

Tyrone Operations P.O. Box 571 Tyrone, NM 88065

March 13, 2025

Via Electronic Mail Only

Mr. Clint Chisler Energy, Minerals and Natural Resources Department Mining and Minerals Division Mining Act Reclamation Program 1220 South St. Francis Drive Santa Fe, NM 87505

Dear Mr. Chisler:

Re: Modification 22-1 to Little Rock Mine, Permit No. GR007RE; and Modification 22-1 to Tyrone Mine, Permit No. GR010RE; Freeport-McMoRan Tyrone Inc.; Final Report on Suitability of Precambrian Granite Overburden

In letters dated August 2, 2022 and August 17, 2022 Freeport McMoRan Tyrone, Inc. (Tyrone) applied for modifications to Little Rock permit GR007RE and Tyrone permit GR010RE for the approval of Precambrian granite as Reclamation Cover Material and the termination of the USNR Test Plot Study. On November 21, 2022 Tyrone received comments from Mining and Minerals Division (MMD) which included a request for Tyrone to perform confirmation sampling and analysis of the Precambrian granite in the 9A and 9AX Waste Rock Stockpiles. Tyrone submitted a final Sampling and Analysis Plan for the confirmation study on March 31, 2023. MMD requested additional information in a comment letter dated April 21, 2023 and Tyrone responded on May 18, 2023. A conditional approval was granted by the agency on June 5, 2023 and work began shortly thereafter.

Enclosed is a report detailing the confirmation testing and analysis of the suitability of Precambrian granite and overburden as a reclamation cover material. This suitability report and the vegetation survey report of the USNR reclamation area, performed in 2024 and to be submitted in April of 2025, are the final assurance requirements to evaluate the suitability of this valuable resource as a reclamation cover material. Tyrone has fulfilled all other applicable requirements and is requesting the agencies expedite approval of these two permit modifications to ensure the changes may also be incorporated into the 2025 Tyrone Closure/Closeout Plan update.

Mr. Clint Chisler March 13, 2025 Page 2

Please contact Ms. Raechel Roberts at (575) 956-3290 if you have questions.

Sincerely,

ste

Sherry Burt-Kested Environmental Manager New Mexico Operations

SBK:rmr 20250313-100

c. Brad Reid – NMED Sean Madden – NMED

REPORT

Suitability of Precambrian Granite Overburden as a Reclamation Cover Material

Tyrone and Little Rock Mines

Submitted to:

Raechel Roberts

Freeport McMoRan Tyrone Operations P.O. Box 571 Tyrone, New Mexico 88065

Submitted by:

WSP USA Inc.

2440 Louisiana Blvd NE Suite 400 Albuquerque, NM 87110

31406439.001

March 4, 2025

Table of Contents

1.0	INTRO	DDUCTION1	Í
	1.1	Background2	2
2.0	SAMF	2 PLING PLAN	2
	2.1	Field Methods2	2
	2.1.1	Rock Volume Field Testing2	2
	2.1.2	Bulk Density	3
	2.1.3	Grizzly Rock Screening	3
	2.2	Laboratory Methods4	ł
	2.2.1	Physical and Chemical Characterization4	1
	2.2.2	Soil Hydraulic Testing	5
	2.2.2.1	Soil Water Characteristic Curves5	5
	2.2.2.2	Water Holding Capacity Estimation	5
	2.3	Recent Little Rock PCG Sampling	5
3.0	RESU	LTS5	5
	3.1	Chemical and Physical Characterization6	3
	3.2	Soil Water Characteristic Curves11	I
	3.3	Grizzly Rock Screening	2
	3.4	Little Rock PCG Samples14	ļ
4.0	SUM	17 IARY	,
5.0	REFE	RENCES	3

TABLES

Table 1: Analytical Methods for Precambrian Granite Characterization	4
Table 2: Chemical Properties of Precambrian Granite Materials	8
Table 3: Laboratory and Field Physical Properties of Precambrian Granite Materials	9
Table 4: Density Measurements for In-Situ Precambrian Granite Soil Covers	10
Table 5: Soil Hydraulic Properties and Water Holding Capacity of Precambrian Granite	13

