NMED Cmnt 3

WRP Stormwater Routing

3

С

Δ

В

Α

Δ

3

2

2

SOURCES COR	P. 2	IT. TAY 022 CL	'LOR MINE OSEOUT / CLOSURE	PLAN	
E - San Mateo, NM	SHEET TITLE:	SHEET TITLE: WRP Stormwater Rout		outing	
B SCA As Sh	LE: nown	^{NO.}	DWG NO. GS21-CB114	-00	REV B
1					

NMED Cmnt 6

Pond Basin FSS Reports, 2020

TECHNICAL MEMORANDUM				
To: Bruce Norquist (RGR)	Date: August 27, 2020			
From: Randy Whicker (ERG)	Project: Mt. Taylor Mine			
Direct: 970-556-1174Task(s): Radiological Construction Support				
Cc: Chuck Farr (ERG)				
Subject: Confirmatory radiological survey results for MWTU Pond 1 following remedial excavations.				

Dear Mr. Norquist,

This Technical Memorandum provides the results of radiological survey measurements and soil sampling performed to verify that excavation of historically contaminated sediments at the bottom of Pond #1 in the Mine Water Treatment Unit (MWTU) at the Mt. Taylor Mine achieved compliance with the soil cleanup level for radium-226 concentration. The cleanup level is specified by the New Mexico Environment Department (NMED) in mine reactivation conditions under Discharge Permit DP-61, and by the New Mexico Mining and Minerals Division (MMD) under Mine Permit Cl002RE. This work was conducted in the spring of 2020 in a manner consistent with previous radiological verification surveys of Ponds 3 and 2 as conducted in 2018 and 2019 under the Phase 1 mine reactivation conditions of DP-61 and Mine Permit Cl002RE. The data in this transmittal support a conclusion that compliance with the Ra-226 cleanup level in Pond 1 was achieved.

Please let me know if you have questions or need more information.

Regards,

Aundy Whicher

Randy Whicker, CHP Radiation Safety Officer Mt. Taylor Mine

Radiological Final Status Survey of MWTU Pond 1

1. Introduction

The Mt. Taylor Mine (Site) is an underground uranium mine near San Mateo, New Mexico. Gulf Mineral Resources Company (Gulf) acquired the property and began mine development in 1971. Ore production occurred between 1979 – 1982, and after a transfer of ownership to Chevron Resources Company (Chevron) in 1985, production resumed through 1990. Rio Grande Resources (RGR) acquired the mine and other Chevron property in 1991 and in 1999 the Mine entered standby status under Mine Permit Cl002RE with MMD. Discharge Permit DP-61 with the New Mexico Environment Department (NMED) was renewed in 2015 to accommodate the planned return to active mine status, and on December 29, 2017, the Mine Permit was changed to an active status. On December 3, 2019, RGR notified MMD and NMED of intentions to begin the Site closeout/closure process.

As part of Mine reactivation activities, RGR was required to clean out, regrade and synthetically line eight (8) existing ponds that collectively function as a Mine Water Treatment Unit (MWTU), along with two existing stormwater retention ponds. In accordance with permit requirements, in 2018 contaminated sediments in MWTU Pond 3 and the South Stormwater Pond were cleaned out and analytically verified to meet the approved cleanup level for radium-226 (Ra-226), followed by installation of a new synthetic liner system with leak detection technology in Pond 3, and an engineered clay liner in the South Stormwater Pond. In 2019, contaminated sediments in MWTU Pond 2 were also cleaned out, verified to meet the Ra-226 cleanup level, and a new liner system with leak detection was installed.

Contaminated sediments from the remaining MWTU Ponds were cleaned out in 2019 under the Phase I reactivation project, and in the spring of 2020 radiological surveys were performed to verify compliance with the cleanup level for Ra-226. A delay in performing final status surveys (FSS) after the initial cleanup was necessitated by technical and safety issues related to winter weather conditions, and in some cases, additional delays in obtaining final analytical results from the lab were necessary due to additional remediation and/or re-sampling of locations where the initial FSS sample did not meet the release criterion. This Technical Memorandum provides final results of radiological survey measurements and sampling performed to verify that excavation of historically contaminated sediments at the bottom of MWTU Pond 1 has resulted in compliance with the Ra-226 cleanup level.

2. Cleanup Level for Pond Sediments

NMED guidance specifies a standard for Ra-226 of 5 picocuries per gram (pCi/g) above the background concentration for existing uranium mines in New Mexico (NMED, 2016). A background concentration for Ra-226 of 1.8 pCi/g was approved for the Mount Taylor Mine in 2012 by NMED. Therefore, the calculated gross cleanup level (inclusive of background) for Ra-226 is equal to 6.8 pCi/g (equivalent to 5 pCi/g above background).

3. Methods

The radiological survey and sampling methods used in 2018 and 2019 to guide excavation of contaminated sediments in Ponds 2 and 3 and to subsequently verify compliance with the Ra-226 cleanup level as part of mine reactivation efforts, were also used in 2020 for the FSS of Pond 1. The approach was based on a combination of gamma radiation surveys and soil sampling. A GPS-based gamma radiation survey across Controlled Areas at the Mine property was conducted before Mine reactivation construction work was initiated in the spring of 2018 (Figure 1). Prior to initiation of the 2018 construction work, the highest gamma exposure rates at the Site were located above contaminated sediments at the bottom of various MWTU ponds. Because elevated gamma radiation from terrestrial sources largely occurs as a result of elevated Ra-226 concentrations in surface material, a site-specific statistical correlation between gamma readings and Ra-226 concentrations in surface soil was developed (Figure 2). This enabled use of gamma radiation measurements to guide the depth of remedial excavation based on a gamma cutoff goal derived in part from the gamma/Ra-226 correlation.

Figure 1: Gamma radiation levels prior to initiation of Mine reactivation construction work in 2018.

Figure 2: Statistical correlation between gamma radiation and Ra-226 levels in surface soil (top) and potential gamma cutoff values at the Ra-226 cleanup level (bottom).

The correlation data in Figure 2 were collected to the extent possible at site locations with relatively flat topography and uniform Ra-226 levels, and where the confounding effects of gamma "shine" from adjacent soil contamination was minimized. To help mitigate gamma shine effects, a specially designed lead shield was used for gamma measurements within the MWTU ponds. However, the ponds have steep side slopes, gamma shine is prevalent, and radiological conditions for gamma measurements inside of the ponds are not fully represented by those used to develop the shielded gamma/Ra-226 correlation. To address this issue, and as previously reported (ERG, 2018), the shielded gamma cutoff value was qualitatively modified for use in the ponds to ensure compliance with the Ra-226 cleanup level without requiring excavation of more material than necessary. As a general guideline, a lead-shielded gamma cutoff goal of 10,000 counts per minute (CPM) has proven effective for guiding the depth of excavation in the MWTU ponds, and this gamma cutoff was used to guide remedial excavations in Pond 1, followed by confirmatory Final Status Survey (FSS) soil sampling at spatially representative locations.

4. Pond 1 FSS Results

A shielded gamma count rate at or below the 10,000 CPM cutoff goal was achieved across the vast majority of excavated Pond 1 surfaces (Figure 3). A small, localized exception occurred in near the former inlet/outlet hydraulic control structure at the southeast rim of the pond as it was not possible to meet the gamma cutoff without compromising the structural integrity of the berm supporting this structure. Final status soil sampling results across Pond 1 are shown in Figure 4 and numerically tabulated in Table 1.

In cases where a given FSS soil sample was predicted to exceed the cleanup level based on onsite screening measurements taken inside of a low-background, lead-shielded counting well, a composite sample was subsequently collected across a 100 m² area centered on the original discrete location to determine compliance with the spatial requirements of the cleanup level (an average Ra-226 concentration of 6.8 pCi/g across any 100 m² area).

In cases where the offsite lab reported a result for a discrete FSS sample that exceeded the cleanup level, follow-up gamma measurements were used to determine the need for further excavation and/or composite sampling as described above. All FSS samples (both discrete and composite) were sent to the offsite commercial laboratory for quantitative Ra-226 analysis. As shown in Figure 4 and numerically tabulated in Table 1, final results for all soil/sediment sampling locations were below the 6.8 pCi/g cleanup level for Ra-226.

5. Conclusions

The radiological Final Status Survey data presented in this Technical Memorandum document that following remedial excavations, compliance with the 6.8 pCi/g cleanup level for Ra-226 concentrations in surface material was achieved across the vast majority of excavated surfaces within MWTU Pond 1. A potential exception occurred near the former inlet/outlet hydraulic control structure as it was not possible to meet the gamma cutoff value without compromising the structural integrity of the berm supporting this structure.

6. References

Environmental Restoration Group, Inc. (ERG). 2018. Confirmatory Radiological Surveys of Surface Pond Facilities. November 20, 2018. Technical Memorandum concerning Pond #3 and South Stormwater Pond.

New Mexico Environment Department (NMED). 2016. Joint Guidance for the Cleanup and Reclamation of Existing Uranium Mining Operations in New Mexico. NMED, Mining Environmental Compliance Section and Energy, Minerals and Natural Resources Department, Mining and Minerals Division.

Figure 3: Final status shielded gamma radiation survey results after completion of remedial excavations in Pond 1. Individual survey results are displayed as interpolated color mixtures based on the discrete color values shown in the legend.

Figure 4: Final status soil sampling results after completion of remedial excavations in Pond 1. Individual survey results are displayed as interpolated color mixtures based on the discrete color values shown in the legend.

Location ID	Latitude	Longitude	Soil Depth (cm)	Sample Date	Ra-226 (pCi/g)*
P1-1	35.343671	-107.634333	0-15	7/28/2020	3.7
P1-2	35.343698	-107.633943	0-15	4/22/2020	1.1
P1-3	35.343582	-107.634075	0-15	4/22/2020	1.1
P1-4	35.343422	-107.634143	0-15	4/22/2020	2.0
P1-5	35.343499	-107.633845	0-15	4/22/2020	1.2
P1-6	35.343270	-107.634132	0-15	4/22/2020	1.1
P1-7	35.343277	-107.633766	0-15	4/22/2020	2.0
P1-8	35.342993	-107.633903	0-15	4/22/2020	1.1
P1-9	35.343154	-107.633539	0-15	4/22/2020	1.4

Table 1: FSS radioanalytical results for sediment/soil samples in MWTU Pond 1.

*Ra-226 Cleanup Level = 6.8 pCi/g

TECHNICAL MEMORANDUM				
To: Bruce Norquist (RGR)	Date: July 29, 2020			
From: Randy Whicker (ERG)	Project: Mt. Taylor Mine			
Direct: 970-556-1174 Task(s): Radiological Construction Support				
Cc: Chuck Farr (ERG)				
Subject: Confirmatory radiological survey results for MWTU Pond 4 following remedial excavations.				

Dear Mr. Norquist,

This Technical Memorandum provides the results of radiological survey measurements and soil sampling performed to verify that excavation of historically contaminated sediments at the bottom of Pond #4 in the Mine Water Treatment Unit (MWTU) at the Mt. Taylor Mine achieved compliance with the soil cleanup level for radium-226 concentration. The cleanup level is specified by the New Mexico Environment Department (NMED) in mine reactivation conditions under Discharge Permit DP-61, and by the New Mexico Mining and Minerals Division (MMD) under Mine Permit C1002RE. This work was conducted in the spring of 2020 in a manner consistent with previous radiological verification surveys of Ponds 3 and 2 as conducted in 2018 and 2019 under the Phase 1 mine reactivation conditions of DP-61 and Mine Permit C1002RE. The data in this transmittal support a conclusion that compliance with the Ra-226 cleanup level in Pond 4 was achieved.

Please let me know if you have questions or need more information.

Regards,

Aundy Whicher

Randy Whicker, CHP Radiation Safety Officer Mt. Taylor Mine

Radiological Final Status Survey of MWTU Pond 4

1. Introduction

The Mt. Taylor Mine (Site) is an underground uranium mine near San Mateo, New Mexico. Gulf Mineral Resources Company (Gulf) acquired the property and began mine development in 1971. Ore production occurred between 1979 – 1982, and after a transfer of ownership to Chevron Resources Company (Chevron) in 1985, production resumed through 1990. Rio Grande Resources (RGR) acquired the mine and other Chevron property in 1991 and in 1999 the Mine entered standby status under Mine Permit C1002RE with MMD. Discharge Permit DP-61 with the New Mexico Environment Department (NMED) was renewed in 2015 to accommodate the planned return to active mine status, and on December 29, 2017, the Mine Permit was changed to an active status. On December 3, 2019, RGR notified MMD and NMED of intentions to begin the Site closeout/closure process.

As part of Mine reactivation activities, RGR was required to clean out, regrade and synthetically line eight (8) existing ponds that collectively function as a Mine Water Treatment Unit (MWTU), along with two existing stormwater retention ponds. In accordance with permit requirements, in 2018 contaminated sediments in MWTU Pond 3 and the South Stormwater Pond were cleaned out and analytically verified to meet the approved cleanup level for radium-226 (Ra-226), followed by installation of a new synthetic liner system with leak detection technology in Pond 3, and an engineered clay liner in the South Stormwater Pond. In 2019, contaminated sediments in MWTU Pond 2 were also cleaned out, verified to meet the Ra-226 cleanup level, and a new liner system with leak detection was installed.

Contaminated sediments from the remaining MWTU Ponds were cleaned out in 2019 under the Phase I reactivation project, and in the spring of 2020 radiological surveys were performed to verify compliance with the cleanup level for Ra-226. A delay in performing final status surveys (FSS) after the initial cleanup was necessitated by technical and safety issues related to winter weather conditions, and in some cases, additional delays in obtaining final analytical results from the lab were necessary due to additional remediation and/or re-sampling of locations where the initial FSS sample did not meet the release criterion. This Technical Memorandum provides final results of radiological survey measurements and sampling performed to verify that excavation of contaminated sediments at the bottom of MWTU Pond 4 has resulted in compliance with the Ra-226 cleanup level.

2. Cleanup Level for Pond Sediments

NMED guidance specifies a standard for Ra-226 of 5 picocuries per gram (pCi/g) above the background concentration for existing uranium mines in New Mexico (NMED, 2016). A background concentration for Ra-226 of 1.8 pCi/g was approved for the Mount Taylor Mine in 2012 by NMED. Therefore, the calculated gross cleanup level (inclusive of background) for Ra-226 is equal to 6.8 pCi/g (equivalent to 5 pCi/g above background).

3. Methods

The radiological survey and sampling methods used in 2018 and 2019 to guide excavation of contaminated sediments in Ponds 2 and 3, and to subsequently verify compliance with the Ra-226 cleanup level as part of mine reactivation efforts, were also used in 2020 for the FSS of Pond 4. The approach was based on a combination of gamma radiation surveys and soil sampling. A GPS-based gamma radiation survey across Controlled Areas at the Mine property was conducted before Mine reactivation construction work was initiated in the spring of 2018 (Figure 1). Prior to this initial remedial construction work, the highest gamma exposure rates at the Site were located above contaminated sediments at the bottom of various MWTU ponds. Because elevated gamma radiation from terrestrial sources largely occurs as a result of elevated Ra-226 concentrations in surface material, a site-specific statistical correlation between gamma radiation measurements to guide the depth of remedial excavation based on a gamma cutoff goal derived in part from the gamma/Ra-226 correlation.

Figure 1: Gamma radiation levels prior to initiation of Mine reactivation construction work in 2018.

Figure 2: Statistical correlation between gamma radiation and Ra-226 levels in surface soil (top) and potential gamma cutoff values at the Ra-226 cleanup level (bottom).

The correlation data in Figure 2 were collected to the extent possible at site locations with relatively flat topography and uniform Ra-226 levels, and where the confounding effects of gamma "shine" from adjacent soil contamination was minimized. To help mitigate gamma shine effects, a specially designed lead shield was used for gamma measurements within the MWTU ponds. However, the ponds have steep side slopes, gamma shine is prevalent, and radiological conditions for gamma measurements inside of the ponds are not fully represented by those used to develop the shielded gamma/Ra-226 correlation. To address this issue, and as previously reported (ERG, 2018), the shielded gamma cutoff value was qualitatively modified for use in the ponds to ensure compliance with the Ra-226 cleanup level without requiring excavation of more material than necessary. As a general guideline, a lead-shielded gamma cutoff goal of 10,000 counts per minute (CPM) has proven effective for guiding the depth of excavation in the MWTU ponds, and this gamma cutoff was used to guide remedial excavations in Pond 4, followed by confirmatory Final Status Survey (FSS) soil sampling at spatially representative locations.

4. Pond 4 FSS Results

A shielded count rate at or below the 10,000 CPM gamma cutoff goal was achieved across the vast majority of excavated Pond 4 surfaces (Figure 3). Small, localized exceptions occurred in materials near northern inlet/outlet hydraulic control structures as it was not possible to meet the gamma cutoff without compromising the structural integrity of the berm supporting these structures. Final status soil sampling results across Pond 4 are shown in Figure 4 and numerically tabulated in Table 1.

In cases where a given FSS soil sample was predicted to exceed the cleanup level based on onsite screening measurements taken inside of a low-background, lead-shielded counting well, a composite sample was subsequently collected across a 100 m² area centered on the original discrete location to determine compliance with the spatial requirements of the cleanup level (an average Ra-226 concentration of 6.8 pCi/g across any 100 m² area).

In cases where the offsite lab reported a result for a discrete FSS sample that exceeded the cleanup level, follow-up gamma measurements were used to determine the need for further excavation and/or composite sampling as described above. All FSS samples (both discrete and composite) were sent to the offsite commercial laboratory for quantitative Ra-226 analysis. As shown in Figure 4 and numerically tabulated in Table 1, final analytical results for all FSS sampling locations in Pond 4 were below the 6.8 pCi/g cleanup level for Ra-226 (Table 1).

5. Conclusions

The radiological Final Status Survey data presented in this Technical Memorandum document that following remedial excavations, compliance with the 6.8 pCi/g cleanup level for Ra-226 concentrations in surface material was achieved across the vast majority of excavated surfaces within MWTU Pond 4. Potential exceptions occurred near the northern inlet/outlet hydraulic control structures as it was not possible to meet the gamma cutoff value without compromising the structural integrity of the berm supporting these structures.

6. References

Environmental Restoration Group, Inc. (ERG). 2018. Confirmatory Radiological Surveys of Surface Pond Facilities. November 20, 2018. Technical Memorandum concerning Pond #3 and South Stormwater Pond.

New Mexico Environment Department (NMED). 2016. Joint Guidance for the Cleanup and Reclamation of Existing Uranium Mining Operations in New Mexico. NMED, Mining Environmental Compliance Section and Energy, Minerals and Natural Resources Department, Mining and Minerals Division.

Figure 3: Final status shielded gamma radiation survey results after completion of remedial excavations in Pond 4. Individual survey results are displayed as interpolated color mixtures based on the discrete color values shown in the legend.

Figure 4: Final status soil sampling results after completion of remedial excavations in Pond 4. Individual survey results are displayed as interpolated color mixtures based on the discrete color values shown in the legend.

Location ID	Latitude	Longitude	Soil Depth (cm)	Sample Date	Ra-226 (pCi/g)*
P4-1	35.34412574	-107.6364792	0-15	4/2/2020	3.1
P4-2	35.34412702	-107.6362327	0-15	3/25/2020	0.9
P4-3	35.3439114	-107.6364934	0-15	5/27/2020	4.1
P4-4	35.34391388	-107.6363084	0-15	3/25/2020	3.8
P4-5	35.34389788	-107.6361062	0-15	5/27/2020	4.2
P4-6	35.34371108	-107.6365315	0-15	3/25/2020	1.2
P4-7	35.34375379	-107.6362320	0-15	5/27/2020	1.8
P4-8	35.34351789	-107.6364958	0-15	3/25/2020	0.9
P4-9	35.34349451	-107.6360708	0-15	4/2/2020	4.5
P4-10	35.34362867	-107.6359949	0-15	3/24/2020	3.0
P4-11	35.34346192	-107.6357729	0-15	5/27/2020	2.2

Table 1: FSS radioanalytical results for sediment/soil samples in MWTU Pond 4.

*Ra-226 Cleanup Level = 6.8 pCi/g

TECHNICAL MEMORANDUM				
To: Bruce Norquist (RGR)	Date: July 31, 2020			
From: Randy Whicker (ERG)	Project: Mt. Taylor Mine			
Direct: 970-556-1174	Task(s): Radiological Construction Support			
Cc: Chuck Farr (ERG)				
Subject: Confirmatory radiological survey results for MWTU Pond 5 following remedial excavations.				

Dear Mr. Norquist,

This Technical Memorandum provides the results of radiological survey measurements and soil sampling performed to verify that excavation of historically contaminated sediments at the bottom of Pond #5 in the Mine Water Treatment Unit (MWTU) at the Mt. Taylor Mine achieved compliance with the soil cleanup level for radium-226 concentration. The cleanup level is specified by the New Mexico Environment Department (NMED) in the conditions for mine reactivation under Discharge Permit DP-61, and by the New Mexico Mining and Minerals Division (MMD) under Mine Permit C1002RE. This work was conducted in the spring of 2020 in a manner consistent with previous radiological verification surveys of Ponds 3 and 2 as conducted in 2018 and 2019 under the Phase 1 mine reactivation conditions of DP-61 and Mine Permit C1002RE. The data in this transmittal support a conclusion that compliance with the Ra-226 cleanup level in Pond 5 was achieved.

Please let me know if you have questions or need more information.

Regards,

Aundy Whicher

Randy Whicker, CHP Radiation Safety Officer Mt. Taylor Mine

Radiological Final Status Survey of MWTU Pond 5

1. Introduction

The Mt. Taylor Mine (Site) is an underground uranium mine near San Mateo, New Mexico. Gulf Mineral Resources Company (Gulf) acquired the property and began mine development in 1971. Ore production occurred between 1979 – 1982, and after a transfer of ownership to Chevron Resources Company (Chevron) in 1985, production resumed through 1990. Rio Grande Resources (RGR) acquired the mine and other Chevron property in 1991 and in 1999 the Mine entered standby status under Mine Permit C1002RE with MMD. Discharge Permit DP-61 with the New Mexico Environment Department (NMED) was renewed in 2015 to accommodate the planned return to active mine status, and on December 29, 2017, the Mine Permit was changed to an active status. On December 3, 2019, RGR notified MMD and NMED of intentions to begin the Site closeout/closure process.

As part of Mine reactivation activities, RGR was required to clean out, regrade and synthetically line eight (8) existing ponds that collectively function as a Mine Water Treatment Unit (MWTU), along with two existing stormwater retention ponds. In accordance with permit requirements, in 2018 contaminated sediments in MWTU Pond 3 and the South Stormwater Pond were cleaned out and analytically verified to meet the approved cleanup level for radium-226 (Ra-226), followed by installation of a new synthetic liner system with leak detection technology in Pond 3, and an engineered clay liner in the South Stormwater Pond. In 2019, contaminated sediments in MWTU Pond 2 were also cleaned out, verified to meet the Ra-226 cleanup level, and a new liner system with leak detection was installed.

Contaminated sediments from the remaining MWTU Ponds were cleaned out in 2019 under the Phase I reactivation project, and in the spring of 2020 radiological surveys were performed to verify compliance with the cleanup level for Ra-226. A delay in performing final status surveys (FSS) after the initial cleanup was necessitated by technical and safety issues related to winter weather conditions, and in some cases, additional delays in obtaining final analytical results from the lab were necessary due to additional remediation and/or re-sampling of locations where the initial FSS sample did not meet the release criterion. This Technical Memorandum provides final results of radiological survey measurements and sampling performed to verify that excavation of contaminated sediments at the bottom of MWTU Pond 5 has resulted in compliance with the Ra-226 cleanup level.

2. Cleanup Level for Pond Sediments

NMED guidance specifies a standard for Ra-226 of 5 picocuries per gram (pCi/g) above the background concentration for existing uranium mines in New Mexico (NMED, 2016). A background concentration for Ra-226 of 1.8 pCi/g was approved for the Mount Taylor Mine in 2012 by NMED. Therefore, the calculated gross cleanup level (inclusive of background) for Ra-226 is equal to 6.8 pCi/g (equivalent to 5 pCi/g above background).

3. Methods

The radiological survey and sampling methods used in 2018 and 2019 to guide excavation of contaminated sediments in Ponds 2 and 3, and to subsequently verify compliance with the Ra-226 cleanup level as part of mine reactivation efforts, were also used in 2020 for the FSS of Pond 5. The approach was based on a combination of gamma radiation surveys and soil sampling. A GPS-based gamma radiation survey across Controlled Areas at the Mine property was conducted before Mine reactivation construction work was initiated in the spring of 2018 (Figure 1). Prior to this initial remedial construction work, the highest gamma exposure rates at the Site were located above contaminated sediments at the bottom of various MWTU ponds. Because elevated gamma radiation from terrestrial sources largely occurs as a result of elevated Ra-226 concentrations in surface material, a site-specific statistical correlation between gamma radiation measurements to guide the depth of remedial excavation based on a gamma cutoff goal derived in part from the gamma/Ra-226 correlation.

Figure 1: Gamma radiation levels prior to initiation of Mine reactivation construction work in 2018.

Figure 2: Statistical correlation between gamma radiation and Ra-226 levels in surface soil (top) and potential gamma cutoff values at the Ra-226 cleanup level (bottom).

The correlation data in Figure 2 were collected to the extent possible at site locations with relatively flat topography and uniform Ra-226 levels, and where the confounding effects of gamma "shine" from adjacent soil contamination was minimized. To help mitigate gamma shine effects, a specially designed lead shield was used for gamma measurements within the MWTU ponds. However, the ponds have steep side slopes, gamma shine is prevalent, and radiological conditions for gamma measurements inside of the ponds are not fully represented by those used to develop the shielded gamma/Ra-226 correlation. To address this issue, and as previously reported (ERG, 2018), the shielded gamma cutoff value was qualitatively modified for use in the ponds to ensure compliance with the Ra-226 cleanup level without requiring excavation of more material than necessary. As a general guideline, a lead-shielded gamma cutoff goal of 10,000 counts per minute (CPM) has proven effective for guiding the depth of excavation in the MWTU ponds, and this gamma cutoff was used to guide remedial excavations in Pond 5, followed by confirmatory Final Status Survey (FSS) soil sampling at spatially representative locations.

4. Pond 5 FSS Results

A shielded count rate at or below the 10,000 CPM gamma cutoff goal was achieved across the vast majority of excavated Pond 5 surfaces (Figure 3). Small, localized exceptions occurred in materials near inlet/outlet hydraulic control structures at the rim of the Pond as it was not possible to meet the gamma cutoff without compromising the structural integrity of the berm supporting these structures. A couple of isolated locations on the bottom surface of the Pond had readings above the gamma cutoff goal, and biased FSS samples were taken at these locations.

In cases where a given FSS soil sample was predicted to exceed the cleanup level based on onsite screening measurements taken inside of a low-background, lead-shielded counting well, a composite sample was subsequently collected across a 100 m² area centered on the original discrete location to determine compliance with the spatial requirements of the cleanup level (an average Ra-226 concentration of 6.8 pCi/g across any 100 m² area).

In cases where the offsite lab reported a result for a discrete FSS sample that exceeded the cleanup level, follow-up gamma measurements were used to determine the need for further excavation and/or composite sampling as described above. All FSS samples (both discrete and composite) were sent to the offsite commercial laboratory for quantitative Ra-226 analysis. As shown in Figure 4 and numerically tabulated in Table 1, final analytical results for all FSS sampling locations in Pond 5 were below the 6.8 pCi/g cleanup level for Ra-226 (Table 1).

5. Conclusions

The radiological Final Status Survey data presented in this Technical Memorandum document that following remedial excavations, compliance with the 6.8 pCi/g cleanup level for Ra-226 concentrations in surface material was achieved across the vast majority of excavated surfaces within MWTU Pond 5. Potential exceptions occurred near the inlet/outlet hydraulic control structures near the rim of the Pond as it was not possible to meet the gamma cutoff value without compromising the structural integrity of the berm supporting these structures.

6. References

Environmental Restoration Group, Inc. (ERG). 2018. Confirmatory Radiological Surveys of Surface Pond Facilities. November 20, 2018. Technical Memorandum concerning Pond #3 and South Stormwater Pond.

New Mexico Environment Department (NMED). 2016. Joint Guidance for the Cleanup and Reclamation of Existing Uranium Mining Operations in New Mexico. NMED, Mining Environmental Compliance Section and Energy, Minerals and Natural Resources Department, Mining and Minerals Division.

Figure 3: Final status shielded gamma radiation survey results after completion of remedial excavations in Pond 5. Individual survey results are displayed as interpolated color mixtures based on the discrete color values shown in the legend.

Figure 4: Final status soil sampling results after completion of remedial excavations in Pond 5. Individual survey results are displayed as interpolated color mixtures based on the discrete color values shown in the legend.

Location ID	Latitude	Longitude	Soil Depth (cm)	Sample Date	Ra-226 (pCi/g)*
P5-1	35.343278	-107.6365471	0-15	3/24/2020	1.1
P5-2	35.34324724	-107.6362023	0-15	5/27/2020	3.1
P5-3	35.34324862	-107.635712	0-15	3/24/2020	1.0
P5-4	35.34312174	-107.6360343	0-15	3/24/2020	1.1
P5-5	35.34300509	-107.6363522	0-15	5/27/2020	2.0
P5-6	35.3430379	-107.6358459	0-15	3/24/2020	2.5
P5-7	35.34291528	-107.6364229	0-15	3/24/2020	5.6
P5-8	35.34286743	-107.6359553	0-15	3/24/2020	1.1
P5-9	35.34286529	-107.6354057	0-15	5/27/2020	2.0

Table 1: FSS radioanalytical results for sediment/soil samples in MWTU Pond 5.

*Ra-226 Cleanup Level = 6.8 pCi/g

TECHNICAL MEMORANDUM				
To: Bruce Norquist (RGR)	Date: June 22, 2020			
From: Randy Whicker (ERG)	Project: Mt. Taylor Mine			
Direct: 970-556-1174 Task(s): Radiological Construction Suppor				
Cc: Chuck Farr (ERG)				
Subject: Confirmatory radiological survey results for MWTU Pond 6 following remedial excavations.				

Dear Mr. Norquist,

This Technical Memorandum provides the results of radiological survey measurements and soil sampling performed to verify that excavation of historically contaminated sediments at the bottom of Pond #6 in the Mine Water Treatment Unit (MWTU) at the Mt. Taylor Mine achieved compliance with the soil cleanup level for radium-226 concentration. The cleanup level is specified by the New Mexico Environment Department (NMED) in mine reactivation conditions under Discharge Permit DP-61, and by the New Mexico Mining and Minerals Division (MMD) under Mine Permit C1002RE. This work was conducted in the spring of 2020 in a manner consistent with previous radiological verification surveys of Ponds 3 and 2 as conducted in 2018 and 2019 under the Phase 1 mine reactivation conditions of DP-61 and Mine Permit C1002RE. The data in this transmittal support a conclusion that compliance with the Ra-226 cleanup level in Pond 6 was achieved.

Please let me know if you have questions or need more information.

Regards,

Aundy Whicher

Randy Whicker, CHP Radiation Safety Officer Mt. Taylor Mine

Radiological Final Status Survey of MWTU Pond 6

1. Introduction

The Mt. Taylor Mine (Site) is an underground uranium mine near San Mateo, New Mexico. Gulf Mineral Resources Company (Gulf) acquired the property and began mine development in 1971. Ore production occurred between 1979 – 1982, and after a transfer of ownership to Chevron Resources Company (Chevron) in 1985, production resumed through 1990. Rio Grande Resources (RGR) acquired the mine and other Chevron property in 1991 and in 1999 the Mine entered standby status under Mine Permit C1002RE with MMD. Discharge Permit DP-61 with the New Mexico Environment Department (NMED) was renewed in 2015 to accommodate the planned return to active mine status, and on December 29, 2017, the Mine Permit was changed to an active status. On December 3, 2019, RGR notified MMD and NMED of intentions to begin the Site closeout/closure process.

As part of Mine reactivation activities, RGR was required to clean out, regrade and synthetically line eight (8) existing ponds that collectively function as a Mine Water Treatment Unit (MWTU), along with two existing stormwater retention ponds. In accordance with permit requirements, in 2018 contaminated sediments in MWTU Pond 3 and the South Stormwater Pond were cleaned out and analytically verified to meet the approved cleanup level for radium-226 (Ra-226), followed by installation of a new synthetic liner system with leak detection technology in Pond 3, and an engineered clay liner in the South Stormwater Pond. In 2019, contaminated sediments in MWTU Pond 2 were also cleaned out, verified to meet the Ra-226 cleanup level, and a new liner system with leak detection was installed.

Contaminated sediments from the remaining MWTU Ponds were cleaned out in 2019 under the Phase I reactivation project, and in the spring of 2020 radiological surveys were performed to verify compliance with the cleanup level for Ra-226. A delay in performing final status surveys (FSS) after the initial cleanup was necessitated by technical and safety issues related to winter weather conditions, and in some cases, additional delays in obtaining final analytical results from the lab were necessary due to additional remediation and/or re-sampling of locations where the initial FSS sample did not meet the release criterion. This Technical Memorandum provides final results of radiological survey measurements and sampling performed to verify that excavation of historically contaminated sediments at the bottom of MWTU Pond 6 has resulted in compliance with the Ra-226 cleanup level.

2. Cleanup Level for Pond Sediments

NMED guidance specifies a standard for Ra-226 of 5 picocuries per gram (pCi/g) above the background concentration for existing uranium mines in New Mexico (NMED, 2016). A background concentration for Ra-226 of 1.8 pCi/g was approved for the Mount Taylor Mine in 2012 by NMED. Therefore, the calculated gross cleanup level (inclusive of background) for Ra-226 is equal to 6.8 pCi/g (equivalent to 5 pCi/g above background).

3. Methods

The radiological survey and sampling methods used in 2018 and 2019 to guide excavation of contaminated sediments in Ponds 2 and 3 and to subsequently verify compliance with the Ra-226 cleanup level as part of mine reactivation efforts, were also used in in 2020 for the FSS of Pond 6. The approach was based on a combination of gamma radiation surveys and soil sampling. A GPS-based gamma radiation survey across Controlled Areas at the Mine property was conducted before Mine reactivation construction work was initiated in the spring of 2018 (Figure 1). Prior to initiation of this construction work in 2018, the highest gamma exposure rates at the Site were located above contaminated sediments at the bottom of various MWTU ponds. Because elevated gamma radiation from terrestrial sources largely occurs as a result of elevated Ra-226 concentrations in surface material, a site-specific statistical correlation between gamma readings and Ra-226 concentrations in surface soil was developed (Figure 2). This enabled use of gamma radiation measurements to guide the depth of remedial excavation based on a gamma cutoff goal derived in part from the gamma/Ra-226 correlation.

Figure 1: Gamma radiation levels prior to initiation of Mine reactivation construction work in 2018.

Figure 2: Statistical correlation between gamma radiation and Ra-226 levels in surface soil (top) and potential gamma cutoff values at the Ra-226 cleanup level (bottom).

The correlation data in Figure 2 were collected to the extent possible at site locations with relatively flat topography and uniform Ra-226 levels, and where the confounding effects of gamma "shine" from adjacent soil contamination was minimized. To help mitigate gamma shine effects, a specially designed lead shield was used for gamma measurements within the MWTU ponds. However, the ponds have steep side slopes, gamma shine is prevalent, and radiological conditions for gamma measurements inside of the ponds are not ideally represented by those used to develop the shielded gamma/Ra-226 correlation. To address this issue, and as previously reported (ERG, 2018), the shielded gamma cutoff value was qualitatively modified for use in the ponds to help ensure compliance with the Ra-226 cleanup level without requiring excavation of more material than necessary. As a general guideline, a lead-shielded gamma cutoff goal of 10,000 counts per minute (CPM) has proven effective for guiding the depth of excavation in the MWTU ponds, and this gamma cutoff was used to guide remedial excavations in Pond 6, followed by confirmatory Final Status Survey (FSS) soil sampling at spatially representative locations.

4. Pond 6 FSS Results

A shielded gamma count rate at or below the 10,000 CPM cutoff goal was achieved across the vast majority of excavated Pond 6 surfaces (Figure 3). Small, localized exceptions occurred in materials near the east and west inlet/outlet hydraulic control structures as it was not possible to meet the gamma cutoff without compromising the structural integrity of the berm supporting these structures. Final status soil sampling results across Pond 6 are shown in Figure 4 and numerically tabulated in Table 1.

In cases where a given FSS soil sample was predicted to exceed the cleanup level based on onsite screening measurements taken inside of a low-background, lead-shielded counting well, a composite sample was subsequently collected across a 100 m² area centered on the original discrete location to determine compliance with the spatial requirements of the cleanup level (an average Ra-226 concentration of 6.8 pCi/g across any 100 m² area).

In cases where the offsite lab reported a result for a discrete FSS sample that exceeded the cleanup level, follow-up gamma measurements were used to determine the need for further excavation and/or composite sampling as described above. All FSS samples (both discrete and composite) were sent to the offsite commercial laboratory for quantitative Ra-226 analysis. As shown in Figure 4 and numerically tabulated in Table 1, final results for all soil/sediment sampling locations were below the 6.8 pCi/g cleanup level for Ra-226.

5. Conclusions

The radiological Final Status Survey data presented in this Technical Memorandum document that following remedial excavations, compliance with the 6.8 pCi/g cleanup level for Ra-226 concentrations in surface material was achieved across the vast majority of excavated surfaces within MWTU Pond 6. Potential exceptions occurred near the existing inlet/outlet hydraulic control structures as it was not possible to meet the gamma cutoff value without compromising the structural integrity of the berm supporting these structures.

6. References

Environmental Restoration Group, Inc. (ERG). 2018. Confirmatory Radiological Surveys of Surface Pond Facilities. November 20, 2018. Technical Memorandum concerning Pond #3 and South Stormwater Pond.

New Mexico Environment Department (NMED). 2016. Joint Guidance for the Cleanup and Reclamation of Existing Uranium Mining Operations in New Mexico. NMED, Mining Environmental Compliance Section and Energy, Minerals and Natural Resources Department, Mining and Minerals Division.

Figure 3: Final status shielded gamma radiation survey results after completion of remedial excavations in Pond 6. Individual survey results are displayed as interpolated color mixtures based on the discrete color values shown in the legend.

Figure 4: Final status soil sampling results after completion of remedial excavations in Pond 6. Individual survey results are displayed as interpolated color mixtures based on the discrete color values shown in the legend.

Location ID	Latitude	Longitude	Soil Depth (cm)	Sample Date	Ra-226 (pCi/g)*
P6-1	35.34264	-107.63633	0-15	3/24/2020	3.2
P6-2	35.34260	-107.63631	0-15	3/24/2020	1.9
P6-3	35.34254	-107.63632	0-15	3/24/2020	1.4
P6-4	35.34269	-107.63610	0-15	3/24/2020	1.3
P6-5	35.34254	-107.63606	0-15	3/24/2020	0.9
P6-6	35.34261	-107.63599	0-15	6/23/2020	1.7
P6-7	35.34264	-107.63587	0-15	3/24/2020	1.8
P6-8	35.34253	-107.63586	0-15	3/24/2020	2.8

*Ra-226 Cleanup Level = 6.8 pCi/g

TECHNICAL MEMORANDUM				
To: Bruce Norquist (RGR)	Date: June 22, 2020			
From: Randy Whicker (ERG)	Project: Mt. Taylor Mine			
Direct: 970-556-1174 Task(s): Radiological Construction Suppor				
Cc: Chuck Farr (ERG)				
Subject: Confirmatory radiological survey results for MWTU Pond 7 following remedial excavations.				

Dear Mr. Norquist,

This Technical Memorandum provides the results of radiological survey measurements and soil sampling performed to verify that excavation of historically contaminated sediments at the bottom of Pond #6 in the Mine Water Treatment Unit (MWTU) at the Mt. Taylor Mine achieved compliance with the soil cleanup level for radium-226 concentration. The cleanup level is specified by the New Mexico Environment Department (NMED) in mine reactivation conditions under Discharge Permit DP-61, and by the New Mexico Mining and Minerals Division (MMD) under Mine Permit C1002RE. This work was conducted in the spring of 2020 in a manner consistent with previous radiological verification surveys of Ponds 3 and 2 as conducted in 2018 and 2019 under the Phase 1 mine reactivation conditions of DP-61 and Mine Permit C1002RE. The data in this transmittal support a conclusion that compliance with the Ra-226 cleanup level in Pond 7 was achieved.

Please let me know if you have questions or need more information.

Regards,

Aundy Whicher

Randy Whicker, CHP Radiation Safety Officer Mt. Taylor Mine

Radiological Final Status Survey of MWTU Pond 7

1. Introduction

The Mt. Taylor Mine (Site) is an underground uranium mine near San Mateo, New Mexico. Gulf Mineral Resources Company (Gulf) acquired the property and began mine development in 1971. Ore production occurred between 1979 – 1982, and after a transfer of ownership to Chevron Resources Company (Chevron) in 1985, production resumed through 1990. Rio Grande Resources (RGR) acquired the mine and other Chevron property in 1991 and in 1999 the Mine entered standby status under Mine Permit C1002RE with MMD. Discharge Permit DP-61 with the New Mexico Environment Department (NMED) was renewed in 2015 to accommodate the planned return to active mine status, and on December 29, 2017, the Mine Permit was changed to an active status. On December 3, 2019, RGR notified MMD and NMED of intentions to begin the Site closeout/closure process.

As part of Mine reactivation activities, RGR was required to clean out, regrade and synthetically line eight (8) existing ponds that collectively function as a Mine Water Treatment Unit (MWTU), along with two existing stormwater retention ponds. In accordance with permit requirements, in 2018 contaminated sediments in MWTU Pond 3 and the South Stormwater Pond were cleaned out and analytically verified to meet the approved cleanup level for radium-226 (Ra-226), followed by installation of a new synthetic liner system with leak detection technology in Pond 3, and an engineered clay liner in the South Stormwater Pond. In 2019, contaminated sediments in MWTU Pond 2 were also cleaned out, verified to meet the Ra-226 cleanup level, and a new liner system with leak detection was installed.

Contaminated sediments from the remaining MWTU Ponds were cleaned out in 2019 under the Phase I reactivation project, and in the spring of 2020 radiological surveys were performed to verify compliance with the cleanup level for Ra-226. A delay in performing final status surveys (FSS) after the initial cleanup was necessitated by technical and safety issues related to winter weather conditions, and in some cases, additional delays in obtaining final analytical results from the lab were necessary due to additional remediation and/or re-sampling of locations where the initial FSS sample did not meet the release criterion. This Technical Memorandum provides final results of radiological survey measurements and sampling performed to verify that excavation of historically contaminated sediments at the bottom of MWTU Pond 7 has resulted in compliance with the Ra-226 cleanup level.

2. Cleanup Level for Pond Sediments

NMED guidance specifies a standard for Ra-226 of 5 picocuries per gram (pCi/g) above the background concentration for existing uranium mines in New Mexico (NMED, 2016). A background concentration for Ra-226 of 1.8 pCi/g was approved for the Mount Taylor Mine in 2012 by NMED. Therefore, the calculated gross cleanup level (inclusive of background) for Ra-226 is equal to 6.8 pCi/g (equivalent to 5 pCi/g above background).

3. Methods

The radiological survey and sampling methods used in 2018 and 2019 to guide excavation of contaminated sediments in Ponds 2 and 3 and to subsequently verify compliance with the Ra-226 cleanup level as part of mine reactivation efforts, also used in 2020 for the FSS of Pond 7. The approach was based on a combination of gamma radiation surveys and soil sampling. A GPS-based gamma radiation survey across Controlled Areas at the Mine property was conducted before Mine reactivation construction work was initiated in the spring of 2018 (Figure 1). Prior to initiation of this construction work in 2018, the highest gamma exposure rates at the Site were located above contaminated sediments at the bottom of various MWTU ponds. Because elevated gamma radiation from terrestrial sources largely occurs as a result of elevated Ra-226 concentrations in surface material, a site-specific statistical correlation between gamma readings and Ra-226 concentrations in surface soil was developed (Figure 2). This enabled use of gamma radiation measurements to guide the depth of remedial excavation based on a gamma cutoff goal derived in part from the gamma/Ra-226 correlation.

Figure 1: Gamma radiation levels prior to initiation of Mine reactivation construction work in 2018.

Figure 2: Statistical correlation between gamma radiation and Ra-226 levels in surface soil (top) and potential gamma cutoff values at the Ra-226 cleanup level (bottom).

The correlation data in Figure 2 were collected to the extent possible at site locations with relatively flat topography and uniform Ra-226 levels, and where the confounding effects of gamma "shine" from adjacent soil contamination was minimized. To help mitigate gamma shine effects, a specially designed lead shield was used for gamma measurements within the MWTU ponds. However, the ponds have steep side slopes, gamma shine is prevalent, and radiological conditions for gamma measurements inside of the ponds are not fully represented by those used to develop the shielded gamma/Ra-226 correlation. To address this issue, and as previously reported (ERG, 2018), the shielded gamma cutoff value was qualitatively modified for use in the ponds to ensure compliance with the Ra-226 cleanup level without requiring excavation of more material than necessary. As a general guideline, a lead-shielded gamma cutoff goal of 10,000 counts per minute (CPM) has proven effective for guiding the depth of excavation in the MWTU ponds, and this gamma cutoff was used to guide remedial excavations in Pond 7, followed by confirmatory Final Status Survey (FSS) soil sampling at spatially representative locations.

4. Pond 7 FSS Results

A shielded gamma count rate at or below the 10,000 CPM cutoff goal was achieved across the vast majority of excavated Pond 7 surfaces (Figure 3). Small, localized exceptions occurred in materials near the west inlet/outlet hydraulic control structure as it was not possible to meet the gamma cutoff without compromising the structural integrity of the berm supporting these structures. Final status soil sampling results across Pond 7 are shown in Figure 4 and numerically tabulated in Table 1.

In cases where a given FSS soil sample was predicted to exceed the cleanup level based on onsite screening measurements taken inside of a low-background, lead-shielded counting well, a composite sample was subsequently collected across a 100 m² area centered on the original discrete location to determine compliance with the spatial requirements of the cleanup level (an average Ra-226 concentration of 6.8 pCi/g across any 100 m² area).

In cases where the offsite lab reported a result for a discrete FSS sample that exceeded the cleanup level, follow-up gamma measurements were used to determine the need for further excavation and/or composite sampling as described above. All FSS samples (both discrete and composite) were sent to the offsite commercial laboratory for quantitative Ra-226 analysis. As shown in Figure 4 and numerically tabulated in Table 1, final results for all soil/sediment sampling locations were below the 6.8 pCi/g cleanup level for Ra-226.

5. Conclusions

The radiological Final Status Survey data presented in this Technical Memorandum document that following remedial excavations, compliance with the 6.8 pCi/g cleanup level for Ra-226 concentrations in surface material was achieved across the vast majority of excavated surfaces within MWTU Pond 7. Potential exceptions occurred near the existing west inlet/outlet hydraulic control structure as it was not possible to meet the gamma cutoff value without compromising the structural integrity of the berm supporting this structure.
6. References

Environmental Restoration Group, Inc. (ERG). 2018. Confirmatory Radiological Surveys of Surface Pond Facilities. November 20, 2018. Technical Memorandum concerning Pond #3 and South Stormwater Pond.

New Mexico Environment Department (NMED). 2016. Joint Guidance for the Cleanup and Reclamation of Existing Uranium Mining Operations in New Mexico. NMED, Mining Environmental Compliance Section and Energy, Minerals and Natural Resources Department, Mining and Minerals Division.

Figure 3: Final status shielded gamma radiation survey results after completion of remedial excavations in Pond 7. Individual survey results are displayed as interpolated color mixtures based on the discrete color values shown in the legend.

Figure 4: Final status soil sampling results after completion of remedial excavations in Pond 7. Individual survey results are displayed as interpolated color mixtures based on the discrete color values shown in the legend.

Location ID	Latitude Longitude		Soil Depth (cm)	Sample Date	Ra-226 (pCi/g)*	
P7-1	35.34230855	-107.6363358	0-15	3/24/2020	1.8	
P7-2	35.34240058	-107.6360887	0-15	3/24/2020	1.2	
P7-3	35.34234593	-107.6359643	0-15	3/24/2020	6.4	
P7-4	35.34223118	-107.6361648	0-15	3/24/2020	1.1	
P7-5	35.3422097	-107.6358926	0-15	3/24/2020	0.9	

Table 1: FSS radioanalytical results for sediment/soil samples in MWTU Pond 7.

*Ra-226 Cleanup Level = 6.8 pCi/g

TECHNICAL MEMORANDUM						
To: Bruce Norquist (RGR)	Date: August 11, 2020					
From: Randy Whicker (ERG)	Project: Mt. Taylor Mine					
Direct: 970-556-1174	Task(s): Radiological Construction Support					
Cc: Chuck Farr (ERG)						
Subject: Confirmatory radiological survey results for MWTU Pond 8 following remedial excavations.						

Dear Mr. Norquist,

This Technical Memorandum provides the results of radiological survey measurements and soil sampling performed to verify that excavation of historically contaminated sediments at the bottom of Pond #8 in the Mine Water Treatment Unit (MWTU) at the Mt. Taylor Mine achieved compliance with the soil cleanup level for radium-226 concentration. The cleanup level is specified by the New Mexico Environment Department (NMED) in mine reactivation conditions under Discharge Permit DP-61, and by the New Mexico Mining and Minerals Division (MMD) under Mine Permit Cl002RE. This work was conducted in the spring of 2020 in a manner consistent with previous radiological verification surveys of Ponds 3 and 2 as conducted in 2018 and 2019 under the Phase 1 mine reactivation conditions of DP-61 and Mine Permit Cl002RE. The data in this transmittal support a conclusion that compliance with the Ra-226 cleanup level in Pond 8 was achieved.

Please let me know if you have questions or need more information.

Regards,

Aundy Whicher

Randy Whicker, CHP Radiation Safety Officer Mt. Taylor Mine

RIO GRANDE RESOURCES

Radiological Final Status Survey of MWTU Pond 8

1. Introduction

The Mt. Taylor Mine (Site) is an underground uranium mine near San Mateo, New Mexico. Gulf Mineral Resources Company (Gulf) acquired the property and began mine development in 1971. Ore production occurred between 1979 – 1982, and after a transfer of ownership to Chevron Resources Company (Chevron) in 1985, production resumed through 1990. Rio Grande Resources (RGR) acquired the mine and other Chevron property in 1991 and in 1999 the Mine entered standby status under Mine Permit Cl002RE with MMD. Discharge Permit DP-61 with the New Mexico Environment Department (NMED) was renewed in 2015 to accommodate the planned return to active mine status, and on December 29, 2017, the Mine Permit was changed to an active status. On December 3, 2019, RGR notified MMD and NMED of intentions to begin the Site closeout/closure process.

As part of Mine reactivation activities, RGR was required to clean out, regrade and synthetically line eight (8) existing ponds that collectively function as a Mine Water Treatment Unit (MWTU), along with two existing stormwater retention ponds. In accordance with permit requirements, in 2018 contaminated sediments in MWTU Pond 3 and the South Stormwater Pond were cleaned out and analytically verified to meet the approved cleanup level for radium-226 (Ra-226), followed by installation of a new synthetic liner system with leak detection technology in Pond 3, and an engineered clay liner in the South Stormwater Pond. In 2019, contaminated sediments in MWTU Pond 2 were also cleaned out, verified to meet the Ra-226 cleanup level, and a new liner system with leak detection was installed.

Contaminated sediments from the remaining MWTU Ponds were cleaned out in 2019 under the Phase I reactivation project, and in the spring of 2020 radiological surveys were performed to verify compliance with the cleanup level for Ra-226. A delay in performing final status surveys (FSS) after the initial cleanup was necessitated by technical and safety issues related to winter weather conditions, and in some cases, additional delays in obtaining final analytical results from the lab were necessary due to additional remediation and/or re-sampling of locations where the initial FSS sample did not meet the release criterion. This Technical Memorandum provides final results of radiological survey measurements and sampling performed to verify that excavation of historically contaminated sediments at the bottom of MWTU Pond 8 has resulted in compliance with the Ra-226 cleanup level.

2. Cleanup Level for Pond Sediments

NMED guidance specifies a standard for Ra-226 of 5 picocuries per gram (pCi/g) above the background concentration for existing uranium mines in New Mexico (NMED, 2016). A background concentration for Ra-226 of 1.8 pCi/g was approved for the Mount Taylor Mine in 2012 by NMED. Therefore, the calculated gross cleanup level (inclusive of background) for Ra-226 is equal to 6.8 pCi/g (equivalent to 5 pCi/g above background).

RIO GRANDE RESOURCES

3. Methods

The radiological survey and sampling methods used in 2018 and 2019 to guide excavation of contaminated sediments in Ponds 2 and 3 and to subsequently verify compliance with the Ra-226 cleanup level as part of mine reactivation efforts, were also used in 2020 for the FSS of Pond 8. The approach was based on a combination of gamma radiation surveys and soil sampling. A GPS-based gamma radiation survey across Controlled Areas at the Mine property was conducted before Mine reactivation construction work was initiated in the spring of 2018 (Figure 1). Prior to initiation of the 2018 construction work, the highest gamma exposure rates at the Site were located above contaminated sediments at the bottom of various MWTU ponds. Because elevated gamma radiation from terrestrial sources largely occurs as a result of elevated Ra-226 concentrations in surface material, a site-specific statistical correlation between gamma readings and Ra-226 concentrations in surface soil was developed (Figure 2). This enabled use of gamma radiation measurements to guide the depth of remedial excavation based on a gamma cutoff goal derived in part from the gamma/Ra-226 correlation.

Figure 1: Gamma radiation levels prior to initiation of Mine reactivation construction work in 2018.

Figure 2: Statistical correlation between gamma radiation and Ra-226 levels in surface soil (top) and potential gamma cutoff values at the Ra-226 cleanup level (bottom).

The correlation data in Figure 2 were collected to the extent possible at site locations with relatively flat topography and uniform Ra-226 levels, and where the confounding effects of gamma "shine" from adjacent soil contamination was minimized. To help mitigate gamma shine effects, a specially designed lead shield was used for gamma measurements within the MWTU ponds. However, the ponds have steep side slopes, gamma shine is prevalent, and radiological conditions for gamma measurements inside of the ponds are not fully represented by those used to develop the shielded gamma/Ra-226 correlation. To address this issue, and as previously reported (ERG, 2018), the shielded gamma cutoff value was qualitatively modified for use in the ponds to ensure compliance with the Ra-226 cleanup level without requiring excavation of more material than necessary. As a general guideline, a lead-shielded gamma cutoff goal of 10,000 counts per minute (CPM) has proven effective for guiding the depth of excavation in the MWTU ponds, and this gamma cutoff was used to guide remedial excavations in Pond 8, followed by confirmatory Final Status Survey (FSS) soil sampling at spatially representative locations.

