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EXECUTIVE SUMMARY 

The potential effects of climate change on meteorological characterization within the study region 
were assessed. Future climate change projections were determined from Regional Downscaled 
Climate Model (RCM) outputs specifically evaluated for the location. The Global Climate Models 
(GCMs), also referred to as General Circulation Models, are developed by various governmental, 
academic, and research agencies around the world in coordination with the Intergovernmental 
Panel on Climate Change (IPCC). These are utilized to set the boundary conditions and input for 
the RCMs. The different scenarios are described by representative concentration pathways (RCPs), 
a greenhouse gas concentration trajectory, often referred to as emission scenarios. As part of the 
IPCC analysis, four pathways were applied for climate modeling: RCP 2.6, RCP 4.5, RCP 6.0, and 
RCP 8.5 (IPCC, 2017). The various pathways considered different climate futures, depending on 
the volume of greenhouse gases (GHG) emitted in the years to come. Climate change studies that 
evaluate future temperature and precipitation projections utilize the middle of the road emission 
scenario (RCP 4.5) and the most extreme emission scenario (RCP 8.5). These provide a bracket of 
the projections that utilize the most likely outcome (RCP 4.5) and the most unlikely outcome (RCP 
8.5).  
 
For this study, climate model projections gridded outputs were investigated for the three scenarios: 
i) historic, ii) RCP 4.5, and iii) RCP 8.5. The historical period is based on daily data from 1950 
through 2005, and the RCP periods are based on daily data from 2006 through 2100. The North 
American CORDEX gridded daily time-series data, which cover the study area, were extracted, 
aggregated, and applied for the climate change analysis as part of the 2022 regional work by 
Deloitte. The climate model projections were used to analyze precipitation trends, precipitation 
frequency, and maximum precipitation for the 1-day, 3-day, and annual durations for the area 
covering the study region. Results of the analysis are presented in Table E.1. For hydrologic 
simulation and sensitivity, the ensemble median RCP 4.5 climate change adjustments and 
uncertainty values for temperature and precipitation are recommended. The results are based on 
an evaluation of rate of change from the current period through 2100. These values can be applied 
to a given period (i.e., 2050) by linearly adjusting the climate change factors.  
 

Table E.1: Climate Change Projections from current climate (1950-2014) through 2100. 

 

Mean Median Min Max Mean Median Min Max
Temperature 1-Day; C 1.6 2.1 -1.3 2.9 5.3 5.0 4.5 6.4
   Temperature 1-Day Monsoon PF; C 1.6 2.1 -1.3 2.9 5.3 5.0 4.5 6.4
   Temperature 1-Day Winter PF; C 1.8 2.4 -1.4 3.0 5.6 5.8 5.3 5.9
+Precipitation 1-Day PF; % 16 22 -31 49 35 40 -18 69
   Precipitation 1-Day Monsoon PF; % 15 14 -20 48 28 27 -32 64
   Precipitation 1-Day Winter PF; % -1 -7 -29 24 12 12 -7 41
+Precipitation 3-Day PF; % 4 5 -13 15 14 24 -8 31
   Precipitation 3-Day Monsoon PF; % 5 3 -9 15 11 23 -18 28
   Precipitation 3-Day Winter PF; % 9 0 -26 79 6 7 -17 19
Precipitation Annual PF; % 2 -1 -15 13 2 -2 -21 28
PMP 1-Day, %
PMP 3-Day; %

No Change Potential Increase
No Change No Change

RCP45 RCP85
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1.0 INTRODUCTION 

Applied Weather Associates (AWA) examined climate model projections to analyze precipitation 
trends, precipitation frequency, and maximum precipitation for the 1-day, 3-day, and annual 
durations for the region covering the Chino/Tyrone Mine, New Mexico study region (Figure 1). 
Three different investigations were completed each of which provided a different look at the 
climate change projections. The first method investigated station and climate projection trends 
using trend analysis methods based on Mann (Mann, 1945) and Hipel and McLeod (2005) utilizing 
the R-statistical software packages ‘Kendall’ developed by McLeod (2015). The second method 
was precipitation frequency analysis based on L-moments methods described in Hosking and 
Wallis (1997) and utilized the R-statistical software packages ‘lmom’ and ‘lmomRFA’ developed 
by Hosking (Hosking 2015a, and Hosking 2015b). The third method identified the largest 
precipitation events from the daily climate projections, derived monthly dew point temperature 
climatologies from the climate model projections and maximized the storm events through storm 
maximization methods (Rousseau et al., 2014; Kappel et al., 2018; Kappel et al., 2020). In addition, 
climate change for mean monthly and annual climatologies were derived for precipitation and 
temperature.  
 

 
Figure 1: Location of the Chino/Tyrone study region. 
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2.0 CLIMATE CHANGE PROJECTION BACKGROUND 

Climate is changing, always has been changing, and always will change as long as the energy 
received from the across the Earth’s surface and atmosphere is not distributed evenly. Accounting 
for future changes in climate is important to reduce risk and ensure infrastructure is designed to 
safely manage potential future changes. Unfortunately, quantification of the amount and rate of 
change at any given location for any specific meteorological parameter is not explicitly 
quantifiable and instead has to be modeled based on our incomplete understanding of the Earth’s 
climate system and future atmospheric composition. Therefore, model projections that utilize our 
current understanding of the Earth climate system are developed. The climate projections are based 
on our best quantification of physical understanding of numerous atmospheric parameters and how 
those affect weather and climate through time and space. However, because our quantification of 
these parameters are incomplete (and at times inaccurate) and because we currently have a limited 
understanding of the various interactions and feedbacks, the climate projections represent possible 
outcomes. None of which can be considered truth, but instead should be treated as “what if” 
scenarios representing possible outcomes. 
 