Table 6: Grizzly Screening Compared to Field Estimates of the Oversized Rock Fraction (>3-in)	.14
Table 7: Chemical Properties of Little Rock Precambrian Granite Materials	.15
Table 8: Laboratory and Field Physical Properties of Little Rock Precambrian Granite Materials	.16

FIGURES

- Figure 1: Precambrian Granite Sample Locations
- Figure 2: Ocular and Field Measurements of Precambrian Granite Rock Volume
- Figure 3: 100 cm Suction Set Point for Field Capacity for Precambrian Granite Samples Relative to Air Entry Value
- Figure 4: Standardized Relationship for Water Holding Capacity and Rock Content for Precambrian Granite
- Figure 5: Successful Vegetation on Overburden Soil Covers and PCG Stockpiles at FMI Mine Sites
- Figure 6: Little Rock Precambrian Granite Sample Locations

APPENDICES

APPENDIX A Project Photolog

APPENDIX B Energy Laboratory Reports

APPENDIX C DBS&A Laboratory Report and Soil Water Characterization Curves

1.0 INTRODUCTION

Freeport-McMoRan Tyrone, Inc. (Tyrone) operates the Little Rock copper mine approximately 10 miles southwest of Silver City, New Mexico. The Little Rock mine is permitted as an existing mine by the Mining and Minerals Division (MMD) under Mining Act Permit No. GR007RE. The majority of the overburden excavated at the Little Rock open pit is comprised of Precambrian granite (PCG). According to Permit GR007RE, Section 3.S, PCG is conditionally approved to be used as a reclamation cover material (RCM) to complete the closeout plan.

Over the past several years, Tyrone has strategically placed PCG mined from the Little Rock Mine at the 9A Overburden and 9AX Overburden stockpiles (9A/9AX) in preparation for reclamation activities at the Tyrone Mine. Segregated PCG is stored in the West and North In-Pit Overburden Stockpiles at Little Rock as well as the Northern Haul Road across Deadman Canyon and NRW Waste Stockpile. PCG is also stored in the historic North and West Canyon stockpiles. The PCG materials have also been used to successfully construct soil covers that currently support well-established reclaimed plant communities. In 2010, PCG borrow materials from the North Waste rock stockpile were used as cover for the Copper Leach Stockpile reclamation at Little Rock. PCG overburden sourced directly from the Little Rock pit were also used as a RCM at the USNR test plots in 2015 and larger reclaimed USNR site in 2016. In both instances, Tyrone implemented its Material Characterization and Handling Plan (MCHP, dated October 2011) to successfully selected and managed the PCG materials using mine equipment (dozers, loaders, and the shovel) to construct cover soils that achieved a balanced mix of rock fragments and fine earth materials (approximately 50% rock by volume).

Tyrone applied for a modification to the Little Rock Mine on August 2, 2022, to request approval of the Little Rock PCG to be used as RCM at the Little Rock Mine and to terminate the USNR Test Plot Study. On August 17, 2022, Tyrone also applied for a modification to the Tyrone Mine Permit No. GR010RE for approved use of the same RCM at the Tyrone Mine.

The MMD provide combined comments to the permit modifications in a letter dated November 21, 2022, with Comment 2 stating:

"Prior to approval of the Precambrian granite in the 9A and 9AX stockpiles as RCM, MMD requests that Tyrone performs confirmation sampling and analysis of the Precambrian granite in these waste rock piles. Tyrone shall provide a sampling and analysis work plan to MMD within 90-days for the chemical and physical sampling and analyses that will be performed."

WSP USA Inc. (WSP) prepared a sampling and analysis plan (SAP, WSP 2023) that detailed a scope of work to further evaluate PGC materials at the 9A/9AX Overburden Stockpiles as well as other PCG stockpiles and existing reclaimed sites that used PCG as a cover material. The SAP was developed in consultation with the MMD including a virtual meeting on January 24, 2023, and a meeting at Tyrone on March 23, 2023. The MMD approved the SAP in a letter dated June 5, 2023, with the following conditions:

- Tyrone must provide official verification that the ocular estimates of the rock fragment are accurate using larger screening methods, such as a grizzly or screening plant. Tyrone will submit these results to MMD in the final report.
- 2) Tyrone must verify bulk density of the fine earth fraction of the sampled material and use that sampled bulk density value to calculate total rock fragment. Tyrone will submit these results to MMD in the final report.