4. Pond 8 FSS Results

A shielded gamma count rate at or below the 10,000 CPM cutoff goal was achieved across the vast majority of excavated Pond 8 surfaces (Figure 3). Small, localized exceptions occurred in near former inlet/outlet hydraulic control structures at the rim of the pond as it was not possible to meet the gamma cutoff without compromising the structural integrity of the berm supporting these structures. Final status soil sampling results across Pond 8 are shown in Figure 4 and numerically tabulated in Table 1.

In cases where a given FSS soil sample was predicted to exceed the cleanup level based on onsite screening measurements taken inside of a low-background, lead-shielded counting well, a composite sample was subsequently collected across a 100 m² area centered on the original discrete location to determine compliance with the spatial requirements of the cleanup level (an average Ra-226 concentration of 6.8 pCi/g across any 100 m² area).

In cases where the offsite lab reported a result for a discrete FSS sample that exceeded the cleanup level, follow-up gamma measurements were used to determine the need for further excavation and/or composite sampling as described above. All FSS samples (both discrete and composite) were sent to the offsite commercial laboratory for quantitative Ra-226 analysis. As shown in Figure 4 and numerically tabulated in Table 1, final results for all soil/sediment sampling locations were below the 6.8 pCi/g cleanup level for Ra-226.

5. Conclusions

The radiological Final Status Survey data presented in this Technical Memorandum document that following remedial excavations, compliance with the 6.8 pCi/g cleanup level for Ra-226 concentrations in surface material was achieved across the vast majority of excavated surfaces within MWTU Pond 8. Potential exceptions occurred near former inlet/outlet hydraulic control structures as it was not possible to meet the gamma cutoff value without compromising the structural integrity of the berm supporting these structures.

RIO GRANDE RESOURCES

6. References

Environmental Restoration Group, Inc. (ERG). 2018. Confirmatory Radiological Surveys of Surface Pond Facilities. November 20, 2018. Technical Memorandum concerning Pond #3 and South Stormwater Pond.

New Mexico Environment Department (NMED). 2016. Joint Guidance for the Cleanup and Reclamation of Existing Uranium Mining Operations in New Mexico. NMED, Mining Environmental Compliance Section and Energy, Minerals and Natural Resources Department, Mining and Minerals Division.

Figure 3: Final status shielded gamma radiation survey results after completion of remedial excavations in Pond 8. Individual survey results are displayed as interpolated color mixtures based on the discrete color values shown in the legend.

Figure 4: Final status soil sampling results after completion of remedial excavations in Pond 8. Individual survey results are displayed as interpolated color mixtures based on the discrete color values shown in the legend.

Location ID	Latitude	Longitude	Soil Depth (cm)	Sample Date	Ra-226 (pCi/g)*
P8-1	35.345495	-107.636049	0-15	5/27/2020	1.8
P8-2	35.345230	-107.636057	0-15	3/25/2020	1.1
P8-3	35.345021	-107.636071	0-15	3/25/2020	4.9
P8-4	35.345376	-107.635691	0-15	3/25/2020	1.5
P8-5	35.345061	-107.635674	0-15	3/25/2020	1.1
P8-6	35.345400	-107.635316	0-15	3/25/2020	1.0
P8-7	35.344945	-107.635430	0-15	4/2/2020	1.6
P8-8	35.345195	-107.635267	0-15	3/25/2020	1.1

Table 1: FSS radioanalytical results for sediment/soil samples in MWTU Pond 8.

*Ra-226 Cleanup Level = 6.8 pCi/g

NMED Cmnt 40

Figure D-1-1 MWTU Pond Sample Location Maps

Bulk samples of shaft muck from Mt. Taylor Mine waste rock pile collected on 5/18/2012 by Alan Kuhn. Locations are approximate (+/- 50 ft) based on visual reference to slopes. Splits delivered 5/18/12 to Kleinfelder Albuquerque for grain size analysis and plasticity tests. Other splits left with RGR Mine office for shipment to Energy Labs for testing of U and Ra concentration.

NMED Cmnt 7

Ore Pad Characterization

Table 4 Ore Pad Area Subsurface Soil Sample Field Ex-Situ Gamma Screening and Vendor Laboratory Results Summary

Sampling Data				Field Soil Screening Data						Laboratory Data					
Sample ID	Sample Depth (ft)	Sample Date	Sample Time	Description	Screen Date	Sample Weight grams	609 (559-669) Kev Gross Counts CP5M	СРМ	6.6 pCi/g Ra- 226 Reference Soil CPM	Soil Gamma Screening Estimated Ra- 226 pCi/g	SSL (< or >)	Sample Sent to Lab	Ra-226 pCi/g	Error Estimate pCi/g	MDC pCi/g
OPSB-01 0-13'	0 to 13'	6/1/2023	1005	Light/dark grey waste rock	6/1/2023	3000	26904	5381	529	74	>	Ν	-	-	-
OPSB-01 13.5'	13.5	6/1/2023	1020	Light/dark grey waste rock	6/1/2023	3000	11560	2312	529	31	>	N	-	-	-
OPSB-02 0-4'	0 to 4'	6/1/2023	1115	Grey/dark ore waste rock	6/1/2023	3000	182551	36510	529	510	>	N	-	-	-
OPSB-02 4.5'	4.5	6/1/2023	1100	Dark/light grey clay & waste rock	6/1/2023	3000	35425	7085	529	98	>	N	-	-	-
OPSB-02 5.5'	55	6/1/2022	1120	Light brown silty sand mix	6/1/2023	3000	1189	238	529	1 0	<	Y	0.9	0.1	0.1
DSSB-05			OPSB-02 5.5' Field QA/QC Duplicate								Y	0.8	0.1	0.1	
OPSB-03 0-4'	0 to 4'	6/1/2023	850	Grey/dark waste rock mix	6/1/2023	3000	56365	11273	529	156	>	Ν	-	-	-
OPSB-03 4.2'	4.2	6/1/2023	910	Grey/dark brown clay waste rock mix	6/1/2023	1708	2091	735	529	8.9	>	Y	4.4	0.2	0.1
OPSB-03 4.5'	4.5	6/1/2023	925	Dark brown clay	6/1/2023	3000	1193	239	529	1.9	<	Y	0.8	0.1	0.1
OPSB-04 0-4'	0 to 4'	6/1/2023	815	Grey/dark waste rock mix	6/1/2023	3000	8428	1686	529	22	>	N	-	-	-
OPSB-04 4.8'	4.83	6/1/2023	825	Dark clay mixed with brown silty soil	6/1/2023	3000	1124	225	529	1.8	<	N	-	-	-
OPSB-04 4.5'	4.5	6/1/2023	835	Grey/dark brown clay waste rock mix	6/1/2023	3000	4373	875	529	11	>	N	-	-	-
OPSB-05 0-3'	0 to 3'	6/1/2023	1200	Grey/dark waste rock mix	6/1/2023	3000	32147	6429	529	89	>	N	-	-	-
OPSB-05 3'	3	6/1/2023	1140	Grey/dark brown clay waste rock mix	6/1/2023	3000	5526	1105	529	14	>	N	-	-	-
OPSB-05 3.75'	3.75	6/1/2023	1155	Light brown sandy silty soil	6/1/2023	3000	1587	317	529	3.0	<	Y	0.9	0.1	0.1

(1) Projection: NAD 1983, New Mexico West, Feet.

Figure 2 Mt. Taylor Mine Site Windblown and Ore Pad Area Soil Sample/Test Pit Locations and April 2023 Surface Gamma Scan Survey

Legend

Ra-226 pCi/g		•	6.9 - 10.0 pCi/g	•	30.1
•	<1.8 pCi/g	•	10.1 - 20.0 pCi/g	٠	>40.
•	1.9 - 6.8 pCi/g	٠	20.1 - 30.0 pCi/g	$\times - \times$	Nort

Note: Ra-226 pCi/g is determined from surface soil gamma radiation scan using 2x2 NaI detector and Site specific gamma radiation level (cpm) correlation.

- 40.0 pCi/g

).1 pCi/g

th Controlled Fence

Soil Radiologic Characterization Area Soil Sample/Test Pit (>6.8 Ra-226 pCi/g RCC Depth) Location

NMED Cmnt 14

Table 4-3, Update

Table 4.3 Earthwork Balance

EXCAVATION - Contaminated Soil							
LOCATION	Volume, CY	Destination					
Treated Water Discharge Pipeline (TWDP) Corridor	8400						
Borrow Area C north of Marquez Arroyo (Including hotspots identified by ERG survey)	25000						
Ore Pad and Ore Pad Runoff Retention Pond	91400						
MWTU Area less pond basins and Borrow area A	29100						
County Road 334 and Other roads	12000	Disnosal Cell					
Service and Support Areas	106950						
Disposal Cell Expansion Pit Area	9300						
SSWP Area	3000						
Diesel-contminted Soil	7400						
Continental Divide Coop Substation	1850						
Total	294400						
FXCAVAT	TION - Clean S						
LOCATION	Volume LCV	Destination					
Rorrow Area A and C North of Marguez arroy o ¹	76580	Waste Pile / Disposal Cell - Clay Cover and Liner					
MW/TH Area	141900	Establishing final grades in MWTH area					
Ore Pad and North Diversion channel	12600	Establishing final grades in Oro Pad area					
Service and Support Area including chiller bench and	12000						
north parking lot	56000	General fill in Service and Support area					
Disposal Cell expansion pit	44000	Waste Pile/ Disposal Cell - loam cover					
Total	331080						
Fill	- Clean Soil						
LOCATION	Volume, LCY	Sources					
MWTU Area	141900	Rough grading for establishing final grades					
Ore Pad and North Diversion channel	12600	Rough grading for establishing final grades					
Service and Support Area	52700	Chiller bench and North Parking lot					
Fill For shaft plugs and other misc structures	3400	Chiller bench and North Parking lot					
Fill needed for Disposal cell berms, liners, and cover	120490						
	120480	Disposal cell pit and grading around Car shop					
Total	331080	Disposal cell pit and grading around Car shop					
Total FINAL GRADING	331080	Disposal cell pit and grading around Car shop NOTES					
Total FINAL GRADING LOCATION	331080 Area, SY	Disposal cell pit and grading around Car shop NOTES 1) Soil must meet project specifications for Clay					
Total FINAL GRADING LOCATION Treated Water Discharge Pipeline Corridor	331080 Area, SY 70750	Disposal cell pit and grading around Car shop NOTES 1) Soil must meet project specifications for Clay					
Total FINAL GRADING LOCATION Treated Water Discharge Pipeline Corridor Area C north of Marquez Arroyo	331080 Area, SY 70750 104850	Disposal cell pit and grading around Car shop NOTES 1) Soil must meet project specifications for Clay					
Final GRADING LOCATION Treated Water Discharge Pipeline Corridor Area C north of Marquez Arroyo Ore Pad	Area, SY 70750 104850 58225	Disposal cell pit and grading around Car shop NOTES 1) Soil must meet project specifications for Clay					
Total FINAL GRADING LOCATION Treated Water Discharge Pipeline Corridor Area C north of Marquez Arroyo Ore Pad Ore Pad Runoff Retention Pond	Area, SY 70750 104850 58225 9640	Disposal cell pit and grading around Car shop NOTES 1) Soil must meet project specifications for Clay					
Total FINAL GRADING LOCATION Treated Water Discharge Pipeline Corridor Area C north of Marquez Arroyo Ore Pad Ore Pad Runoff Retention Pond Borrow Area A Deated Colspan="2">Retention Pond	Area, SY 70750 104850 58225 9640 38270	Disposal cell pit and grading around Car shop NOTES 1) Soil must meet project specifications for Clay					
Total FINAL GRADING LOCATION Treated Water Discharge Pipeline Corridor Area C north of Marquez Arroyo Ore Pad Ore Pad Runoff Retention Pond Borrow Area A Borrow Area B DUMERTIAL	Area, SY 70750 104850 58225 9640 38270 29800	Disposal cell pit and grading around Car shop NOTES 1) Soil must meet project specifications for Clay					
Total FINAL GRADING LOCATION Treated Water Discharge Pipeline Corridor Area C north of Marquez Arroyo Ore Pad Ore Pad Runoff Retention Pond Borrow Area A Borrow Area B MWTU Area County Panel 224	Area, SY 70750 104850 58225 9640 38270 29800 198416	Disposal cell pit and grading around Car shop NOTES 1) Soil must meet project specifications for Clay					
Total FINAL GRADING LOCATION Treated Water Discharge Pipeline Corridor Area C north of Marquez Arroyo Ore Pad Ore Pad Runoff Retention Pond Borrow Area A Borrow Area B MWTU Area County Road 334 Boade and Well Pade	Area, SY 70750 104850 58225 9640 38270 29800 198416 35150	Disposal cell pit and grading around Car shop NOTES 1) Soil must meet project specifications for Clay					
Total FINAL GRADING LOCATION Treated Water Discharge Pipeline Corridor Area C north of Marquez Arroyo Ore Pad Ore Pad Runoff Retention Pond Borrow Area A Borrow Area B MWTU Area County Road 334 Roads and Well Pads Old Ore Load out Bit	Area, SY 70750 104850 58225 9640 38270 29800 198416 35150 48400 17850	Disposal cell pit and grading around Car shop NOTES 1) Soil must meet project specifications for Clay					
Total FINAL GRADING LOCATION Treated Water Discharge Pipeline Corridor Area C north of Marquez Arroyo Ore Pad Ore Pad Runoff Retention Pond Borrow Area A Borrow Area B MWTU Area County Road 334 Roads and Well Pads Old Ore Load-out Pit Shaft areas	Area, SY 70750 104850 58225 9640 38270 29800 198416 35150 48400 17850 18375	Disposal cell pit and grading around Car shop NOTES 1) Soil must meet project specifications for Clay					
Total FINAL GRADING LOCATION Treated Water Discharge Pipeline Corridor Area C north of Marquez Arroyo Ore Pad Ore Pad Ore Pad Runoff Retention Pond Borrow Area A Borrow Area B MWTU Area County Road 334 Roads and Well Pads Old Ore Load-out Pit Shaft areas Service and Support Area (lessbBuilding areas)	Area, SY 70750 104850 58225 9640 38270 29800 198416 35150 48400 17850 18375 46082	Disposal cell pit and grading around Car shop NOTES 1) Soil must meet project specifications for Clay					
Total FINAL GRADING LOCATION Treated Water Discharge Pipeline Corridor Area C north of Marquez Arroyo Ore Pad Ore Pad Ore Pad Runoff Retention Pond Borrow Area A Borrow Area B MWTU Area County Road 334 Roads and Well Pads Old Ore Load-out Pit Shaft areas Service and Support Area (lessbBuilding areas) Chiller bench	Area, SY 70750 104850 58225 9640 38270 29800 198416 35150 48400 17850 18375 46082 20116	Disposal cell pit and grading around Car shop NOTES 1) Soil must meet project specifications for Clay					
Total FINAL GRADING LOCATION Treated Water Discharge Pipeline Corridor Area C north of Marquez Arroyo Ore Pad Ore Pad Runoff Retention Pond Borrow Area A Borrow Area B MWTU Area County Road 334 Roads and Well Pads Old Ore Load-out Pit Shaft areas Service and Support Area (lessbBuilding areas) Chiller bench compresser bench	Area, SY 70750 104850 58225 9640 38270 29800 198416 35150 48400 17850 18375 46082 20116 21958	Disposal cell pit and grading around Car shop NOTES 1) Soil must meet project specifications for Clay					
Total FINAL GRADING LOCATION Treated Water Discharge Pipeline Corridor Area C north of Marquez Arroyo Ore Pad Ore Pad Runoff Retention Pond Borrow Area A Borrow Area B MWTU Area County Road 334 Roads and Well Pads Old Ore Load-out Pit Shaft areas Service and Support Area (lessbBuilding areas) Chiller bench compresser bench Car Shop Area	Area, SY 70750 104850 58225 9640 38270 29800 198416 35150 48400 17850 18375 46082 20116 21958 30693	Disposal cell pit and grading around Car shop NOTES 1) Soil must meet project specifications for Clay					
Total FINAL GRADING LOCATION Treated Water Discharge Pipeline Corridor Area C north of Marquez Arroyo Ore Pad Ore Pad Runoff Retention Pond Borrow Area A Borrow Area B MWTU Area County Road 334 Roads and Well Pads Old Ore Load-out Pit Shaft areas Service and Support Area (lessbBuilding areas) Chiller bench compresser bench Car Shop Area Waste Rock Pile / Disposal pit	Area, SY 70750 104850 58225 9640 38270 29800 198416 35150 48400 17850 18375 46082 20116 21958 30693 93412	Disposal cell pit and grading around Car shop NOTES 1) Soil must meet project specifications for Clay					
Total FINAL GRADING LOCATION Treated Water Discharge Pipeline Corridor Area C north of Marquez Arroyo Ore Pad Ore Pad Ore Pad Runoff Retention Pond Borrow Area A Borrow Area B MWTU Area County Road 334 Roads and Well Pads Old Ore Load-out Pit Shaft areas Service and Support Area (lessbBuilding areas) Chiller bench compresser bench Car Shop Area Waste Rock Pile / Disposal pit Substation	Area, SY 70750 104850 58225 9640 38270 29800 198416 35150 48400 17850 18375 46082 20116 21958 30693 93412 4400	Disposal cell pit and grading around Car shop NOTES 1) Soil must meet project specifications for Clay					

SPECIFICATION No. MW-CB01-00

EARTHWORK FOR POND RECONSTRUCTION PHASE 1 REACTIVATION

SPECIFICATION No. MW-CB01-00

EARTHWORK FOR POND RECONSTRUCTION

PHASE 1 REACTIVATION

MOUNT TAYLOR MINE CIBOLA COUNTY, NEW MEXICO

RIO GRANDE RESOURCES CORP.

REVISION 0

JANUARY, 2018

Prepared by

Alan Kuhn Associates, LLC

TABLE OF CONTENTS

1.	GENERAL	1
	1.1 PROJECT DESCRIPTION	1
	1.2 INCLUDED WORK	
	1.3 Responsibilities	2
	1.4 DEFINITIONS	2
	1.5 References	4
	1.6 LIST OF DRAWINGS	4
2	EXECUTION	4
	2.1 SITE PREPARATION	4
	2.2 WASTE PILE	
	2.2.1 Waste Pile Slopes	5
	2.2.2 Mine Debris Pit	5
	2.2.3 Disposal Cell on the Waste Pile	5
	2.3 ORE AND CONTAMINATED SEDIMENT	6
	2.3.1 Excavation of Ore, Contaminated Soil, and Sediment	6
	2.3.2 Transport and Disposal of Ore and Contaminated Sediment	7
	2.4 EXCAVATION OF NON-CONTAMINATED SOIL AND SOFT ROCK	7
	2.5 Anchor Trenches	7
	2.6 Hydraulic Structure Excavation and Backfill	8
	2.6.1 Pond Structures	8
	2.6.2 Drainage Structures	8
	2.6.3 Backfill	8
	2.7 MWTU Ponds	8
	2.7.1 Pond Subgrade Preparation	8
	2.7.2 Clay Underliner	9
	2.8 SOUTH STORM WATER POND (SSWP)	10
	2.8.1 Pond Base Preparation	10
	2.8.2 Clay Liner	10
	2.8.3 KIP Kap	11
	2.9 SERVICE ROADS	11
3	QUALITY CONTROL	11
	3.1 Supervision	12
	3.2 LINE AND GRADE CONTROL	12
	3.3 EARTHWORK FIELD AND LABORATORY TESTING	12
4	DOCUMENTATION	12
	4.1 DOCUMENTATION BY CONTRACTOR	12
	4.2 DOCUMENTATION BY THE OWNER	13
5	ACCEPTANCE AND WARRANTY	13
6	SCHEDULE	13
-		-

LIST OF DRAWINGS

1. GENERAL

1.1 Project Description

Rio Grande Resources Corporation (RGR) is reactivating the Mount Taylor Mine that has been inactive since 1990. This underground uranium mine is located 1/2 mile northeast of the Village of San Mateo, Cibola County, New Mexico in Section 24, T13N, R8W, NMPM. The mine is accessible from New Mexico State Route 605, 23 miles north of Milan, NM.

As part of the reactivation activities and to satisfy current environmental standards and permit requirements, RGR will upgrade certain facilities including:

- Pond # 2, part of the Mine Water Treatment Unit (MWTU)
- Pond # 3, part of the Mine Water Treatment Unit (MWTU)
- South Storm Water Pond (SSWP)
- North, west and south slopes of the waste rock pile
- Initial portion of the waste disposal cell on the waste rock pile
- Storm water collection and drain pipes, culverts, manholes, and ditches
- Sanitary septic leach field

MWTU ponds will be lined with a three-part liner system consisting of two HDPE membranes (primary and secondary liners) and an HDPE geonet leak detection/drainage layer between the two membranes. Existing inlet and outlet hydraulic control structures will be upgraded with repairs and addition of concrete curbs and aprons for connection of geomembrane liners.

The SSWP will receive a clay liner constructed of locally available native clay soils selected by the Owner. When this liner is completed, a new inlet structure, an overflow structure, and a sediment/oil separator will be constructed.

To enlarge the SSWP, the existing pond will be deepened, its east side will be extended eastward and its north side will be extended northward, requiring abandonment of the existing leach field, which will be replaced with a new leach field. The north and west slopes of the waste rock pile will be reduced to 5H:1V slope to enable SSWP construction.

Contaminated sediment and soil will removed from MWTU ponds, the Ore pad runoff retention pond, and the SSWP, and ore and contaminated soil will be removed from the ore pad. The removed materials will be placed in the waste disposal cell on the top of the waste rock pile.

The storm water on a portion of the site is collected in storm water drains and presently discharged to the SSWP and Pond #2. Discharge of storm water presently going to Pond #2 will be redirected to the SSWP by changes to the storm water drain along the south side of the county road (#334) and addition of drain pipe, catch basins, and manholes.

1.2 Included Work

Include Work covered in this specification consists of:

- a) Supply and mobilize/demobilize earthwork and supporting equipment.
- b) Excavate and grade the north and west slopes of the mine waste pile to 5H:1V.
- c) Construct the mine debris pit and the contaminated sediment disposal cell on the waste pile.
- d) Remove mine debris exposed in waste pile excavation and place in the pit within the waste pile

- e) Place the clay liner in the waste disposal cell, after the debris pit has been closed.
- f) Excavate contaminated sediments from SSWP, the MWTU area and pond basins, including slopes, and place them in the waste pile disposal cell,
- g) Excavate ore and contaminated sediment from the ore pad and dispose in the disposal cell.
- h) Prepare the final pond #2 and #3 slopes and bottoms by excavation and fill to the design lines and grades
- i) Place clay liner in the SSWP and clay underliner in MWTU ponds #2 and #3
- j) Place soil cover on the disposal cell and waste pile.
- k) Perform finish grading and ditching for improvement and maintenance of existing roads on site.
- 1) Support construction of new concrete hydraulic control structures, and
- m) Support the HDPE liner contractor installing geomembrane liners in the MWTU ponds.

Related Work Performed by Others

- Radiological surveys and monitoring
- HDPE liner installation by a qualified subcontractor approved by the Owner
- Quality Control testing for earthwork..
- Initial and final land surveys of pond locations, lines, and grades.

1.3 Responsibilities

Rio Grande Resources Corporation (RGR), the "Owner", will evaluate bids and award all contracts for the Included Work (Section 1.2) and Related Work, will provide controlled access to the work site, will make construction water available at a location on the property, and will approve and make payment for work performed under this specification.

Alan Kuhn Associates (AKA), the "Engineer", will review or inspect and advise the Owner on the acceptance of the Included Work.

Contractor shall provide all equipment, materials, labor and supplies and perform all work necessary to accomplish the Included Work. Contractor shall be responsible for the safety of its job site and of all personnel and equipment that it employs on the job site.

Quality Control Contractor (QCC) contracted by the Owner will observe, measure, sample and perform soil tests to document the Contractor's compliance with this specification and the drawings. The Land Surveyor contracted by the Owner will establish local ground control for the Contractor to use in achieving the required lines, grades, and dimensions of the work.

The Radiological Consultant, an independent contractor to the Owner, will provide radiological survey and worker radiological health and safety support during removal and disposal of ore, pond sediments, and contaminated soil.

1.4 Definitions

Anchor trench – a shallow trench around the perimeter of a geomembrane-lined pond in which the outer end of the liner and backfill are placed to secure the liner.

Contaminated sediment: Soil and solid chemical precipitate containing radium concentrations above 6.8 pCi/g deposited from mine water during prior mine operations.

Compactors, heavy: Self-propelled or towed compaction machinery including rubber-tired rollers, tamping foot (sheep's foot) rollers, and smooth drum vibrating compactors weighing in excess of 5000 lbs. and controlled by mounted operator.

Compactors, light: Vibrating or tamping compactors weighing less than 5000 lbs. and controlled by a walk-behind operator.

Disposal cell: The area on the waste rock pile designated for disposal of radiologically contaminated soil and pond sediment.

Fines: Mineral particles (soil or tailings) passing the #200 U.S. Standard sieve; i.e. smaller than 0.075 mm grain size.

Foreign material: Any solid material that is not natural soil. Includes wood, iron and steel, plastic, rubber, glass, ceramic and concrete.

HDPE: High-density polyethylene geosynthetic material

Hydraulic control structure: Concrete or steel structure within the limits of the pond used to control water movement into or out of the pond

Job site: The location of the ponds as well as all access routes, borrow areas, equipment laydown locations and storage areas on Owner property used in Included Work.

Leak Detection and Collection System (LDCS): A sump and riser pipe hydraulically connected to the middle layer (geonet) of the geomembrane liner, used to monitor and removal water that leaks through the top liner.

Liner: A man-made barrier with very low permeability that blocks liquid flow from the evaporation pond, composed of natural or synthetic materials

Mine Water Treatment Unit (MWTU): Facilities located north of County Road 334 that receive, detain, treat and transfer mine water and other on-site water prior to discharge from the mine site.

Native soil, natural soil: Naturally-occurring alluvial or residual soils existing below and at ground surface around the job site; consisting of gravel, sand, silt and clay materials.

Rip rap (also riprap): Well- graded mixture of rock, broken concrete, or other durable material, dumped or hand placed to prevent erosion, scour, or sloughing due to surface water flow.

Sand: Mineral particles with grain sizes between #200 and #4 sieve (0.075 mm to about 5 mm).

Soil classification: Soil descriptions based on grain size distribution and plasticity in accordance with the Unified Soil Classification System (USCS). Classifications of soils in the pond area are:

GW – well-graded gravel

SW – well-graded sand

SP – poorly-graded sand with less than 5% fines

SM – silty sand composed of 12-50% silt fines and 50% more sand

SC – clayey sand composed of 12-50% clay fines and 50% more sand

SP-SM - sand with 5-12% silty fines

ML – more than 50% fines that classify as silt, according to reference b, and liquid limit less than 50

MH - same as ML except liquid limit 50 or more

CL – more than 50% fines that classify as clay, according to reference b, and liquid limit less than 50

CH – same as CL except liquid limit 50 or more

1.5 References

ACI Standard 318-11 Building Code Requirements for Structural Concrete and Commentary

- ACI 350-06 Code Requirements for Environmental Engineering Concrete Structures
- ASTM C39 / C39 -16 Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens
- ASTM C94 / C94M 15b Standard Specification for Ready-Mixed Concrete
- ASTM-C150 Standard Specification for Portland Cement
- ASTM C33 / C33M -16 Standard Specification for Concrete Aggregates
- ASTM D422 63(1998) Standard Test Method for Particle-Size Analysis of Soils
- ASTM D698-12e2 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lb/ft3 (600 kN-m/m3))
- ASTM D2922 04 Standard Test Methods for Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth)
- ASTM D3017 04 Standard Test Method for Water Content of Soil and Rock in Place by Nuclear Methods (Shallow Depth)

ASTM D4318-10e1 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

ASTM D4994-07 Standard Practice for Evaluation of Rock to be Use for Erosion Control

ASTM D5084 - 03 Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall

National Engineering Handbook, Part 642 National Standard Material Specifications, Chapter 3, Material Specification 523—Rock for Riprap

1.6 List of Drawings

Drawings listed on the attached table "LIST OF DRAWINGS, EARTHWORK FOR POND RECONSTRUCTION" are incorporated into this specification by reference.

2 EXECUTION

The Contractor shall procure the equipment and materials necessary for all earthwork required by this specification and shall make them available on the work site when needed. The estimated quantities of materials are listed on the Bid Schedule, Rev. 0.

The Contractor shall perform the following work.

2.1 Site Preparation

The Contractor shall remove vegetation and foreign material from the areas of excavation and fill, as shown on the drawings, and dispose of non-salvaged material in the designated disposal area as directed by the Owner. Any pieces of foreign material that are too small to be individually handled by earthmoving equipment shall be removed by hand or excavated with the surrounding soil and placed in the disposal area.

The Contractor shall determine and mark the locations of buried utilities and other objects that could be damaged or disturbed by earthwork activities. Markings shall be made with bright-colored tape, paint, or barriers that will remain in place for the duration of the earthwork.

Prior to mobilization to the site, the Contractor shall have a Surface Water Pollution Prevention Plan (SWPPP) prepared by or under the direction of a Qualified SWPPP Developer and in accordance with EPA 833-B-09-002, *Developing Your Stormwater Pollution Prevention Plan*.

2.2 Waste Pile

2.2.1 Waste Pile Slopes

Before other excavation is initiated, the Contractor shall excavate and grade the north, west, and south slopes of the mine waste pile, as shown on Drawings GSSW-CB101-0 and GSSW-CB104-0, to reduce surface grades to 5H:1V. The excavated mine waste materials, consisting of waste rock (weathered rock and soil-size materials) as well as non-earth mine debris (broken concrete, metal, plastic, and timbers removed from the mine) shall be moved from the slopes to the top surface of the pile. Mine debris removed from the slopes shall be buried in a pit excavated into the waste rock, as described in Section 2.2.2 below. The finished 5H:1V slope surfaces shall be free of mine debris.

After the waste pile slopes have been re-shaped, the contractor shall place not less than 2.0 feet of clean soil cover on the re-shaped slope surfaces. Soil for this cover shall have USCS classification of CL, CH or SC may be obtained from the shaft muck pile located on the southwest corner of the waste pile, as shown on Drawing GSSW-CB104-0, and from other locations on the mine site approved by the Owner. The soil cover shall be placed in loose lifts of not more than eight (8) inches and compacted to not less than 90% maximum dry density per ASTM D 698. The top lift may include rock fragments up to three (3) inches.

2.2.2 Mine Debris Pit

In addition to waste rock removed from the mine, the waste pile contains debris consisting of timber, concrete, metal and plastic of various sizes and shapes that was removed from the mine and scattered throughout the waste pile. During excavation of the waste pile slopes to achieve design grade, mine debris will be encountered at and above the design grades of the waste pile.

Mine debris exposed during excavation of the waste pile slopes shall be removed for disposal in a pit to be located within the footprint of the waste disposal cell and below the bottom elevation of the clay liner of the disposal cell. The pit shall be no deeper than 10 feet below the base elevation of the clay liner unless approved by the Owner, and the southwest corner of the pit shall be at the southwest corner toe of the inside slope of the waste cell berm (see Drawing GSSW-CB104-00, Sheet SW06). The pit shall be expanded east and north from that point and shall be progressively excavated as needed to contain the mine debris. The area of the pit will depend on the amount of debris encountered, but the initial pit area is estimated to be 50 feet by 50 feet.

Mine debris shall be placed in the pit in loose lifts not to exceed 5.0 feet in depth. After a lift is placed, it shall be flooded with CLSM (flowable fill) per Section 2.4.1 of Specification GS-GC01-00. Each lift shall be covered with excavatable flowable fill (CLSM), which shall be left undisturbed for at least 24 hours to allow it to set before the next lift of debris is placed over it.

2.2.3 Disposal Cell on the Waste Pile

As the waste pile slopes are being excavated and graded, the Contractor shall construct the waste disposal cell on the top of the waste pile as the repository for ore removed from the ore pad, radiologically-contaminated soil and sediments removed from various locations on the mine site. The existing top surface of the waste pile slopes to the east at grades of less than 0.03, so only finish grading will be required on the surface prior to waste cell berm and liner construction.

The disposal cell, illustrated on Drawings GSSW-CB101-0, GSSW-CB104-0, GSSW-CB203-00, and GSSW-CB902-00 shall be located on the top of the waste pile and shall be enclosed initially on the west and south sides by berms constructed of waste rock excavated from the north and west slopes of the waste pile, as described in Section 2.2.1. The north and east side of the waste disposal cell shall be kept open, without a berm until RGR determines the location and dimensions of the north and east berms based on the actual volume of contaminated materials to be placed in the cell. The berms shall have 5H:1V outer slopes and 3H:1V inside slopes. The maximum dimensions of the bottom of the waste cell shall be approximately 200 feet by 300 feet initially, starting at the southwest corner, and will be expanded to a maximum of 370 feet by 520 feet as necessary, depending on the actual volume of ore, contaminated sediment, and soil that must be removed elsewhere on site.

To construct the west and south berms of the disposal cell, the waste rock excavated from the west and north waste pile slopes (Section 2.2.1) shall be placed in loose lifts not exceeding eight (8) inches along the alignments shown on Drawing GSSW-CS504-00 and to the lines and grades shown on Drawings GSSW-CB104-0, GSSW-CB203-00, and GSSW-CB204-00. Waste rock properties are variable but generally characterized as sandstone fragments in a sandy matrix (USCS soil classes SP, SM and SC), so the Contractor shall use compaction equipment and methods to achieve dry densities of not less than 100 pcf in each lift.

An earthen clay liner shall be placed across the base and inside slopes of the disposal cell. Clay soil for the liner shall be obtained from the shaft muck pile and from other on-site sources of clay approved by the Owner. Before placing the liner, the waste pile surface under the liner shall be compacted by not less than six passes of a compactor of not less than 45,000 lbs. operating weight. The compaction of the base and berm must be sufficient to support the required compaction of the overlying earthen clay liner. The liner shall consist of not less than one (1) foot of soil with USCS classification of SC, CL, or CH placed in loose lifts not exceeding eight (8) inches thickness and compacted to not less than 95% of maximum dry density per ASTM D 698.

2.3 Ore and Contaminated Sediment

2.3.1 Excavation of Ore, Contaminated Soil, and Sediment

A radiological survey has been performed that showed contamination (radium levels exceeding 6.8 pCi/g) to an average depth of 2.0 feet in the MWTU ponds and 4.0 feet in the South Storm Water Pond (SSWP). Lesser depths of contamination exist in the MWTU area outside of the pond basins Pond sediments and soil with radium levels exceeding the 6.8 pCi/g limit are considered to be contaminated. Sediments in <u>all</u> ponds and all soil exceeding the 6.8 pCi/g limit will be excavated and placed in the waste pile disposal cell. Note that the excavation in MWTU ponds, other than ponds #2 and #3, and in the ore pad runoff retention pond will be only that required to remove contaminated sediments and soil.

During excavation, radiological (gamma radiation) measurements will be conducted under the direction of a Certified Health Physicist (CHP) contracted directly by the Owner. These measurements will be made continuously to give the Contractor real-time direction on where and how much to excavate in the ore pad, pond areas and along drain pipe alignments. The Owner, supported by information from the CHP, will make the decision on when contaminated soil has been removed sufficiently to satisfy contamination removal objectives (6.8 pCi/g Ra-226 limit), and only after the Owner's decision will subsequent work be performed in each excavated area.

Approximately 60,000 tons (or 37,000 cubic yards) of uranium ore remain in place on the ore pad. The Contractor shall excavate this ore and the underlying contaminated soils after all other contaminated sediment and soil from other locations have been placed in the disposal cell.

2.3.2 Transport and Disposal of Ore and Contaminated Sediment

The Contractor shall transport ore and contaminated sediments and soil from the ore pad, ore pad runoff retention pond, MWTU ponds area, and the SSWP basin to the waste pile for immediate placement in the waste disposal cell after its clay liner has been constructed per Section 2.2.2 of this specification.

The contaminated soil and sediment shall be spread across the disposal cell in locations directed by the Owner and shall be placed in uniform lifts of not more than 10 inches loose thickness and immediately compacted by not less than four passes of a tamping foot compactor of not less than 20T operating weight before the next lift is placed.

The ore is presently covered by approximately 11,000 cubic yards of soil and is resting on an estimated 2750 cubic yards of contaminated soil. The ore removed from the ore pad shall be placed in a separate temporary ore storage chamber adjacent to the north side of the disposal cell. The existing ore cover soil may be salvaged and used for the chamber liner, but the contaminated ore pad soil shall be placed as the last lift(s) of the ore storage chamber.

The location and approximate dimensions of the ore storage chamber are shown on Drawings GSSW-CS504-0 (Sheet SW02), GSSW-CB101-0 (Sheet SW03), and GSSW-CB104-00 (Sheet SW06). The final clay-covered north slope of the disposal cell shall be the south limit of the ore chamber, and the disposal cell clay liner shall be extended north as necessary as the liner for the ore chamber. Ore shall be placed in lifts and compacted as required for waste rock in Section 2.2.3, progressively building the chamber from south to north. Once all ore and contaminated ore pad soil are placed in the ore chamber, the chamber surface shall be graded to final slopes not exceeding 5H:1V and covered with at least 2.0 feet of clay soil as required for waste pile slopes under Section 2.2.1.

2.4 Excavation of Non-contaminated Soil and Soft Rock

After removal of ore and contaminated sediments, the Contractor shall excavate non-contaminated soil and rock in the basins of Ponds #2 and #3 and the South Storm Water Pond (SSWP) where these materials remain above design excavation grade. As needed, the excavated non-contaminated soil may be used as fill to achieve design grades. The soil consists of alluvial and residual sand, silt and clay. The soft rock consists of shale, sandstone, siltstone and claystone of the Menefee Formation of the Mesaverde Group. Wherever this rock has been encountered below grade on the mine site, it has been excavated using standard earthmoving equipment, including rippers. Equipment and methods appropriate for small excavations shall be used to excavate the anchor trenches and leak detection sumps.

Only excavated, non-contaminated soil classified as SC, SM, CL or CH and free of vegetation or foreign material shall be used as fill in the specified fill work. The Contractor shall proof-roll the excavated surfaces to detect areas of loose soil. If such an area is found, the area shall be excavated to an appropriate depth, filled, and compacted to create a firm base for subsequent fill placement.

The volume of soil and rock excavated may exceed the volume of fill required to construct the pond; in this case excess excavated soil and rock shall be stockpiled at a location on the mine waste rock pile approved by the Owner. Excess excavated soil or rock that is judged by the Owner or the Engineer to be unacceptable for fill shall be stockpiled in locations within 1000 feet of the excavation as designated by the Owner for later use on the site.

2.5 Anchor Trenches

After MWTU Ponds #2 and #3 have been constructed to approved line and grade and the liner installation contractor is ready to place liner in the MWTU ponds, the Contractor shall excavate trenches around the perimeters of Ponds #2 and #3 for anchoring of the pond liner system, as shown

on the drawings. The anchor trench shall be excavated by the earthwork contractor to the lines, grades, and widths shown on the construction drawings prior to liner system placement in the trench. The Owner shall verify that the anchor trench has been excavated according to construction drawings. Slightly rounded corners shall be provided in the trench where the geomembrane adjoins the trench so as to avoid sharp bends in the geomembrane. The plan view of the anchor trenches is shown on drawings MWP2-CX101-00 and MWP3-CX101-00. Details of the anchor trench construction are shown on drawing MW00-CX501-00.

As the HDPE liner is placed in the anchor trenches of the MWTU ponds, the Contractor shall backfill these trenches. The backfill shall be placed in 8-inch loose lifts and compacted by tamping or wheel rolling with light compactors. Each lift shall be moisture-conditioned, mixed, and compacted to achieve in-place dry density of not less than 90% of maximum dry density as determined by ASTM D 698. Care shall be taken when backfilling the trenches to prevent any damage to the geomembranes or geonet; the Contractor shall prevent contact between its earthwork equipment and the liner. If the liner is damaged by the Contractor, it shall be repaired immediately and before any additional backfilling or compaction is performed.

2.6 Hydraulic Structure Excavation and Backfill

2.6.1 Pond Structures

Concrete hydraulic structures for pond inlets, outlets, and water level controls exist in ponds #2 and #3 and will be retained for continued use. However, some components of the existing structures will be demolished and replaced, and some new structures will be constructed. In general, where existing components are removed, they shall be removed at the same time as contaminated sediment is removed, and the concrete debris shall be placed in the waste pile disposal cell and mixed with the contaminated sediment. After the demolished concrete and contaminated sediment have been removed and the backfill and clay underliner have been placed, the Contractor shall excavate the soil material necessary to set forms and place reinforcement required for the new concrete components and structures, as shown on Drawings MW00-CX501-00, MW00-CX504-00, MWP2-CX101-00, and MWP3-CX101-00.

2.6.2 Drainage Structures

Earthwork specific to drainage structure construction is addressed in Specification GS-GC02-00. The contractor shall excavate as necessary to remove drainage structures that will be eliminated or replaced and to enable construction of new drainage structures. The Contractor shall examine utility survey information provided by the Owner to ascertain the location, depth, configuration and size of existing underground cables, pipes, and other features that might be affected by excavation.

2.6.3 Backfill

The contractor shall backfill as necessary around hydraulic structures to establish the finish grades of soil adjacent to structures. See Section 2.7.2 for construction of clay liner over backfill. Backfill shall be soil with USCS classification of CL, CH, or SC. Backfill shall be placed in loose lifts not to exceed eight (8) inches and compacted to the same density as the adjacent compacted or natural soil. The limitations stated in Section 2.7 shall apply to backfill for hydraulic structures.

2.7 MWTU Ponds

2.7.1 Pond Subgrade Preparation

After removal of contaminated sediments from MWTU pond basins, the soil and soft rock in the basins of Ponds #2 and #3 shall be excavated where these materials remain above design subgrade. As needed, excavated non-contaminated soil may be used as fill to achieve design subgrades. Equipment

and methods appropriate for small excavations shall be used to excavate the anchor trenches and leak detection sumps.

The Contractor shall excavate non-contaminated soil and rock or place fill as needed to achieve design subgrades shown on the drawings. Only excavated, non-contaminated soil classified as SC, SM, CL or CH and free of vegetation or foreign material shall be used as fill in the specified fill work. The Contractor shall proof-roll the excavated surfaces to detect areas of loose soil. If such an area is found, the area shall be excavated to an appropriate depth, filled, and compacted as specified below. The Contractor shall place fill to design subgrade elevations in the pond basins where removal of contaminated sediments required excavation below design subgrade or to establish the design pond slopes. The top 0.5 feet of fill may be the clay underliner, described in section 2.7.2.

No fill shall be placed on any surface that is saturated, frozen, or holding free water. No fill shall be placed that contains ice or frozen soil. Within the pond areas, ponded rainwater shall be removed. After any precipitation that causes ponding of water on any fill surface, the water shall be drained and the surface shall be allowed to dry, then scarified and recompacted before the next lift is placed. Throughout fill construction, the fill surface shall be maintained to facilitate runoff and prevent ponding.

Prior to placement of fill, including clay underliner, on any excavated surface, the ground surface shall be moisture-conditioned and compacted to achieve in-place dry density of not less than 90% of maximum dry density as determined by ASTM D 698 (Standard Proctor). The Owner, its Engineer, or its authorized QA/QC testing service will perform field tests to determine in-place densities and moisture contents of the compacted excavation surfaces. A minimum of one in-place density test for each 2000 yards of fill, or two tests for each pond, whichever is more, will be conducted. If any portion of the fill fails to meet the required density, that portion shall be recompacted until it achieves the minimum required density.

The Contractor shall moisture-condition, place and compact fill over the recompacted excavation surface to bring ground surface up to design subgrades, as shown on the drawings and as directed by the Owner. Soil used for fill up to the level of the clay underliner shall be uncontaminated and classified as SM, SC, CL, or CH; be free of visible vegetation or foreign material; and contain no particle larger than 3.0 inches except that within 6.0 inches of the finished liner subgrade surface no particle in the fill shall be larger 0.5 inch. The fill shall be placed in lifts of not more than eight inches loose thickness. The lifts shall be compacted to an average thickness of not more than six inches. Each lift shall be moisture-conditioned, mixed, and compacted to achieve in-place dry density of not less than 90% of maximum dry density as determined by ASTM D 698.

All excavated and filled surfaces of the liner subgrade shall be smooth, free of all foreign and organic material, sharp objects, or debris of any kind. These surfaces shall provide a firm, unyielding liner subgrade with no sharp changes or abrupt breaks in grade. Standing water or excessive moisture shall not be allowed.

Notwithstanding the foregoing liner subgrade requirements, the subgrade shall not be satisfactory until it has met the requirements of Specification MW-CX01-00, section 3.2, as documented on the Subgrade Surface Acceptance form in Appendix B of that specification.

2.7.2 Clay Underliner

After pond liner subgrade has been prepared as needed, the Contractor shall construct a clay underliner on the slopes and bottom of the MTWU ponds. This clay underliner, providing a bedding layer for the HDPE liner, shall consist of not less than 0.5 feet of locally available sandy clay or clay (Cl, CH soil) or clayey sand (SC soil) containing no particle larger than 0.5 inches and shall be compacted to not less than 90 percent Standard Proctor density (ASTM D-698).

After the clay underliner has been placed and compacted to bring ground surface up to liner grade in the MTWU ponds, as shown in the drawings, the Contractor shall construct the modifications to the existing hydraulic control structures for each pond. Upon completion of the modifications to the hydraulic control structures, the Contractor shall complete the finish grading of the clay underliner so that there are no gaps in the contacts between the clay underliner and the hydraulic control structures.

The clay underliner surface shall be accepted as satisfactory if the foregoing criteria are achieved and the completed surface has:

- 1) No indentations greater than 1/2 inch deep
- 2) No irregularities in the surface (surface roughness) greater than 0.1 (ratio of height to least-width of any protrusion in the surface is less than 1 to 10, or 0.1), and
- 3) No visible foreign materials.

The clay underliner surface shall be tested for the three foregoing preparation criteria by the Owner, the Engineer, or the liner QC contractor at not fewer than 10 locations on the pond bottom and six locations on the slopes.

The clay underliner, once placed at specified compaction densities and moisture contents, shall have interface shear strength with the geomembrane material of not less than 20 degrees as determined by ASTM D 5321-02.

2.8 South Storm Water Pond (SSWP)

2.8.1 Pond Base Preparation

After excavating contaminated soils from the SSWP basin, the Contractor shall excavate as needed to achieve the design depths or backfill to the design depths over any over-excavated surfaces or areas of the site where the existing grades need to be raised. The fill shall be non-contaminated soil classified as SM, SC, CL, or CH that is free of visible vegetation or foreign material and contains no particle larger than 3.0 inches. The fill shall be placed in lifts of not more than eight (8) inches loose thickness. The lifts shall be compacted to an average thickness of not more than six (6) inches. Each lift shall be moisture-conditioned, mixed, and compacted to achieve in-place dry density of not less than 90% of maximum dry density as determined by ASTM D 698.

2.8.2 Clay Liner

The Contractor shall place 2.0 feet of clay liner over the pond side slopes and bottom, as shown on Drawings GSSW-CB102-00 and GSSW-CB103-00. Prior to placement of the first lift of clay liner soil, the ground surface shall be scarified.

The clay liner shall be constructed with borrow soils available within ½ mile of the pond location and approved by the Owner. The soils shall be classified as CL or CH soil and shall be free of radiological contamination and visible vegetation or foreign material and particles larger than 0.5 inch. The fill shall be placed in lifts of not more than eight (8) inches loose thickness. The lifts shall be compacted to an average thickness of not more than six (6) inches. Each lift shall be moisture-conditioned, mixed, and compacted to achieve in-place dry density of not less than 95% of maximum dry density as determined by ASTM D 698.

Once the liner is completed, the Contractor shall construct the hydraulic control structures as described in Specification GS-GC02-00 and on Drawings GSSW-CB901-00, GS00-GC104-00, GS00-GC116-00, GS00-GC118-00, GSSW-CS101-00, GSSW-CS201-00, GSSW-CS502-00, GSSW-CS503-00 and GSSW-CS505-00.

Following placement of the clay liner and construction of the hydraulic control structures (Specification No. GS-GC02-00) , the Contractor shall place 0.5 feet of uncontaminated granular or mixed-grain soil

(SC, SM. SP, SP-SM) as a protective cover over the clay liner except in the locations where hydraulic control structures will be constructed. The soil shall be obtained from a local source identified by the Owner. The soil shall be placed in a single lift and compacted by not less than five passes of a vibratory compactor.

2.8.3 Rip Rap

Rip rap shall be placed at discharge ends of storm water hydraulic control structures as shown in Drawings GSSW-CB102-00, GSSW-CB103-00, GSSW-CS201-00 and GSSW-CS501-00. Rip rap materials shall satisfy ASTM D4994-07, the National Engineering Handbook Material Specification 523 for Rock Type 2, and the following requirements:

- Hard and durable, able to resist breaking when struck with a hand-held hammer
- Dry unit weight of 150-175 pcf
- Absorption—Not more than 2 percent when tested per ASTM C 127
- Angular in shape with sharp, clean edges
- Approximately equal dimensions, with largest dimension no greater than three times the smallest dimension
- Maximum size (D_{100}) of riprap pieces not to exceed 2/3 the design thickness of the rip rap blanket
- D₁₅ size of rip rap pieces not less than 3 inches

In general, basalt or limestone should be suitable rock types. Rock selected for rip rap use by the Contractor shall be approved by the Owner prior to being placed.

Prior to rip rap placement, the subgrade supporting the rip rap shall be covered with filter fabric, MIRAFI 500X or approved equal.

2.9 Service Roads

The contractor shall construct new service roadbeds or upgrade existing service roadbeds within the ponds areas of the mine site as shown on the drawings. High-use service roads are used on a daily basis to access operating facilities and to maintain site security. Low-use service roads are used less than daily on an as-needed basis.

New high-use service roads shall have a crown width of not less than 12 feet and up to 15 feet where space is available and without cut and fill to establish design grade. Shoulders shall be not steeper than 3H:1V. The maximum longitudinal grade shall be 2% unless otherwise shown on the drawings. Soft or wet soil in the road base course shall be excavated and replaced with dry soil. Existing high-use service roadbeds shall be upgraded as necessary, as shown on the drawings, to improve drainage and trafficability to the same standards as new high-use service roads.

Low-use service roads, both new and existing, shall be graded with cut and fill where needed to eliminate standing water and run-on from adjacent ground. Wet or soft soil shall be removed within the travel lane and replaced with dry soil.

The Contractor is not required to construct road base course or travel course, which will be constructed later by others.

3 QUALITY CONTROL

The Contractor shall take the measures necessary to achieve all requirements of this specification. These measures shall include, as a minimum, the following:

3.1 Supervision

During all times that the Contractor's equipment or personnel are performing Included Work on the job site, a Contractor supervisor shall be present to direct the work. The supervisor shall have experience, satisfactory to the Owner, in the type of work being executed. The supervisor shall have on-hand at all times a copy of the current revision of this specification and the drawings relevant to the work. The supervisor shall have the authority to make decisions for the Contractor in all matters related to this specification.

3.2 Line and Grade Control

The Contractor shall perform land surveying to determine that the specified lines and grades have been achieved in accordance with the limits established in this specification and the construction drawings. Ground control for surveys shall be based on established benchmarks and other control points on the Owner's property. Elevations, alignments and gradients shall be surveyed as often as necessary to control excavation and fill placement.

When the Contractor reports to the Owner that all Included Work has been completed, the Owner will perform an acceptance survey to determine if line and grade requirements have been satisfied. The Owner will survey the alignments and elevations and the slope gradients at intervals selected by the Owner.

3.3 Earthwork Field and Laboratory Testing

Testing of fill materials and in-place density and moisture will be performed by a qualified materials testing service contracted by the Owner. Field density of compacted fill shall be measured not less than once per 2000 c.y. by nuclear methods for density (ASTM D 2922) and moisture (ASTM D 3017). The fill material will be tested for moisture-density relationships and gradation/classification at least once per 5,000 c.y. of borrow soil. Additional tests may be required if the lift thickness is greater than was specified, if the fill material does not meet moisture content specifications, if the degree of compaction is questionable, or during adverse weather conditions.

If a defect is found in the fill material, a person from the Contractor's Quality Department shall determine the extent of the deficient area through additional testing, observations, record review, or other appropriate means. The Contractor shall correct the deficiency of the fill material.

4 DOCUMENTATION

4.1 Documentation by Contractor

The Contractor shall record and report, in a format acceptable to the Owner, the following information:

- > Daily journal containing a list of equipment and materials used.
- Daily Work Summary listing all pay items and quantities. Submit by the start of the next working day.
- Survey notes for line and grade control (verbally report results immediately, and submit copy to the Owner within 24 hours).
- "As- built" drawing(s) of the completed work, at the same scales as the design drawings, which the Contractor may use as the bases for preparing its as-built drawings.
- > Written notifications to the Owner of unexpected conditions, conditions that prevent conformance with specifications, disputes over acceptance of Contractor's work. Verbally

notify the Owner immediately upon discovery or identification, submit in writing within 24 hours.

Written notification to the Owner of any lost-time injury of Contractor or subcontractor personnel.

4.2 Documentation by the Owner

The Owner will create and maintain the following documentation that relates to the Included Work:

- Field inspection notes of Contractor's performance, work accomplished, and variances from the specifications observed by the Owner.
- > Records of all field and laboratory tests performed by the Owner and its testing service.
- > Photographic and video records of the Included Work.
- Chronological record of notifications to the Contractor of variances from specifications, unacceptable work performance, discrepancies in payment quantities claimed by the Contractor, and all related resolutions thereto.
- Survey notes and calculations of the acceptance survey.
- > As-built drawings of completed work submitted by the Contractor.

5 ACCEPTANCE AND WARRANTY

The Contractor shall provide warranty of all work required by or performed in accordance with this specification and as required by the Terms and Conditions of the Owner.

The Owner shall have sole discretion to accept in part or in full, or to reject in part or in full, the Contractor's materials or work. Acceptance or rejection will be based on the Owner's visual inspections and testing (including those of its Engineer and testing service) and quality control data required under this specification.

Upon identification of unacceptable materials or work, the Owner will notify the Contractor of the deficiency. The notification will include the location, extent, and description of the unacceptable materials or work. Before proceeding with other materials or additional work at that location, the Contractor shall correct the deficiency by bringing the materials or work into compliance with specifications and drawings to the satisfaction of the Owner. All work and materials required for such corrective actions shall be at the expense of the Contractor.

