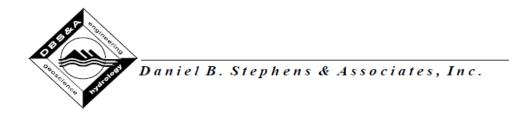

NMED Cmnt 20


Radon Barrier Hydraulic Conductivity Test (2019)

SUMMARY OF DANIEL B. STEPHENS & ASSOCIATES REPORT

HYDRAULIC PROPERTIES PACKAGE TESTS ON SAMPLES OF WASTE PILE RADON BARRIER SOILS

MT TAYLOR MINE

Summary of Saturated Hydraulic Conductivity Tests

		K _{sat}	Oversize Corrected K _{sat}	Method of	Analysis
_	Sample Number	(cm/sec)	(cm/sec)	Constant Head	Falling Head
	19-104 (1.48 g/cc)	9.2E-06	NA		х
	19-105 (1.52 g/cc)	2.8E-06	NA		Х
	19-110 (1.48 g/cc)	4.7E-06	NA		Х
	19-114 (1.54 g/cc)	8.3E-07	NA		Х

	Target Remold Parameters ¹	Actua	Actual Remold Data			me Change Saturation		Volume Change Post Drying Curve ³			
Sample Number	Estimated Compaction (%)	Moisture Content (%, g/g)	Dry Bulk Density (g/cm ³)	% of Target Density (%)	Dry Bulk Density (g/cm ³)	% Volume Change (%)	% of Initial Density (%)	Dry Bulk Density (g/cm ³)	% Volume Change (%)	% of Initial Density (%)	
19-104 (1.48 g/cc)	~95%	18.9	1.48	NA	1.43	+4.1%	96%	1.42	+4.8%	95%	
19-105 (1.52 g/cc)	~95%	19.8	1.52	NA	1.48	+2.8%	97%	1.46	+3.9%	96%	
19-110 (1.48 g/cc)	~95%	21.2	1.48	NA	1.46	+1.4%	99%	1.46	+1.4%	99%	
19-114 (1.54 g/cc)	~95%	20.9	1.54	NA	1.51	+1.5%	99%	1.51	+1.5%	99%	

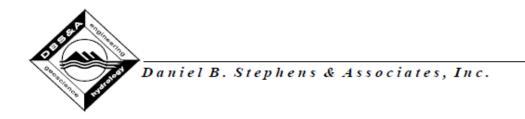
Summary of Sample Preparation/Volume Changes

¹Target Remold Parameters: Remold into a testing ring using a moderate compactive effort in order to achieve a density that would approximate 95% of standard proctor compaction testing, based on technician experience and judgement.

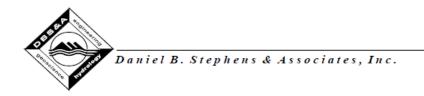
²Volume Change Post Saturation: Volume change measurements were obtained after saturated hydraulic conductivity testing.

³Volume Change Post Drying Curve: Volume change measurements were obtained throughout hanging column and pressure plate testing. The 'Volume Change Post Drying Curve' values represent the final sample dimensions after the last pressure plate point.

Notes:


"+" indicates sample swelling, "-" indicates sample settling, and "---" indicates no volume change occurred.

		Moisture	Content					
	As Re	eceived	Rem	olded	Dry Bulk	Wet Bulk	Calculated	
 Sample Number	Gravimetric (%, g/g)	Volumetric (%, cm ³ /cm ³)	Gravimetric (%, g/g)	Volumetric (%, cm³/cm³)	Density (g/cm ³)	Density (g/cm ³)	Porosity (%)	
19-104 (1.48 g/cc)	NA	NA	18.9	28.0	1.48	1.76	47.9	
19-105 (1.52 g/cc)	NA	NA	19.8	30.0	1.52	1.82	46.8	
19-110 (1.48 g/cc)	NA	NA	21.2	31.4	1.48	1.79	48.1	
19-114 (1.54 g/cc)	NA	NA	20.9	32.1	1.54	1.86	46.1	

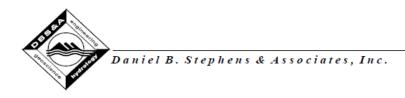

Summary of Initial Moisture Content, Dry Bulk Density Wet Bulk Density and Calculated Porosity

NA = Not analyzed

Summary of Calculated Unsaturated Hydraulic Properties

					Oversize	Corrected	_
Sample Number	℃ (cm ⁻¹)	N (dimensionless)	θ _r (% vol)	θ _s (% vol)	θ _r (% vol)	θ _s (% vol)	-
Sample Number	(cm)	(unicipionicaa)	(70 001)	(70 401)	(70 001)	(70 401)	-
19-104 (1.48 g/cc)	0.0030	1.1964	0.00	43.57	NA	NA	
19-105 (1.52 g/cc)	0.0020	1.1905	0.00	41.34	NA	NA	
19-110 (1.48 g/cc)	0.0022	1.1920	0.00	41.61	NA	NA	
19-114 (1.54 g/cc)	0.0015	1.2047	0.00	39.06	NA	NA	

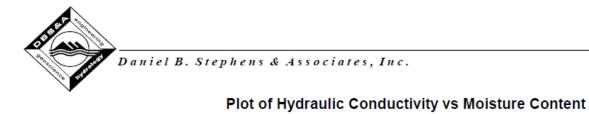
				(Oversize Correc	ted
	1/3 Bar Point Volumetric	15 Bar Point Volumetric	Water Holding Capacity	1/3 Bar Point Volumetric	15 Bar Point Volumetric	Water Holding Capacity
Sample Number	(%, cm ³ /cm ³)					
19-104 (1.48 g/cc)	38.8	20.5	18.3	NA	NA	NA
19-105 (1.52 g/cc)	38.2	21.4	16.8	NA	NA	NA
19-110 (1.48 g/cc)	38.2	21.2	17.0	NA	NA	NA
19-114 (1.54 g/cc)	36.8	20.6	16.2	NA	NA	NA

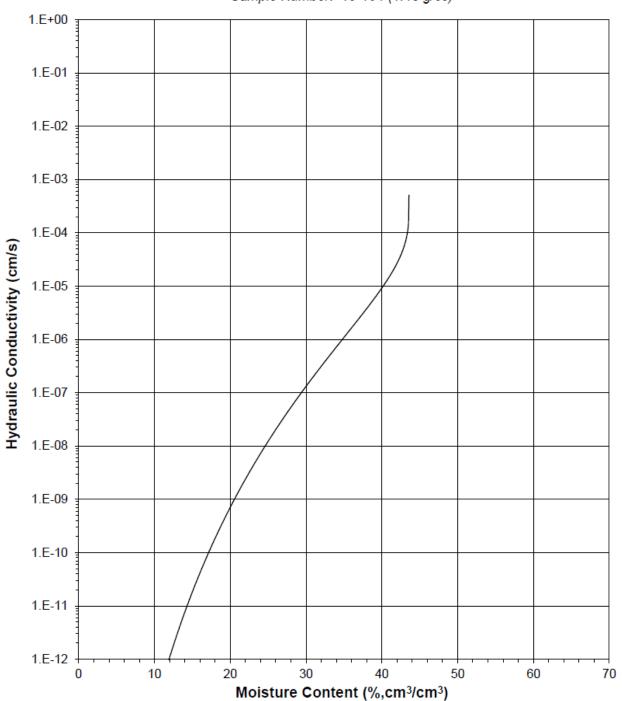

Summary of Moisture Retention (1/3, 15 Bar Points and Water Holding Capacity*)

*Water Holding Capacity (WHC) is defined here as the difference in the moisture content of the sample at -1/3 bar of water potential (commonly referred to as 'Field Capacity') and the moisture content of the sample at -15 bars of water potential (commonly referred to as 'Wilting Point') which was interpolated from the predicted water retention curve.

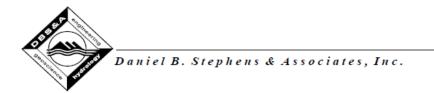
--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

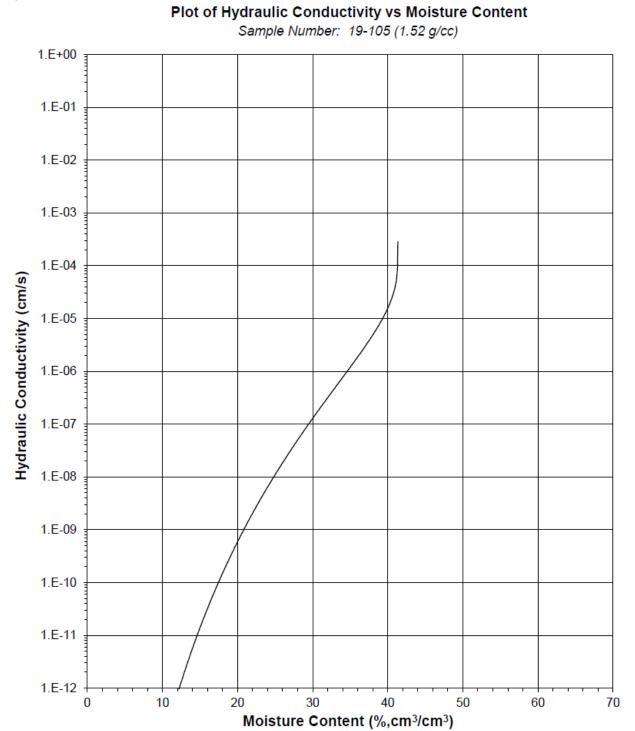
NA = Not applicable

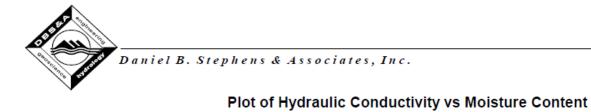

NR = Not requested

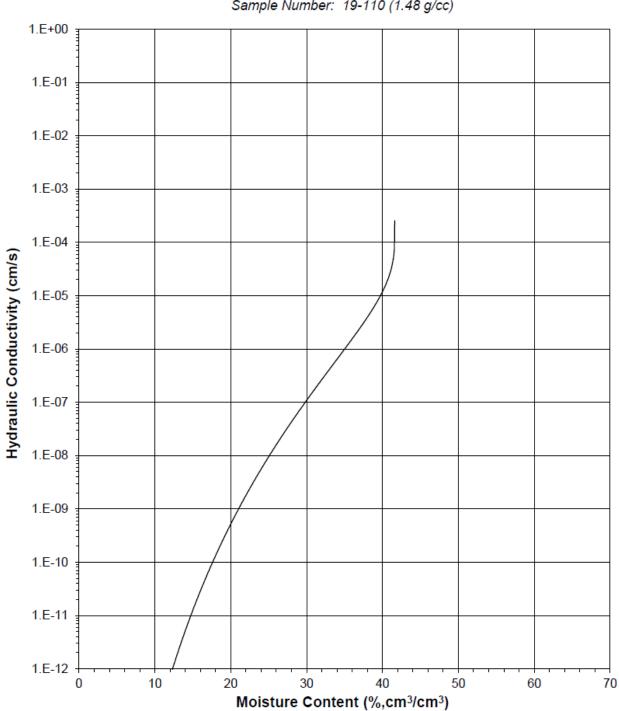


		Moisture	Content				
	As Re	eceived	Rem	olded	Dry Bulk	Wet Bulk	Calculated
Sample Number	Gravimetric (%, g/g)	Volumetric (%, cm ³ /cm ³)	Gravimetric (%, g/g)	Volumetric (%, cm ³ /cm ³)	Density (g/cm ³)	Density (g/cm ³)	Porosity (%)
19-104 (1.48 g/cc)	NA	NA	18.9	28.0	1.48	1.76	47.9
19-105 (1.52 g/cc)	NA	NA	19.8	30.0	1.52	1.82	46.8
19-110 (1.48 g/cc)	NA	NA	21.2	31.4	1.48	1.79	48.1
19-114 (1.54 g/cc)	NA	NA	20.9	32.1	1.54	1.86	46.1

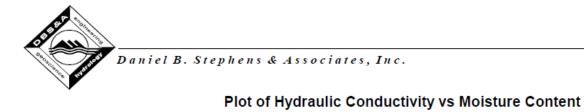

Summary of Initial Moisture Content, Dry Bulk Density Wet Bulk Density and Calculated Porosity

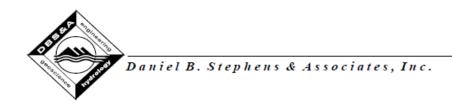

NA = Not analyzed





Sample Number: 19-104 (1.48 g/cc)



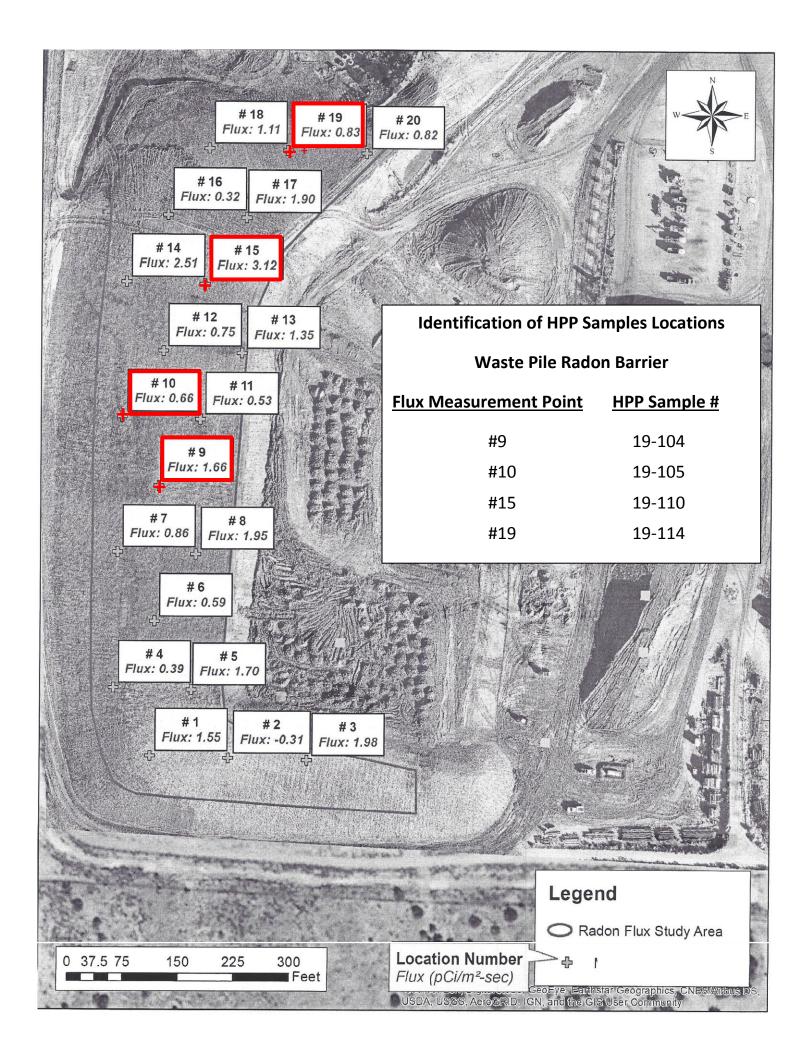


Sample Number: 19-110 (1.48 g/cc)

1.E+00 1.E-01 1.E-02 1.E-03 1.E-04 Hydraulic Conductivity (cm/s) 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10 1.E-11 1.E-12 10 20 40 0 30 50 60 70 Moisture Content (%,cm³/cm³)

Sample Number: 19-114 (1.54 g/cc)

						Oversize Correc	ted
	Sample Number	1/3 Bar Point Volumetric (%, cm ³ /cm ³)	15 Bar Point Volumetric (%, cm ³ /cm ³)	Water Holding Capacity (%, cm ³ /cm ³)	1/3 Bar Point Volumetric (%, cm ³ /cm ³)	15 Bar Point Volumetric (%, cm ³ /cm ³)	Water Holding Capacity (%, cm ³ /cm ³)
_	19-104 (1.48 g/cc)	38.8	20.5	18.3	NA	NA	NA
	19-105 (1.52 g/cc)	38.2	21.4	16.8	NA	NA	NA
	19-110 (1.48 g/cc)	38.2	21.2	17.0	NA	NA	NA
	19-114 (1.54 g/cc)	36.8	20.6	16.2	NA	NA	NA


Summary of Moisture Retention (1/3, 15 Bar Points and Water Holding Capacity*)

*Water Holding Capacity (WHC) is defined here as the difference in the moisture content of the sample at -1/3 bar of water potential (commonly referred to as 'Field Capacity') and the moisture content of the sample at -15 bars of water potential (commonly referred to as 'Wilting Point') which was interpolated from the predicted water retention curve.

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NA = Not applicable

NR = Not requested

NMED Cmnt 20

Disposal Cell Cover Hydraulic Conductivity Tesing (2021)

Laboratory Report for Alan Kuhn Associates, LLC

Mt. Taylor Mine, PO# AKA-DBSA 6

January 14, 2021

Daniel B. Stephens & Associates, Inc.

4400 Alameda Blvd. NE, Suite C • Albuquerque, New Mexico 87113

January 14, 2021

Alan Kuhn Alan Kuhn Associates, LLC 13212 Manitoba Dr. NE Albuquerque, NM 87111 (505) 350-9188

Re: DBS&A Laboratory Report for the Alan Kuhn Associates, LLC Mt. Taylor Mine, PO# AKA-DBSA 6 Project

Dear Mr. Kuhn:

Enclosed is the report for the Alan Kuhn Associates, LLC Mt. Taylor Mine, PO# AKA-DBSA 6 project samples. Please review this report and provide any comments as samples will be held for a maximum of 30 days. After 30 days samples will be returned or disposed of in an appropriate manner.

All testing results were evaluated subjectively for consistency and reasonableness, and the results appear to be reasonably representative of the material tested. However, DBS&A does not assume any responsibility for interpretations or analyses based on the data enclosed, nor can we guarantee that these data are fully representative of the undisturbed materials at the field site. We recommend that careful evaluation of these laboratory results be made for your particular application.

The testing utilized to generate the enclosed report employs methods that are standard for the industry. The results do not constitute a professional opinion by DBS&A, nor can the results affect any professional or expert opinions rendered with respect thereto by DBS&A. You have acknowledged that all the testing undertaken by us, and the report provided, constitutes mere test results using standardized methods, and cannot be used to disqualify DBS&A from rendering any professional or expert opinion, having waived any claim of conflict of interest by DBS&A.

We are pleased to provide this service to Alan Kuhn Associates, LLC and look forward to future laboratory testing on other projects. If you have any questions about the enclosed data, please do not hesitate to call.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC. SOIL TESTING & RESEARCH LABORATORY

Hive 3 Jolun

Joleen Hines Laboratory Manager

Enclosure

Daniel B. Stephens & Associates, Inc. Soil Testing & Research Laboratory 4400 Alameda Blvd. NE, Suite C Albuquerque, NM 87113

505-889-7752 FAX 505-889-0258

Summaries

Summary of Tests Performed

			S	aturate	ed																
	Initia	l Soil	F	lydraul	ic				Moi	isture				F	Particle	е	Spe	ecific	Air		
Laboratory	Prope	erties ¹	Co	nductiv	/ity ²				Charac	teristi	cs ³				Size ⁴		Gra	vity ⁵	Perm-	Atterberg	Proctor
Sample Number	G V	M VD	СН	FH	FW	HC	PP	FP	DPP	RH	EP	WHC	K _{unsat}	DS	WS	Н	F	С	eability	Limits	Compaction
Borrow A (90%)	X >	(1 1 1 1	Х	х	Х		Х	х		Х	Х								
Borrow B (90%)	x >	(Х	х	Х		Х	х		Х	Х								

¹ G = Gravimetric Moisture Content, VM = Volume Measurement Method, VD = Volume Displacement Method

² CH = Constant Head Rigid Wall, FH = Falling Head Rigid Wall, FW = Falling Head Rising Tail Flexible Wall

³ HC = Hanging Column, PP = Pressure Plate, FP = Filter Paper, DPP = Dew Point Potentiometer, RH = Relative Humidity Box,

EP = Effective Porosity, WHC = Water Holding Capacity, Kunsat = Calculated Unsaturated Hydraulic Conductivity

⁴ DS = Dry Sieve, WS = Wet Sieve, H = Hydrometer

⁵ F = Fine (<4.75mm), C = Coarse (>4.75mm)

Notes

Sample Receipt:

Two samples, each as loose material in a 5-gallon bucket, were hand-delivered on November 24, 2020. Both samples were received in good order.

Sample Preparation and Testing Notes:

A representative portion of each sample was remolded into a testing ring to target 90% of maximum dry bulk density at optimum moisture content, based on client provided standard proctor compaction test results. The remolded sub-samples were subjected to initial properties analysis, saturation, and the hanging column and pressure chamber portions of the moisture retention testing. Secondary sub-samples were also prepared, using the same target remold parameters. The secondary sub-samples were extruded from the testing rings and were subjected to saturated hydraulic conductivity testing via the flexible wall method. The actual percentage of maximum dry bulk density achieved was added to each sub-sample ID. Separate sub-samples were obtained for the dewpoint potentiometer and relative humidity chamber portions of the moisture retention testing.

Porosity calculations are based on the use of an assumed specific gravity value of 2.65.