At the request of Tyrone, WSP completed the SAP to provide additional chemical and physical laboratory and field analyses of the PCG to further demonstrate the suitability as a RCM for the Little Rock and Tyrone mines. WSP has prepared this report to also provide data to demonstrate the available PCG RCM at Tyrone complies with Copper Rule with respect to water holding capacity.

1.1 Background

The PCG comprises the bulk of the overburden rock mined from the Little Rock open pit. It is composed primarily of coarse-grained quartz, orthoclase, plagioclase and biotite with secondary minerals goethite and hematite, which are weathering products of oxidation of the pre-existing pyrite and chalcopyrite. Extensive testing and reporting on the geochemistry and soil suitability of over 600 PCG samples has been provided to MMD in the following reports:

- Characterization and Volumetrics of Gila Conglomerate and Precambrian Granite Reclamation Cover Materials (Golder 2020)
- Closure/Closeout Plan for the Little Rock Mine (PDTI 1999)
- United States Natural Resources (USNR) Test Plot Annual Report No. 1. (Golder 2017a)
- USNR Site and Copper Mountain South Pit Expansion CQA/CQC Report (Telesto Solutions 2014)
- DP-1236 Semiannual Monitoring Reports (Tyrone 2011 to present)
- Little Rock Mine Project Geochemical Evaluation Technical Report (SARB Consulting 1995)
- Geochemical Modeling Update Little Rock Mine (DBS&A, 2020)
- Waste Rock Characterization and Handling Plan 9A and 9AX Waste Rock Stockpiles Tyrone Mine, DP-435 (Golder 2016)

Data from these studies indicate that little to no sulfide minerals occur in the PCG leach cap and acid-base account (ABA) data strongly suggest that it will not generate acid and has a moderate to high potential to neutralize acidity. Laboratory analyses indicate that the overburden is relatively uniform and has few apparent limitations as a plant growth media when compared to the surrounding native soils. The suitability of PCG as reclamation cover material is further supported by observations of the establishment of volunteer perennial native vegetation within the pit area, 9A Overburden stockpile, and on the historical North Waste and West Canyon waste rock stockpiles at Little Rock as well as the successful reclamation of the Copper Leach Stockpile at Little Rock and the USNR site.

2.0 SAMPLING PLAN

Samples were collected from test pits and as bulk grab samples from berms or existing soil cover to capture the different stockpile lifts or mining time intervals when the PCG was deposited or used as a cover material.

2.1 Field Methods

Test pits were excavated to depths of 6 to 9 feet. Excavated materials were segregated into two-foot intervals for logging and sampling. Each test pit was described by WSP soil scientists following the USDA National Soil Survey Standards (Soil Survey Division Staff 2017). The materials will be described with respect to soil texture, rock fragment volume and size classes (i.e., gravel, cobble, and stone), moisture, and reaction to weak acid.

2.1.1 Rock Volume Field Testing

As part of sample collection, WSP personnel visually estimated the volume of gravels, cobbles, and stones in the PCG overburden materials using standard field protocols (Soil Survey Division Staff 2017). As part of sample

collection, WSP used a field quality control (QC) protocol to compare initial ocular total volumetric rock estimates to field measurements determined by a sieving procedure described below. The Rock Volume QC protocol is used to maintain consistency of the ocular estimates during the course of the sampling program and confirm that the average difference between field and QC measurements are within ±5 percent.

After volumetric rock content was estimated at each sample location, a representative sample of the less than 3inch (75 mm) diameter fraction from the excavated materials was placed in 5-gallon plastic buckets. The collected

Materials in the 5-gallon bucket were then passed through a #10 sieved (2 mm) and the fine-earth fraction placed in a graduated bucket. The retained gravels were placed in a second graduated bucket to estimate the volume of fine-earth to gravels fractions in the two buckets. Each bucket was weighed and converted to a volume based on the average particle density and field bulk density measurements (see next section). The calculated gravel volume was then be divided by the total volume of the sample (gravel + fine earth) to determine the volume of gravels. The volume of oversized rock greater than 3 inches was then added to the volume of gravel and a total rock volume for the sample was calculated and compared to the ocular estimate of total rock volume.

