns and	d Gardens (1 depth)
Upper Depth only (0-6")	pH, nitrate, sodium, sulfate, salt hazard (conductivity), texture, lime, potassium, organic matter, available phosphorus, calcium
PARTIAL ANALYSIS (2 depths)	
Upper Depth (0-6")	Nitrate, phosphorus, potassium, zinc(irrigated soils), sulfate (non-irrigated soils)
Lower Depth (6-24")	Nitrate
GYPSUM APPLICATION PACKAGE (2 depths)	pH, sodium, conductivity
INDIVIDUAL SOIL PARAMETERS -	- see page Soil 4-5

2. SOIL AND OVERBURDEN - ACID-BASE ACCOUNTING

ACID-BASE ACCOUNTING	DETECTION LIMIT	UNIT }
MODIFIED SOBEK METHOD; includes the following	-	_
Neutralization Potential	1	T CaCO₃/1000.T
Acid Potential (hot water wash)	1	T CaCO ₃ /1000 T
Acid-Base Potential .	1	T CaCO ₃ /1000 T
Total Sulfur 🗽 📜	0.01	%
Hot Water Soluble Sulfur	0.01	. %
Cold HCl Soluble Sulfur	0 01	/**-%
Hot HNO₃ Soluble Sulfur	0.01	^ %
Residual Suffur	0.01	% ,
SCHAFER METHOD, includes the following:	The state of the s	- 11 A
Neutralization Potential	MINISTER WASHINGTON	T CaCO ₃ /1000 T
Acid Potential (hot HCl wash)	1	T CaCO ₃ /1000 T
Acid-Base Potential	1	T CaCO ₃ /1000 T
Total Sulfur	0.01	%
Hot HCI Soluble Sulfur	0.01	%
Hot HNO₃ Soluble Sulfur	0.01	%
Residual Sulfur	0.01	%

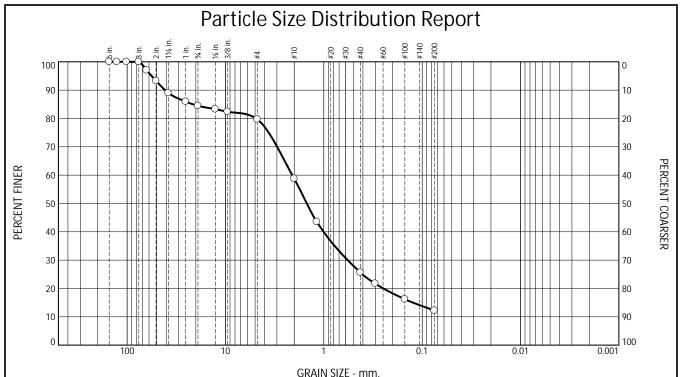
١.				111111				
	% ±3"	% Gr	avel	% Sand			% Fines	
	76 +3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	17.2	6.7	3.4	8.1	18.9	45.7	

Title: PE

Figure

Test Re	sults (AA	SHTO T 27 & T	Г 11)	Material Description	Atterberg (A	ASTM D4318)
Sieve Size or Diam. (mm.)	Finer (%)	Spec.* (%)	Out of Spec. (%)	BP-1	PL= 21 LL=	
6 5	100.0 100.0					<u>icients</u>
4	100.0			Sieve Test (AASHTO T 27 & T 11)	D ₉₀ = 38.6048	D ₈₅ = 24.2940
3 2.5 2 1.5	100.0 100.0			Test Date: <u>3/16/2022</u> Technician: <u>Juan Romero</u>	D ₆₀ = 0.2463	$D_{50} = 0.1004$
2.3	98.8			1650 Batto. <u>3/16/2022</u> 1660 million. <u>Butti Homero</u>	D ₃₀ =	D ₁₅ =
1.5 1	89.7 85.4			Test Notes	D ₁₀ =	
.75 .5	82.8				c _u =	C _C =
.5 .375	80.1 78.8					
#4 #10	76.1 72.7			<u>Hydrometer Test</u>	USCS (AST	ГМ D2487)
#16	70.5			Test Date: Technician:	S	C
#40 #50	64.6 61.6			rest bate.		
#100 #200	55.5 45.7			Test Notes		
200	13.7					
					Date Sampled: 3	3/14/2022
					Date Received: 3	3/14/2022
· (no spec	ification	provided)		-	Checked By: (Clay Hollowell