Volumetric water contents were adjusted for changes in volume, where applicable. Due to the irregularities formed on the sample surfaces during settling or swelling, volume measurements obtained after the initial reading should be considered estimates.

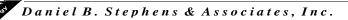
Summary of Sample Preparation/Volume Changes

	Client P Procto	rovided r Data		Target Remold Parameters ¹		Actual Remold Data			Volume Change Post Saturation ²			Volume Change Post Drying Curve ³		
	Opt. Moist. Cont.	Max. Dry Density	Moist. Cont.	Dry Bulk Density	% of Max. Density	Moist. Cont.	Dry Bulk Density	% of Max. Density	Dry Bulk Density	% Volume Change	% of Max. Density	Dry Bulk Density	% Volume Change	% of Max. Density
Sample Number	(%, g/g)	(g/cm ³)	(%, g/g)	(g/cm ³)	(%)	(%, g/g)	(g/cm ³)	(%)	(g/cm ³)	(%)	(%)	(g/cm ³)	(%)	(%)
Borrow A (90%)	15.7	1.74	15.7	1.56	90%	15.7	1.56	90.1%	1.53	+2.5%	87.9%	1.53	+2.2%	88.1%
Borrow B (90%)	19.9	1.54	19.9	1.38	90%	19.8	1.39	90.2%	1.36	+2.1%	88.3%	1.36	+1.9%	88.5%

¹Target Remold Parameters: 90% of maximum dry density at optimum moisture content based on client provided standard proctor compaction test results.

²Volume Change Post Saturation: Volume change measurements were obtained after saturated hydraulic conductivity testing.

³Volume Change Post Drying Curve: Volume change measurements were obtained throughout hanging column and pressure plate testing. The 'Volume Change Post Drying Curve' values represent the final sample dimensions after the last pressure plate point.


Notes:

"+" indicates sample swelling, "-" indicates sample settling, and "---" indicates no volume change occurred.

Summary of Initial Moisture Content, Dry Bulk Density Wet Bulk Density and Calculated Porosity

		Moisture	Content					
	As Re	ceived	Rem	olded	Dry Bulk	Wet Bulk	Calculated	
 Sample Number	Gravimetric (%, g/g)	Volumetric (%, cm ³ /cm ³)	Gravimetric (%, g/g)	Volumetric (%, cm ³ /cm ³)	Density (g/cm ³)	Density (g/cm ³)	Porosity (%)	
Borrow A (90%)	NA	NA	15.7	24.6	1.56	1.81	41.0	
Borrow B (90%)	NA	NA	19.8	27.5	1.39	1.66	47.6	

NA = Not analyzed

Summary of Saturated Hydraulic Conductivity Tests

			Oversize Corrected	Method of	Analysis
	Sample Number	K _{sat} (cm/sec)	K _{sat} (cm/sec)	Constant Head Flexible Wall	Falling Head Flexible Wall
_	Borrow A (90%)	8.7E-05	NA		х
	Borrow B (90%)	4.4E-04	NA		Х

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass NR = Not requested NA = Not applicable

Sample Number	Pressure Head (-cm water)	Moisture Content (%, cm ³ /cm ³)
Borrow A (90%)	0	42.5 ^{‡‡}
()	17	41.5 **
	60	37.3 **
	128	35.1 #
	337	32.7 #
	14583	17.9 #
	50174	13.1 #
	200697	9.6 #
	846993	6.7 ^{‡‡}
	0	40.0 **
Borrow B (90%)	0	48.6 #
	12	44.7 #
	35	41.6 #
	103	38.7 #
	337	35.6 #
	23251	17.1 #
	88621	13.0 #
	401169	9.1 #
	846993	7.3 #

Summary of Moisture Characteristics of the Initial Drainage Curve

^{‡‡} Volume adjustments are applicable at this matric potential (see data sheet for this sample).

Summary of Calculated Unsaturated Hydraulic Properties

					Oversize	Corrected	
	α	Ν	θ _r	θ_{s}	θ _r	θs	
 Sample Number	(cm ⁻¹)	(dimensionless)	(% vol)	(% vol)	(% vol)	(% vol)	
Borrow A (90%)	0.0129	1.1797	0.00	42.04	NA	NA	
Borrow B (90%)	0.0172	1.1763	0.00	46.58	NA	NA	

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NR = Not requested

NA = Not applicable

				C	Oversize Correct	cted
Sample Number	1/3 Bar Point Volumetric (%, cm ³ /cm ³)	15 Bar Point Volumetric (%, cm ³ /cm ³)	Water Holding Capacity (%, cm ³ /cm ³)	1/3 Bar Point Volumetric (%, cm ³ /cm ³)	15 Bar Point Volumetric (%, cm ³ /cm ³)	Water Holding Capacity (%, cm ³ /cm ³)
Sample Number	(%, CIII /CIII)	(%, CIII /CIII)	(%, CIII /CIII)	(%, CIII /CIII)	(%, CIII /CIII)	(%, CIII / CIII)
Borrow A (90%)	31.4	16.3	15.2	NA	NA	NA
Borrow B (90%)	33.5	17.4	16.1	NA	NA	NA

Summary of Moisture Retention (1/3, 15 Bar Points and Water Holding Capacity*)

*Water Holding Capacity (WHC) is defined here as the difference in the moisture content of the sample at -1/3 bar of water potential (commonly referred to as 'Field Capacity') and the moisture content of the sample at -15 bars of water potential (commonly referred to as 'Wilting Point').

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NA = Not applicable

NR = Not requested

Initial Properties

Summary of Initial Moisture Content, Dry Bulk Density Wet Bulk Density and Calculated Porosity

		Moisture	Content					
	As Re	ceived	Rem	olded	Dry Bulk	Wet Bulk	Calculated	
 Sample Number	Gravimetric (%, g/g)	Volumetric (%, cm ³ /cm ³)	Gravimetric (%, g/g)	Volumetric (%, cm ³ /cm ³)	Density (g/cm ³)	Density (g/cm ³)	Porosity (%)	
Borrow A (90%)	NA	NA	15.7	24.6	1.56	1.81	41.0	
Borrow B (90%)	NA	NA	19.8	27.5	1.39	1.66	47.6	

NA = Not analyzed

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Name:	Alan Kuhn Associates, LLC
Job Number:	DB20.1391.00
Sample Number:	Borrow A (90%)
Project:	Mt. Taylor Mine
PO #:	AKA-DBSA 6

	As Received	Remolded
Test Date:	NA	1-Dec-20
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g):		535.71 133.53 0.00 0.00
Dry weight of sample (g):		347.58
Sample volume (cm ³):		222.26
Assumed particle density (g/cm ³):		2.65
Gravimetric Moisture Content (% g/g):		15.7
Volumetric Moisture Content (% vol):		24.6
Dry bulk density (g/cm ³):		1.56
Wet bulk density (g/cm ³):		1.81
Calculated Porosity (% vol):		41.0
Percent Saturation:		59.9
Laboratory analysis by: Data entered by: Checked by:		D. O'Dowd D. O'Dowd J. Hines
Comments:		

* Weight including tares NA = Not applicable


Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Name:	Alan Kuhn Associates, LLC
Job Number:	DB20.1391.00
Sample Number:	Borrow B (90%)
Project:	Mt. Taylor Mine
PO #:	AKA-DBSA 6

	As Received	Remolded
Test Date:	NA	1-Dec-20
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g): Dry weight of sample (g):		516.84 145.06 0.00 0.00 310.29
Sample volume (cm ³):		223.61
Assumed particle density (g/cm ³):		2.65
Gravimetric Moisture Content (% g/g):		19.8
Volumetric Moisture Content (% vol):		27.5
Dry bulk density (g/cm ³):		1.39
Wet bulk density (g/cm ³):		1.66
Calculated Porosity (% vol):		47.6
Percent Saturation:		57.7
Laboratory analysis by: Data entered by: Checked by:		D. O'Dowd D. O'Dowd J. Hines
Comments:		

* Weight including tares NA = Not applicable

Saturated Hydraulic Conductivity

Summary of Saturated Hydraulic Conductivity Tests

			Oversize Corrected	Method of	Analysis
	Sample Number	K _{sat} (cm/sec)	K _{sat} (cm/sec)	Constant Head Flexible Wall	Falling Head Flexible Wall
_	Borrow A (90%)	8.7E-05	NA		х
	Borrow B (90%)	4.4E-04	NA		Х

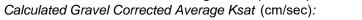
--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass NR = Not requested NA = Not applicable

Saturated Hydraulic Conductivity Flexible Wall Falling Head-Rising Tail Method

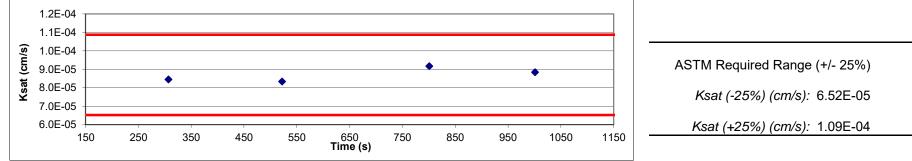
Job Name: Alan Kuhn Associates, LLC Job Number: DB20.1391.00 Sample Number: Borrow A (90%) Project: Mt. Taylor Mine PO #: AKA-DBSA 6

Remolded or Initial Sample Properties	Post Permeation Sample Properties	Test and Sample Conditions
Initial Mass (g): 402.54	Saturated Mass (g): 443.66	Permeant liquid used: Tap Water
Diameter (cm): 6.112	<i>Dry Mass (g):</i> 347.08	Sample Preparation: 🗌 In situ sample, extruded
Length (cm): 7.568	Diameter (cm): 6.111	Remolded Sample
Area (cm ²): 29.34	Length (cm): 7.578	Number of Lifts: 3
Volume (cm ³): 222.04	Deformation (%)**: 0.14	Split: #4
Dry Density (g/cm ³): 1.56	Area (cm ²): 29.33	Percent Coarse Material (%): 0
Dry Density (pcf): 97.6	Volume (cm ³): 222.27	Particle Density(g/cm ³): 2.65 🗹 Assumed 🗌 Measured
Water Content (%, g/g): 16.0	Dry Density (g/cm ³): 1.56	Cell pressure (PSI): 81.0
Water Content (%, vol): 25.0	Dry Density (pcf): 97.5	Influent pressure (PSI): 80.0
Void Ratio (e): 0.70	Water Content (%, g/g): 27.8	Effluent pressure (PSI): 80.0
Porosity (%, vol): 41.0	Water Content (%, vol): 43.5	Panel Used: 🗹 A 🔲 B 🗌 C
Saturation (%): 60.9	Void Ratio(e): 0.70	Reading: 🗌 Annulus 🗹 Pipette
	Porosity (%, vol): 41.1	Date/Time
	Saturation (%)*: 105.8	B-Value (% saturation) prior to test*: 0.99 12/3/20 958
		B-Value (% saturation) post to test: 0.99 12/4/20 913

* Per ASTM D5084 percent saturation is ensured (B-Value ≥ 95%) prior to testing, as post test saturation values may be exaggerated or skewed during depressurizing and sample removal. **Percent Deformation: based on initial sample length and post permeation sample length.


> Laboratory analysis by: D. O'Dowd Data entered by: D. O'Dowd Checked by: J. Hines

Saturated Hydraulic Conductivity Flexible Wall Falling Head-Rising Tail Method


Job Name: Alan Kuhn Associates, LLC Job Number: DB20.1391.00 Sample Number: Borrow A (90%) Project: Mt. Taylor Mine PO #: AKA-DBSA 6

Date	Time	Temp (°C)	Influent Pipette Reading	Effluent Pipette Reading	Gradient (∆H/∆L)	Average Flow (cm ³)	Elapsed Time (s)	Ratio (outflow to inflow)	Change in Head (Not to exceed 25%)	k _{sat} T°C (cm/s)	k _{sat} Corrected (cm/s)
Test # 1: 03-Dec-20 03-Dec-20	10:10:00 10:15:07	18.6 18.6	10.00 11.00	20.00 19.00	1.52 1.22	0.87	307	1.00	20%	8.16E-05	8.45E-05
Test # 2: 03-Dec-20 03-Dec-20	10:18:22 10:21:57	18.6 18.6	11.50 12.00	18.50 18.00	1.07 0.91	0.43	215	1.00	14%	8.05E-05	8.34E-05
Test # 3: 04-Dec-20 04-Dec-20	08:39:00 08:43:39	19.2 19.2	10.00 11.00	20.00 19.00	1.52 1.22	0.87	279	1.00	20%	8.98E-05	9.17E-05
Test # 4: 04-Dec-20 04-Dec-20	08:46:30 08:49:50	19.2 19.2	11.50 12.00	18.50 18.00	1.07 0.91	0.43	200	1.00	14%	8.65E-05	8.84E-05

Average Ksat (cm/sec): 8.70E-05

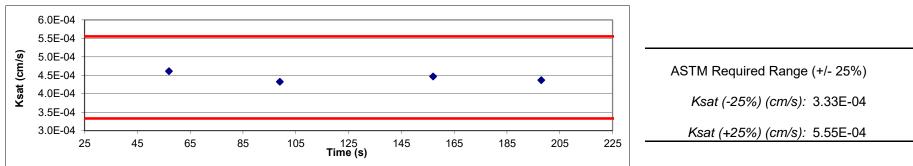
Saturated Hydraulic Conductivity Flexible Wall Falling Head-Rising Tail Method

Job Name: Alan Kuhn Associates, LLC Job Number: DB20.1391.00 Sample Number: Borrow B (90%) Project: Mt. Taylor Mine PO #: AKA-DBSA 6

Remolded or Initial Sample Properties		Post Permea Sample Prope		Test and Sample Conditions	
Initial Mass (g):	370.89	Saturated Mass (g):	415.26	Permeant liquid used: Tap Water	_
Diameter (cm):	6.105	Dry Mass (g):	308.15	Sample Preparation: 🗌 In situ sample, extruded	
Length (cm):	7.628	Diameter (cm):	6.091	Remolded Sample	
Area (cm²):	29.27	Length (cm):	7.628	Number of Lifts: 3	
Volume (cm ³):	223.29	Deformation (%)**:	0.00	Split: #4	
Dry Density (g/cm ³):	1.38	Area (cm²):	29.14	Percent Coarse Material (%): 0	
Dry Density (pcf):	86.2	Volume (cm ³):	222.26	Particle Density(g/cm ³): 2.65 🗹 Assumed 🗌 Measure	ed
Water Content (%, g/g):	20.4	Dry Density (g/cm ³):	1.39	Cell pressure (PSI): 81.0	
Water Content (%, vol):	28.1	Dry Density (pcf):	86.6	Influent pressure (PSI): 80.0	
Void Ratio (e):	0.92	Water Content (%, g/g):	34.8	Effluent pressure (PSI): 80.0	
Porosity (%, vol):	47.9	Water Content (%, vol):	48.2	Panel Used: 🗆 A 🗹 B 🔲 C	
Saturation (%):	58.6	Void Ratio(e):	0.91	Reading: 🗌 Annulus 🛛 Pipette	
		Porosity (%, vol):	47.7	Date/Time	
		Saturation (%)*:	101.1	B-Value (% saturation) prior to test*: 0.99 12/3/20 955	
				B-Value (% saturation) post to test: 0.99 12/4/20 910	

* Per ASTM D5084 percent saturation is ensured (B-Value ≥ 95%) prior to testing, as post test saturation values may be exaggerated or skewed during depressurizing and sample removal. **Percent Deformation: based on initial sample length and post permeation sample length.

> Laboratory analysis by: D. O'Dowd Data entered by: D. O'Dowd Checked by: J. Hines


Saturated Hydraulic Conductivity Flexible Wall Falling Head-Rising Tail Method

Job Name: Alan Kuhn Associates, LLC Job Number: DB20.1391.00 Sample Number: Borrow B (90%) Project: Mt. Taylor Mine PO #: AKA-DBSA 6

Date	Time	Temp (°C)	Influent Pipette Reading	Effluent Pipette Reading	Gradient (∆H/∆L)	Average Flow (cm ³)	Elapsed Time (s)	Ratio (outflow to inflow)	Change in Head (Not to exceed 25%)	k _{sat} T°C (cm/s)	k _{sat} Corrected (cm/s)
Test # 1: 03-Dec-20 03-Dec-20	10:10:00 10:10:57	18.6 18.6	10.00 11.00	20.00 19.00	1.51 1.21	0.87	57	1.00	20%	4.45E-04	4.61E-04
Test # 2: 03-Dec-20 03-Dec-20	10:11:35 10:12:17	18.6 18.6	11.50 12.00	18.50 18.00	1.06 0.91	0.43	42	1.00	14%	4.17E-04	4.32E-04
Test # 3: 04-Dec-20 04-Dec-20	08:49:00 08:49:58	19.2 19.2	10.00 11.00	20.00 19.00	1.51 1.21	0.87	58	1.00	20%	4.38E-04	4.47E-04
Test # 4: 04-Dec-20 04-Dec-20	08:50:34 08:51:15	19.2 19.2	11.50 12.00	18.50 18.00	1.06 0.91	0.43	41	1.00	14%	4.28E-04	4.37E-04

Average Ksat (cm/sec): 4.44E-04

Calculated Gravel Corrected Average Ksat (cm/sec): NA

Moisture Retention Characteristics

Sample Number	Pressure Head (-cm water)	Moisture Content (%, cm ³ /cm ³)
Borrow A (90%)	0	42.5 ^{‡‡}
	17	41.5 #
	60	37.3 #
	128	35.1 #
	337	32.7 #
	14583	17.9 **
	50174	13.1 #
	200697	9.6 #
	846993	6.7 #
Borrow B (90%)	0	48.6 ^{‡‡}
	12	44.7 #
	35	41.6 #
	103	38.7 #
	337	35.6 #
	23251	17.1 #
	88621	13.0 **
	401169	9.1 **
	846993	7.3 #

Summary of Moisture Characteristics of the Initial Drainage Curve

^{‡‡} Volume adjustments are applicable at this matric potential (see data sheet for this sample).

Summary of Calculated Unsaturated Hydraulic Properties

					Oversize	Corrected
	α	Ν	θ _r	θ_{s}	θ _r	θ _s
 Sample Number	(cm ⁻¹)	(dimensionless)	(% vol)	(% vol)	(% vol)	(% vol)
Borrow A (90%)	0.0129	1.1797	0.00	42.04	NA	NA
Borrow B (90%)	0.0172	1.1763	0.00	46.58	NA	NA

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NR = Not requested

NA = Not applicable

Moisture Retention Data Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name: Alan Kuhn Associates, LLC Job Number: DB20.1391.00 Sample Number: Borrow A (90%) Project: Mt. Taylor Mine PO #: AKA-DBSA 6

Dry wt. of sample (g):	347.58
Tare wt., ring (g):	133.53
Tare wt., screen & clamp (g):	26.82
Initial sample volume (cm ³):	222.26

- Initial dry bulk density (g/cm³): 1.56
- Assumed particle density (g/cm[°]): 2.65

Initial calculated total porosity (%): 40.99

	Date	Time	Weight* (g)	Matric Potential (-cm water)	Moisture Content [†] (% vol)	
Hanging column:	3-Dec-20	14:30	604.80	0	42.54	‡‡
	10-Dec-20	11:00	602.21	17.0	41.49	‡ ‡
	17-Dec-20	13:45	592.60	60.0	37.26	‡ ‡
	23-Dec-20	14:40	587.63	128.0	35.07	‡ ‡
Pressure plate:	4-Jan-21	13:00	582.25	337	32.70	‡ ‡

Volume Adjusted Data¹

					Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Hanging column:	0.0	227.72	+2.46%	1.53	42.40
	17.0	227.25	+2.24%	1.53	42.28
	60.0	227.25	+2.24%	1.53	42.28
	128.0	227.25	+2.24%	1.53	42.28
Pressure plate:	337	227.25	+2.24%	1.53	42.28

Comments:

¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.

² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Assumed density of water is 1.0 g/cm³

^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Moisture Retention Data Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: Borrow A (90%)

Initial sample bulk density (g/cm³): 1.56

Fraction of bulk sample used (<2.00mm fraction) (%): 99.00

Dry weight* of dew point potentiometer sample (g): 159.52 Tare weight, jar (g): 111.98

Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)	
16-Dec-21	12:12	165.13	14583	17.87	‡ ‡
14-Dec-20	14:14	163.64	50174	13.12	‡ ‡
10-Dec-20	12:00	162.54	200697	9.62	_ ‡‡
	16-Dec-21 14-Dec-20	16-Dec-2112:1214-Dec-2014:14	DateTime(g)16-Dec-2112:12165.1314-Dec-2014:14163.64	DateTime(g)(-cm water)16-Dec-2112:12165.131458314-Dec-2014:14163.6450174	DateTime(g)(-cm water)(% vol)16-Dec-2112:12165.131458317.8714-Dec-2014:14163.645017413.12

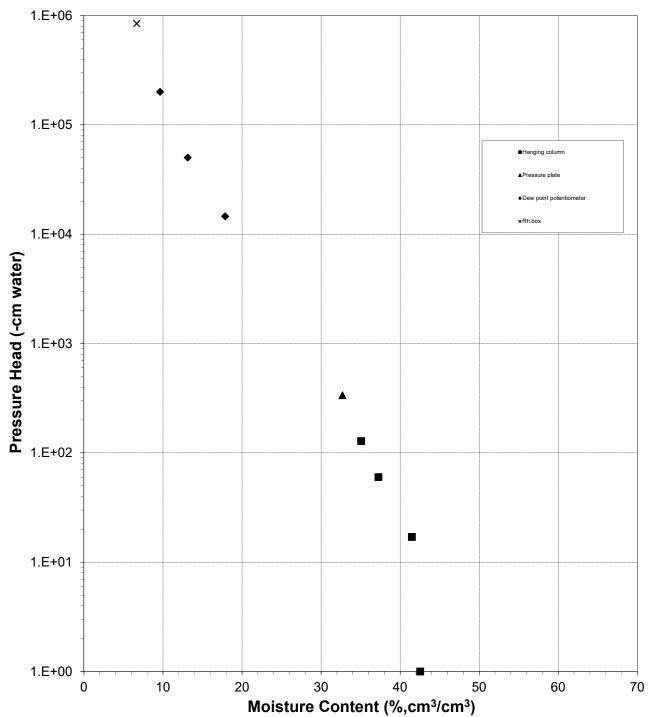
	Volume Adjusted Data ¹					
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
Dew point potentiometer:	14583	227.25	+2.24%	1.53	42.28	
	50174	227.25	+2.24%	1.53	42.28	
-	200697	227.25	+2.24%	1.53	42.28	

Dry weight* of relative humidity box sample (g): 82.29 Tare weight (g): 39.33

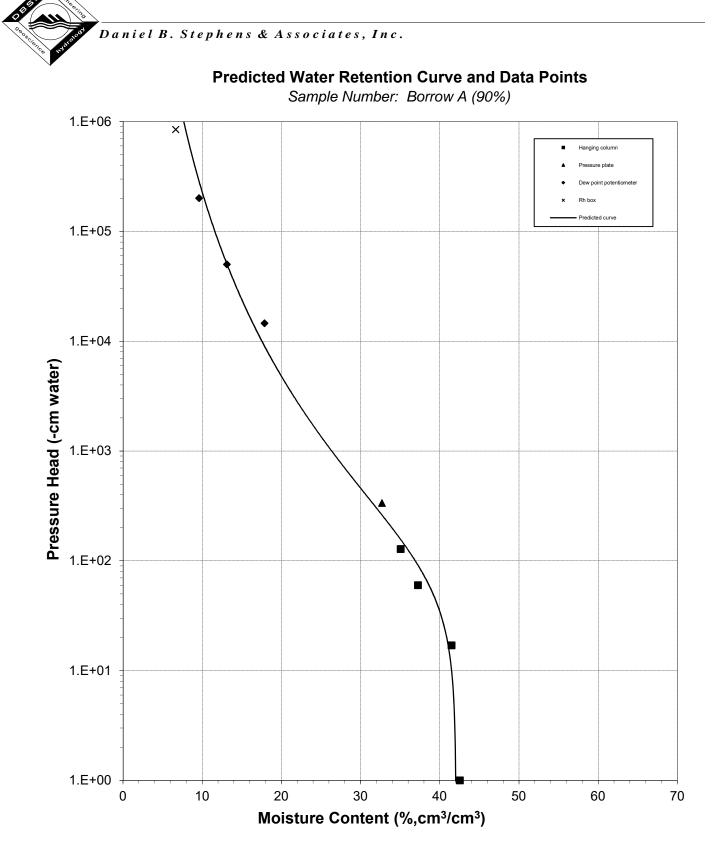
	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)	
Relative humidity box:	9-Dec-21	14:15	84.18	846993	6.67	‡‡
			Volume Adjust	ed Data ¹		
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	_
Relative humidity box:	846993	227.25	+2.24%	1.53	42.28	_

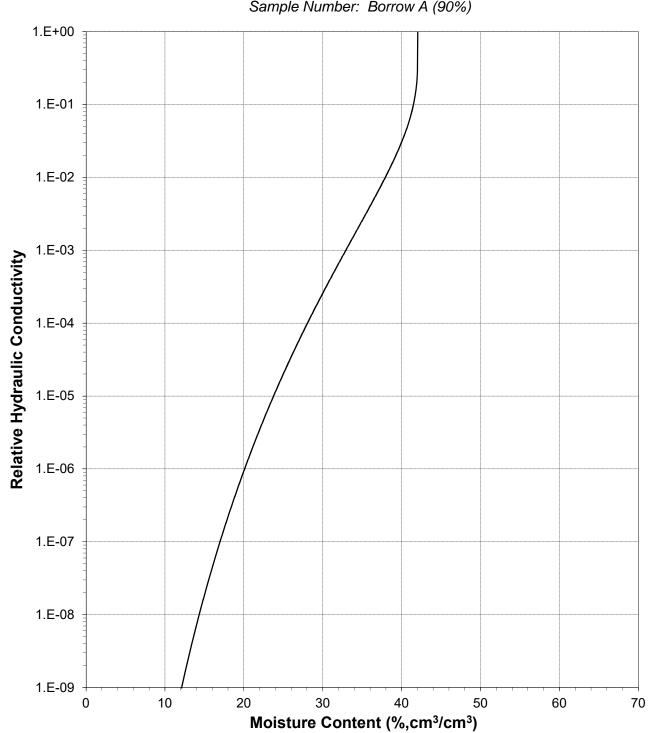
Comments:

¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.

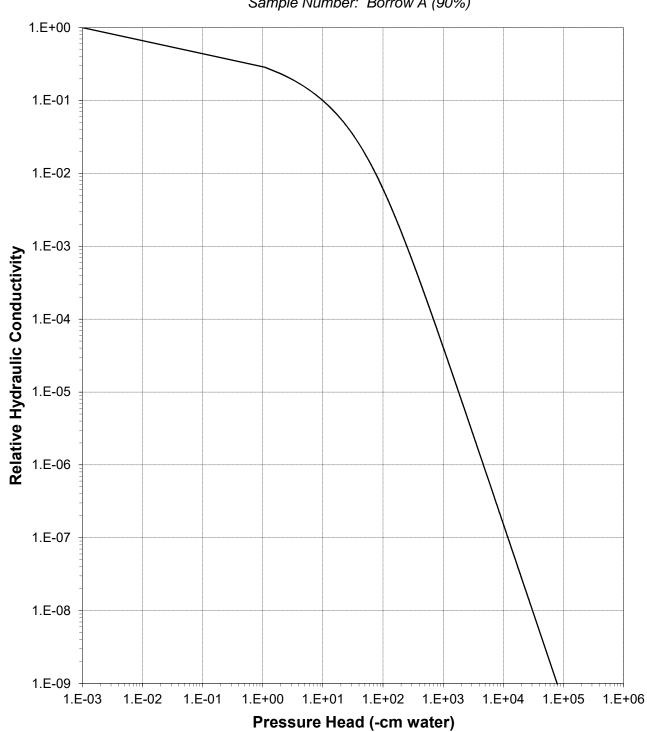

² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares


[†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.


^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Water Retention Data Points


Plot of Relative Hydraulic Conductivity vs Moisture Content

Daniel B. Stephens & Associates, Inc.

1.E+00 1.E-01 1.E-02 1.E-03 1.E-04 Hydraulic Conductivity (cm/s) 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10 1.E-11 1.E-12 10 20 30 40 50 60 0 70 Moisture Content (%,cm³/cm³)

Plot of Hydraulic Conductivity vs Moisture Content

Daniel B. Stephens & Associates, Inc.

Plot of Relative Hydraulic Conductivity vs Pressure Head

Daniel B. Stephens & Associates, Inc.

1.E+00 1.E-01 1.E-02 1.E-03 1.E-04 Hydraulic Conductivity (cm/s) 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10 1.E-11 1.E-12 1.E+01 1.E+02 1.E+03 1.E-03 1.E-02 1.E-01 1.E+00 1.E+04 1.E+05 1.E+06 Pressure Head (-cm water)

Plot of Hydraulic Conductivity vs Pressure Head

Daniel B. Stephens & Associates, Inc.

Moisture Retention Data Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name: Alan Kuhn Associates, LLC Job Number: DB20.1391.00 Sample Number: Borrow B (90%) Project: Mt. Taylor Mine PO #: AKA-DBSA 6 Dry wt. of sample (g): 310.29

.

Tare wt., ring (g): 145.06

- Tare wt., screen & clamp (g): 24.19
- Initial sample volume (cm³): 223.61
- Initial dry bulk density (g/cm³): 1.39

Assumed particle density (g/cm°): 2.65

Initial calculated total porosity (%): 47.64

	Date	Time	Weight* (g)	Matric Potential (-cm water)	Moisture Content [†] (% vol)	
Hanging column:	3-Dec-20	14:30	590.48	0	48.57	‡‡
	10-Dec-20	10:50	581.57	12.0	44.75	‡ ‡
	17-Dec-20	13:40	574.38	35.0	41.62	‡ ‡
	23-Dec-20	14:40	567.83	103.0	38.74	‡ ‡
Pressure plate:	4-Jan-21	13:00	560.64	337	35.59	‡ ‡

Volume Adjusted Data¹

					Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Hanging column:	0.0	228.42	+2.15%	1.36	48.74
	12.0	228.01	+1.97%	1.36	48.65
	35.0	227.89	+1.91%	1.36	48.62
	103.0	227.89	+1.91%	1.36	48.62
Pressure plate:	337	227.89	+1.91%	1.36	48.62

Comments:

¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.

² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Assumed density of water is 1.0 g/cm³

^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Moisture Retention Data Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: Borrow B (90%)

Initial sample bulk density (g/cm³): 1.39

Fraction of bulk sample used (<2.00mm fraction) (%): 99.00

Dry weight* of dew point potentiometer sample (g): 166.36 Tare weight, jar (g): 119.32

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)	
Dew point potentiometer:	16-Dec-21	13:10	172.33	23251	17.11	‡ ‡
	14-Dec-20	14:17	170.88	88621	12.95	‡ ‡
-	10-Dec-20	12:06	169.54	401169	9.11	_ ‡‡

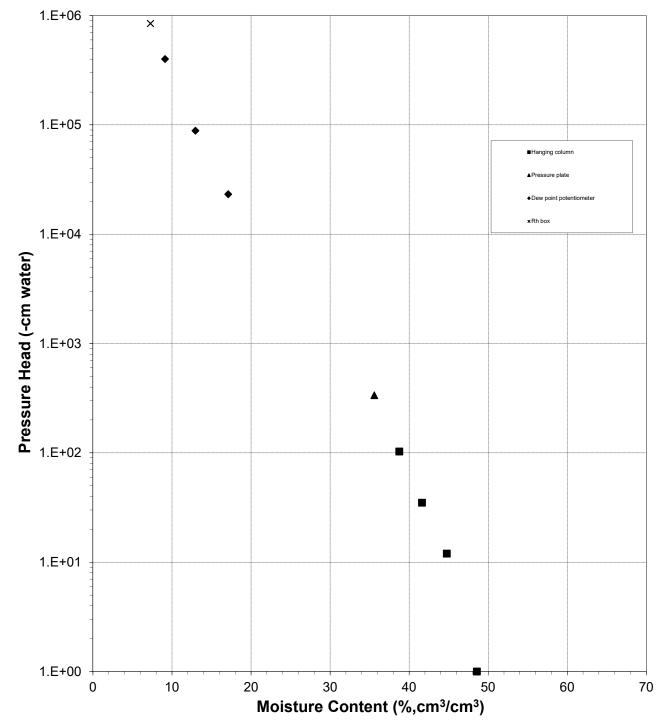
	Volume Adjusted Data ¹					
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
Dew point potentiometer:	23251	227.89	+1.91%	1.36	48.62	
	88621	227.89	+1.91%	1.36	48.62	
-	401169	227.89	+1.91%	1.36	48.62	

Dry weight* of relative humidity box sample (g): 95.20 Tare weight (g): 47.61

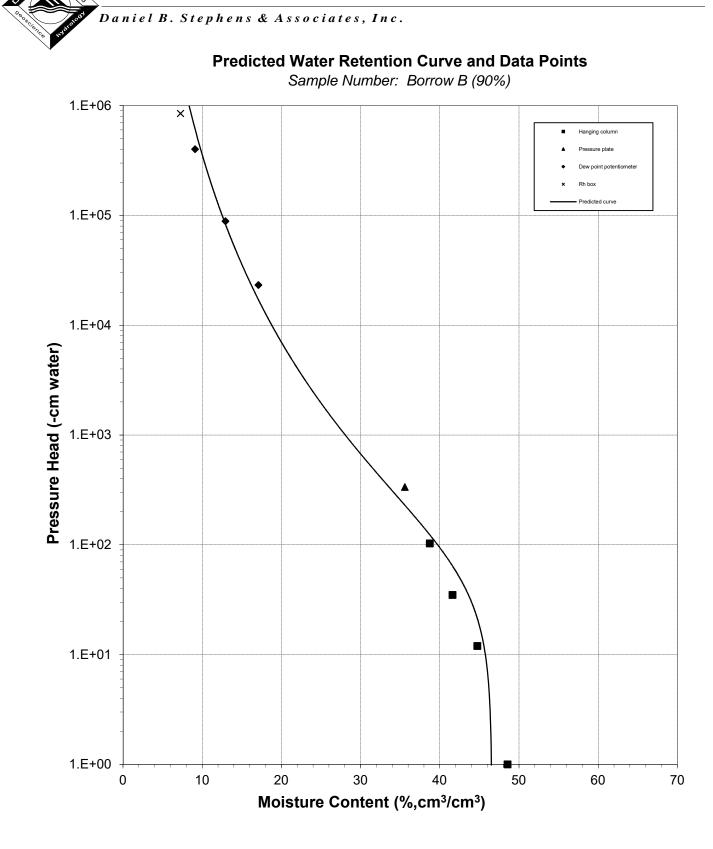
	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)	
Relative humidity box:	9-Dec-21	14:15	97.76	846993	7.26	‡ ‡
			Volume Adjust	ted Data ¹		
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	_
Relative humidity box:	846993	227.89	+1.91%	1.36	48.62	_

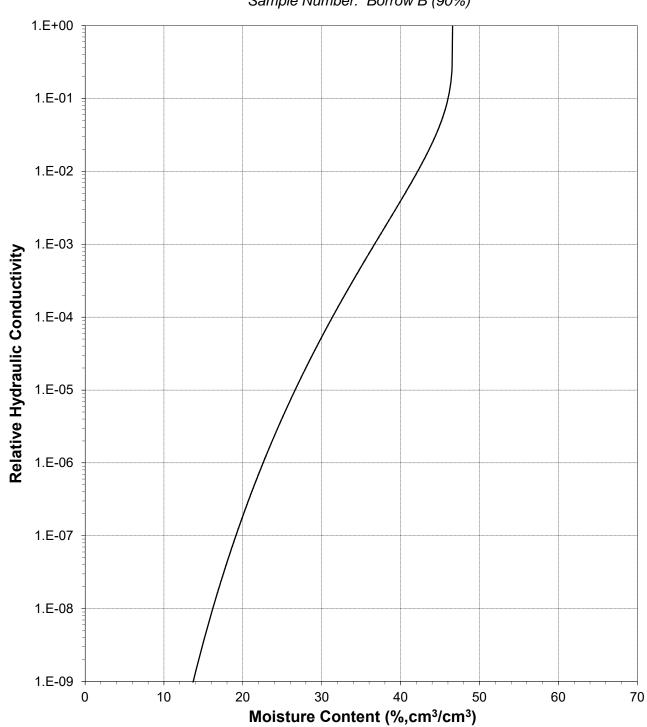
Comments:

¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.

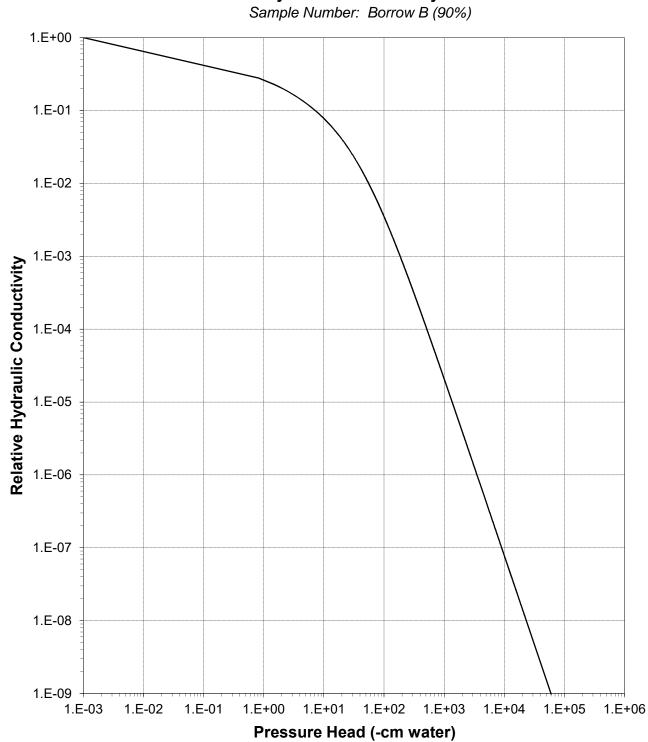

² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares


[†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.


^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Water Retention Data Points


Plot of Relative Hydraulic Conductivity vs Moisture Content

Daniel B. Stephens & Associates, Inc.

1.E+00 1.E-01 1.E-02 1.E-03 1.E-04 Hydraulic Conductivity (cm/s) 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10 1.E-11 1.E-12 10 20 30 40 50 60 0 70 Moisture Content (%,cm³/cm³)

Plot of Hydraulic Conductivity vs Moisture Content

Daniel B. Stephens & Associates, Inc.

Plot of Relative Hydraulic Conductivity vs Pressure Head

Daniel B. Stephens & Associates, Inc.

1.E+00 1.E-01 1.E-02 1.E-03 1.E-04 Hydraulic Conductivity (cm/s) 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10 1.E-11 1.E-12 1.E+01 1.E+02 1.E+03 1.E-03 1.E-02 1.E-01 1.E+00 1.E+04 1.E+05 1.E+06 Pressure Head (-cm water)

Plot of Hydraulic Conductivity vs Pressure Head

Daniel B. Stephens & Associates, Inc.

Water Holding Capacity

				C	Oversize Correct	cted
Sample Number	1/3 Bar Point Volumetric (%, cm ³ /cm ³)	15 Bar Point Volumetric (%, cm ³ /cm ³)	Water Holding Capacity (%, cm ³ /cm ³)	1/3 Bar Point Volumetric (%, cm ³ /cm ³)	15 Bar Point Volumetric (%, cm ³ /cm ³)	Water Holding Capacity (%, cm ³ /cm ³)
Sample Number	(%, CIII /CIII)	(%, CIII /CIII)	(%, CIII /CIII)	(%, CIII /CIII)	(%, CIII /CIII)	(%, CIII / CIII)
Borrow A (90%)	31.4	16.3	15.2	NA	NA	NA
Borrow B (90%)	33.5	17.4	16.1	NA	NA	NA

Summary of Moisture Retention (1/3, 15 Bar Points and Water Holding Capacity*)

*Water Holding Capacity (WHC) is defined here as the difference in the moisture content of the sample at -1/3 bar of water potential (commonly referred to as 'Field Capacity') and the moisture content of the sample at -15 bars of water potential (commonly referred to as 'Wilting Point').

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NA = Not applicable

NR = Not requested

Moisture Retention Data

Pressure Plate

(-1/3 Bar)

Job Name: Alan Kuhn Associates, LLC Job Number: DB20.1391.00 Sample Number: Borrow A (90%) Project: Mt. Taylor Mine PO #: AKA-DBSA 6 Dry wt. of sample (g): 347.58 Tare wt., ring (g): 133.53 Tare wt., screen & clamp (g): 26.82 Initial sample volume (cm³): 222.26 Initial dry bulk density (g/cm³): 1.56

Assumed particle density (g/cm³): 2.65

Initial calculated total porosity (%): 40.99

				Matric	Moisture	
			Weight*	Potential	Content [†]	
	Date	Time	(g)	(-cm water)	(% vol)	
1/3 bar ³ :	NA	NA	NA	340	31.45	‡ ‡

		Vo	lume Adjusted D	ata ¹	
	Matric Potential (-cm water)	Adjusted Volume (cm ³)	% Volume Change ² (%)	Adjusted Density (g/cm ³)	Adjusted Calculated Porosity (%)
1/3 bar ³ :	<u>(-cill water)</u> 337	227.25	+2.24%	1.53	42.28
-				<i></i> 3. 3.	

Moisture content at	: -1/3 bar (% cm³/cm³):	31.4
	4/0 h == (0/ === ³ /=== ³).	

Oversize Corrected Moisture content at -1/3 bar (% cm³/cm³): NA

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent volume change measurements obtained after the pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- ³ The moisture content of the sample at the 1/3 bar water potential was interpolated from the predicted water retention curve.