Following the sieving associated with the QC method, samples of the fine-earth fraction were placed directly in gallon-sized plastic bags. The sample identification and collection date were recorded on each bag, then placed in a cooler for shipping to the laboratory for testing. All excavations were backfilled and smoothed to match preexisting surface conditions.

2.1.2 Bulk Density

A sand-cone method was used to determine bulk density of the whole soil and fine-earth fraction per MMD's conditional approval of the SAP. Bulk density samples were collected on PCG reclamation covers that have well-established vegetation. A small level surface or platform was created for sand cone sampling in selected locations. Then, a shallow pit approximately 8 to 9 inches in diameter and 6-12 inches deep was dug by hand into the cover and all excavated material was placed into a 1-gallon plastic bag for laboratory analysis. The excavation was then backfilled to the pit rim with a measured volume of 10/20 filter sand to determine the volume of the excavation.

Bulk density samples were dried and sieved at WSP's laboratory in Albuquerque, New Mexico, to determine the relative proportion of the fine-earth and rock fractions, corresponding to the amount passing and retained on a #10 (2-mm) sieve respectively. The volume of the rock fraction (>2-mm) was calculated using the coarse fragment mass and particle density (assumed at 2.66 g/cm³), and then subtracted from the total volume of the excavation to determine the volume occupied by the void and the fine-earth fraction. The mass of fine earth fraction was divided by this remaining volume to determine the fine-earth bulk density.

2.1.3 Grizzly Rock Screening

Per MMD's conditional approval of the SAP, Tyrone used a grizzly rock screen to process larger samples to determine the volume of oversized materials (>3-in) and verify that the ocular estimates of the rock fragment are accurate for oversized coarse fragments. Tyrone's grizzly has a sloped stationary screen with a nominal grid opening of 3 inches.

Two loads of PCG sourced from the 9A/9AX Overburden Stockpiles (one from each stockpile) were processed into <3-in and >3-in fractions. Following the screening, the fractions were segregated into separate piles and the dimensions of each pile were measured to determine their volume and calculate the proportion of oversized rock in the sample.

2.2 Laboratory Methods

2.2.1 Physical and Chemical Characterization

Samples for physiochemical testing were recorded on chain of custody forms and shipped to Energy Laboratory in Billings, Montana at ambient temperatures. The samples were air-dried at the laboratory prior to testing for the parameters listed in Table 1 to determine suitability relative to MMD's suitability guidelines (MMD 2022). The primary references for the analytical techniques include Agricultural Handbook No. 60 (Salinity Laboratory Staff [SLS] 1954), and Methods of Soil Analysis (ASA 1982, Klute 1986). Testing methods are included below in Table 1.

Analysis/Parameter	Source-Method
Physical and Chemical Testing	
Saturated Paste pH	SLS 1954, Method 2 and 21a
Electrical Conductivity, saturated paste	SLS 1954, Method 3a and 4b
Saturation Percentage	SLS 1954, Method 27a
Particle Size Analysis	ASA 1982, Method 15-5
Rock Fragment (>2mm)	Dry sieve (No. 10)/gravimetric
Organic Matter (Carbon)	ASA 1982, Method 29-3.5.2
N as Nitrate	ASA 1982, Method 33-8.1
Phosphorous (Olsen)	ASA 1982, Method 24-5.4
Potassium	ASA 1982, Method 13-3.5
Acid Base Accounts with sulfur forms*	Modified Sobek et al. (1978)
Cation Exchange Capacity	SLS 1954, Method 19
AB-DTPA extraction	ASA 1982, Method 3-5.2
Saturate Paste extraction	ASA 1982, Method 10-2.3.1
Extractable Metals (As, Cd, Cu, Fe, Pb, Mn, Mo, Ni, and Zn)	EPA Method 6010/6020
Soil Hydraulic Testing	·
Hanging Column and Pressure Plate	Klute 1986
Water Potential (Dewpoint Potentiometer)	Rawlins and Campbell 1986
Relative Humidity (Box)	Campbell and Gee 1986
Moisture Retention Characteristics & Calculated Unsaturated Hydraulic Conductivity	van Genuchten 1980; van Genuchten et al. 1991
Saturated Hydraulic Conductivity	Klute and Dirksen 1986
Particle Density	Blake and Hartge 1986a
Dry Bulk Density	Blake and Hartge 1986b