6 SCHEDULE

The Contractor shall complete the Included Work within 90 calendar days from notice to proceed. Weather conditions that prevent work on a specific task for an entire work day shall be accommodated by a day-for-day extension in the schedule of that and other directly affected tasks.

Response No. 16 Attachment

SPECIFICATION No. MW-CB02-00

EARTHWORK FOR WASTE PILE AND DISPOSAL CELL COVER CONSTRUCTION
SPECIFICATION No. MW-CB02-00

EARTHWORK FOR WASTE PILE AND DISPOSAL CELL COVER CONSTRUCTION

MOUNT TAYLOR MINE CIBOLA COUNTY, NEW MEXICO

RIO GRANDE RESOURCES CORP.

REVISION 0, JUNE 2020

Prepared by Alan Kuhn Associates, LLC

6/26/2020

1. GENERAL

1.1 Project Description

Rio Grande Resources Corporation (RGR) is initiating closeout of the Mt Taylor Mine. This underground uranium mine is located 1/2 mile northeast of the Village of San Mateo, Cibola County, New Mexico in Section 24, T13N, R8W, NMPM. The mine is accessible from New Mexico State Route 605, 23 miles north of Milan, NM.

As part of the closeout activities and to satisfy current environmental standards and permit requirements, RGR is placing radiologically contaminated sediments and soils in the waste rock pile and placing a soil cover over these materials to retain them in place, attenuate radon gas, minimize infiltration of water into the waste rock and radiological sediments, and provide a soil medium for vegetation. A disposal cell containing the radiological sediments and soils excavated from elsewhere on the mine site is located within the waste rock pile footprint (Drawing sheet C 00). The existing waste rock pile/disposal cell consists of upper and lower slopes (Drawing sheet C 01).

The lower slopes are on the north, west and south sides of the pile (Drawing sheets C 02, C03). The lower north and west slopes have been covered with a 2.0 feet thick radon barrier of clay soil. The lower south slopes are constructed of clean soil (shaft muck) and need no additional cover. The upper slopes (disposal cell) consist of contaminated sediment and soils from the site cleanup (Drawing sheet C 04, C 05).

Two different kinds of cover soils will be placed. On the west and north lower slopes a 1.0 foot thick layer of loam soil will be placed over the existing radon cover. On the upper slopes (disposal cell) both 2.0 feet of clay and 1.0 foot of loam will be placed. The east slope will remain open and uncovered until additional radiological materials can be placed there, after which the final east slope will be covered as part of the final earthwork under a separate contract. Eastward expansion of the disposal cell and placement of cover soil on that expansion are not part of this contract.

This specification addresses the following scope of work:

- Excavate, haul, and place clean soil from designated borrow locations to the cover locations,
- Compact each lift to the required density,
- Grade the final cover surface to the required planarity,
- Apply rock mulch to the final surface, and
- Place erosion protection on drainage ditches.

1.2 Included Work

Included Work covered in this specification consists of:

- a) Supply and mobilize/demobilize earthwork and supporting equipment,
- b) Complete grading (re-shaping) of the upper slopes to 5H:1V or as needed to repair erosional damage to the existing surfaces,

- c) Excavate and haul soils selected by the Owner from borrow pits (keeping to the borrow pit grading plans) and place in lifts on the slopes,
- d) Compact each lift to the required density before placing the next lift,
- e) Grade the final cover surface to the specified planarity,
- f) Apply rock mulch to the final cover surfaces, and
- g) Install erosion control material in drainage courses.

Related Work Performed by Others:

- Radiological surveys and monitoring
- Quality Control testing for earthwork.
- Land surveying in support of cover construction

1.3 Responsibilities

Rio Grande Resources Corporation (RGR), the "Owner", will evaluate bids and award all contracts for the Included Work (Section 1.2) and Related Work, will provide controlled access to the work site, will make construction water available at a location on the property, and will approve and make payment for work performed under this specification.

Alan Kuhn Associates LLC (AKA), the "Engineer", will review or inspect and advise the Owner on the acceptance of the Included Work.

Contractor shall provide all equipment, materials, labor and supplies and perform all work necessary to accomplish the Included Work in section 1.2. Contractor shall be responsible for the safety of its job site and of all personnel and equipment that it employs on the job site.

Quality Control Contractor (QCC) contracted by the Owner will observe, measure, sample and perform soil tests to document the Contractor's compliance with this specification and the drawings.

The Land Surveyor contracted by the Owner will establish construction layout for the Contractor to use in achieving the required lines, grades, and dimensions of the work.

The Radiological Consultant, an independent contractor to the Owner, will provide radiological survey and worker radiological health and safety support.

1.4 Definitions

Contaminated sediment: Solids including chemical precipitate containing radium concentrations above 6.8 pCi/g deposited from mine water during prior mine operations.

Contaminated soil: Native soil contaminated with radium and uranium through contact with ore, mine waste rock, mine water, and contaminated sediment.

Disposal cell: The area on the waste rock pile designated for disposal of radiologically contaminated soil and pond sediment.

Fines: Mineral particles (soil or tailings) passing the #200 U.S. Standard sieve; i.e. smaller than 0.075 mm grain size.

Foreign material: Any solid material that is not natural soil. Includes wood, iron and steel, plastic, rubber, glass, ceramic and concrete.

Native soil, natural soil: Naturally-occurring alluvial or residual soils existing below and at ground surface around the job site; consisting of gravel, sand, silt and clay materials.

Planarity: Approximation to a uniform planar surface as measured by the maximum amount of deviation (highs and lows) over a unit of length from the design surface along a transect.

Rip rap (also riprap): Well- graded mixture of rock, broken concrete, or other durable material, dumped or hand placed to prevent erosion, scour, or sloughing due to surface water flow.

Rock mulch: Crushed, durable rock with grain sizes from 1" to $\frac{1}{4}$ " and not more than 10% passing the -200 sieve.

Sand: Mineral particles with grain sizes between #200 and #4 sieve (0.075 mm to about 5 mm).

Slope, lower: Slopes of the waste pile, on which the west and north sides were previously covered by the clay radon barrier but requiring placement of loam (growth medium) cover under this contract.

Slope, upper: Slopes formed above the previously covered waste pile slopes and requiring both clay radon barrier and loam (growth medium) cover to be placed under this contract.

Soil classification: Soil descriptions based on grain size distribution and plasticity in accordance with the Unified Soil Classification System (USCS). Classifications of soils in the pond area are:

GW – well-graded gravel

SW – well-graded sand

SP – poorly-graded sand with less than 5% fines

SM – silty sand composed of 12-50% silt fines and 50% more sand

SC – clayey sand composed of 12-50% clay fines and 50% more sand

SP-SM - sand with 5-12% silty fines

 $\rm ML$ – more than 50% fines that classify as silt, according to reference b, and liquid limit less than 50

MH – same as ML except liquid limit 50 or more

 $\rm CL$ – more than 50% fines that classify as clay, according to reference b, and liquid limit less than 50

CH – same as CL except liquid limit 50 or more

1.5 References

AASHTO M288-17 Standard Specifications for Geotextiles

AASHTO T 96 Standard Method of **Test** for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine

AASHTO T 104 Standard Method of **Test** for Soundness of Aggregate by Use of Sodium Sulfate or Magnesium Sulfate

ASTM D422 - 63(1998) Standard Test Method for Particle-Size Analysis of Soils

ASTM D698-12e2 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lb/ft3 (600 kN-m/m3))

ASTM D2922 - 04 Standard Test Methods for Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth)

ASTM D3017 - 04 Standard Test Method for Water Content of Soil and Rock in Place by Nuclear Methods (Shallow Depth)

ASTM D4318-10e1 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

ASTM D4994-07 Standard Practice for Evaluation of Rock to be Use for Erosion Control

ASTM D5084 - 03 Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall

National Engineering Handbook, Part 642 National Standard Material Specifications, Chapter 3, Material Specification 523—Rock for Riprap

Storm Water Pollution Prevention Plan, Rio Grande Resources Corporation, Mt Taylor Mine, San Mateo, New Mexico, Cibola County; Inspections Plus, 2019

TenCate Installation Guidelines, Geosynthetics Uses in Subsurface Drainage Applications, 2010

1.6 List of Drawings

Drawings listed below are incorporated into this specification by reference.

Sheet Number	Drawing Number	Sheet Title
C00	GS20-CB100-00	Overall Site Map and Drawing Index
C01	GS20-CB101-00	Site Plan
C02	GS20-CB102-00	Lower West Slope Grading Plan
C03	GS20-CB103-00	Lower South Slope Grading Plan
C04	GS20-CB104-00	Upper Slopes – Reshape Existing Grades
C05	GS20-CB105-00	Upper Slopes – Final Grading Plan
C06	GS20-CB106-00	Drainage Bench – Plan View
C07	GS20-CB107-00	Drainage Bench - Sections
C08	GS20-CB108-00	Borrow Area "A" – Grading Plan
C09	GS20-CB109-00	Borrow Area "B" – Grading Plan
C10	GS20-CB110-00	West Slope Details
C11	GS20-CB11-00	South Slope Details

2 EXECUTION

The Contractor shall provide the equipment and materials necessary for all earthwork required by this specification and shall make them available on the work site when needed. The estimated quantities of materials are listed on the Bid Schedule. The Contractor shall perform the following work.

2.1 Site Preparation

The Owner will remove vegetation and foreign material from the areas of excavation and fill, as needed to begin the earthwork. Any pieces of foreign material remaining after the Owner's site preparation shall be removed by the Contractor and placed in the disposal cell.

The Contractor shall determine and mark the locations of buried utilities and other objects that could be damaged or disturbed by earthwork activities. Markings shall be made with bright-colored tape, paint, or barriers that will remain in place for the duration of the earthwork.

The Contractor shall implement and maintain requirements of the Owner's Surface Water Pollution Prevention Plan (SWPPP) that was prepared by a Qualified SWPPP Developer and in accordance with EPA 833-B-09-002, *Developing Your Stormwater Pollution Prevention Plan.* The Contractor shall become familiar will the requirements of the SWPPP and shall be responsible for satisfying those requirements at all times. SWPPP requirements include control of runoff, silt fences and other measures to prevent release of sediment from the work sites.

2.2 Waste Pile and Disposal Cell Preparation

2.2.1 Waste Pile Slopes (Lower West and North Slopes)

In 2018, the north, west, and south slopes of the mine waste pile were reshaped to reduce surface grades to 5H:1V. The excavated mine waste materials, consisting of waste rock (weathered rock and soil-size materials) as well as non-earth mine debris (broken concrete, metal, plastic, and timbers removed from the mine) were removed from the slopes when exposed by excavation and buried in a pit excavated into the waste rock.. Despite these activities, some mine debris may remain at or near the surfaces of the waste pile slopes. If the Contractor encounters mine debris in the slope surfaces, it shall remove the debris for disposal off site or in a location on site identified by the Owner.

After the waste pile (lower) slopes were finish-graded, 2.0 feet of clay soil were placed on the west and north lower slopes and compacted to not less 90% of maximum dry density per Standard Proctor (ASTM D-698) standards. The south lower slope is composed of non-radiological shaft muck (clay loam soil) that was also compacted to the same standard. However, due to the length of time since that compaction was done, the surfaces of the clay cover on the north and west slopes shall be re-compacted again, immediately before

placement of the loam cover, to ensure not less 90% of maximum dry density.

See Drawing sheets C 02 and C 03.

2.2.2 Disposal Cell Slopes

The waste disposal cell on the top of the waste pile was started in 2018 as the repository for radiologically-contaminated soil and sediments removed from various locations on the mine site. Its location and present extent are shown on Drawing sheets C 01, C 04 and C 05..

Properties of contaminated ponds sediments and soils placed in the disposal cell are variable but are more fine-grained and clayey that the waste rock and generally classified as clayey sand to sandy clay (USCS soil classes SM, SC and CL). During placement of the contaminated sediment and soil, the disposal cell slopes were constructed to approximately 5H:1V. Prior to cover placement, the Contractor shall grade the disposal cell north, west and south disposal cell (upper) slopes so that they are with +/- 3.0 inches of the design slope, as determined by land survey.

2.3 Cover Construction

The soil cover for the waste pile and disposal cell shall consist of two parts – a lower radon barrier consisting of 2.0 feet of clay soil and an upper growth medium consisting of 1.0 feet of loam.

2.3.1 Radon Barrier Cover

In 2018, a radon barrier cover of 2.0 feet of clay soil was placed on the north and west lower slopes of the <u>waste pile</u>, below the elevation of the disposal cell,. After shaping the disposal cell slopes as shown on Drawing sheets C04 and C 05, the Contractor shall extend the radon barrier cover over the disposal cell (upper) slopes.

The Contractor shall place a clay-soil radon barrier consisting of not less than 2.0 feet of clean soil cover on the north, west, and south slope surfaces of the <u>disposal cell (upper slopes</u>). The disposal cell radon barrier shall merge with the drainage bench detail and the new upper disposal cell radon barrier cover shall connect to the existing lower slope radon barrier without gaps or offsets (Drawing sheets C 06 and C 07).

Soil for this radon barrier cover shall have USCS classification of CL, CH or SC and can be obtained from locations on the mine site approved by the Owner. The radon barrier shall be constructed of these soils approved by RGR and placed in loose lifts not more than 8 inches thick and compacted to not less 90% of maximum dry density per Standard Proctor (ASTM D-698) standards.

The extent of the cover to be constructed under this specification is shown on Drawing sheets C 02 through C 07. As shown on the referenced drawings, the cover soils will not extend over the area of the top and east slope that will remain open for disposal cell expansion for additional contaminated sediment and soil, which will be excavated and placed in the open, eastern part of the disposal cell after RGR receives approval from regulatory agencies for disposal cell expansion.

2.3.2 Growth Medium

The growth medium shall be loam soil selected by RGR and available in borrow locations shown on Drawing sheets C 08 and C 09. The loam shall have USCS classifications of CL or SC containing 20-50% clay and not less than 50% sand. RGR and its QC contractor shall verify that the soil selected for growth medium meets these grain-size standards. The soil cover shall be placed in loose lifts of not more than eight (8) inches and compacted to *not more than* 90% maximum dry density per ASTM D 698. The top lift may include rock fragments up to three (3) inches.

The top surface of the loam cover shall be finished to the final grades as shown on the referenced drawings. The Contractor shall grade the top of the growth medium to ensure planarity. Planarity will be deemed adequate when the final surface of the loam cover does not extend vertically more than 3.0 inches above or below a 10-foot long straight edge (survey rod or 2×4 lumber) aligned perpendicular to the slope across the growth medium cover surface. The QC technician shall determine planarity at any location where planarity is in question but not less than once in every 100 ft. x 100 ft. area of the cover.

2.4 Erosion Protection

The Contractor shall procure and place geotextile and riprap in drainage courses at the toe of the south and west slopes of the waste pile and on the drainage bench and ramp of the waste pile (Drawing sheets C 01, C 07, C 10, and C 11).

2.4.1 Geotextile

The geotextile shall be Mirani TenCate 160N nonwoven or approved equal. It shall be deployed along the prepared subgrade of the bottoms of the drainage bench and the waste pile toe drain as shown on the drawings and installed in accordance with AASHTO M288-17 and its Survivability Class 2. If the 160N geotextile is used by the Contractor, installation shall be in accordance with TenCate Installation Guidelines. In any case, installation shall follow the guidelines of the manufacturer.

The subgrade of the geotextile shall be free of rocks larger the 2.0 inches, metal debris, plant material, or other foreign objects. The geotextile shall be deployed up-gradient, with each successive panel overlapping the next panel down-gradient by not let than 2.0 feet.

2.4.2 Riprap

The Contractor shall provide rocks or rough quarry stone, 4.0 inches to 8.0 inches in size, with no more than 60% wear in accordance with AASHTO T 96 and soundness loss of no more than 21, in accordance with AASHTO T 104 using a magnesium sulfate solution with a five (5)-cycle test duration. The rock shall be placed forming a continuous blanket over the geotextile at the locations and in thicknesses as shown on Drawings sheets C 06, C 07, C 10, and C 11.

3 QUALITY CONTROL

The Contractor shall take the measures necessary to achieve all requirements of this specification. These measures shall include, as a minimum, the following:

3.1 Supervision

During all times that the Contractor's equipment or personnel are performing Included Work on the job site, a Contractor supervisor shall be present to direct the work. The supervisor shall have experience, satisfactory to the Owner, in the type of work being executed. The supervisor shall have on-hand at all times a copy of the current revision of this specification and the drawings relevant to the work. The supervisor shall have the authority to make decisions for the Contractor in all matters related to this specification.

3.2 Line and Grade Control

RGR's contract land surveyor shall perform land surveying to determine that the specified lines and grades have been achieved in accordance with the limits established in this specification and the construction drawings. The surveyor will set blue-tops and other markers to guide the Contractor's earthwork. Ground control has been previously set based on established benchmarks and other control points on the Owner's property. Elevations, alignments and gradients will be surveyed as often as necessary to control excavation and fill placement.

When the Contractor reports to the Owner that all Included Work has been completed, the Owner will perform an acceptance survey to determine if line and grade requirements have been satisfied. The Owner's contract surveyor will survey the alignments and elevations and the slope gradients at intervals selected by the Owner.

3.3 Earthwork Field and Laboratory Testing

Testing of characteristics and in-place density and moisture will be performed by a qualified materials testing service contracted by the Owner. Field density of compacted fill shall be measured not less than once per 2000 c.y. by nuclear methods for density (ASTM D 2922) and moisture (ASTM D 3017). The cover soil material will be tested for moisture-density relationships and gradation/classification at least once per 5,000 c.y. of borrow soil. Additional tests may be required if the lift thickness is greater than was specified, if the fill material does not meet moisture content specifications, if the degree of compaction is questionable, or during adverse weather conditions.

If a defect is found in the cover soil material, a person from the Contractor's Quality Department shall determine the extent of the deficient area through additional testing, observations, record review, or other appropriate means. The Contractor shall correct the deficiency of the cover soil material.

4 **DOCUMENTATION**

4.1 Documentation by Contractor

The Contractor shall record and report, in a format acceptable to the Owner, the following information:

- > Daily journal containing a list of equipment and materials used.
- Daily Work Summary listing all pay items and quantities. Submit by the start of the next working day.
- Written notifications to the Owner of unexpected conditions, conditions that prevent conformance with specifications, disputes over acceptance of Contractor's work. Verbally notify the Owner immediately upon discovery or identification, submit in writing within 24 hours.
- Written notification to the Owner of any lost-time injury of Contractor or subcontractor personnel.

4.2 Documentation by the Owner

The Owner will create and maintain the following documentation that relates to the Included Work:

- Field inspection notes of Contractor's performance, work accomplished, and variances from the specifications observed by the Owner.
- Survey records for line and grade control
- "As- built" drawing(s) of the completed work.
- Records of all field and laboratory tests performed by the Owner and its testing service.
- > Photographic and video records of the Included Work.
- Chronological record of notifications to the Contractor of variances from specifications, unacceptable work performance, discrepancies in payment quantities claimed by the Contractor, and all related resolutions thereto.

5 ACCEPTANCE AND WARRANTY

The Contractor shall provide warranty of all work required by or performed in accordance with this specification and as required by the Terms and Conditions of the Owner.

The Owner shall have sole discretion to accept in part or in full, or to reject in part or in full, the Contractor's materials or work. Acceptance or rejection will be based on the Owner's

visual inspections and testing (including those of its Engineer and testing service) and quality control data required under this specification.

Upon identification of unacceptable materials or work, the Owner will notify the Contractor of the deficiency. The notification will include the location, extent, and description of the unacceptable materials or work. Before proceeding with other work at that location, the Contractor shall correct the deficiency by bringing the materials or work into compliance with specifications and drawings to the satisfaction of the Owner. All work and materials required for such corrective actions shall be at the expense of the Contractor.

6 SCHEDULE

The Contractor shall complete the required work within 90 calendar days from notice to proceed. Weather conditions that prevent work on a specific task for an entire work day shall be accommodated by a day-for-day extension in the schedule of that and other directly affected tasks. The Contractor shall be penalized 1% of the payment for each day over 90 calendar days until completion of the earthwork.

Response No. 16 Attachment

Soil Data for Borrow Area A

Liner and Cover of Expanded Disposal Cell

	10 GR	ANDE RESOUR	CES CORPORATI	ON		File #	
Mt Taylo	r Min	e - Borrow Test	Pit Log			Pit #	MT-Borrow
Location	Backgro	ound borrow area	GPS N 35-20.724'	W 107-3	8.759'		
Location De	scriptio	n	NE Corner of the Prope	erty in the m	ain proposed borrow	area.	
Field Engine	er:	Stan Fitch / Ed Lo	bescher		Excavation Method:	Small Bob	ocat Backhoe
Date:		April - 10-2012	8:50 am		Operator:		
Weather an	d Moist	ure Conditions: Wa	rm – Sunny – 60 to	70d			
	Graphic	Sample #	Description (I	ISCS textu	re density color m	oisture od	r inclusions etc.)
0		Jampie #	Description (<i>5565, 1240</i>		oistare, out	
			(0-24") Clayey Silt,	some sand	d, trace roots gravel,	brown	
1							
2		MT -borrow Composite Sample 24"-66"	(24"- 66") Silty San	d with Clay	/, trace gravel, occas	ional gray s	and seams, brown.
3							
4							
5			(CC" 72") Clause C		14 turne unete ende	wavel been	
			(66 – 72) Clayey S	and, with s	lin, trace roots and §	gravel, brow	n.
6							
7		77					
8							
Total Depth	9	72" DEEP					
Comments:		Part of the sample fo	or sent for Geotechnica	l testing - Pa	art for Environmental ⁻	Festing.	
Checked:					Date:		
Approved:					Date:		

SUMMARY OF LABORATORY ANALYSIS Int Taylor Mine: Settling Pond Evaluations Location: San Mateo, New Mexic

Project: N Project N	Project. Number: 96450															:0						
Boring	Depth	Soil Cla	ssification	Atterber	g Limits		Sieve Analysis - Accumulative % Passing										Moisture Content	Dry Density	Unconfined Comp.			
Number	(ft.)	USCS	AASHTO	PI	LL	No. 200	No. 100	No. 50	No. 40	No. 30	No. 16	No. 10	No. 8	No. 4	3/8 in	1/2 in	3/4 in	l in	1 1/2 in	(%)	(pcf)	(psi)
Borrow Area	2.0 - 5.5	CL	A-6	13	37	64	78	88	91	93	97	98	99	99	100	100	100			10.7		
MT-1-F	0.0 - 0.5	SC	A-6	15	35	44	56	74	76	77	81	99	100	100	100					13.7		
MT-2-D	0.0 - 0.5	CL	A-6	14	33	56	73	95	97	97	98	99	99	100	100					16.4		
MT-3-F	0.0 - 0.5	CL	A-6	17	35	59	77	92	95	96	98	99	99	100	100					17.3		
MT-4-F	0.0 - 0.5	CL	A-6	13	34	63	86	90	91	91	91	91	91	91	92	92	96	100		10.5		
MT-5-F	0.0 - 0.5	CL	A-6	17	37	67	80	94	96	97	98	99	99	99	100	100				17.6		
MT-7-C	0.0 - 0.5	CL	A-6	17	39	71	80	94	97	98	100	100	100	100					-	17.9		
MT-8-F	0.0 - 0.5	SC	A-6	13	27	50	73	95	97	98	99	99	99	100	100					12.9		
MT-OP-E	0.0 - 0.5	CL	A-6	12	31	63	79	95	97	98	99	99	99	100	100					10.3		
MT-WP-SM1	0.0 -	SC	A-6	24	37	48	67	91	93	94	96	97	97	98	99	99	100			5.9		
MT-WP-SM2	0.0 -	CL	A-7-6	27	43	70	78	85	86	87	89	91	92	96	98	100				10.9		
MT-WP-SM3	0.0 -	SC	A-6	21	34	46	63	89	93	95	96	97	97	98	98	99	100			3.0		

. М. Draia

	Specimen Identifi	cation	Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)		
\bullet	Borrow Area	2.0	37	24	13		
	MT-1-F	0.0	35	20	15		
	MT-2-D	0.0	33	19	14		
*	MT-3-F	0.0	35	18	17		
\odot	MT-4-F	0.0	34	21	13		

	ATTERBERG LIMITS							
Bright People. Right Solutions.	Project: Mount Taylor Mine: Settling Pond Evaluations							
9019 Washington NE, Building A	Location: San Mateo, New Mexico							
	Project Number: 96450							

	Specimen Identifi	cation	Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)
\bullet	MT-5-F	0.0	37	20	17
	MT-7-C	0.0	39	22	17
	MT-8-F	0.0	27	14	13
*	MT-OP-E	0.0	31	19	12
\odot	MT-WP-SM1	0.0	37	13	24

	ATTERBERG LIMITS
Bright People. Right Solutions.	Project: Mount Taylor Mine: Settling Pond Evaluations
9019 Washington NE, Building A	Location: San Mateo, New Mexico
	Project Number: 96450

	Specimen Identifi	cation	Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)		
ullet	MT-WP-SM2	0.0	43	16	27		
	MT-WP-SM3	0.0	34	13	21		

	ATTERBERG LIMITS
Bright People, Right Solutions.	Project: Mount Taylor Mine: Settling Pond Evaluations
9019 Washington NE, Building A	Location: San Mateo, New Mexico
	Project Number: 96450

Bulk samples of shaft muck from Mt. Taylor Mine waste rock pile collected on 5/18/2012 by Alan Kuhn. Locations are approximate (+/- 50 ft) based on visual reference to slopes. Splits delivered 5/18/12 to Kleinfelder Albuquerque for grain size analysis and plasticity tests. Other splits left with RGR Mine office for shipment to Energy Labs for testing of U and Ra concentration.

	Specimen Identifie	cation	Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)
\bullet	MT-WP-SM1	0.0	37	13	24
	MT-WP-SM2	0.0	43	16	27
	MT-WP-SM3	0.0	34	13	21

	ATTERBERG LIMITS
Bright People. Right Solutions.	Project: Mount Taylor Mine: Settling Pond Evaluations
9019 Washington NE, Building A	Location: San Mateo, New Mexico
Abaqueique, Nin 07110	Project Number: 96450

SUMMARY OF LABORATORY ANALYSIS

Project: Mount Taylor Mine: Settling Pond Evaluations Project Number: 96450

Location: San Mateo, New Mexico

Boring	Depth	Soil Clas	sification	Atterber	g Limits		Sieve Analysis - Accumulative % Passing										Moisture Content	Dry Density	Unconfined Comp.			
Number	(ft.)	USCS	AASHTO	PI	LL	No. 200	No. 100	No. 50	No. 40	No. 30	No. 16	No. 10	No. 8	No. 4	3/8 in	1/2 in	3/4 in	1 in	1 1/2 in	(%)	(pcf)	(psi)
MT-WP-SM	0.0 -	SC	A-6	24	37	48	67	91	93	94	96	97	97	98	99	99	100			5.9		
MT-WP-SM2	2 0.0 -	CL	A-7-6	27	43	70	78	85	86	87	89	91	92	96	98	100				10.9		
MT-WP-SM	8 0.0 -	SC	A-6	21	34	46	63	89	93	95	96	97	97	98	98	99	100			3.0		

APPENDIX D.3 FIELD SAMPLING AND LABORATORY TEST DATA

Laboratory Test Results

See Appendix D cover sheet for other documents with

data generated 2014-2022

TABLE 2 I ABLE 2 Soil Chemical Analytical Results - April 2012 Total Metals by SW 6010/SW 6020 and Radiochemistry by E903.0/RA-05 RIO GRANDE RESOURCES SOIL SAMPLING AND TESTING FOR CLOSEOUT PLAN MT. TAYLOR MINE, SAN MATEO, NEW MEXICO

Sample ID	Location	Collection Depth (inches bgs)	Collection Date	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Radium 226	Radium 228	Selenium	Silver	Uranium
CONCENTRATION					mç	j/L		pCi/g	pCi/g	mg/L				
	Analytical M	ethod		SW 6020	SW 6010B	SW 6010B	SW 6010B	SW 6020	SW 7470A	E903.0	RA-05	SW 6020	SW 6020	SW 6020
NMED SSL DAF 1				1.31E-02	3.01E+02	1.37E+00	9.86E+07	NA	5.71E-01	3	0 ³	9.65E-01	1.57E+00	4.93E+01
MT-4-D-S3 (48" B.G.)	MT-4-D	48	4/10/2012	0.003	0.88	<0.001	0.009	0.003	< 0.002	6.7	0.8	0.020	<0.002 D	0.013 D
MT-4-E-S1 (0-4" B.G.)	MT-4-E	0-4	4/10/2012	0.034	34	<0.001	0.007	0.008	< 0.002	8.7	1.5	0.15	<0.002 D	0.39 D
MT-4-E-S2 (10-12" B.G.)	MT-4-E	10-12	4/10/2012	0.005	0.22	< 0.001	0.011	0.005	< 0.002	4.8	0.4	0.072	<0.002 D	0.014 D
MT-4-E-S3 (36" B.G.)	MT-4-E	36	4/10/2012	0.003	0.13	<0.001	0.007	0.003	< 0.002	2.9	0.7	0.026	0.003 D	0.0043 D
MT-4-E-S4 (48" B.G.)	MT-4-E	48	4/10/2012	0.005 B	0.06	< 0.001	0.006	0.002	< 0.002	6.2	0.4	0.011	< 0.001	0.027
MT-4-F (6" B.G.)	MT-4-F	6	4/10/2012	0.005	< 0.05	< 0.001	< 0.005	0.003	< 0.002	0.8	1.0	0.002	<0.002 D	0.0027 D
MT-5-F (6" B.G.)	MT-5-F	6	4/10/2012	0.002	< 0.05	<0.001	< 0.005	0.001	< 0.002	2.0	0.8	0.001	0.003 D	0.0029 D
MT-6-A-S1 (0-5" B.G.)	MT-6-A	0-5	4/10/2012	0.012	7.3	< 0.001	0.007	0.016	< 0.002	6.4	0.2	0.007	< 0.001	0.044
MT-6-A-S2 (12-20" B.G.)	MT-6-B	12-20	4/10/2012	0.003 B	0.05	<0.001	0.007	<0.001	< 0.002	0.4	0.1	0.15	< 0.001	0.26 U
MT-6-B-S1 (8-10" B.G.)	MT-6-B	8-10	4/10/2012	0.004 B	0.05	< 0.001	0.007	< 0.001	< 0.002	0.8	0.2	0.16	< 0.001	0.26
MT-6-B-S2 (30" B.G.)	MT-6-B	30	4/10/2012	0.002 B	0.06	< 0.001	< 0.005	< 0.001	< 0.002	4.1	0.8	0.003	< 0.001	0.014
MT-7-C (6" B.G.)	MT-7-C	6	4/10/2012	0.002	< 0.05	< 0.001	0.006	0.002	< 0.002	0.6	0.8	< 0.001	<0.002 D	0.0023 D
MT-8-F (6" B.G.)	MT-8-F	6	4/10/2012	0.001	0.05	0.001	0.005	0.001	0.002	-1000	-1000	0.001	0.002 D	0.0006 D
MT-A-C (6" B.G.)	MT-A-C	6	4/10/2012	0.003	< 0.05	< 0.001	< 0.005	0.001	< 0.002	1.7	0.5	0.044	<0.002 D	0.14
MT-Borrow/Background	MT-Borrow	24-66	4/10/2012	0.001	< 0.05	<0.001	< 0.005	<0.001	< 0.002	0.7	0.7	0.001	<0.002 D	0.0007
MT-OP-C-S1 (0-6" B.G.)	MT-OP-C	0-6	4/10/2012	0.015	0.05	< 0.001	0.010	0.001	< 0.002	53.3	2.1	0.052	< 0.001	1.8
MT-OP-C-S2 (20" B.G.)	MT-OP-C	20	4/10/2012	0.005	0.05	< 0.001	0.007	0.002	< 0.002	1.7	0.6	0.018	<0.002 D	0.14
MT-OP-C-S3 (48-50' B.G.	MT-OP-C	48-50	4/10/2012	0.004	< 0.05	< 0.001	< 0.005	< 0.001	< 0.002	0.8	0.8	0.028	<0.002 D	0.049
MT-OP-C-S4 (72" B.G.)	MT-OP-C	72	4/10/2012	0.004	< 0.05	<0.001	< 0.005	<0.001	< 0.002	1.5	0.6	0.025	<0.002 D	0.0064
MT-OP-D-S1 (0-6" B.G.)	MT-OP-D	0-6	4/10/2012	0.013	1.3	< 0.001	0.007	0.008	< 0.002	51.9	0.5	0.009	<0.002 D	0.23
MT-OP-D-S2 (48-50" B.G.	MT-OP-D	48-50	4/10/2012	0.001	0.05	< 0.001	< 0.005	< 0.001	< 0.002	1.9	0.6	0.005	<0.002 D	0.10
MT-OP-D-S3 (76" B.G.)	MT-OP-D	76	4/10/2012	0.006	0.11	< 0.001	0.012	0.009	< 0.002	0.6	0.5	0.002	<0.002 D	0.0034
MT-OP-E (6" B.G.)	MT-OP-E	6	4/10/2012	0.004	0.05	< 0.001	0.006	0.003	< 0.002	1.1	0.8	0.005	<0.002 D	0.0056

Total metals concentrations should be compared to background soil sample concentrations before comparing to Soil Screening Levels (SSL). Only metal concentrations above background should be considered for comparison to SSLs. NMED considers a DAF=20 to be protective of groundwater for a 0.5 acre source. SSL values are included for reference only, as they are applicable for reclamation, not for mines that are active or on stand-by status. B = The analyte was detected in the method blank. D = Reporting limit increased due to sample matrix. U = Not detected at minimum detectable concentration.

Notes: bgs = bokow ground surface mg/Kg = milligrams per killogram DAF=Dilution Attenuation Factor NA = No DAF values available, NMED 2012, rev6

Prepared by Casper, WY Branch

Client:	Rio Grande Resources Corporation
Project:	Mt. Taylor Mine Closure Plan
Lab ID:	C12041044-009
Client Sample ID:	MT-Borrow/Background

 Revised Date:
 07/10/12

 Report Date:
 06/13/12

 Collection Date:
 04/10/12 11:00

 DateReceived:
 04/20/12

 Matrix:
 Sediment

					MCL/		
Analyses	Result	Units	Qualifier	RL	QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Filterable	No					SW1311	04/24/12 16:14 / dcj
METALS - SPLP EXTRACTABLE							
Arsenic	0.001	mg/L		0.001		SW6020	05/01/12 15:27 / cp
Barium	ND	mg/L		0.05		SW6020	05/01/12 15:27 / cp
Cadmium	ND	mg/L		0.001		SW6020	05/01/12 15:27 / cp
Chromium	ND	mg/L		0.005		SW6020	05/01/12 15:27 / cp
Lead	ND	mg/L		0.001		SW6020	05/01/12 15:27 / cp
Mercury	ND	mg/L		0.002		SW7470A	04/30/12 15:34 / rdw
Selenium	0.001	mg/L		0.001		SW6020	05/01/12 15:27 / cp
Silver	ND	mg/L	D	0.002		SW6020	05/01/12 15:27 / cp
Uranium	0.0007	mg/L	D	0.0006		SW6020	05/01/12 15:27 / cp
RADIONUCLIDES							
Radium 226	0.7	pCi/g-dry				E903.0	07/10/12 13:40 / trs
Radium 226 precision (±)	0.07	pCi/g-dry				E903.0	07/10/12 13:40 / trs
Radium 226 MDC	0.03	pCi/g-dry				E903.0	07/10/12 13:40 / trs
Radium 228	0.7	pCi/g-dry				RA-05	07/05/12 22:57 / gb
Radium 228 precision (±)	0.1	pCi/g-dry				RA-05	07/05/12 22:57 / gb
Radium 228 MDC	0.2	pCi/g-dry				RA-05	07/05/12 22:57 / gb

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

Prepared by Casper, WY Branch

Client:	Rio Grande Resources Corporation
Project:	Mt. Taylor Mine
Lab ID:	C12050924-001
Client Sample ID:	MT-WP-SM1

 Report Date:
 07/05/12

 Collection Date:
 05/18/12 09:30

 DateReceived:
 05/24/12

 Matrix:
 Soil

					MCL/		
Analyses	Result	Units	Qualifier	RL	QCL	Method	Analysis Date / By
RADIONUCLIDES							
Radium 226	0.7	pCi/g-dry				E903.0	06/20/12 01:37 / dmf
Radium 226 precision (±)	0.08	pCi/g-dry				E903.0	06/20/12 01:37 / dmf
Radium 226 MDC	0.04	pCi/g-dry				E903.0	06/20/12 01:37 / dmf
Uranium 234	0.6	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 234 precision (±)	0.3	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 234 MDC	0.3	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 235	0.03	pCi/g-dry	U			E908.0	06/18/12 08:39 / dmf
Uranium 235 precision (±)	0.09	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 235 MDC	0.2	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 238	0.6	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 238 precision (±)	0.2	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 238 MDC	0.2	pCi/g-dry				E908.0	06/18/12 08:39 / dmf

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

Prepared by Casper, WY Branch

Client:	Rio Grande Resources Corporation
Project:	Mt. Taylor Mine
Lab ID:	C12050924-002
Client Sample ID:	MT-WP-SM2

 Report Date:
 07/05/12

 Collection Date:
 05/18/12 09:40

 DateReceived:
 05/24/12

 Matrix:
 Soil

					MCL/		
Analyses	Result	Units	Qualifier	RL	QCL	Method	Analysis Date / By
RADIONUCLIDES							
Radium 226	0.7	pCi/g-dry				E903.0	06/20/12 01:37 / dmf
Radium 226 precision (±)	0.08	pCi/g-dry				E903.0	06/20/12 01:37 / dmf
Radium 226 MDC	0.03	pCi/g-dry				E903.0	06/20/12 01:37 / dmf
Uranium 234	0.8	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 234 precision (±)	0.3	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 234 MDC	0.3	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 235	0.1	pCi/g-dry	U			E908.0	06/18/12 08:39 / dmf
Uranium 235 precision (±)	0.2	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 235 MDC	0.3	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 238	0.4	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 238 precision (±)	0.2	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 238 MDC	0.3	pCi/g-dry				E908.0	06/18/12 08:39 / dmf

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

Prepared by Casper, WY Branch

Client:	Rio Grande Resources Corporation
Project:	Mt. Taylor Mine
Lab ID:	C12050924-003
Client Sample ID:	MT-WP-SM3

 Report Date:
 07/05/12

 Collection Date:
 05/18/12 10:00

 DateReceived:
 05/24/12

 Matrix:
 Soil

					MCL/		
Analyses	Result	Units	Qualifier	RL	QCL	Method	Analysis Date / By
RADIONUCLIDES							
Radium 226	1.1	pCi/g-dry				E903.0	06/20/12 01:37 / dmf
Radium 226 precision (±)	0.09	pCi/g-dry				E903.0	06/20/12 01:37 / dmf
Radium 226 MDC	0.03	pCi/g-dry				E903.0	06/20/12 01:37 / dmf
Uranium 234	1.1	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 234 precision (±)	0.3	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 234 MDC	0.2	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 235	-0.02	pCi/g-dry	U			E908.0	06/18/12 08:39 / dmf
Uranium 235 precision (±)	0.09	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 235 MDC	0.2	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 238	0.9	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 238 precision (±)	0.3	pCi/g-dry				E908.0	06/18/12 08:39 / dmf
Uranium 238 MDC	0.2	pCi/g-dry				E908.0	06/18/12 08:39 / dmf

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

NMED Cmnt 19

"MMD Response No. 16, Earthwork: Hydraulic Conductivity

July 2016

Laboratory Report for Alan Kuhn Associates LLC

Mt Taylor Mine

July 1, 2016

Daniel B. Stephens & Associates, Inc.

4400 Alameda Blvd. NE, Suite C • Albuquerque, New Mexico 87113

July 1, 2016

Alan Kuhn Alan Kuhn Associates LLC 13212 Manitoba Dr. NE Albuquerque, NM 87111 (505) 350-9188

Re: DBS&A Laboratory Report for the Alan Kuhn Associates LLC Mt Taylor Mine Project

Dear Mr. Kuhn:

Enclosed is the report for the Alan Kuhn Associates LLC Mt Taylor Mine project samples. Please review this report and provide any comments as samples will be held for a maximum of 30 days. After 30 days samples will be returned or disposed of in an appropriate manner.

All testing results were evaluated subjectively for consistency and reasonableness, and the results appear to be reasonably representative of the material tested. However, DBS&A does not assume any responsibility for interpretations or analyses based on the data enclosed, nor can we guarantee that these data are fully representative of the undisturbed materials at the field site. We recommend that careful evaluation of these laboratory results be made for your particular application.

The testing utilized to generate the enclosed report employs methods that are standard for the industry. The results do not constitute a professional opinion by DBS&A, nor can the results affect any professional or expert opinions rendered with respect thereto by DBS&A. You have acknowledged that all the testing undertaken by us, and the report provided, constitutes mere test results using standardized methods, and cannot be used to disqualify DBS&A from rendering any professional or expert opinion, having waived any claim of conflict of interest by DBS&A.

We are pleased to provide this service to Alan Kuhn Associates LLC and look forward to future laboratory testing on other projects. If you have any questions about the enclosed data, please do not hesitate to call.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC. SOIL TESTING & RESEARCH LABORATORY

Hines

Joleen Hines Laboratory Supervising Manager

Enclosure

Daniel B. Stephens & Associates, Inc. Soil Testing & Research Laboratory 4400 Alameda Blvd. NE, Suite C Albuquerque, NM 87113

Summaries

Summary of Tests Performed

				S	aturate	ed																
	In	itial S	oil	Н	lydraul	ic				Мо	isture				F	Particl	е	Spe	ecific	Air		
Laboratory	Pr	operti	es ¹	Co	nductiv	/ity ²				Charac	terist	ics ³				Size ⁴		Gra	vity ⁵	Perm-	Atterberg	Proctor
Sample Number	G	VM	VD	СН	FH	FW	HC	PP	FP	DPP	RH	EP	WHC	K _{unsat}	DS	WS	Н	F	С	eability	Limits	Compaction
BP16-1																х	Х				Х	Х
BP16-1 (95%)	х	х				Х	х	х		х	х			Х								
BP16-2																х	Х				Х	х
BP16-3																х	Х				Х	х
BP16-3 (95%)	х	Х				х	х	х		х	х			Х								
BP16-4																х	Х				Х	Х
BP16-5																х	Х				Х	x
BP16-5 (95%)	х	Х				х	х	х		Х	х			Х								

¹ G = Gravimetric Moisture Content, VM = Volume Measurement Method, VD = Volume Displacement Method

² CH = Constant Head Rigid Wall, FH = Falling Head Rigid Wall, FW = Falling Head Rising Tail Flexible Wall

³ HC = Hanging Column, PP = Pressure Plate, FP = Filter Paper, DPP = Dew Point Potentiometer, RH = Relative Humidity Box,

EP = Effective Porosity, WHC = Water Holding Capacity, Kunsat = Calculated Unsaturated Hydraulic Conductivity

⁴ DS = Dry Sieve, WS = Wet Sieve, H = Hydrometer

⁵ F = Fine (<4.75mm), C = Coarse (>4.75mm)

Notes

Sample Receipt:

Five samples, each in a full 5-gallon bucket, were received on April 28, 2016.

Sample Preparation and Testing Notes:

Each of the five samples was subjected to standard proctor compaction testing, particle size analysis, and Atterberg limits testing. Based on these results, three of the samples were chosen by the client for additional testing.

A portion of each of the three samples was remolded into a testing ring to target 95% of the respective maximum dry bulk density at the respective optimum moisture content, based on the standard proctor compaction test results. Each of these remolded sub-samples was subjected to initial properties analysis, saturation, and the hanging column and pressure chamber portions of the moisture retention testing. Secondary sub-samples were also prepared, using the same target remold parameters. The secondary sub-samples were then extruded from the testing ring and were subjected to saturated hydraulic conductivity testing via the flexible wall method. The actual percentage of maximum dry bulk density achieved was added to each remolded sub-sample ID.

Separate sub-samples were obtained for the dewpoint potentiometer and relative humidity chamber portions of the moisture retention testing.

Based on the proctor compaction method, material larger than 4.75mm was removed from the sample material prior to compaction and remolding. Oversize correction calculations are not presented since the fraction removed was less than 5% of the bulk sample mass in all cases.

Porosity calculations, and the particle diameter calculations in the hydrometer portion of the particle size analysis testing, are based on the use of an assumed specific gravity value of 2.65.

Volumetric water contents were adjusted for changes in volume, where applicable. Due to the irregularities formed on the sample surfaces during swelling, volume measurements obtained after the initial reading should be considered estimates.

Summary of Sample Preparation/Volume Changes

	Procto	r Data	Tai Pi	Target Remold Parameters ¹			Actual Remold Data			Volume Change Post Saturation ²			Volume Change Post Drying Curve ³		
	Opt. Moist. Cont.	Max. Dry Density	Moist. Cont.	Dry Bulk Density	% of Max. Density	Moist. Cont.	Dry Bulk Density	% of Max. Density	Dry Bulk Density	% Volume Change	% of Max. Density	Dry Bulk Density	% Volume Change	% of Max. Density	
 Sample Number	(%, g/g)	(g/cm ³)	(%, g/g)	(g/cm ³)	(%)	(%, g/g)	(g/cm ³)	(%)	(g/cm ³)	(%)	(%)	(g/cm ³)	(%)	(%)	
BP-16-1 (95%)	16.6	1.75	16.6	1.66	95%	16.6	1.66	95.1%	1.63	+2.0%	93.3%	1.63	+1.8%	93.5%	
BP-16-3 (95%)	16.4	1.75	16.4	1.66	95%	16.2	1.66	95.2%	1.65	+0.8%	94.4%	1.65	+0.8%	94.4%	
BP-16-5 (95%)	18.9	1.65	18.9	1.56	95%	18.9	1.57	95.1%	1.55	+1.0%	94.2%	1.55	+0.9%	94.3%	

¹Target Remold Parameters: Provided by the client: 95% of maximum dry density at optimum moisture content.

²Volume Change Post Saturation: Volume change measurements were obtained after saturated hydraulic conductivity testing.

³Volume Change Post Drying Curve: Volume change measurements were obtained throughout hanging column and pressure plate testing. The 'Volume Change Post Drying Curve' values represent the final sample dimensions after the last pressure plate point.

Notes:

"+" indicates sample swelling, "-" indicates sample settling, and "---" indicates no volume change occurred.

		Moisture						
	As Re	eceived	Rem	olded	Dry Bulk	Wet Bulk	Calculated Porosity (%)	
 Sample Number	Gravimetric (%, g/g)	Volumetric (%, cm ³ /cm ³)	Gravimetric (%, g/g)	Volumetric (%, cm ³ /cm ³)	Density (g/cm ³)	Density (g/cm ³)		
BP16-1 (95%)	NA	NA	16.6	27.5	1.66	1.94	37.3	
BP16-3 (95%)	NA	NA	16.2	26.9	1.66	1.93	37.3	
BP16-5 (95%)	NA	NA	18.9	29.6	1.57	1.86	40.9	

Summary of Initial Moisture Content, Dry Bulk Density Wet Bulk Density and Calculated Porosity

NA = Not analyzed

Summary of Saturated Hydraulic Conductivity Tests

		Oversize			
		Corrected	Method of Analysis		
	K _{sat}	K _{sat}	Constant Head	Falling Head	
Sample Number	(cm/sec)	(cm/sec)	Flexible Wall	Flexible Wall	
BP16-1 (95%)	3.0E-06			Х	
BP16-3 (95%)	6.6E-06			Х	
BP16-5 (95%)	5.2E-06			Х	

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass NR = Not requested NA = Not applicable

	Pressure Head	Moisture Content
Sample Number	(-cm water)	(%, cm ³ /cm ³)
BP16-1 (95%)	0	39.2 #
	25	38.8 #
	73	37.7 #
	143	34.7 **
	337	32.2 **
	1938	22.3 **
	11932	17.7 #
	70468	12.3 **
	578125	7.4 **
	848426	6.7 ^{‡‡}
BP16-3 (95%)	0	39.2 #
	25	39.0 #
	73	38.1 #
	143	34.2 **
	337	31.4 **
	2244	20.0 ##
	13359	15.6 #
	103204	10.4 **
	589138	6.9 ^{‡‡}
	848426	6.2 #
BP16-5 (95%)	0	42.3 #
· · · · · · · · · · · · · · · · · · ·	25	42.2 **
	73	40.8 **
	143	37.3 #
	337	35.0 **
	1734	24.0 **
	13971	16.9 ^{‡‡}
	63432	12.2 #
	611268	7.0 ##
	848426	6.4 **

Summary of Moisture Characteristics of the Initial Drainage Curve

^{‡‡} Volume adjustments are applicable at this matric potential (see data sheet for this sample).

Summary of Calculated Unsaturated Hydraulic Properties

					Oversize Corrected		
Sample Number	℃ (cm ⁻¹)	N (dimensionless)	θ r (% vol)	θ _s (% vol)	θ _r (% vol)	θ s (% vol)	_
BP16-1 (95%)	0.0070	1.1954	0.00	39.44			-
BP16-3 (95%)	0.0073	1.2339	1.71	39.71			
BP16-5 (95%)	0.0065	1.2140	0.00	42.69			

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NR = Not requested

NA = Not applicable

Summary of Particle Size Characteristics

Sample Number	d ₁₀ (mm)	d ₅₀ (mm)	d ₆₀ (mm)	C _u	C _c	Method	ASTM Classification	USDA Classification	
BP16-1	0.00062	0.042	0.072	116	1.1	WS/H	Sandy lean clay s(CL)	Loam	(Est)
BP16-2	0.00065	0.040	0.063	97	0.91	WS/H	Sandy lean clay s(CL)	Loam	(Est)
BP16-3	0.00057	0.053	0.084	147	2.1	WS/H	Sandy lean clay s(CL)	Loam	(Est)
BP16-4	0.00070	0.043	0.066	94	1.8	WS/H	Sandy lean clay s(CL)	Loam	(Est)
BP16-5	0.00057	0.045	0.069	121	2.0	WS/H	Sandy lean clay s(CL)	Loam	(Est)

$$d_{50} = \text{Median particle diameter} \qquad C_{u} = \frac{d_{60}}{d_{10}} \qquad DS = Dry \text{ sieve} \qquad ^{\dagger} \text{ Greater than 10\% of sample is coarse material} \\ \text{Est} = \underset{\text{Cassification are estimates, since extrapolation}}{\text{vas required to obtain the } d_{10} \text{ diameter}} \qquad C_{c} = \frac{(d_{30})^{2}}{(d_{10})(d_{60})} \qquad WS = \text{Wet sieve} \qquad ^{\dagger} \text{ Greater than 10\% of sample is coarse material} \\ \text{WS} = \text{Wet sieve} \qquad WS = \text{Wet sieve} \qquad ^{\dagger} \text{ Greater than 10\% of sample is coarse material} \\ \text{H} = \text{Hydrometer} \qquad WS = \text{Wet sieve} \qquad ^{\dagger} \text{ Greater than 10\% of sample is coarse material} \\ \text{H} = \text{Hydrometer} \qquad ^{\dagger} \text{ Greater than 10\% of sample is coarse material} \\ \text{H} = \text{Hydrometer} \qquad ^{\dagger} \text{ Greater than 10\% of sample is coarse material} \\ \text{H} = \text{Hydrometer} \qquad ^{\dagger} \text{ Greater than 10\% of sample is coarse material} \\ \text{H} = \text{Hydrometer} \qquad ^{\dagger} \text{ Greater than 10\% of sample is coarse material} \\ \text{H} = \text{Hydrometer} \qquad ^{\dagger} \text{ Greater than 10\% of sample is coarse material} \\ \text{H} = \text{Hydrometer} \qquad ^{\dagger} \text{ Greater than 10\% of sample is coarse material} \\ \text{H} = \text{Hydrometer} \qquad ^{\dagger} \text{ Greater than 10\% of sample is coarse material} \\ \text{H} = \text{Hydrometer} \qquad ^{\dagger} \text{ Greater than 10\% of sample is coarse material} \\ \text{H} = \text{Hydrometer} \qquad ^{\dagger} \text{ Greater than 10\% of sample is coarse material} \\ \text{H} = \text{Hydrometer} \qquad ^{\dagger} \text{ Greater than 10\% of sample is coarse material} \\ \text{H} = \text{Hydrometer} \qquad ^{\dagger} \text{ Greater than 10\% of sample is coarse material} \\ \text{H} = \text{Hydrometer} \qquad ^{\dagger} \text{ Greater than 10\% of sample is coarse material} \\ \text{H} = \text{Hydrometer} \qquad ^{\dagger} \text{ Greater than 10\% of sample is coarse material} \\ \text{H} = \text{Hydrometer} \qquad ^{\dagger} \text{ Greater than 10\% of sample is coarse material} \qquad ^{\dagger} \text{ Greater than 10\% of sample is coarse material} \qquad ^{\dagger} \text{ Greater than 10\% of sample is coarse material} \qquad ^{\dagger} \text{ Greater than 10\% of sample is coarse material} \qquad ^{\dagger} \text{ Greater than 10\% of sample is coarse material} \qquad ^{\dagger} \text{ Greater than 10\% of sample is coarse material} \qquad ^{\dagger} \text{ Greater than 10\% of sample is coarse material}$$

	Percent Gravel, Sand, Silt and Clay*									
Sample Number	% Gravel (>4.75mm)	% Sand (<4.75mm, >0.075mm)	% Silt (<0.075mm, >0.002mm)	% Clay (<0.002mm)						
BP16-1	1.3	37.9	42.6	18.3						
BP16-2	0.4	35.7	43.0	20.9						
BP16-3	1.5	41.1	38.6	18.8						
BP16-4	1.4	35.6	44.2	18.7						
BP16-5	1.3	36.7	43.1	18.9						

*USCS classification does not classify clay fraction based on particle size. USDA definition of clay (<0.002mm) used in this table.