* Weight including tares

- [†] Assumed density of water is 1.0 g/cm³
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Moisture Retention Data

(Effective Porosity)

Job Name: Alan Kuhn Associates, LLC Job Number: DB20.1391.00 Sample Number: Borrow A (90%) Project: Mt. Taylor Mine PO #: AKA-DBSA 6

Initial sample calculated total porosity (cm³): 40.99

Assumed particle density (g/cm³): 2.65

Initial sample bulk density (g/cm³): 1.56

Fraction of bulk sample used (<2.00mm fraction) (%): 99.00

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)	
-15 bar ³ :	NA	NA	NA	15297	16.27	‡‡
			Volume Adjust	ted Data ¹		
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
-15 bar ³ :	15297	227.25	+2.24%	1.53	42.28	
Date Time (g) -15 bar ³ : NA NA NA Volume Adjusted Water Adjusted % Volume Potential Volume Change ² (-cm water) (cm ³) (%) -15 bar ³ : 15297 227.25 +2.24% Moisture content at -15 ba	ars (% cm³/cm³) <i>:</i>	16.3				
Ove	Oversize Corrected Moisture content at -15 bars (% cm ³ /cm ³): NA					

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- ³ The moisture content of the sample at -15 bars of water potential was interpolated from the predicted water retention curve.
- * Weight including tares
- ⁺ Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.
- NA Not Applicable

Moisture Retention Data

Pressure Plate

(-1/3 Bar)

Job Name: Alan Kuhn Associates, LLC Job Number: DB20.1391.00 Sample Number: Borrow B (90%) Project: Mt. Taylor Mine PO #: AKA-DBSA 6 Dry wt. of sample (g): 310.29 Tare wt., ring (g): 145.06 Tare wt., screen & clamp (g): 24.19 Initial sample volume (cm³): 223.61

Initial dry bulk density (g/cm³): 1.39

Assumed particle density (g/cm^3) : 2.65

Initial calculated total porosity (%): 47.64

			Weight*	Matric Potential	Moisture Content [†]	
	Date	Time	(g)	(-cm water)	(% vol)	
1/3 bar ³ :	NA	NA	NA	340	33.54	‡ ‡

		Volu	ume Adjusted Da	ata ¹	
	Matric Potential	Adjusted Volume	% Volume Change ²	Adjusted Density	Adjusted Calculated Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
1/3 bar ³ :	340	227.89	+1.91%	1.36	48.62
		Moisture co	ntent at -1/3 bai	r (% cm ³ /cm ³):	33.5

Oversize Corrected Moisture content at -1/3 bar (% cm³/cm³): NA

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent volume change measurements obtained after the pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- ³ The moisture content of the sample at the 1/3 bar water potential was interpolated from the predicted water retention curve.

* Weight including tares

- [†] Assumed density of water is 1.0 g/cm³
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Moisture Retention Data

(Effective Porosity)

Job Name: Alan Kuhn Associates, LLC Job Number: DB20.1391.00 Sample Number: Borrow B (90%) Project: Mt. Taylor Mine PO #: AKA-DBSA 6

Initial sample calculated total porosity (cm³): 47.64

Assumed particle density (g/cm³): 2.65

Initial sample bulk density (g/cm³): 1.39

Fraction of bulk sample used (<2.00mm fraction) (%): 99.00

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)	
-15 bar ³ :	NA	NA	NA	15297	17.42	‡‡
			Volume Adjust	ted Data ¹		
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
-15 bar ³ :	15297	227.89	+1.91%	1.36	48.62	
Date Time (g) -15 bar ³ : NA NA NA Volume Adjusted Water Adjusted % Volume Potential Volume Change ² (-cm water) (cm ³) (%) -15 bar ³ : 15297 227.89 +1.91% Moisture content at -15 bar Moisture content at -15 bar	ars (% cm³/cm³) <i>:</i>	17.4				
Ove	ersize Correcte	DateTime(g)(-cm water)(% vol)NANANA1529717.42#Volume Adjusted Data 1WaterAdjusted% VolumeAdjustedAdjustedPotentialVolumeChange 2DensityCalc. Porositycm water)(cm 3)(%)(g/cm 3)(%)15297227.89+1.91%1.3648.62				

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- ³ The moisture content of the sample at -15 bars of water potential was interpolated from the predicted water retention curve.
- * Weight including tares
- ⁺ Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

NA Not Applicable

Laboratory Tests and Methods

Tests and Methods

Dry Bulk Density:	ASTM D7263
Moisture Content:	ASTM D7263, ASTM D2216
Calculated Porosity:	ASTM D7263
Saturated Hydraulic Conductivit Falling Head Rising Tail: (Flexible Wall)	y: ASTM D5084
Hanging Column Method:	ASTM D6836 (modified apparatus)
Pressure Plate Method:	ASTM D6836
Water Potential (Dewpoint Potentiometer) Method:	ASTM D6836
Relative Humidity (Box) Method:	Campbell, G. and G. Gee. 1986. Water Potential: Miscellaneous Methods. Chp. 25, pp. 631-632, in A. Klute (ed.), Methods of Soil Analysis. Part 1. American Society of Agronomy, Madison, WI; Karathanasis & Hajek. 1982. Quantitative Evaluation of Water Adsorption on Soil Clays. SSA Journal 46:1321-1325
Moisture Retention Characteristics & Calculated Unsaturated Hydraulic Conductivity:	ASTM D6836; van Genuchten, M.T. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. SSSAJ 44:892-898; van Genuchten, M.T., F.J. Leij, and S.R. Yates. 1991. The RETC code for quantifying the hydraulic functions of unsaturated soils. Robert S. Kerr Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Ada, Oklahoma. EPA/600/2091/065. December 1991
Water Holding Capacity (calc):	ASTM D6836; Stephens, D. B. 1996, pp.11-12, Vadose Zone Hydrology. CRC Press, Inc., Boca Raton, FL

C.5 Compaction Tests

Mt Taylor Mine Waste Rock Pile/ Disposal Cell CQAR

Summary of Densities for Growth Media (2020-2021)

1

Densities/Moisture Tests for Phase 3 Construction

							ASTM TEST			
			ln-p	blace De	nsities l	Results	D2487	D4318	D698	D698
Date	Test #	Location	Elev.	Ydry	W%	Sample #	Class.	PI	Max. Y	Opt M %
12/3/20	1	Growth Media Cover (1st lift) @ 110'E/50'N of CP	7380	67.5	17.5	20-234	CL/SCL	18	105	16.5
		(Upper South Slope)	-9" FSG							
12/3/20	2	Growth Media Cover (1st lift) @ 60'E/80'N of CP	7372	75.3	14.6	20-234	CL/SCL	18	105	16 <u>.</u> 5
		(Upper West Slope)	-9" FSG							
12/3/20	3	Growth Media Cover (1st lift) @ 200'N/80'E of CP	7374	76.8	15.3	20-234	CL/SCL	18	105	165
	• •	(Upper West Slope)	-9" FSG							
12/3/20	4	Growth Media Cover (1st lift) @ 240'N/140'E of CP	7378	73.4	14.2	20-234	CL/SCL	18	105	165
		(Upper North Slope)	-9" FSG							
12/17/20	5	Growth Media Cover (1st lift) @ 360'N/130'E of CP	7371.5	85.8	20.6	20-239	CL/SCL	18	105	165
		(Lower North Slope)	-9"FSG							;
12/17/20	6	Growth Media Cover (1st lift) @ 410'N/200'E of CP	7360	75.8	16.1	20-239	CL/SCL	18	105	165
		(Lower North Slope)	-9" FSG			1				
12/17/20	7	Growth Media Cover (1st lift) @ 480'N/100'E of CP	7354.5	75.4	18.2	20-239				
		(Lower North Slope)	-9" FSG							
12/17/20	8	Growth Media Cover (1st Lift) @ 420"N/80"E of CP	7364	73.7	19.8	20.239				
		(Lower North Slope)	-9" FSG							

Densities/Moisture Tests for Phase 3 Construction

							ASTM TEST			
			In-p	In-place Densities Results			D2487	D4318	D698	D698
Date	Test #	Location	Elev.	Ydry	W%	Sample #	Class.	PI	Max. Y	Opt M %
11/4/20	1	Clay Cover(1st lift) @70'E/4'N of CP at SW corner of Disp.C	7367.4	109.2	13.6	20-208	CL	17	109.3	151
	<u></u>	35°20'14N/107°38'10W (Upper South Slope)	-1.5' FSG							
11/4/20	2	Clay Cover(1st lift) @120'E/90'N of CP at SW corner of Disp.C	7377.7	105.7	15.6	20-208	CL	17	109.3	151
		35°20'15N/107-38'09W (Upper South Slope)	-1.5' FSG							
11/4/20 3	3	Clay Cover(1st lift) @ 210'E/60'W of CP	7373.9	107.2	13.1	20-208	CL	17	109.3	15,1
		35°20'14N/107°38'09W (Upper South Slope)	-1.5' FSG							
11/5/20	4	Clay Cover(1st lift) @ 180'N/30'E of CP	7364.6	109.0	18	20-208	CL	17	109.3	151
		35°20'16N/107°38'10W (Upper West Slope)	-1.5' FSG					<u> </u>		
11/5/20	5 ·	Clay Cover(1st lift) @ 140'N/120'E of CP	7377.1	103.5	17.8	20-208	CL	17	109.3	15.1
	·	35°20'15N/107-38'10W (Upper West Slope)	-1.5' FSG							
11/5/5/20	6	Clay Cover(1st lift) @ 90'N/120' E of CP	7365.2	104.9	16.1	20-208	CL	17_	109.3	151
		35°20'15N/107°38'10W (Upper West Slope)	-1.5' FSG							
11/6/20	7	Clay Cover(1st lift) @ 180'N/150'E of CP	7378.7	106.5	16.5	20-208	SC	13	113.5	139
		35°20'15N/107°38'10W (Upper North Slope)	-1.5' FSG	l						
11/6/20	8	Clay Cover(1st Lift) @ 230'N/150'E of CP	7378.6	109.8	16.3	20-207	SC	13	113.5	13.9
		35°20'16N/107°38'09W (Upper North Slope)	-1.5' FSG							
11/6/20	9	Clay Cover (2nd lift) @ 120'N/120'E of CP	7383	106.5	15.7	20-207	SC	13	113.5	13.9
		35°20'15N/107°38'09W (Upper South Slope)	-1' FSG							
11/6/20	10	Clay Cover(2nd lift) @ 150'N/40'E of CP	7367.9	104.9	14.3	20-207	SC	13	113.5	13.9
••••		35°20'15N/107°38'10W (Upper West Slope)	-1' FSG					<u> </u>		
11/6/20	11	Clay Cover (2nd lift) @ 100'N/150'E of CP	7378.6	106.6	14.9	20-207	SC	13	113.5	139
		35°20'16N/107°38'09W (Upper West Slope)	-1' FSG							
11/6/20	12	Clay Cover(2nd lift) @ 120'N/35'E of CP	7363.2	105.2	13.9	20-207	SC	13	113.5	13.9
		35°20'15N/107°38'11W (Upper West Slope)	-1' FSG							
					1					<u> </u>

12/22/20

Densities/Moisture Tests for Phase 3 Construction

				ASTM TEST						
			In-j	blace De	nsities l	Results	D2487	D4318	D698	D698
Date	Test #	Location	Elev.	Ydry	W%	Sample #	Class.	PI	Max. Y	Opt M %
11/10/20	13	Clay Cover(3rd lift) @ 170'N/50' E of CP	7365.9	101.9	18.1	20-207	CL	17	113.5	139
		(Upper West Slope)	5' FSG							
11/10/20	14	Clay Cover(3rd lift) @ 100'N/35' E of CP	7368.3	104	16.5	20-207	CL	17	113.5	13 <u>9</u>
		(Upper West Slope)	5' FSG							
11/10/20	15	Clay Cover(4th lift) @ 120'E/70'N of CP	7371.9	103.7	1703	20-207	CL	17	113.5	139
		(Upper South Slope)	FSG							
11/10/20	16	Clay Cover(4th lift) @ 180'E/40'N of CP	7369.5	104.9	18.1	20-207	CL	17	113.5	<u>13</u> 9
		(Upper South Slope)	FSG							
11/11/20	17	Clay Cover (4th lift) @ 70'N of CP	7369.1	112.7	18.1	20-208	CL .	17	109.3	151
		Upper West Slope)	FSG							
11/11/20	18	Clay Cover (4th lift) @ 110'N og CP	7363.5	114.9	17.8	20-208	CL	17	109.3	15.1
		Upper West Slope)	FSG							
11/11/20	19	Clay Cover (4th lift) @ 100'N of CP	7362.6	108.2	21.7	20-208	CL	17	109.3	151
		(Upper West Slope)	FSG							
11/11/20	20	Clay Cover (4th lift) @ 150'N of CP	7371.5	109.8	16.7	20-208	CL	17	109.3	151
		(Uppper West Slope)	F5G							
11/11/20	21	Clay Cover (4th lift) @ 120'N of CP	7368	114.1	17.1	20-208	CL	17	109.3	151
		(Upper West Slope)	FSG							
11/11/20	22	Clay Cover (4th lift) @ 275' E of W edge at STA 6+10	7361	103.5	18.4	20-208	CL	17	109.3	15,1
		(Upper North Slope)	FSG							
11/11/20	23	Clay Cover (4th lift) @ 210'E of W edge at STA 6+20	7365.4	109.4	19	20-208	CL	17	109.3	15,1
		Upper North Slope)	FSG							
11/11/20	24	Clay Cover (4th lift) @ 160'E of W edge at STA 6+75	7372.7	108.8	18.1	20-208	CL	17	109.3	15.1
		(Upper North Slope)	FSG							
						-				

- -

•

Densities/Moisture Tests for Phase 3 Construction

								AST	M TEST	
			ln-	place De	nsities l	Results	D2487	D4318	D698	D698
Date	Test #	Location	Elev.	Ydry	W%	Sample #	Class.	PI	Max. Y	Opt M %
11/11/20	25	Clay Cover(4th lift) @ 115'E of W Edge at STA 6+00	7375	103.8	18.6	20-208	CL	17	109.3	15.1
		(Upper North Slope)	FSG							
11/17/20	26	Clay Cover(1st lift) @ 325'N/80'E of CP	7367.9	99.3	18.4	20-213	CL	21	108.4	15.7
		(Southside of Upper N Slopes)	-1.5' FSG							
11/17/20	27	Clay Cover (1st lift) @420'N/60'E of CP	7361.1	99.9	17.7	20-213	CL	21	108.4	157
		(Westside of Upper N Slopes)	-1.5' FSG							
11/17/20	28	Clay Cover (1st lift) @ 480'N/140'E of CP	7356.7	103.6	18.6	20-213	CL	21	108.4	157
		(Northside of Upper N Slopes)	-1.5' FSG							
11/17/20	29	Clay Cover (1st lift) @ 420'N/240'E of CP	7354	102.9	18.7	20-213	CL	21	108.4	157
		(Northside of Upper N Slopes)	-1.5' FSG							
11/19/20	30	Clay Cover (1st lift) @ 170'E of Center of Drain Chan. STAS+00	7359.6	104.7	23.4	20-205	CL	25	96	19.9
		(Upper North Slope/Lower Ramp)	-1.5' FSG							
11/19/20	31	Clay Cover (2nd lift) @ 220'E of Center of Drain Chan. STA 4+00	7350.2	101	24.8	20-205	CL	25	96	199
		(Upper North Slope/Lower Ramp)	-1' FSG					N.		
11/19/20	32	Clay Cover (2nd lift) @ 180'E of Center of Drain Chan. STA 3+75	7345.8	103.7	24.6	20-205	CL	25	96	1 <u>9</u> 9
		(Upper North Slope/Lower Ramp)	-1' FSG							
11/19/20	33	Clay Cover (2nd lift) @ 250'E of Center of Drain Chan. STA 3+00	7350.3	103.2	24.6	20-205	CL	25	96	19.9
		(Upper North Slope/Lower Ramp)	-1' FSG							
11/19/20	34	Clay Cover(2nd lift) @ 200'E of Drain Chan. Sta 3+50	7350.8	105.6	23.3	20-205	CL	25	96	199
		(Upper North Slope/Lower Ramp)	-1'FSG							
11/19/20	35	Clay Cover (2nd lift) @ 40'E pf Center of Drain Chan. 5TA 1+50	7347	101.9	22.2	20-205	CL	25	96	19.9
		(Upper N Slope/Upper Ramp)	-1' FSG							
11/19/20	36	Clay Cover (2nd lift) @ 30'E of Center of Drain Chan. STA 1+30	7347.1	102.5	21.7	20-205	CL	25	96	19.9
		(Upper N Slope/Upper Ramp)								
	1									

Densities/Moisture Tests for Phase 3 Construction

		Densities/worstare					ASTM TEST			
			In-p	place De	nsities F	Results	D2487	D4318	D698	D698
Date	Test #	Location	Elev.	Ydry	W%	Sample #	Class.	PI	Max. Y	Opt M %
11/19/20		Clay Cover (2nd lift) @ 200'E of Center of Drain Chan STA S+00	7367	104.7	21	20-205	CL	25	96	19.9
11/15/20		(Upper N Slope/Lower ramp)	-1' FSG							<u></u>
11/25/20	38	Clay Cover (4th lift) @ 160'E/55'N of CP	7369.5	95.9	20.5	20-205	CL	_25	96	19.9
11/25/20		(Upper South Side)	FSG							
11/25/20	39	Clay Cover (4th Lift) @80'E/140'N of CP	7366.8	93.1	21.7	20-205	CL	25	96	19.9
		(Upper West Side)	FSG						<u> </u>	
11/25/20	40	Clay Cover (4th lift) @ 140'E/180'N of CP	7374.1	92.3	21.9	20-205	CL	_25	96	19.9
11,20,20	1	(Lower North Slopes)	FSG				<u> </u>		ļ	
11/25/20	41	Clay Cover(4th lift) @ 480'N/100' E of CP	7355.1	90.3	22.1	20-205	CL	25	96	19.9
	+	(Lower North Slopes)	FSG					<u> </u>	<u> </u>	
11/25/20	42	Clay Cover (4th lift) @ 400'N/240'E of CP	7360	19	91.5	20-205	CL_	25	96	19.9
	<u> </u>	(Lower North Slopes)	FSG		<u> </u>		<u> </u>	<u> </u>	<u> </u>	
	1				<u> </u>		<u> </u>			· · · · · · · · · · · · · · · · · · ·
	-			ļ	<u> </u>		<u> </u>	<u> </u>	<u> </u>	
							ļ		_	
	1						<u> </u>	<u> </u>	<u> </u>	
<u>├</u> ───	-									
									<u> </u>	
	1				<u> </u>		<u> </u>	<u> </u>		
					<u> </u>					
							<u> </u>			
							<u> </u>		+	
				<u> </u>		<u> </u>				
<u> </u>									<u> </u>	L., .

12/22/20

COMPACTION TEST RESULTS

PROJECT : Mt. Taylor Mine Clay Cap	& Growth Medium	Soil	CLIENT:	Rio Grande Resources Corporation
2020-2021 - San Mateo, NN	Ν	TEC	CHNICIAN:	Geoffrey Juskiewicz
PROJECT NO .: 444320-7350000.00	REPORT NO .:	5	DATE:	11/11/20
COA PROJECT NO .:				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Test No.	Location	Elevation	Proctor Number	Field Moisture (%)	Field Dry Density (PCF)	Relative Compaction (%)	Specified Compaction (%)
17	Clay cover upper west slope, fourth lift 70' N of CP at SW corner	7375 FSG	2	18.1	112.7	99	90
18	Clay cover upper west slope, fourth lift 110' N of CP at SW corner	7384 FSG	2	17.8	114.9	101	90
19	Clay cover upper west slope, fourth lift 100' N of CP at SW corner	7376 FSG	2	21.7	108.2	95	90
20	Clay cover upper west slope, fourth lift 150' N of CP at SW corner	7368 FSG	2	16.7	109.8	97	90
21	Clay cover upper west slope120' N of CP at SW corner	7388 FSG	2	17.1	114.1	101	90
22	Clay cover upper north slope 275' E of W edge @ sta 6+10	7370 FSG	2	18.4	103.5	91	90
23	Clay cover upper north slope 210' E of W edge @ sta 6+20	7380 FSG	2	19.0	109.4	96	90
24	Clay cover upper north slope 160' E of W edge @ sta 6+75	7388 FSG	2	18.1	108.8	96	90
25	Clay cover upper north slope 110' E of W edge @ sta 6+00	7375 FSG	2	18.6	103.8	91	90

	Proctor Test Utilized							
Proctor No.	Sample Location	Opt. Moisture Content (%)	Maximum Dry Dens (pef)	Soil Description				
2	Stockpile E of disposal cell (middle of stockpile/after processing) (20-207)	13.9		Clayey SAND				

WEATHER: Partly cloudy, breezy, cold

EQUIPMENT: 2 rock trucks, blade, dozer, water truck

REMARKS: Contracting personnel informed of the test results.