Table 1: Analytical Methods for Precambrian Granite Characterization

Note: * for samples with pH<5

2.2.2 Soil Hydraulic Testing

2.2.2.1 Soil Water Characteristic Curves

Soil hydraulic testing was performed on selected PCG samples to develop soil water characteristic curves (SWCCs). The SWCCs were analyzed to determine the water holding capacity (WHC) to demonstrate that the constructed cover systems would meet the requirements in the New Mexico Copper Rule (20.6.7.33.F NMAC). Table 1 provides the references for the soil hydraulic analytical tests. The SWCCs were developed using retention data (laboratory water content-pressure [θ - Ψ] pairs) fit to the van Genuchten model using nonlinear least-squares parameter optimization (van Genuchten et al. 1991). The saturated water content (θ_s) was held at the lab measured value while residual water content (θ_r) and van Genuchten α and N parameters were calculated using a nonlinear least-squares parameter optimization procedure for each sample (van Genuchten 1980; van Genuchten et al. 1991).

The SWCC's were developed for the fine-earth fraction using the average field bulk density for the PCG samples (see Section 2.1.2). For the whole soil SWCC, the fine-earth θ - Ψ data were corrected using the field QC total rock volume. Specifically, the volumetric water content of the fine-earth fraction at various matric suction values was proportionally reduced in accordance with the volume of rock fragments contained in the whole soil (Bouwer and Rice 1984) as determine by the Rock Volume QC protocol described above.

2.2.2.2 Water Holding Capacity Estimation

The WHC was determined by subtracting the water held at the traditionally defined field capacity from the water held at wilting point (National Soil Survey Handbook [NSSH], Section 618.6.D.3). Because the PCG samples are consistently sandy loams and generally contain between 45 and 75% rock fragments, they were considered coarse textured and field capacity was determined at 100 cm suction. Field capacity was calculated as the water held at 100 centimeters (cm) of suction and wilting point as the water held at 15,000 cm of suction (USDA 2016) for coarse textured soils. The water content at field capacity and wilting point were determined numerically from the SWCC function developed for each sample. WSP's analyses also compared the approximate air entry value (AEV) for each sample to assigned field capacity set-point of 100 cm suction to justify that it is appropriate in relation to the site-specific SWCC and approximates field capacity for the PCG.

2.3 Recent Little Rock PCG Sampling

In addition to the samples collected under the SAP (WSP 2023a), Tyrone has also sampled stockpiled PCG that was recently mined at Little Rock to evaluate soil suitability during the construction of stockpiles and the Northern Haul Road crossing Deadman Canyon. The 21 additional samples were collected as part of New Mexico Environment Department (NMED) Discharge Plan 1236 requirements to obtain total sulfur and Acid-Base Accounting (ABA) data from blasthole cuttings to confirm stockpiled PCG does not have the potential to generate acidity. Tyrone's testing program includes collecting PCG samples during stockpile construction to demonstrate the material's suitability as a RCM. These recent samples were collected from the Northern Haul Road and the NRW and 9A Waste stockpiles and data are provided herein to further support the suitability of the PCG as a RCM.

3.0 RESULTS

Sampling of PCG overburden materials was conducted the 9A/9AX stockpiles, the USNR Test Plots and the USNR Reclamation at Tyrone and the West In-Pit Stockpile and Copper Leach Stockpile Reclamation at Little Rock. The sample locations for the PCG characterization are illustrated in Figure 1. Seven test pits were

evaluated at the 9A/9AX stockpiles. To capture the range of PCG associated with mining at Little Rock, grab samples were also collected from locations inaccessible by the excavator to represent different stockpile lifts or mining time intervals. As such, an additional six surface samples of PCG were collected from various benches within the 9A/9AX stockpiles. Five other PCG samples were collected from reclaimed cover materials at the Copper Leach Stockpile and the USNR site and one grab sample from the West In-Pit Stockpile. Photographs of the test pits and their excavated materials are included in Appendix A-1.

This section provides a summary of the field and laboratory characterization data of the PCG materials. Data includes field results from test pit logging, rock content QC results, and laboratory characterization data for soil physical, chemical, hydraulic properties.