Summary of Atterberg Tests

 Sample Number	Liquid Limit	Plastic Limit	Plasticity Index	Classification
BP16-1	34	19	15	CL
BP16-2	33	19	14	CL
BP16-3	31	18	13	CL
BP16-4	34	18	16	CL
BP16-5	36	21	15	CL

--- = Soil requires visual-manual classification due to non-plasticity

Summary of	Proctor	Compaction	Tests
------------	---------	------------	-------

		Meas	sured	Oversize Corrected		
	Sample Number	Optimum Moisture Content (% g/g)	Maximum Dry Bulk Density (g/cm ³)	Optimum Moisture Content (% g/g)	Maximum Dry Bulk Density (g/cm ³)	
-	BP16-1	16.6	1.75			
	BP16-2	17.6	1.70			
	BP16-3	16.4	1.75			
	BP16-4	17.0	1.71			
	BP16-5	18.9	1.65			

^{--- =} Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NR = Not requested

NA = Not applicable

Initial Properties

		Moisture						
	As Re	eceived	Rem	olded	Dry Bulk	Wet Bulk	Calculated Porosity (%)	
 Sample Number	Gravimetric (%, g/g)	Volumetric (%, cm ³ /cm ³)	Gravimetric (%, g/g)	Volumetric (%, cm ³ /cm ³)	Density (g/cm ³)	Density (g/cm ³)		
BP16-1 (95%)	NA	NA	16.6	27.5	1.66	1.94	37.3	
BP16-3 (95%)	NA	NA	16.2	26.9	1.66	1.93	37.3	
BP16-5 (95%)	NA	NA	18.9	29.6	1.57	1.86	40.9	

Summary of Initial Moisture Content, Dry Bulk Density Wet Bulk Density and Calculated Porosity

NA = Not analyzed

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Name:	Alan Kuhn Associates LLC
Job Number:	NM16.0085.00
Sample Number:	BP16-1 (95%)
Project Name:	Mt Taylor Mine
Depth:	NA

	As Received	Remolded
Test Date:	NA	20-May-16
Field weight* of sample (g):		562.40
Tare weight, ring (g):		133.44
Tare weight, pan/plate (g):		0.00
Tare weight, other (g):		0.00
Dry weight of sample (g):		367.98
Sample volume (cm ³):		221.38
Assumed particle density (g/cm ³):		2.65
Gravimetric Moisture Content (% g/g):		16.6
Volumetric Moisture Content (% vol):		27.5
Dry bulk density (g/cm ³):		1.66
Wet bulk density (g/cm ³):		1.94
Calculated Porosity (% vol):		37.3
Percent Saturation:		73.9
l aboratory analysis by:		D O'Dowd
Data entered by:		D. O'Dowd
Checked by:		J. Hines
Comments:		

* Weight including tares NA = Not analyzed

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Name:	Alan Kuhn Associates LLC
Job Number:	NM16.0085.00
Sample Number:	BP16-3 (95%)
Project Name:	Mt Taylor Mine
Depth:	NA

	As Received	Remolded
Test Date:	NA	20-May-16
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g): Dry weight of sample (g): Sample volume (cm ³): Assumed particle density (g/cm ³):		555.12 126.35 0.00 0.00 369.01 222.03 2.65
Gravimetric Moisture Content (% g/g):		16.2
Volumetric Moisture Content (% vol):		26.9
Dry bulk density (g/cm ³):		1.66
Wet bulk density (g/cm ³):		1.93
Calculated Porosity (% vol):		37.3
Percent Saturation:		72.2
Laboratory analysis by: Data entered by: Checked by:		D. O'Dowd D. O'Dowd J. Hines
Comments:		

* Weight including tares NA = Not analyzed

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Name:	Alan Kuhn Associates LLC
Job Number:	NM16.0085.00
Sample Number:	BP16-5 (95%)
Project Name:	Mt Taylor Mine
Depth:	NA

	As Received	Remolded
Test Date:	NA	20-May-16
Field weight* of sample (g):		545.35
Tare weight, ring (g):		133.19
Tare weight, pan/plate (g):		0.00
Tare weight, other (g):		0.00
Dry weight of sample (g):		346.57
Sample volume (cm ³):		221.22
Assumed particle density (g/cm ³):		2.65
Gravimetric Moisture Content (% g/g):		18.9
Volumetric Moisture Content (% vol):		29.6
Dry bulk density (g/cm ³):		1.57
Wet bulk density (g/cm ³):		1.86
Calculated Porosity (% vol):		40.9
Percent Saturation:		72.5
l aboratory analysis by:		D O'Dowd
Data entered by:		D. O'Dowd
Checked by:		J. Hines
Comments:		

* Weight including tares NA = Not analyzed

Saturated Hydraulic Conductivity

Summary of Saturated Hydraulic Conductivity Tests

		Oversize		
		Corrected	Method of	Analysis
	K _{sat}	K _{sat}	Constant Head	Falling Head
Sample Number	(cm/sec)	(cm/sec)	Flexible Wall	Flexible Wall
BP16-1 (95%)	3.0E-06			Х
BP16-3 (95%)	6.6E-06			Х
BP16-5 (95%)	5.2E-06			Х

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass NR = Not requested NA = Not applicable

Saturated Hydraulic Conductivity Flexible Wall Falling Head-Rising Tail Method

Job name: Alan Kuhn Associates LLC Job number: NM16.0085.00 Sample number: BP16-1 (95%) Project name: Mt Taylor Mine Depth: NA

Remolded or Initial Sample Properties	Post Permeation Sample Properties	Test and Samp	ole Conditions
Initial Mass (g): 433.22	Saturated Mass (g): 462.80	Permeant liquid used: Ta	ip Water
Diameter (cm): 6.101	<i>Dry Mass (g):</i> 371.50	Sample Preparation: 🗌	In situ sample, extruded
Length (cm): 7.594	Diameter (cm): 6.200	V	Remolded Sample
Area (cm ²): 29.23	Length (cm): 7.586	Number of Lifts: 3	
<i>Volume (cm³):</i> 222.00	Deformation (%)**: 0.11	Split: #4	
Dry Density (g/cm ³): 1.67	Area (cm ²): 30.19	Percent Coarse Material (%): 1.3	3
Dry Density (pcf): 104.5	<i>Volume (cm³):</i> 229.01	Particle Density(g/cm ³): 2.6	35 ☑ Assumed Measured
Water Content (%, g/g): 16.6	Dry Density (g/cm ³): 1.62	Cell pressure (PSI): 70	.0
Water Content (%, vol): 27.8	Dry Density (pcf): 101.3	Influent pressure (PSI): 68	.0
Void Ratio (e): 0.58	Water Content (%, g/g): 24.6	Effluent pressure (PSI): 68	.0
Porosity (%, vol): 36.9	Water Content (%, vol): 39.9	Panel Used: 🗌	G 🗸 Н 🗌 I
Saturation (%): 75.4	Void Ratio(e): 0.63	Reading: 🗌	Annulus 🗹 Pipette
	Porosity (%, vol): 38.8		Date/Time
	Saturation (%)*: 102.8	B-Value (% saturation) prior to test*:	0.95 5/24/16 1450
		B-Value (% saturation) post to test:	0.95 5/24/16 1550

* Per ASTM D5084 percent saturation is ensured (B-Value ≥ 95%) prior to testing, as post test saturation values may be exaggerated during depressurizing and sample removal. **Percent Deformation: based on initial sample length and post permeation sample length.

> Laboratory analysis by: D. O'Dowd Data entered by: D. O'Dowd Checked by: J. Hines

Saturated Hydraulic Conductivity Flexible Wall Falling Head-Rising Tail Method

Job name: Alan Kuhn Associates LLC Job number: NM16.0085.00 Sample number: BP16-1 (95%) Project name: Mt Taylor Mine Depth: NA

Date	Time	Temp (°C)	Influent Pipette Reading	Effluent Pipette Reading	Gradient (∆H/∆L)	Average Flow (cm ³)	Elapsed Time (s)	Ratio (outflow to inflow)	Change in Head (Not to exceed 25%)	k _{sat} T°C (cm/s)	k _{sat} Corrected (cm/s)
Test # 1: 24-May-16 24-May-16	15:19:52 15:25:40	22.2 22.2	2.20 2.30	22.65 22.55	3.11 3.08	0.09	348	1.00	1%	3.08E-06	2.92E-06
Test # 2: 24-May-16 24-May-16	15:25:40 15:31:15	22.2 22.2	2.30 2.40	22.55 22.45	3.08 3.05	0.09	335	1.00	1%	3.23E-06	3.07E-06
Test # 3: 24-May-16 24-May-16	15:31:15 15:36:56	22.2 22.2	2.40 2.50	22.45 22.35	3.05 3.02	0.09	341	1.00	1%	3.21E-06	3.04E-06
Test # 4: 24-May-16 24-May-16	15:36:56 15:42:50	22.2 22.2	2.50 2.60	22.35 22.25	3.02 2.99	0.09	354	1.00	1%	3.12E-06	2.96E-06

Average Ksat (cm/sec): 3.00E-06

Calculated Gravel Corrected Average Ksat (cm/sec): ----

23

Saturated Hydraulic Conductivity Flexible Wall Falling Head-Rising Tail Method

Job name: Alan Kuhn Associates LLC Job number: NM16.0085.00 Sample number: BP16-3 (95%) Project name: Mt Taylor Mine Depth: NA

Remolded or Initial Sample Properties		Post Permea	tion				
		Sample Prope	Sample Properties		Test and Sample Conditions		
	Initial Mass (g):	431.18	Saturated Mass (g):	462.14	Permeant liquid used:	Tap Water	
	Diameter (cm):	6.105	Dry Mass (g):	370.41	Sample Preparation:	🗌 In situ sam	ple, extruded
	Length (cm):	7.594	Diameter (cm):	6.187		Remolded S	Sample
	Area (cm²):	29.27	Length (cm):	7.594	Number of Lifts:	3	
	Volume (cm ³):	222.30	Deformation (%)**:	0.00	Split:	#4	
	Dry Density (g/cm ³):	1.67	Area (cm ²):	30.06	Percent Coarse Material (%):	1.5	
	Dry Density (pcf):	104.0	Volume (cm ³):	228.31	Particle Density(g/cm ³):	2.65 🗹 Ass	sumed 🗌 Measured
	Water Content (%, g/g):	16.4	Dry Density (g/cm ³):	1.62	Cell pressure (PSI):	70.0	
	Water Content (%, vol):	27.3	Dry Density (pcf):	101.3	Influent pressure (PSI):	68.0	
	Void Ratio (e):	0.59	Water Content (%, g/g):	24.8	Effluent pressure (PSI):	68.0	
	Porosity (%, vol):	37.1	Water Content (%, vol):	40.2	Panel Used:	🗌 G 🗌 H	✓ I
	Saturation (%):	73.6	Void Ratio(e):	0.63	Reading:	Annulus	✓ Pipette
			Porosity (%, vol):	38.8			Date/Time
			Saturation (%)*:	103.6	B-Value (% saturation) prior to test*:	0.95	5/24/16 1453
					B-Value (% saturation) post to test:	0.95	5/24/16 1555

* Per ASTM D5084 percent saturation is ensured (B-Value ≥ 95%) prior to testing, as post test saturation values may be exaggerated during depressurizing and sample removal. **Percent Deformation: based on initial sample length and post permeation sample length.

> Laboratory analysis by: D. O'Dowd Data entered by: D. O'Dowd Checked by: J. Hines

Saturated Hydraulic Conductivity Flexible Wall Falling Head-Rising Tail Method

Job name: Alan Kuhn Associates LLC Job number: NM16.0085.00 Sample number: BP16-3 (95%) Project name: Mt Taylor Mine Depth: NA

Date	Time	Temp (°C)	Influent Pipette Reading	Effluent Pipette Reading	Gradient (∆H/∆L)	Average Flow (cm ³)	Elapsed Time (s)	Ratio (outflow to inflow)	Change in Head (Not to exceed 25%)	k _{sat} T°C (cm/s)	k _{sat} Corrected (cm/s)
Test # 1: 24-May-16 24-May-16	15:16:05 15:18:45	22.2 22.2	2.20 2.30	21.95 21.85	3.00 2.97	0.09	160	1.00	1%	6.97E-06	6.62E-06
Test # 2: 24-May-16 24-May-16	15:18:45 15:21:26	22.2 22.2	2.30 2.40	21.85 21.75	2.97 2.94	0.09	161	1.00	1%	7.00E-06	6.64E-06
Test # 3: 24-May-16 24-May-16	15:21:26 15:24:05	22.2 22.2	2.40 2.50	21.75 21.65	2.94 2.91	0.09	159	1.00	1%	7.16E-06	6.80E-06
Test # 4: 24-May-16 24-May-16	15:24:05 15:26:54	22.2 22.2	2.50 2.60	21.65 21.55	2.91 2.88	0.09	169	1.00	1%	6.81E-06	6.46E-06

Average Ksat (cm/sec): 6.63E-06

Calculated Gravel Corrected Average Ksat (cm/sec): ----

Saturated Hydraulic Conductivity Flexible Wall Falling Head-Rising Tail Method

Job name: Alan Kuhn Associates LLC Job number: NM16.0085.00 Sample number: BP16-5 (95%) Project name: Mt Taylor Mine Depth: NA

Remolded or Initial Sample Properties	Post Permeation Sample Properties	Test and Same	ble Conditions
Initial Mass (g): 415.74	Saturated Mass (g): 447.07	Permeant liquid used: Ta	p Water
Diameter (cm): 6.105	Dry Mass (g): 348.56	Sample Preparation: 🗌	In situ sample, extruded
Length (cm): 7.601	Diameter (cm): 6.180		Remolded Sample
Area (cm ²): 29.27	Length (cm): 7.598	Number of Lifts: 3	
<i>Volume (cm³):</i> 222.50	Deformation (%)**: 0.03	Split: #4	
Dry Density (g/cm ³): 1.57	Area (cm ²): 30.00	Percent Coarse Material (%): 1.3	3
Dry Density (pcf): 97.8	Volume (cm ³): 227.92	Particle Density(g/cm ³): 2.6	ა5 🗹 Assumed 🗌 Measured
Water Content (%, g/g): 19.3	Dry Density (g/cm ³): 1.53	Cell pressure (PSI): 70	.0
Water Content (%, vol): 30.2	Dry Density (pcf): 95.5	Influent pressure (PSI): 68	.0
Void Ratio (e): 0.69	Water Content (%, g/g): 28.3	Effluent pressure (PSI): 68	.0
Porosity (%, vol): 40.9	Water Content (%, vol): 43.2	Panel Used: 🗹	G 🗌 H 🗌 I
Saturation (%): 73.8	Void Ratio(e): 0.73	Reading: 🗌	Annulus 🗹 Pipette
	Porosity (%, vol): 42.3		Date/Time
	Saturation (%)*: 102.2	B-Value (% saturation) prior to test*:	1.00 5/24/16 1456
		B-Value (% saturation) post to test:	1.00 5/24/16 1600

* Per ASTM D5084 percent saturation is ensured (B-Value ≥ 95%) prior to testing, as post test saturation values may be exaggerated during depressurizing and sample removal. **Percent Deformation: based on initial sample length and post permeation sample length.

> Laboratory analysis by: D. O'Dowd Data entered by: D. O'Dowd Checked by: J. Hines

Saturated Hydraulic Conductivity Flexible Wall Falling Head-Rising Tail Method

Job name: Alan Kuhn Associates LLC Job number: NM16.0085.00 Sample number: BP16-5 (95%) Project name: Mt Taylor Mine Depth: NA

Date	Time	Temp (°C)	Influent Pipette Reading	Effluent Pipette Reading	Gradient (∆H/∆L)	Average Flow (cm ³)	Elapsed Time (s)	Ratio (outflow to inflow)	Change in Head (Not to exceed 25%)	k _{sat} T°C (cm/s)	k _{sat} Corrected (cm/s)
Test # 1: 24-May-16 24-May-16	15:18:09 15:21:40	22.2 22.2	2.20 2.30	21.20 21.10	2.89 2.86	0.09	211	1.00	1%	5.51E-06	5.23E-06
Test # 2: 24-May-16 24-May-16	15:21:40 15:25:18	22.2 22.2	2.30 2.40	21.10 21.00	2.86 2.83	0.09	218	1.00	1%	5.39E-06	5.12E-06
Test # 3: 24-May-16 24-May-16	15:25:18 15:29:01	22.2 22.2	2.40 2.50	21.00 20.90	2.83 2.80	0.09	223	1.00	1%	5.33E-06	5.06E-06
Test # 4: 24-May-16 24-May-16	15:29:01 15:32:38	22.2 22.2	2.50 2.60	20.90 20.80	2.80 2.77	0.09	217	1.00	1%	5.54E-06	5.25E-06

Average Ksat (cm/sec): 5.16E-06

Calculated Gravel Corrected Average Ksat (cm/sec): ---

Moisture Retention Characteristics

	Pressure Head	Moisture Content
Sample Number	(-cm water)	(%, cm ³ /cm ³)
BP16-1 (95%)	0	39.2 #
	25	38.8 #
	73	37.7 #
	143	34.7 **
	337	32.2 **
	1938	22.3 #
	11932	17.7 #
	70468	12.3 #
	578125	7.4 **
	848426	6.7 ^{‡‡}
BP16-3 (95%)	0	39.2 #
	25	39.0 #
	73	38.1 #
	143	34.2 **
	337	31.4 #
	2244	20.0 ##
	13359	15.6 #
	103204	10.4 **
	589138	6.9 ^{‡‡}
	848426	6.2 ^{‡‡}
BP16-5 (95%)	0	42.3 ^{‡‡}
× ,	25	42.2 ^{‡‡}
	73	40.8 ^{‡‡}
	143	37.3 #
	337	35.0 **
	1734	24.0 **
	13971	16.9 **
	63432	12.2 #
	611268	7.0 **
	848426	6.4 #

Summary of Moisture Characteristics of the Initial Drainage Curve

^{‡‡} Volume adjustments are applicable at this matric potential (see data sheet for this sample).

Summary of Calculated Unsaturated Hydraulic Properties

					Oversize	Corrected	
Sample Number	℃ (cm ⁻¹)	N (dimensionless)	θ _r (% vol)	θ _s (% vol)	θ _r (% vol)	θ _s (% vol)	
BP16-1 (95%)	0.0070	1.1954	0.00	39.44			
BP16-3 (95%)	0.0073	1.2339	1.71	39.71			
BP16-5 (95%)	0.0065	1.2140	0.00	42.69			

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NR = Not requested

NA = Not applicable

Moisture Retention Data Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name: Alan Kuhn Associates LLC Job Number: NM16.0085.00 Sample Number: BP16-1 (95%) Project Name: Mt Taylor Mine Depth: NA Dry wt. of sample (g): 367.98 Tare wt., ring (g): 133.44 Tare wt., screen & clamp (g): 27.65 Initial sample volume (cm³): 221.38

Initial dry bulk density (g/cm³): 1.66

Assumed particle density (g/cm³): 2.65

Initial calculated total porosity (%): 37.27

	Date	Time	Weight* (g)	Matric Potential (-cm water)	Moisture Content [†] (% vol)	
Hanging column:	23-May-16	15:30	617.52	0	39.18	 ‡‡
0 0	30-May-16	13:00	616.60	25.0	38.77	‡ ‡
	6-Jun-16	13:45	614.10	73.0	37.66	‡ ‡
	14-Jun-16	15:20	607.20	143.0	34.68	‡ ‡
Pressure plate:	29-Jun-16	10:17	601.67	337	32.23	‡ ‡

Volume Adjusted Data¹

					Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Hanging column:	0.0	225.76	+1.98%	1.63	38.49
	25.0	225.76	+1.98%	1.63	38.49
	73.0	225.76	+1.98%	1.63	38.49
	143.0	225.26	+1.75%	1.63	38.36
Pressure plate:	337	225.26	+1.75%	1.63	38.36

Comments:

¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.

² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Assumed density of water is 1.0 g/cm³

^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Laboratory analysis by: D. O'Dowd Data entered by: J. Hines Checked by: C. Krous

Moisture Retention Data Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: BP16-1 (95%)

Initial sample bulk density (g/cm³): 1.66

Fraction of test sample used (<2.00mm fraction) (%): 97.87

Dry weight* of dew point potentiometer sample (g): 162.79 Tare weight, jar (g): 114.26

	Data	Timo	Weight*	Water Potential	Moisture Content [†]	
_	Dale	TIME	(g)	(-cill water)	(78 001)	_
Dew point potentiometer:	14-Jun-16	11:05	169.57	1938	22.34	‡ ‡
	2-Jun-16	8:56	168.17	11932	17.72	‡ ‡
	26-May-16	9:08	166.51	70468	12.25	‡ ‡
_	25-May-16	9:36	165.03	578125	7.38	

	Volume Adjusted Data ¹							
	Water Potential	Adjusted	% Volume	Adjusted	Adjusted			
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)			
Dew point potentiometer:	1938 11932	225.26 225.26	+1.75% +1.75%	1.63 1.63	38.36 38.36			
	70468	225.26	+1.75%	1.63	38.36			
	578125	225.26	+1.75%	1.63	38.36			

Comments:

¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.

² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

⁺ Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.

^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1).

Laboratory analysis by: D. O'Dowd Data entered by: J. Hines Checked by: C. Krous

Moisture Retention Data Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: BP16-1 (95%)

Initial sample bulk density (g/cm³): 1.66

Fraction of test sample used (<2.00mm fraction) (%): 97.87

Dry weight* of relative humidity box sample (g): 66.65 Tare weight (g): 38.82

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)	
Relative humidity box:	24-May-16	10:17	67.81	848426	6.69	
			Volume Adjust	ed Data ¹		
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
Relative humidity box:	848426	225.26	+1.75%	1.63	38.36	-

Comments:

¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.

² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.

^{##} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Laboratory analysis by: D. O'Dowd Data entered by: J. Hines Checked by: C. Krous

Water Retention Data Points

Plot of Relative Hydraulic Conductivity vs Moisture Content Sample Number: BP16-1 (95%) 1.E+00 1.E-01 1.E-02 1.E-03 **Relative Hydraulic Conductivity** 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 20 0 10 30 40 50 60 Moisture Content (%,cm³/cm³)

Daniel B. Stephens & Associates, Inc.

1.E+00 1.E-01 1.E-02 1.E-03 1.E-04 Hydraulic Conductivity (cm/s) 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10 1.E-11 1.E-12 30 10 20 40 50 0 60 Moisture Content (%,cm³/cm³)

Plot of Hydraulic Conductivity vs Moisture Content

Daniel B. Stephens & Associates, Inc.

Plot of Relative Hydraulic Conductivity vs Pressure Head

Daniel B. Stephens & Associates, Inc.

1.E+00 1.E-01 1.E-02 1.E-03 1.E-04 Hydraulic Conductivity (cm/s) 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10 1.E-11 1.E-12 1.E+01 1.E+02 1.E+03 1.E-03 1.E-02 1.E-01 1.E+00 1.E+04 1.E+05 1.E+06 Pressure Head (-cm water)

Plot of Hydraulic Conductivity vs Pressure Head

Daniel B. Stephens & Associates, Inc.

Oversize Correction Data Sheet

Job Name: Alan Kuhn Associates LLC Job Number: NM16.0085.00 Sample Number: BP16-1 (95%) Project Name: Mt Taylor Mine Depth: NA

Split (3/4", 3/8", #4): #4

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g): Mass Fraction (%):	1.29 1.29	98.71 98.71	100.00 100.00
Initial Sample θ_i			
Bulk Density (g/cm ³): Calculated Porosity (% vol):	2.65 0.00	1.66 37.27	1.67 36.97
Volume of Solids (cm ³):	0.49	37.25	37.74
Volume of Voids (cm ³):	0.00	22.13	22.13
<i>Total Volume</i> (cm ³):	0.49	59.38	59.87
Volumetric Fraction (%):	0.81	99.19	100.00
Initial Moisture Content (% vol):	0.00	27.55	
Saturated Sample θ_s			
Bulk Density (g/cm ³):	2.65	1.63	1.64
Calculated Porosity (% vol):	0.00	38.49	38.18
Volume of Solids (cm ³):	0.49	37.25	37.74
Volume of Voids (cm ³):	0.00	23.31	23.31
<i>Total Volume</i> (cm ³):	0.49	60.56	61.05
Volumetric Fraction (%):	0.80	99.20	100.00
Saturated Moisture Content (% vol):	0.00	39.44	
Residual Sample θ_r			
Bulk Density (g/cm ³):	2.65	1.63	1.64
Calculated Porosity (% vol):	0.00	38.36	38.05
Volume of Solids (cm ³):	0.49	37.25	37.74
Volume of Voids (cm ³):	0.00	23.18	23.18
<i>Total Volume</i> (cm ³):	0.49	60.42	60.91
Volumetric Fraction (%):	0.80	99.20	100.00
Residual Moisture Content (% vol):	0.00	0.00	
Ksat (cm/sec):	NM	3.0E-06	

* = Porosity and moisture content of coarse fraction assumed to be zero.

** = Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

NM = Not measured

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Moisture Retention Data Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name: Alan Kuhn Associates LLC Job Number: NM16.0085.00 Sample Number: BP16-3 (95%) Project Name: Mt Taylor Mine Depth: NA Dry wt. of sample (g): 369.01 Tare wt., ring (g): 126.35 Tare wt., screen & clamp (g): 27.63 Initial sample volume (cm³): 222.03 Initial dry bulk density (g/cm³): 1.66

Assumed particle density (g/cm³): 2.65

Initial calculated total porosity (%): 37.28

	Date	Time	Weight* (g)	Matric Potential (-cm water)	Moisture Content [†] (% vol)	
Hanging column:	23-May-16	15:30	610.68	0	39.19	 ‡‡
	30-May-16	15:00	610.20	25.0	38.98	‡ ‡
	6-Jun-16	13:45	608.20	73.0	38.09	‡ ‡
	14-Jun-16	15:25	599.40	143.0	34.15	‡ ‡
Pressure plate:	27-Jun-16	10:05	593.13	337	31.35	‡ ‡

Volume Adjusted Data¹

					Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Hanging column:	0.0	223.73	+0.76%	1.65	37.76
	25.0	223.73	+0.76%	1.65	37.76
	73.0	223.73	+0.76%	1.65	37.76
	143.0	223.73	+0.76%	1.65	37.76
Pressure plate:	337	223.73	+0.76%	1.65	37.76

Comments:

¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.

² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Assumed density of water is 1.0 g/cm³

^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Moisture Retention Data Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: BP16-3 (95%)

Initial sample bulk density (g/cm³): 1.66

Fraction of test sample used (<2.00mm fraction) (%): 97.77

Dry weight* of dew point potentiometer sample (g): 160.96 Tare weight, jar (g): 113.25

	Date	Time	Weight* (a)	Water Potential (-cm water)	Moisture Content [†] (% vol)	
Dew point potentiometer:	14-Jun-16	11:12	166.89	2244	20.04	+ ‡
,	2-Jun-16	9:05	165.57	13359	15.58	‡ ‡
	26-May-16	9:18	164.05	103204	10.44	‡ ‡
	25-May-16	9:42	162.99	589138	6.86	‡ ‡

	Volume Adjusted Data ¹								
	Water Potential	Adjusted Volume	% Volume	Adjusted Density	Adjusted				
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)				
Dew point potentiometer:	2244 13359	223.73 223.73	+0.76% +0.76%	1.65 1.65	37.76 37.76				
	103204	223.73	+0.76%	1.65	37.76				
	589138	223.73	+0.76%	1.65	37.76				

Comments:

¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.

² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.

^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1).

Moisture Retention Data Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: BP16-3 (95%)

Initial sample bulk density (g/cm³): 1.66

Fraction of test sample used (<2.00mm fraction) (%): 97.77

Dry weight* of relative humidity box sample (g): 77.30 Tare weight (g): 39.93

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)	
Relative humidity box:	24-May-16	10:17	78.73	848426	6.17	
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
Relative humidity box:	848426	223.73	+0.76%	1.65	37.76	-

Comments:

¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.

² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.

^{##} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Water Retention Data Points

Plot of Relative Hydraulic Conductivity vs Moisture Content Sample Number: BP16-3 (95%) 1.E+00 1.E-01 1.E-02 1.E-03 **Relative Hydraulic Conductivity** 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 20 0 10 30 40 50 Moisture Content (%,cm³/cm³)

Daniel B. Stephens & Associates, Inc.

60

1.E+00 1.E-01 1.E-02 1.E-03 1.E-04 Hydraulic Conductivity (cm/s) 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10 1.E-11 1.E-12 30 10 20 40 50 0 60 Moisture Content (%,cm³/cm³)

Plot of Hydraulic Conductivity vs Moisture Content

Daniel B. Stephens & Associates, Inc.

Plot of Relative Hydraulic Conductivity vs Pressure Head

Daniel B. Stephens & Associates, Inc.

1.E+00 1.E-01 1.E-02 1.E-03 1.E-04 Hydraulic Conductivity (cm/s) 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10 1.E-11 1.E-12 1.E+01 1.E+02 1.E+03 1.E-03 1.E-02 1.E-01 1.E+00 1.E+04 1.E+05 1.E+06 Pressure Head (-cm water)

Plot of Hydraulic Conductivity vs Pressure Head

Daniel B. Stephens & Associates, Inc.

Oversize Correction Data Sheet

Job Name: Alan Kuhn Associates LLC Job Number: NM16.0085.00 Sample Number: BP16-3 (95%) Project Name: Mt Taylor Mine Depth: NA

Split (3/4", 3/8", #4): #4

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	1.47	98.53	100.00
Mass Fraction (%):	1.47	98.53	100.00
Initial Sample θ_i			
Bulk Density (g/cm ³):	2.65	1.66	1.67
Calculated Porosity (% vol):	0.00	37.28	36.94
Volume of Solids (cm ³):	0.56	37.18	37.74
Volume of Voids (cm ³):	0.00	22.10	22.10
Total Volume (cm ³):	0.56	59.28	59.84
Volumetric Fraction (%):	0.93	99.07	100.00
Initial Moisture Content (% vol):	0.00	26.91	
Saturated Sample θ_s			
Bulk Density (g/cm ³):	2.65	1.65	1.66
Calculated Porosity (% vol):	0.00	37.76	37.41
Volume of Solids (cm ³):	0.56	37.18	37.74
Volume of Voids (cm ³):	0.00	22.56	22.56
<i>Total Volume</i> (cm ³):	0.56	59.74	60.29
Volumetric Fraction (%):	0.92	99.08	100.00
Saturated Moisture Content (% vol):	0.00	39.71	
Residual Sample θ_r			
Bulk Density (g/cm ³):	2.65	1.65	1.66
Calculated Porosity (% vol):	0.00	37.76	37.41
Volume of Solids (cm ³):	0.56	37.18	37.74
Volume of Voids (cm ³):	0.00	22.56	22.56
Total Volume (cm ³):	0.56	59.74	60.29
Volumetric Fraction (%):	0.92	99.08	100.00
Residual Moisture Content (% vol):	0.00	1.71	
Ksat (cm/sec):	NM	6.6E-06	

* = Porosity and moisture content of coarse fraction assumed to be zero.

** = Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

NM = Not measured

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Moisture Retention Data Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name: Alan Kuhn Associates LLC Job Number: NM16.0085.00 Sample Number: BP16-5 (95%) Project Name: Mt Taylor Mine Depth: NA Dry wt. of sample (g): 346.57 Tare wt., ring (g): 133.19 Tare wt., screen & clamp (g): 27.85 Initial sample volume (cm³): 221.22

Initial dry bulk density (g/cm³): 1.57

Assumed particle density (g/cm²): 2.65

Initial calculated total porosity (%): 40.88

	Date	Time	Weight* (g)	Matric Potential (-cm water)	Moisture Content [†] (% vol)	
Hanging column:	23-May-16	15:40	601.99	0	42.26	 ‡‡
i i i i gi i gi i gi e e e e i i i i i i	30-May-16	15:00	601.80	25.0	42.17	‡ ‡
	6-Jun-16	13:45	598.80	73.0	40.83	‡ ‡
	14-Jun-16	15:30	590.80	143.0	37.28	‡ ‡
Pressure plate:	27-Jun-16	10:05	585.65	337	34.97	‡ ‡

Volume Adjusted Data¹

					Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Hanging column:	0.0	223.35	+0.96%	1.55	41.45
	25.0	223.35	+0.96%	1.55	41.45
	73.0	223.35	+0.96%	1.55	41.45
	143.0	223.17	+0.88%	1.55	41.40
Pressure plate:	337	223.17	+0.88%	1.55	41.40

Comments:

¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.

² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Assumed density of water is 1.0 g/cm³

^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Moisture Retention Data Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: BP16-5 (95%)

Initial sample bulk density (g/cm³): 1.57

Fraction of test sample used (<2.00mm fraction) (%): 97.69

Dry weight* of dew point potentiometer sample (g): 160.79 Tare weight, jar (g): 115.80

			Weight*	Water Potential	Moisture Content [†]	
	Date	Time	(g)	(-cm water)	(% vol)	
Dew point potentiometer:	14-Jun-16	11:18	167.91	1734	24.01	‡ ‡
	2-Jun-16	9:10	165.81	13971	16.93	‡ ‡
	27-May-16	16:00	164.42	63432	12.24	‡ ‡
	25-May-16	9:50	162.88	611268	7.05	

	Volume Adjusted Data '							
	Water Potential	Adjusted Volume	% Volume Change ²	Adjusted Density	Adjusted Calc. Porosity			
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)			
Dew point potentiometer:	1734	223.17	+0.88%	1.55	41.40			
	13971	223.17	+0.88%	1.55	41.40			
	63432	223.17	+0.88%	1.55	41.40			
	611268	223.17	+0.88%	1.55	41.40			

Comments:

¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.

² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.

^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1).

Moisture Retention Data Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: BP16-5 (95%)

Initial sample bulk density (g/cm³): 1.57

Fraction of test sample used (<2.00mm fraction) (%): 97.69

Dry weight* of relative humidity box sample (g): 81.26 Tare weight (g): 38.03

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)	_
Relative humidity box:	24-May-16	10:17	83.09	848426	6.43	
			Volume Adjust	ed Data ¹		
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
Relative humidity box:	848426	223.17	+0.88%	1.55	41.40	_

Comments:

¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.

² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.

^{##} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Water Retention Data Points

Daniel B. Stephens & Associates, Inc. Plot of Relative Hydraulic Conductivity vs Moisture Content Sample Number: BP16-5 (95%) 1.E+00 1.E-01 1.E-02 1.E-03 **Relative Hydraulic Conductivity** 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 20 0 10 30 40 50

Moisture Content (%,cm³/cm³)

60

1.E+00 1.E-01 1.E-02 1.E-03 1.E-04 Hydraulic Conductivity (cm/s) 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10 1.E-11 1.E-12 30 10 20 40 50 0 60 Moisture Content (%,cm³/cm³)

Plot of Hydraulic Conductivity vs Moisture Content

Daniel B. Stephens & Associates, Inc.

Plot of Relative Hydraulic Conductivity vs Pressure Head

Daniel B. Stephens & Associates, Inc.

1.E+00 1.E-01 1.E-02 1.E-03 1.E-04 Hydraulic Conductivity (cm/s) 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10 1.E-11 1.E-12 1.E+01 1.E+02 1.E+03 1.E-03 1.E-02 1.E-01 1.E+00 1.E+04 1.E+05 1.E+06 Pressure Head (-cm water)

Plot of Hydraulic Conductivity vs Pressure Head

Daniel B. Stephens & Associates, Inc.

Oversize Correction Data Sheet

Job Name: Alan Kuhn Associates LLC Job Number: NM16.0085.00 Sample Number: BP16-5 (95%) Project Name: Mt Taylor Mine Depth: NA

Split (3/4", 3/8", #4): #4

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g): Mass Fraction (%):	1.29 1.29	98.71 98.71	100.00 100.00
Initial Sample θ_i			
Bulk Density (g/cm ³): Calculated Porosity (% vol):	2.65 0.00	1.57 40.88	1.57 40.57
Volume of Solids (cm ³):	0.49	37.25	37.74
Volume of Voids (cm ³):	0.00	25.76	25.76
<i>Total Volume</i> (cm ³):	0.49	63.01	63.49
Volumetric Fraction (%):	0.77	99.23	100.00
Initial Moisture Content (% vol):	0.00	29.65	
Saturated Sample θ_s			
Bulk Density (g/cm ³):	2.65	1.55	1.56
Calculated Porosity (% vol):	0.00	41.45	41.13
Volume of Solids (cm ³):	0.49	37.25	37.74
Volume of Voids (cm ³):	0.00	26.37	26.37
<i>Total Volume</i> (cm ³):	0.49	63.61	64.10
Volumetric Fraction (%):	0.76	99.24	100.00
Saturated Moisture Content (% vol):	0.00	42.69	
Residual Sample θ_r			
Bulk Density (g/cm ³):	2.65	1.55	1.56
Calculated Porosity (% vol):	0.00	41.40	41.08
Volume of Solids (cm ³):	0.49	37.25	37.74
Volume of Voids (cm ³):	0.00	26.32	26.32
<i>Total Volume</i> (cm ³):	0.49	63.56	64.05
Volumetric Fraction (%):	0.76	99.24	100.00
Residual Moisture Content (% vol):	0.00	0.00	
Ksat (cm/sec):	NM	5.2E-06	

* = Porosity and moisture content of coarse fraction assumed to be zero.

** = Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

NM = Not measured

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Particle Size Analysis

Summary of Particle Size Characteristics

_	Sample Number	d ₁₀ (mm)	d ₅₀ (mm)	d ₆₀ (mm)	C _u	C _c	Method	ASTM Classification	USDA Classification	
	BP16-1	0.00062	0.042	0.072	116	1.1	WS/H	Sandy lean clay s(CL)	Loam	(Est)
	BP16-2	0.00065	0.040	0.063	97	0.91	WS/H	Sandy lean clay s(CL)	Loam	(Est)
	BP16-3	0.00057	0.053	0.084	147	2.1	WS/H	Sandy lean clay s(CL)	Loam	(Est)
	BP16-4	0.00070	0.043	0.066	94	1.8	WS/H	Sandy lean clay s(CL)	Loam	(Est)
	BP16-5	0.00057	0.045	0.069	121	2.0	WS/H	Sandy lean clay s(CL)	Loam	(Est)

$$d_{50} = \text{Median particle diameter} \qquad C_{u} = \frac{d_{60}}{d_{10}} \qquad DS = Dry \text{ sieve} \qquad ^{\dagger} \text{ Greater than 10\% of sample is coarse material} \\ \text{Est} = \underset{\text{Cassification are estimates, since extrapolation}}{\text{classification are estimates, since extrapolation}} \qquad C_{c} = \frac{(d_{30})^{2}}{(d_{10})(d_{60})} \qquad WS = Wet \text{ sieve}$$

Percent Gravel, Sand, Silt and Clay*									
Sample Number	% Gravel (>4.75mm)	% Sand (<4.75mm, >0.075mm)	% Silt (<0.075mm, >0.002mm)	% Clay (<0.002mm)					
BP16-1	1.3	37.9	42.6	18.3					
BP16-2	0.4	35.7	43.0	20.9					
BP16-3	1.5	41.1	38.6	18.8					
BP16-4	1.4	35.6	44.2	18.7					
BP16-5	1.3	36.7	43.1	18.9					

*USCS classification does not classify clay fraction based on particle size. USDA definition of clay (<0.002mm) used in this table.

Particle Size Analysis Wet Sieve Data (#4 Split)

Sa	Job Name: Alan Kuhn Associates LLC Job Number: NM16.0085.00 nple Number: BP16-1 Project Name: Mt Taylor Mine Depth: NA Test Date: 9-May-16			Initial Dry Weight of Sample (g): 174 Weight Passing #4 (g): 172 Weight Retained #4 (g): 226 Weight of Hydrometer Sample (g): 75. Calculated Weight of Sieve Sample (g): 76. Shape: Rounded Hardness: Soft					
	Test Fraction	Sieve Number	Diameter (mm)	Wt. Retained	Cum Wt. Retained	Wt. Passi	ng % Passing]	
	+4	3" 2" 1.5" 1" 3/4" 3/8" 4	75 50 38.1 25 19.0 9.5 4.75	0.00 0.00 0.00 29.26 87.24 109.59	0.00 0.00 0.00 29.26 116.50 226.09	17492 17492 17492 17492 17463 17376 17266	.77100.00.77100.00.77100.00.77100.00.5199.83.2799.33.6898.71		
	-4	10 20 40 60 140 200 dry pan wet pan	2.00 0.85 0.425 0.250 0.106 0.075	(Based on calcu 0.64 0.72 0.85 3.50 17.13 5.98 2.06	llated sieve wt. 1.62 2.34 3.19 6.69 23.82 29.80 31.86 44.26) 74.5 73.7 72.9 69.4 52.3 46.3 44.2 0.0	50 97.87 78 96.92 93 95.80 43 91.21 30 68.70 32 60.85 26 00		
		0.00062 0.0014 0.0071 <i>n Particle Diame</i> <i>Coefficient, Cu</i> [<i>re, Cc</i> [(d ₃₀) ² /(d <i>meter</i> [(d ₁₆ +d ₅₀)	d ₅₀ (mm): d ₆₀ (mm): d ₈₄ (mm): terd ₅₀ (mm): d ₆₀ /d ₁₀] (mm): l ₁₀ *d ₆₀)] (mm): +d ₈₄)/3] (mm):	0.042 0.072 0.19 0.042 116 1.1 0.078	Note: Reported valu and soil classificatio since extrapolation v obtain the d ₁₀ diame	ues for d ₁₀ , C _u , C _c , n are estimates, was required to eter			
				Classific	cation of fines:	CL			

ASTM Soil Classification: Sandy lean clay s(CL) USDA Soil Classification: Loam

Particle Size Analysis Hydrometer Data

Job Name:	Alan Kuhn Associates LLC	Type of Water Used:	DISTILLED
Job Number:	NM16.0085.00	Reaction with H_2O_2 :	NA
Sample Number:	BP16-1	Dispersant*:	(NaPO ₃) ₆
Project Name:	Mt Taylor Mine	Assumed particle density:	2.65
Depth:	NA	Initial Wt. (g):	75.14
Test Date:	5-May-16	Total Sample Wt. (g):	17492.77
Start Time:	7:30	Wt. Passing #4 (g):	17266.68

	Time	Temp	R	R_{L}	R _{corr}	L	D	Р	
Date	(min)	(°C)	(g/L)	(g/L)	(g/L)	(cm)	(mm)	(%)	% Finer
5-May-16	1	22.0	43.0	5.5	37.5	9.3	0.04045	49.9	49.2
	2	22.0	39.0	5.5	33.5	9.9	0.02960	44.5	44.0
	5	22.0	35.0	5.5	29.5	10.6	0.01933	39.2	38.7
	15	21.9	32.0	5.6	26.4	11.1	0.01143	35.2	34.7
	30	21.9	29.5	5.6	23.9	11.5	0.00823	31.9	31.4
	60	21.9	27.0	5.6	21.4	11.9	0.00592	28.5	28.2
	120	21.8	24.5	5.6	18.9	12.3	0.00426	25.2	24.9
	250	22.0	22.0	5.6	16.5	12.7	0.00300	21.9	21.6
	480	21.7	20.0	5.6	14.4	13.0	0.00220	19.2	18.9
6-May-16	1440	22.4	17.0	5.5	11.5	13.5	0.00128	15.3	15.1

Comments:

* Dispersion device: mechanically operated stirring device

Note: Reported values for d₁₀, C_u, C_c, and ASTM classification are estimates, since extrapolation was required to obtain the d₁₀ diameter

Daniel B. Stephens & Associates, Inc.

Particle Size Analysis Wet Sieve Data (#4 Split)

Job Name: Job Number: Sample Number: Project Name: Depth:	Alan Kuhn Assoo NM16.0085.00 BP16-2 Mt Taylor Mine NA	ciates LLC	Initial Dry Weight of Sample (g): 23 Weight Passing #4 (g): 23 Weight Retained #4 (g): 10 Weight of Hydrometer Sample (g): 75 Calculated Weight of Sieve Sample (g): 75				
Test Date:	9-May-16				Shape: Hardness:	Rounded Soft	
Test	Sieve	Diameter	Wt. Retained	Cum Wt. Retained	Wt. Passing	% Passing	

Fraction	Number	(mm)	Retained	Retained	Passing	% Passing
+4						
	3"	75	0.00	0.00	23457.12	100.00
	2"	50	0.00	0.00	23457.12	100.00
	1.5"	38.1	0.00	0.00	23457.12	100.00
	1"	25	0.00	0.00	23457.12	100.00
	3/4"	19.0	0.00	0.00	23457.12	100.00
	3/8"	9.5	23.40	23.40	23433.72	99.90
	4	4.75	77.00	100.40	23356.72	99.57
-4			(Based on calcu	ulated sieve wt.)	
	10	2.00	0.62	0.94	74.77	98.75
	20	0.85	1.01	1.95	73.76	97.42
	40	0.425	1.01	2.96	72.75	96.09
	60	0.250	3.22	6.18	69.53	91.83
	140	0.106	15.52	21.70	54.01	71.33
	200	0.075	5.67	27.37	48.34	63.85
	dry pan		2.03	29.40	46.31	
	wet pan			46.31	0.00	

d ₁₀ (mm): 0.00065	d ₅₀ (mm): 0.040
d ₁₆ (mm): 0.0012	d ₆₀ (mm): 0.063
d ₃₀ (mm): 0.0061	d ₈₄ (mm): 0.18

Note: Reported values for d_{10} , C_u , C_c , and soil classification are estimates, since extrapolation was required to obtain the d_{10} diameter

 $\label{eq:constraint} \begin{array}{l} \textit{Median Particle Diameter--d_{50}} \ (mm): \ 0.040\\ \textit{Uniformity Coefficient, Cu--[d_{60}/d_{10}]} \ (mm): \ 97\\ \textit{Coefficient of Curvature, Cc--[(d_{30})^2/(d_{10}*d_{60})]} \ (mm): \ 0.91\\ \textit{Mean Particle Diameter--[(d_{16}+d_{50}+d_{84})/3]} \ (mm): \ 0.074\\ \end{array}$

Classification of fines: CL

ASTM Soil Classification: Sandy lean clay s(CL) USDA Soil Classification: Loam

Particle Size Analysis Hydrometer Data

Job Name:	Alan Kuhn Associates LLC	Type of Water Used:	DISTILLED
Job Number:	NM16.0085.00	Reaction with H ₂ O ₂ :	NA
Sample Number:	BP16-2	Dispersant*:	(NaPO ₃) ₆
Project Name:	Mt Taylor Mine	Assumed particle density:	2.65
Depth:	NA	Initial Wt. (g):	75.39
Test Date:	4-May-16	Total Sample Wt. (g):	23457.12
Start Time:	7:36	Wt. Passing #4 (g):	23356.72

	Time	Temp	R	R_{L}	R _{corr}	L	D	Р	
Date	(min)	(°C)	(g/L)	(g/L)	(g/L)	(cm)	(mm)	(%)	% Finer
5-May-16	1	22.0	43.5	5.6	38.0	9.2	0.04029	50.3	50.1
	2	22.0	40.0	5.6	34.5	9.7	0.02937	45.7	45.5
	5	22.0	36.0	5.6	30.5	10.4	0.01919	40.4	40.2
	15	21.9	33.0	5.6	27.4	10.9	0.01134	36.4	36.2
	30	21.9	30.5	5.6	24.9	11.3	0.00817	33.1	32.9
	60	21.9	28.0	5.6	22.4	11.7	0.00588	29.8	29.6
	120	21.8	25.5	5.6	19.9	12.1	0.00424	26.4	26.3
	250	22.0	24.0	5.6	18.5	12.4	0.00296	24.5	24.4
	480	21.7	22.0	5.6	16.4	12.7	0.00217	21.8	21.7
6-May-16	1437	22.4	18.0	5.5	12.5	13.3	0.00128	16.6	16.5

Comments:

* Dispersion device: mechanically operated stirring device

Note: Reported values for d₁₀, C_u, C_c, and ASTM classification are estimates, since extrapolation was required to obtain the d₁₀ diameter

Daniel B. Stephens & Associates, Inc.

Particle Size Analysis Wet Sieve Data (#4 Split)

Sar F	Job Name: Job Number: nple Number: Project Name: Depth:	Alan Kuhn Asso NM16.0085.00 BP16-3 Mt Taylor Mine NA	ciates LLC		Initial Dry Weight of Sample (g): 17666.26 Weight Passing #4 (g): 17405.81 Weight Retained #4 (g): 260.45 Weight of Hydrometer Sample (g): 75.53 Calculated Weight of Sieve Sample (g): 76.66				
	Test Date:	9-May-16				Sh Hardn	<i>ape:</i> Rounded ess: Soft		
	Test Fraction	Sieve Number	Diameter (mm)	Wt. Retained	Cum Wt. Retained	Wt. Passin	ig % Passing	_	
-	+4							-	
		3"	75	0.00	0.00	17666.2	26 100.00		
		2"	50	0.00	0.00	17666.2	26 100.00		
		1.5"	38.1	0.00	0.00	17666.2	26 100.00		
		1"	25	18.41	18.41	17647.	85 99.90		
		3/4"	19.0	34.09	52.50	17613.	76 99.70		
		3/8"	9.5	70.51	123.01	17543.	25 99.30		
		4	4.75	137.44	260.45	1/405.8	81 98.53		
	-4			(Based on calci	lated sieve wt.)			
		10	2.00	0.58	1.71	, 74.9	5 97.77		
		20	0.85	0.75	2.46	74.2	0 96.79		
		40	0.425	0.90	3.36	73.3	0 95.62		
		60	0.250	3.83	7.19	69.4	7 90.62		
		140	0.106	19.18	26.37	50.2	9 65.60		
		200	0.075	6.30	32.67	43.9	9 57.38		
		dry pan		1.90	34.57	42.0	9		
_		wet pan			42.09	0.0	0	_	
			d ₁₀ (mm):	: 0.00057	d ₅₀ (mm):	0.053			
			d _{1e} (mm)	: 0 0013	d_{eo} (mm):	0 084			
			d ₂₀ (mm)	0.010	d₀₄ (mm):	0.20			
			G30 (1111)	. 0.010	4 84 ().	0.20			
			Mediar	n Particle Diame	<i>ter</i> d ₅₀ (mm) <i>:</i>	0.053	Note: Reported values	s for d_{10} , C_{11} , C_{22}	
			Uniformity C	Coefficient, Cu	[d ₆₀ /d ₁₀] (mm) <i>:</i>	147 a	and soil classification a	are estimates,	
		Coefficie	nt of Curvatu	$re, Cc - [(d_{30})^2/(c)]$	d ₁₀ *d ₆₀)] (mm) <i>:</i>	2.1	since extrapolation was	s required to	
		Mean	Particle Dia	meter [(d ₁₆ +d ₅₀	+d ₈₄)/3] (mm) <i>:</i>	0.085			
				Classific	cation of fines:	CL			
		ASTM Soil C	Classification	Sandy lean cla	vs(CL)				
		,		221107 10011 010	,				

USDA Soil Classification: Loam

Particle Size Analysis Hydrometer Data

Job Name:	Alan Kuhn Associates LLC	Type of Water Used:	DISTILLED
Job Number:	NM16.0085.00	Reaction with H_2O_2 :	NA
Sample Number:	BP16-3	Dispersant*:	(NaPO ₃) ₆
Project Name:	Mt Taylor Mine	Assumed particle density:	2.65
Depth:	NA	Initial Wt. (g):	75.53
Test Date:	5-May-16	Total Sample Wt. (g):	17666.26
Start Time:	7:42	Wt. Passing #4 (g):	17405.81

	Time	Temp	R	R_{L}	R _{corr}	L	D	Р	
Date	(min)	(°C)	(g/L)	(g/L)	(g/L)	(cm)	(mm)	(%)	% Finer
5-May-16	1	21.9	40.0	5.6	34.4	9.7	0.04156	45.6	44.9
	2	21.9	36.5	5.6	30.9	10.3	0.03024	41.0	40.4
	5	21.9	32.0	5.6	26.4	11.1	0.01980	35.0	34.5
	15	21.9	29.5	5.6	23.9	11.5	0.01164	31.7	31.2
	30	21.9	27.0	5.6	21.4	11.9	0.00838	28.4	28.0
	60	21.9	26.0	5.6	20.4	12.0	0.00596	27.1	26.7
	120	21.8	23.5	5.6	17.9	12.4	0.00430	23.7	23.4
	250	22.0	22.0	5.6	16.5	12.7	0.00300	21.8	21.5
	480	21.7	20.5	5.6	14.9	12.9	0.00219	19.8	19.5
6-May-16	1433	22.4	17.5	5.5	12.0	13.4	0.00128	15.9	15.7

Comments:

* Dispersion device: mechanically operated stirring device

Note: Reported values for d₁₀, C_u, C_c, and ASTM classification are estimates, since extrapolation was required to obtain the d₁₀ diameter

Daniel B. Stephens & Associates, Inc.

Particle Size Analysis Wet Sieve Data (#4 Split)

Sa	Job Name: Job Number: mple Number: Project Name: Depth:	Alan Kuhn Asso NM16.0085.00 BP16-4 Mt Taylor Mine NA	ciates LLC		of Sample (g): Passing #4 (g): etained #4 (g): ter Sample (g): ve Sample (g):	18465.11 18198.77 266.34 75.55 76.66		
	Test Date:	9-May-16			Shape: Rounded Hardness: Soft			
	Test Fraction	Sieve Number	Diameter (mm)	Wt. Retained	Cum Wt. Retained	Wt. Passing	% Passing	
	+4							
	•	3"	75	0.00	0.00	18465.11	100.00	
		2"	50	0.00	0.00	18465.11	100.00	
		1.5"	38.1	0.00	0.00	18465.11	100.00	
		1"	25	0.00	0.00	18465.11	100.00	
	3/4"		19.0	0.00	0.00	18465.11	100.00	
		3/8"	9.5	86.74	86.74	18378.37	99.53	
		4	4.75	179.60	266.34	18198.77	98.56	
	-4 (Based on ca				lated sieve wt.			
		10	2.00	` 0.80	1.91	, 74.75	97.51	
		20	0.85	0.87	2.78	73.88	96.38	
		40	0.425	1.02	3.80	72.86	95.05	
		60	0.250	3.48	7.28	69.38	90.51	
		140	0.106	14.90	22.18	54.48	71.07	
		200	0.075	6.23	28.41	48.25	62.94	
		dry pan		3.05	31.46	45.20		
		wet pan			45.20	0.00		

d ₁₀ (mm): 0.00070	d ₅₀ (mm): 0.043
d ₁₆ (mm): 0.0014	d ₆₀ (mm): 0.066
d ₃₀ (mm): 0.0091	d ₈₄ (mm): 0.19

 $\label{eq:constraint} \begin{array}{l} \textit{Median Particle Diameter--d_{50} (mm): 0.043} \\ \textit{Uniformity Coefficient, Cu--[d_{60}/d_{10}] (mm): 94} \\ \textit{Coefficient of Curvature, Cc--[(d_{30})^2/(d_{10}*d_{60})] (mm): 1.8} \\ \textit{Mean Particle Diameter--[(d_{16}+d_{50}+d_{84})/3] (mm): 0.078} \end{array}$

Note: Reported values for d_{10} , C_u , C_c , and soil classification are estimates, since extrapolation was required to obtain the d_{10} diameter

Classification of fines: CL

ASTM Soil Classification: Sandy lean clay s(CL) USDA Soil Classification: Loam

Particle Size Analysis Hydrometer Data

Job Name:	Alan Kuhn Associates LLC	Type of Water Used:	DISTILLED
Job Number:	NM16.0085.00	Reaction with H_2O_2 :	NA
Sample Number:	BP16-4	Dispersant*:	(NaPO ₃) ₆
Project Name:	Mt Taylor Mine	Assumed particle density:	2.65
Depth:	NA	Initial Wt. (g):	75.55
Test Date:	5-May-16	Total Sample Wt. (g):	18465.11
Start Time:	7:48	Wt. Passing #4 (g):	18198.77

	Time	Temp	R	R_{L}	R _{corr}	L	D	Р	
Date	(min)	(°C)	(g/L)	(g/L)	(g/L)	(cm)	(mm)	(%)	% Finer
5-May-16	1	21.9	43.0	5.6	37.4	9.3	0.04049	49.6	48.8
	2	21.9	39.0	5.6	33.4	9.9	0.02963	44.3	43.6
	5	21.9	34.0	5.6	28.4	10.7	0.01950	37.6	37.1
	15	21.9	30.0	5.6	24.4	11.4	0.01160	32.3	31.9
	30	21.9	28.0	5.6	22.4	11.7	0.00832	29.7	29.3
	60	21.9	26.0	5.6	20.4	12.0	0.00596	27.1	26.7
	120	21.8	23.5	5.6	17.9	12.4	0.00430	23.7	23.4
	250	22.0	22.0	5.6	16.5	12.7	0.00300	21.8	21.5
	480	21.7	20.5	5.6	14.9	12.9	0.00219	19.7	19.5
6-May-16	1429	22.4	17.0	5.5	11.5	13.5	0.00129	15.2	15.0

Comments:

* Dispersion device: mechanically operated stirring device

Note: Reported values for d₁₀, C_u, C_c, and ASTM classification are estimates, since extrapolation was required to obtain the d₁₀ diameter

Daniel B. Stephens & Associates, Inc.