To better address these significant limitations, numerous iterations and sensitivity analyses for 
various atmospheric parameters are performed so that a suite of ensembles are produced to 
represent a wide range of potential outcomes. From this output, inferences can be made, with more 
confidence given when ensemble outcomes converge on a common projection. Another layer of 
uncertainty within the climate change projection process relates to the assumption applied for 
future emissions scenarios and how those may affect the climate system. Future emissions 
scenarios have two major areas of uncertainty. First, our assumption that any given emission 
scenario will occur following a specific path through time is unknown as there are many internal 
and external factors that can influence the amount of emissions produced through time.  Second, 
our understanding and quantification of how the Earth’s climate will respond to any given 
greenhouse gas emission is limited. Both uncertainties introduce errors into the climate 
projections. Finally, the GCMs are computationally intensive and are therefore run at low 
resolution both in time and space. For regions like the Chino/Tyrone basin, the resolution of the 
GCMs is inadequate to capture the spatial variations. To overcome this, projections from GCMs 
are downscaled using a statistical process into regional downscaled model projections. RCMs are 
downscaled and are what were utilized for this climate change analysis. Given all the limitations 
and uncertainties noted above, it is still useful to evaluate RCMs to understand the range of 
potential outcomes that could occur through time over the basin. 

2.1 Global Climate Change Models 
GCMs produce realizations of the Earth’s climate on a generally coarse scale of around 1000km 
by 1000km. Because the scale is so coarse, a single GCM grid may cover vastly differing landscape 
(from very mountainous to flat coastal plains for example) with greatly varying potential for 
floods, droughts, or other extreme events.  

2.2 Regional Downscaled Climate Change Models 
RCMs and Empirical Statistical Downscaling applied over limited areas cover a much finer 
resolution. These are therefore able to capture the spatial and temporal variations related to a site-
specific region, such as the Chino/Tyrone study region. The downscaling methods are driven by 
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GCMs, where the RCM is nested within the overall GCM and utilizes the GCM to set the initial 
boundary conditions. These are then downscaled using either the statistical methodology or the 
RCM based on a meteorological model interface. The RCM process can provide projections of 
future climate conditions on a much smaller scale (e.g., < 50km by 50km) supporting more detailed 
site-specific information allowing for adaptation assessment and planning. An example of different 
climate model resolutions across the Chino/Tyrone region are shown in Figure 2. 
 

 
Figure 2: Example of different global and regional climate model resolutions across the Chino/Tyrone region. 

3.0 CLIMATE CHANGE PROJECTION ANALYSIS METHODS 

The Intergovernmental Panel on Climate Change (IPCC) fifth assessment report (AR5) contains 
representative concentration pathway (RCP)s, a greenhouse gas concentration trajectory, often 
referred to as emission scenarios. As part of this analysis, four pathways were applied for climate 
modeling and research for the IPCC AR5 (IPCC, 2017). The pathways describe different climate 
futures, all of which are considered possible depending on the volume of greenhouse gases (GHG) 
emitted in the years to come (Figure 3). The RCPs investigated; RCP 2.6, RCP 4.5, RCP 6.0, and 
RCP 8.5; are labeled after a possible range of radiative forcing values in the year 2100 (IPCC, 
2017; IPCC, 2021).  
 
Regional downscaled climate model projections from the Coupled Model Intercomparison Project 
Phase 5 (CMIP5) outputs based on IPCC AR5 projections were used in this study and extracted 
from the Coordinated Regional Climate Downscaling Experiment (CORDEX). The uncertainty in 
climate projections is typically represented by the range of climate futures indicated by the CMIP5 
ensemble of projections (McSweeney and Jones, 2016). The purpose of this output is to provide a 
set of global, high resolution, bias-corrected climate change projections that can be used to evaluate 
climate change impacts on processes that are sensitive to finer-scale climate gradients and the 
effects of local topography on climate conditions. For this study, five climate model projections 
were investigated for the three scenarios: i) historic, ii) RCP 4.5, and iii) RCP 8.5. The historical 
period is based on daily data from 1950 through 2005, and the RCP periods are based on daily data 
from 2006 through 2100. 

https://cordex.org/


Page 10 of 39 

  

          10/4/2022 
 Applied Weather Associates 

 
Figure 3:  Representative concentration pathway (RCP) trajectories.  Reproduced from IPCC (2017). 

The key climate model parameters used in this analysis were precipitation (Ppt), air temperature 
(Ta), and dew point temperature (Td). The parameters of relative humidity (RH), specific humidity 
(SH), and surface pressure (Press) were used to derive the estimates of dew point (Td). The North 
American CORDEX interface consists of thirty models (five GCMs driving five RCMs), of these 
thirty models, five models had the parameters and projections needed for the climate change 
analysis (Figure 4). The North American CORDEX outputs were extracted, quality controlled, and 
formatted as part of the 2022 regional work by Deloitte. The HadGEM2-ES GCM model was not 
used for time-series analysis because it has a 360-day calendar where each month is 30 days in 
length and only has data for RCP 8.5 up to 30-Nov-2099. An example of the modeled daily climate 
projection parameters of Ppt, Ta, and Td are shown in Figure 5 and the number of grids and 
weighting applied covering the study region are shown in Figure 6. The climate projections 
historical period is based on daily data from 1950 through 2005, and the future periods are based 
on daily data from 2006 through 2100. 
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Figure 4: Subset of CMIP5 models and the parameters and projections used for the climate change analysis 

 

 
Figure 5:  Climate projection parameters of Ppt, Ta, and Td from Model 1 (NAM22 CanRCM4 CanESM2) 

mulation/Model 1 2 3 4 5

Driving Global Climate Model 
(GCM) CCCma-CanESM2 CCCma-CanESM2 CNRM-CERFACS-

CNRM-CM5
MPI-M-MPI-ESM-

LR
NOAA-GFDL-GFDL-

ESM2M

 Climate Model (RCM) CanRCM4 CRCM5 CRCM5 CRCM5 CRCM5 

ly Precipitation ✔ ✔ ✔ ✔ ✔
Daily Average Surface 

Temperature ✔ ✔ ✔ ✔ ✔

Daily Maximum Surface 
Temperature ✔ ✔ ✔ ✔ ✔

 Surface Humidity ✔ ✔ ✔ ✔ ✔
 Surface Pressure ✔ ✔ ✔ ✔ ✔
y Snow Amount4 ❌ ✔ ❌ ✔ ❌

c Simulation Years 1951-2005 1951-2005 1951-2005 1951-2005 1951-2005
RCP2.6 ❌ ❌ ❌ ❌ ❌

RCP4.5 2006-2100 2006-2100 2006-2100 2006-2100 2006-2100
RCP8.5 2006-2100 2006-2100 2006-2100 2006-2100 2006-2100

Resolution NAM-22 NAM-22 NAM-22 NAM-22 NAM-22
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Figure 6:  CMIP5 climate model grids and weights used for climate change analysis (modified from Deloitte 
regional work 2022). The blue triangle represents the mine locations, and the colored circles represent the 

CORDEX grid centers and associated weighting.   