COMPACTION TEST RESULTS

 PROJECT :
 Mt. Taylor Mine Clay Cap & Growth Medium Soil
 CLIENT:
 Rio Grande Resources Corporatio

 2020-2021 - San Mateo, NM
 TECHNICIAN:
 Joe Deans

 PROJECT NO.:
 444320-7350000.00
 REPORT NO.:
 6
 DATE:
 11/17/20

COA PROJECT NO.:

Test No.	Location	Elevation	Procter Number	Field Mojsture (* s)	Field Dry Density (PCF)	Relative L'ompaction (*a)	Specified Compaction (Calification
26	Clay cover on south side of lower north slopes (1st lift) at 325' N x 80' E of CP	7367.9 -1.5' FSG	4	18.4	99.3	92	90
27	Clay cover on Westside of lower N slopes (1st lifts) at 420' N s 60' E of CP	7361.1 -1.5' FSG	4	17.7	99,9	92	90
28	Clay cover on north side of lower N slopes (1st lift) at 480' N x 140' E of CP	7356.7 -1.5' FSG	4	18.6	103.6	96	90
29	Clay cover on N side of lower N slopes (1st lift) 420' N x 240' E of CP	7354 -1.5' FSG	4	18.7	102.9	95	90

	Proctor Test Utilized							
Proetor No	Sample Location	Opt. Moisture Content (%)	Maximum Dry Dens (pef)	Soil Desemption				
4	Clay cover stockpile from borrow area "A" (20-213)	15.7	108.4	Sandy lean CLAY				

WEATHER: Clear, warm

EQUIPMENT: Dozer, blade, excavator, water truck

REMARKS: Contracting personnel informed of the test results.

COMPACTION TEST RESULTS

PROJECT : MI	. Taylor Mine Clay Cap	& Growth Medium	Soit	CLIENT	Rio Grande Resources Corporation
202	0-2021 - San Mateo, NN	Ń	TE	CHNICIAN:	Technician
PROJECT NO.:	444320-7350000.00	REPORT NO.:	7	DATE	Geoffrey Juskiewicz
COA PROJECT	NOT				

Tesi No.	Location	Elevation	Proctor Number	Field Mojsture (**)	Field Dry Density (PCF)	Relative Costypiction (%)	Specified Compartion (%s)
30	Clay layer upper north slope 170'E of center of drainage channel (@ sta 5+00 lower ramp	7367 Ist lift	1	23.4	104.7	109	90
31	Clay layer upper north slope 220 ^t E of center of drainage channel $\langle \hat{a} \rangle$ sta 4+00 lower ramp	7354 2nd lift	1	24.8	101.0	105	90
32	Clay layer upper north slope 180' E of center of drainage channel @ sta 3+70 lower ramp	7350 2nd lift	1	24.6	103.7	108	90
33	Clay layer upper north slope 250' E of center of drainage channel @ sta 3+00 lower ramp	7348 2nd lift	l	24.6	103.2	108	90
34	Clay layer upper north slope 200' E of center of drainage channel @ sta 3+50 lower ramp	7346 2nd lift	ł	23.3	105.6	110	90
35	Clay layer upper north slope 40' E of center of drainage channel (<i>q</i>) sta 1+50 upper ramp	7366 2nd lift	1	22.2	101.9	106	90
36	Clay layer upper north slope 30° E of center of drainage channel $@$ sta 1+30 upper ramp	7362 2nd lift	1	21.7	102-5	107	90
37	Clay layer upper north slope 200' E of center of drainage channel @ sta 5+00 lower ramp	7367 2nd lift	1	21.0	104.7	109	90

	Proctor Te	si omzeu		
Prootai No	Supple Location	Opt Moisture Centent (%)	Maxanura Dry Dans (pef)	Soil Description
1	East side of horrow area "B" at elevation 7248 (20-205)	19.9	96.0	Lean CLAY with sand

WEATHER Windy, sunny

EQUIPMENT: Dozer, blade, water trucks, 2 rock trucks

REMARKS: Contracting personnel informed of the test results.

COMPACTION TEST RESULTS

PROJECT : Mt. Taylor Mine Clay Cap	a orowur meunum	3011	CLIENT:	Rio Grande Resources Corporatio	
2020-2021 - San Mateo, NN	Л	TEC	CHNICIAN:	Joe Deans	
PROJECT NO.: 444320-7350000.00	REPORT NO .:	8	DATE:	11/25/20	

Location	Elevation	Protor Number	Pield Motetree (%0)	Field Day Density (NCF)	Relative Compaction (%)	Specified Compaction (%)
Clay cover (final lift) upper south slope 160' E x 55' N of CP	7376 FSG	1	20.5	95.9	100	90
Clay cover (final lift) upper west slope 140' N x 80'	7375	1	21.7	93.1	97	90
Clay cover (final lift) upper north slope 180' N x 140' S of CP	7386	1	21.9	92.3	96	90
Clay cover (final lift) lower north slope 480' N x 100'	7356	1	22.1	90.3	94	90
Clay cover (final lift) lower north slope 400' N x 240' 3 of CP	7360 FSG	1	19.0	91.5	95	90
1 41 41 41 41 41 41 41 41 41 41 41 41 41	Clay cover (final lift) upper south slope 160' E x 55' I of CP Clay cover (final lift) upper west slope 140' N x 80' i of CP Clay cover (final lift) upper north slope 180' N x 140' i of CP Clay cover (final lift) lower north slope 480' N x 100' of CP Clay cover (final lift) lower north slope 480' N x 240'	Clay cover (final lift) upper south slope 160' E x 55' 7376 I of CP FSG Clay cover (final lift) upper west slope 140' N x 80' 7375 FSG FSG Clay cover (final lift) upper north slope 180' N x 140' 7386 FSG FSG Clay cover (final lift) upper north slope 480' N x 140' 7386 FSG FSG Clay cover (final lift) lower north slope 480' N x 100' 7356 of CP FSG Clay cover (final lift) lower north slope 400' N x 240' 7360	Clay cover (final lift) upper south slope 160' E x 55'7376N of CPFSG1Clay cover (final lift) upper west slope 140' N x 80'7375C of CPFSG1Clay cover (final lift) upper north slope 180' N x 140'7386C of CPFSG1Clay cover (final lift) lower north slope 480' N x 100'7356C of CPFSG1Clay cover (final lift) lower north slope 480' N x 100'7356C of CPFSG1Clay cover (final lift) lower north slope 400' N x 240'7360Clay cover (final lift) lower north slope 400' N x 240'7360	Clay cover (final lift) upper south slope 160' E x 55'73761N of CPFSG120.5Clay cover (final lift) upper west slope 140' N x 80'73751Clay cover (final lift) upper north slope 180' N x 140'73861Clay cover (final lift) upper north slope 180' N x 140'73861Clay cover (final lift) lower north slope 480' N x 100'73561Clay cover (final lift) lower north slope 400' N x 240'73601	Clay cover (final lift) upper south slope 160' E x 55' 7376 1 20.5 95.9 V of CP FSG 1 21.7 93.1 Clay cover (final lift) upper west slope 140' N x 80' 7375 1 21.7 93.1 Clay cover (final lift) upper north slope 180' N x 140' 7386 1 21.9 92.3 Clay cover (final lift) lower north slope 480' N x 100' FSG 1 22.1 90.3 Clay cover (final lift) lower north slope 400' N x 240' 7360 1 10.0 01.5	Clay cover (final lift) upper south slope 160' E x 55' 7376 1 20.5 95.9 100 Clay cover (final lift) upper west slope 140' N x 80' 7375 1 21.7 93.1 97 Clay cover (final lift) upper north slope 180' N x 140' 7386 1 21.7 93.1 97 Clay cover (final lift) upper north slope 180' N x 140' 7386 1 21.9 92.3 96 Clay cover (final lift) lower north slope 480' N x 100' 7356 1 22.1 90.3 94 Clay cover (final lift) lower north slope 400' N x 240' 7360 1 10.0 91.5 95

	Proctor Test Utilized										
Procley No.	Sample Location	Opt. Moisture Content (%)	Maximum Dry Ders (pef)	Soil Description							
1	East side of borrow area "B" at elevation 7248 (20-205)	19.9	96.0	Lean CLAY with sand							

WEATHER: Clear, warm

EQUIPMENT: Dozers, front loader, water truck, end dumps

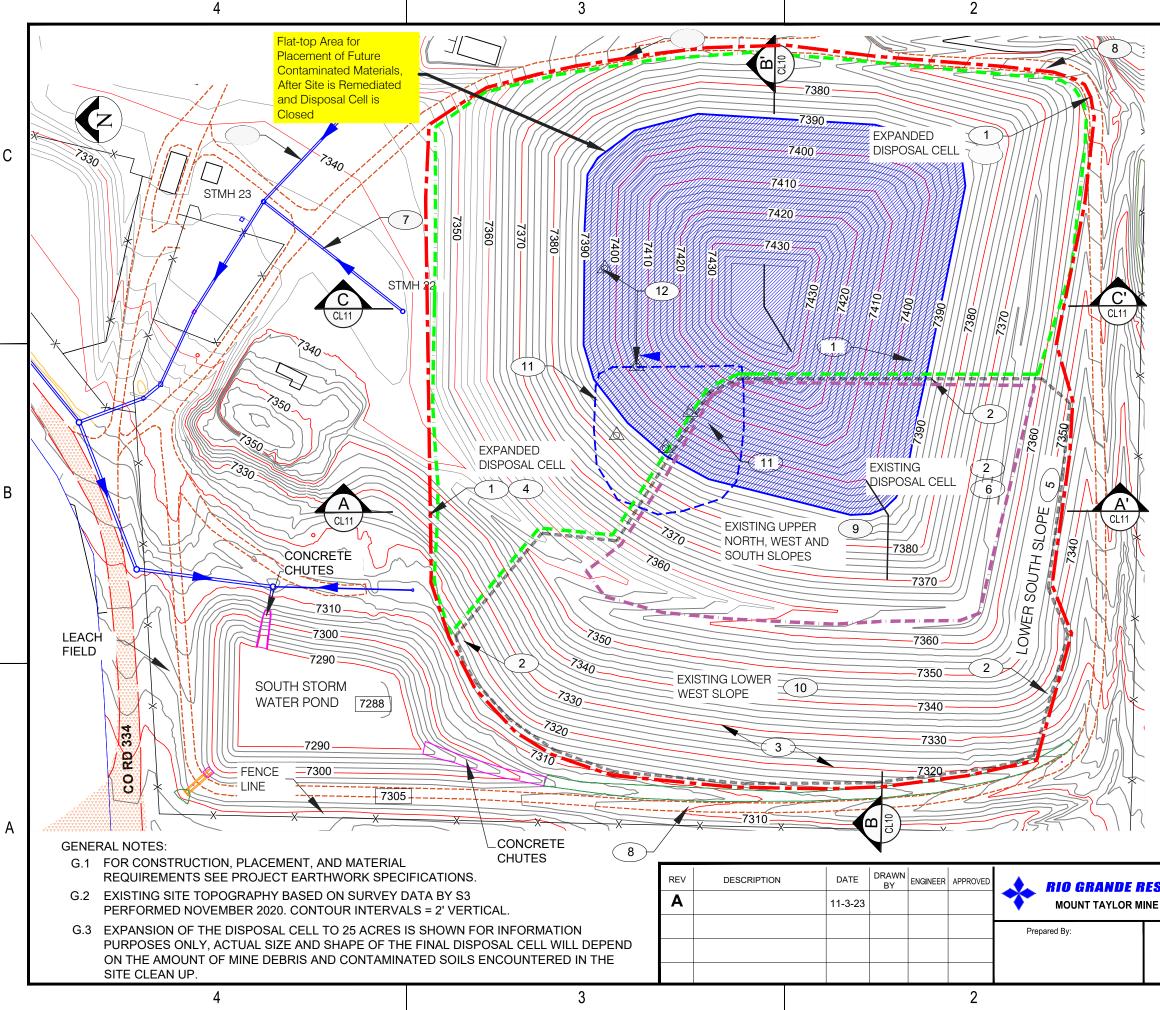
REMARKS: Contracting personnel informed of the test results.

C.6 Riprap Tests

Mt Taylor Mine Waste Rock Pile/ Disposal Cell CQAR

Client: Rio Grande Resources Corporation

Project: Mt. Taylor Mine Clay Cap & Growth Medium Soil 2020-2021 - San Mateo, NM


Date Sampled: 11/18/20 Sample Number: 1

Location: Stockpiled 4-8" Rip Rap Material

	Sieve Analysis Test Result ASTM D422	ts	
Sieve Size	% Passing By Weight	Specs	Specs
8" 4"	5		
4" 1 1/2"	84 11		

NMED Cmnt 21

Disposal CEll Ful-25-Ac Buildout, Placement of Small Containment

NOTES:

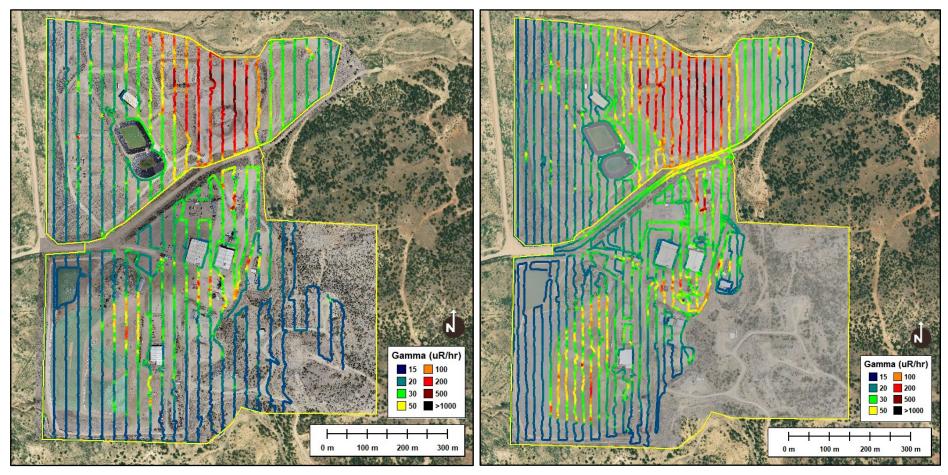
- (1) EXPANDED DISPOSAL CELL. (SEE NOTE G.3)
- 2 WASTE ROCK PILE AND DISPOSAL CELL AS OF DECEMBER 2021 - (11.5 ACRES)
- (3) WASTE ROCK PILE SLOPES = 5H TO 1V
- 4 ALL NEW SLOPES = 24" THICK CLAY COVER (RADON BARRIER) AND 24" LOAM COVER (GROWTH MEDIA)
- 5 LOWER SOUTH SLOPE = CONSTRUCTED WITH CLEAN SOILS (NO COVER NEEDED).
- 6 EXISTING DISPOSAL CELL WITH 1' THICK CLAY LINER.
- 7 STORM DRAINAGE PIPES AND MANHOLES
- (8) EXISTING SERVICE ROADS
- 9 THE EXISTING UPPER NORTH, WEST AND SOUTH SLOPE COVER SOILS = 24" OF GROWTH MEDIA SOIL OVER 24" CLAY RADON BARRIER. (AS OF FEBRUARY 2022 THERE IS 18" GROWTH MEDIA OVER 24" CLAY)
- 10 THE EXISTING LOWER WEST SLOPE COVER SOILS = 18" OF GROWTH MEDIA SOIL OVER 24" CLAY RADON BARRIER. (AS OF FEBRUARY 2022 THERE IS 12" GROWTH MEDIA OVER 24" CLAY)
- 11 BURIED LAGOON AREA. FILL OVER THIS AREA IF NEEDED.
- 12 LAGOON MONITORING WELLS WILL BE ABANDONED AS APPROVED BY NMED.

LEGEND

	EXISTING CONTOURS	
	10' INTERVAL CONTOURS	
	SERVICE ROADS	
	DRAINAGE PIPES	
	EXISTING DISPOSAL CELL (CLAY LINED)	
	EXPANDED DISPOSAL CELL (CLAY LINED)	
	EXISTING WASTE ROCK / DISPOSAL CELL (11.5 ACRES)	
<u>ت الت</u>	WASTE ROCK PILE / DISPOSAL CELL FULL BUILDOUT (25 ACRES)	
\bigcirc	BURIED LAGOON AREA	A

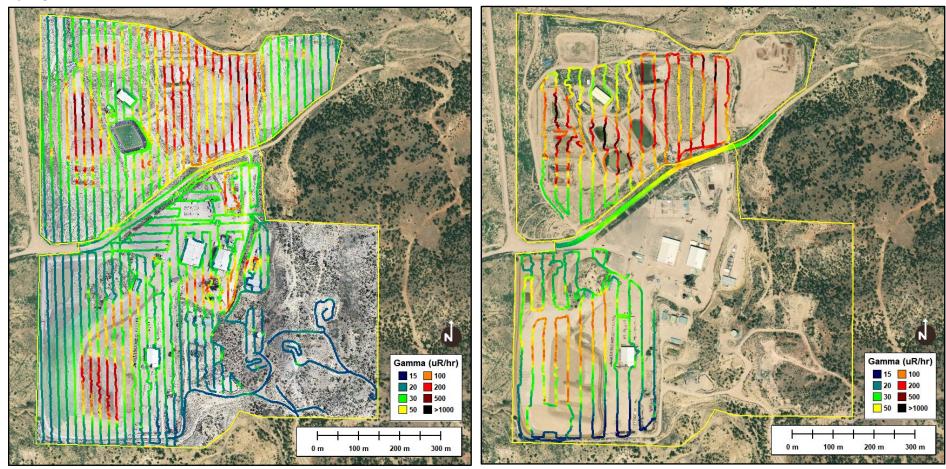
SOURCES	CORP.	MT. TAYLOR MINE 2022 CLOSEOUT / CLOSURE PLAN				
E - San Mateo, Drawn By:	PRINT SIZE:	SHEET TITLE:		ation of Small Containment CEI Top of Closed Disposal Cell	I	
	B SCALE: As Shown	SHEET NC).	DWG NO.	REV	

С


В

NMED Cmnt 25

Radiological Scans 2019-2021



Spring 2020:

Spring 2019:

Spring 2018 (pre-construction data):

NMED Cmnt 28

Radon Flux measurement, Lower West Slope, WRP (2019)

Radon Flux Measurements Report Waste Repository Cover at Mt. Taylor Mine

Cibola County, NM

Prepared for:

RIO GRANDE RESOURCES **Mount Taylor Mine**

PO Box 1150 Grants, NM 87020 505-287-7971

Prepared by:

Environmental Restoration Group, Inc.

8809 Washington St. NE, Suite 150 Albuquerque, NM 87113 505-298-4224

May 7, 2019

Radon Flux Measurements Report Mt. Taylor Mine

1. Introduction

Twenty-two radon flux canisters were prepared by Environmental Restoration Group (ERG) and transferred from ERG's Albuquerque, NM office to the Rio Grande Resources' Mt. Taylor Mine (San Mateo, NM) for deployment on radon barrier cover material constructed over mine waste materials. Prior to delivery to the site, all canisters were heated in an oven for a 24-hour period at a temperature of approximately 220 degrees Fahrenheit to drive off any radon gas on the activated charcoal collection media, followed by sealing in plastic bags. On April 25, 2019, twenty of the canisters were deployed at locations over the constructed radon barrier in a manner consistent with EPA Method 115 (EPA, 1991). The remaining two canisters were left sealed in their plastic bags and used as trip blanks. The canisters were retrieved 24-hours later on April 26, 2019. The flux measurement locations design was based on a triangular-grid pattern with randomized start point as generated using the U.S. Department of Energy's statistical design software package Visual Sampling Plan (VSP, 2019). The area selected for study was chosen where at least a 15-foot thickness of waste rock material was expected to exist below the cover material; and as such, the area expected to have the highest flux rates.

2. Results

The 20 deployed canisters and 2 trip blank canisters were analyzed at ERG offices April 26 and 27, 2019 according to EPA Method 115 protocols. Results are provided in Attachment A. The average radon flux for the 20 locations measured is 1.23 pCi/m²s, with the maximum flux rate of 3.12 pCi/m²s measured at Location 15. The average flux was calculated as follows:

• Radon flux at each location was measured using a single canister. Three of the single canisters were counted twice as laboratory analytical duplicates, with each canister's average flux rate being used as the location flux rate.

The average flux rate for all measured locations is below the 20.0 pCi/m²s limit for radon-222 emissions to the atmosphere as prescribed in the 10 CFR Part 40, Appendix A, Criterion 6(1) standard. The results for all canisters are presented in both tabular and figure form in Appendix A of this Report, with deployment and retrieval logs included in Appendix B.

3. Quality Assurance

Environmental conditions required by EPA Method 115 for acceptable deployment of canisters are:

- No rainfall within 24-hours prior to deployment, and if rainfall during deployment then the seal around the lip of the canister must remain intact and the canister cannot be surrounded by water.
- The temperature during deployment must not fall below 35 degrees Fahrenheit, and the ground cannot be frozen.

The meteorological data recorded at the onsite weather monitoring station, included in Appendix C, indicates there was no detected rainfall at the site within 24 hours of canister deployment, and the minimum temperature during canister deployment was above 35 degrees Fahrenheit.

Two independent sources were used to calibrate the spectrometer before, during and after the counting of canisters. The independent sources were measured using identical counting geometry conditions to that of

the deployed canisters. Good agreement between calibration factors was obtained, as shown in Table 3-1. The relative percent difference (RPD) of the average counting efficiencies for the two sources was 4.5 percent, less than the 10-percent accuracy required by EPA Method 115.