60

140

200

dry pan

wet pan

0.250

0.106

0.075

Particle Size Analysis Wet Sieve Data (#4 Split)

Job Name: Job Number:	Alan Kuhn Asso NM16.0085.00	ciates LLC		Ini	tial Dry Weight Weight I	of Sample (g): Passing #4 (g):	17495.18 17269.61
Sample Number: Project Name: Depth:	BP16-5 Mt Taylor Mine NA		:(g): Weight of Hydrometer Sample (g): (Calculated Weight of Sieve Sample (g)				225.57 75.19 76.17
Test Date:	9-May-16			Shape: Rounded Hardness: Soft			
Test	Sieve	Diameter	Wt.	Cum Wt.	Wt.		
Fraction	Number	(mm)	Retained	Retained	Passing	% Passing	
+4							
	3"	75	0.00	0.00	17495.18	100.00	
	2"	50	0.00	0.00	17495.18	100.00	
	1.5"	38.1	0.00	0.00	17495.18	100.00	
	1"	25	0.00	0.00	17495.18	100.00	
	3/4"	19.0	0.00	0.00	17495.18	100.00	
	3/8"	9.5	108.70	108.70	17386.48	99.38	
	4	4.75	116.87	225.57	17269.61	98.71	
-4			(Based on calcu	lated sieve wt.)		
	10	2.00	0.78	1.76	, 74.41	97.69	
	20	0.85	1.06	2.82	73.35	96.30	
	40	0.425	0.91	3.73	72.44	95.10	

Median Particle Diameter--d₅₀ (mm): 0.045 *Uniformity Coefficient, Cu*--[d₆₀/d₁₀] (mm): 121

2.94

5.96

2.53

16.31

Coefficient of Curvature, $Cc - [(d_{30})^2/(d_{10}*d_{60})]$ (mm): 2.0

Mean Particle Diameter --[(d₁₆+d₅₀+d₈₄)/3] (mm): 0.079

Note: Reported values for d_{10} , C_u , C_c , and soil classification are estimates, since extrapolation was required to obtain the d_{10} diameter

91.24

69.83

62.00

69.50

53.19

47.23

44.70

0.00

Classification of fines: CL

6.67

22.98

28.94

31.47

44.70

d₅₀ (mm): 0.045

d₆₀ (mm): 0.069

d₈₄ (mm): 0.19

ASTM Soil Classification: Sandy lean clay s(CL) USDA Soil Classification: Loam

d₁₀ (mm): 0.00057

d₁₆ (mm): 0.0013

d₃₀ (mm): 0.0089

Particle Size Analysis Hydrometer Data

Job Name:	Alan Kuhn Associates LLC	Type of Water Used:	DISTILLED
Job Number:	NM16.0085.00	Reaction with H ₂ O ₂ :	NA
Sample Number:	BP16-5	Dispersant*:	(NaPO ₃) ₆
Project Name:	Mt Taylor Mine	Assumed particle density:	2.65
Depth:	NA	Initial Wt. (g):	75.19
Test Date:	5-May-16	Total Sample Wt. (g):	17495.18
Start Time:	7:54	Wt. Passing #4 (g):	17269.61

	Time	Temp	R	R_{L}	R _{corr}	L	D	Р	
Date	(min)	(°C)	(g/L)	(g/L)	(g/L)	(cm)	(mm)	(%)	% Finer
5-May-16	1	21.9	42.0	5.6	36.4	9.4	0.04085	48.5	47.8
	2	21.9	38.0	5.6	32.4	10.1	0.02987	43.1	42.6
	5	21.9	33.5	5.6	27.9	10.8	0.01957	37.2	36.7
	15	21.9	30.0	5.6	24.4	11.4	0.01160	32.5	32.1
	30	22.0	28.0	5.6	22.5	11.7	0.00831	29.9	29.5
	60	21.9	26.0	5.6	20.4	12.0	0.00596	27.2	26.8
	120	21.7	24.0	5.6	18.4	12.4	0.00428	24.5	24.2
	250	22.0	22.0	5.6	16.5	12.7	0.00300	21.9	21.6
	480	21.7	20.5	5.6	14.9	12.9	0.00219	19.8	19.6
6-May-16	1426	22.4	17.5	5.5	12.0	13.4	0.00128	16.0	15.8

Comments:

* Dispersion device: mechanically operated stirring device

Note: Reported values for d₁₀, C_u, C_c, and ASTM classification are estimates, since extrapolation was required to obtain the d₁₀ diameter

Daniel B. Stephens & Associates, Inc.

Atterberg Limits/ Identification of Fines

Summary of Atterberg Tests

 Sample Number	Liquid Limit	Plastic Limit	Plasticity Index	Classification
BP16-1	34	19	15	CL
BP16-2	33	19	14	CL
BP16-3	31	18	13	CL
BP16-4	34	18	16	CL
BP16-5	36	21	15	CL

--- = Soil requires visual-manual classification due to non-plasticity

Atterberg Limits

Job Name: Alan Kuhn Associates LLC Job Number: NM16.0085.00 Sample Number: BP16-1 Project Name: Mt Taylor Mine Depth: NA

Test Date: 5-May-16

Liquid Limit

	Trial 1	Trial 2	Trial 3
Number of drops:	34	26	16
Pan number:	LL1	LL2	LL3
Weight of pan plus moist soil (g):	133.49	120.99	120.83
Weight of pan plus dry soil (g)	129.55	118.42	118.71
Weight of pan (g):	117.48	110.99	112.68
Gravimetric moisture content (% g/g):	32.64	34.59	35.16

Liquid Limit:

Plastic Limit

34

	Trial 1	Trial 2	
Pan number:	PL1	PL2	
Weight of pan plus moist soil (g):	119.02	125.01	
Weight of pan plus dry soil (g)	117.99	123.95	
Weight of pan (g):	112.73	118.33	
Gravimetric moisture content (% g/g):	19.58	18.86	
Plastic Limit:	19		

Plastic Limit:

Results

Percent of Sample Retained of	on #40 Sieve:	See Sieve
	Liquid Limit:	34

Plastic Limit:	19
Plasticity Index:	15
Classification:	CL

Comments:

--- = Soil requires visual-manual classification due to non-plasticity

* = 1-point method requested by client

Atterberg Limits

Job Name: Alan Kuhn Associates LLC Job Number: NM16.0085.00 Sample Number: BP16-2 Project Name: Mt Taylor Mine Depth: NA

Test Date: 5-May-16

Liquid Limit

	Trial 1	Trial 2	Trial 3
Number of drops:	32	27	16
Pan number:	LL1	LL2	LL3
Weight of pan plus moist soil (g):	123.04	121.86	123.53
Weight of pan plus dry soil (g)	120.84	119.56	121.39
Weight of pan (g):	114.02	112.60	115.29
Gravimetric moisture content (% g/g):	32.26	33.05	35.08

Liquid Limit:

Plastic Limit

33

	Trial 1	Trial 2
Pan number:	PL1	PL2
Weight of pan plus moist soil (g):	123.09	122.80
Weight of pan plus dry soil (g)	122.05	121.78
Weight of pan (g):	116.69	116.38
Gravimetric moisture content (% g/g):	19.40	18.89
Plastic Limit:	19	

Plastic Limit:

Results

Percent of Sample Retained on #40 Sieve	e:	See Sieve
Liquid Lim	it·	33

<i>Liquia</i> Limit.	33
Plastic Limit:	19
Plasticity Index:	14
Classification:	CL

Comments:

--- = Soil requires visual-manual classification due to non-plasticity

* = 1-point method requested by client

Atterberg Limits

Job Name: Alan Kuhn Associates LLC Job Number: NM16.0085.00 Sample Number: BP16-3 Project Name: Mt Taylor Mine Depth: NA

Test Date: 5-May-16

Liquid Limit

	Trial 1	Trial 2	Trial 3
Number of drops:	35	27	18
Pan number:	LL1	LL2	LL3
Weight of pan plus moist soil (g):	121.59	127.48	125.86
Weight of pan plus dry soil (g)	119.12	124.62	123.19
Weight of pan (g):	110.57	115.31	114.95
Gravimetric moisture content (% g/g):	28.89	30.72	32.40

Liquid Limit:

Plastic Limit

31

	Trial 1	Trial 2
Pan number:	PL1	PL2
Weight of pan plus moist soil (g):	122.59	123.48
Weight of pan plus dry soil (g)	121.51	122.51
Weight of pan (g):	115.61	117.24
Gravimetric moisture content (% g/g):	18.31	18.41
Plastic Limit:	18	

Plastic Limit:

Results

Percent of Sample Retained on #40 Sieve: See Sieve

Liquid Limit:	31
Plastic Limit:	18
Plasticity Index:	13
Classification:	CL

Comments:

--- = Soil requires visual-manual classification due to non-plasticity

* = 1-point method requested by client

Atterberg Limits

Job Name: Alan Kuhn Associates LLC Job Number: NM16.0085.00 Sample Number: BP16-4 Project Name: Mt Taylor Mine Depth: NA

Test Date: 5-May-16

Liquid Limit

	Trial 1	Trial 2	Trial 3
Number of drops:	35	25	17
Pan number:	LL1	LL2	LL3
Weight of pan plus moist soil (g):	123.78	123.28	129.12
Weight of pan plus dry soil (g)	121.04	120.69	126.09
Weight of pan (g):	112.67	113.15	117.68
Gravimetric moisture content (% g/g):	32.74	34.35	36.03

Liquid Limit:

Plastic Limit

34

	Trial 1	Trial 2
Pan number:	PL1	PL2
Weight of pan plus moist soil (g):	123.47	124.27
Weight of pan plus dry soil (g)	122.36	123.06
Weight of pan (g):	116.39	116.43
Gravimetric moisture content (% g/g):	18.59	18.25
Plastic Limit:	18	

Plastic Limit:

Results

Percent of Sample Retained of	on #40 Sieve:	See Sieve
	Liquid Limit:	34

	• •
Plastic Limit:	18
Plasticity Index:	16
Classification:	CL

Comments:

--- = Soil requires visual-manual classification due to non-plasticity

* = 1-point method requested by client

Atterberg Limits

Job Name: Alan Kuhn Associates LLC Job Number: NM16.0085.00 Sample Number: BP16-5 Project Name: Mt Taylor Mine Depth: NA

Test Date: 5-May-16

Liquid Limit

	Trial 1	Trial 2	Trial 3
Number of drops:	34	25	18
Pan number:	LL1	LL2	LL3
Weight of pan plus moist soil (g):	123.44	123.06	127.84
Weight of pan plus dry soil (g)	121.59	120.31	124.40
Weight of pan (g):	116.15	112.60	115.17
Gravimetric moisture content (% g/g):	34.01	35.67	37.27

Liquid Limit:

Plastic Limit

36

	Trial 1	Trial 2
Pan number:	PL1	PL2
Weight of pan plus moist soil (g):	120.05	122.10
Weight of pan plus dry soil (g)	118.92	120.91
Weight of pan (g):	113.45	115.14
Gravimetric moisture content (% g/g):	20.66	20.62
Plastic Limit:	21	

Plastic Limit:

Results

Percent of Sample Retained on #40 Sieve	: See Sieve
Liquid Limit	. 36

<i>Liquia</i> Limit.	30
Plastic Limit:	21
Plasticity Index:	15
Classification:	CL

Comments:

--- = Soil requires visual-manual classification due to non-plasticity

* = 1-point method requested by client

Proctor Compaction

Summary of	Proctor	Compaction	Tests
------------	---------	------------	-------

	Measured		Oversize	Corrected
Sample Number	Optimum Moisture Content (% g/g)	Maximum Dry Bulk Density (g/cm ³)	Optimum Moisture Content (% g/g)	Maximum Dry Bulk Density (g/cm ³)
BP16-1	16.6	1.75		
BP16-2	17.6	1.70		
BP16-3	16.4	1.75		
BP16-4	17.0	1.71		
BP16-5	18.9	1.65		

^{--- =} Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NR = Not requested

NA = Not applicable

Proctor Compaction Data

Job Name: Alan Kuhn Associates LLC Job Number: NM16.0085.00 Sample Number: BP16-1 Project Name: Mt Taylor Mine Depth: NA

Test Date: 3-May-16

As Received Moisture Content (% g/g): NA

Split (3/4", 3/8", #4): #4 Mass of coarse material (g): 226.09 Mass of fines material (g): 17266.68 Mold weight (g): 4209 Mold volume (cm³): 942.64 Compaction Method: Standard A Preparation Method: Dry

Type of Rammer: Mechanical

	Weight of Mold and Compacted Soil	Weight of Container and Wet Soil	Weight of Container and Dry Soil	Weight of	Dry Bulk Density	Moisture Content
Trial	(g)	(g)	(g)	(g)	(g/cm ³)	(% g/g)
1	5951	941.78	868.35	266.54	1.65	12.20
2	6048	818.16	739.30	209.63	1.70	14.89
3	6121	847.46	758.36	208.60	1.75	16.21
4	6122	782.54	693.07	207.41	1.71	18.42
5	6086	761.64	667.82	213.71	1.65	20.66

Soil Fractions Coarse Fraction (% g/g): 1.3 Fines Fraction (% g/g): 98.7 Properties of Coarse Material

Assumed particle density (g/cm³): 2.65

Assumed Initial Moisture Content (% g/g): 0.0

Oversize Corrected Values for Dry Bulk Density and Moisture Content

	Dry Bulk Density of Composite	Moisture Content of Composite
Trial	(g/cm³)	(% g/g)
1		
2		
3		
4		
5		

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data Points with Fitted Curve

Sample Number: BP16-1

		Measured	Corrected
	Optimum Moisture Content (% g/g): Maximum Dry Bulk Density (g/cm³):	16.6 1.75	
	Test Date:	3-May-16	
1.9			 Zero voids curve Compaction curve
1.8			
1.7			
1.6		`	
1.5		20	25
5	GI UI	20	20

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data

Job Name: Alan Kuhn Associates LLC Job Number: NM16.0085.00 Sample Number: BP16-2 Project Name: Mt Taylor Mine Depth: NA

Test Date: 3-May-16

As Received Moisture Content (% g/g): NA

Split (3/4", 3/8", #4): #4 Mass of coarse material (g): 100.40 Mass of fines material (g): 23356.72 Mold weight (g): 4209 Mold volume (cm³): 942.64 Compaction Method: Standard A Preparation Method: Dry

Type of Rammer: Mechanical

	Weight of Mold and Compacted Soil	Weight of Container and Wet Soil	Weight of Container and Dry Soil	Weight of Container	Dry Bulk Density	Moisture Content
Trial	(g)	(g)	(g)	(g)	(g/cm ³)	(% g/g)
1	5979	815.94	747.18	260.78	1.65	14.14
2	6045	830.08	745.72	210.04	1.68	15.75
3	6098	890.75	785.36	207.67	1.69	18.24
4	6090	855.15	756.70	259.50	1.67	19.80
5	6048	877.52	765.88	265.78	1.59	22.32

Soil Fractions Coarse Fraction (% g/g): 0.4 Fines Fraction (% g/g): 99.6 Properties of Coarse Material

Assumed particle density (g/cm³): 2.65

Assumed Initial Moisture Content (% g/g): 0.0

Oversize Corrected Values for Dry Bulk Density and Moisture Content

	Dry Bulk Density of Composite	Moisture Content of Composite
Trial	(g/cm³)	(% g/g)
1		
2		
3		
4		
5		

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data Points with Fitted Curve

Sample Number: BP16-2

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data

Job Name: Alan Kuhn Associates LLC Job Number: NM16.0085.00 Sample Number: BP16-3 Project Name: Mt Taylor Mine Depth: NA

Test Date: 3-May-16

As Received Moisture Content (% g/g): NA

Split (3/4", 3/8", #4): #4 Mass of coarse material (g): 260.45 Mass of fines material (g): 17405.81 Mold weight (g): 4209 Mold volume (cm³): 942.64 Compaction Method: Standard A Preparation Method: Dry

Type of Rammer: Mechanical

	Weight of	Weight of	Weight of			
	Mold and	Container and	Container and	Weight of	Dry Bulk	Moisture
	Compacted Soil	Wet Soil	Dry Soil	Container	Density	Content
Trial	(g)	(g)	(g)	(g)	(g/cm ³)	(% g/g)
1	5987	901.18	829.55	210.00	1.69	11.56
2	6054	958.26	868.00	212.72	1.72	13.77
3	6126	906.05	815.63	265.32	1.75	16.43
4	6127	840.02	745.03	212.88	1.73	17.85
5	6090	730.20	642.92	210.95	1.66	20.21

Soil Fractions Coarse Fraction (% g/g): 1.5 Fines Fraction (% g/g): 98.5 Properties of Coarse Material

Assumed particle density (g/cm³): 2.65

Assumed Initial Moisture Content (% g/g): 0.0

Oversize Corrected Values for Dry Bulk Density and Moisture Content

	Dry Bulk Density of Composite	Moisture Content of Composite
Trial	(g/cm³)	(% g/g)
1		
2		
3		
4		
5		

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data Points with Fitted Curve

Sample Number: BP16-3

	Maximum Dry Bu	Ik Density (g/cm	s): 1.75		
		Test Dat	te: 3-May-16		
1.9				Zero voids curve	
1.8					
1.7					
1.6					
1.5		15			

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data

Job Name: Alan Kuhn Associates LLC Job Number: NM16.0085.00 Sample Number: BP16-4 Project Name: Mt Taylor Mine Depth: NA

Test Date: 3-May-16

As Received Moisture Content (% g/g): NA

Split (3/4", 3/8", #4): #4 Mass of coarse material (g): 266.34 Mass of fines material (g): 18198.77 Mold weight (g): 4209 Mold volume (cm³): 942.64 Compaction Method: Standard A Preparation Method: Dry

Type of Rammer: Mechanical

	Weight of	Weight of	Weight of			
	Mold and	Container and	Container and	Weight of	Dry Bulk	Moisture
	Compacted Soil	Wet Soil	Dry Soil	Container	Density	Content
Trial	(g)	(g)	(g)	(g)	(g/cm ³)	(% g/g)
1	5911	784.80	722.18	213.44	1.61	12.31
2	5998	855.11	781.31	264.34	1.66	14.28
3	6085	833.49	752.02	258.84	1.71	16.52
4	6105	792.51	699.63	208.70	1.69	18.92
5	6076	887.11	779.01	263.22	1.64	20.96

Soil Fractions Coarse Fraction (% g/g): 1.4 Fines Fraction (% g/g): 98.6 Properties of Coarse Material

Assumed particle density (g/cm³): 2.65

Assumed Initial Moisture Content (% g/g): 0.0

Oversize Corrected Values for Dry Bulk Density and Moisture Content

T	Dry Bulk Density of Composite	Moisture Content of Composite
Iriai	(g/cm ⁺)	(% g/g)
1		
2		
3		
4		
5		

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data Points with Fitted Curve

Sample Number: BP16-4

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data

Job Name: Alan Kuhn Associates LLC Job Number: NM16.0085.00 Sample Number: BP16-5 Project Name: Mt Taylor Mine Depth: NA

Test Date: 3-May-16

As Received Moisture Content (% g/g): NA

Split (3/4", 3/8", #4): #4 Mass of coarse material (g): 225.57 Mass of fines material (g): 17269.61 Mold weight (g): 4209 Mold volume (cm³): 942.64 Compaction Method: Standard A Preparation Method: Dry

Type of Rammer: Mechanical

	Weight of Mold and Compacted Soil	Weight of Container and Wet Soil	Weight of Container and Dry Soil	Weight of Container	Dry Bulk Density	Moisture Content
Trial	(g)	(g)	(g)	(g)	(g/cm ³)	(% g/g)
1	5978	848.63	762.53	208.49	1.62	15.54
2	6027	936.86	841.24	294.40	1.64	17.49
3	6065	898.95	794.83	271.60	1.64	19.90
4	6043	963.58	839.10	268.47	1.60	21.81
5	6008	970.46	835.04	268.53	1.54	23.90

Soil Fractions Coarse Fraction (% g/g): 1.3 Fines Fraction (% g/g): 98.7 Properties of Coarse Material

Assumed particle density (g/cm³): 2.65

Assumed Initial Moisture Content (% g/g): 0.0

Oversize Corrected Values for Dry Bulk Density and Moisture Content

T	Dry Bulk Density of Composite	Moisture Content of Composite
Iriai	(g/cm ⁺)	(% g/g)
1		
2		
3		
4		
5		

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data Points with Fitted Curve

Sample Number: BP16-5

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Laboratory Tests and Methods

Tests and Methods

Dry Bulk Density:	ASTM D7263
Moisture Content:	ASTM D7263, ASTM D2216
Calculated Porosity:	ASTM D7263
Saturated Hydraulic Conductivity Falling Head Rising Tail: (Flexible Wall)	ASTM D5084
Hanging Column Method:	ASTM D6836 (modified apparatus)
Pressure Plate Method:	ASTM D6836 (modified apparatus)
Water Potential (Dewpoint Potentiometer) Method:	ASTM D6836
Relative Humidity (Box) Method:	Campbell, G. and G. Gee. 1986. Water Potential: Miscellaneous Methods. Chp. 25, pp. 631-632, in A. Klute (ed.), Methods of Soil Analysis. Part 1. American Society of Agronomy, Madison, WI; Karathanasis & Hajek. 1982. Quantitative Evaluation of Water Adsorption on Soil Clays. SSA Journal 46:1321-1325
Moisture Retention Characteristics & Calculated Unsaturated Hydraulic Conductivity:	ASTM D6836; van Genuchten, M.T. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. SSSAJ 44:892-898; van Genuchten, M.T., F.J. Leij, and S.R. Yates. 1991. The RETC code for quantifying the hydraulic functions of unsaturated soils. Robert S. Kerr Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Ada, Oklahoma. EPA/600/2091/065. December 1991
Particle Size Analysis:	ASTM D422
USCS (ASTM) Classification:	ASTM D422, ASTM D2487
USDA Classification:	ASTM D422, USDA Soil Textural Triangle
Atterberg Limits:	ASTM D4318
Standard Proctor Compaction:	ASTM D698
Coarse Fraction (Gravel) Correction (calc):	ASTM D4718; Bouwer, H. and Rice, R.C. 1984. Hydraulic Properties of Stony Vadose Zones. Groundwater Vol. 22, No. 6

Response No. 16 Attachment

BORROW SAMPLE LOCATIONS

April 2014

Table D.3.5 Mt Taylor Mine Borrow Soil Chemistry

	SAMPLE								P	PARAMETERS							
Number	Loca	ntion	рН	Ee mmhos/cm 25 C	Saturation %	Texture **	SAR	Selenium mg/kg	Boron mg/kg	Acid/Base Potential (Modified Sobek), t/Kt	Nitrate- NO, (N) mg/kg	Phosphorus (P) mg/kg	Potassium (K) mg/kg	Rock Fragments	dian	diameter in inche	
	N	E														3-10	10+
NA1	1581460	2783390	7.6	0.5	49.9	CL	0.82	ND	0.3		5	12	690	ND	-	-	-
NA2	1581612	2782830	7.7	0.6	52.9	CL	1.31	ND	0.2		4	9	740	ND	-	-	-
BA1	1580980	2783420	7.8	0.9	37.1	L	0.95	ND	0.2		13	9	420	ND	-	-	-
BA2	1580880	2783790	7.6	1.3	40.9	L	0.25	ND	0.2		40	11	710	ND	-	-	-
BA3	1580800	2783590	7.8	0.9	38.8	L	0.32	ND	0.1	15	12	8	390	ND	-	-	-
BA4	1580430	2783350	7.7	1.2	42.8	L	0.42	ND	0.1		35	12	660	ND	I	I	-
BA5	1580734	2783546	7.8	0.9	41.3	L	0.81	ND	0.2		22	10	560	ND	I	I	-
WTP1	1580380	2782410	7.9	0.8	43.0	L	0.69	ND	0.1	16	12	8	410	ND	-	-	-
WTP2	1581000	2781880	7.9	0.9	50.4	CL	1.44	ND	0.2	16	13	7	620	ND	-	-	-
WTP3	1580050	2782220	8.0	0.8	38.7	L	1.96	ND	0.2		7	7	320	ND	-	-	-
WTP4	1580390	2782060	7.6	1.3	43.4	CL	0.44	ND	0.1		28	12	500	ND	-	-	-
WTP5	1580391	2782654	7.9	1.0	43.8	L	1.32	0.1	0.2		23	8	410	ND	-	-	-
WTP6	1580717	2782644	8.2	0.9	33.7	SL	4.79	0.3	0.1		8	7	200	ND	_	-	-
WTP7	1580905	2782465	8.0	0.4	33.0	SL	0.51	ND	ND		3	5	160	ND	-	-	-
WTP8	1580908	2782189	8.0	0.8	48.9	CL	1.56	ND	0.2		2	8	520	ND	-	-	-
WTP9	1580534	2781744	8.1	0.5	40.6	L	1.06	ND	0.1		3	9	370	ND	-	-	-
WTP10	1580249	2781742	7.9	0.9	41.8	SCL	1.32	ND	0.2		10	6	450	ND	-	-	-
WTP11	1579913	2781835	8.3	0.6	38.7	SCL	5.23	ND	0.2		4	7	240	ND	-	-	-
WTP12	1579998	2782062	8.1	0.5	40.1	L	1.16	ND	0.1		5	8	420	ND	-	-	-
SWP1	1579327	2781913	7.7	1.0	34.4	L	0.21	ND	0.1		13	6	270	ND	-	-	-
SWP2	1578943	2781711	7.9	0.6	40.5	SCL	1.37	ND	0.2		2	6	180	ND	-	-	-
SWP3	1579122	2781861	8.0	0.6	43.7	CL	1.09	ND	ND		8	8	280	ND	-	-	-
SWP4	1579061	2781581	8.1	0.6	39.6	L	1.40	ND	0.2		7	7	280	ND	-	-	-
WP1	157950	2781870	7.9	5.3	38.9	SCL	9.35	ND	ND		2	7	110	ND	_	_	_
WP2	1577930	2781770	7.8	6.4	38.0	SL	11.60	0.2	0.1	30	2	7	90	ND	-	-	-
WP3	1577980	2781660	8.0	5.2	52.6	CL	8.31	0.1	ND		2	5	190	ND	-	-	-

** s=sand, si = silt, I= loam, c:= clay, g= gravel, cos= coarse sand, \lfs = very fine sand vfsI = very fine sandy loam, sicI = silty, clay, loam

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

April 01, 2014

Alan Kuhn Alan Kuhn Assoc LLC 13212 Manitoba Dr NE Albuquerque, NM 87111 TEL: (505) 350-9188 FAX

RE: Mt. Taylor Mine

OrderNo.: 1403621

Dear Alan Kuhn:

Hall Environmental Analysis Laboratory received 26 sample(s) on 3/14/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Prepared by Billings, MT Branch

Client:Hall EnvironmentalProject:Not IndicatedLab ID:B14031248-001Client Sample ID:1403621-001A, NA-01 (a+b)

 Report Date:
 03/31/14

 Collection Date:
 03/13/14 09:30

 DateReceived:
 03/18/14

 Matrix:
 Soil

Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Coarse Fragments	ND	%		2		ASA15-5	03/24/14 16:08 / srm
Sand	32	%		1		ASA15-5	03/31/14 10:25 / srm
Silt	36	%		1		ASA15-5	03/31/14 10:25 / srm
Clay	32	%		1		ASA15-5	03/31/14 10:25 / srm
Very Fine Sand	12	wt%		1		ASA15-5	03/31/14 10:43 / srm
Texture	CL					ASA15-5	03/31/14 10:25 / srm
- C = Clay, S = Sand(y), Si = Silt(y), L = Loam(y)							
SATURATED PASTE							
pH, sat. paste	7.6	s.u.		0.1		ASAM10-3.2	03/26/14 15:15 / srm
Saturation	49.9	%		0.1		USDA27a	03/31/14 10:51 / srm
Conductivity, sat. paste	0.5	mmhos/cm	ı	0.1		ASA10-3	03/26/14 15:15 / srm
Calcium, sat. paste	2.54	meq/L		0.05		SW6010B	03/27/14 20:48 / mas
Magnesium, sat. paste	0.99	meq/L		0.08		SW6010B	03/27/14 20:48 / mas
Sodium, sat. paste	1.09	meq/L		0.04		SW6010B	03/27/14 20:48 / mas
Sodium Adsorption Ratio (SAR)	0.82	unitless		0.01		Calculation	03/31/14 10:51 / srm
CHEMICAL CHARACTERISTICS							
Phosphorus, Olsen	12	mg/kg		1		ASA24-5	03/27/14 12:00 / srm
Nitrate as N, KCL Extract	5	mg/kg		1		ASA33-8	03/27/14 10:46 / srm
CACL2 EXTRACTABLE METALS							
Boron	0.3	mg/kg		0.1		SW6010B	03/28/14 03:37 / mas
Selenium	ND	mg/kg		0.1		SW6010B	03/28/14 03:37 / mas
METALS, AMMONIUM ACETATE EXTRA	CTABLE						
Potassium	690	mg/kg		10		SW6010B	03/27/14 18:59 / mas

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client:Hall EnvironmentalProject:Not IndicatedLab ID:B14031248-002Client Sample ID:1403621-002A, NA-02 (a+b)

 Report Date:
 03/31/14

 Collection Date:
 03/13/14 09:00

 DateReceived:
 03/18/14

 Matrix:
 Soil

	MCL/									
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By			
PHYSICAL CHARACTERISTICS										
Coarse Fragments	ND	%		2		ASA15-5	03/24/14 16:08 / srm			
Sand	30	%		1		ASA15-5	03/31/14 10:25 / srm			
Silt	40	%		1		ASA15-5	03/31/14 10:25 / srm			
Clay	30	%		1		ASA15-5	03/31/14 10:25 / srm			
Very Fine Sand	14	wt%		1		ASA15-5	03/31/14 10:43 / srm			
Texture	CL					ASA15-5	03/31/14 10:25 / srm			
- C = Clay, S = Sand(y), Si = Silt(y), L = Loam(y)										
SATURATED PASTE										
pH, sat. paste	7.7	s.u.		0.1		ASAM10-3.2	03/26/14 15:15 / srm			
Saturation	52.9	%		0.1		USDA27a	03/31/14 10:51 / srm			
Conductivity, sat. paste	0.6	mmhos/cm		0.1		ASA10-3	03/26/14 15:15 / srm			
Calcium, sat. paste	2.82	meq/L		0.05		SW6010B	03/27/14 20:55 / mas			
Magnesium, sat. paste	1.07	meq/L		80.0		SW6010B	03/27/14 20:55 / mas			
Sodium, sat. paste	1.83	meq/L		0.04		SW6010B	03/27/14 20:55 / mas			
Sodium Adsorption Ratio (SAR)	1.31	unitless		0.01		Calculation	03/31/14 10:51 / srm			
CHEMICAL CHARACTERISTICS										
Phosphorus, Olsen	9	mg/kg		1		ASA24-5	03/27/14 12:04 / srm			
Nitrate as N, KCL Extract	4	mg/kg		1		ASA33-8	03/27/14 10:48 / srm			
CACL2 EXTRACTABLE METALS										
Boron	0.2	mg/kg		0.1		SW6010B	03/28/14 03:45 / mas			
Selenium	ND	mg/kg		0.1		SW6010B	03/28/14 03:45 / mas			
METALS, AMMONIUM ACETATE EXTRA	CTABLE									
Potassium	740	mg/kg		10		SW6010B	03/27/14 19:06 / mas			

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client:Hall EnvironmentalProject:Not IndicatedLab ID:B14031248-003Client Sample ID:1403621-003A, BA-01 (a+b+c)

 Report Date:
 03/31/14

 Collection Date:
 10/30/13 15:30

 DateReceived:
 03/18/14

 Matrix:
 Soil

	MCL/									
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By			
PHYSICAL CHARACTERISTICS										
Coarse Fragments	ND	%		2		ASA15-5	03/24/14 16:08 / srm			
Sand	48	%		1		ASA15-5	03/31/14 10:25 / srm			
Silt	33	%		1		ASA15-5	03/31/14 10:25 / srm			
Clay	19	%		1		ASA15-5	03/31/14 10:25 / srm			
Very Fine Sand	10	wt%		1		ASA15-5	03/31/14 10:43 / srm			
Texture	L					ASA 15-5	03/31/14 10:25 / srm			
- C = Clay, S = Sand(y), Si = Silt(y), L = Loam(y)										
SATURATED PASTE										
pH, sat. paste	7.8	. s.u.		0.1		ASAM10-3.2	03/26/14 15:15 / srm			
Saturation	37.1	%		0.1		USDA27a	03/31/14 10:51 / srm			
Conductivity, sat. paste	0.9	mmhos/cm	I	0.1		ASA10-3	03/26/14 15:15 / srm			
Calcium, sat. paste	5.51	meq/L		0.05		SW6010B	03/27/14 21:02 / mas			
Magnesium, sat. paste	1.10	meq/L		0.08		SW6010B	03/27/14 21:02 / mas			
Sodium, sat. paste	1.73	meq/L		0.04		SW6010B	03/27/14 21:02 / mas			
Sodium Adsorption Ratio (SAR)	0.95	unitiess		0.01		Calculation	03/31/14 10:51 / srm			
CHEMICAL CHARACTERISTICS										
Phosphorus, Olsen	9	mg/kg		1		ASA24-5	03/27/14 12:06 / srm			
Nitrate as N, KCL Extract	13	mg/kg		1		ASA33-8	03/27/14 10:48 / srm			
CACL2 EXTRACTABLE METALS										
Boron	0.2	mg/kg		0.1		SW6010B	03/28/14 03:52 / mas			
Selenium	ND	mg/kg		0.1		SW6010B	03/28/14 03:52 / mas			
METALS, AMMONIUM ACETATE EXTRA	CTABLE									
Potassium	420	mg/kg		10		SW6010B	03/27/14 19:13 / mas			

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

Prepared by Billings, MT Branch

 Client:
 Hall Environmental.

 Project:
 Not Indicated

 Lab ID:
 B14031248-004

 Client Sample ID:
 1403621-004A, BA-02 (a+b+c)

 Report Date:
 03/31/14

 Collection Date:
 10/30/13 15:35

 DateReceived:
 03/18/14

 Matrix:
 Soil

	MCL/									
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By			
PHYSICAL CHARACTERISTICS										
Coarse Fragments	ND	%		2		ASA15-5	03/24/14 16:08 / srm			
Sand	44	%		1		ASA15-5	03/31/14 10:25 / srm			
Silt	36	%		1		ASA15-5	03/31/14 10:25 / srm			
Clay	20	%		1		ASA15-5	03/31/14 10:25 / srm			
Very Fine Sand	10	wt%		1		ASA15-5	03/31/14 10:43 / srm			
Texture	L					ASA15-5	03/31/14 10:25 / srm			
- C = Clay, S = Sand(y), Si = Silt(y), L = Loam(y)										
SATURATED PASTE										
pH, sat. paste	7.6	s.u.		0.1		ASAM10-3.2	03/26/14 15:15 / srm			
Saturation	40.9	%		0.1		USDA27a	03/31/14 10:51 / srm			
Conductivity, sat. paste	1.3	mmhos/cm		0.1		ASA10-3	03/26/14 15:15 / srm			
Calcium, sat. paste	8.27	meq/L		0.05		SW6010B	03/27/14 21:05 / mas			
Magnesium, sat. paste	2.23	meq/L		0.08		SW6010B	03/27/14 21:05 / mas			
Sodium, sat. paste	0.57	meq/L		0.04		SW6010B	03/27/14 21:05 / mas			
Sodium Adsorption Ratio (SAR)	0.25	unitless		0.01		Calculation	03/31/14 10:51 / srm			
CHEMICAL CHARACTERISTICS										
Phosphorus, Olsen	11	mg/kg		1		ASA24-5	03/27/14 12:07 / srm			
Nitrate as N, KCL Extract	40	mg/kg		1		ASA33-8	03/27/14 10:49 / srm			
CACL2 EXTRACTABLE METALS										
Boron	0.2	mg/kg		0.1		SW6010B	03/28/14 03:56 / mas			
Selenium	ND	mg/kg		0.1		SW6010B	03/28/14 03:56 / mas			
METALS, AMMONIUM ACETATE EXTRA	CTABLE									
Potassium	710	mg/kg		10		SW6010B	03/27/14 19:22 / mas			

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client:Hall EnvironmentalProject:Not IndicatedLab ID:B14031248-005Client Sample ID:1403621-005A, BA-03 (a+b+c)

 Report Date:
 03/31/14

 Collection Date:
 10/30/13 15:40

 DateReceived:
 03/18/14

 Matrix:
 Soil

					MCL/				
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By		
PHYSICAL CHARACTERISTICS									
Coarse Fragments	ND	%		2		ASA15-5	03/24/14 16:08 / srm		
Sand	46	%		1		ASA15-5	03/31/14 10:25 / srm		
Silt	34	%		1		ASA15-5	03/31/14 10:25 / srm		
Clay	20	%		1		ASA15-5	03/31/14 10:25 / srm		
Very Fine Sand	11	wt%		1		ASA15-5	03/31/14 10:43 / srm		
Texture	L					ASA15-5	03/31/14 10:25 / srm		
- C = Clay, S = Sand(y), Si = Silt(y), L = Loam	(y)								
SATURATED PASTE									
pH, sat. paste	7.8	s.u.		0.1		ASAM10-3.2	03/26/14 15:15 / srm		
Saturation	38.8	%		0.1		USDA27a	03/31/14 10:51 / srm		
Conductivity, sat. paste	0.9	mmhos/cm		0.1		ASA10-3	03/26/14 15:15 / srm		
Calcium, sat. paste	6.66	meq/L		0.05		SW6010B	03/27/14 21:08 / mas		
Magnesium, sat. paste	1.08	meq/L		0.08		SW6010B	03/27/14 21:08 / mas		
Sodium, sat. paste	0.63	meq/L		0.04		SW6010B	03/27/14 21:08 / mas		
Sodium Adsorption Ratio (SAR)	0.32	unitless		0.01		Calculation	03/31/14 10:51 / srm		
ACID-BASE ACCOUNTING									
Neutralization Potential	16	t/kt		0.1		Sobek Modifie	03/31/14 11:44 / srm		
Acid Potential	1	t/kt		1		Sobek Modifie	03/31/14 11:44 / srm		
Acid/Base Potential	15	t/kt				Sobek Modifie	03/31/14 11:44 / srm		
The acid-base potential was calculated from t	he non-sulfate sul	fur %							
CHEMICAL CHARACTERISTICS									
Phosphorus, Olsen	8	mg/kg		1		ASA24-5	03/27/14 12:09 / srm		
Nitrate as N, KCL Extract	12	mg/kg		1		ASA33-8	03/27/14 10:50 / srm		
CACL2 EXTRACTABLE METALS									
Boron	0.1	mg/kg		0.1		SW6010B	03/28/14 04:00 / mas		
Selenium	ND	mg/kg		0.1		SW6010B	03/28/14 04:00 / mas		
METALS, AMMONIUM ACETATE EX	TRACTABLE								
Potassium	390	mg/kg		10 ·		SW6010B	03/27/14 19:26 / mas		

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MCL - Maximum contaminant level.

.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client:Hall EnvironmentalProject:Not IndicatedLab ID:B14031248-006Client Sample ID:1403621-006A, BA-04 (a+b+c)

 Report Date:
 03/31/14

 Collection Date:
 10/30/13 15:45

 DateReceived:
 03/18/14

 Matrix:
 Soil

	MCL/								
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By		
PHYSICAL CHARACTERISTICS									
Coarse Fragments	ND	%		2		ASA15-5	03/24/14 16:08 / srm		
Sand	39	%		1		ASA15-5	03/31/14 10:25 / srm		
Silt	37	%		1		ASA15-5	03/31/14 10:25 / srm		
Clay	24	%		1		ASA15-5	03/31/14 10:25 / srm		
Very Fine Sand	10	wt%		1		ASA15-5	03/31/14 10:43 / srm		
Texture	L					ASA15-5	03/31/14 10:25 / srm		
- C = Clay, S = Sand(y), Si = Silt(y), L = Loam(y)									
SATURATED PASTE									
pH, sat. paste	7.7	s.u.		0.1		ASAM10-3.2	03/26/14 15:15 / srm		
Saturation	42.8	%		0.1		USDA27a	03/31/14 10:51 / srm		
Conductivity, sat. paste	1.2	mmhos/cm		0.1		ASA10-3	03/26/14 15:15 / srm		
Calcium, sat. paste	7. 9 9	meq/L		0.05		SW6010B	03/27/14 21:12 / mas		
Magnesium, sat. paste	1.92	meq/L		0.08		SW6010B	03/27/14 21:12 / mas		
Sodium, sat. paste	0.94	meq/L		0.04		SW6010B	03/27/14 21:12 / mas		
Sodium Adsorption Ratio (SAR)	0.42	unitless		0.01		Calculation	03/31/14 10:51 / srm		
CHEMICAL CHARACTERISTICS									
Phosphorus, Olsen	12	mg/kg		1		ASA24-5	03/27/14 12:10 / srm		
Nitrate as N, KCL Extract	35	mg/kg		1		ASA33-8	03/27/14 10:51 / srm		
CACL2 EXTRACTABLE METALS				*					
Boron	0.1	mg/kg		0.1		SW6010B	03/28/14 04:04 / mas		
Selenium	ND	mg/kg		0.1		SW6010B	03/28/14 04:04 / mas		
METALS, AMMONIUM ACETATE EXTR									
Potassium	660	mg/kg		10		SW6010B	03/27/14 19:29 / mas		

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client:Hall EnvironmentalProject:Not IndicatedLab ID:B14031248-007Client Sample ID:1403621-007A, BA-05 (a+b)

 Report Date:
 03/31/14

 Collection Date:
 03/13/14
 12:45

 DateReceived:
 03/18/14

 Matrix:
 Soil

		MCL/							
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By		
PHYSICAL CHARACTERISTICS									
Coarse Fragments	'. ND	%		2		ASA15-5	03/24/14 16:08 / srm		
Sand	40	%		1		ASA15-5	03/31/14 10:25 / srm		
Silt	36	%		1		ASA15-5	03/31/14 10:25 / srm		
Clay	24	%		1		ASA15-5	03/31/14 10:25 / srm		
Very Fine Sand	11	wt%		1		ASA15-5	03/31/14 10:43 / srm		
Texture	· L					ASA15-5	03/31/14 10:25 / srm		
- C = Clay, S = Sand(y), Si = Silt(y), L = Loam(y)								
SATURATED PASTE									
pH, sat. paste	7.8	s.u.		0.1		ASAM10-3.2	03/26/14 15:15 / srm		
Saturation	41.3	%		0.1		USDA27a	03/31/14 10:51 / srm		
Conductivity, sat. paste	0.9	mmhos/cm		0.1		ASA10-3	03/26/14 15:15 / srm		
Calcium, sat. paste	5.83	meq/L		0.05		SW6010B	03/27/14 21:34 / mas		
Magnesium, sat. paste	0.89	meq/L		0.08		SW6010B	03/27/14 21:34 / mas		
Sodium, sat. paste	1.49	meq/L		0.04		SW6010B	03/27/14 21:34 / mas		
Sodium Adsorption Ratio (SAR)	0.81	unitless		0.01		Calculation	03/31/14 10:51 / srm		
CHEMICAL CHARACTERISTICS									
Phosphorus, Olsen	10	mg/kg		1		ASA24-5	03/27/14 12:11 / srm		
Nitrate as N, KCL Extract	22	mg/kg		1		ASA33-8	03/27/14 10:51 / srm		
CACL2 EXTRACTABLE METALS									
Boron	0.2	mg/kg		0.1		SW6010B	03/28/14 04:42 / mas		
Selenium	ND	mg/kg		0.1		SW6010B	03/28/14 04:42 / mas		
METALS, AMMONIUM ACETATE EXT	RACTABLE								
Potassium	560	mg/kg		10		SW6010B	03/26/14 15:59 / mas		

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

Prepared by Billings, MT Branch

 Client:
 Hall Environmental

 Project:
 Not Indicated

 Lab ID:
 B14031248-008

 Client Sample ID:
 1403621-008A, WTP-01 (a+b+c)

 Report Date:
 03/31/14

 Collection Date:
 10/30/13 15:20

 DateReceived:
 03/18/14

 Matrix:
 Soil

Analysos	Recult	1 Inite	Qualifiere	RI	MCL/	Method	Analysis Date / By
Analyses	ncoun		duamers			nonou	
PHYSICAL CHARACTERISTICS							
Coarse Fragments	ND	%		2	• •	ASA15-5	03/24/14 16:08 / srm
Sand	43	%		1	N.	ASA15-5	03/31/14 10:25 / srm
Silt	31	%		1		ASA15-5	03/31/14 10:25 / srm
Clay	26	%		1		ASA15-5	03/31/14 10:25 / srm
Very Fine Sand	12	wt%		1		ASA15-5	03/31/14 10:43 / srm
Texture	L					ASA15-5	03/31/14 10:25 / srm
- C = Clay, S = Sand(y), Si = Silt(y), L = Loam(y)							
SATURATED PASTE							
pH, sat. paste	7.9	s.u.		0.1		ASAM10-3.2	03/26/14 15:15 / srm
Saturation	43.0	%		0.1		USDA27a	03/31/14 10:51 / srm
Conductivity, sat. paste	0.8	mmhos/cm		0.1		ASA10-3	03/26/14 15:15 / srm
Calcium, sat. paste	5.27	meq/L		0.05		SW6010B	03/27/14 21:37 / mas
Magnesium, sat. paste	1.10	meq/L		0.08		SW6010B	03/27/14 21:37 / mas
Sodium, sat. paste	1.23	meq/L		0.04		SW6010B	03/27/14 21:37 / mas
Sodium Adsorption Ratio (SAR)	0.69	unitless		0.01		Calculation	03/31/14 10:51 / srm
ACID-BASE ACCOUNTING							
Neutralization Potential	17	t/kt		0.1		Sobek Modifie	03/31/14 11:51 / srm
Acid Potential	1	t/kt		1		Sobek Modifie	03/31/14 11:51 / srm
Acid/Base Potential	16	t/kt				Sobek Modifie	03/31/14 11:51 / srm
The acid-base potential was calculated from the	non-sulfate sul	fur %					
CHEMICAL CHARACTERISTICS					•		
Phosphorus, Olsen	8	mg/kg		1		ASA24-5	03/27/14 12:13 / srm
Nitrate as N, KCL Extract	12	mg/kg		1		ASA33-8	03/27/14 10:52 / srm
CACL2 EXTRACTABLE METALS							
Boron	0.1	mg/kg		0.1		SW6010B	03/28/14 04:46 / mas
Selenium	ND	mg/kg		0.1		SW6010B	03/28/14 04:46 / mas
METALS, AMMONIUM ACETATE EXTR	RACTABLE						
Potassium	400	mg/kg		10		SW6010B	03/26/14 16:03 / mas

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client:Hall EnvironmentalProject:Not IndicatedLab ID:B14031248-009Client Sample ID:1403621-009A, WTP-02 (a+b+c)

 Report Date:
 03/31/14

 Collection Date:
 10/30/13 14:50

 DateReceived:
 03/18/14

 Matrix:
 Soil

		MCL/								
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By			
PHYSICAL CHARACTERISTICS										
Coarse Fragments	ND	%		2		ASA15-5	03/24/14 16:08 / srm	5		
Sand	33	%		1		ASA15-5	03/31/14 10:25 / srm	į		
Silt	35	%		1		A\$A15-5	03/31/14 10:25 / srm			
Clav	32	%		1		ASA15-5	03/31/14 10:25 / srm			
Very Fine Sand	10	wt%		1		ASA15-5	03/31/14 10:43 / srm			
Texture	CL					ASA15-5	03/31/14 10:25 / srm			
- C = Clay, S = Sand(y), Si = Silt(y), L = Loam(y)	I									
SATURATED PASTE										
pH, sat. paste	7.9	s.u.		0.1		ASAM10-3.2	03/26/14 15:15 / srm			
Saturation	50.4	%		0.1		USDA27a	03/31/14 10:51 / srm			
Conductivity, sat. paste	0.9	mmhos/cm	L	0.1		ASA10-3	03/26/14 15:15 / srm			
Calcium, sat. paste	4.63	meq/L		0.05		SW6010B	03/27/14 21:41 / mas			
Magnesium, sat. paste	1.02	meq/L		0.08		SW6010B	03/27/14 21:41 / mas			
Sodium, sat. paste	2.43	meq/L		0.04		SW6010B	03/27/14 21:41 / mas			
Sodium Adsorption Ratio (SAR)	1.44	unitless		0.01		Calculation	03/31/14 10:51 / srm			
ACID-BASE ACCOUNTING										
Neutralization Potential	17	t/kt		0.1		Sobek Modifie	03/31/14 11:54 / srm			
Acid Potential	1	t/kt		1		Sobek Modifie	03/31/14 11:54 / srm			
Acid/Base Potential	16	t/kt				Sobek Modifie	03/31/14 11:54 / srm			
The acid-base potential was calculated from the	non-sulfate sul	fur %								
CHEMICAL CHARACTERISTICS										
Phosphorus, Olsen	7	mg/kg		1		ASA24-5	03/27/14 12:14 / srm			
Nitrate as N, KCL Extract	13	mg/kg		1		ASA33-8	03/27/14 10:53 / srm			
CACL2 EXTRACTABLE METALS										
Boron	0.2	mg/kg		0.1		SW6010B	03/28/14 04:50 / mas			
Selenium	ND	mg/kg		0.1		SW6010B	03/28/14 04:50 / mas			
METALS, AMMONIUM ACETATE EXT	RACTABLE									
Potassium	620	mg/kg		10		SW6010B	03/26/14 16:06 / mas			

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

.