3.1 Trend Analysis 
Mann-Kendall trend analysis (Mann, 1945; Hipel and McLeod, 2005) was performed on the 
Chino/Tyrone climate station located near the mine site for 1-day, 3-day, and annual durations. 
Results of these station-based trend analysis are shown in Table 1. The climate station trend results 
were used to assess the historic model projections. 
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Table 1:  Climate stations used for trend analysis. Trend analyses are tested at the 0.05 significant level. 

 Precipitation Temperature 
 1-day 3-day Annual 1-day  
Redrock no trend no trend no trend no trend 

Fort Bayard no trend no trend no trend no trend 
 
In addition, Mann-Kendall trend analysis (Mann, 1945; Hipel and McLeod, 2005) was performed 
on five climate model projections using the three scenarios (historic, RCP 4.5, RCP 8.5) for 
durations of 1-day, 3-day, and annual. Figure 7 shows and example of the results for Model 1 1-
day trend analysis for the historic, RCP 4.5, and RCP 8.5 projections. Results for all the climate 
model projection trend analyses are summarized in Table 2. Detailed results are included in 
Appendix B. 
 

Table 2:  Summary of climate projection trend analysis results.  Trend analyses are tested at the 0.05 
significant level. 

 Precipitation Temperature 
 1-day 3-day Annual 1-day  

Historic 
5 – no trend 
0 – increase 
 0 – decrease 

5 – no trend 
0 – increase 
0 – decrease 

5 – no trend 
0 – increase 
 0 – decrease 

4 – no trend 
1 – increase 
 0 – decrease 

RCP 4.5 
5 – no trend 
0 – increase 
 0 – decrease 

5 – no trend 
0 – increase 
 0 – decrease 

4 – no trend 
0 – increase 
 1 – decrease 

0 – no trend 
5 – increase 
 0 – decrease 

RCP 8.5 
5 – no trend 
0 – increase 
 0 – decrease 

5 – no trend 
0 – increase 
 0 – decrease 

2 – no trend 
1 – increase 
 2 – decrease 

0 – no trend 
5 – increase 
 0 – decrease 
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Figure 7:  Example results for 1-day trend analysis for climate projection from Model 1: a) no trend for 

historical period, b) no trend for RCP 4.5 scenario, and c) no trend for RCP 8.5 scenario. Blue line is Lowess 
trend line, dashed line is a linear trend, and Mann-Kendall p-value and Tau statistics shown in legend. 
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 3.2 Precipitation Frequency Analysis 
The precipitation frequency analysis method utilized L-moment statistics instead of product 
moment statistics, which decrease the uncertainty of rainfall frequency estimates for more rare 
events and dampens the influence of outlier precipitation amounts from extreme storms (Hosking 
and Wallis, 1997). Methods to account for non-stationarity in projections were not addressed, the 
projections were applied assuming stationarity. For the precipitation frequency analysis, AWA 
utilized the daily climate model projections to perform frequency analysis on the 1-day, 3-day, and 
annual durations.  
 
AWA evaluates the climate change projections for the entire period available, for CMIP5 that 
ranges from 2005 through 2100. The changes through time reflect the entire period. However, 
other evaluation periods can be considered and may change the rate of change through time. For 
example, one may evaluate the projections through the year 2050 and then do a separate analysis 
for the years 2050-2100. This may result in slightly different outcomes depending on the climate 
change projections changes through time. For example, some climate change models may show 
minimal changes for the period 2005 through 2050, then an increasing change from 2051 through 
2100. Regardless of the process utilized to evaluate the climate change projections and the 
increments evaluated, it is recommended that each iteration of the IPCC climate change outputs 
be evaluated against the previous work to check trends and changes.  

 
AWA identified, extracted, and quality controlled maximum precipitation projections for the five 
models and three projection scenarios. The Annual Maximum Series (AMS) were then subjected 
to the frequency analysis methods (Hosking and Wallis, 1997). L-moment statistics were 
computed for annual maximum data for each projection and duration.  Goodness of fit measures 
were evaluated for five candidate distributions: generalized logistic (GLO), generalized extreme 
value (GEV), generalized normal (GNO), Pearson type III (PE3), and generalized Pareto (GPA). 
An L-Moment Ratio Diagram was prepared based on L-Skewness and L-Kurtosis pairs for each 
duration (Figure 8). The weighted-average L-Skewness and L-Kurtosis pairing were found to be 
near the GEV distribution for all projections.  
 
The GEV distribution was selected because: i) This is the most common distribution used for 
precipitation frequency studies (e.g., NOAA Atlas 14, Perica, 2015) ii) the GEV was identified on 
both the 1-day, 5-day, 90-day, and Annual goodness-of-fit measures, and iii) using the same 
distribution ensures a more direct comparison to more rare values of the frequency curve. The 
GEV is a general mathematical form that incorporates Gumbel’s Extreme Value (EV) type I, II 
and III distributions for maxima. The parameters of the GEV distribution are the ξ (location), α 
(scale), and k (shape). The Gumbel EV type I distribution is obtained when k = 0. For k > 0, the 
distribution has a finite upper bound at ξ + α /k and corresponds to the EV type III distribution for 
maxima that are bounded above. For k < 0, this corresponds to the Gumbel EV type II distribution.  
 