Three of the canisters were reanalyzed for laboratory duplicate analysis comparison. The second analysis is indicated in the Appendix A results table with a "D" shown in the Lab Type column. The comparison of results shown in Table 3-2 is consistent with typical gamma spectroscopy results. Of the three canisters analyzed for duplicate comparison, only two met the EPA Method 115 criteria requiring a precision of 10 percent; with the remaining canister having an average flux rate below the requisite threshold of 1.0 pCi/m²s. Regardless, all three canisters (312, 509 and 528) passed duplicate analysis comparison with a relative percent differences (RPD) of 8.3, 5.6 and 2.0 percent, respectively. The RPD were calculated as follows:

 $RPD = \frac{|A - B|}{(A + B)/2}$ A = Flux from first canister analysis B = Flux from second canister analysis

All 20 deployed canisters yielded usable results, greater than the 85 percent completeness required by EPA Method 115. Two trip blanks were included with the batch and were counted without exposing them to radon. The measured fluxes for the two canisters (482 and 68) were -0.27 and -0.32 pCi/m²s, respectively, near the expected 0 pCi/m²s value. These results indicate that the canisters had not been exposed during deployment, confirming the integrity of the bags.

Standard	Date	Count Time (seconds)	Source (nCi)	Counts	Average Background Counts	Efficiency (cps/Bq) ¹	Error (1 SD) ²
STD #1	4/26/19	1200	80.00	44610	3663.5	0.01153	6.19E-05
STD #3	4/26/19	1200	78.83	41912	3663.5	0.01093	6.10E-05
STD #1	4/26/19	1200	80.00	44869	3663.5	0.01160	6.20E-05
STD #3	4/26/19	1200	78.83	42028	3663.5	0.01096	6.11E-05
Mean of ST	D #1					0.01156	
Mean of ST	D #3			0.01095			
Relative Per	rcent Differen	ce of Standards		5.5%			

Table 3-1 Gamma Spectrometer Calibrations

Note:

¹Efficiency unit is net counts-per-second per source activity in becquerels.

² SD: standard deviation of efficiency.

 Table 3-2
 Comparison Data of Laboratory Analysis Duplicates

Canister	Analysis (A) pCi/m²s				
312 ²	0.69	0.63	8.3		
509	1.95	1.84	5.6		
500	2.53	2.48	2.0		

Note:

¹Relative Percent Difference (RPD) was calculated as using the equation presented earlier in this document.

² For Canister 402 no RPD calculation is necessary since the average result is below 1.0 pCi/m²s. Regardless, results are presented for

References

U.S. Environmental Protection Agency (EPA), 1991. 40 CFR 61 Appendix B, Method 115 – Monitoring for Radon-222 Emission

VSP Development Team (VSP). 2019. Visual Sample Plan: A Tool for Design and Analysis of Environmental Sampling. Version 7.10. Pacific Northwest National Laboratory. Richland, WA. http://vsp.pnnl.gov

Appendix A

Radon Flux Measurement Results

Radon Flux Measurements

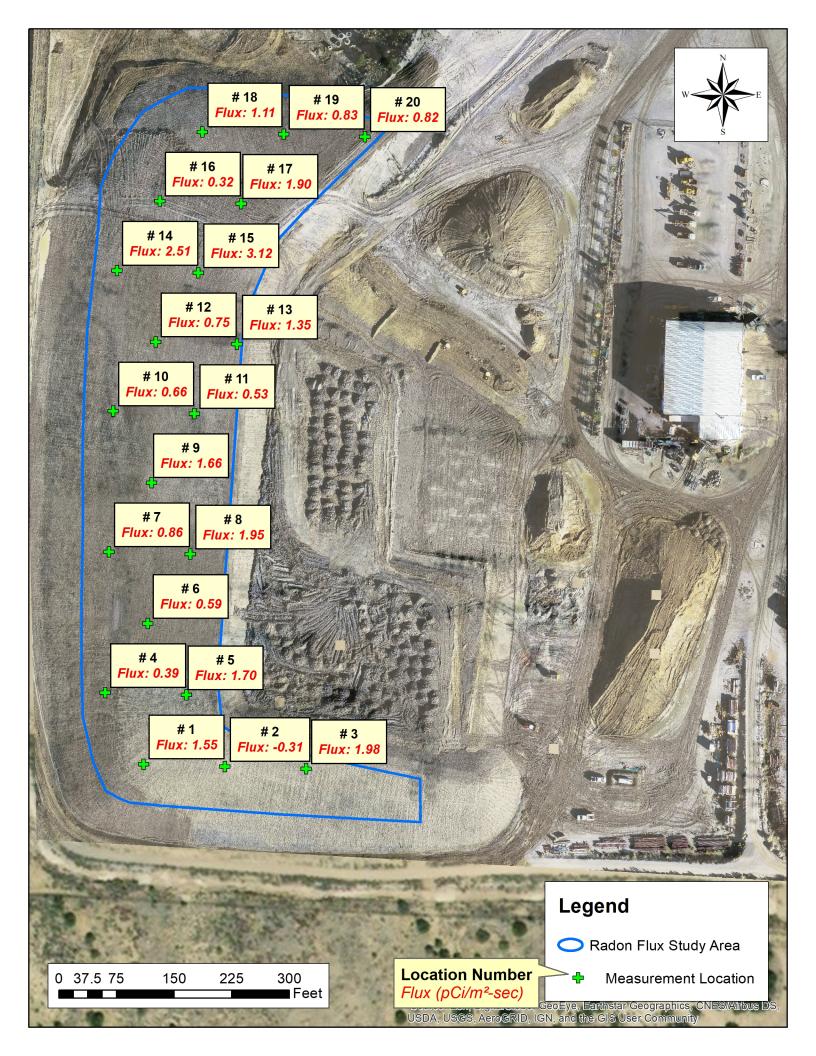
				Date/Time							Flux (p(Ci/m²s)		
Location Name	Field Type	Canister Number	Deployment	Retrieval	Counting	Count Time (sec)	BKG Counts	Lab Type	Sample Counts	Efficiency (cps/dps)	Result	LLD	Error 1.00 S.D.	Remarks
1	~ J F*	49	04/25/2019 09:27	04/26/2019 09:27	04/26/2019 16:53	1200	3663.5		6595	0.0113	1.55	0.2	0.05	ок
2		409	04/25/2019 09:29	04/26/2019 09:29	04/26/2019 16:11	1200	3663.5		3066	0.0113	-0.31	0.2	0.04	0K
3		417	04/25/2019 09:31	04/26/2019 09:31	04/26/2019 16:32	1200	3663.5		7425	0.0113	1.98	0.2	0.06	0K
4		459	04/25/2019 09:39	04/26/2019 09:39	04/26/2019 15:50	1200	3663.5		4401	0.0113	0.39	0.1	0.05	0K
5		488	04/25/2019 09:41	04/26/2019 09:41	04/26/2019 17:34	1200	3663.5		6859	0.0113	1.7	0.2	0.05	OK
6		510	04/25/2019 09:46	04/26/2019 09:47	04/26/2019 17:14	1200	3663.5		4780 -	0.0113	0.59	0.2	0.05	0K
7		524	04/25/2019 09:49	04/26/2019 09:49	04/26/2019 17:55	1200	3663.5		5273	0.0113	0.86	0.2	0.05	OK
8		514	04/25/2019 09:52	04/26/2019 09:52	04/26/2019 18:16	1200	3663.5		7318	0.0113	1.95	0.2	0.06	0K
9		519	04/25/2019 09:58	04/26/2019 09:58	04/26/2019 20:01	1200	3663.5		6740	0.0113	1.66	0.2	0.06	оĸ
10		312	04/25/2019 10:01	04/26/2019 10:01	04/26/2019 19:19	1200	3663.5		4940	0.0113	0.69	0.2	0.05	оĸ
10		312	04/25/2019 10:01	04/26/2019 10:01	04/26/2019 19:40	1200	3663.5	D	4835	0.0113	0.63	0.2	0.05	0 <mark>K</mark>
10		521	04/25/2019 10:04	04/26/2019 10:04	04/26/2019 18:58	1200	3663.5		4653	0.0113	0.53	0.2	0.05	0 <mark>K</mark>
12		516	04/25/2019 10:10	04/26/2019 10:15	04/26/2019 18:37	1200	3663.5		5068	0.0113	0.75	0.2	0.05	OK
12		525	04/25/2019 10:13	04/26/2019 10:16	04/26/2019 20:22	1200	3663.5		6177	0.0113	1.35	0.2	0.05	0 <mark>K</mark>
14		528	04/25/2019 10:18	04/26/2019 10:18	04/26/2019 21:03	1200	3663.5	D	8323	0.0113	2.53	0.2	0.06	0 <mark>K</mark>
14		528	04/25/2019 10:18	04/26/2019 10:18	04/26/2019 20:42	1200	3663.5		8241 -	0.0113	2.48	0.2	0.06	0 <mark>K</mark>
15		517	04/25/2019 10:22	04/26/2019 10:22	04/26/2019 21:24	1200	3663.5		9406	0.0113	3.12	0.2	0.06	0 <mark>K</mark>
16		4	04/25/2019 10:29	04/26/2019 10:34	04/26/2019 21:44	1200	3663.5		4260	0.0113	0.32	0.2	0.05	0K
10		509	04/25/2019 10:33	04/26/2019 10:42	04/26/2019 23:07	1200	3663.5		7223	0.0113	1.95	0.2	0.06	0 <mark>K</mark>
17		509	04/25/2019 10:33	04/26/2019 10:42	04/26/2019 23:27	1200	3663.5	D	7022	0.0113	1.84	0.2	0.06	о <mark>к</mark>
18		486	04/25/2019 10:39	04/26/2019 10:44	04/26/2019 22:26	1200	3663.5		5703	0.0113	1.11	0.2	0.05	0 <mark>K</mark>
18		520	04/25/2019 10:33	04/26/2019 10:46	04/26/2019 22:05	1200	3663.5		5190	0.0113	0.83	0.2	0.05	0 <mark>K</mark>

Types: D-Duplicate, TB-Trip Blank

Reviewed by:

m

Radon Flux Measurements


Environmental Restoration Group, Inc. 8809 Washington St. NE, Suite 150 Albuquerque, NM, 87113

			Date/Time						Flux (pCi/m ² s)				
Field	Canister	Deployment	Retrieval	Counting	Count Time (sec)	BKG Counts	Lab Type	Sample Counts	Efficiency (cps/dps)	Result	LLD	Error 1.00 S.D.	Remarks
.,p.		04/25/2019 10:46	04/26/2019 10:47	04/26/2019 22:46	1200	3663.5		5165	0.0113	0.82	0.2	0.05	<mark>o</mark> k
TB		04/25/2019 12:00	04/26/2019 12:00	04/26/2019 15:29	1200	3663.5		3134	0.0113	-0.27	0.1	0.04	<mark>o</mark> k
			04/26/2019 12:00	04/26/2019 15:08	1200	3663.5		3037	0.0113	-0.32	0.1	0.04	ок
	Field Type TB TB	TypeNumber472TB482	Type Number Deployment 472 04/25/2019 10:46 TB 482 04/25/2019 12:00	Type Number Deployment Retrieval 472 04/25/2019 10:46 04/26/2019 10:47 TB 482 04/25/2019 12:00 04/26/2019 12:00	Field Type Canister Number Deployment Retrieval Counting 472 04/25/2019 10:46 04/26/2019 10:47 04/26/2019 22:46 TB 482 04/25/2019 12:00 04/26/2019 12:00 04/26/2019 15:29	Field Type Canister Number Deployment Retrieval Counting Count Time (sec) 472 04/25/2019 10:46 04/26/2019 10:47 04/26/2019 22:46 1200 TB 482 04/25/2019 12:00 04/26/2019 12:00 04/26/2019 15:29 1200	Field Type Canister Number Deployment Retrieval Counting Count Time (sec) BKG Counts 472 04/25/2019 10:46 04/26/2019 10:47 04/26/2019 22:46 1200 3663.5 TB 482 04/25/2019 12:00 04/26/2019 12:00 04/26/2019 15:29 1200 3663.5	Field Type Canister Number Deployment Retrieval Counting Count Time (sec) BKG Counts Lab Type 472 04/25/2019 10:46 04/26/2019 10:47 04/26/2019 22:46 1200 3663.5 TB 482 04/25/2019 12:00 04/26/2019 15:09 04/26/2019 15:09 1200 3663.5	Field Type Canister Number Deployment Retrieval Counting Count Time (sec) BKG Counts Lab Type Sample Counts 472 04/25/2019 10:46 04/26/2019 10:47 04/26/2019 22:46 1200 3663.5 5165 TB 482 04/25/2019 12:00 04/26/2019 12:00 04/26/2019 15:29 1200 3663.5 3134	Field Type Canister Number Deployment Retrieval Counting Count Time (sec) BKG Counts Lab Type Sample Counts Efficiency (cps/dps) 472 04/25/2019 10:46 04/26/2019 10:47 04/26/2019 22:46 1200 3663.5 5165 0.0113 TB 482 04/25/2019 12:00 04/26/2019 15:29 1200 3663.5 3134 0.0113	Field Type Canister Number Deployment Retrieval Counting Counting Count Time (sec) BKG Counts Lab Type Sample Counts Efficiency (cps/dps) Result 472 04/25/2019 10:46 04/26/2019 10:47 04/26/2019 22:46 1200 3663.5 5165 0.0113 0.82 TB 482 04/25/2019 12:00 04/26/2019 15:29 1200 3663.5 3134 0.0113 -0.27	Field Type Canister Number Deployment Retrieval Counting Time (sec) Counts Type Counts Efficiency (cps/dps) Result LLD 472 04/25/2019 10:46 04/26/2019 10:47 04/26/2019 22:46 1200 3663.5 5165 0.0113 0.82 0.2 TB 482 04/25/2019 12:00 04/26/2019 15:29 1200 3663.5 3134 0.0113 -0.27 0.1	Field Canister Deployment Retrieval Counting Efficience Efficience

Types: D-Duplicate, TB-Trip Blank

Reviewed by:

2

Appendix B

Field Deployment and Laboratory Analysis Log Forms

RGR Site: Mt. TAYLOR MINE

ERG Canister Deployment and Retrieval Log Form

• Minimum temperature during canister deployment: 45.1 °F

How was onsite minimum temperature measured? 6NITE MET DATA STATION

• Was there rain onsite in the 24 hours prior to or during deployment? Yes No (circle one) How was the amount of onsite precipitation determined? ONSITE WET STATON

Location Number	Canister Number	Deployment Date (mm/dd/yy)	Deployment Time (24:00)	Retreival Date (mm/dd/yy)	Retrieval Time (24:00)	Comments
1	49	4/25/19	9:27	4/26/19	9:27	
2	409		9:29		9:29	
3	417		9:31		9:31	
4	459		9:39		9-39	
5	488		9:41		9:41	
6	510		9:46		9:47	
7	524		9:49		9:49	
8	514		9:52		9:52	
9	519		9:58		9:58	
10	312		10:01		10:01	
11	521		10:04		10:04	
12	516		10:10		10:15	
13	525		10:13		10:16	
14	528		10:18		10:18	
15	517		10:22		10:22	
16	4		10:29		10:34	
17	509		10:33		10:42	
18	486		10:39		10:44	
19	520		10:43		10:46	
20	472		10:46		10:47	
21	482		12:00	12:000		TRIP BLANK
22	68	V	12:00	12:00C	12:00	TAIP BLANK
23						
24						
25						

Т.В. Т.В.

Review:

Page : _____ of ____

Canister Analysis Log Form

Site: <u>R.G.R. Mt. TAYLOR MINE</u> ROI: Channel <u>440</u> to Channel <u>540</u>

Canister Number	Duplicate Count	Count Date (mm/dd/yy)	Count Time (24:00)	Count Duration (seconds)	Total Counts	Technician Initials
STD #1 A		4/26/19	14:04 (7)	1200	44610	5
570 # 3 A		4/26/19	14:27	1200	41912	S
BKG #1		4/26/19	14:48	1200	3986	£
68		4/26/19	15:08	1200	3037	F
482		4/26/19	15:29	1200	3134	CF
459		4/26/19	15:50	1200	4401	ef
409		4/26/19	16:11	1200	3066	Æ
417		4/26/19	16:32	1200	7425	t
49		4/26/19	16:53	1200	6595	J J
510		4/26/19	17:14	1200	0978 478	E o
488		4/26/19	17:34	1200	6859	F
524		4/26/19	17:55	1200	5273	cf
514		4/26/19	18:16	1200	7318	A
516		4/26/19	18:37	1200	5068	ct
521		4/26/19	18:58	1200	4653	cF
312		4/26/19	19:19	1200	4940	cf
312	V	4/26/19	19:40	1200	4835	P
519		4/26/19	20:01	1200	6740	cf
525		4/26/19	20:22	1200	6177	cf
528		4/26/19	20:42	1200	8241	A
528	/	4/26/19	21:03	1200	8323	F
517		4/26/19	24:24	1200	9406	£
4		4/26/19	21:44	1200	4260	cF
520		4/26/19	22:05	1200	5190	cf
486		4/26/19	22:26	1200	5703	F
472		4/26/19	22:46	1200	5165	cf
509		4/26/19	23:07	1200	7223	cf
509	V	4/26/19	23:27	1200	7022	ef
STD #1 B		4/26/19	23:49	1200	44869	cf
570#3 13		4/22/19	00110	1200	42028	cot
3KG H 2 Review:	0	4/27/19	00:31	1200	334 l Date:	F

Page : _____ of ____

Appendix C

Meteorological Station Data Output

Mt.Taylor Mine 4/24/19

Date	Time	Temp Out	Hi Temp	Low Temp	Out Hum		Wind Speed	Wind Dir		Hi Speed	Hi Dir		Heat Index	THW Index			Rain Rate	Heat D-D	Cool D-D	In Temp	In Hum	In Dew	In Heat		In Air Density	
4/24/19	1:00a	37.6	38.3	37.3	84	33.2	0.0	SE	0.00	3.0	SE	37.6	37.4	37.4	29.977			1.142	0.000	65.8	27	30.9	61.5	5.85	.0752	
4/24/19	2:00a	37.2	37.7	36.2	83	32.5	0.0		0.00	0.0		37.2	37.0	37.0	29.972	0.00	0.00	1.158	0.000	65.4	27	30.5	61.2	5.85	.0753	
4/24/19	3:00a	36.0	37.6	36.0	83	31.3	0.0		0.00	0.0		36.0	35.8	35.8	29.964	0.00	0.00	1.208	0.000	64.9	27	30.1	60.7	5.85	.0753	
4/24/19	4:00a	35.9	36.8	35.6	87	32.4	0.0	SE	0.00	4.0	SE	35.9	35.7	35.7	29.975	0.00	0.00	1.212	0.000	64.7	27	29.9	60.5	5.85	.0754	
4/24/19	5:00a	35.5	36.2	35.4	87	32.0	0.0		0.00	0.0		35.5	35.3	35.3	29.965	0.00	0.00	1.229	0.000	64.1	27	29.4	59.9	5.85	.0755	
4/24/19	6:00a	35.5	35.6	35.0	88	32.3	0.0	SW	0.00	4.0	SW	35.5	35.4	35.4	29.971	0.00	0.00	1.229	0.000	64.7	27	29.9	60.5	5.85	.0754	
4/24/19	7:00a	36.7	36.7	35.0	89	33.8	0.0		0.00	0.0		36.7	36.6	36.6	29.978	0.00	0.00	1.179	0.000	64.7	28	30.8	60.6	5.96	.0754	
4/24/19	8:00a	43.4	43.5	36.7	78	37.0	0.0		0.00	0.0		43.4	43.1	43.1	29.997	0.00	0.00	0.900	0.000	67.3	28	33.1	63.3	5.95	.0750	
4/24/19	9:00a	51.0	52.0	43.5	62	38.4	0.0	NNE	0.00	5.0	N	51.0	50.2	50.2	30.001	0.00	0.00	0.583	0.000	69.2	29	35.6	65.5	6.07	.0747	
4/24/19	10:00a	52.6	52.6	50.9	61	39.5	3.0	NNE	3.00	12.0	N	52.6	51.6	51.6	30.002	0.00	0.00	0.517	0.000	71.2	30	38.2	68.0	6.20	.0744	
4/24/19	11:00a	57.4	57.5	52.6	52	39.9	3.0	NE	3.00	12.0	NNE	57.4	55.6	55.6	29.992	0.00	0.00	0.317	0.000	71.9	28	37.0	68.8	5.84	.0743	
4/24/19	12:00p	57.6	60.6	57.0	49	38.6	4.0	NE	4.00	15.0	NNE	57.6	55.6	55.6	29.959	0.00	0.00	0.308	0.000	72.6	29	38.5	70.0	5.95	.0741	
4/24/19	1:00p	64.0	64.3	57.5	33	34.3	4.0	ENE	4.00	19.0	ENE	64.0	60.6	60.6	29.937	0.00	0.00	0.042	0.000	70.2	28	35.5	66.5	5.94	.0744	
4/24/19	2:00p	64.5	66.0	62.0	. 31	33.2	5.0	E	5.00	19.0	ENE	64.5	60.9	60.9	29.914	0.00	0.00	0.021	0.000	74.6	24	35.4	72.3	5.17	.0737	
4/24/19	3:00p	63.7	65.4	62.9	25	27.2	7.0	NE	7.00	17.0	NNE	63.7	59.1	59.1	29.912	0.00	0.00	0.054	0.000	77.3	22	35.5	75.7	4.85	.0734	
4/24/19	4:00p	63.8	64.5	63.3	26	28.2	8.0	SSW	8.00	18.0	SW	63.0	59.4	58.6	29.897	0.00	0.00	0.050	0.000	79.9	19	33.9	76.8	4.35	.0730	
4/24/19	5:00p	64.3	65.4	63.5	23	25.7	8.0	SSW	8.00	20.0	SSW	63.6	59.5	58.8	29.882	0.00	0.00	0.029	0.000	80.7	18	33.2	77.5	4.04	.0729	
4/24/19	6:00p	64.9	65.2	63.8	24	27.2	8.0	SSW	8.00	20.0	S	64.3	60.2	59.6	29.883	0.00	0.00	0.004	0.000	80.6	17	31.7	77.3	3.84	.0729	
4/24/19	7:00p	63.5	65.1	63.4	26	28.0	10.0	SSW	10.00	19.0	SSW	61.1	59.1	56.7	29.867	0.00	0.00	0.063	0.000	79.2	17	30.6	76.0	3.87	.0731	
4/24/19	8:00p	59.1	63.5	59.1	29	26.8	5.0	SW	5.00	15.0	S	58.9	55.5	55.3	29.874	0.00	0.00	0.246	0.000	76.5	17	28.4	74.6	3.92	.0735	
4/24/19	9:00p	53.6	59.1	53.5	37	27.9	0.0		0.00	0.0		53.6	51.3	51.3	29.891	0.00	0.00	0.475	0.000	73.5	18	27.4	70.1	4.18	.0740	
4/24/19	10:00p	52.7	53.8	52.6	37	27.1	0.0	NNE	0.00	4.0	NE	52.7	50.5	50.5	29.899	0.00	0.00	0.512	0.000	71.1	20	28.0	66.9	4.55	.0743	
4/24/19	11:00p	52.8	52.9	52.2	39	28.5	1.0	NE	1.00	5.0	NE	52.8	50.7	50.7	29.898	0.00	0.00	0.508	0.000	69.2	20	26.4	64.5	4.55	.0746	
4/25/19	12:00a	51.2	52.8	51.2	41	28.3	0.0	NE	0.00	5.0	NE	51.2	49.5	49.5	29.896	0.00	0.00	0.575	0.000	67.6	21	26.2	62.7	4.75	.0748	