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client:Hall EnvironmentalProject:Not IndicatedLab ID:B14031248-010Client Sample ID:1403621-010A, WTP-03 (a+b+c)

 Report Date:
 03/31/14

 Collection Date:
 10/30/13 15:15

 DateReceived:
 03/18/14

 Matrix:
 Soil

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Coarse Fragments	ND	%		2		ASA15-5	03/24/14 16:08 / srm
Sand	. 44	%		1		ASA15-5	03/31/14 10:25 / srm
Silt	32	%		1		ASA15-5	03/31/14 10:25 / srm
Clay	24	%		1		ASA15-5	03/31/14 10:25 / srm
Very Fine Sand	11	wt%		1		ASA 15-5	03/31/14 10:43 / srm
Texture	L					ASA 15-5	03/31/14 10:25 / srm
- C = Clay, S = Sand(y), Si = Silt(y), L = L	₋oam(y)						
SATURATED PASTE							
pH, sat. paste	8.0	s.u.		0.1		ASAM10-3.2	03/26/14 15:15 / srm
Saturation	38.7	%		0.1		USDA27a	03/31/14 10:51 / srm
Conductivity, sat. paste	0.8	mmhos/cm	i	0.1		ASA10-3	03/26/14 15:15 / srm
Calcium, sat. paste	3.79	meq/L		0.05		SW6010B	03/27/14 21:44 / mas
Magnesium, sat. paste	0.79	meq/L		0.08		SW6010B	03/27/14 21:44 / mas
Sodium, sat. paste	2.97	meq/L		0.04		SW6010B	03/27/14 21:44 / mas
Sodium Adsorption Ratio (SAR)	1.96	unitless		0.01		Calculation	03/31/14 10:51 / srm
CHEMICAL CHARACTERISTICS							
Phosphorus, Olsen	7	mg/kg		1		ASA24-5	03/27/14 12:16 / srm
Nitrate as N, KCL Extract	7	mg/kg		1		ASA33-8	03/27/14 10:53 / srm
CACL2 EXTRACTABLE METALS							
Boron	0.2	mg/kg		0.1		SW6010B	03/28/14 04:53 / mas
Selenium	ND	mg/kg		0.1		SW6010B	03/28/14 04:53 / mas
METALS, AMMONIUM ACETATE	EXTRACTABLE						
Potassium	320	mg/kg		10		SW6010B	03/26/14 16:09 / mas

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

Prepared by Billings, MT Branch

Client:Hall EnvironmentalProject:Not IndicatedLab ID:B14031248-011Client Sample ID:1403621-011A, WTP-04 (a+b+c)

 Report Date:
 03/31/14

 Collection Date:
 10/30/13
 15:05

 DateReceived:
 03/18/14

 Matrix:
 Soil

	MCL/							
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By	
PHYSICAL CHARACTERISTICS								
Coarse Fragments	ND	%		2		ASA15-5	03/24/14 16:08 / srm	
Sand	43	%		1		ASA15-5	03/31/14 10:25 / srm	
Silt	29	%		1		ASA15-5	03/31/14 10:25 / srm	
Clay	28	%		1		ASA15-5	03/31/14 10:25 / srm	
Very Fine Sand	8	wt%		1		ASA15-5	03/31/14 10:43 / srm	
Texture	CL					ASA15-5	03/31/14 10:25 / srm	
- C = Clay, S = Sand(y), Si = Silt(y), L = Loam(y)								
SATURATED PASTE								
pH, sat. paste	7.6	s.u.		0.1		ASAM10-3.2	03/26/14 15:15 / srm	
Saturation	43.4	%		0.1		USDA27a	03/31/14 10:51 / srm	
Conductivity, sat. paste	1.3	mmhos/cm	1	0.1		ASA10-3	03/26/14 15:15 / srm	
Calcium, sat. paste	8.07	meq/L		0.05		SW6010B	03/27/14 21:47 / mas	
Magnesium, sat. paste	2,56	meq/L		0.08		SW6010B	03/27/14 21:47 / mas	
Sodium, sat. paste	1.02	meq/L		0.04		SW6010B	03/27/14 21:47 / mas	
Sodium Adsorption Ratio (SAR)	0.44	unitless		0.01		Calculation	03/31/14 10:51 / srm	
CHEMICAL CHARACTERISTICS								
Phosphorus, Olsen	12	mg/kg		1		ASA24-5	03/27/14 12:20 / srm	
Nitrate as N, KCL Extract	28	mg/kg		1		ASA33-8	03/27/14 10:56 / srm	
CACL2 EXTRACTABLE METALS								
Boron	0.1	mg/kg		0.1		SW6010B	03/28/14 04:57 / mas	
Selenium	ND	mg/kg		0.1		SW6010B	03/28/14 04:57 / mas	
METALS, AMMONIUM ACETATE EXTRA	CTABLE							
Potassium	500	mg/kg		10		SW6010B	03/26/14 16:13 / mas	

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

Halena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gillette, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client:Hall EnvironmentalProject:Not IndicatedLab ID:B14031248-012Client Sample ID:1403621-012A, WTP-06 (a+b)

 Report Date:
 03/31/14

 Collection Date:
 03/13/14
 11:40

 DateReceived:
 03/18/14

 Matrix:
 Soil

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Coarse Fragments	ND	%		2		ASA15-5	03/24/14 16:08 / srm
Sand	58	%		1		ASA15-5	03/31/14 10:25 / srm
Silt	25	%		1		ASA15-5	03/31/14 10:25 / srm
Clay	17	%		1		ASA15-5	03/31/14 10:25 / srm
Very Fine Sand	14	wt%		1		ASA 15-5	03/31/14 10:43 / srm
Texture	SL					ASA 15-5	03/31/14 10:25 / srm
- C = Clay, S = Sand(y), Si = Silt(y), L = Loam(y)							
SATURATED PASTE							
pH, sat. paste	8.2	s.u.		0.1		ASAM10-3.2	03/26/14 15:15 / srm
Saturation	33.7	%		0.1		USDA27a	03/31/14 10:51 / srm
Conductivity, sat. paste	0.9	mmhos/cm	1	0.1		ASA10-3	03/26/14 15:15 / srm
Calcium, sat. paste	2.84	meq/L		0.05		SW6010B	03/27/14 21:54 / mas
Magnesium, sat. paste	0.47	meq/L		0.08		SW6010B	03/27/14 21:54 / mas
Sodium, sat. paste	6.16	meq/L		0.04		SW6010B	03/27/14 21:54 / mas
Sodium Adsorption Ratio (SAR)	4.79	unitless		0.01		Calculation	03/31/14 10:51 / srm
CHEMICAL CHARACTERISTICS							
Phosphorus, Olsen	7	mg/kg		1		ASA24-5	03/27/14 12:24 / srm
Nitrate as N, KCL Extract	8	mg/kg		1		ASA33-8	03/27/14 10:58 / srm
CACL2 EXTRACTABLE METALS							
Boron	0.1	mg/kg		0.1		SW6010B	03/28/14 05:05 / mas
Selenium	0.3	mg/kg		0.1		SW6010B	03/28/14 05:05 / mas
METALS, AMMONIUM ACETATE EXTRA	CTABLE						
Potassium	200	mg/kg		10		SW6010B	03/26/14 16:19 / mas

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

Prepared by Billings, MT Branch

Client:Hall EnvironmentalProject:Not IndicatedLab ID:B14031248-013Client Sample ID:1403621-013A, WTP-05 (a+b)

Report Date: 03/31/14 Collection Date: 03/13/14 11:35 DateReceived: 03/18/14 Matrix: Soil

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Coarse Fragments	ND	%		2		ASA15-5	03/24/14 16:08 / srm
Sand	44	%		1		ASA15-5	03/31/14 10:25 / srm
Silt	31	%		1		ASA15-5	03/31/14 10:25 / srm
Clay	25	%		1		ASA 15-5	03/31/14 10:25 / srm
Very Fine Sand	12	wt%		1		ASA 15-5	03/31/14 10:43 / srm
Texture	L					ASA15-5	03/31/14 10:25 / srm
- C = Clay, S = Sand(y), Si = Silt(y), L = Loam(y))						
SATURATED PASTE							
pH, sat. paste	7.9	s.u.		0.1		ASAM10-3.2	03/26/14 15:15 / srm
Saturation	43.8	%		0.1		USDA27a	03/31/14 10:51 / srm
Conductivity, sat. paste	1.0	mmhos/cm	ı	0.1		ASA10-3	03/26/14 15:15 / srm
Calcium, sat. paste	5.73	meq/L		0.05		SW6010B	03/27/14 22:01 / mas
Magnesium, sat. paste	1.46	meq/L		80.0		SW6010B	03/27/14 22:01 / mas
Sodium, sat. paste	2.50	meq/L		0.04		SW6010B	03/27/14 22:01 / mas
Sodium Adsorption Ratio (SAR)	1.32	unitless		0.01		Calculation	03/31/14 10:51 / srm
CHEMICAL CHARACTERISTICS							
Phosphorus, Olsen	8	mg/kg		1		ASA24-5	03/27/14 12:26 / srm
Nitrate as N, KCL Extract	23	mg/kg		1		ASA33-8	03/27/14 10:58 / srm
CACL2 EXTRACTABLE METALS							
Boron	0.2	mg/kg		0.1		SW6010B	03/28/14 05:13 / mas
Selenium	0.1	mg/kg		0.1		SW6010B	03/28/14 05:13 / mas
METALS, AMMONIUM ACETATE EXT	RACTABLE						
Potassium	410	mg/kg		10		SW6010B	03/26/14 16:26 / mas

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

.

Prepared by Billings, MT Branch

Client:Hall EnvironmentalProject:Not IndicatedLab ID:B14031248-014Client Sample ID:1403621-014A, WTP-07 (a+b)

Report Date: 03/31/14 Collection Date: 03/13/14 11:50 DateReceived: 03/18/14 Matrix: Soil

	MCL/								
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By		
PHYSICAL CHARACTERISTICS			•						
Coarse Fragments	ND	%	1	2		ASA15-5	03/24/14 16:08 / srm		
Sand	61	%	- <u>í</u>	1		ASA15-5	03/31/14 10:25 / srm		
Silt	22	%		1		ASA15-5	03/31/14 10:25 / srm		
Clay	17	%		ĩ		ASA15-5	03/31/14 10:25 / srm		
Very Fine Sand	16	wt%		1		ASA15-5	03/31/14 10:43 / srm		
Texture	SL					ASA15-5	03/31/14 10:25 / srm		
- C = Clay, S = Sand(y), Si = Silt(y), L = Loam(y)									
SATURATED PASTE									
pH, sat. paste	8.0	s.u.		0.1		ASAM10-3.2	03/26/14 15:15 / srm		
Saturation	33.0	%		0.1		USDA27a	03/31/14 10:51 / srm		
Conductivity, sat. paste	0.4	mmhos/cm	1	0.1		ASA10-3	03/26/14 15:15 / srm		
Calcium, sat. paste	3.09	meq/L		0.05		SW6010B	03/27/14 22:04 / mas		
Magnesium, sat. paste	0.77	meq/L		0.08		SW6010B	03/27/14 22:04 / mas		
Sodium, sat. paste	0.70	meq/L		0.04		SW6010B	03/27/14 22:04 / mas		
Sodium Adsorption Ratio (SAR)	0.51	unitless		0.01		Calculation	03/31/14 10:51 / srm		
CHEMICAL CHARACTERISTICS									
Phosphorus, Olsen	5	mg/kg		1		ASA24-5	03/27/14 12:27 / srm		
Nitrate as N, KCL Extract	3	mg/kg		1		ASA33-8	03/27/14 10:59 / srm		
CACL2 EXTRACTABLE METALS									
Boron	ND	mg/kg		0.1		SW6010B	03/28/14 05:17 / mas		
Selenium	ND	mg/kg		0.1		SW6010B	03/28/14 05:17 / mas		
METALS, AMMONIUM ACETATE EXTRA	CTABLE								
Potassium	160	mg/kg		10		SW6010B	03/26/14 16:29 / mas		

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

Prepared by Billings, MT Branch

Client:Hall EnvironmentalProject:Not IndicatedLab ID:B14031248-015Client Sample ID:1403621-015A, WTP-08 (a+b)

Report Date: 03/31/14 Collection Date: 03/13/14 12:15 DateReceived: 03/18/14 Matrix: Soil

		MCL/									
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By				
PHYSICAL CHARACTERISTICS							:				
Coarse Fragments	ND	%		2		ASA15-5	03/24/14 16:08 / srm				
Sand	40	%		1		ASA15-5	03/31/14 10:25 / srm				
Silt	29	%		1		ASA15-5	03/31/14 10:25 / srm				
Clay	31	%		1		ASA15-5	03/31/14 10:25 / srm				
Very Fine Sand	12	wt%		1		ASA15-5	03/31/14 10:43 / srm				
Texture	CL					ASA15-5	03/31/14 10:25 / srm				
- $C = Clay$, $S = Sand(y)$, $Si = Silt(y)$, $L = Loam(y)$											
SATURATED PASTE											
pH, sat. paste	8.0	s.u.		0.1		ASAM10-3.2	03/26/14 15:15 / srm				
Saturation	48.9	%		0.1		USDA27a	03/31/14 10:51 / srm				
Conductivity, sat. paste	0.8	mmhos/cm	1	0.1		ASA10-3	03/26/14 15:15 / srm				
Calcium, sat. paste	3.77	meq/L		0.05		SW6010B	03/27/14 22:14 / mas				
Magnesium, sat. paste	1.34	meq/L		0.08		SW6010B	03/27/14 22:14 / mas				
Sodium, sat. paste	2.50	meq/L		0.04		SW6010B	03/27/14 22:14 / mas				
Sodium Adsorption Ratio (SAR)	1.56	unitless		0.01		Calculation	03/31/14 10:51 / srm				
CHEMICAL CHARACTERISTICS											
Phosphorus, Olsen	8	mg/kg		1		ASA24-5	03/27/14 12:28 / srm				
Nitrate as N, KCL Extract	2	mg/kg		1		ASA33-8	03/27/14 11:00 / srm				
CACL2 EXTRACTABLE METALS											
Boron	0.2	mg/kg		0.1		SW6010B	03/28/14 05:28 / mas				
Selenium	ND	mg/kg		0.1		SW6010B	03/28/14 05:28 / mas				
METALS, AMMONIUM ACETATE EXTRA	CTABLE										
Potassium	520	mg/kg		10		SW6010B	03/27/14 19:36 / mas				

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

Prepared by Billings, MT Branch

Client:Hall EnvironmentalProject:Not IndicatedLab ID:B14031248-016Client Sample ID:1403621-016A, WTP-09 (a+b)

 Report Date:
 03/31/14

 Collection Date:
 03/13/14
 09:00

 DateReceived:
 03/18/14

 Matrix:
 Soil

	MCL/									
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By			
	ND	%		2		ASA15-5	03/24/14 16:08 / srm			
	14	%		1		ASA15-5	03/31/14 10:25 / srm			
	20	0∕_		1		ASA 15-5	03/31/14 10:25 / srm			
One	24	/∪ 0∕_		1		ASA15-5	03/31/14 10:25 / srm			
Very Eine Sand	10	/0 \w/19/_		1		ASA15-5	03/31/14 10:43 / srm			
		WUL /O				ASA15-5	03/31/14 10:25 / erm			
- C = Clay, S = Sand(y), Si = Silt(y), L = Loam(y)							00/01/14/10.207 5111			
SATURATED PASTE										
nH sat naste	8.1	S.U.		0.1		ASAM10-3.2	03/26/14 15:15 / srm			
Saturation	40.6	%		0.1		USDA27a	03/31/14 10:51 / srm			
Conductivity sat paste	0.5	mmhos/cm	1	0.1		ASA10-3	03/26/14 15:15 / srm			
Calcium sat naste	2.73	mea/L		0.05		SW6010B	03/27/14 22:17 / mas			
Magnesium sat paste	0.58	meg/l		0.08		SW6010B	03/27/14 22:17 / mas			
Sodium sat paste	1.36	meg/l		0.04		SW6010B	03/27/14 22:17 / mas			
Sodium Adsorption Ratio (SAR)	1.06	unitless		0.01		Calculation	03/31/14 10:51 / srm			
CHEMICAL CHARACTERISTICS										
Phosphorus, Olsen	9	ma/ka		1		ASA24-5	03/27/14 12:30 / srm			
Nitrate as N, KCL Extract	3	mg/kg		1		ASA33-8	03/27/14 11:00 / srm			
CACL2 EXTRACTABLE METALS										
Boron	0.1	mg/kg		0.1		SW6010B	03/28/14 05:32 / mas			
Selenium	ND	mg/kg		0.1		SW6010B	03/28/14 05:32 / mas			
METALS, AMMONIUM ACETATE EXTRA	CTABLE									
Potassium	370	mg/kg		10		SW6010B	03/27/14 19:42 / mas			

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

Helena, MT 877-472-0711 Billings, MT 800-735-4489 Casper, WY 888-235-0515 Gillette; WY 865-666-7175 Repid City, SD 888-672-1225 College Station, TX 888-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

 Client:
 Hall Environmental

 Project:
 Not Indicated

 Lab ID:
 B14031248-017

 Client Sample ID:
 1403621-017A, WTP-10 (a+b)

Report Date: 03/31/14 Collection Date: 03/13/14 10:15 DateReceived: 03/18/14 Matrix: Soil

		MCL/								
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By			
PHYSICAL CHARACTERISTICS		-								
Coarse Fragments	ND	%		2		ASA15-5	03/24/14 16:08 / srm			
Sand	48	%		1		ASA15-5	03/31/14 10:25 / srm			
Silt	27	%		1		ASA15-5	03/31/14 10:25 / srm			
Clay	25	%		1		ASA15-5	03/31/14 10:25 / srm			
Very Fine Sand	11	wt%		1		ASA15-5	03/31/14 10:43 / srm			
Texture	SCL					ASA15-5	03/31/14 10:25 / srm			
- C = Clay, S = Sand(y), Si = Silt(y), L = Loam(y)										
SATURATED PASTE										
pH, sat. paste	7.9	s.u.		0.1		ASAM10-3.2	03/26/14 15:15 / srm			
Saturation	41.8	%		0.1		USDA27a	03/31/14 10:51 / srm			
Conductivity, sat. paste	0.9	mmhos/cn	1	0.1		ASA10-3	03/26/14 15:15 / srm			
Calcium, sat. paste	4.90	meq/L		0.05		SW6010B	03/27/14 22:20 / mas			
Magnesium, sat. paste	1.02	meq/L		0.08		SW6010B	03/27/14 22:20 / mas			
Sodium, sat. paste	2.26	meq/L		0.04		SW6010B	03/27/14 22:20 / mas			
Sodium Adsorption Ratio (SAR)	1.32	unitless		0.01		Calculation	03/31/14 10:51 / srm			
CHEMICAL CHARACTERISTICS										
Phosphorus, Olsen	6	mg/kg		1		ASA24-5	03/27/14 12:31 / srm			
Nitrate as N, KCL Extract	10	mg/kg		1		ASA33-8	03/27/14 11:01 / srm			
CACL2 EXTRACTABLE METALS										
Boron	0.2	mg/kg		0.1		SW6010B	03/28/14 05:36 / mas			
Selenium	ND	mg/kg		0.1		SW6010B	03/28/14 05:36 / mas			
METALS, AMMONIUM ACETATE EXTRA	ACTABLE									
Potassium	450	mg/kg		10		SW6010B	03/27/14 19:46 / mas			

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

Prepared by Billings, MT Branch

Client:Hall EnvironmentalProject:Not IndicatedLab ID:B14031248-018Client Sample ID:1403621-018A, WTP-11 (a+b)

 Report Date:
 03/31/14

 Collection Date:
 03/13/14
 10:35

 DateReceived:
 03/18/14

 Matrix:
 Soil

Analyses	Pocult	Unite	Qualifiere	RI	MCL/	Method	Analysis Date / By
Analyses	neaun	Units					Analysis Sate 7 Sy
PHYSICAL CHARACTERISTICS							
Coarse Fragments	ND	%		2		ASA15-5	03/24/14 16:08 / srm
Sand	50	%		1		ASA15-5	\ 03/31/14 10:25 / srm
Silt	26	%		1		ASA15-5	03/31/14 10:25 / srm
Clay	24	%		1		ASA15-5	03/31/14 10:25 / srm
Very Fine Sand	13	wt%		1		ASA15-5	03/31/14 10:43 / srm
Texture	SCL					ASA15-5	03/31/14 10:25 / srm
- C = Clay, S = Sand(y), Si = Silt(y), L = Loam(y)							
SATURATED PASTE							
pH, sat. paste	8.3	s.u.		0.1		ASAM10-3.2	03/26/14 15:15 / srm
Saturation	38.7	%		0.1		USDA27a	03/31/14 10:51 / srm
Conductivity, sat. paste	0.6	mmhos/cm	1	0.1		ASA10-3	03/26/14 15:15 / srm
Calcium, sat. paste	1.14	meq/L		0.05		SW6010B	03/27/14 22:24 / mas
Magnesium, sat. paste	0.39	meq/L		0.08		SW6010B	03/27/14 22:24 / mas
Sodium, sat. paste	4.57	meq/L		0.04		SW6010B	03/27/14 22:24 / mas
Sodium Adsorption Ratio (SAR)	5.23	unitless		0.01		Calculation	03/31/14 10:51 / srm
CHEMICAL CHARACTERISTICS							
Phosphorus, Olsen	7	mg/kg		1		ASA24-5	03/27/14 12:33 / srm
Nitrate as N, KCL Extract	4	mg/kg		1		ASA33-8	03/27/14 11:02 / srm
CACL2 EXTRACTABLE METALS							
Boron	0.2	mg/kg		0.1		SW6010B	03/28/14 05:40 / mas
Selenium	ND	mg/kg		0.1		SW6010B	03/28/14 05:40 / mas
METALS, AMMONIUM ACETATE EXTRA	CTABLE						
Potassium	240	mg/kg		10		SW6010B	03/27/14 19:49 / mas

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

Prepared by Billings, MT Branch

Client:Hall EnvironmentalProject:Not IndicatedLab ID:B14031248-019Client Sample ID:1403621-019A, WTP-12 (a+b)

 Report Date:
 03/31/14

 Collection Date:
 03/13/14
 11:10

 DateReceived:
 03/18/14
 11:10

 Matrix:
 Soil
 10

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Coarse Fragments	ND	%		2		ASA15-5	03/24/14 16:08 / srm
Sand	45	%		1		ASA15-5	03/31/14 10:25 / srm
Silt	29	%		1		ASA15-5	03/31/14 10:25 / srm
Clav	26	%		1		ASA15-5	03/31/14 10:25 / srm
Very Fine Sand	13	wt%		1		ASA15-5	03/31/14 10:43 / srm
	L					ASA15-5	03/31/14 10:25 / srm
- C = Clay, S = Sand(y), Si = Silt(y), L = Loam(y)							
SATURATED PASTE							
pH, sat. paste	8.1	s.u.		0.1		ASAM10-3.2	03/26/14 15:15 / srm
Saturation	40.1	%		0.1		USDA27a	03/31/14 10:51 / srm
Conductivity, sat. paste	0.5	mmhos/cn	ı	0.1		ASA10-3	03/26/14 15:15 / srm
Calcium, sat. paste	2.66	meq/L		0.05		SW6010B	03/27/14 22:27 / mas
Magnesium, sat. paste	0.63	meq/L		0.08		SW6010B	03/27/14 22:27 / mas
Sodium, sat. paste	1.48	meq/L		0.04		SW6010B	03/27/14 22:27 / mas
Sodium Adsorption Ratio (SAR)	1.16	unitless		0.01		Calculation	03/31/14 10:51 / srm
CHEMICAL CHARACTERISTICS							
Phosphorus, Olsen	8	mg/kg		1		ASA24-5	03/27/14 12:34 / srm
Nitrate as N, KCL Extract	5	mg/kg		1		ASA33-8	03/27/14 11:22 / srm
CACL2 EXTRACTABLE METALS							
Boron	0.1	mg/kg		0.1		SW6010B	03/28/14 05:43 / mas
Selenium	ND	mg/kg		0.1		SW6010B	03/28/14 05:43 / mas
METALS, AMMONIUM ACETATE EXTRA	CTABLE						
Potassium	420	mg/kg		10		SW6010B	03/27/14 19:52 / mas

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

Prepared by Billings, MT Branch

Client:Hall EnvironmentalProject:Not IndicatedLab ID:B14031248-020Client Sample ID:1403621-020A, SWP-01 (a+b)

•

 Report Date:
 03/31/14

 Collection Date:
 03/12/14 09:00

 DateReceived:
 03/18/14

 Matrix:
 Soil

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Coarse Fragments	ND	`%		2		ASA15-5	03/24/14 16:08 / srm
Sand	46	%		1		ASA15-5	03/31/14 10:25 / srm
Silt	32	%		1		ASA 15-5	03/31/14 10:25 / srm
Clay	22	%		1		ASA15-5	03/31/14 10:25 / srm
Very Fine Sand	15	wt%		1		ASA 15-5	03/31/14 10:43 / srm
Texture	· L					ASA15-5	03/31/14 10:25 / srm
- C = Clay, S = Sand(y), Si = Silt(y), L = Loam(y)							
SATURATED PASTE							
pH, sat. paste	7.7	s.u.		0.1		ASAM10-3.2	03/26/14 15:15 / srm
Saturation	34.4	%		0.1		USDA27a	03/31/14 10:51 / srm
Conductivity, sat. paste	1.0	mmhos/cm	1	0.1		ASA10-3	03/26/14 15:15 / srm
Calcium, sat. paste	7.48	meq/L		0.05		SW6010B	03/27/14 22:30 / mas
Magnesium, sat. paste	1.70	meq/L	ι.	0.08		SW6010B	03/27/14 22:30 / mas
Sodium, sat. paste	0.45	meq/L		0.04		SW6010B	03/27/14 22:30 / mas
Sodium Adsorption Ratio (SAR)	0.21	unitless		0.01		Calculation	03/31/14 10:51 / srm
CHEMICAL CHARACTERISTICS							
Phosphorus, Olsen	6	mg/kg		1		ASA24-5	03/27/14 12:35 / srm
Nitrate as N, KCL Extract	13	mg/kg		1		ASA33-8	03/27/14 11:23 / srm
CACL2 EXTRACTABLE METALS							
Boron	0.1	mg/kg		0.1		SW6010B	03/28/14 05:47 / mas
Selenium	ND	mg/kg		0.1		SW6010B	03/28/14 05:47 / mas
METALS, AMMONIUM ACETATE EXTRA	CTABLE						
Potassium	270	mg/kg		10		SW6010B	03/27/14 20:02 / mas

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

Helena, MT 877-472-0711 @ Billings, MT 800-735-4489 © Casper, WY 888-235-0515 Gillette, WY 865-686-7175 © Rapid City, SD 888-672-1225 © College Station, TX 888-6500-2218

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client:Hall EnvironmentalProject:Not IndicatedLab ID:B14031248-021Client Sample ID:1403621-021A, SWP-02 (a+b)

 Report Date:
 03/31/14

 Collection Date:
 03/12/14 09:10

 DateReceived:
 03/18/14

 Matrix:
 Soil

Analyses	Result	Units	Qualiflers	RL	QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Coarse Fragments	ND	%		2		ASA15-5	03/24/14 16:08 / srm
Sand	48	%		1		ASA 15-5	03/31/14 10:25 / srm
Silt	27	%		1		ASA15-5	03/31/14 10:25 / srm
Clay	25	%		1		ASA15-5	03/31/14 10:25 / srm
Very Fine Sand	12	wt%		1		ASA15-5	03/31/14 10:43 / srm
Texture	SCL					ASA15-5	03/31/14 10:25 / srm
- C = Clay, S = Sand(y), Si = Silt(y), L = Loam(y)							
SATURATED PASTE							
pH, sat. paste	7.9	s.u.		0.1		ASAM10-3.2	03/26/14 15:15 / srm
Saturation	40.5	%		0.1		USDA27a	03/31/14 10:51 / srm
Conductivity, sat. paste	0.6	mmhos/cm	1	0.1		ASA10-3	03/26/14 15:15 / srm
Calcium, sat. paste	3.00	meq/L		0.05		SW6010B	03/27/14 22:34 / mas
Magnesium, sat. paste	1.29	meq/L		0.08		SW6010B	03/27/14 22:34 / mas
Sodium, sat. paste	2.00	meq/L		0.04		SW6010B	03/27/14 22:34 / mas
Sodium Adsorption Ratio (SAR)	1.37	unitless		0.01		Calculation	03/31/14 10:51 / srm
CHEMICAL CHARACTERISTICS							
Phosphorus, Olsen	6	mg/kg		1		ASA24-5	03/27/14 12:40 / srm
Nitrate as N, KCL Extract	2	mg/kg		1		ASA33-8	03/27/14 11:25 / srm
CACL2 EXTRACTABLE METALS							
Boron	0.2	mg/kg		0.1		SW6010B	03/28/14 05:51 / mas
Selenium	ND	mg/kg		0.1		SW6010B	03/28/14 05:51 / mas
METALS, AMMONIUM ACETATE EXTRA	CTABLE						
Potassium	180	mg/kg		10		SW6010B	03/27/14 20:05 / mas

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

Helena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gillette, WY 865-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client:Hall EnvironmentalProject:Not IndicatedLab ID:B14031248-022Client Sample ID:1403621-022A, SWP-03 (a+b)

 Report Date:
 03/31/14
 .

 Collection Date:
 03/12/14 09:15
 .

 DateReceived:
 03/18/14
 .

 Matrix:
 Soil
 .

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Coarse Fragments	ND	%		2		ASA15-5	03/24/14 16:08 / srm
Sand	27	%		1		ASA15-5	03/31/14 10:25 / srm
Silt	40	%		1		ASA15-5	03/31/14 10:25 / srm
Clay	33	%		1		ASA15-5	03/31/14 10:25 / srm
Very Fine Sand	9	wt%		1		ASA15-5	03/31/14 10:43 / srm
Texture	CL					ASA15-5	03/31/14 10:25 / srm
- C = Clay, S = Sand(y), Si = Silt(y), L = Loam(y)							
SATURATED PASTE							
pH, sat. paste	8.0	s.u.		0.1		ASAM10-3.2	03/26/14 15:15 / srm
Saturation	43.7	%		0.1		USDA27a	03/31/14 10:51 / srm
Conductivity, sat. paste	0.6	mmhos/cm	1	0.1		ASA10-3	03/26/14 15:15 / srm
Calcium, sat. paste	3.00	meq/L		0.05		SW6010B	03/27/14 22:40 / mas
Magnesium, sat. paste	0.93	meq/L		0.08		SW6010B	03/27/14 22:40 / mas
Sodium, sat. paste	1.52	meq/L		0.04		SW6010B	03/27/14 22:40 / mas
Sodium Adsorption Ratio (SAR)	1.09	unitless		0.01		Calculation	03/31/14 10:51 / srm
CHEMICAL CHARACTERISTICS							
Phosphorus, Olsen	8	mg/kg		1		ASA24-5	03/27/14 12:44 / srm
Nitrate as N, KCL Extract	8	mg/kg		1		ASA33-8	03/27/14 11:27 / srm
CACL2 EXTRACTABLE METALS							
Boron	ND	mg/kg		0.1		SW6010B	03/28/14 05:59 / mas
Selenium	ND	mg/kg		0.1		SW6010B	03/28/14 05:59 / mas
METALS, AMMONIUM ACETATE EXTR	ACTABLE						
Potassium	280	ma/ka		10		SW6010B	03/27/14 20:12 / mas

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

Prepared by Billings, MT Branch

Client:Hall EnvironmentalProject:Not IndicatedLab ID:B14031248-023Client Sample ID:1403621-023A, SWP-04 (a+b)

 Report Date:
 03/31/14

 Collection Date:
 03/12/14 09:30

 DateReceived:
 03/18/14

 Matrix:
 Soil

				MCL	/	
Analyses	Result	Units	Qualifiers	RL QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS						
Coarse Fragments	' ND	%		2	ASA15-5	03/24/14 16:08 / srm
Sand	46	%		1	ASA15-5	03/31/14 10:25 / srm
Silt	29	%		1	ASA15-5	03/31/14 10:25 / srm
Clay	25	%		1	ASA15-5	03/31/14 10:25 / srm
Very Fine Sand	12	wt%		1	ASA15-5	03/31/14 10:43 / srm
Texture	· L				ASA15-5	03/31/14 10:25 / srm
- C = Clay, S = Sand(y), Si = Silt(y), L = Loam(y)						
SATURATED PASTE						
pH, sat. paste	8.1	s.u.		0.1	ASAM10-3.2	03/26/14 15:15 / srm
Saturation	39.6	%		0.1	USDA27a	03/31/14 10:51 / srm
Conductivity, sat. paste	0.6	mmhos/cm	1	0.1	ASA10-3	03/26/14 15:15 / srm
Calcium, sat. paste	3.15	meq/L		0.05	SW6010B	03/27/14 22:53 / mas
Magnesium, sat. paste	1.42	meq/L		0.08	SW6010B	03/27/14 22:53 / mas
Sodium, sat. paste	2.12	meq/L		0.04	SW6010B	03/27/14 22:53 / mas
Sodium Adsorption Ratio (SAR)	1.40	unitless		0.01	Calculation	03/31/14 10:51 / srm
CHEMICAL CHARACTERISTICS						
Phosphorus, Olsen	7	mg/kg		1	ASA24-5	03/27/14 12:45 / srm
Nitrate as N, KCL Extract	7	mg/kg		1	ASA33-8	03/27/14 11:28 / srm
CACL2 EXTRACTABLE METALS						
Boron	0.2	mg/kg		0.1	SW6010B	03/28/14 06:14 / mas
Selenium	ND	mg/kg		0.1	SW6010B	03/28/14 06:14 / mas
METALS, AMMONIUM ACETATE EXTRA	CTABLE					
Potassium	260	mg/kg		10	SW6010B	03/27/14 20:19 / mas

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

Helena, MT 877-472-0711 Billings, MT 800-735-4489 Casper, WY 888-235-0515 Gillette, WY 866-686-7175 Rapid City, SD 888-672-1225 College Station, TX 888-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client:Hall EnvironmentalProject:Not IndicatedLab ID:B14031248-024Client Sample ID:1403621-024A, WP-01 (a+b+c)

 Report Date:
 03/31/14

 Collection Date:
 10/31/13 09:00

 DateReceived:
 03/18/14

 Matrix:
 Soil

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
Castro Framonta	ND	0/		2	¥	48415-5	03/24/14 16:08 / srm
Coarse Fragments		70 0/		1	- 5	ASA15-5	03/31/14 10:25 / srm
Sand	00	76		4		AGA15-5	03/31/14 10:25 / srm
Silt	22	% ~		-		AGA15-5	03/31/14 10:25 / sm
Clay	20	%		1		ASA15-5	03/31/14 10:25 / smi
Very Fine Sand	8	wt%		1		ASA15-5	03/31/14 10:43 / sm
Texture	SCL					ASA15-5	03/31/14 10:25 / srm
- C = Clay, S = Sand(y), Si = Silt(y), L = Loam(y)							'
SATURATED PASTE							
pH, sat. paste	7.9	s.u.		0.1		ASAM10-3.2	03/26/14 15:15 / srm
Saturation	38.9	%		0.1		USDA27a	03/31/14 10:51 / srm
Conductivity, sat. paste	5.3	mmhos/cm		0.1		ASA10-3	03/26/14 15:15 / srm
Calcium, sat. paste	24.4	meq/L		0.05		SW6010B	03/27/14 22:57 / mas
Magnesium, sat. paste	13.6	meq/L		0.08		SW6010B	03/27/14 22:57 / mas
Sodium, sat. paste	40.8	meg/L	D	0.07		SW6010B	03/27/14 22:57 / mas
Sodium Adsorption Ratio (SAR)	9.35	unitless		0.01		Calculation	03/31/14 10:51 / srm
CHEMICAL CHARACTERISTICS							
Phosphorus Olsen	7	ma/ka		1		ASA24-5	03/27/14 12:47 / srm
Nitrate as N_KCL_Extract	2	ma/ka		1		ASA33-8	03/27/14 11:28 / srm
		mgmg		•			
CACL2 EXTRACTABLE METALS							
Boron	ND	mg/kg		0.1		SW6010B	03/28/14 06:18 / mas
Selenium	ND	mg/kg		0.1		SW6010B	03/28/14 06:18 / mas
METALS, AMMONIUM ACETATE EXTRA	CTABLE						
Potassium	110	mg/kg		10		SW6010B	03/27/14 20:22 / mas

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. D - RL increased due to sample matrix.

Prepared by Billings, MT Branch

Client:Hall EnvironmentalProject:Not IndicatedLab ID:B14031248-025Client Sample ID:1403621-025A, WP-02 (a+b+c)

 Report Date:
 03/31/14

 Collection Date:
 10/31/13 09:10

 DateReceived:
 03/18/14

 Matrix:
 Soil

					MCL/			
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By	
PHYSICAL CHARACTERISTICS								
Coarse Fragments	ND	%		2		ASA15-5	03/24/14 16:08 / srm	
Sand	58	%		1		ASA15-5	03/31/14 10:25 / srm	
Silt	24	%		1		ASA15-5	03/31/14 10:25 / srm	
Clav	18	%		1		ASA15-5	03/31/14 10:25 / srm	
Very Fine Sand	7	wt%		1		ASA15-5	03/31/14 10:43 / srm	
	SL					ASA15-5	03/31/14 10:25 / srm	
- C = Clay, S = Sand(y), Si = Silt(y), L = Loam(y)								
SATURATED PASTE								
pH, sat. paste	7.8	s.u.		0.1		ASAM10-3.2	03/26/14 15:15 / srm	
Saturation	38.0	%		0.1		USDA27a	03/31/14 10:51 / srm	
Conductivity, sat. paste	6.4	mmhos/cm	ו	0.1		ASA10-3	03/26/14 15:15 / srm	
Calcium, sat. paste	25.7	meq/L		0.05		SW6010B	03/27/14 23:00 / mas	
Magnesium, sat. paste	17.0	meq/L		0.08		SW6010B	03/27/14 23:00 / mas	
Sodium, sat. paste	53.5	meq/L	D	0.1		SW6010B	03/27/14 23:00 / mas	
Sodium Adsorption Ratio (SAR)	11.6	unitless		0.01		Calculation	03/31/14 10:51 / srm	
ACID-BASE ACCOUNTING								
Neutralization Potential	31	t/kt		0.1		Sobek Modifie	03/31/14 11:32 / srm	
Acid Potential	0	t/kt		1		Sobek Modifie	03/31/14 11:32 / srm	
Acid/Base Potential	30	t/kt				Sobek Modifie	03/31/14 11:32 / srm	
The acid-base potential was calculated from the no	n-sulfate sul	fur %						
CHEMICAL CHARACTERISTICS								
Phosphorus, Olsen	7	mg/kg		1		ASA24-5	03/27/14 12:48 / srm	
Nitrate as N, KCL Extract	2	mg/kg		1		ASA33-8	03/27/14 11:29 / srm	
CACL2 EXTRACTABLE METALS								
Boron	0.1	mg/k g		0.1		SW6010B	03/28/14 06:22 / mas	
Selenium	0.2	mg/kg		0.1		SW6010B	03/28/14 06:22 / mas	
METALS, AMMONIUM ACETATE EXTRA	CTABLE							
Potassium	90	mg/kg		10		SW6010B	03/27/14 20:25 / mas	

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

D - RL increased due to sample matrix.

Prepared by Billings, MT Branch

Client:Hall EnvironmentalProject:Not IndicatedLab ID:B14031248-026Client Sample ID:1403621-026A, WP-03 (a+b+c)

 Report Date:
 03/31/14

 Collection Date:
 10/31/13 09:15

 DateReceived:
 03/18/14

 Matrix:
 Soil

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Coarse Fragments	ND	%		2		ASA15-5	03/24/14 16:08 / srm
Sand	38	%		1		ASA15-5	03/31/14 10:25 / srm
Silt	35	%		1		ASA15-5	03/31/14 10:25 / srm
Clav	27	%		1		ASA15-5	03/31/14 10:25 / srm
Very Fine Sand	10	wt%		1		ASA15-5	03/31/14 10:43 / srm
Texture	CL					ASA15-5	03/31/14 10:25 / srm
- C = Clay, S = Sand(y), Si = Silt(y), L = L	oam(y)						
SATURATED PASTE							
pH, sat. paste	8.0	s.u.		0.1		ASAM10-3.2	03/26/14 15:15 / srm
Saturation	52.6	%		0.1		USDA27a	03/31/14 10:51 / srm
Conductivity, sat. paste	5.2	mmhos/cm	l	0.1		ASA10-3	03/26/14 15:15 / srm
Calcium, sat. paste	25.0	meq/L		0.05		SW6010B	03/27/14 23:03 / mas
Magnesium, sat. paste	14.7	meq/L		80.0		SW6010B	03/27/14 23:03 / mas
Sodium, sat. paste	37.0	meq/L	D	0.07		SW6010B	03/27/14 23:03 / mas
Sodium Adsorption Ratio (SAR)	8.31	unitless		0.01		Calculation	03/31/14 10:51 / srm
CHEMICAL CHARACTERISTICS							
Phosphorus, Olsen	5	mg/kg		1		ASA24-5	03/27/14 12:50 / srm
Nitrate as N, KCL Extract	2	mg/kg		1		ASA33-8	03/27/14 11:30 / srm
CACL2 EXTRACTABLE METALS							
Boron	ND	mg/kg		0.1		SW6010B	03/28/14 06:26 / mas
Selenium	0.1	mg/kg		0.1		SW6010B	03/28/14 06:26 / mas
METALS, AMMONIUM ACETATE	EXTRACTABLE						
Potassium	190	mg/kg		10		SW6010B	03/27/14 20:29 / mas

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. D - RL increased due to sample matrix.

Prepared by Billings, MT Branch

Client: Hall Environmental

Project: Not Indicated

Report Date: 03/31/14

Work Order: B14031248

Analyte	Result Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: ASA10-3							Batch	: R221281
Lab ID: B14031248-001A DUP Conductivity, sat. paste	Sample Duplicate 0.490 mmhos/cm	0.10	:	Run: MISC	-SOIL_140326A	4.0	03/26 30	6/14 15:15
Lab ID: B14031248-011A DUP Conductivity, sat. paste	Sample Duplicate 1.29 mmhos/cm	0.10	- (-	Run: MISC	-SOIL_140326A	0.0	03/26 30	6/14 15:15
Lab ID: B14031248-021A DUP Conductivity, sat. paste	Sample Duplicate 0.570 mmhos/cm	0.10		Run: MISC	-SOIL_140326A	1.7	03/2(30	6/14 15:15
Lab ID: LCS-1403261515 Conductivity, sat, paste	Laboratory Control Sample 12.1 mmhos/cm	0.10	96	Run: MISC 50	-SOIL_140326A 150		03/20	6/14 15:15

Qualifiers: RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client: Hall Environmental

Project: Not Indicated

Report Date: 03/31/14

Work Order: B14031248

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	ASA15-5	· · · · ·		<u> </u>					Batch:	R221435
Lab ID:	B14031248-002A DUP	Sample Duplic	ate			Run: MISC	-SOIL_140331A		03/31	/14 10:25
Sand		31	%	1.0			—	3.3	40	
Silt		40	%	1.0				0.0	40	
Clay		29	%	1.0				3.4	40	
1 - 1 - 1 D -		Comolo DrB	unto.			Dup: MICO	SOIL 140321A		15/50	/14 10:25
Lab ID:	B14031248-012A DUP	Sample Dupic	2/211 0 /	1.0			-301L_140331A	0.0	<u>1</u> 0/31 <u>4</u> 0	114 10.20
Sand		58	7o 0/	1.0				30	40	
SIII		20 16	70 0/	1.0				6.1	-0 40	
Clay		10	70	1.0				0.1	40	
Lab ID:	B14031248-022A DUP	Sample Duplic	ate			Run: MISC	-SOIL_140331A		03/31	/14 10:25
Sand		28	%	1.0				3.6	40	
Silt		39	%	1.0				2.5	40	
Clay		33	%	1.0				0.0	40	
Lab ID:	LCS-1403311025	Laboratory Co	ntrol Sample			Run: MISC	-SOIL_140331A		03/31	/14 10:25
Sand		42	%	1.0	102	50	150			
Silt		34	%	1.0	97	50	150			
Clay		24	%	1.0	100	50	150			
Lab ID:	B14031248-002A DUP	Sample Duplic	ate			Run: MISC	-SOIL_140331A		03/31	/14 10:43
Very Fine S	Sand	15	wt%	1				8.7	50	
Lab ID:	B14031248-012A DUP	Sample Duplic	ate			Run: MISC	-SOIL_140331A		03/31	/14 10:43
Very Fine	Sand	15	wt%	1				10	50	
Lab ID:	B14031248-022A DUP	Sample Duplic	cate			Run: MISC	-SOIL_140331A		03/31	I/14 10:4 3
Very Fine	Sand	10	wt%	1				15	50	
Lab ID:	LCS-1403311043	Laboratory Co	introl Sample			Run: MISC	-SOIL_140331A		03/31	1/14 1 0:43
Very Fine	Sand	8	wt%	1	105	50	150			

Qualifiers: RL - Analyte reporting limit.

16.6

mg/kg

150

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Hall Environmental

Project: Not indicated

Phosphorus, Olsen

Report Date: 03/31/14 Work Order: B14031248

Analyte	0000 • 000000000	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	ASA24-5								Batch: 14031	802-PS3
Lab ID:	LCS	Laboratory Co	ntrol Sample			Run: FIA20)1-B_140331A		03/27	/14 11:54
Phosphorus	, Olsen	11.7	mg/kg	1.0	87	50	150			
Lab ID:	B14031248-001ADUP	Sample Duplic	cate			Run: FIA20)1-B_140331A		03/27	/14 12:02
Phosphorus	, Olsen	10.4	mg/kg	1.0				13	30	
Lab ID:	B14031248-001AMS	Sample Matrix	< Spike			Run: FIA20)1-B_140331A		03/27	/14 12:03
Phosphorus	, Olsen	21.6	mg/kg	1.0	93	50	150			
Lab ID:	B14031248-011ADUP	Sample Duplic	cate			Run: FIA20)1-B_140331A		03/27	/14 12:21
Phosphorus	, Olsen	11.7	mg/kg	1.0				2.3	30	
Lab ID:	B14031248-011AMS	Sample Matrix	< Spike			Run: FIA2)1-B_140331A		03/27	/14 12:23
Phosphorus	, Olsen	23.3	mg/kg	1.0	108	50	150			
Lab ID:	B14031248-021ADUP	Sample Dupli	cate			Run: FIA20	01-B_140331A		03/27	/14 12:41
Phosphorus	, Olsen	6.68	mg/kg	1.0				4.1	30	
Lab ID:	B14031248-021AMS	Sample Matrix	< Spike			Run: FIA20)1-B_140331A		03/27	/14 12:43

1.0

97

50

Qualifiers: RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client: Hall Environmental

Project: Not Indicated

Report Date: 03/31/14

Work Order: B14031248

Analyte	Result	Units	RL	%REC	Low Limit	High Llmlt	RPD	RPDLimit	Qual
Method: ASA33-8							В	atch: 140327	701-NNS2
Lab ID: LCS	Laboratory Co	ntrol Sample			Run: FIA20)1-B_140331A		03/27	/14 10:43
Nitrate as N, KCL Extract	7.92	mg/kg	1.0	107	50	150			
Lab ID: B14031248-001ADUP	Sample Duplic	cate			Run: FIA20)1-B_140331A		03/27	//14 10:46
Nitrate as N, KCL Extract	4.90	mg/kg	1,.0				1.2	30	
Lab ID: B14031248-001AMS	Sample Matrix	Spike	·		Run: FIA2()1-B_140331A		03/27	//14 10:47
Nitrate as N, KCL Extract	10.5	mg/kg	1.0	105	50	150			
Lab ID: B14031248-011ADUP	Sample Duplic	cate	· ·		Run: FIA20)1-B_140331A		03/27	7/14 10:56
Nitrate as N, KCL Extract	29.4	mg/kg	1.0				3.3	30	
Lab ID: B14031248-011AMS	Sample Matrix	<pre>Spike</pre>			Run: FIA2)1-B_140331A		03/27	7/14 10:57
Nitrate as N, KCL Extract	35.1	mg/kg	1.0	127	50	150			
Method: ASA33-8							E	Batch: 140327	702-NNS2
Lab ID: B14031248-021ADUP	Sample Duplic	cate			Run: FIA20)1-B_140331A		03/27	7/14 11:26
Nitrate as N, KCL Extract	1.55	mg/kg	1.0				3.7	30	
Lab ID: B14031248-021AMS	Sample Matrix	< Spike			Run: FIA20)1-B_140331A		03/27	7/14 11:26
Nitrate as N, KCL Extract	7.16	mg/kg	1.0	106	50	150			

Qualifiers: RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client: Hall Environmental

Project: Not Indicated

Report Date: 03/31/14 Work Order: B14031248

Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: ASAM10-3.2								Batch	R221281
Lab ID: B14031248-001A DUP pH, sat. paste	Sample Duplica 7.70	ate s.u.	0.10		Run: MISC	-SOIL_140326A	1.3	03/26 10	6/14 15:15
Lab ID: B14031248-011A DUP pH, sat. paste	Sample Duplica 7.70	ate s.u.	0.10		Run: MISC	-SOIL_140326A	1.3	03/26 10	5/14 15:15
Lab ID: B14031248-021A DUP pH, sat. paste	Sample Duplica 7.90	ate s.u.	0.10		Run: MISC	-SOIL_140326A	0.0	03/20 10	6/14 15:15
Lab ID: LCS-1403261515 pH, sat. paste	Laboratory Cor 7.00	ntrol Sample s.u.	0.10	99	Run: MISC 90	-SOIL_140326A 1.10		03/20	6/14 15:15

Prepared by Billings, MT Branch

Client: Hall Environmental

Project: Not Indicated

Report Date: 03/31/14

Work Order: B14031248

Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: Calculation					··			Batch:	: R221435
Lab ID: B14031248-001A DUP	Sample Dupli	icate			Run: MISC	-SOIL_140331A		03/31	1/14 10:51
Sodium Adsorption Ratio (SAR)	0.780	unitless	0.010				5.0	30	
Lab ID: B14031248-011A DUP	Sample Dupli	icate			Run: MISC	-SOIL_140331A		03/31	1/14 10:51
Sodium Adsorption Ratio (SAR)	0.430	unitless	0.010				2.3	30	
Lab ID: B14031248-021A DUP	Sample Dupli	icate			Run: MISC	-SOIL_140331A		03/31	1/14 10:51
Sodium Adsorption Ratio (SAR)	1.24	unitless	0.010				10.0	30	
Lab ID: LCS-1403311051	Laboratory C	ontrol Sample			Run: MISC	-SOIL_140331A		03/31	1/14 10:51
Sodium Adsorption Ratio (SAR)	13.8	unitless	0.010	106	50	150			

Prepared by Billings, MT Branch

Client: Hall Environmental

Project: Not Indicated

Report Date: 03/31/14

Work Order: B14031248

Analyte		Result	Units		RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	Sobek Modified	· · · · ·								Batch:	R221454
Lab ID:	LCS-SOLO10171403311	Laboratory Co	ntrol Sam	ple			Run: MISC	-SOIL_140331B		03/31	/14 11:41
Neutralizat	tion Potential	130	t/kt		0.10	118	50	200			
Acid Poter	ntial	3.3	t/kt		1.0	65	50	200			
Acid/Base	Potential	120	t/kt	5		118	50	200			
The acid-b	ase potential was calculated from	the non-sulfate su	lfur %	4							
Lab ID:	B14031248-005A DUP	Sample Duplic	cate				Run: MISC	-SOIL_140331B		03/31	1/14 11:48
Neutralizat	tion Potential	14	t/kt		0.10				11	50	
Acid Poter	ntial	0.93	t/kt		1.0					50	
Acid/Base	Potential	13	t/kt						11	50	
The acid-b	ase potential was calculated from	the non-sulfate su	lfur %								

Prepared by Billings, MT Branch

Client: Hall Environmental

Project: Not Indicated

Report Date: 03/31/14

Work Order: B14031248

Analyte		Result Units	RL	%REC Low Limit High Limit	RPD	RPDLimit Qual
Method:	SW6010B					Batch: 78479
Lab ID: Potassium	B14031248-011A DUP	Sample Duplicate 500 mg/kg	10	Run: ICP201-B_140326A	· 1.0	03/26/14 16:16 50
Lab ID: Potassium	B14031248-012AMS2	Sample Matrix Spike 3300 mg/kg	10	Run: ICP201-B_140326A 122 70 130		03/26/14 16:23

Prepared by Billings, MT Branch

Client: Hall Environmental

Project: Not Indicated

Report Date: 03/31/14 Work Order: B14031248

Analyte		Result	Units	RL	%REC	Low Limit	High Limlt	RPD	RPDLimit	Qual
Method:	SW6010B								Bat	ch: 78479
Lab ID:	LCS-78479	Laboratory Co	ntrol Sample	10	100	Run: ICP20 50	01-B_140327A 150		03/27	7/14 18:56
1 Olabolam		000		, 0						
Lab ID:	B14031248-001A DUP	Sample Dupli 690	cate ma/ka	10		Run: ICP20)1-B_14032/A	0.1	03/27 50	/14 19:03
			5 5							
Lab ID:	B14031248-002AMS2	Sample Matri:	k Spike	10	114	Run: ICP20	120 130 130		03/27	//14 19:09
Potassium		3600	mg/kg	10	114	70	130			
Lab ID:	B14031248-015AMS2	Sample Matri	x Spike			Run: ICP20)1-B_140327A		03/27	7/14 19:39
Potassium		3400	mg/kg	10	117	70	130			
Lab ID:	B14031248-021A DUP	Sample Dupli	cate			Run: ICP20)1-B_140327A		03/27	7/14 20:09
Potassium		190	mg/kg	10				2.9	50	
Lab ID:	B14031248-022AMS2	Sample Matri	x Spike			Run: ICP20)1-B_140327A		03/27	7/14 20:15
Potassium		3100	mg/kg	10	1 14	70	130			
Method:	SW6010B								Bat	ich: 78522
Lab ID:	LCS-78522	Laboratory Co	ontrol Sample			Run: ICP20)1-B_140327A		03/27	7/14 20:45
Calcium, sa	t. paste	78.2	meq/L	0.050	100	50	150			
Magnesium	, sat. paste	53.2	meq/L	0.082	107	50	150			
Sodium, sat	t. paste	112	meq/L	0.27	107	50	150			
Lab ID:	B14031248-001A DUP	Sample Dupli	cate			Run: ICP20	01-B_140327A		03/23	7/14 20:52
Calcium, sa	t. paste	2.49	meq/L	0.050				2.0	30	
Magnesium	, sat. paste	0.940	meq/L	0.082				5.1	30	
Sodium, sat	t. paste	1.02	meq/L	0.044				6.8	30	
Lab iD:	B14031248-002AMS2	Sample Matri	x Spike			Run: ICP20	01-B_140327A		03/23	7/14 20:58
Calcium, sa	t. paste	7.74	meq/L	0.050	99	50	150			
Magnesium	, sat. paste	9.49	meq/L	0.082	102	50	150			
Sodium, sat	t. paste	6.25	meq/L	0.044	102	50	150			
Lab ID:	B14031248-011A DUP	Sample Dupli	cate			Run: ICP2	01-B_140327A		03/2]	7/14 21:51
Calcium, sa	it. paste	8.41	meq/L	0.050				4.2	30	
Magnesium	, sat. paste	2.65	meq/L	0.082				3.5	30	
Sodium, sat	t. paste	1.02	meq/L	0.044				0.1	30	
Lab ID:	B14031248-012AMS2	Sample Matri	x Spike			Run: ICP2	01-B_140327A		03/2	7/14 21:57
Calcium, sa	it. paste	7.55	meq/L	0.050	94	50	150			
Magnesium	, sat. paste	8.67	meq/L	0.082	100	50	150			
Sodium, sat	t. paste	10.4	meq/L	0.044	97	50	150			
Lab ID:	B14031248-021A DUP	Sample Dupli	cate			Run: ICP2	01-B_140327A		03/2	7/14 22:37
Calcium, sa	it. paste	3.01	meq/L	0.050				0.4	30	

Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client: Hall Environmental

Project: Not Indicated

 Report Date:
 03/31/14

 Work Order:
 B14031248

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6010B								Bat	ch: 78522
Lab ID:	B14031248-021A DUP	Sample Dupi	icate			Run: ICP2	01-B 140327A		03/27	7/14 22:37
Magnesium	1. sat. paste	1.35	mea/L	0.082				4.8	30	
Sodium, sa	at. paste	1.83	meq/L	0.044				8.8	30	
Lab ID:	B14031248-022AMS2	Sample Matri	x Spike			Run: ICP20)1-B_140327A		03/27	7/14 22:44
Calcium, sa	at. paste	8.01	meq/L	0.050	100	50	150			
Magnesium	n, sat. paste	9.48	meq/L	0.082	104	50	150			
Sodium, sa	at. paste	5.98	meq/L	0.044	102	50	150			
Method:	SW6010B								Bat	ch: 78478
Lab ID:	LCS-78478	Laboratory C	ontrol Sample			Run: ICP20)3-B_140327A		03/28	3/14 03:33
Boron		2.34	mg/kg	0.10	9 4	70	150			
Lab ID:	B14031248-001A DUP	Sample Dupl	icate			Run: ICP20)3-B 140327A		03/28	3/14 03:41
Boron		0.261	mg/kg	0.10			-	12	30	
Selenium		ND	mg/kg	0.10					30	
Lab ID:	B14031248-002AMS2	Sample Matri	ix Spike			Run: ICP2)3-B_140327A		03/28	3/14 03:48
Boron		4.12	mg/kg	0.10	98	70	130			
Selenium		3.91	mg/kg	0.10	98	70	130			
Lab ID:	B14031248-011A DUP	Sample Dupli	icate			Run: ICP20)3 -B_ 140327A		03/28	3/14 05:01
Boron		0.147	mg/kg	0.10				5.0	30	
Selenium		ND	mg/kg	0.10					30	
Lab ID:	B14031248-012AMS2	Sample Matri	ix Spike			Run: ICP2)3-B_140327A		03/28	3/14 05:09
Boron		4.04	mg/kg	0.10	9 8	70	130			
Selenium		4.19	mg/kg	0.10	97	70	130			
Lab ID:	B14031248-021A DUP	Sample Dupl	icate			Run: ICP20)3-B_140327A		03/28	3/14 05:55
Boron		0.194	mg/kg	0.10				9.9	30	
Selenium		ND	mg/kg	0.10					30	
Lab ID:	B14031248-022AMS2	Sample Matri	ix Spike			Run: ICP2)3-B_140327A		03/28	3/14 06:03
Boron		3.98	mg/kg	0.10	97	70	130			
Selenium		3.99	mg/kg	0.10	100	70	130			

Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client: Hall Environmental

Project: Not Indicated

Report Date: 03/31/14 Work Order: B14031248

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	USDA27a								Batch:	: R221435
Lab ID: Saturation	B14031248-001A DUP	Sample Duplic 49.6	ate %	0.10		Run: MISC	-SOIL_140331A	0.6	03/31 20	1/14 10:51
Lab ID: Saturation	B14031248-011A DUP	Sample Duplic 45.0	ate %	0.10		Run: MISC	-SOIL_140331A	3.6	03/31 20	1/14 10:51
Lab ID: Saturation	B14031248-021A DUP	Sample Duplic 40.6	ate %	0.10		Run: MISC	-SOIL_140331A	0.2	03/31 20	I/14 10:51
Lab ID: Saturation	LCS-1403311051	Laboratory Co 37.1	ntrol Sample %	0.10	98	Run: MISC 50	-SOIL_140331A 150		03/31	1/14 10:51

Qualifiers:

RL - Analyte reporting limit.