The uncertainty analysis for deriving the frequency curve and uncertainty bounds were conducted 
as follows. The frequency distributions were randomly permuted, and data were simulated from 
the selected frequency distribution. The procedure is described in Hosking and Wallis (1997) and 
Hosking (2015b), except that the permutation of frequency distributions is a later modification, 
intended to give more realistic sets of simulated data (Hosking, 2015b). From each permutation 
the sample mean values and estimates of the quantiles of the regional growth curve, for non-
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exceedance probabilities are saved. From the simulated values, for each quantile specified the 
relative root mean square error (relative RMSE) is computed as in Hosking and Wallis (1997). The 
error bounds are sample quantiles of the ratio of the estimated regional growth curve to the true 
at-site growth curve of the ratio of the estimated to the true quantiles at individual sites (Hosking, 
2015b).  

 
In order to separate Summer/Monsoon season and Winter season precipitation events that are 
controlling of the yearly precipitation regime in the Chino/Tyrone region, the 1-day and 3-day 
annual maximum were also extracted for the Summer/Monsoon season (May - October) and for 
the Winter season (November – April). The summer and winter AMS data were used to perform 
L-moment frequency analysis methods as described above. Comparisons of percent change were 
made among model projections for 10-year through 1,000-year recurrence intervals, beyond this 
the uncertainty in probability distributions estimates is large. Figure 8 shows and example of the 
results for Model 1 1-day precipitation frequency analysis for All season (mixed storm 
distribution), Summer/Monsoon season, and Winter season for the historic, RCP 4.5, and RCP 8.5 
projections.  Full results of frequency analysis are included in Appendix B. 

 

 
Figure 8:  Example results for 1-day precipitation frequency analysis for climate projection from Model 1. 

3.3 Maximum Precipitation Analysis 
Dew Point climatologies based on the climate model projections were developed for the 24-hour 
duration for use in the in-place storm maximization. Dew point information is utilized to maximize 
observed precipitation events during PMP calculations as a way to quantify the amount of moisture 
available to a given storm event versus how more moisture could have been available to that storm 
had higher dew point values (and hence moisture) been available. Therefore, quantifying the 
change in dew point values from future climate change projections is important. The assumption 

*** 1-Day Precipitation
10yr 50yr 100yr 500yr 1000yr Average

Historical 49.1 76.2 89.9 128.1 147.8 - - - - -
RCP45 51.3 83.3 100.6 152.2 180.5 5% 9% 12% 19% 22% 13%
RCP85 55.5 97.8 122.2 199.9 245.2 13% 28% 36% 56% 66% 40%

*** 1-Day Monsoon
10yr 50yr 100yr 500yr 1000yr Average

Historical 40.5 76.6 98.9 176.2 224.7 - - - - -
RCP45 45.3 84.2 107.6 185.3 232.5 12% 10% 9% 5% 3% 8%
RCP85 42.6 89.9 122.4 247.3 333.7 5% 17% 24% 40% 49% 27%

*** 1-Day Winter
10yr 50yr 100yr 500yr 1000yr Average

Historical 36.8 52.1 59.0 75.6 83.2 - - - - -
RCP45 36.5 49.9 55.4 68.0 73.3 -1% -4% -6% -10% -12% -7%
RCP85 41.8 67.8 81.3 119.5 139.5 14% 30% 38% 58% 68% 41%

Pct Change

Pct Change

Pct Change
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is that if more moisture is available in the future, more precipitation could occur. However, the 
response of the atmosphere between increasing moisture capacity and resulting precipitation is not 
a linear relationship. Instead, there are numerous positive and negative feedbacks, some that are 
quantified and some that are not. This is why it is not appropriate to simply apply the Clausius 
Clapeyron equation, which produces a 7% increase in moisture holding capacity of the air mass 
for every 1° C increase in temperature, to determine future precipitation estimates based on a given 
temperature increase. Instead, AWA calculated the ratio of dew point maximizations from climate 
change projections as a way to compare against the ratio utilized in the current climate data. 
 
This method follows the in-place storm maximization process used in PMP studies completed by 
AWA, the National Weather Service, and described in the World Meteorological Organization 
Manual for PMP (2009) (US Weather Bureau, 1951; Kappel et al., 2014-2022). For each model 
projection, AWA developed monthly 100-yr dewpoint climatologies following the process 
described in previous AWA PMP studies (e.g., Kappel et al., 2014; Kappel et al., 2018; Kappel et 
al., 2021). 
 

3.3.1 Dew Point Climatology 
A script was written to extract each climate projections’ monthly maximum dew point 
temperatures for the 24-hour duration for each year, providing the AMS. This was done to calculate 
the maximum precipitation (𝑃𝑃𝑃𝑃𝑃𝑃adj) following the in-place maximation process. The AMS for each 
month for each projection served as input to an R-statistical script that calculated L-moment 
statistics (Section 3.2). Using the generalized-extreme-value (GEV) distribution, the 20-year, 50-
year, and 100-year return frequency dew point temperature values were calculated for each month 
for each projection (Figure 9). The extracted dew point data were adjusted to the 15th of each 
month. 
 
The results indicate small monthly variability in the 100-year dew point climatologies. Most 
months are within +/- 2-3° C, and the differences between model projections (historic, RCP 4.5, 
and RCP 8.5) seem to be scaled by 2-3° C. An example comparison of the monthly 100-year dew 
point climatologies for Model 1 are shown in Figure 10. Note, the historic and two future 100-year 
dew point climatologies projected by climate Model 1 are lower than the AWA station derived 
100-year dew point climatology used for PMP studies, climate Model 1 shows negligible change 
in the summer (May – October) dew point climatologies with an increase in moisture during the 
early winter to spring period. 
 

 
Figure 9:  Example of July 24-hour dew point frequency analysis results for Model 1 projections (historical, 

RCP 4.5, RCP 8.5). 
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Figure 10:  Results of Model 1 dew point 100-year climatology for 24-hour duration by model projections. 
The AWA dew point profile is based on AWA’s updated dew point climatology (Kappel et al., 2018), this 

illustrates a cooler/less moisture atmosphere than all three of Model 1 dew point projections. 