Date	Time	Wind Samp	Wind Tx	ISS Recept	Arc. Int.	
4/24/19		1404	1	100.0	60	
4/24/19		1404	1	100.0	60	
4/24/19		1405	1	100.0	60	
4/24/19		1404	1	100.0	60	
4/24/19		1405	1	100.0	60	
4/24/19		1405	1	100.0	60	
4/24/19		1404	1	100.0	60	
4/24/19		1405	1	100.0	60	
4/24/19		1404	1	100.0	60	
4/24/19		1405	1	100.0	60	
4/24/19		1405	1	100.0	60	
4/24/19	-	1405	1	100.0	60	
4/24/19	7	1405	1	100.0	60	
4/24/19	T -	1404	1	100.0	60	
4/24/19	-	1405	1	100.0	60	
4/24/19	-	1405	1	100.0	60	
4/24/19	-	1405	1	100.0	60	
4/24/19		1405	1	100.0	60	
4/24/19	-	1405	1	100.0	60	
4/24/19	8:00p	1403	1	100.0	60	
4/24/19	9:00p	1405	1	100.0	60	
4/24/19	-	1404	1	100.0	60	
4/24/19	-	1405	1	100.0	60	
4/25/19	12:00a	1405	1	100.0	60	

Mt.Taylor Mine 4/25/19

Date	Т	'ime	Wind Samp	Wind Tx	ISS Recep		
4/25/2	19 1	:00a	1404	1	100.	0 60	
4/25/	19 2	:00a	1404	1	100.	0 60	
4/25/	19 3	:00a	1404	1	100.	0 60	
4/25/	19 4	:00a	1405	1	100.	0 60	
4/25/	19 5	:00a	1404	1	100.	0 60	
4/25/	19 6	:00a	1405	1	100.	0 60	
4/25/2	19 7	:00a	1405	1	100.	0 60	
4/25/	19 8	:00a	1405		100.	0 60	
4/25/	19 9	:00a	1404	1	100.	0 60	
4/25/		:00a	1404	1	100.	0 60	
4/25/	19 11	:00a	1403	1	100.	0 60	
4/25/	19 12	:00p	1405	1	100.	0 60	
4/25/	19 1	:00p	1404	1	100.	0 60	
4/25/	19 2	:00p	1405	1	100.	0 60	
4/25/	19 3	:00p	1404	1	100.	0 60	
4/25/	19 4	:00p	1405	1	100.	0 60	
4/25/	19 5	:00p	1405	1	100.	0 60	
4/25/	19 6	:00p	1405	1	100.	0 60	
4/25/	19 7	:00p	1405		100.	0 60	
4/25/	19 8	:00p	1405		100.	0 60	
4/25/	19 9	:00p	1405	1	100.	0 60	
4/25/	19 10	:00p	1405	1	100.	0 60	
4/25/	19 11	:00p	1403		100.	0 60	
4/26/	19 12	:00a	1405	1	100.	0 60	

Mt.Taylor Mine 4/26/19

Date	Time	Wind Samp	Wind Tx	ISS Recept	Arc. Int.
4/26/19	1:00a	1403	1	100.0	60
4/26/19	2:00a	1405	1	100.0	60
4/26/19	3:00a	1405	1	100.0	60
4/26/19	4:00a	1405	1	100.0	60
4/26/19	5:00a	1404	1	100.0	60
4/26/19	6:00a	1405	1	100.0	60
4/26/19	7:00a	1405	1	100.0	60
4/26/19	8:00a	1405	1	100.0	60
4/26/19	9:00a	1405	1	100.0	60
4/26/19	10:00a	1405	1	100.0	60
4/26/19	11:00a	1405	1	100.0	60
4/26/19	12:00p	1405	1	100.0	60
4/26/19	1:00p	1403	1	100.0	60
4/26/19	2:00p	1404	1	100.0	60
4/26/19	3:00p	1405	1	100.0	60
4/26/19	4:00p	1405	1	100.0	60
4/26/19	5:00p	1405	1	100.0	60
4/26/19	6:00p	1404	1	100.0	60
4/26/19	7:00p	1405	1	100.0	60
4/26/19	8:00p	1405	1	100.0	60
4/26/19	9:00p	1404	1	100.0	60
4/26/19		1404	1	100.0	60
4/26/19	11:00p	1405	1	100.0	60
4/27/19	12:00a	1405	1	100.0	60

NMED Cmnt 28

Radon Flux Measurement Disposal Cell Cover (2021)

Radon Flux Measurements Report Waste Repository Cover at Mt. Taylor Mine

Cibola County, NM

Prepared for:

RIO GRANDE RESOURCES Mount Taylor Mine

PO Box 1150 Grants, NM 87020 505-287-7971

Prepared by:

ERG

Environmental Restoration Group, Inc.

8809 Washington St. NE, Suite 150 Albuquerque, NM 87113 505-298-4224

June 3, 2021

Radon Flux Measurements for Mt. Taylor Mine June 2021

Radon Flux Measurements Report Mt. Taylor Mine

1. Introduction

Forty-two radon flux canisters were prepared by Environmental Restoration Group (ERG) and transferred from ERG's Albuquerque, NM office to the Rio Grande Resources' Mt. Taylor Mine (San Mateo, NM) for deployment on radon barrier cover material constructed over mine waste materials. Prior to delivery to the site, all canisters were heated in an oven for a 24-hour period at a temperature of approximately 220 degrees Fahrenheit to drive off any radon gas on the activated charcoal collection media, followed by sealing in plastic bags. On May 11, 2021, forty of the canisters were deployed at locations over the constructed radon barrier in a manner consistent with EPA Method 115 (EPA, 1991). The remaining two canisters were left sealed in their plastic bags and used as trip blanks. The canisters were retrieved 24-hours later, on May 12, 2021. The flux measurement locations were divided into three zones: Western/Southern side slopes, Middle/Top, and the Eastern side slope. The location design for each zone was based on a triangular-grid pattern with randomized start point as generated using the U.S. Department of Energy's statistical design software package Visual Sampling Plan (VSP, 2019).

2. Results

The 40 deployed canisters and 2 trip blank canisters were analyzed at ERG offices May 12 and 13, 2021 according to EPA Method 115 protocols. Results are provided in Attachment A. The average radon flux for the 40 locations measured is 4.11 pCi/m²s, with the maximum flux rate of 20.94 pCi/m²s measured at Location 29. The average flux was calculated as follows:

• Radon flux at each location was measured using a single canister. Five of the single canisters were counted twice as laboratory analytical duplicates, with each canister's average flux rate being used as the location flux rate.

The average flux rate for all measured locations is below the 20.0 pCi/m²s limit for radon-222 emissions to the atmosphere as specified in the "Joint Guidance for the Cleanup and Reclamation of Existing Uranium Mining Operations in New Mexico" from the Mining and Minerals Division, New Mexico Environment Department (MMD/NMED, 2016). The results for all canisters are presented in both tabular and figure form in Appendix A of this Report, with deployment and retrieval logs included in Appendix B.

For the three measurement location zones discussed in the Introduction above the radon flux averages are as follows:

- Western/Southern side slopes (20 locations): 4.64 pCi/m²s
- Middle/Top (17 locations): 3.11 pCi/m²s
- Eastern side slope (3 locations): 5.11 pCi/m²s

3. Quality Assurance

Environmental conditions required by EPA Method 115 for acceptable deployment of canisters are:

- No rainfall within 24-hours prior to deployment, and if rainfall during deployment then the seal around the lip of the canister must remain intact and the canister cannot be surrounded by water.
- The temperature during deployment must not fall below 35 degrees Fahrenheit, and the ground

cannot be frozen.

The meteorological data recorded at the onsite weather monitoring station, included in Appendix C, indicates there was no detected rainfall at the site within 24 hours of canister deployment, and the minimum temperature during canister deployment was above 35 degrees Fahrenheit.

Two independent sources were used to calibrate the spectrometer before, during and after the counting of canisters. The independent sources were measured using identical counting geometry conditions to that of the deployed canisters. Good agreement between calibration factors was obtained, as shown in Table 3-1. The relative percent difference (RPD) of the average counting efficiencies for the two sources was 5.3 percent, less than the 10-percent accuracy required by EPA Method 115.

Three of the canisters were reanalyzed for laboratory duplicate analysis comparison. The second analysis is indicated in the Appendix A results table with a "D" shown in the Lab Type column. The comparison of results shown in Table 3-2 is consistent with typical gamma spectroscopy results. Of the five canisters analyzed for duplicate comparison, three met the EPA Method 115 criteria requiring a precision of 10 percent, while the remaining two canisters had an average flux rate below the requisite threshold of 1.0 pCi/m²s. All five canisters (80, 508, 467, 200 and 428) passed duplicate analysis comparison with a relative percent differences (RPD) of 0.70, 0.86, 1.49, 3.55, and 1.45 percent, respectively. The RPD were calculated as follows:

 $RPD = \frac{|A - B|}{(A + B)/2}$ A = Flux from first canister analysis B = Flux from second canister analysis

All 40 deployed canisters yielded usable results, greater than the 85 percent completeness required by EPA Method 115. Two trip blanks were included with the batch and were counted without exposing them to radon. The measured fluxes for the two canisters (503 and 510) were 0.22 and 0.15 pCi/m²s, respectively, near the expected 0 pCi/m²s value. These results indicate that the canisters had not been exposed during deployment, confirming the integrity of the sealed bags.

Standard	Date	Count Time (seconds)	Source (nCi)	Counts	Average Background Counts	Efficiency (cps/Bq) ¹	Error (1 SD) ²
STD #3	5/12/21	1200	78.83	43193	2634	0.011588	6.12E-05
STD #1	5/12/21	1200	80	45399	2634	0.01204	6.17E-05
STD #3	0 #3 5/12/21 1200		78.83	41005	2634	0.010963	5.97E-05
STD #1	5/12/21	1200	80	45719	2634	0.01213	6.19E-05
STD #3	5/13/21	1200	78.83	43475	2644.5	0.011666	6.14E-05
STD #1	5/13/21	1200	80	45653	2644.5	0.012108	6.19E-05
STD #1	5/13/21	1200	80	45949	2644.5	0.012192	6.21E-05
STD #3	5/13/21	1200	78.83	43753	2644.5	0.011745	6.15E-05
Mean of ST	D #1			0.01212			
Mean of ST	D #3			0.01149			
Relative Per	rcent Differen	ce of Standards		5.3%			

Note:

¹Efficiency unit is net counts-per-second per source activity in becquerels.

² SD: standard deviation of efficiency.

Canister	Analysis (A) pCi/m²s	Analysis (B) pCi/m²s	Relative Percent Difference ¹		
80	12.73	12.82	0.70		
508	6.59	6.53	0.86		
467	13.47	13.67	1.49		
200 ²	0.48	0.49	3.55		
428 ²	0.87	0.86	1.45		

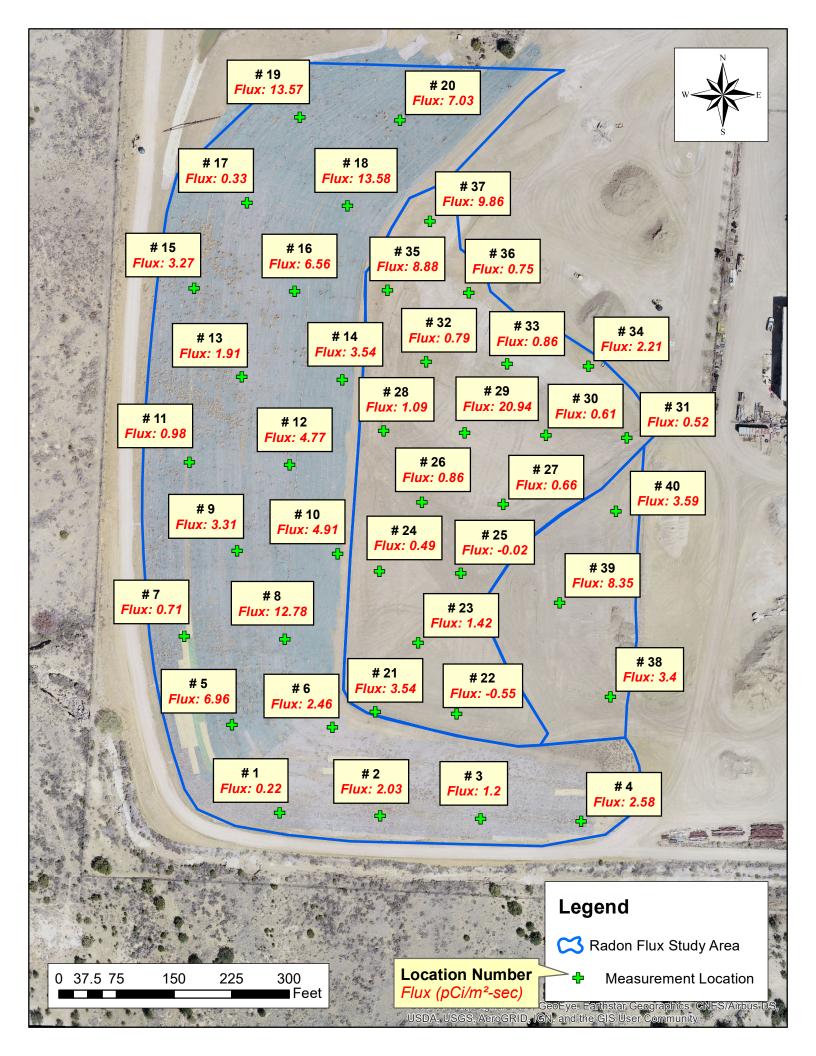
Table 3-2 Comparison Data of Laboratory Analysis Duplicates

Note:

¹Relative Percent Difference (RPD) was calculated as using the equation presented earlier in this document.

² For canisters 200 and 428 no RPD calculation is necessary since the average results are below 1.0 pCi/m²s. Regardless, results are presented for all canisters.

References


Mining and Minerals Division, New Mexico Environment Department (MMD/NMED). 2016. Joint Guidance for the Cleanup and Reclamation of Existing Uranium Mining Operations in New Mexico. March 2016.

U.S. Environmental Protection Agency (EPA), 1991. 40 CFR 61 Appendix B, Method 115 – Monitoring for Radon-222 Emission

VSP Development Team (VSP). 2019. Visual Sample Plan: A Tool for Design and Analysis of Environmental Sampling. Version 7.10. Pacific Northwest National Laboratory. Richland, WA. http://vsp.pnnl.gov

Appendix A

Radon Flux Measurement Results

Radon Flux Measurements

Environmental Restoration Group, Inc. 8809 Washington St. NE, Suite 150 Albuquerque, NM, 87113

				Date/Time							Flux (p0	Ci/m²s)		
Location Name	Field Type	Canister Number	Deployment	Retrieval	Counting	Count Time (sec)	BKG Counts	Lab Type	Sample Counts	Efficiency (cps/dps)	Result	LLD	Error 1.00 S.D.	Remarks
1		501	05/11/2021 08:52	05/12/2021 09:30	05/12/2021 14:44	1200	2634		3092 .	0.0117	0.22	0.1	0.04	OK
2		410	05/11/2021 08:51	05/12/2021 09:31	05/12/2021 15:46	1200	2634		6742 •	0.0117	2.03	0.1	0.05	ОК
3		518	05/11/2021 08:49	05/12/2021 09:31	05/12/2021 15:31	800	2634		7879 .	0.0117	4.51	0.1	0.07	OK
4		527	05/11/2021 08:47	05/12/2021 09:30	05/12/2021 15:09	1200	2634		7904 .	0.0117	2.58	0.1	0.05	OK
5		520	05/11/2021 09:02	05/12/2021 10:50	05/13/2021 13:12	598	2644.5		7746	0.0119	6.95	0.2	0.1	OK
6		525	05/11/2021 09:01	05/12/2021 09:33	05/12/2021 16:23	900	2634		5689	0.0117	2.46	0.1	0.06	OK
7		64	05/11/2021 10:02	05/12/2021 10:50	05/13/2021 13:39	1200 1	2644.5		3909 ·	0.0119	0.71	0.1	0.05	OK
8	******	80	05/11/2021 09:05	05/12/2021 09:41	05/13/2021 17:15	515	2644.5	D 1	10470	0.0119	12.73	0.2	0.15	ОК
8		80	05/11/2021 09:05	05/12/2021 09:41	05/12/2021 17:28	467	2634		11015	0.0117	12.82	0.2	0.14	ОК
9		494	05/11/2021 09:19	05/12/2021 09:53	05/12/2021 19:25	723	2634		5517	0.0117	3.31	0.2	0.07	ОК
10		422	05/11/2021 09:21	05/12/2021 09:57	05/12/2021 18:20	620	2634		6415	0.0117	4.91	0.2	0.09	ОК
11		414	05/11/2021 10:04	05/12/2021 10:55	05/13/2021 14:03	1200 -	2644.5		4390	0.0119	0.98	0.1	0.05	ОК
12		469	05/11/2021 09:17	05/12/2021 09:55	05/12/2021 18:54	551	2634		5561	0.0117	4.77	0.2	0.09	OK
13		411	05/11/2021 09:25	05/12/2021 10:12	05/13/2021 09:29	1076	2644.5		5510	0.0119	1.91	0.1	0.05	OK
14		511	05/11/2021 09:24	05/12/2021 10:16	05/13/2021 09:11	841	2644.5		6417	0.0119	3.54	0.2	0.07	OK
15		49	05/11/2021 10:05	05/12/2021 10:56	05/13/2021 13:24	778	2644.5		5508	0.0119	3.27	0.2	0.07	OK
16		508	05/11/2021 09:26	05/12/2021 10:14	05/13/2021 11:53	460	2644.5		5520	0.0119	6.53	0.2	0.12	OK
16		508	05/11/2021 09:26	05/12/2021 10:14	05/13/2021 11:56	457	2644.5	D	5521	0.0119	6.59	0.2	0.12	OK
17		479	05/11/2021 09:28	05/12/2021 10:29	05/13/2021 12:05	1200 1	2644.5		3236	0.0119	0.33	0.1	0.04	ОК
18		530	05/11/2021 09:33	05/12/2021 10:38	05/13/2021 12:43	281	2644.5	*****	6381	0.0119	13.58	0.3	0.2	ОК
19		467	05/11/2021 09:29	05/12/2021 10:31	05/13/2021 14:39	1200	2644.5	_	26977	0.0119	13.67	0.1	0.1	ОК
19		467	05/11/2021 09:29	05/12/2021 10:31	05/13/2021 15:19	1200	2644.5	D 3	26496	0.0119	13.47	0.1	0.1	ОК

Types: D-Duplicate, TB-Trip Blank

Reviewed by:

1

Radon Flux Measurements

Environmental Restoration Group, Inc. 8809 Washington St. NE, Suite 150 Albuquerque, NM, 87113