HALL Hall Environmenta	l Analysis Laboratory 4901 Hawkins NE	•	1.1	
All All All All All All All All All All	ouquerque, NM 87109 5 FAX: 505-345-4107 allenvironmental.com	Sam	pie Log-In (JNECK LIST
Client Name: ALAN KUHN ASSOC LLC Work Order Numbe	r: 1403621		RcptNo	: 1
Received by/date:	<u> </u>			
Logged By: Ashley Gallegos 3/14/2014 12:15:00 P	M 🗲	Ę		
Completed By: Ashley Gallegos 3/14/2014 12:47:27 P	м 🖌	Þ7		
Reviewed By: 03/14/14				
Chain of Custody				
1. Custody seals intact on sample bottles?	Yes	No 🛄	Not Present	
2. Is Chain of Custody complete?	Yes 🗹	No	Not Present	
3. How was the sample delivered?	<u>Client</u>			
Log In				
4. Was an attempt made to cool the samples?	Yes 🗋	No 🗹	NA	
	Not required	1 N	NA (17)	
5. Were all samples received at a temperature of >0° C to 6.0°C	Yes L_ Not required	NO ⊻	NA	
6. Sample(s) in proper container(s)?	Yes 🗸	No []		
7. Sufficient sample volume for indicated test(s)?	Yes 🗹	No 🗌		
8. Are samples (except VOA and ONG) properly preserved?	Yes 🗹	No 🗌		
9. Was preservative added to bottles?	Yes	No 🗹	NA	
10.VOA vials have zero headspace?	Yes	No 🗌 ·	No VOA Vials 🗹	
11. Were any sample containers received broken?	Yes 🗀	No 🗹	# of preserved	
	(TTT)	1771	bottles checked	
(12. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes ⊻	NO	тогрн: (<2	or >12 unless noted)
13 Are matrices correctly identified on Chain of Custody?	Yes 🗹	No 🛄	Adjusted?	
14. Is it clear what analyses were requested?	Yes 🗹	No		
15. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes 🔽	No 🗌	Checked by	·
<u>Special Handling (if applicable)</u>	·;	<u> </u>		
16. Was client notified of all discrepancies with this order?	Yes	No	NA 🗹	
Person Notified: Date:				
By Whom: Via:	eMail Phone	e 🔄 Fax] In Person	
Regarding:				
		······································	· · · · · · · · · · · · · · · · · · ·	
17. Additional remarks:				
18. <u>Cooler Information</u>	Seal Data In ca	ned Puint	l	
1 13.1 Good Not Present				
Page 1 of 1				

. • ,

		www hallenvironmentat com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request	() () () () () () () () () () () () () (SB.62 (S) (S) (S) (S) (S) (S) (S) (S) (S) (S)	25 P(1900 1900 1900 1900 1900 1900 1900 190	(N (808 2808 200 (L (L (L) (L) (L) (L) (L) (L) (L) (L) (+ 1 0 3° 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(GI (GI (GI (GI (GI (A) (A) (A) (A) (A) (A) (A) (A) (A)	TM + X3T TFX + MT TFX + MT TFX + MT PH 8015B PH (Metho Ot 981 Pestic NH's (831 PH's (831 PH's (831 Pestic CRA 8 Me NO CRA 8 ME												2	Remarks: SEE WONK ONDER	Free tests	of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Turn-Around Time:	□ Standard □ Rush	Project Name:	MT. TBYLOR MINE	Project #: Bridon Soll ?	CHEMISTRY	Project Manager:	ALAN KUHN		Sampler:	On ice: 🗆 Yes 💦 📈 No	Sample Temperature: 🖊 🏸 🖉	Container Preservative HEAL No. Type and # Type (UA27.3-7.1	Banajes NOVE - 001	Baggles Nove -002	5ha+iba - 002	Ne3 + Bada - 004	Imsteal - 00S	5m2+2d9 -00L	18495 - COCT	Shest Bag - 008	Imst Bag -009	amethe -Oll	ones rock -011	30= 	Received by: Time Time Time	Received by:	ntracted to other accredited laboratories. This serves as notice o
Chain-of-Custody Record	Client: AUAN KUHN ASSOCIATES		Mailing Address:		Phone #: (505) 350-9188	email or Fax#:	QA/QC Package:	□ Standard □ Level 4 (Full Validation)	Accreditation		🗆 EDD (Type)	Date Time Matrix Sample Request ID	3-13-14 9130 6"12" NA-01 (atb) >	3-13-14 7100 6"-R" NA-02 (atb) 2	10-30-13 31.20 6-12" BA-01 (9+6+2) 2	10-30-13 3:35 6-12" BA-02 (4+2+2) 23	10-30-18-340 6-12" BA-03 (9+6+c) 2	10-30-33 345 6-12" BA-04 (9+6+6) 2	3-13-14 R'45 G-12" BA-05 (A+B)	10-3013 3:20 6-12" (WTP-01 (9+6+2) 2	10-30-13 2:50 6-2" WTP-02 (416+C) 2	10-50-13 315 6-12" WTP-03 (attite) 2	10-3213 3105 6-12" WTP-04 (9+6+C) 2		Date: Time: Relinquished by: DLOISCHA	Date: Time: Relinquished by:	If necessary, samples submitted to Hail Environmental may be subco

and a second second

V	i y							or N)	ο Y)	Air Bubbles															
			•																						
Ž	Ř		7109	20																			(P)		
2		ШO	NM 8	5-41(st			(\	'ΟΛ ⁻	im92) 0728													1		9
	1	ntal.	ue, Ì	5-34	due			7000 (1)	8260B (VO/										_			B]
5	2 0	nme	luerq	20	s Re	(†~~	DCB/	28087	201,1														2		1
2	: [S	nviro	٥lbuq	Fax	alysi	('0	is 'Oa	"ON "	JN I SIRI						_					_			0 1		
-	נ י	Ialler	4	2 2	Ans												_			_			24		1
	Z	ww.h	s NE	-397				(1.4.)9 p(EDB (Metho													Ş		7
3	. <	3	wkin	-345		<u></u>		(1.8		TPH (Method													د ا	h	
		<i>p.</i>	1 Ha	. 505		(02	IM / OS		49)	86108 H9T													. 19	12 A	
	X		490	Tel		(ʎյu	o seĐ)	HdL	H 38	TM + XJT8													arks:	石石	
						()	.208) s	'AMT -	+ 38	TM + XJT8													Rem		
							÷				2	5	t	١v	3	-	0	n		~	5	3	\square	$\overline{}$	
										هم. الم	Ř	Ύ	\mathcal{A}	3	\succ	×	0	J,	\mathbf{t}	8	Ř	ñ	ime		
			5	5					3	3L Z	0		0	D	0	5	0	ĝ	Φ	Ő	Ő	Q		7	
			str							、 当 分	-)		Ī	1	1	ł	Ľ	\mathcal{B}	Ī	1	۱	Date		
			enì						(,	7						Ø	\dot{o}				N N	7	Ĩ
	Rush	Ř	Ch				Ś			ative	-1													צ	
ö		m	oll				c #	Yes	ture:	serv	a N N	1										7			
Time			3			iger:	4		pera	Pre	Y													1	
punc	dard	Vame A v L	265	#		Vana	B	A series of the	Tem	ner d #	S		5	\$	<u>م</u>	2	5	<u>ب</u>	3	5	. 5	5	à		
n-Arc	Stan	ject l	1	ject		ject ľ	SUR	npler	nple	ontai pe ai	P.G.	AG 5	A9.	$B_{\alpha \alpha}$	ЭЙ-	BAO	RAS.	0ag	37,	BAG	Bri	549		lived	\geq
Tun		Pro	<u></u> (41	Proj		Proj	A.	San	San	ŭΣ	28	2-5	2.B	2	2	2	ろ	2	っ	21	2	2	Rece	Rece	
							(n			<u> </u>			. ,					(2		
rd							idati			est	((P	(G	\sqrt{r}	Ē.	4	(dr)	्रमे	ित्म	5	$ \overline{\mathcal{J}}$	SC(H		
0 C O					βß		l Val			nbə	(qt	dti	(at	(e.1	(at	્ક,	رى	ک	5	(9)	(a	5	200		-
Re	E				16		.(Ful			e A	ે (વ	5(°	74	28	ð	0.	1	z	õ	02	బ	50	8		
dy	X						/el 4			mpl	-01	0-0	0~C	0-0	10	- J	à	d	9	p-q	Ъ.	5	<i>ا</i> ۳	/	1
ŝto	A5				33		Le L			Sa	JTF	NTF	ינוש	E S	E	5	F	μŢ	5	SW	Sc	5	Ä	Ä	
Sus	2				5			her			<i>H</i> (<u>,</u> " (11	1 1	*	1 1		" ľ	1	*	~		lished	ished	-
of-C	Kuh				26			j đ		The second secon	0-12	2-9	6-12	6-12	6-12	6-12	7-9	6-12	21-2	5	2-5	3	čelinqu	Relinqu	
ЧЧ Ч	2		3SS:		<u>ר</u>	<u>.</u>	je:		(e)	 	0	351	R	5	2	R	کر	0	3	<u> </u>	5	2			
hai	5		Addr		-#-	Fax	backa; dard	tation AP	Typ	Tir	7:11) {:	1)[2	121	9,4	íQ I	iQ/ 1	11:1	9:00	9.71	9.1	2.2	Time:	Time:	
ပ	ent: A		iling		one #	iail or	/QC F Stanc	credit NEL4	EDD	ate	3-14	14	3- <i>1</i> 4	3-14	3-14	3-14	3-14	3-44	2-/4	2:14	オード	1-1/2			
	Ū		Ř	1		eu	o ⊓	∛ □			3-1	Ľ,	3 .)	3-1	J N	2	3-1	3-1	3-1	Ψ	い	l L	Ω /γ 2	Dat]

ļ

NTAI	TORY							(N	OL	: (Y	eəlddu8 niA				 					al report.
Ц N N N	30RJ	E	M 87109	4107		•		((AC	DV-1	imə2) 0728				 		 	 		the analytics
C	2 (al.cc	ه ک	345-	uest					(∀	OV) 80928									ted or
		men	erqu	505	Req		PCB's	2808	/ S	əbia	oitesq 1808								2	ly nota
Ź	Í	/iron	nbno	ax ax	ysis	(*C	St4O4	' ^z ON'	°0	NʻK	D, I) enoinA								 Q (e clear
Ц	١×	llen -	- Alt		Anal				s	liste	RCRA 8 Mé								2	d liw a
	Ī	w.ha	ш Z	975			(SMI	S 027	18 1	0 0	rɛ8) ɛ'HA9					L	 		2	ed data
Ē		Ň	kins	45-3				(1.1)	204	; pc	EDB (Weth				 				 no	ntracte
		`	Hawl	05-3				(1.6	811	7 pc	TPH (Metho								3	sub-co
			901	Tel. 5		(02	IW / O	שםומ	SЯ	ອ) : 	15H 8015B							 	 i an	Any :
			4) Hat	+	38.	BTEX + MT							 		sibility
r						()	-208) :	1 I VBWT	. + 31	ਤਬ. 	TM + XƏTA			a	 			 		
			hemistad	D					X Nº		HEAL NO.	1500-	- 020	100 -					김백(H Time 김백(남 12)方	ies. This serves as notice of t
d Time:	d 🗆 Rush	ne: An MAC	U Soll C			lager:	Kuth	 The second se Second second sec	□ Yes	nperature:	Preservative t Type	_	4			 				decredited laboratori
Turn-Aroun	□ Standar	Project Nan	Breek	Project #:		Project Mar	AUAN	Sampler:	On Ice:	Sample Ter	Container Type and #	STARS T. BA	PUMUS+ DA	2 JANG - BAI					Received by Received by:	ontracted to other
Chain-of-Custody Record	" ALAN KUHN BYICIMES		ng Address:		10 # 505 - 350 - 9/88	il or Fax#:	iC Package: andard	editation		DD (Type)	e Time Matrix Sample Request ID	-13 9:00 6-12" WP-01 (9+6+C) 2	-13 9: 10 6-0" WP-02 (9+5rd) 3	-39:5 G-2" [WP-03 (9+6+C)]					Time: Relinquished by: BD Lack HOL 7 2/5 ECD Time: Relinquished by:	If necessary, samples submitted to Hall Environmental may be subcc
	Client		Mailin		Phone	email	QA/Q(□ Sta	Accre			Date	18-01	-଼ାନ୍ଦରୀ	18-01					Date: <i>3-14-1</i> Date:	

	EdM	>	>	>	>	>	v	٨		>	>	7				>	>	>
	WP2	>	>	>	>	>	Ŷ	7	V	>	>	>				>	>	>
	TdM	>	>	>	>	>	>	7		7	>	>				>	>	>
	SWP4	7	>	>	>	7	v	>		~	>	>				>	>	>
	SWP3	>	>	>	>	>	>	7		>	. >	>				>	>	>
	SWP2	2	>	>	>	v	>	٨		7	>	>				7	~	Ņ
	WTP12	٨	>	~	>	۷	7	>		7	~	~				>	~	>
	TIdIW	٨	7	~	٨	٧	٨	7		7	٨	V				>	~	>
	WTP10	٨	7	Z	۷	٧	۸	7		v	٧	٧				>	7	7
	64TW	۲.	>	v	٧	٧	7	>		٧	٧	٧				>	Ň	7
	WTP7	2	٧	٧	۷	٨	~	~		٧	٧	٨				7	>	>
LE #S	WTPG	>	۷	٧	۷	٨	~	>		٧	٧	٨				٧	~	~
SAMP	WTP5	>	٧	٨	٨	٨	7	>		٧	٧	٨				٨	~	>
	WTP4	>	٨	٨	٧	٨	>	7		٨	V	٨				7	~	. >
	WTP3	>	~	Ā	7	>	>	v		٨	٨	7				7	>	>
	WTP2	>	>	>	>		A	v	٧	٨	٨	~				7	>	>
	TATW	>	>	~	7	7	٨	~	٨	٨	7	>				٨	>	>
	BAS	>	>	~	>	٧	٨	~		7	~	>				~	>	. >
	BA4	>	~	٨	~	~	۲.	>		٨	~	>				>	>	>
	BA3	>	>	7	7	>	~	>	٧	~	7	>				>	>	>
	BA2	7	>	~	>	>	>	>		~	>	>				>	>	>
	BA1	>	>	>	>	>	>	>		~	~	.>				~	>	>
	NAZ	>	>	>	>	>	>	>		>	~	>				~	>	>
	NA1	>	۲	~	>	>	>	>		>	>	>				~	>	>
	PARAMETERS	Hď	Ee mmhos/cm 25 C	Saturation %	Texture **	SAR	Selenium	Boron	Acid/Base Potential (Modified Sobek)	Nitrate-NO, (N)	Phosphorus (P)	Potassium (K)	Rock Fragments	(% volume)	diameter in inches	e	3-10	10+

NMED Cmnt 20

Shaft Muck Pile and Borrow Area Hydraulic Conducivit Testing

April 2018

MT TAYLOR MINE SOIL SAMPLE LOCATIONS 2/12/2018

NAD 83 NM West Grid

Sample Number	Description	Depth	Northing	Easting	Elevation
MT18-1	Top of Shaft Muck Pile	0-1'	1578092	2781760	7356
MT18-2	Top of Shaft Muck Pile	0-1'	1578025	2781871	7368
MT18-3	North Side of Shaft Muck Pile	0-1'	1578117	2781829	7345
MT18-4	Borrow Area	0-1'	1580684	2783437	7337
MT18-5	Borrow Area	0-1'	1580672	2783374	7336
MT18-6	Borrow Area	0-1'	1580799	2783412	7339

Samples collected by AKA and EL Services 2-12-2018 5 gal Buckets

Laboratory Report for Alan Kuhn Associates, LLC

Mt. Taylor Mine, PO# AKA-DBSA-3

April 17, 2018

Daniel B. Stephens & Associates, Inc.

4400 Alameda Blvd. NE, Suite C • Albuquerque, New Mexico 87113
April 17, 2018

Alan Kuhn Alan Kuhn Associates, LLC 13212 Manitoba Dr. NE Albuquerque, NM 87111 (505) 350-9188

Re: DBS&A Laboratory Report for the Alan Kuhn Associates, LLC Mt. Taylor Mine, PO# AKA-DBSA-3 Project

Dear Mr. Kuhn:

Enclosed is the report for the Alan Kuhn Associates, LLC Mt. Taylor Mine, PO# AKA-DBSA-3 project samples. Please review this report and provide any comments as samples will be held for a maximum of 30 days. After 30 days samples will be returned or disposed of in an appropriate manner.

All testing results were evaluated subjectively for consistency and reasonableness, and the results appear to be reasonably representative of the material tested. However, DBS&A does not assume any responsibility for interpretations or analyses based on the data enclosed, nor can we guarantee that these data are fully representative of the undisturbed materials at the field site. We recommend that careful evaluation of these laboratory results be made for your particular application.

The testing utilized to generate the enclosed report employs methods that are standard for the industry. The results do not constitute a professional opinion by DBS&A, nor can the results affect any professional or expert opinions rendered with respect thereto by DBS&A. You have acknowledged that all the testing undertaken by us, and the report provided, constitutes mere test results using standardized methods, and cannot be used to disqualify DBS&A from rendering any professional or expert opinion, having waived any claim of conflict of interest by DBS&A.

We are pleased to provide this service to Alan Kuhn Associates, LLC and look forward to future laboratory testing on other projects. If you have any questions about the enclosed data, please do not hesitate to call.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC. SOIL TESTING & RESEARCH LABORATORY

Hines John

Joleen Hines Laboratory Manager

Enclosure

Daniel B. Stephens & Associates, Inc. Soil Testing & Research Laboratory 4400 Alameda Blvd. NE, Suite C Albuquerque, NM 87113

505-889-7752 FAX 505-889-0258

Summaries

Summary of Tests Performed

				S	aturate	ed																
	In	itial S	oil	F	lydrau	lic				Мо	isture				- 1	Particl	е	Spe	ecific	Air		
Laboratory	Pro	operti	es ¹	Co	nductiv	vity ²				Charac	teristi	cs ³				Size ⁴		Gra	wity ⁵	Perm-	Atterberg	Proctor
Sample Number	G	VM	VD	СН	FH	FW	HC	PP	FP	DPP	RH	EP	WHC	K _{unsat}	DS	WS	Н	F	С	eability	Limits	Compaction
MT18-1																х	Х				Х	Х
MT18-2																х	Х				Х	х
MT18-3																х	Х				Х	х
MT18-4																х	Х				Х	х
MT18-4 (95%)	х	Х				х	х	Х		Х	Х			Х								
MT18-5																х	Х				Х	х
MT18-5 (95%)	х	Х				х	х	Х		Х	х			Х								
MT18-6																х	Х				Х	Х
MT18-6 (95%)	х	Х				Х	х	Х		х	х			Х								

¹ G = Gravimetric Moisture Content, VM = Volume Measurement Method, VD = Volume Displacement Method

² CH = Constant Head Rigid Wall, FH = Falling Head Rigid Wall, FW = Falling Head Rising Tail Flexible Wall

³ HC = Hanging Column, PP = Pressure Plate, FP = Filter Paper, DPP = Dew Point Potentiometer, RH = Relative Humidity Box,

EP = Effective Porosity, WHC = Water Holding Capacity, Kunsat = Calculated Unsaturated Hydraulic Conductivity

 4 DS = Dry Sieve, WS = Wet Sieve, H = Hydrometer

⁵ F = Fine (<4.75mm), C = Coarse (>4.75mm)

Notes

Sample Receipt:

Six samples, each in a full 5-gallon bucket, were hand delivered on February 13, 2018. Four of the sample buckets were received with lids and the remaining two samples did not have lids. All samples arrived in good order.

Sample Preparation and Testing Notes:

Each sample was subjected to standard proctor compaction testing, Atterberg limits testing and particle size analysis.

A portion of three of the samples was remolded into a testing ring to target 95% of the respective maximum dry bulk density at the respective optimum moisture content, based on the standard proctor compaction test results. Each of these remolded sub-samples was subjected to initial properties analysis, saturation, and the hanging column and pressure chamber portions of the moisture retention testing. Secondary sub-samples were also prepared, using the same target remold parameters. The secondary sub-samples were then extruded from the testing rings and were subjected to saturated hydraulic conductivity testing via the flexible wall method. The actual percentage of maximum dry bulk density achieved was added to each sub-sample ID.

Separate sub-samples were obtained for the dewpoint potentiometer and relative humidity chamber portions of the moisture retention testing.

Based on the standard proctor compaction method, particles larger than 4.75mm were removed from the bulk material prior to remolding the sub-samples. Oversize correction calculations are not provided because the removed fraction is less than 5% of the bulk sample mass.

Porosity calculations, and the particle diameter calculations in the hydrometer portion of the particle size analysis testing, are based on the use of an assumed specific gravity value of 2.65.

Volumetric water contents were adjusted for changes in volume, where applicable. Due to the irregularities formed on the sample surfaces during swelling, volume measurements obtained after the initial reading should be considered estimates.

Summary of Sample Preparation/Volume Changes

	Procto	r Data	Tai Pi	rget Remo arameters	old s ¹	Actual Remold Data			Volume Change Post Saturation ²			Volume Change Post Drying Curve ³		
	Opt. Moist. Cont.	Max. Dry Density	Moist. Cont.	Dry Bulk Density	% of Max. Density	Moist. Cont.	Dry Bulk Density	% of Max. Density	Dry Bulk Density	% Volume Change	% of Max. Density	Dry Bulk Density	% Volume Change	% of Max. Density
Sample Number	(%, g/g)	(g/cm ³)	(%, g/g)	(g/cm ³)	(%)	(%, g/g)	(g/cm ³)	(%)	(g/cm ³)	(%)	(%)	(g/cm ³)	(%)	(%)
MT18-4 (95%)	16.1	1.71	16.1	1.63	95%	16.2	1.63	94.9%	1.60	+1.5%	93.5%	1.60	+1.6%	93.4%
MT18-5 (95%)	14.8	1.82	14.8	1.73	95%	14.7	1.73	95.2%	1.70	+2.0%	93.3%	1.70	+1.8%	93.5%
MT18-6 (95%)	16.6	1.71	16.6	1.63	95%	17.0	1.62	94.7%	1.60	+1.4%	93.4%	1.61	+0.6%	94.1%

¹Target Remold Parameters: Provided by the client: 95% of maximum dry bulk density at optimum moisture content.

²Volume Change Post Saturation: Volume change measurements were obtained after saturated hydraulic conductivity testing.

³Volume Change Post Drying Curve: Volume change measurements were obtained throughout hanging column and pressure plate testing. The 'Volume Change Post Drying Curve' values represent the final sample dimensions after the last pressure plate point.

Notes:

"+" indicates sample swelling, "-" indicates sample settling, and "---" indicates no volume change occurred.

		Moisture	Content					
	As Re	As Received Remolded				Wet Bulk	Calculated	
 Sample Number	Gravimetric (%, g/g)	Volumetric (%, cm ³ /cm ³)	Gravimetric (%, g/g)	Volumetric (%, cm ³ /cm ³)	Density (g/cm ³)	Density (g/cm ³)	Porosity (%)	
MT18-4 (95%)	NA	NA	16.2	26.4	1.63	1.89	38.6	
MT18-5 (95%)	NA	NA	14.7	25.4	1.73	1.98	34.7	
MT18-6 (95%)	NA	NA	17.0	27.6	1.62	1.90	38.8	

Summary of Initial Moisture Content, Dry Bulk Density Wet Bulk Density and Calculated Porosity

NA = Not analyzed

Summary of Saturated Hydraulic Conductivity Tests

			Oversize		
		V	Corrected	Method of	Analysis
_	Sample Number	r _{sat} (cm/sec)	rs _{sat} (cm/sec)	Flexible Wall	Failing Head
_	MT18-4 (95%)	4.4E-05			х
	MT18-5 (95%)	1.6E-07			х
	MT18-6 (95%)	2.3E-05			Х

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NR = Not requested

NA = Not applicable

	Pressure Head	Moisture Content
Sample Number	(-cm water)	(%, cm ³ /cm ³)
MT18-4 (95%)	0	40.3 #
	17	40.3 #
	59	40.1 #
	125	35.8 ^{‡‡}
	337	32.1 #
	25189	15.1 #
	83930	11.5 #
	426990	7.8 [#]
	848426	6.3 [#]
MT18-5 (95%)	0	36.6 #
	55	36.6 #
	153	34.9 **
	337	32.0 #
	1530	29.6 ^{‡‡}
	21110	16.9 ^{##}
	115339	11.6 #
	329905	9.0 #
	848426	6.7 [#]
MT18-6 (95%)	0	40.2 #
	24	40.0 #
	79	37.8 #
	153	34.9 #
	337	33.0 #
	21620	15.8 [#]
	82604	11.6 #
	424951	7.8 #
	848426	6.3 [#]

Summary of Moisture Characteristics of the Initial Drainage Curve

. . . .

^{‡‡} Volume adjustments are applicable at this matric potential (see data sheet for this sample).

Summary of Calculated Unsaturated Hydraulic Properties

					Oversize	Corrected
Sample Number	$\mathbf{\alpha}$	N (dimonsionloss)	θ_r	θ_{s}	θ_r	θ_{s}
 Sample Number	(CIII)	(unnensionless)	(70 001)	(70 00)	(70 00)	(70 001)
MT18-4 (95%)	0.0075	1.2000	0.00	40.82		
MT18-5 (95%)	0.0014	1.2266	0.00	36.06		
MT18-6 (95%)	0.0065	1.2010	0.00	40.26		

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NR = Not requested

NA = Not applicable

Summary of Particle Size Characteristics

	USDA Classification	ASTM Classification	Method	C _c	C _u	d ₆₀ (mm)	d ₅₀ (mm)	d ₁₀ (mm)	Sample Number
(Est)	Sandy Loam	Silty sand (SM)	WS/H	1.9	188	0.13	0.097	0.00069	MT18-1
(Est)	Loam	Sandy silt s(ML)	WS/H	1.2	296	0.071	0.047	0.00024	MT18-2
(Est)	Clay Loam	Lean clay with sand (CL)s	WS/H	0.33	61	0.030	0.010	0.00049	MT18-3
(Est)	Sandy Loam	Sandy lean clay s(CL)	WS/H	5.8	336	0.084	0.061	0.00025	MT18-4
(Est)	Sandy Loam	Sandy lean clay s(CL)	WS/H	1.8	173	0.078	0.060	0.00045	MT18-5
(Est)	Loam	Sandy lean clay s(CL)	WS/H	4.8	365	0.073	0.053	0.00020	MT18-6

d₅₀ = Median particle diameter

 $C_{u} = \frac{d_{60}}{d_{10}}$ $C_{c} = \frac{(d_{30})^{2}}{(d_{10})(d_{60})}$

DS = Dry sieve

[†] Greater than 10% of sample is coarse material

H = Hydrometer

WS = Wet sieve

	Percent Gravel, Sand, Slit and Clay [*]					
Sample N	umber	% Gravel (>4.75mm)	% Sand (<4.75mm, >0.075mm)	% Silt (<0.075mm, >0.002mm)	% Clay (<0.002mm)	
MT18	J-1	4.3	50.1	29.6	16.0	
MT18	9-2	1.9	36.7	38.6	22.9	
MT18	-3	1.7	19.2	50.2	28.9	
MT18	8-4	1.8	40.4	39.6	18.2	
MT18	9-5	0.8	40.1	40.3	18.8	
MT18	8-6	0.8	38.3	42.0	18.9	

*USCS classification does not classify clay fraction based on particle size. USDA definition of clay (<0.002mm) used in this table.

Summary of Atterberg Tests

_	Sample Number	Liquid Limit	Plastic Limit	Plasticity Index	Classification	
	MT18-1				ML	
	MT18-2				ML	
	MT18-3	39	17	22	CL	
	MT18-4	31	18	13	CL	
	MT18-5	32	19	13	CL	
	MT18-6	33	18	15	CL	

--- = Soil requires visual-manual classification due to non-plasticity

	Meas	sured	Oversize	Corrected
Sample Number	Optimum Moisture Content (% g/g)	Maximum Dry Bulk Density (g/cm ³)	Optimum Moisture Content (% g/g)	Maximum Dry Bulk Density (g/cm ³)
MT18-1	14.8	1.80		
MT18-2	19.5	1.67		
MT18-3	18.9	1.67		
MT18-4	16.1	1.71		
MT18-5	14.8	1.82		
MT18-6	16.6	1.71		

Summary of Proctor Compaction Tests

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

- NR = Not requested
- NA = Not applicable

Initial Properties

		Moisture	Content					
	As Re	eceived	Rem	olded	Dry Bulk	Wet Bulk	Calculated	
 Sample Number	Gravimetric (%, g/g)	Volumetric (%, cm ³ /cm ³)	Gravimetric (%, g/g)	Volumetric (%, cm ³ /cm ³)	Density (g/cm ³)	Density (g/cm ³)	Porosity (%)	
MT18-4 (95%)	NA	NA	16.2	26.4	1.63	1.89	38.6	
MT18-5 (95%)	NA	NA	14.7	25.4	1.73	1.98	34.7	
MT18-6 (95%)	NA	NA	17.0	27.6	1.62	1.90	38.8	

Summary of Initial Moisture Content, Dry Bulk Density Wet Bulk Density and Calculated Porosity

NA = Not analyzed

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Name:	Alan Kuhn Associates, LLC
Job Number:	DB18.1068.00
Sample Number:	MT18-4 (95%)
Date/Time Sampled:	2/12/18 215
Site:	Mt. Taylor Mine

	As Received	Remolded
Test Date:	NA	28-Feb-18
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g): Dry weight of sample (g): Sample volume (cm ³): Assumed particle density (g/cm ³):		564.99 142.54 0.00 0.00 363.43 223.35 2.65
Gravimetric Moisture Content (% g/g): Volumetric Moisture Content (% vol): Dry bulk density (g/cm ³): Wet bulk density (g/cm ³): Calculated Porosity (% vol):		16.2 26.4 1.63 1.89 38.6
Percent Saturation:		68.5
Laboratory analysis by: Data entered by: Checked by:		D. O'Dowd A. Bland J. Hines

Comments:

* Weight including tares

NA = Not analyzed

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Name:	Alan Kuhn Associates, LLC
Job Number:	DB18.1068.00
Sample Number:	MT18-5 (95%)
Date/Time Sampled:	2/12/18 215
Site:	Mt. Taylor Mine

	As Received	Remolded
Test Date:	NA	28-Feb-18
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g): Dry weight of sample (g):		583.88 142.50 0.00 0.00 384.86
Sample volume (cm ³):		222.49
Assumed particle density (g/cm ³):		2.65
Gravimetric Moisture Content (% g/g):		14.7
Volumetric Moisture Content (% vol):		25.4
Dry bulk density (g/cm ³):		1.73
Wet bulk density (g/cm ³):		1.98
Calculated Porosity (% vol):		34.7
Percent Saturation:		73.2
Laboratory analysis by: Data entered by: Checked by:		D. O'Dowd J. Hines C. Krous

Comments:

* Weight including tares

NA = Not analyzed

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Name:	Alan Kuhn Associates, LLC
Job Number:	DB18.1068.00
Sample Number:	MT18-6 (95%)
Date/Time Sampled:	2/12/18 225
Site:	Mt. Taylor Mine

	As Received	Remolded
Test Date:	NA	28-Feb-18
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g): Dry weight of sample (g): Sample volume (cm ³): Assumed particle density (g/cm ³):		569.24 143.84 0.00 0.00 363.61 224.06 2.65
Gravimetric Moisture Content (% g/g):		17.0
Volumetric Moisture Content (% vol):		27.6
Dry bulk density (g/cm ³):		1.62
Wet bulk density (g/cm ³):		1.90
Calculated Porosity (% vol):		38.8
Percent Saturation:		71.1
Laboratory analysis by: Data entered by: Checked by:		D. O'Dowd A. Bland J. Hines

Comments:

* Weight including tares

NA = Not analyzed

Saturated Hydraulic Conductivity

Summary of Saturated Hydraulic Conductivity Tests

		Oversize		
	IZ.	Corrected	Method of	Analysis
 Sample Number	ĸ _{sat} (cm/sec)	κ _{sat} (cm/sec)	Constant Head Flexible Wall	Falling Head Flexible Wall
 MT18-4 (95%)	4.4E-05			х
MT18-5 (95%)	1.6E-07			х
MT18-6 (95%)	2.3E-05			Х

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NR = Not requested

NA = Not applicable

Saturated Hydraulic Conductivity Flexible Wall Falling Head-Rising Tail Method

Job Name: Alan Kuhn Associates, LLC Job Number: DB18.1068.00 Sample Number: MT18-4 (95%) Date/ Time Sampled: 2/12/18 215 Site: Mt. Taylor Mine

Remolded or Initial Sample Properties	Post Permeati Sample Proper	on ties	Test and Sar	nple Cond	tions
Initial Mass (g): 422.01	Saturated Mass (g): 4	154.99	Permeant liquid used:	Tap Water	
Diameter (cm): 6.110	Dry Mass (g): 3	363.7	Sample Preparation:	In situ sa	mple, extruded
Length (cm): 7.625	Diameter (cm): 6	6.126		✓ Remolde	d Sample
Area (cm ²): 29.32	Length (cm): 7	7.642	Number of Lifts: 3	3	
Volume (cm ³): 223.57	Deformation (%)**: 0).22	Split: a	4 4	
Dry Density (g/cm ³): 1.63	Area (cm²): 2	29.47	Percent Coarse Material (%):	1.81	
Dry Density (pcf): 101.6	Volume (cm ³): 2	225.25	Particle Density(g/cm ³):	2.65 🗸 A	ssumed Measured
Water Content (%, g/g): 16.0	Dry Density (g/cm ³): 1	1.61	Cell pressure (PSI): 8	35.0	
Water Content (%, vol): 26.1	Dry Density (pcf): 1	100.8	Influent pressure (PSI): 8	30.0	
Void Ratio (e): 0.63	Water Content (%, g/g): 2	25.1	Effluent pressure (PSI): 8	30.0	
Porosity (%, vol): 38.6	Water Content (%, vol): 4	40.5	Panel Used:	A	B 🗸 C
Saturation (%): 67.5	Void Ratio(e): 0).64	Reading: [✓ Annulus	✓ Pipette
	Porosity (%, vol): 3	39.1			Date/Time
	Saturation (%)*: 1	103.7	B-Value (% saturation) prior to test*:	0.97	3/9/18 943
			B-Value (% saturation) post to test:	0.97	3/9/18 1230

* Per ASTM D5084 percent saturation is ensured (B-Value ≥ 95%) prior to testing, as post test saturation values may be exaggerated or skewed during depressurizing and sample removal. **Percent Deformation: based on initial sample length and post permeation sample length.

> Laboratory analysis by: D. O'Dowd Data entered by: D. O'Dowd Checked by: J. Hines

Saturated Hydraulic Conductivity Flexible Wall Falling Head-Rising Tail Method

Job Name: Alan Kuhn Associates, LLC Job Number: DB18.1068.00 Sample Number: MT18-4 (95%) Date/ Time Sampled: 2/12/18 215 Site: Mt. Taylor Mine

Date	Time	Temp (°C)	Influent Pipette Reading	Effluent Pipette Reading	Gradient $(\Delta H/\Delta L)$	Average Flow (cm ³)	Elapsed Time (s)	Ratio (outflow to inflow)	Change in Head (Not to exceed 25%)	k _{sat} T°C (cm/s)	k _{sat} Corrected (cm/s)
Test # 1:	10:20:10	20.2	6 50	19 50	1 0 1						
09-Mar-18	10:59:18	20.2	7.00	18.00	1.66	2.39	1200	1.00	8%	4.50E-05	4.47E-05
Test # 2:											
09-Mar-18	10:59:18	20.3	7.00	18.00	1.66	2 39	1287	1 00	9%	4 59E-05	4 56E-05
09-Mar-18	11:20:45	20.4	7.50	17.50	1.51	2.00	1207	1.00	070	4.002 00	4.002 00
Test # 3:											
09-Mar-18	11:20:45	20.4	7.50	17.50	1.51	2 30	1/80	1 00	10%	1 11E 05	1 385 05
09-Mar-18	11:45:25	20.4	8.00	17.00	1.36	2.59	1400	1.00	10 /0	4.412-03	4.502-05
Test # 4:											
09-Mar-18	11:45:25	20.4	8.00	17.00	1.36	2 20	1664	1 00	110/	4 305 05	1 34 5 05
09-Mar-18	12:13:09	20.6	8.50	16.50	1.21	2.39	1004	1.00	1170	4.590-05	4.540-05

Average Ksat (cm/sec): 4.43E-05

Calculated Gravel Corrected Average Ksat (cm/sec): ----

ASTM Required Range (+/- 25%)

Ksat (-25%) (cm/s): 3.33E-05

Ksat (+25%) (cm/s): 5.54E-05

Saturated Hydraulic Conductivity Flexible Wall Falling Head-Rising Tail Method

Job Name: Alan Kuhn Associates, LLC Job Number: DB18.1068.00 Sample Number: MT18-5 (95%) Date/ Time Sampled: 2/12/18 215 Site: Mt. Taylor Mine

Remolded or Initial Sample Properties	Post Permeation Sample Properties	Test and Sample Conditions
Initial Mass (g): 440.59	Saturated Mass (g): 470.94	Permeant liquid used: Tap Water
Diameter (cm): 6.101	Dry Mass (g): 385.8	Sample Preparation: In situ sample, extruded
Length (cm): 7.603	Diameter (cm): 6.200	Remolded Sample
Area (cm ²): 29.23	Length (cm): 7.626	Number of Lifts: 3
Volume (cm ³): 222.27	Deformation (%)**: 0.31	Split: #4
Dry Density (g/cm ³): 1.74	Area (cm ²): 30.19	Percent Coarse Material (%): 0.77
Dry Density (pcf): 108.4	Volume (cm ³): 230.25	Particle Density(g/cm ³): 2.65 Assumed Measured
Water Content (%, g/g): 14.2	Dry Density (g/cm ³): 1.68	Cell pressure (PSI): 85.0
Water Content (%, vol): 24.7	Dry Density (pcf): 104.6	Influent pressure (PSI): 81.0
Void Ratio (e): 0.53	Water Content (%, g/g): 22.1	Effluent pressure (PSI): 79.0
Porosity (%, vol): 34.5	Water Content (%, vol): 37.0	<i>Panel Used:</i> 🔽 А 🗌 в 🗌 С
Saturation (%): 71.4	Void Ratio(e): 0.58	Reading: Annulus
	Porosity (%, vol): 36.8	Date/Time
	Saturation (%)*: 100.6	B-Value (% saturation) prior to test*: 0.95 3/9/18 935
		B-Value (% saturation) post to test: 0.95 3/9/18 1610

* Per ASTM D5084 percent saturation is ensured (B-Value ≥ 95%) prior to testing, as post test saturation values may be exaggerated or skewed during depressurizing and sample removal. **Percent Deformation: based on initial sample length and post permeation sample length.

> Laboratory analysis by: D. O'Dowd Data entered by: D. O'Dowd Checked by: J. Hines

Saturated Hydraulic Conductivity Flexible Wall Falling Head-Rising Tail Method

Job Name: Alan Kuhn Associates, LLC Job Number: DB18.1068.00 Sample Number: MT18-5 (95%) Date/ Time Sampled: 2/12/18 215 Site: Mt. Taylor Mine

Date	Time	Temp (°C)	Influent Pipette Reading	Effluent Pipette Reading	Gradient $(\Delta H/\Delta L)$	Average Flow (cm ³)	Elapsed Time (s)	Ratio (outflow to inflow)	Change in Head (Not to exceed 25%)	k _{sat} T°C (cm/s)	k _{sat} Corrected (cm/s)
Test # 1: 09-Mar-18	10:51:39	20.3	3.00	23.50	21.55	0.43	4449	1.00	1%	1.73E-07	1.71E-07
09-Mar-18 Test # 2: 09-Mar-18	12:05:48	20.6	3.50	23.00	21.40			6.00			4 995 95
09-Mar-18 Test # 3:	13:24:31	20.8	4.00	22.50	21.25	0.43	4723	1.00	1%	1.64E-07	1.62E-07
09-Mar-18 09-Mar-18	13:24:31 14:43:15	20.8 20.8	4.00 4.50	22.50 22.00	21.25 21.10	0.43	4724	1.00	1%	1.66E-07	1.62E-07
1 est # 4: 09-Mar-18 09-Mar-18	14:43:15 16:03:55	20.8 20.8	4.50 5.00	22.00 21.50	21.10 20.94	0.43	4840	1.00	1%	1.63E-07	1.60E-07

Average Ksat (cm/sec): 1.64E-07

Calculated Gravel Corrected Average Ksat (cm/sec): ----

Ksat (-25%) (cm/s): 1.23E-07

Ksat (+25%) (cm/s): 2.05E-07

Saturated Hydraulic Conductivity Flexible Wall Falling Head-Rising Tail Method

Job Name: Alan Kuhn Associates, LLC Job Number: DB18.1068.00 Sample Number: MT18-6 (95%) Date/ Time Sampled: 2/12/18 225 Site: Mt. Taylor Mine

Remolded or Initial Sample Properties	Post Permeation Sample Properties	Test and Sample Conditions
Initial Mass (g): 425.22	Saturated Mass (g): 456.34	Permeant liquid used: Tap Water
Diameter (cm): 6.096	Dry Mass (g): 366.16	Sample Preparation: In situ sample, extruded
Length (cm): 7.666	Diameter (cm): 6.127	Remolded Sample
Area (cm ²): 29.19	Length (cm): 7.679	Number of Lifts: 3
Volume (cm ³): 223.74	Deformation (%)**: 0.17	Split: #4
Dry Density (g/cm ³): 1.64	Area (cm ²): 29.48	Percent Coarse Material (%): 0.80
Dry Density (pcf): 102.2	<i>Volume (cm³):</i> 226.40	Particle Density(g/cm ³): 2.65 Assumed Measured
Water Content (%, g/g): 16.1	Dry Density (g/cm ³): 1.62	Cell pressure (PSI): 85.0
Water Content (%, vol): 26.4	Dry Density (pcf): 101.0	Influent pressure (PSI): 80.0
Void Ratio (e): 0.62	Water Content (%, g/g): 24.6	Effluent pressure (PSI): 80.0
Porosity (%, vol): 38.2	Water Content (%, vol): 39.8	Panel Used: 🗌 A 🔽 B 🗌 C
Saturation (%): 69.0	Void Ratio(e): 0.64	Reading: 🗌 Annulus 🗹 Pipette
	Porosity (%, vol): 39.0	Date/Time
	Saturation (%)*: 102.2	B-Value (% saturation) prior to test*: 0.96 3/9/18 930
		B-Value (% saturation) post to test: 0.97 3/9/18 1225

* Per ASTM D5084 percent saturation is ensured (B-Value ≥ 95%) prior to testing, as post test saturation values may be exaggerated or skewed during depressurizing and sample removal. **Percent Deformation: based on initial sample length and post permeation sample length.

> Laboratory analysis by: D. O'Dowd Data entered by: D. O'Dowd Checked by: J. Hines

Saturated Hydraulic Conductivity Flexible Wall Falling Head-Rising Tail Method

Job Name: Alan Kuhn Associates, LLC Job Number: DB18.1068.00 Sample Number: MT18-6 (95%) Date/ Time Sampled: 2/12/18 225 Site: Mt. Taylor Mine

Date	Time	Temp (°C)	Influent Pipette Reading	Effluent Pipette Reading	Gradient $(\Delta H/\Delta L)$	Average Flow (cm ³)	Elapsed Time (s)	Ratio (outflow to inflow)	Change in Head (Not to exceed 25%)	k _{sat} T°C (cm/s)	k _{sat} Corrected (cm/s)
Test # 1: 09-Mar-18 09-Mar-18	10:03:43 10:15:29	20.0 20.1	11.50 12.00	18.50 18.00	1.05 0.90	0.43	706	1.00	14%	2.46E-05	2.46E-05
Test # 2: 09-Mar-18 09-Mar-18	10:15:29 10:30:14	20.1 20.2	12.00 12.50	18.00 17.50	0.90 0.75	0.43	885	1.00	17%	2.32E-05	2.32E-05
Test # 3: 09-Mar-18 09-Mar-18	10:30:14 10:48:28	20.2 20.2	12.50 13.00	17.50 17.00	0.75 0.60	0.43	1094	1.00	20%	2.30E-05	2.29E-05
Test # 4: 09-Mar-18 09-Mar-18	10:48:28 11:02:06	20.2 20.3	13.00 13.30	17.00 16.70	0.60 0.51	0.26	818	1.00	15%	2.24E-05	2.23E-05

Average Ksat (cm/sec): 2.32E-05

Calculated Gravel Corrected Average Ksat (cm/sec): ----

ASTM Required Range (+/- 25%)

Ksat (-25%) (cm/s): 1.74E-05

Ksat (+25%) (cm/s): 2.91E-05

Moisture Retention Characteristics

	Pressure Head	Moisture Content
Sample Number	(-cm water)	(%, cm ³ /cm ³)
MT18-4 (95%)	0	40.3 [#]
	17	40.3 ^{‡‡}
	59	40.1 #
	125	35.8 #
	337	32.1 #
	25189	15.1 #
	83930	11.5 #
	426990	7.8 #
	848426	6.3 ^{‡‡}
MT18-5 (95%)	0	36.6 #
	55	36.6 #
	153	34.9 #
	337	32.0 #
	1530	29.6 #
	21110	16.9 #
	115339	11.6 #
	329905	9.0 **
	848426	6.7 ^{‡‡}
MT18-6 (95%)	0	40.2 ^{‡‡}
	24	40.0 #
	79	37.8 #
	153	34.9 #
	337	33.0 ^{‡‡}
	21620	15.8 #
	82604	11.6 #
	424951	7.8 #
	848426	6.3 [#]

Summary of Moisture Characteristics of the Initial Drainage Curve

. . . .

^{‡‡} Volume adjustments are applicable at this matric potential (see data sheet for this sample).

Summary of Calculated Unsaturated Hydraulic Properties

					Oversize	Corrected
Sample Number	℃ (cm ⁻¹)	N (dimensionless)	θ _r (% vol)	θ s (% vol)	θ _r (% vol)	θ _s (% vol)
 MT18-4 (95%)	0.0075	1.2000	0.00	40.82		
MT18-5 (95%)	0.0014	1.2266	0.00	36.06		
MT18-6 (95%)	0.0065	1.2010	0.00	40.26		

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NR = Not requested

NA = Not applicable

Moisture Retention Data Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name: Alan Kuhn Associates, LLC Job Number: DB18.1068.00 Sample Number: MT18-4 (95%) Date/Time Sampled: 2/12/18 215 Site: Mt. Taylor Mine

Dry wt. of sample (g):	363.43
Tare wt., ring (g):	142.54
Tare wt., screen & clamp (g):	27.73
Initial sample volume (cm ³):	223.35
Initial dry bulk density (a/cm^3) .	1.63

. ..

1. (.) 000 10

Assumed particle density (g/cm³): 2.65

Initial calculated total porosity (%): 38.60

	Date	Time	Weight* (a)	Matric Potential (-cm water)	Moisture Content [†] (% vol)	
Hanging column:	9-Mar-18	14:00	624.99	0	40.26	 ‡‡
	16-Mar-18	15:40	625.50	17.0	40.33	‡ ‡
	23-Mar-18	12:00	624.77	59.0	40.12	‡ ‡
	30-Mar-18	10:00	614.85	125.0	35.76	‡ ‡
Pressure plate:	10-Apr-18	15:30	606.48	337	32.07	‡ ‡

Volume Adjusted Data¹

					Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Hanging column:	0.0	226.75	+1.52%	1.60	39.52
	17.0	227.60	+1.90%	1.60	39.74
	59.0	227.01	+1.64%	1.60	39.59
	125.0	226.95	+1.61%	1.60	39.57
Pressure plate:	337	226.95	+1.61%	1.60	39.57

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares
- ⁺ Assumed density of water is 1.0 g/cm³
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Laboratory analysis by: D. O'Dowd Data entered by: C. Krous Checked by: J. Hines

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: MT18-4 (95%)

Initial sample bulk density (g/cm³): 1.63

Fraction of test sample used (<2.00mm fraction) (%): 97.49

Dry weight* of dew point potentiometer sample (g): 158.02

Tare weight, jar (g): 109.60

			Weight*	Water Potential	Moisture Content [†]	
	Date	Time	(g)	(-cm water)	(% vol)	
Dew point potentiometer:	20-Mar-18	10:30	162.72	25189	15.14	‡ ‡
	16-Mar-18	14:05	161.60	83930	11.53	‡ ‡
_	12-Mar-18	11:15	160.44	426990	7.81	_ ^{‡‡}

	Volume Adjusted Data					
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
Dew point potentiometer:	25189	226.95	+1.61%	1.60	39.57	
	83930	226.95	+1.61%	1.60	39.57	
	426990	226.95	+1.61%	1.60	39.57	

Dry weight* of relative humidity box sample (g): 56.72 Tare weight (g): 31.75

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)	
Relative humidity box:	14-Mar-18	14:00	57.73	848426	6.32	‡‡
			Volume Adjust	ed Data ¹		
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
Relative humidity box:	848426	226.95	+1.61%	1.60	39.57	_

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares
- ⁺ Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Laboratory analysis by: M. Garcia/A. Bland/ M. Garcia Data entered by: C. Krous Checked by: J. Hines

Water Retention Data Points

Predicted Water Retention Curve and Data Points

Plot of Relative Hydraulic Conductivity vs Moisture Content

Plot of Relative Hydraulic Conductivity vs Pressure Head

Moisture Retention Data Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name: Alan Kuhn Associates, LLC Job Number: DB18.1068.00 Sample Number: MT18-5 (95%) Date/Time Sampled: 2/12/18 215 Site: Mt. Taylor Mine

Dry wt. of sample (g):	384.86
Tare wt., ring (g):	142.50
Tare wt., screen & clamp (g):	25.25
Initial sample volume (cm ³):	222.49
Initial dry bulk density (g/cm³):	1.73
Assumed particle density (g/cm ³):	2.65

Initial calculated total porosity (%): 34.72

				Matric	Moisture	
			Weight*	Potential	Content [†]	
	Date	Time	(g)	(-cm water)	(% vol)	
Hanging column:	9-Mar-18	14:00	635.70	0	36.60	‡‡
0 0	16-Mar-18	15:45	635.92	55.0	36.61	‡ ‡
	23-Mar-18	12:00	631.96	153.0	34.90	‡ ‡
Pressure plate:	2-Apr-18	16:15	625.10	337	32.01	‡ ‡
_	13-Apr-18	16:25	619.55	1530	29.56	‡ ‡

Volume Adjusted Data¹

					Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Hanging column:	0.0	226.99	+2.03%	1.70	36.02
	55.0	227.58	+2.29%	1.69	36.18
	153.0	227.34	+2.18%	1.69	36.12
Pressure plate:	337	226.47	+1.79%	1.70	35.87
_	1530	226.47	+1.79%	1.70	35.87

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Assumed density of water is 1.0 g/cm³

^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Laboratory analysis by: D. O'Dowd Data entered by: C. Krous Checked by: J. Hines

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: MT18-5 (95%)

Initial sample bulk density (g/cm³): 1.73

Fraction of test sample used (<2.00mm fraction) (%): 98.36

Dry weight* of dew point potentiometer sample (g): 157.00

Tare weight, jar (g): 112.66

			Weight*	Water Potential	Moisture Content [†]	
	Date	Time	(g)	(-cm water)	(% vol)	
Dew point potentiometer:	23-Mar-18	9:45	161.47	21110	16.86	‡‡
	20-Mar-18	10:50	160.07	115339	11.59	‡ ‡
_	16-Mar-18	14:40	159.40	329905	9.03	_ ^{‡‡}

	Volume Adjusted Data ¹					
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
Dew point potentiometer:	21110	226.47	+1.79%	1.70	35.87	
	115339	226.47	+1.79%	1.70	35.87	
	329905	226.47	+1.79%	1.70	35.87	

Dry weight* of relative humidity box sample (g): 57.45 Tare weight (g): 39.42

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)	
Relative humidity box:	14-Mar-18	14:00	58.18	848426	6.75	
			Volume Adjust	ed Data ¹		
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	_
Relative humidity box:	848426	226.47	+1.79%	1.70	35.87	-

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares
- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Laboratory analysis by: M. Garcia/A. Bland/ M. Garcia Data entered by: C. Krous Checked by: J. Hines

Water Retention Data Points

Predicted Water Retention Curve and Data Points

Plot of Relative Hydraulic Conductivity vs Moisture Content

Plot of Relative Hydraulic Conductivity vs Pressure Head

Moisture Retention Data Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name: Alan Kuhn Associates, LLC Job Number: DB18.1068.00 Sample Number: MT18-6 (95%) Date/Time Sampled: 2/12/18 225 Site: Mt. Taylor Mine

Dry wt. of sample (g):	363.61
Tare wt., ring (g):	143.84
Tare wt., screen & clamp (g):	27.67
<i>Initial sample volume</i> (cm ³):	224.06
Initial dry bulk density (g/cm³):	1.62
Assumed particle density (g/cm ³):	2.65

Initial calculated total porosity (%): 38.76

	Date	Time	Weight* (g)	Matric Potential (-cm water)	Moisture Content [†] (% vol)	
Hanging column:	9-Mar-18	1:00	626.55	0	40.24	±‡
0 0	16-Mar-18	15:45	626.01	24.0	40.01	‡ ‡
	23-Mar-18	12:00	620.46	79.0	37.79	‡ ‡
	30-Mar-18	10:00	613.77	153.0	34.89	‡ ‡
Pressure plate:	10-Apr-18	15:35	609.48	337	32.98	‡ ‡

Volume Adjusted Data¹

					Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Hanging column:	0.0	227.19	+1.39%	1.60	39.60
	24.0	227.19	+1.39%	1.60	39.60
	79.0	225.82	+0.78%	1.61	39.24
	153.0	225.44	+0.61%	1.61	39.14
Pressure plate:	337	225.44	+0.61%	1.61	39.14

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares
- [†] Assumed density of water is 1.0 g/cm³
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Laboratory analysis by: D. O'Dowd Data entered by: C. Krous Checked by: J. Hines

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: MT18-6 (95%)

Initial sample bulk density (g/cm³): 1.62

Fraction of test sample used (<2.00mm fraction) (%): 98.30

Dry weight* of dew point potentiometer sample (g): 161.34

Tare weight, jar (g): 115.59

			Weight*	Water Potential	Moisture Content [†]	
	Date	Time	(g)	(-cm water)	(% vol)	
Dew point potentiometer:	23-Mar-18	9:45	165.89	21620	15.77	‡‡
	21-Mar-18	10:10	164.69	82604	11.59	‡ ‡
_	16-Mar-18	14:15	163.59	424951	7.80	_ ^{‡‡}

	Volume Adjusted Data ¹						
	Water	Adjusted	% Volume	Adjusted	Adjusted		
	Potential	Volume	Change ²	Density	Calc. Porosity		
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)		
Dew point potentiometer:	21620	225.44	+0.61%	1.61	39.14		
	82604	225.44	+0.61%	1.61	39.14		
	424951	225.44	+0.61%	1.61	39.14		

Dry weight* of relative humidity box sample (g): 66.23 Tare weight (g): 47.61

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)	
Relative humidity box:	14-Mar-18	14:00	66.97	848426	6.28	
			Volume Adjust	ted Data ¹		
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	_
Relative humidity box:	848426	225.44	+0.61%	1.61	39.14	_

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares
- ⁺ Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Laboratory analysis by: M. Garcia/A. Bland/ M. Garcia Data entered by: C. Krous Checked by: J. Hines

Water Retention Data Points

Predicted Water Retention Curve and Data Points

Plot of Relative Hydraulic Conductivity vs Moisture Content

Plot of Relative Hydraulic Conductivity vs Pressure Head

Particle Size Analysis

Summary of Particle Size Characteristics

	USDA Classification	ASTM Classification	Method	C _c	C _u	d ₆₀ (mm)	d ₅₀ (mm)	d ₁₀ (mm)	Sample Number
(Est)	Sandy Loam	Silty sand (SM)	WS/H	1.9	188	0.13	0.097	0.00069	MT18-1
(Est)	Loam	Sandy silt s(ML)	WS/H	1.2	296	0.071	0.047	0.00024	MT18-2
(Est)	Clay Loam	Lean clay with sand (CL)s	WS/H	0.33	61	0.030	0.010	0.00049	MT18-3
(Est)	Sandy Loam	Sandy lean clay s(CL)	WS/H	5.8	336	0.084	0.061	0.00025	MT18-4
(Est)	Sandy Loam	Sandy lean clay s(CL)	WS/H	1.8	173	0.078	0.060	0.00045	MT18-5
(Est)	Loam	Sandy lean clay s(CL)	WS/H	4.8	365	0.073	0.053	0.00020	MT18-6

d₅₀ = Median particle diameter

 $C_{u} = \frac{d_{60}}{d_{10}}$ $C_{c} = \frac{(d_{30})^{2}}{(d_{10})(d_{60})}$

DS = Dry sieve

[†] Greater than 10% of sample is coarse material

H = Hydrometer

WS = Wet sieve

Percent Gravel, Sand, Slit and Clay"									
Sample Number	% Gravel (>4.75mm)	% Sand (<4.75mm, >0.075mm)	% Silt (<0.075mm, >0.002mm)	% Clay (<0.002mm)					
MT18-1	4.3	50.1	29.6	16.0					
MT18-2	1.9	36.7	38.6	22.9					
MT18-3	1.7	19.2	50.2	28.9					
MT18-4	1.8	40.4	39.6	18.2					
MT18-5	0.8	40.1	40.3	18.8					
MT18-6	0.8	38.3	42.0	18.9					

*USCS classification does not classify clay fraction based on particle size. USDA definition of clay (<0.002mm) used in this table.