3.3.2 Precipitation Maximization  
A script was written to extract each climate projections’ thirty largest 24-hour and 72-hour 
precipitation estimates (𝑃𝑃𝑃𝑃𝑃𝑃max). Adjustments used to maximize 𝑃𝑃𝑃𝑃𝑃𝑃max precipitation (𝑃𝑃𝑃𝑃𝑃𝑃adj) for 
each precipitation event were estimated following the same in-place maximization process as 
applied during the PMP calculation process. This is completed by multiplying the climate model 
projection actual precipitation (𝑃𝑃𝑃𝑃𝑃𝑃max) by a maximization ratio r: 
 

𝑃𝑃𝑃𝑃𝑃𝑃adj = 𝑃𝑃𝑃𝑃𝑃𝑃max ∗ 𝑟𝑟 
 
where r is defined as the ratio of the maximized precipitable water (using the 100-year dew point 
climatology either from observation data or climate change projections and assuming a pseudo-
adiabatic lapse rate through the atmosphere from the surface to 300mb) to the actual event’s 
precipitable water (storm events observed dew point) following methods used in storm-based PMP 
studies (e.g., Hansen et al., 1988; Kappel et al., 2014; Kappel et al., 2018). The resulting 
maximized climate change projected precipitation event is analogous to PMP (𝑃𝑃𝑃𝑃𝑃𝑃pmp) in that is 
corresponds to the greatest maximized precipitation event (max(𝑃𝑃𝑃𝑃𝑃𝑃adj)) over the climate change 
projection period.  The largest thirty 1-day events (𝑃𝑃𝑃𝑃𝑃𝑃max) and the maximized thirty events 
(𝑃𝑃𝑃𝑃𝑃𝑃adj) are shown for Model 1 projections in Figure 11. The largest thirty 3-day events (𝑃𝑃𝑃𝑃𝑃𝑃max) 
and the maximized thirty events (𝑃𝑃𝑃𝑃𝑃𝑃adj) are shown for Model 1 projections in Figure 12. 
Comparisons of percent change between 𝑃𝑃𝑃𝑃𝑃𝑃pmp and the 𝑃𝑃𝑃𝑃𝑃𝑃max and 𝑃𝑃𝑃𝑃𝑃𝑃adj were made among 
model projections (historical, RCP 4.5, RCP 8.5) and shown in Table 3 for 1-day and Table 4 for 
3-day.  This provided a range of expected change in the maximization parameters associated with 
PMP type events from the climate change projections. 
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Figure 11:  Results of the 1-day largest thirty events (𝑷𝑷𝑷𝑷𝑷𝑷𝐦𝐦𝐦𝐦𝐦𝐦) and the maximized thirty (𝑷𝑷𝑷𝑷𝑷𝑷𝐦𝐦𝐚𝐚𝐣𝐣) events for 

Model 1. 
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Figure 12:  Results of the 3-day largest thirty events (𝑷𝑷𝑷𝑷𝑷𝑷𝐦𝐦𝐦𝐦𝐦𝐦) and the maximized thirty (𝑷𝑷𝑷𝑷𝑷𝑷𝐦𝐦𝐚𝐚𝐣𝐣) events for 

Model 1. 
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Table 3:  Comparisons of 1-day percent change between (𝑷𝑷𝑷𝑷𝑷𝑷𝐩𝐩𝐦𝐦𝐩𝐩) and the (𝑷𝑷𝑷𝑷𝑷𝑷𝐦𝐦𝐦𝐦𝐦𝐦) and (𝑷𝑷𝑷𝑷𝑷𝑷𝐦𝐦𝐚𝐚𝐣𝐣) made among model projections 

 

 
 

 

Pptmax (mm) Pct Change Pptadj (mm) rank Pct Change Pptmax (mm) Pct Change Pptadj (mm) rank Pct Change
Historical 126.5 - Historical 189.7 1 - Historical 74.4 - Historical 111.6 1 -
RCP45 118.4 -6% RCP45 177.5 1 -6% RCP45 125.5 69% RCP45 188.2 1 69%
RCP85 125.2 -1% RCP85 187.8 1 -1% RCP85 159.8 115% RCP85 239.6 1 115%

Pptmax (mm) Pct Change Pptadj (mm) rank Pct Change Pptmax (mm) Pct Change Pptadj (mm) rank Pct Change
Historical 81.3 - Historical 121.9 1 - Historical 89.9 - Historical 134.9 1 -
RCP45 55.1 -32% RCP45 82.7 1 -32% RCP45 109.2 21% RCP45 163.8 1 21%
RCP85 63.5 -22% RCP85 95.3 1 -22% RCP85 120.4 34% RCP85 180.6 1 34%

Pptmax (mm) Pct Change Pptadj (mm) rank Pct Change
Historical 67.6 - Historical 101.3 1 -
RCP45 73.7 9% RCP45 110.5 1 9%
RCP85 106.2 57% RCP85 159.3 1 57%

NAM22 CanRCM4 CanESM2 NAM22 CRCM5 MPT MPI ESM LR

NAM22 CRCM5 CanESM2 NAM22 CRCM5 NOAA GFDL ESM2

NAM22 CRCM5 CERFACS CNRM



Page 22 of 39 

  

          10/4/2022 
 Applied Weather Associates 

Table 4:  Comparisons of 3-day percent change between (𝑷𝑷𝑷𝑷𝑷𝑷𝐩𝐩𝐦𝐦𝐩𝐩) and the (𝑷𝑷𝑷𝑷𝑷𝑷𝐦𝐦𝐦𝐦𝐦𝐦) and (𝑷𝑷𝑷𝑷𝑷𝑷𝐦𝐦𝐚𝐚𝐣𝐣) made among model projections 

 

 
 

Pptmax (mm) Pct Change Pptadj (mm) rank Pct Change Pptmax (mm) Pct Change Pptadj (mm) rank Pct Change
Historical 139.2 - Historical 208.8 1 - Historical 164.6 - Historical 246.9 1 -
RCP45 152.9 10% RCP45 229.4 1 10% RCP45 180.1 9% RCP45 270.1 1 9%
RCP85 172.2 24% RCP85 258.3 1 24% RCP85 238.3 45% RCP85 357.4 1 45%