				Date/Time							Flux (pC	Ci/m²s)		
Location Name	Field Type	Canister Number	Deployment	Retrieval	Counting	Count Time (sec)	BKG Counts	Lab Type	Sample Counts	Efficiency (cps/dps)	Result	LLD	Error 1.00 S.D.	Remarks
20		524	05/11/2021 09:31	05/12/2021 10:33	05/13/2021 11:38	428	2644.5		5515	0.0119	7.03	0.2	0.12	OK
21		429	05/11/2021 09:00	05/12/2021 09:38	05/12/2021 16:11	700	2634		5710	0.0117	3.54	0.2	0.07	OK
22		415	05/11/2021 08:58	05/12/2021 09:36	05/12/2021 17:05	1200 -	2634		1537	0.0117	-0.55	0.1	0.03	OK
23		486	05/11/2021 09:08	05/12/2021 09:44	05/12/2021 18:33	1200	2634		5450	0.0117	1.42	0.1	0.05	OK
24		200	05/11/2021 09:11	05/12/2021 09:48	05/12/2021 17:38	1200 -	2634	******	3623	0.0117	0.49 7	0.1	0.04	OK
24		200	05/11/2021 09:11	05/12/2021 09:48	05/12/2021 17:59	1200 -	2634	D	4 3586	0.0117	0.48	0.1	0.04	ОК
25		425	05/11/2021 09:09	05/12/2021 09:45	05/12/2021 16:42	1200 -	2634	******	2593	0.0117	-0.02	0.1	0.04	OK
26		428	05/11/2021 09:15	05/12/2021 10:00	05/12/2021 21:27	1200 -	2634	D	4332	0.0117	0.87	0.1	0.04	OK
26		428	05/11/2021 09:15	05/12/2021 10:00	05/12/2021 21:06	1200 -	2634		4312	0.0117	0.86	0.1	0.04	OK
27		487	05/11/2021 09:14	05/12/2021 10:02	05/12/2021 19:38	1200 -	2634	*****	3937	0.0117	0.66	0.1	0.04	OK
28		459	05/11/2021 09:38	05/12/2021 10:06	05/12/2021 20:25	1200 -	2634	*******	4770	0.0117	1.09	0.1	0.04	OK
29		485	05/11/2021 09:39	05/12/2021 10:05	05/12/2021 20:45	1200	2634		43364	0.0117	20.94	0.1	0.11	OK
30		482	05/11/2021 09:40	05/12/2021 10:04	05/12/2021 20:03	1200 _	2634		3827	0.0117	0.61	0.1	0.04	OK
31		496	05/11/2021 09:41	05/12/2021 10:03	05/12/2021 19:04	1200 -	2634		3651	0.0117	0.52	0.1	0.04	OK
32		516	05/11/2021 09:46	05/12/2021 10:18	05/13/2021 09:58	1200 •	2644.5		4069	0.0119	0.79	0.1	0.05	OK
33		470	05/11/2021 09:44	05/12/2021 10:20	05/13/2021 10:19	1200 -	2644.5	*****	4198	0.0119	0.86	0.1	0.05	ОК
34		460	05/11/2021 09:43	05/12/2021 10:21	05/13/2021 11:01	1200	2644.5		6625	0.0119	2.21	0.1	0.05	OK
35		529	05/11/2021 09:48	05/12/2021 10:15	05/13/2021 09:49	466	2644.5		7246	0.0119	8.88	0.2	0.13	OK
36		461	05/11/2021 09:47	05/12/2021 10:21	05/13/2021 10:40	1200 -	2644.5		3993	0.0119	0.75	0.1	0.05	OK
37		437	05/11/2021 09:50	05/12/2021 10:26	05/13/2021 11:31	341	2644.5	******	5778	0.0119	9.86	0.3	0.16	ОК
38		407	05/11/2021 09:59	05/12/2021 10:45	05/13/2021 12:58	759	2644.5		5525	0.0119	3.4	0.2	0.07	OK
39	*******	502	05/11/2021 09:55	05/12/2021 10:44	05/13/2021 12:50	398	2644.5	**********	5848	0.0119	8.35	0.2	0.14	OK

Types: D-Duplicate, TB-Trip Blank

Reviewed by:

Radon Flux Measurements

Environmental Restoration Group, Inc. 8809 Washington St. NE, Suite 150 Albuquerque, NM, 87113

	Date/Time											Flux (pCi/m ² s)					
Location Name	Field Type	Canister Number	Deployment	Retrieval	Counting	Count Time (sec)	BKG Counts	Lab Type	Sample Counts	Efficiency (cps/dps)	Result	LLD	Еттот 1.00 S.D.	Remarks			
40		75	05/11/2021 09:53	05/12/2021 10:41	05/13/2021 12:27	853	2644.5		6469	0.0119	3.59	0.2	0.07	OK			
	TB	503	05/11/2021 10:06	05/12/2021 10:10	05/13/2021 15:50	1200 -	2644.5		3024	0.0119	0.22	✓ 0.1	0.04	ОК			
	TB	510	05/11/2021 10:07	05/12/2021 10:11	05/13/2021 16:12	1200 .	2644.5		2893	0.0119	0.15	✓ 0.1	0.04	ОК			

Types: D-Duplicate, TB-Trip Blank

m Reviewed by:

Appendix B

Field Deployment and Laboratory Analysis Log Forms

ERG Radon Flux Canister Data Log

Site: RGR MT. TAYLOR 2021

		Canister Data				Page: 1 o
Location Number	Canister Number	Deployment Date (mm/dd/yy)	Deployment Time (24:00)	Retrieval Date (mm/dd/yy)	Retrieval Time (24:00)	Notes/Comments
1	501	5/11/21	8:52	5/12/21	9:30	
2	410		8:51	1 1	9:31	
3	518		8:49	- CE	cf:34-9:31	1
4	527	5/11/21	8:47		9:30	
5	520	1	9:02		10:50	
6	525		9:01		9:33	
7	64		10:02.		10:50	
8	80		9:05		9:41	
9	494		9:19		9:53	
10	422		9:21		9:57	
11	414		10:04		10:55	
12	469		9-17		9:55	
13	411		9:25		10:12	
14	511	8	9:24 8		10:16	
15	500 (4	9)	9-26-10:0	5	10:56	
16	508		9:26		10:14	
17	479		9:28		10:29	
18	530		9:33		10:38	
19	467		9:29		10-31	
20	524		9:31		10:33	
21	429	4	9:00		9:38	
22	415		8:58		9:36	
23	486		9:08		9:44	
24	200		9:11	10/	9:48	
25	425	W	9:09	V	9:45	

Environmental Restoration Group, Inc. 8809 Washington St. NE * Suite 150 Albuquerque, NM 87113 ERG Radon Flux Data Log (505) 298-4224 www.ERGoffice.com

2

Site: AGR ME TALON

Page: 2 of 4

ERG Radon Flux Canister Data Log

Location Number	Canister Number	Deployment Date (mm/dd/yy)	Deployment Time (24:00)	Retrieval Date (mm/dd/yy)	Retrieval Time (24:00)	Notes/Comments
26	428	5/11/21	9:15	5/12/24	10:00	
27	487	1	9:14	/	10:02	
28	459		9:38		10:06	
29	485		9:39		10:05 10:04	
30	482		9:40			
31	496		9:41		10:03	
32	516		9:46		10:18	
33	470	6	9:44		10:20	
34	460		9:43		10:21	
35	529		9:48		10:15	
36	461		9:47		10:21	
37	437		9:50		10:26	
38	407		7:59		10:45	
39	502		9:55 9:53		1044	
40	75	V	9:53	$\backslash 1$	10:41	
41						
42						
43				P		-
44						
45						
46						
47						
48						
49						
50						

Environmental Restoration Group, Inc. 8809 Washington St. NE * Suite 150 Albuquerque, NM 87113 ERG Radon Flux Data Log (505) 298-4224 www.ERGoffice.com

Canister Analysis Log Form

	Site:	ZGR	Mt T	AYLON
#1	ROI: Channel			
#1		441		531

2

Canister Number	Duplicate Count	Count Date (mm/dd/yy)	Count Time (24:00)	Count Duration (seconds)	Total Counts	Technician Initials
57D#3A		05-12-21	12:27	1200	41005	4
STD #1A			14:01	1200	45719	£
BKG A			14:22	1200	2672	G
501			14:44	1200	3092	cF
527			15:09	1200	7904	F
518			15:31	800	7879	SAA
410			15:46	1200	6742	CF
429 :			16:11	700	5710	cF
525 ×			16:23	900	5689	et
425 .			16:42	1200	2593	DN.
415			17:05	1200	1537	DN
80 .			17:28	4107	11015	DN
200 .			17:38	1200	3623	DN
200D	×		17:59	1200	3586	DN
422			18:20	620	6415	DN
486			18:33 dn	1200	5450	DN
469			18:54	551	5561	DN
496			19:04	1200	3651	DN
494			19:25	723	5517	DN
487			19:38	1200	3937	DN
482			20:03	1200	3827	DN
459			20:25	1200	4770	DN
485			20:45	1200	4364	DN
428			21:06	1200	4312	DN
4280	X		21:27	1200	4332	DN.
TD#3B			24:49	1200	43193	DN.
STD#1B			22:16	1200	45399	DN
3KG B		V	22:37	1200	2596	DN

Review:

× gr

up *

CAR

 $\frac{\int \partial NE}{\partial t} = \frac{\sqrt{5}}{2}$

Page : <u>l</u> of <u>3</u>

Canister Analysis Log Form

Site: <u>R.G.R. M.G. TAYLON</u> ROI: Channel <u>441</u> to Channel <u>531</u>

Canister Number	Duplicate Count	Count Date (mm/dd/yy)	Count Time (24:00)	Count Duration (seconds)	Total Counts	Technician Initials
BIKG C		5/13/21	07:58	12:00	2615	S
STO #3C		1	08:27	12:00	43475	DN
STD #IC			08:50	1200	45653	DN
511		6	09:11	841	6417	DN
-508-			09:27			DN
411			09:29	1076	5510	DN
529			09:49	466	7246	DN
516			09:58	1200	+280 4069	DN
470			10:19	1200	4198	DN
461			10:40	1200	3993	DN
460			11:01	1200	6625	DN
437			11:31	341	5778	DN
524			11:38	428	5515	DN
508			11:53	460	5520	DN
508D	DUPV		11:56	457	5521	DN.
479			12:05	1200	3236	DN
75			12:27	853	6469	DN
530			12:43	281	6381	DN
502			12:50	398	5848	DN
407			12:58	759	5525	DN
520			13:12	598	7746	DN
49			13:24	TIB	5508	DN
64			13:39	1200	3909	DN
414			14:03	1200	4390	DN
467		(14:39	14:39	1200	26977	ct
4670	Dupv.		15:19	1200	26496	DN
503 510			15:50	1200	3024	DN
			16:12	1200	2893	DNI
BKGD		V	16:53	1200	2674	DN

Review:

Date: 6/3/2021

ERG Form PWT.107.B

Page : <u>2</u> of <u>3</u>

Canister Analysis Log Form

٩

	ч.									
		Date: J	INE 3, 202	L						
PWT.10)7.B	Page : of								

Canister Number	Duplicate Count	Count Date (mm/dd/yy)	Count Time (24:00)	Count Duration (seconds)	Total Counts	Technician Initials
800	DupV	05-13-21	17:15	515	10470	DN
80D STD#1D	2 - 4		17:25	1200	45949	DN
STD#3D		V	17:47	1200	43753	DN
End -						
Liu						
		/				
	5 0000	<i>J</i>				
	5 0					
			•			

Review: _____

Com

Site: <u>RGR</u> Mt. Taylor ROI: Channel <u>441</u> to Channel <u>531</u>

Appendix C

Meteorological Station Data Output

MONTHLY CLIMATOLOGICAL SUMMARY for MAY. 2021

NAME:	Mt.Taylor	Mine	CITY:	San Mateo	STATE:	NM
ELEV:	0 ft	LAT:	35° 20'	26" N LON	G: 107°	38' 03" W

TEMPERATURE (°F), RAIN (in), WIND SPEED (mph)

DAY	MEAN TEMP	HIGH	TIME	LOW	TIME	HEAT DEG DAYS	COOL DEG DAYS	RAIN	AVG WIND SPEED	HIGH	TIME	DOM DIR	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 27 28 9 30 31	61.1 60.8 49.9 52.8 60.8 63.3 68.2 58.6 57.5 59.2 55.4 53.6	77.5 72.3 61.2 69.1 75.0 78.1 79.0 70.3 68.6 69.7 70.6 69.7	6:00p 4:00p 1:00p 6:00p 5:00p 3:00p 4:00p 5:00p 3:00p 3:00p	43.5 48.1 42.1 35.2 47.3 44.4 56.4 46.3 45.5 45.9 41.5 39.4	6:00a 7:00a 12:00m 7:00a 7:00a 7:00a 7:00a 7:00a 7:00a 7:00a 7:00a	7.3 5.8 15.1 12.6 6.5 5.5 1.2 7.2 7.6 6.8 10.0 7.4	3.4 1.5 0.0 0.4 2.2 3.8 4.4 0.8 0.2 1.0 0.5 0.3		2.5 6.0 3.0 2.2 3.3 2.8 6.1 5.0 4.3 6.1 2.1 1.7	20.0 27.0 28.0 21.0 20.0 24.0 27.0 23.0 27.0 24.0 16.0	6:00p 7:00p 2:00p 4:00p 7:00p 1:00p 1:00p 6:00p 5:00p 2:00p	SSE SSE SSE SSE ESE SSE ENE S	
	58.4	79.0	7	35.2	4	93.0	18.5	0.00	3.8	28.0	3	SSE	
Days	<= 32 <= 32 <= (Rain: s of Ra	0.0: 0 2.0: 0 2.0: 0 0.0: 0 0.00 0 ain: 0 : 65.0	(>.01 in	n) 0 (2	>.1 in) (65.0 Ma	`) 0 (>1 : ethod:	in) Integ:	ration					

4

Response No. 13 Attachment

Drawing of Location of Small Containment Cell After Closure of Primary Disposal Cell

TABLE 2 Soll Chemicall Analytical Results - April 2012 Total Metals by SW 6010/SW 6020 and Radiochemistry by E903.0/RA-05 RIO GRANDE RESOURCES SOIL SAMPLING AND TESTING FOR CLOSEOUT PLAN MT. TAYLOR MINE, SAN MATEO, NEW MEXICO

Sample ID	LOCATION	Collection Depth (inches bgs)	Collection Date	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Radlum 226	Radlum 228	Selenium	Sliver	Uranium	Uranium-234	Uranium-235	Uranium-238
		CONCENTRATION				mg/L				pCi/g	pCi/g		mg/L		mg/L		
	Analytical Met	hod		SW 6020	SW 6010 B	SW 6010 B	SW 6010 B	SW 6010 B	SW 7470A	E903 0	RA-05	SW 6020	SW 6020	SW 6020	SW 6020	SW 6020	SW 6020
	NMED SSL DA	\F 1		1.31E-02	3.01E•02	1.37	9.86E+07	NA	0.571	3	0 ³	0.965	1.57	49.3	49.3	49.3	49.3
MT-4-D-S3 (48" B.G.)	MT-4-D	48	4/10/2.012	0.003	0.88	<0.001	0.009	0.003	<0,002	6.7	0.8	0.020	<0.002 D	0.013 D	0.013 D	0.013 D	0.013 D
MT-4-E-S1 (0-4" B.G.)	MT-4-E	0-4	4/10/2.012	0,034	34	< 0.001	0.007	0.008	<0,002	8,7	1.5	0.15	<0.002 D	0.39 D	0.39 D	0.39 D	0.39 D
MT-4-E-S2 (10-12"' B.G.)	MT-4-E	10-12	4/10/2.012	0.005	0.22	<0.001	0.011	0.005	<0,002	4.8	0.4	0.072	<0.002 D	0.014 D	0.014 D	0.014 D	0.014 D
MT-4-E-S3 (36" B.G.)	MT-4-E	36	4/10/2.012	0.003	0.13	<0.001	0.007	0.003	<0,002	2.9	0.7	0.026	0.0030	0.0043 D	0.0043 D	0.0043 D	0.0043 D
MT-4-E-S3 (48" B.G.)	MT-4-E	48	4/10/2.012	.0.005 B	0.06	<0.001	0.006	0.002	<0,002	6.2	0.4	0.011	<0.001	0.027	0.027	0.027	0.027
MT-4-F (6" B.G.)	MT-4-F	6	4/10/2.012	0.005	< 0.05	<0.001	< 0.005	0.003	<0,002	0.8	1.0	0.002	<0.002 D	0.0027 D	0.0027 D	0.0027 D	0.0027 D
MT-5-F (6" B.G.)	MT-6-f	6	4/10/2.012	0.002	< 0.05	<0.001	<0.005	0,001	<0,002	2.0	0.8	0.001	0.003 D	0.0029 D	0.0029 D	0.0029 D	0.0029 D
MT-6-A-S1 (0-5" B.G,)	MT-6-A	0-5	4/10/2.012	0.012	7.3	<0.001	0.007	0.016	<0,002	6.4	0.2	0.007	<0.001	0.044	0.044	0.044	0.044
MT-6-A-S2 (12-20" B .G.)	MT-6-B	12-20	4/10/2.012	0.003 B	0.05	<0.001	0.007	< 0.001	<0,002	0.4	0.1	0.15	<0.001	0.26 U	0.26 U	0.26 U	0.26 U
MT-6-B-S1 (8-10" B.G.)	MT-6-B	8-10	4/10/2.012	0.004 B	0.05	<0.001	0.007	< 0.001	<0,002	0.8	0.2	0.16	<0.001	0.26	0.26	0.26	0.26
MT-6-B-S2 (30" B.G.)	MT-6-8	30	4/10/2.012	0.002 B	0.06	<0.001	<0.005	<0.001	<0,002	4.1	0.8	0.003	<0.001	0.014	0.014	0.014	0.014
MT-7-C (6 " B.G.)	MT-7-C	6	4/10/2.012	0.002	< 0.05	<0.001	0.006	0.002	<0,002	0.6	0.8	< 0.001	<0.002 D	0.0023 D	0.0023 D	0.0023 D	0.0023 D
MT-8-F [6" BG.)	MT-8-F	6	4/10/2.012	0.001	0.05	0.001	0.005	0.001	0.002	-1000	-1000	0.001	0.002 D	0.0006 D	0.0006 D	0.0006 D	0.0006 D
MT-A-C (6" B.G.)	MT-A-C	6	4/10/2.012	0.003	< 0.05	<0.001	<0.005	0.001	<0,002	1.7	0.5	0.044	<0.002 D	0.14	0.14	0.14	0.14
MT-Borrow/Background	MT-Borrow	24-66	4/10/2.012	0.001	< 0.05	<0.001	<0.005	<0,001	<0,002	0.7	0.7	0.001	<0.002 D	0.0007	0.0007	0.0007	0.0007
MT-OP-C-S1 (0-6" B.G.)	MT-OP-C	0-6	4/10/2.012	0;015	0.05	<0.001	0.010	0.001	<0,002	53:3	2.1	0.052	<0.001	1.8	1.8	1.8	1.8
MT-OP-C-S2 (20" B .G.)	MT-OP-C	20	4/10/2.012	0.005	0.05	<0.001	0.007	0.002	<0,002	1.7	0.6	0.018	<0,002 D	0.14	0.14	0.14	0.14
MT-OP-C-S3 (48-50" B.G.)	MT-OP-C	48-50	4/10/2.012	0.004	< 0.05	<0.001	< 0.005	<0,001	<0,002	0,8	0.8	0.028	<0,002 D	0.049	0.049	0.049	0.049
MT-OP-C-S4 (72" B.G.)	MT-OP-C	72	4/10/2.012	0.004	< 0.05	<0.001	<0.005	<0,001	<0,002	1.5	0.6	0.025	<0,002 D	0.0064	0.0064	0.0064	0.0064
MT-OP-D-S1 (0-6" B.G.)	MT-OP-D	0-6	4/10/2.012	0.013	1.3	<0.001	0.007	0.008	<0,002	51.9	0.5	0.009	<0,002 D	0.23	0.23	0.23	0.23
MT-OP-D-S2 (48-50" B.G.)	MT-OP-D	48-50	4/10/2.012	0.001	0.05	<0.001	< 0.005	< 0.001	<0,002	1,9	0.6	0.005	<0,002 D	0. 10	0. 10	0. 10	0. 10
MT-OP-D-S3 (76° B.G.)	MT-OP-D	76	4/10/2.012	0.006	0.11	<0.001	0.012	0.009	<0,002	0.6	0.5	0.002	<0,002 D	0.0034	0.0034	0.0034	0.0034
MT-OP-E (6" B.G.)	MT-OP-E	6	4/10/2.012	0.004	0.05	<0.001	0.006	0,003	<0,002	1.1	0.8	0.005	<0,002 D	0.0056	0.0056	0.0056	0.0056
MT-WP-SM1										0.7					0.60	0.03	0.60
MT-WP-SM2										0.7					0.80	0.10	0.20
MT-WP-SM3										1.1					1.1	-0.02	0.9

Notes:

bgs = below ground surface

mg/Kg = milligrams/Kilogram

DAF = Dilution Attenuation factor

NA = No DAF values available, NMED 2012, rev6

Total metals concentrations should be compared to background soil sample cocentrations before comparing to Soil Screeening Levels (SSL). Only metals concentrations above background should be considered for comparison to SSLs.

NMED considers a DAF = 20 to be protective of groundwater for a 0.5-acre source. SSL values are included for reference only, as they are applicable for reclamation, not for mines that are active or on stand-by status.

 $\mathbf{B} = \mathbf{The}$ analyte was detected in the method blank

D = reporting limit increased due to sample matrix

U = Not detected at minimum detectable concentration