3.1 Chemical and Physical Characterization

Results of PCG chemical characterization are summarized in Table 2 with laboratory reports provided in Appendix B. The PCG materials are considered non-saline with average electrical conductivity (EC) of 0.4 deciSiemens per meter (dS/m), ranging from 0.2 to 0.6 dS/m and pH values range from slightly acid (6.2) to moderately alkaline (7.9). Percent organic carbon and concentrations of nitrate and phosphorous are low but considered adequate to support native and adapted plant species. Notably, organic carbon is slightly higher in reclaimed PCG covers at the Copper Leach Stockpile and USNR site compared to other samples, indicating an increase in soil organic matter as the plant community develops. Cation exchange capacity averages 16.2 milliequivalents per 100 grams (meq/100 g) for the PCG samples which is higher than CECs for Aridisols, Inceptisols, and Entisols that occur in New Mexico (MMD 2022).

Metal extraction by ammonium bicarbonate-diethylenetriaminepentaacetic acid (AB-DTPA) found slightly elevated availability for extractable copper, and a few samples with elevated extractable cadmium and iron compared to guidance (Tiedemann and Lopez 1982, MMD 2022). These elevated metal concentrations data are consistent with previous observations of native soils and alluvium as well as suitable overburden borrow materials (DBS&A 1997, Golder 2005a, 2005b, and 2021a) and are expected given the mineralized nature of the cover materials. AB-DTPA extractable copper averaged 50.1 milligrams per kilogram (mg/kg) in PCG samples, which is well below potentially phytotoxic levels estimated between 275 and 375 mg/kg (Neuman et al. 1987, Paschke and Redente 2002, WSP 2024). It is also important to note that extraction using the chelating AB-DTPA is aggressive in comparison to a saturated paste extraction because the method was originally developed as a deficiency test to determine the concentration of essential trace elements for crop production. As such, AB-DTPA extractions generally yield higher concentrations of elements than a comparable saturated paste water extraction, the latter being more representative of the soil solution.

Particle size distribution results from the laboratory and field rock volume measurements are presented in Table 3. All PCG samples are classified as sandy loams. Saturation percents generally occur within a narrow range (23 to 30 percent with one sample at 40 percent), indicating uniform clay minerology. Ocular estimates of total rock volume for 22 samples of PCG overburden ranged 47 to 76 percent compared to field measured rock volume using the QC method ranging from 41 percent to 73 percent (Table 3). The average total rock content of the 9A/9AX PCG samples was 62.6 percent while the PCG cover soils at reclaimed sites averaged 48 percent rock. Average field QC measured total rock volume for all samples was 57.8 percent. The reduction in rock content between stockpiled PCG and PCG cover soils demonstrates the effectiveness of Tyrone's MCHP during the cover construction at the USNR and Copper Leach Stockpile to achieve an optimal fine earth to rock ratio.

Figure 2 compares the visual estimates of total rock volume to the QC field measurement. Overall, ocular estimates corresponded well with the QC measurements with an absolute average difference of 4.9 percent, within the ± 5 percent threshold. Figure 2 indicates that eight ocular rock estimates were higher than their corresponding field QC measurement by 5% while the rock volume was underestimated in only one sample by the same margin. The QC data demonstrates that ocular estimates by trained personnel can accurately predict the rock volume of PCG materials.

Fine-earth bulk density of in-situ reclaimed PCG cover materials was measure at five locations (Figure 1). Table 4 provides the volume and mass components used to calculate the density of these samples. On a dry weight basis, bulk densities ranged from 1.08 to 1.91 grams per cubic centimeter (g/cm³) and the average for in-situ PCG cover soils was 1.44 g/cm³. This value for fine-earth bulk density is comparable to native sandy loam soils and was used to calculate total rock volume and was the initial density used for the soil hydraulic testing.