Pptmax (mm) Pct Change Pptadj (mm) rank Pct Change Pptmax (mm) Pct Change Pptadj (mm) rank Pct Change
Historical 94.7 - Historical 142.1 1 - Historical 157.7 - Historical 236.6 1 -
RCP45 93.5 -1% RCP45 140.2 1 -1% RCP45 200.2 27% RCP45 300.2 1 27%
RCP85 85.1 -10% RCP85 127.6 1 -10% RCP85 186.4 18% RCP85 279.7 1 18%

Pptmax (mm) Pct Change Pptadj (mm) rank Pct Change
Historical 101.6 - Historical 152.4 1 -
RCP45 122.7 21% RCP45 184.0 1 21%
RCP85 137.9 36% RCP85 206.9 1 36%

NAM22 CanRCM4 CanESM2 NAM22 CRCM5 MPT MPI ESM LR

NAM22 CRCM5 CanESM2 NAM22 CRCM5 NOAA GFDL ESM2

NAM22 CRCM5 CERFACS CNRM
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3.4 Uncertainty  
Measurement, modeling, and simulation of many meteorologic components can be highly 
uncertain, the main reason being the fundamental dynamics of many processes cannot be measured 
and modeled accurately (Kampf et al., 2020). Most meteorologic processes are not observed in 
detail, consequently accurate mathematical representation of the variables spatial and temporal 
processes, model initial boundary layer conditions, and physical processes, cannot be represented 
accurately. Mantovan and Tondini (2006) have identified sources of water balance uncertainties 
as: (i) data uncertainty, (ii) model parameter uncertainty, (iii) model structure uncertainty, and (iv) 
natural uncertainty. 
 

3.4.1  Data Uncertainty   
The performance of models is mainly affected by data uncertainty. This uncertainty arises from 
errors in the observed data, particularly data used for model calibration. The errors may be linked 
to the quality of the data which depends on the type and conditions of measuring instruments as 
well as data handling and processing. Precipitation and streamflow are usually the major sources 
of input and output data that are used to calibrate and evaluate model uncertainty with the spatial 
and temporal precipitation uncertainty being large. 
 

3.4.2  Model Parameter Uncertainty   
Model parameter uncertainty is also known as model specification uncertainty. This relates to the 
inability to converge to a single best parameter set using available data, which leads to parameter 
identifiability problems (Beven, 2001; Wagener et al., 2004). The parameters are optimized so that 
the model results are as good as possible (Beven, 2001; Scharffenberg et al., 2018). Uncertainty 
then depends on how parameters are optimized (peak flow, volume, residuals) and results are 
applied (Scharffenberg et al., 2018; Pokorny et al., 2021). 
 

3.4.3  Model Structure Uncertainty   
Model structure uncertainty is introduced through simplifications and/or inadequacies in the 
representation of physical processes in a given model. It also originates from inappropriate 
assumptions within the modelling procedure, inappropriate mathematical description of these 
processes (Beven, 2001), and the scale at which processes are represented in the model (Heuvelink, 
1998; Blöschl, 1999; Koren et al., 1999). However, no matter how exact the model is calibrated, 
there always exists discrepancy between model outcome and observed data (Chiang et al., 2007; 
Beven, 2006).  
 

3.4.4  Natural Uncertainty   
Natural uncertainty arises due to the randomness of natural processes (Beven, 2001). This 
uncertainty can be linked to data uncertainty, whereby the quality and type of data plays a 
significant role in determining the amount of uncertainty. For example, the spatial and temporal 
randomness of rainfall can somewhat be represented explicitly when using good rain gauge 
networks and radar rainfall data (Segond, 2006). In addition, scaling issues, spatial representativity 
and interpolation methods are typically represented within natural uncertainty (Heuvelink, 1998; 
Blöschl, 1999). 
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For this study, the meaning of “within uncertainty” is considered to be within +/-20 percent and 
was based on several factors.  This range is based on AWA’s extensive professional experience 
evaluating each of these factors below and how they relate to the PMP calculations: 

• Multiple sources of uncertainty and varying ranges of uncertainty inherent in the PMP 
development process and inputs 

o Gauge/Observed Precipitation 
 Point measurement 5 to 15% percent for long-term series, and as high as 

75% for individual storm events 
o Frequency Analysis  

 NOAA Atlas 14 Volume 1 24-hour 100-year error bounds for Arizona are 
approximately +/-18% (Bonin et al., 2011) 

o Climate Projections 
 Projection uncertainty for induvial regional model methods can be quite 

large 20 to >50% (Lehner et al., 2020) 
o Selection of the storm representative value used in the In-place Maximization 

Factor calculations 
 Range between 5 and 30%, with an average around 20% 

 

4.0 RESULTS OF ANALYSIS 

The modeled trends and estimated precipitation frequency results have a large variability that can 
be attributed to the uncertainty inherent with GCM and RCM projections. The different climate 
models used for the Chino/Tyrone region are subject to significant components of future climate 
uncertainty in climate models and the uncertainty is manifested by the range of climate futures 
indicated by the CMIP5 ensemble of projections (McSweeney and Jones, 2016; Masson-Delmotte 
et al., 2021). 

 
The median of the five models project an increase in mean annual temperature and mean annual 
precipitation (Figure 13). Temperature, in regard to daily maximum (frequency based) and 
monthly averages show an increase by 2100 for both the RCP 4.5 and RCP 8.5 projections (Figure 
14 and Figure 15). Numeric values representing the change in temperature are shown in Table 5 
and Table 7 under application of results. Monthly climatologies for temperature and precipitation 
are shown in Figure 15 and Figure 16, numeric values representing the change in temperature and 
precipitation are shown in Table 5 and Table 8 under application of results. 
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Figure 13:  Comparison of mean annual temperature and mean annual precipitation for the three climate 
projection periods. The grey dashed lines represent the median value for annual average temperature and 

precipitation. 

 

 
Figure 14:  Change in daily maximum temperatures from current climate conditions. Results are based on 

annual maximum frequency analysis. 
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Figure 15:  Monthly temperature normal compared to climate change temperature. Results are based on 

daily normal calculations. 

 

 
Figure 16:  Monthly precipitation normal compared to climate change precipitation. Results are based on 

daily normal calculations. 