Location: BP-1 Sample Number: S3409


Project:

Denver, Colorado

Vine Laboratories

Client: Meridiam Partners

Project No: 22-5002

١.				111111				
	% ±3"	% Gr	avel	% Sand			% Fines	
	76 +3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	15.5	4.8	21.0	33.1	13.4	12.2	

Test Res	sults (AA	Test Results (AASHTO T 27 & T 11)							
Sieve Size or Diam. (mm.)	Finer (%)	Spec.* (%)	Out of Spec. (%)						
6	100.0								
5	100.0								
4	100.0								
3	100.0								
2.5	97.0								
2	93.3								
1.5	89.0								
1	85.9								
.75	84.5								
.5	83.3								
.375	82.4								
#4	79.7								
#10	58.7								
#16	43.5								
#40	25.6								
#50	21.7								
#100	16.2								
#200	12.2								
(: C: 4:	provided)							

Material Description			
BP-2			

Sieve Test (AASHTO T 27 & T 11)

Test Date: <u>3/16/2022</u> Technician: <u>Juan Romero</u>

Test Notes

Hydrometer Test

Test Date: _____ Technician: _____

Test Notes

Atterberg (ASTM D4318)

PL= 21 LL= 34 PI= 13

Coefficients

 D_{90} = 41.2657 D_{85} = 21.4571

 D_{60} = 2.0954 D_{50} = 1.4917

 $D_{30} = 0.5723$ $D_{15} = 0.1243$

 $D_{10} =$

 $c_u = c_c =$

USCS (ASTM D2487)

SC

Date Sampled: 3/14/2022 Date Received: 3/14/2022

Checked By: Clay Hollowell

Title: PE

· (no specification provided)

Location: BP-2 Sample Number: S3410

Vine Laboratories

Client: Meridiam Partners

Project:

Denver, Colorado

Project No: 22-5002

Figure

Attachment 5 Seed Mix

Appendix 3 – Seed Mix

Cunningham Hill Mine Reclamation Project Seed Mix 1			
Species	Drill seed rate pure live seed (lbs./acre)	Species Characteristics	
blue grama; Bouteloua gracilis	2.0	warm season	
indian ricegrass; Oryzopsis hymenoides	1.0	warm season	
sideoats grama; Bouteloua curtipendula	1.0	warm season	
galleta; Hilaria jamesii	1.0	warm season	
sand dropseed; Sporobolus cryptandrus	0.25	warm season	
Great Basin wildrye; Elymus cinereus	2.0	cool season	
purple prairie clover; Petalostemum purpureum	0.2	Forb	
palmer penstemon; Penstemon palmeri	0.1	Forb	
lewis flax; Linum lewisii	0.5	Forb	
scarlet globemallow; Sphaeralcea coccinea	0.1	Forb	
TOTAL	8.15		

Cunningham Hill Mine Reclamation Project Seed Mix 2 for wetter and cooler site conditions			
Species	Drill seed rate pure live seed (lbs/acre)	Species Characteristics	
indian ricegrass; Oryzopsis hymenoides	2.0	cool season	
lewis flax; Linum lewisii	0.5	Forb	
purple prairie clover; Pentalostemum purpureum	0.5	Forb	
Rocky Mountain penstemon ;Penstemon strictus	0.5	Forb	
prairie coneflower; Ratibida columnifera	0.25	Forb	
TOTAL	6.25		