Particle Size Analysis Wet Sieve Data (#10 Split)

Sa Date/T	Job Name: Job Number: ample Number: Time Sampled: Site: Test Date:	Alan Kuhn Ass DB18.1068.00 MT18-1 2/12/18 200 Mt. Taylor Mine 21-Feb-18	ociates, LLC e		Ini Weig Calculated	tial Dry Weight Weight P Weight Re ht of Hydrome Weight of Sie Shape:	t of Sample (g): assing #10 (g): terined #10 (g): ter Sample (g): ve Sample (g): Angular	19383.34 18419.24 964.11 55.53 58.44
						Hardness:	Hard and dura	ble
	Test Fraction	Sieve Number	Diameter (mm)	Wt. Retained	Cum Wt. Retained	Wt. Passing	% Passing	
	+10							
		3"	75	0.00	0.00	19383.34	100.00	
		2"	50	0.00	0.00	19383.34	100.00	
		1.5"	38.1	169.85	169.85	19213.49	99.12	
		1"	25	222.49	392.34	18991.00	97.98	
		3/4"	19.0	131.48	523.82	18859.52	97.30	
		3/8"	9.5	175.97	699.79	18683.55	96.39	
		4	4.75	135.62	835.41	18547.93	95.69	
		10	2.00	128.70	964.11	18419.24	95.03	
	-10		(Based on calcu	ulated sieve wt.)		
		20	0.85	0.30	3.21	55.23	94.51	
		40	0.425	0.74	3.95	54.49	93.25	
		60	0.250	4.20	8.15	50.29	86.06	
		140	0.106	20.18	28.33	30.11	51.53	
		200	0.075	3.47	31.80	26.64	45.59	

dry pan

wet pan

d ₁₀ (mm): 0.00069	d ₅₀ (mm): 0.097
d ₁₆ (mm): 0.0020	d ₆₀ (mm): 0.13
d ₃₀ (mm): 0.013	d ₈₄ (mm): 0.24

32.17

26.27

26.27

0.00

Median Particle Diameter -- d₅₀ (mm): 0.097

Uniformity Coefficient, Cu--[d₆₀/d₁₀] (mm): 188

0.37

Coefficient of Curvature, $Cc - [(d_{30})^2/(d_{10}*d_{60})]$ (mm): 1.9

Mean Particle Diameter -- [(d₁₆+d₅₀+d₈₄)/3] (mm): 0.11

Note: Reported values for d₁₀, C_u, C_c, and soil classification are estimates, since extrapolation was required to obtain the d₁₀ diameter

Classification of fines (visual method): ML

ASTM Soil Classification: Silty sand (SM) USDA Soil Classification: Sandy Loam

> Laboratory analysis by: Z. Calhoun Data entered by: C. Krous Checked by: J. Hines

Particle Size Analysis Hydrometer Data

Job Name:	Alan Kuhn Associates, LLC
Job Number:	DB18.1068.00
Sample Number:	MT18-1
Date/Time Sampled:	2/12/18 200
Site:	Mt. Taylor Mine
Test Date:	20-Feb-18
Start Time:	9:00

Type of Water Used: DISTILLED Reaction with H₂O₂: NA Dispersant*: (NaPO₃)₆ Assumed particle density: 2.65 Initial Wt. (g): 55.53 Total Sample Wt. (g): 19383.34 Wt. Passing #10 (g): 18419.24

	Time	Temp	R	R_{L}	R _{corr}	L	D	Р	
Date	(min)	(°C)	(g/L)	(g/L)	(g/L)	(cm)	(mm)	(%)	% Finer
20-Feb-18	1	18.6	31.0	6.8	24.2	11.2	0.04647	43.6	41.4
	2	18.6	29.5	6.8	22.7	11.5	0.03322	40.9	38.8
	5	18.6	28.0	6.8	21.2	11.7	0.02123	38.2	36.3
	15	18.6	24.0	6.8	17.2	12.4	0.01260	31.0	29.4
	30	18.6	23.5	6.8	16.7	12.4	0.00894	30.1	28.6
	60	18.7	21.0	6.8	14.2	12.9	0.00641	25.6	24.3
	120	18.7	19.5	6.8	12.7	13.1	0.00458	22.9	21.8
	250	18.9	18.0	6.8	11.2	13.3	0.00320	20.2	19.2
	478	19.3	16.5	6.7	9.8	13.6	0.00232	17.7	16.8
21-Feb-18	1419	18.3	15.0	6.9	8.1	13.8	0.00138	14.6	13.9

Comments:

* Dispersion device: mechanically operated stirring device

Laboratory analysis by: M. Garcia Data entered by: C. Krous Checked by: J. Hines

Note: Reported values for d₁₀, C_u, C_c, and ASTM classification are estimates, since extrapolation was required to obtain the d₁₀ diameter

Daniel B. Stephens & Associates, Inc.

Particle Size Analysis Wet Sieve Data (#10 Split)

Job Name:	Alan Kuhn Associates, LLC
Job Number:	DB18.1068.00
Sample Number:	MT18-2
Date/Time Sampled:	2/12/18 200
Site:	Mt. Taylor Mine

Initial Dry Weight of Sample (g): 17177.31 Weight Passing #10 (g): 16759.61 Weight Retained #10 (g): 417.69 Weight of Hydrometer Sample (g): 52.81 Calculated Weight of Sieve Sample (g): 54.13

Test Date: 21-Feb-18

Shape:	Angular	
Hardness:	Hard and d	urable

Test Fraction	Sieve Number	Diameter (mm)	Wt. Retained	Cum Wt. Retained	Wt. Passing	% Passing
+10		. ,			U	U
	3"	75	0.00	0.00	17177.31	100.00
	2"	50	0.00	0.00	17177.31	100.00
	1.5"	38.1	0.00	0.00	17177.31	100.00
	1"	25	81.09	81.09	17096.22	99.53
	3/4"	19.0	67.80	148.89	17028.42	99.13
	3/8"	9.5	95.91	244.80	16932.51	98.57
	4	4.75	73.85	318.65	16858.66	98.14
	10	2.00	99.04	417.69	16759.61	97.57
-10			(Based on calcu	ulated sieve wt.)	
	20	0.85	0.24	1.56	52.57	97.12
	40	0.425	0.28	1.84	52.29	96.61
	60	0.250	2.38	4.22	49.91	92.21
	140	0.106	13.50	17.72	36.41	67.27
	200	0.075	3.13	20.85	33.28	61.49
	dry pan		0.60	21.45	32.68	
	wet pan			32.68	0.00	
		al (raa aa).	0.00004	- ().	0.047	

d ₁₀ (mm): 0.00024	d ₅₀ (mm): 0.047
d ₁₆ (mm): 0.00064	d ₆₀ (mm): 0.071
d ₃₀ (mm): 0.0045	d ₈₄ (mm): 0.19

Median Particle Diameter -- d₅₀ (mm): 0.047

Uniformity Coefficient, Cu--[d₆₀/d₁₀] (mm): 296

Coefficient of Curvature, $Cc - [(d_{30})^2/(d_{10}*d_{60})]$ (mm): 1.2

Note: Reported values for d_{10} , C_u , C_c , and soil classification are estimates, since extrapolation was required to obtain the d_{10} diameter

Mean Particle Diameter -- [(d₁₆+d₅₀+d₈₄)/3] (mm): 0.079

Classification of fines (visual method): ML

ASTM Soil Classification: Sandy silt s(ML) USDA Soil Classification: Loam

> Laboratory analysis by: Z. Calhoun Data entered by: C. Krous Checked by: J. Hines

Particle Size Analysis Hydrometer Data

Job Name: Alan Kuhn Associates, LLC Job Number: DB18.1068.00 Sample Number: MT18-2 Date/Time Sampled: 2/12/18 200 Site: Mt. Taylor Mine Test Date: 20-Feb-18 Start Time: 9:06 Type of Water Used: DISTILLED Reaction with H₂O₂: NA Dispersant*: (NaPO₃)₆ Assumed particle density: 2.65 Initial Wt. (g): 52.81 Total Sample Wt. (g): 17177.31 Wt. Passing #10 (g): 16759.61

	Time	Temp	R	R_{L}	R _{corr}	L	D	Р	
Date	(min)	(°C)	(g/L)	(g/L)	(g/L)	(cm)	(mm)	(%)	% Finer
20-Feb-18	1	18.6	33.5	6.8	26.7	10.8	0.04561	50.5	49.3
	2	18.6	31.0	6.8	24.2	11.2	0.03286	45.8	44.7
	5	18.6	30.0	6.8	23.2	11.4	0.02093	43.9	42.8
	15	18.6	27.0	6.8	20.2	11.9	0.01234	38.2	37.3
	30	18.7	26.0	6.8	19.2	12.0	0.00878	36.4	35.5
	60	18.7	24.5	6.8	17.7	12.3	0.00627	33.5	32.7
	120	18.7	23.0	6.8	16.2	12.5	0.00448	30.7	29.9
	250	18.9	21.0	6.8	14.2	12.9	0.00314	27.0	26.3
	473	19.3	19.5	6.7	12.8	13.1	0.00229	24.3	23.7
21-Feb-18	1414	18.3	18.0	6.9	11.1	13.3	0.00135	21.1	20.5

Comments:

* Dispersion device: mechanically operated stirring device

Laboratory analysis by: M. Garcia Data entered by: C. Krous Checked by: J. Hines

Note: Reported values for d₁₀, C_u, C_c, and ASTM classification are estimates, since extrapolation was required to obtain the d₁₀ diameter

Daniel B. Stephens & Associates, Inc.

Particle Size Analysis Wet Sieve Data (#10 Split)

Job Name:	Alan Kuhn Associates, LLC
Job Number:	DB18.1068.00
Sample Number:	MT18-3
Date/Time Sampled:	2/12/18 200
Site:	Mt. Taylor Mine

Test Date: 21-Feb-18

Initial Dry Weight of Sample (g): 19312.16

Weight Passing #10 (g): 18941.44

Weight Retained #10 (g): 370.71

Weight of Hydrometer Sample (g): 52.53

Calculated Weight of Sieve Sample (g): 53.56

Shape: Angular Hardness: Hard and durable

Test Fraction	Sieve Number	Diameter (mm)	Wt. Retained	Cum Wt. Retained	Wt. Passing	% Passing
+10					-	
	3"	75	0.00	0.00	19312.16	100.00
	2"	50	0.00	0.00	19312.16	100.00
	1.5"	38.1	238.63	238.63	19073.53	98.76
	1"	25	0.00	238.63	19073.53	98.76
	3/4"	19.0	17.38	256.01	19056.15	98.67
	3/8"	9.5	36.79	292.80	19019.36	98.48
	4	4.75	31.24	324.04	18988.12	98.32
	10	2.00	46.67	370.71	18941.44	98.08
-10			Based on calcu	ulated sieve wt.)	
	20	0.85	0.23	1.26	52.30	97.65
	40	0.425	0.21	1.47	52.09	97.26
	60	0.250	0.96	2.43	51.13	95.47
	140	0.106	6.67	9.10	44.46	83.01
	200	0.075	2.09	11.19	42.37	79.11
	dry pan		0.29	11.48	42.08	
	wet pan			42.08	0.00	
		d ₁₀ (mm):	0.00049	d ₅₀ (mm): 0.010		
		d ₁₆ (mm):	0.00077	d ₆₀ (mm):	0.030	

Median Particle Diameter -- d₅₀ (mm): 0.010

Uniformity Coefficient, Cu--[d₆₀/d₁₀] (mm): 61

Coefficient of Curvature, $Cc - - [(d_{30})^2/(d_{10}*d_{60})]$ (mm): 0.33

Note: Reported values for d_{10} , C_u , C_c , and soil classification are estimates, since extrapolation was required to obtain the d_{10} diameter

Mean Particle Diameter -- $[(d_{16}+d_{50}+d_{84})/3]$ (mm): 0.040

Classification of fines: CL

d₈₄ (mm): 0.11

ASTM Soil Classification: Lean clay with sand (CL)s USDA Soil Classification: Clay Loam

d₃₀ (mm): 0.0022

Laboratory analysis by: Z. Calhoun Data entered by: C. Krous Checked by: J. Hines

Particle Size Analysis Hydrometer Data

Job Name: Alan Kuhn Associates, LLC Job Number: DB18.1068.00 Sample Number: MT18-3 Date/Time Sampled: 2/12/18 200 Site: Mt. Taylor Mine Test Date: 20-Feb-18 Start Time: 9:12 Type of Water Used: DISTILLED Reaction with H₂O₂: NA Dispersant*: (NaPO₃)₆ Assumed particle density: 2.65 Initial Wt. (g): 52.53 Total Sample Wt. (g): 19312.16 Wt. Passing #10 (g): 18941.44

	Time	Temp	R	R_{L}	R _{corr}	L	D	Р	
Date	(min)	(°C)	(g/L)	(g/L)	(g/L)	(cm)	(mm)	(%)	% Finer
20-Feb-18	1	18.6	41.0	6.8	34.2	9.6	0.04294	65.1	63.8
	2	18.6	39.0	6.8	32.2	9.9	0.03088	61.3	60.1
	5	18.6	38.0	6.8	31.2	10.1	0.01969	59.4	58.2
	15	18.6	34.5	6.8	27.7	10.6	0.01169	52.7	51.7
	30	18.7	32.5	6.8	25.7	11.0	0.00839	48.9	48.0
	60	18.7	30.0	6.8	23.2	11.4	0.00604	44.2	43.3
	120	18.7	27.5	6.8	20.7	11.8	0.00434	39.4	38.7
	250	18.9	25.0	6.8	18.2	12.2	0.00306	34.7	34.1
	468	19.3	23.0	6.7	16.3	12.5	0.00225	31.1	30.5
21-Feb-18	1409	18.3	19.5	6.9	12.6	13.1	0.00134	24.0	23.6

Comments:

* Dispersion device: mechanically operated stirring device

Laboratory analysis by: M. Garcia Data entered by: C. Krous Checked by: J. Hines

Note: Reported values for d₁₀, C_u, C_c, and ASTM classification are estimates, since extrapolation was required to obtain the d₁₀ diameter

Daniel B. Stephens & Associates, Inc.

Particle Size Analysis Wet Sieve Data (#10 Split)

Job Name: Alan Kuhn Associates, LLC Job Number: DB18.1068.00				Initial Dry Weight of Sample (g): 16564.49 Weight Passing #10 (g): 16149.3				
Sample Number: I	Sample Number: MT18-4					tained #10 (g):	415.10	
Date/Time Sampled: 2	2/12/18 215			Weig	ht of Hydrome	ter Sample (g):	56.13	
Site: I	Mt. Taylor Min	e		Calculated	d Weight of Sie	ve Sample (g):	57.57	
Test Date: 2	21-Feb-18				Shape: Hardness:	Rounded Hard and dura	able	
Test	Sieve	Diameter	Wt.	Cum Wt.	Wt.			
Fraction	Number	(mm)	Retained	Retained	Passing	% Passing	_	
+10							_	
	3"	75	0.00	0.00	16564.49	100.00		
	2"	50	0.00	0.00	16564.49	100.00		
	1.5"	38.1	150.75	150.75	16413.74	99.09		
	1"	25	36.33	187.08	16377.41	98.87		
	3/4"	19.0	11.13	198.21	16366.28	98.80		
	3/8"	9.5	39.08	237.29	16327.20	98.57		
	4	4.75	62.46	299.75	16264.74	98.19		
	10	2.00	115.35	415.10	16149.38	97.49		
-10		(Based on calcu	ulated sieve wt.)			
	20	0.85	0.47	1.91	55.66	96.68		
	40	0.425	0.74	2.65	54.92	95.39		
	60	0.250	2.79	5.44	52.13	90.55		
	140	0.106	14.92	20.36	37.21	64.63		
	200	0.075	3.92	24.28	33.29	57.82		
	dry pan		0.29	24.57	33.00			
	wet pan			33.00	0.00			
		d ₁₀ (mm):	0.00025	d ₅₀ (mm):	0.061		-	

d ₁₆ (mm): 0.0011	d ₆₀ (mm): 0.084
d ₃₀ (mm): 0.011	d ₈₄ (mm): 0.20

Median Particle Diameter -- d₅₀ (mm): 0.061

Uniformity Coefficient, Cu--[d₆₀/d₁₀] (mm): 336

Coefficient of Curvature, $Cc - [(d_{30})^2/(d_{10}*d_{60})]$ (mm): 5.8

Note: Reported values for d₁₀, C_u, C_c, and soil classification are estimates, since extrapolation was required to obtain the d₁₀ diameter

Mean Particle Diameter -- [(d₁₆+d₅₀+d₈₄)/3] (mm): 0.087

Classification of fines: CL

ASTM Soil Classification: Sandy lean clay s(CL) USDA Soil Classification: Sandy Loam

> Laboratory analysis by: Z. Calhoun Data entered by: C. Krous Checked by: J. Hines

Particle Size Analysis Hydrometer Data

Job Name: Alan Kuhn Associates, LLC Job Number: DB18.1068.00 Sample Number: MT18-4 Date/Time Sampled: 2/12/18 215 Site: Mt. Taylor Mine Test Date: 20-Feb-18 Start Time: 9:18 Type of Water Used: DISTILLED Reaction with H₂O₂: NA Dispersant*: (NaPO₃)₆ Assumed particle density: 2.65 Initial Wt. (g): 56.13 Total Sample Wt. (g): 16564.49 Wt. Passing #10 (g): 16149.38

	Time	Temp	R	R_{L}	R _{corr}	L	D	Р	
Date	(min)	(°C)	(g/L)	(g/L)	(g/L)	(cm)	(mm)	(%)	% Finer
20-Feb-18	1	18.6	30.0	6.8	23.2	11.4	0.04681	41.3	40.3
	2	18.6	28.0	6.8	21.2	11.7	0.03357	37.8	36.8
	5	18.6	27.0	6.8	20.2	11.9	0.02138	36.0	35.1
	15	18.7	25.0	6.8	18.2	12.2	0.01251	32.4	31.6
	30	18.7	23.0	6.8	16.2	12.5	0.00896	28.9	28.1
	60	18.7	22.5	6.8	15.7	12.6	0.00635	28.0	27.3
	120	18.7	21.0	6.8	14.2	12.9	0.00454	25.3	24.7
	250	18.9	19.0	6.8	12.2	13.2	0.00318	21.8	21.3
	463	19.3	17.5	6.7	10.8	13.4	0.00234	19.3	18.8
21-Feb-18	1404	18.3	16.5	6.9	9.6	13.6	0.00137	17.1	16.7

Comments:

* Dispersion device: mechanically operated stirring device

Laboratory analysis by: M. Garcia Data entered by: C. Krous Checked by: J. Hines

Note: Reported values for d₁₀, C_u, C_c, and ASTM classification are estimates, since extrapolation was required to obtain the d₁₀ diameter

Daniel B. Stephens & Associates, Inc.

Particle Size Analysis Wet Sieve Data (#10 Split)

Job Name:	Alan Kuhn Associates, LLC
Job Number:	DB18.1068.00
Sample Number:	MT18-5
Date/Time Sampled:	2/12/18 215
Site:	Mt. Taylor Mine

Test Date: 21-Feb-18

Initial Dry Weight of Sample (g): 17911.15 Weight Passing #10 (g): 17617.56 Weight Retained #10 (g): 293.59

Weight of Hydrometer Sample (g): 54.09 Calculated Weight of Sieve Sample (g): 54.99

Shape: Rounded

Hardness: Hard and durable

Test Fraction	Sieve Number	Diameter (mm)	Wt. Retained	Cum Wt. Retained	Wt. Passing	% Passing
+10						
	3"	75	0.00	0.00	17911.15	100.00
	2"	50	0.00	0.00	17911.15	100.00
	1.5"	38.1	0.00	0.00	17911.15	100.00
	1"	25	0.00	0.00	17911.15	100.00
	3/4"	19.0	13.39	13.39	17897.76	99.93
	3/8"	9.5	59.64	73.03	17838.12	99.59
	4	4.75	65.44	138.47	17772.68	99.23
	10	2.00	155.12	293.59	17617.56	98.36
-10			(Based on calcu	ulated sieve wt.)		
	20	0.85	0.73	1.63	53.36	97.03
	40	0.425	0.81	2.44	52.55	95.56
	60	0.250	2.50	4.94	50.05	91.01
	140	0.106	13.44	18.38	36.61	66.57
	200	0.075	4.11	22.49	32.50	59.10
	dry pan		0.95	23.44	31.55	
	wet pan			31.55	0.00	
		d ₁₀ (mm):	0.00045	d ₅₀ (mm):	0.060	
		d ₁₆ (mm):	0.0012	d ₆₀ (mm):	0.078	

Median Particle Diameter -- d₅₀ (mm): 0.060

Uniformity Coefficient, Cu--[d₆₀/d₁₀] (mm): 173

Coefficient of Curvature, $Cc - [(d_{30})^2/(d_{10}^*d_{60})]$ (mm): 1.8

Mean Particle Diameter -- [(d₁₆+d₅₀+d₈₄)/3] (mm): 0.087

Note: Reported values for d_{10} , C_u , C_c , and soil classification are estimates, since extrapolation was required to obtain the d_{10} diameter

Classification of fines: CL

d₈₄ (mm): 0.20

ASTM Soil Classification: Sandy lean clay s(CL) USDA Soil Classification: Sandy Loam

d₃₀ (mm): 0.0079

Laboratory analysis by: Z. Calhoun Data entered by: C. Krous Checked by: J. Hines

Particle Size Analysis Hydrometer Data

Job Name: Alan Kuhn Associates, LLC Job Number: DB18.1068.00 Sample Number: MT18-5 Date/Time Sampled: 2/12/18 215 Site: Mt. Taylor Mine Test Date: 20-Feb-18 Start Time: 9:24 Type of Water Used: DISTILLED Reaction with H₂O₂: NA Dispersant*: (NaPO₃)₆ Assumed particle density: 2.65 Initial Wt. (g): 54.09 Total Sample Wt. (g): 17911.15 Wt. Passing #10 (g): 17617.56

	Time	Temp	R	R_{L}	R _{corr}	L	D	Р	
Date	(min)	(°C)	(g/L)	(g/L)	(g/L)	(cm)	(mm)	(%)	% Finer
20-Feb-18	1	18.6	29.0	6.8	22.2	11.5	0.04714	41.0	40.4
	2	18.6	27.5	6.8	20.7	11.8	0.03369	38.3	37.6
	5	18.6	26.0	6.8	19.2	12.0	0.02153	35.5	34.9
	15	18.7	25.0	6.8	18.2	12.2	0.01251	33.6	33.1
	30	18.7	24.0	6.8	17.2	12.4	0.00890	31.8	31.3
	60	18.7	22.0	6.8	15.2	12.7	0.00637	28.1	27.7
	120	18.7	21.0	6.8	14.2	12.9	0.00454	26.3	25.8
	250	18.9	19.0	6.8	12.2	13.2	0.00318	22.6	22.3
	458	19.3	17.5	6.7	10.8	13.4	0.00236	20.0	19.7
21-Feb-18	1398	18.3	16.0	6.9	9.1	13.7	0.00138	16.9	16.6

Comments:

* Dispersion device: mechanically operated stirring device

Laboratory analysis by: M. Garcia Data entered by: C. Krous Checked by: J. Hines

Note: Reported values for d₁₀, C_u, C_c, and ASTM classification are estimates, since extrapolation was required to obtain the d₁₀ diameter

Daniel B. Stephens & Associates, Inc.

Particle Size Analysis Wet Sieve Data (#10 Split)

Job Name:	Alan Kuhn Associates, LLC
Job Number:	DB18.1068.00
Sample Number:	MT18-6
Date/Time Sampled:	2/12/18 225
Site:	Mt. Taylor Mine

Test Date: 21-Feb-18

Initial Dry Weight of Sample (g): 17128.30 Weight Passing #10 (g): 16837.69 Weight Retained #10 (g): 290.61 Weight of Hydrometer Sample (g): 57.17 Calculated Weight of Sieve Sample (g): 58.16

> Shape: Rounded Hardness: Hard and durable

Test Fraction	Sieve Number	Diameter (mm)	Wt. Retained	Cum Wt. Retained	Wt. Passing	% Passing
+10						
	3"	75	0.00	0.00	17128.30	100.00
	2"	50	0.00	0.00	17128.30	100.00
	1.5"	38.1	0.00	0.00	17128.30	100.00
	1"	25	0.00	0.00	17128.30	100.00
	3/4"	19.0	23.31	23.31	17104.99	99.86
	3/8"	9.5	35.39	58.70	17069.60	99.66
	4	4.75	77.97	136.67	16991.63	99.20
	10	2.00	153.94	290.61	16837.69	98.30
-10			(Based on calc	ulated sieve wt.)		
	20	0.85	` 0.49	1.48 [′]	56.68	97.46
	40	0.425	0.70	2.18	55.98	96.26
	60	0.250	2.47	4.65	53.51	92.01
	140	0.106	13.75	18.40	39.76	68.37
	200	0.075	4.35	22.75	35.41	60.89
	dry pan		0.70	23.45	34.71	
	wet pan			34.71	0.00	
		d ₁₀ (mm):	0.00020	d ₅₀ (mm):	0.053	
		d ₁₆ (mm):	0.00095	d ₆₀ (mm):	0.073	

Median Particle Diameter -- d₅₀ (mm): 0.053

Uniformity Coefficient, Cu--[d₆₀/d₁₀] (mm): 365

Coefficient of Curvature, $Cc - [(d_{30})^2/(d_{10}*d_{60})]$ (mm): 4.8

Mean Particle Diameter --[(d₁₆+d₅₀+d₈₄)/3] (mm): 0.081

Note: Reported values for d_{10} , C_u , C_c , and soil classification are estimates, since extrapolation was required to obtain the d_{10} diameter

Classification of fines: CL

d₈₄ (mm): 0.19

ASTM Soil Classification: Sandy lean clay s(CL) USDA Soil Classification: Loam

d₃₀ (mm): 0.0084

Laboratory analysis by: Z. Calhoun Data entered by: C. Krous Checked by: J. Hines

Particle Size Analysis Hydrometer Data

Job Name: Alan Kuhn Associates, LLC Job Number: DB18.1068.00 Sample Number: MT18-6 Date/Time Sampled: 2/12/18 225 Site: Mt. Taylor Mine Test Date: 20-Feb-18 Start Time: 9:30 Type of Water Used: DISTILLED Reaction with H₂O₂: NA Dispersant*: (NaPO₃)₆ Assumed particle density: 2.65 Initial Wt. (g): 57.17 Total Sample Wt. (g): 17128.30 Wt. Passing #10 (g): 16837.69

	Time	Temp	R	R_{L}	R _{corr}	L	D	Р	
Date	(min)	(°C)	(g/L)	(g/L)	(g/L)	(cm)	(mm)	(%)	% Finer
20-Feb-18	1	18.7	33.0	6.8	26.2	10.9	0.04576	45.8	45.1
	2	18.7	29.0	6.8	22.2	11.5	0.03331	38.8	38.2
	5	18.7	27.0	6.8	20.2	11.9	0.02137	35.3	34.7
	15	18.7	26.0	6.8	19.2	12.0	0.01242	33.6	33.0
	30	18.7	24.5	6.8	17.7	12.3	0.00887	31.0	30.5
	60	18.7	23.0	6.8	16.2	12.5	0.00633	28.4	27.9
	120	18.7	22.0	6.8	15.2	12.7	0.00451	26.6	26.2
	250	18.9	19.5	6.8	12.7	13.1	0.00317	22.3	21.9
	453	19.3	18.0	6.7	11.3	13.3	0.00236	19.8	19.5
21-Feb-18	1393	18.3	17.0	6.9	10.1	13.5	0.00137	17.7	17.4

Comments:

* Dispersion device: mechanically operated stirring device

Laboratory analysis by: M. Garcia Data entered by: C. Krous Checked by: J. Hines

Note: Reported values for d₁₀, C_u, C_c, and ASTM classification are estimates, since extrapolation was required to obtain the d₁₀ diameter

Daniel B. Stephens & Associates, Inc.

Atterberg Limits/ Identification of Fines

Summary of Atterberg Tests

_	Sample Number	Liquid Limit	Plastic Limit	Plasticity Index	Classification	
	MT18-1				ML	
	MT18-2				ML	
	MT18-3	39	17	22	CL	
	MT18-4	31	18	13	CL	
	MT18-5	32	19	13	CL	
	MT18-6	33	18	15	CL	

--- = Soil requires visual-manual classification due to non-plasticity

Atterberg Limits

Job Name: Alan Kuhn Associates, LLC Job Number: DB18.1068.00 Sample Number: MT18-1 Date/Time Sampled: 2/12/18 200 Site: Mt. Taylor Mine

Test Date: 21-Feb-18

Liquid Limit

	Trial 1	Trial 2	Trial 3
Number of drops:			
Pan number:			
Weight of pan plus moist soil (g):			
Weight of pan plus dry soil (g)			
Weight of pan (g):			
Gravimetric moisture content (% g/g):			

Liquid Limit:

Plastic Limit

	Trial 1	Trial 2
Pan number:		
Weight of pan plus moist soil (g):		
Weight of pan plus dry soil (g)		
Weight of pan (g):		
Gravimetric moisture content (% g/g):		

Plastic Limit:

Results

Percent of Sample Retained on #40 Sieve: See Sieve Liquid Limit: ---

> Plastic Limit: ----Plasticity Index: ---Classification (Visual Method): ML

Comments:

--- = Soil requires visual-manual classification due to non-plasticity

* = 1-point method requested by client

Laboratory analysis by: D. O'Dowd Data entered by: D. O'Dowd Checked by: J. Hines

Data for Description and Identification of Fines (Visual-Manual Procedure)

Job Name: Alan Kuhn Associates, LLC Job Number: DB18.1068.00 Sample Number: MT18-1 Date/ Time Sampled: 2/12/18 200 Site: Mt. Taylor Mine

Test Date: 21-Feb-18

Visual-manual classification of material passing the #40 sieve in lieu of Atterberg analysis due to non-plasticity:

Descriptive Information:

Color of Moist Sample: Dark Grayish Brown (2.5Y 4/2) Odor: None Moisture Condition: Moist HCI Reaction: Strong

Preliminary Identification:

Dry Strength: Low Dilatency: Rapid Toughness: Low Plasticity: Non-plastic

Identification of Inorganic Fine Grained Soils:

Silt (ML)

Laboratory analysis by: D. O'Dowd Data entered by: D. O'Dowd Checked by: J. Hines

Atterberg Limits

Job Name: Alan Kuhn Associates, LLC Job Number: DB18.1068.00 Sample Number: MT18-2 Date/Time Sampled: 2/12/18 200 Site: Mt. Taylor Mine

Test Date: 21-Feb-18

Liquid Limit

	Trial 1	Trial 2	Trial 3
Number of drops:			
Pan number:			
Weight of pan plus moist soil (g):			
Weight of pan plus dry soil (g)			
Weight of pan (g):			
Gravimetric moisture content (% g/g):			

Liquid Limit:

Plastic Limit

	Trial 1	Trial 2
Pan number:		
Weight of pan plus moist soil (g):		
Weight of pan plus dry soil (g)		
Weight of pan (g):		
Gravimetric moisture content (% g/g):		

Plastic Limit:

Results

Percent of Sample Retained on #40 Sieve: See Sieve Liquid Limit: ---

> Plastic Limit: ----Plasticity Index: ---Classification (Visual Method): ML

Comments:

--- = Soil requires visual-manual classification due to non-plasticity

* = 1-point method requested by client

Data for Description and Identification of Fines (Visual-Manual Procedure)

Job Name: Alan Kuhn Associates, LLC Job Number: DB18.1068.00 Sample Number: MT18-2 Date/ Time Sampled: 2/12/18 200 Site: Mt. Taylor Mine

Test Date: 21-Feb-18

Visual-manual classification of material passing the #40 sieve in lieu of Atterberg analysis due to non-plasticity:

Descriptive Information:

Color of Moist Sample: Dark Grayish Brown (2.5Y 4/2) Odor: None Moisture Condition: Moist HCI Reaction: Strong

Preliminary Identification:

Dry Strength: Low Dilatency: Rapid Toughness: Low Plasticity: Non-plastic

Identification of Inorganic Fine Grained Soils:

Silt (ML)

Atterberg Limits

Job Name: Alan Kuhn Associates, LLC Job Number: DB18.1068.00 Sample Number: MT18-3 Date/Time Sampled: 2/12/18 200 Site: Mt. Taylor Mine

Test Date: 21-Feb-18

Liquid Limit

	Trial 1	Trial 2	Trial 3
Number of drops:	35	28	20
Pan number:	LL1	LL2	LL3
Weight of pan plus moist soil (g):	126.18	128.96	131.14
Weight of pan plus dry soil (g)	122.51	125.77	126.31
Weight of pan (g):	112.72	117.66	114.38
Gravimetric moisture content (% g/g):	37.49	39.33	40.49

Liquid Limit:

Plastic Limit

39

	Trial 1	Trial 2
Pan number:	PL1	PL2
Weight of pan plus moist soil (g):	126.65	122.43
Weight of pan plus dry soil (g)	125.58	121.35
Weight of pan (g):	119.33	115.17
Gravimetric moisture content (% g/g):	17.12	17.48
Plastic Limit:	17	

Plastic Limit:

Results

Percent of Sample Retained on #40 Sieve:	See Sieve
Liquid Limit:	39
Plastic Limit:	17

Plasticity Index: 22 CL Classification:

Comments:

--- = Soil requires visual-manual classification due to non-plasticity

* = 1-point method requested by client

Atterberg Limits

Job Name: Alan Kuhn Associates, LLC *Job Number:* DB18.1068.00 Sample Number: MT18-4 Date/Time Sampled: 2/12/18 215 Site: Mt. Taylor Mine

Test Date: 21-Feb-18

Liquid Limit

	Trial 1	Trial 2	Trial 3
Number of drops:	34	23	15
Pan number:	LL1	LL2	LL3
Weight of pan plus moist soil (g):	130.99	124.39	131.26
Weight of pan plus dry soil (g)	127.52	121.38	126.56
Weight of pan (g):	116.04	111.84	112.24
Gravimetric moisture content (% g/g):	30.23	31.55	32.82

Liquid Limit:

Plastic Limit

31

	Trial 1	Trial 2
Pan number:	PL1	PL2
Weight of pan plus moist soil (g):	119.88	118.47
Weight of pan plus dry soil (g)	118.71	117.25
Weight of pan (g):	112.38	110.58
Gravimetric moisture content (% g/g):	18.48	18.29
Plastic Limit:	18	

Plastic Limit:

Results

Percent of Sample Retained on #40 Sieve: See Sieve

Liquid Limit:	31
Plastic Limit:	18
Plasticity Index:	13
Classification:	CL

Comments:

--- = Soil requires visual-manual classification due to non-plasticity

* = 1-point method requested by client

Atterberg Limits

Job Name: Alan Kuhn Associates, LLC Job Number: DB18.1068.00 Sample Number: MT18-5 Date/Time Sampled: 2/12/18 215 Site: Mt. Taylor Mine

Test Date: 21-Feb-18

Liquid Limit

	Trial 1	Trial 2	Trial 3
Number of drops:	34	27	16
Pan number:	LL1	LL2	LL3
Weight of pan plus moist soil (g):	125.20	125.51	132.76
Weight of pan plus dry soil (g)	122.24	122.41	128.64
Weight of pan (g):	112.54	112.97	116.65
Gravimetric moisture content (% g/g):	30.52	32.84	34.36

Liquid Limit:

Plastic Limit

32

	Trial 1	Trial 2
Pan number:	PL1	PL2
Weight of pan plus moist soil (g):	130.77	121.65
Weight of pan plus dry soil (g)	129.58	120.47
Weight of pan (g):	123.40	114.25
Gravimetric moisture content (% g/g):	19.26	18.97
Plastic Limit:	19	

Plastic Limit:

Results

	00
Percent of Sample Retained on #40 Sieve:	See Sieve

Liquia Limit:	32
Plastic Limit:	19
Plasticity Index:	13
Classification:	CL

Comments:

--- = Soil requires visual-manual classification due to non-plasticity

* = 1-point method requested by client

Atterberg Limits

Job Name: Alan Kuhn Associates, LLC *Job Number:* DB18.1068.00 Sample Number: MT18-6 Date/Time Sampled: 2/12/18 225 Site: Mt. Taylor Mine

Test Date: 21-Feb-18

Liquid Limit

	Trial 1	Trial 2	Trial 3
Number of drops:	32	26	19
Pan number:	LL1	LL2	LL3
Weight of pan plus moist soil (g):	127.92	128.90	135.50
Weight of pan plus dry soil (g)	125.05	125.46	130.76
Weight of pan (g):	116.10	115.14	117.04
Gravimetric moisture content (% g/g):	32.07	33.33	34.55

Liquid Limit:

Plastic Limit

33

	Trial 1	Trial 2	
Pan number:	PL1	PL2	
Weight of pan plus moist soil (g):	124.92	120.91	
Weight of pan plus dry soil (g)	123.63	119.70	
Weight of pan (g):	116.57	113.16	
Gravimetric moisture content (% g/g):	18.27	18.50	
Plastic Limit:	18		

Plastic Limit:

Results

Percent of Sample Retained	on #40 Sieve:	See Sieve
	Liquid Limit:	33

Plastic Limit:	18
Plasticity Index:	15
Classification:	CL

Comments:

--- = Soil requires visual-manual classification due to non-plasticity

* = 1-point method requested by client

Proctor Compaction

		Meas	sured	Oversize	Corrected
Sampl	e Number	Optimum Moisture Content (% g/g)	Maximum Dry Bulk Density (g/cm ³)	Optimum Moisture Content (% g/g)	Maximum Dry Bulk Density (g/cm ³)
 M	T18-1	14.8	1.80		
M	T18-2	19.5	1.67		
M	T18-3	18.9	1.67		
M	T18-4	16.1	1.71		
M	T18-5	14.8	1.82		
M	T18-6	16.6	1.71		

Summary of Proctor Compaction Tests

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

- NR = Not requested
- NA = Not applicable

Proctor Compaction Data

Job Name: Alan Kuhn Associates, LLC Job Number: DB18.1068.00 Sample Number: MT18-1 Date/Time Sampled: 2/12/18 200 Site: Mt. Taylor Mine

Test Date: 20-Feb-18

As Received Moisture Content (% g/g): NA

Split (3/4", 3/8", #4): #4 Mass of coarse material (g): 835.41 Mass of fines material (g): 18547.93 Mold weight (g): 4371 Mold volume (cm³): 944.58 Compaction Method: Standard A Preparation Method: Dry

Type of Rammer: Mechanical

	Weight of	Weight of	Weight of			
	Mold and	Container and	Container and	Weight of	Dry Bulk	Moisture
	Compacted Soil	Wet Soil	Dry Soil	Container	Density	Content
Trial	(g)	(g)	(g)	(g)	(g/cm ³)	(% g/g)
1	6126	387.91	350.62	6.42	1.68	10.83
2	6214	374.41	333.20	6.41	1.73	12.61
3	6308	428.84	376.12	6.40	1.79	14.26
4	6318	450.30	386.56	6.46	1.77	16.77
5	6251	414.05	349.61	6.49	1.68	18.78

Soil Fractions Coarse Fraction (% g/g): 4.3 Fines Fraction (% g/g): 95.7 Properties of Coarse Material Assumed particle density (g/cm³): 2.65 Assumed Initial Moisture Content (% g/g): 0.0

Oversize Corrected Values for Dry Bulk Density and Moisture Content

Trial	Dry Bulk Density of Composite (g/cm ³)	Moisture Content of Composite (% q/q)
1		
2		
3		
4		
5		

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data Points with Fitted Curve

Sample Number: MT18-1

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data

Job Name: Alan Kuhn Associates, LLC Job Number: DB18.1068.00 Sample Number: MT18-2 Date/Time Sampled: 2/12/18 200 Site: Mt. Taylor Mine

Test Date: 20-Feb-18

As Received Moisture Content (% g/g): NA

Split (3/4", 3/8", #4): #4 Mass of coarse material (g): 318.65 Mass of fines material (g): 16858.66 Mold weight (g): 4371 Mold volume (cm³): 944.58 Compaction Method: Standard A Preparation Method: Dry

Type of Rammer: Mechanical

	Weight of	Weight of	Weight of			
	Mold and	Container and	Container and	Weight of	Dry Bulk	Moisture
	Compacted Soil	Wet Soil	Dry Soil	Container	Density	Content
Trial	(g)	(g)	(g)	(g)	(g/cm ³)	(% g/g)
1	6109	1071.11	968.15	286.64	1.60	15.11
2	6188	377.98	323.19	6.46	1.64	17.30
3	6251	982.59	865.84	267.97	1.67	19.53
4	6235	994.51	869.96	291.68	1.62	21.54
5	6173	1081.86	931.62	300.05	1.54	23.79
-						

Soil Fractions Coarse Fraction (% g/g): 1.9 Fines Fraction (% g/g): 98.1 Properties of Coarse Material Assumed particle density (g/cm³): 2.65

Assumed Initial Moisture Content (% g/g): 0.0

Oversize Corrected Values for Dry Bulk Density and Moisture Content

Trial	Dry Bulk Density of Composite (g/cm ³)	Moisture Content of Composite (% g/g)
1		
2		
3		
4		
5		

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data Points with Fitted Curve

Sample Number: MT18-2

	Measured	Corrected
Optimum Moisture Content (% g/g):	19.5	
<i>Maximum Dry Bulk Density</i> (g/cm ³):	1.67	

Test Date: 20-Feb-18

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data

Job Name: Alan Kuhn Associates, LLC Job Number: DB18.1068.00 Sample Number: MT18-3 Date/Time Sampled: 2/12/18 200 Site: Mt. Taylor Mine

Test Date: 20-Feb-18

As Received Moisture Content (% g/g): NA

Split (3/4", 3/8", #4): #4 Mass of coarse material (g): 324.04 Mass of fines material (g): 18988.12 Mold weight (g): 4371 Mold volume (cm³): 944.58 Compaction Method: Standard A Preparation Method: Dry

Type of Rammer: Mechanical

	Weight of	Weight of	Weight of			
	Mold and	Container and	Container and	Weight of	Dry Bulk	Moisture
	Compacted Soil	Wet Soil	Dry Soil	Container	Density	Content
Trial	(g)	(g)	(g)	(g)	(g/cm ³)	(% g/g)
1	6065	420.69	371.02	6.43	1.58	13.62
2	6138	414.09	358.78	6.48	1.62	15.70
3	6237	405.08	342.80	6.44	1.67	18.52
4	6251	419.72	349.85	6.44	1.65	20.35
5	6190	438.43	359.10	6.48	1.57	22.50

Soil Fractions Coarse Fraction (% g/g): 1.7 Fines Fraction (% g/g): 98.3 Properties of Coarse Material Assumed particle density (g/cm³): 2.65 Assumed Initial Moisture Content (% g/g): 0.0

Oversize Corrected Values for Dry Bulk Density and Moisture Content

Trial	Dry Bulk Density of Composite (g/cm ³)	Moisture Content of Composite (% g/g)
1		
2		
3		
4		
5		

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data Points with Fitted Curve

Sample Number: MT18-3

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data

Job Name: Alan Kuhn Associates, LLC Job Number: DB18.1068.00 Sample Number: MT18-4 Date/Time Sampled: 2/12/18 215 Site: Mt. Taylor Mine

Test Date: 20-Feb-18

As Received Moisture Content (% g/g): NA

Split (3/4", 3/8", #4): #4 Mass of coarse material (g): 299.75 Mass of fines material (g): 16264.74 Mold weight (g): 4371 Mold volume (cm³): 944.58 Compaction Method: Standard A Preparation Method: Dry

Type of Rammer: Mechanical

	Weight of	Weight of	Weight of			
	Mold and	Container and	Container and	Weight of	Dry Bulk	Moisture
	Compacted Soil	Wet Soil	Dry Soil	Container	Density	Content
Trial	(g)	(g)	(g)	(g)	(g/cm ³)	(% g/g)
1	6087	352.86	316.48	6.48	1.63	11.74
2	6173	395.79	348.68	6.43	1.68	13.76
3	6251	338.54	292.50	6.45	1.71	16.10
4	6261	478.19	405.42	6.43	1.69	18.24
5	6231	463.94	387.84	6.47	1.64	19.95
-						

Soil Fractions Coarse Fraction (% g/g): 1.8 Fines Fraction (% g/g): 98.2 Properties of Coarse Material Assumed particle density (g/cm³): 2.65 Assumed Initial Moisture Content (% g/g): 0.0

Oversize Corrected Values for Dry Bulk Density and Moisture Content

Trial	Dry Bulk Density of Composite (g/cm ³)	Moisture Content of Composite (% g/g)
1		
2		
3		
4		
5		

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data Points with Fitted Curve

Sample Number: MT18-4

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data

Job Name: Alan Kuhn Associates, LLC Job Number: DB18.1068.00 Sample Number: MT18-5 Date/Time Sampled: 2/12/18 215 Site: Mt. Taylor Mine

Test Date: 19-Feb-18

As Received Moisture Content (% g/g): NA

Split (3/4", 3/8", #4): #4 Mass of coarse material (g): 138.47 Mass of fines material (g): 17772.68 Mold weight (g): 4371 Mold volume (cm³): 944.58 Compaction Method: Standard A Preparation Method: Dry Type of Rammer: Mechanical

	Weight of	Weight of	Weight of			
	Mold and	Container and	Container and	Weight of	Dry Bulk	Moisture
	Compacted Soil	Wet Soil	Dry Soil	Container	Density	Content
Trial	(g)	(g)	(g)	(g)	(g/cm ³)	(% g/g)
1	6050	346.71	314.13	6.48	1.61	10.59
2	6217	396.18	352.63	6.45	1.74	12.58
3	6343	400.09	349.22	6.45	1.82	14.84
4	6275	388.08	332.84	6.46	1.72	16.93
5	6236	385.97	325.39	6.49	1.66	19.00

Soil Fractions Coarse Fraction (% g/g): 0.8 Fines Fraction (% g/g): 99.2 Properties of Coarse Material Assumed particle density (g/cm³): 2.65 Assumed Initial Moisture Content (% g/g): 0.0

Oversize Corrected Values for Dry Bulk Density and Moisture Content

Trial	Dry Bulk Density of Composite (g/cm ³)	Moisture Content of Composite
1		
2		
3		
4		
5		

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data Points with Fitted Curve

Sample Number: MT18-5

	Maximum Dry Bulk Density (g	^o g/g): 14.8 /cm ³): 1.82		
	Test	Date: 19-Feb-18		
2.0			Zero voids curv Compaction cu	rve
1.9				
1.8				
1.7				
1.6				
1.5		 		

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data

Job Name: Alan Kuhn Associates, LLC Job Number: DB18.1068.00 Sample Number: MT18-6 Date/Time Sampled: 2/12/18 225 Site: Mt. Taylor Mine

Test Date: 19-Feb-18

As Received Moisture Content (% g/g): NA

Split (3/4", 3/8", #4): #4 Mass of coarse material (g): 136.67 Mass of fines material (g): 16991.63 Mold weight (g): 4371 Mold volume (cm³): 944.58 Compaction Method: Standard A Preparation Method: Dry Type of Rammer: Mechanical

	Weight of	Weight of	Weight of			
	Mold and	Container and	Container and	Weight of	Dry Bulk	Moisture
	Compacted Soil	Wet Soil	Dry Soil	Container	Density	Content
Trial	(g)	(g)	(g)	(g)	(g/cm ³)	(% g/g)
1	6097	339.47	303.30	6.45	1.63	12.18
2	6173	322.65	282.94	6.47	1.67	14.36
3	6250	376.06	324.54	6.49	1.71	16.20
4	6265	356.51	302.47	6.46	1.70	18.26
5	6233	366.19	304.79	6.42	1.63	20.58

Soil Fractions Coarse Fraction (% g/g): 0.8 Fines Fraction (% g/g): 99.2 Properties of Coarse Material Assumed particle density (g/cm³): 2.65 Assumed Initial Moisture Content (% g/g): 0.0

Oversize Corrected Values for Dry Bulk Density and Moisture Content

Trial	Dry Bulk Density of Composite (g/cm ³)	Moisture Content of Composite (% g/g)
1		
2		
3		
4		
5		

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data Points with Fitted Curve

Sample Number: MT18-6

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Laboratory Tests and Methods

Tests and Methods

Dry Bulk Density:	ASTM D7263
Moisture Content:	ASTM D7263, ASTM D2216
Calculated Porosity:	ASTM D7263
Saturated Hydraulic Conductivity Falling Head Rising Tail: (Flexible Wall)	r: ASTM D5084
Hanging Column Method:	ASTM D6836 (modified apparatus)
Pressure Plate Method:	ASTM D6836 (modified apparatus)
Water Potential (Dewpoint Potentiometer) Method:	ASTM D6836
Relative Humidity (Box) Method:	Campbell, G. and G. Gee. 1986. Water Potential: Miscellaneous Methods. Chp. 25, pp. 631-632, in A. Klute (ed.), Methods of Soil Analysis. Part 1. American Society of Agronomy, Madison, WI; Karathanasis & Hajek. 1982. Quantitative Evaluation of Water Adsorption on Soil Clays. SSA Journal 46:1321-1325
Moisture Retention Characteristics & Calculated Unsaturated Hydraulic Conductivity:	ASTM D6836; van Genuchten, M.T. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. SSSAJ 44:892-898; van Genuchten, M.T., F.J. Leij, and S.R. Yates. 1991. The RETC code for quantifying the hydraulic functions of unsaturated soils. Robert S. Kerr Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Ada, Oklahoma. EPA/600/2091/065. December 1991
Particle Size Analysis:	ASTM D7928, ASTM D6913
USCS (ASTM) Classification:	ASTM D7928, ASTM D6913, ASTM D2487
USDA Classification:	ASTM D7928, ASTM D6913, USDA Soil Textural Triangle
Atterberg Limits:	ASTM D4318
Visual-Manual Description:	ASTM D2488
Standard Proctor Compaction:	ASTM D698