Precipitation frequency analysis results are summarized for 1-day, 3-day, and annual durations 
split by All season, Summer/Monsoon season and Winter season (Figure 17). Results indicate a 
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broad range of change with the largest change for 1-day and 3-day durations, numeric values 
representing the change in precipitation are shown in Table 5. 

 

 
Figure 17:  Change in maximum precipitation from current climate conditions for 1-day, 3-day, and annual 
durations. Results are based on annual maximum frequency analysis.  Note, the AMS frequency approach 
shows a decrease in annual precipitation as compared to the mean annual climatology method which shows 

an increase. 

Results indicate an increase in precipitation and temperature in the future.  The range of uncertainty 
and potential future outcomes are captured in Figure 17. The most likely outcome regarding 
precipitation over the basin in the climate change projections is that the mean annual precipitation 
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will stay the same and short duration events (1-day and 3-day) will likely increase compared to the 
current climate.  Importantly, the climate change projections show that individual extreme events 
that are utilized for PMP development will stay within the range of uncertainty currently inherent 
in the PMP depths. 
 
This follows expected trends in the region under a warming climate scenario. In this case, more 
moisture would be available from an overall perspective, and would likely affect some of the 
precipitation processes, but this would likely be counteracted by other processes that are required 
to produce precipitation at various timescales and spatial extents (Kappel et al., 2020). This is 
reflected in Table 5 where the RCP4.5 emission scenario shows a decrease in annual precipitation 
and increase on 1- and 3-day values.  This is likely a reflection of the variance in atmospheric 
processes that convert moisture in the atmosphere to rainfall on the ground and other factors not 
fully understood or quantified. These create both positive and negative feedbacks where 
atmospheric instability at the most extreme levels are lessened in a warming environment because 
the thermal contrast between airmass is lessened.  

5.0 APPLICATION OF RESULTS 

For hydrologic simulation and sensitivity, AWA recommends the ensemble median RCP 4.5 
climate change adjustments and uncertainty values for temperature and precipitation (Table 5, 
Table 7, and Tale 8). These are based on an evaluation of rate of change from the current period 
through 2100 of each of the projections and taking a median of the outcomes. These values can be 
applied to a given period (i.e., 2050) by linearly adjusting the climate change factors. Table 6 
illustrates how the recommended RCP 4.5 climate change adjustments can be scaled the linear 
from 2100 to 2050.  
 
In regard to PMP changes, there is no clear evidence for appropriate scaling adjustments, for 
sensitivity it is recommended to apply the precipitation frequency results shown in Table 5 and 
Table 6.  The climate model projections tended to underestimate the storm representative moisture 
used to maximize against the 100-year climatologies (Section 3.3.2), which resulted in the 
underestimation of the maximization factor where several of the ratios were capped at 1.50 (Kappel 
et al., 2020). This will skew the ratio analysis to larger changes. These analyses show that it is 
likely that the frequency of a PMP event may increase in the future, but the amount of rainfall 
produced in a given PMP would fall within the current depths. Therefore, if a given hydrologic 
design can safely pass the current PMP depths, then the design would be considered adequate to 
manage future PMP changes.  
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Table 5:  Climate Change Projections from current climate (1950-2005) through 2100. 

 
 *  Climate Change Projections from 2005 through 2100 
 +  Note, RCP 8.5 represent the most extreme, unlikely climate projection scenarios 
 
 

Table 6:  Recommended RCP 4.5 climate change adjustments (%) for 1-day and 3-day precipitation scaled 
from 2100 to 2050 

 
 
 

Mean Median Min Max Mean Median Min Max
Temperature 1-Day; C 1.6 2.1 -1.3 2.9 5.3 5.0 4.5 6.4
   Temperature 1-Day Monsoon PF; C 1.6 2.1 -1.3 2.9 5.3 5.0 4.5 6.4
   Temperature 1-Day Winter PF; C 1.8 2.4 -1.4 3.0 5.6 5.8 5.3 5.9
+Precipitation 1-Day PF; % 16 22 -31 49 35 40 -18 69
   Precipitation 1-Day Monsoon PF; % 15 14 -20 48 28 27 -32 64
   Precipitation 1-Day Winter PF; % -1 -7 -29 24 12 12 -7 41
+Precipitation 3-Day PF; % 4 5 -13 15 14 24 -8 31
   Precipitation 3-Day Monsoon PF; % 5 3 -9 15 11 23 -18 28
   Precipitation 3-Day Winter PF; % 9 0 -26 79 6 7 -17 19
Precipitation Annual PF; % 2 -1 -15 13 2 -2 -21 28
PMP 1-Day, %
PMP 3-Day; %

No Change Potential Increase
No Change No Change

RCP45 RCP85

2050 2100
1-Day Summer PF; % 7 14
1-Day Winter PF; % -3 -7
3-Day Summer PF; % 2 3
3-Day Winter PF; % 0 0
                   Climate Change Projections from 2005 through 2100
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Table 7:  Monthly temperature (C) for current climate from 2005 through 2100. 

 
 

 
 

Table 8:  Monthly precipitation (mm) for current climate from 2005 through 2100. 

 
 

6.0 CONCLUSIONS 

The Chino/Tyrone climate change analysis investigated CMIP5 projections. The projections were 
evaluated using several statistical methodologies to test for trends in temperature and precipitation, 
changes in precipitation frequency, and changes in monthly climatologies. The results have large 
variability that can be attributed to the uncertainties and limitations inherent in climate model 
projections and the physical representation of meteorological parameters such as precipitation.  