Facility /	Depth		urated aste	Organic	Cation Exchange	Р	NO₃	к		A	B-DTF	PA E	xtract	able	Metals	5	
Test Pit ID	(in)	рΗ	Elec Cond	Carbon	Capacity	F	as N	R	As	Cd	Cu	Fe	Pb	Mn	Мо	Ni	Zn
		s.u.	dS/m	%	meq/100g					m	g/kg						
9AX Stockpi	le																
9AX-TP1	0-90	7.7	0.6	<0.1	12	1	<1	40	0.03	<0.1	36.3	3	0.5	0.8	0.1	<0.1	3
9AX-TP2	0-72	7.7	0.4	0.1	10.6	<1	<1	34	0.03	<0.1	39.8	3	2.2	0.9	0.1	<0.1	2.3
9AX-GB1	0-18	7.9	0.3	0.1	35.8	<1	<1	131	0.03	0.3	6.6	3	0.2	0.4	<0.1	<0.1	5.3
9AX-GB2	0-18	7.8	0.4	0.1	15.2	1	2	88	0.04	<0.1	61.7	3	1.6	1.1	<0.1	<0.1	3.7
9A Stockpile	9																
9A-GB1	0-18	7.4	0.4	0.2	15	2	1	73	<0.02	0.1	82.8	4	0.5	1.7	<0.1	<0.1	3.8
9A-GB2	0-18	6.2	0.3	0.2	19.8	2	2	41	<0.02	<0.1	27.6	4	0.2	4.2	0.1	<0.1	3.7
9A-GB3	0-18	7.6	0.5	0.1	14.7	1	<1	88	0.02	<0.1	26.7	4	0.8	1.1	0.2	<0.1	3.4
9A-GB4	0-18	7.8	0.3	0.1	17.1	1	<1	64	0.03	<0.1	42.7	4	1	0.6	0.2	<0.1	3.1
9A-TP1	0-90	7.9	0.5	0.1	15.4	1	<1	48	<0.02	<0.1	44.8	2	0.3	0.6	<0.1	<0.1	1.6
9A-TP2	0-54	7.8	0.3	<0.1	10.5	<1	<1	49	0.03	<0.1	63.6	4	0.6	0.8	<0.1	<0.1	2.1
9A-TP2	54-108	7.4	0.3	0.1	15.2	<1	<1	50	0.02	0.2	41.7	4	1.2	0.7	0.3	<0.1	3.8
9A-TP3	0-84	7.6	0.3	0.1	7.6	<1	<1	41	0.04	0.2	43.2	5	0.9	1.1	0.2	<0.1	4.8
9A-TP4	0-96	7.7	0.4	<0.1	18.6	<1	<1	72	0.03	0.2	26.3	4	1.4	1	0.2	<0.1	4.1
9A-TP5	0-96	7.8	0.4	<0.1	17.4	<1	<1	74	0.03	0.1	42.6	4	1.2	0.8	0.2	<0.1	3.1
Copper Lead	ch Stockp	ile Red	clamatior	ז													
CuL-GB1	0-18	6.8	0.2	0.3	17.1	2	<1	78	0.03	<0.1	167	5	1.1	3.7	0.1	<0.1	2
CuL-GB2	0-18	6.5	0.3	0.5	17.8	3	2	86	0.02	<0.1	172	7	1.2	3	0.1	<0.1	2.4
USNR Test F	Plots																
USNR-GB1	0-18	7.6	0.3	0.2	11.8	<1	<1	80	0.03	<0.1	11.8	3	0.4	0.6	<0.1	<0.1	4.2
USNR-GB2	0-18	7.6	0.4	0.2	17.2	<1	<1	62	0.03	0.1	18.6	5	0.5	1.3	<0.1	<0.1	3
USNR-GB3	0-18	7.6	0.3	0.2	15.3	<1	<1	68	0.03	<0.1	30.4	4	0.5	1.6	<0.1	<0.1	1.8
West In-Pit S	West In-Pit Stockpile																
WIP-GB1	0-18	7.8	0.3	0.2	19.3	<1	<1	49	< 0.02	<0.1	15.1	3	0.1	0.7	<0.1	<0.1	1

Table 2: Chemical Properties of Precambrian Granite Materials

Notes: dS/m = deciSeimens per meter, meq/100 g = milliequivalents per 100 grams, mg/kg = milligrams per kilogram