Mean Median Mean Median Mean Median RCP45 RCP85 RCP45 RCP85
January -0.2 -0.3 2.0 2.2 2.9 2.9 2.2 3.1 2.5 3.2
February 2.1 2.5 3.9 4.1 5.0 4.9 1.9 2.9 1.6 2.4
March 4.8 4.7 7.6 7.0 8.3 7.7 2.9 3.6 2.4 3.1
April 9.5 8.6 13.5 12.2 14.3 13.1 4.0 4.9 3.6 4.5
May 15.8 15.4 19.1 18.9 20.2 20.0 3.3 4.4 3.6 4.7
June 20.3 20.1 22.6 22.0 23.3 22.4 2.3 3.0 1.9 2.4
July 20.8 20.4 22.7 22.4 23.5 23.6 1.9 2.8 2.1 3.3
August 19.7 18.8 21.6 20.4 22.4 21.3 1.9 2.7 1.6 2.5
September 16.0 15.9 17.6 17.1 18.4 17.7 1.5 2.4 1.2 1.8
October 9.6 9.2 10.9 10.6 12.2 11.2 1.4 2.6 1.4 2.0
November 2.8 3.1 4.3 4.3 5.0 4.6 1.5 2.2 1.2 1.5
December -0.4 -0.2 1.5 1.6 2.2 2.3 1.9 2.6 1.8 2.5

Median DeltaHistorical RCP85 Mean DeltaRCP45

Mean Median Mean Median Mean Median RCP45 RCP85 RCP45 RCP85
January 46.1 38.3 44.9 46.6 49.7 53.1 -1.2 3.6 8.4 14.9
February 48.0 42.1 47.5 46.5 46.3 37.6 -0.6 -1.8 4.5 -4.5
March 46.1 39.2 39.5 34.1 34.6 32.1 -6.7 -11.6 -5.1 -7.1
April 32.5 30.4 19.9 23.0 18.7 19.0 -12.6 -13.8 -7.4 -11.4
May 23.4 25.8 19.3 21.5 19.4 18.5 -4.2 -4.0 -4.3 -7.3
June 36.1 33.6 47.3 49.4 48.7 49.3 11.2 12.6 15.9 15.8
July 80.9 80.1 79.9 82.4 77.7 82.3 -1.0 -3.2 2.4 2.3
August 72.6 77.3 73.5 74.6 70.5 67.8 0.9 -2.1 -2.7 -9.5
September 59.8 31.3 50.1 31.6 53.4 36.4 -9.7 -6.4 0.3 5.1
October 45.4 32.0 37.0 22.1 33.0 26.4 -8.4 -12.5 -9.9 -5.6
November 40.5 34.9 38.5 43.6 36.9 39.9 -2.0 -3.7 8.7 5.0
December 40.9 32.5 39.5 36.2 38.7 29.1 -1.4 -2.2 3.7 -3.4

RCP45 RCP85 Mean Delta Median DeltaHistorical
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The trend and frequency analysis methods provide a robust dataset to test changes in precipitation 
and temperature. The moisture maximization method discussed in Section 3.3 is an investigation 
into one of the most important parameters related to PMP calculation, the amount of moisture 
available in the atmosphere. This is a simplification of methods used to estimate a storm-based 
PMP. The main differences are that a complete PMP study develops storms specific 
reconstructions and adjustments including identification of the storm representative dew point 
values for observed PMP type storms and application of storm transposition limits (Kappel et al., 
2018). Therefore, more confidence is given to the trend and precipitation frequency results as 
compared to the moisture maximization ratio analysis. The five climate models average relative 
change in dew point are about 1.4 °C (~11%) warmer for RCP45 and 2.3 °C (~17%) warmer for 
RCP85, with negligible change in the summer (May – October) dew point climatologies and larger 
increase in moisture during the early winter to spring period (Figure 18). For RCP45, Figure 18 
illustrates the potential for the storm moisture maximization ratio to increase but these results are 
typically less than the +/-20% uncertainty (except for February). Importantly, the smallest increase 
occurs during the summer North American Monsoon season. The projections demonstrate that no 
change to PMP depths is evident because these changes are within the range of uncertainty already 
captured in the PMP depths.  

 
Figure 18: Change in 100-year dew point climatologies from the historic period.  Dew point climatologies are 
used to account for changes in moisture under different climate scenarios.  

 
The climate change analysis completed for the Chino/Tyrone Mine was based on five CMIP5 
climate model projections and three climate scenarios (historic, RCP 4.5, and RCP 8.5). A 
summary of the key conclusions from this study are listed below. 
 

TREND ANALYSIS 
o Surface stations show no historic change/trend in precipitation and temperature 
o Projections show increase in temperature and dew point temperature  
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o RCP 4.5 precipitation - No trend 
o RCP 8.5 precipitation - 1-day and 3-day no trend, annual increase/decrease trend 

 
FREQUENCY ANALYSIS 

o 1-day – the median RCP 4.5 results are within the +/-20% uncertainty which 
provide more confidence for no change in precipitation magnitude by 2100. RCP 
8.5 winter results are within the +/-20% uncertainty which provide more 
confidence for no change in precipitation magnitude by 2100 while the RCP 8.5 
monsoon median value is larger than the +/-20% uncertainty which provide more 
confidence for an increase in precipitation magnitude by 2100 
 largest change in both summer monsoon seasons 

o 3-day – the median RCP 4.5 results are within the +/-20% uncertainty which 
provide more confidence for no change in precipitation magnitude by 2100. RCP 
8.5 winter results are within the +/-20% uncertainty which provide more 
confidence for no change in precipitation magnitude by 2100 while the RCP 8.5 
monsoon median value is larger than the +/-20% uncertainty which provide more 
confidence for an increase in precipitation magnitude by 2100 
 largest change in summer monsoon season 

o Annual – no change of precipitation magnitude by 2100 and increase temperature 
by 2100  
 

MOISTURE MAXIMIZATION ANALYSIS 
o Projections do not show an increase or decrease of the moisture scaling factor that 

is beyond the range of uncertainty already in the PMP development 
o Median dew point climatologies are 1.8 °C (~10%) warmer for RCP 4.5 and 2.9 

°C (~15%) warmer for RCP 8.5 
o One recommendation is to apply the precipitation frequency results for sensitivity. 

This may result in a higher probability of a PMP event occurring in any given 
year, but the PMP depths are not expected to increase 

 
CLIMATOLOGY   

o Monthly Climatology – Some months show a slight increase, and some months 
show a decrease in precipitation. All months show an increase in temperature by 
2100 

o Annual Climatology – Some models show a slight increase, and some models 
show a decrease in annual precipitation. All months show an increase in annual 
temperature by 2100 
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