	Danth			Labor	atory				Ocular	⁻ Estima	ates		QC
Facility / Test Pit ID	Depth	Sand	Silt	Clay	Texture	Sat %	GR	CO	ST	BO	Total	Largest	Rock
Test Fittb	in		% wt						% vol			in.	% vol
9AX Stockpile													
9AX-TP1	0-90	57	30	13	SL	28.8	53	10	2	0	65	20	71.7
9AX-TP2	0-72	65	23	12	SL	23.8	55	17	4	0	76	21	70.7
9AX-GB1	0-18	72	18	10	SL	40.4	45	15	1	0	61	20	64.5
9AX-GB2	0-18	77	16	7	SL	25	50	12	<1	0	62		54.5
9AX-S							56	9	6	2	73	40	61.0
9A Stockpile	•									•	•		
9A-GB1	0-18	70	19	11	SL	25.5	50	9	2	0	61	24	53.9
9A-GB2	0-18	71	20	9	SL	24.6	47	7	3	0	57		50.3
9A-GB3	0-18	71	18	11	SL	26.3	48	7	<1	0	55	14	52.4
9A-GB4	0-18	72	19	9	SL	27.9	50	10	2	<1	62		63.5
9A-TP1	0-90	74	16	10	SL	28.8	45	15	5	0	65	23	61.1
9A-TP2	0-54	76	16	8	SL	24.8	49	13	1	0	63	23	66.2
9A-TP2	54-108	74	17	9	SL	24.1	55	11	<1	0	66	18	71.2
9A-TP3	0-84	76	17	7	SL	22.6	63	6	<1	0	69	12	72.8
9A-TP4	0-96	70	21	9	SL	29.4	50	7	0	0	57		61.4
9A-TP5	0-96	68	21	11	SL	26.9	53	13	1	0	67		66.7
9A-S							48	9	2	1	60	32	62.6
Copper Leach	Stockpile I	Reclamat	ion										
CuL-GB1	0-18	66	21	13	SL	27.8	40	12	1	0	53	23	48.8
CuL-GB2	0-18	66	23	11	SL	28.1	47	7		0	54	14	48.9
USNR Test Plo	ots								•	•	•		
USNR-GB1	0-18	70	19	11	SL	27.9	50	6	1	0	57	21	54.2
USNR-GB2	0-18	70	20	10	SL	27.6	42	4	1	0	47	6	40.9
USNR-GB3	0-18	69	20	11	SL	29.8	48	5	<1	0	53	8	49.1
West In-Pit Sto	ockpile												
WIP-GB1	0-18	76	15	9	SL	28.3	50	8	2	<1	60	36	52.0

Table 3: Laboratory and Field Physical Properties of Precambrian Granite Materials

Note:

% wt = percent weight; % vol = percent volume SL = sandy loam, GR = gravel (2 mm-3"), CO = cobble (3-10"), ST = stone (10-24"), BO = boulder (>24")

	F	ield Paramete	ers	Dry Weight Basis									
Test Plot /	Volume	Total Mass	Moisture	Coarse	Fragments		Fine E	Whole Soil					
Test Pit ID	volume	TOTAL MASS	woisture	Mass	Volume*	Mass	Volume	Bulk Density	Bulk Density				
	cm ³	g	%	g	cm ³	g	cm ³	g/	cm³				
Copper Leach Stoc	Copper Leach Stockpile Reclamation												
CuL-BD1	1500	3415	2	1735	667.3	1588	832.7	1.91	2.22				
CuL-BD2	2564	5145	1	3534	1347.7	1523	1216.3	1.25	1.97				
USNR Test Plots			•						•				
USNR-BD1	2108	5819	5	2535	1003.8	1534	1104.2	1.39	1.93				
USNR-BD2	2418	5035	8	3567	1462.4	1036	955.6	1.08	1.90				
USNR-BD3	2340	5135	2	3411	1312.0	1593	1028.0	1.55	2.14				

Table 4: Density Measurements for In-Situ Precambrian Granite Soil Covers

Notes: cm³ = cubic centimeters; g = gram; * assumes specific gravity of 2.66 g/cm³ for coarse fragments

3.2 Soil Water Characteristic Curves

The Copper Rule defines performance requirements for the cover materials under NMAC 20.6.7.33.F.2:

Soil cover systems shall be designed to limit net-percolation by having the capacity to store within the fine fraction at least 95 percent of the long-term average winter (December, January, and February) precipitation or at least 35% of the long-term average summer (June, July, and August) precipitation, whichever is greater. The water holding capacity of the cover system will be determined by multiplying the thickness of the cover times the incremental water holding capacity of the approved cover materials. Appropriate field or laboratory test results or published estimates of available water capacity shall be provided by the permittee to show that the proposed cover material meets this performance standard.

Based on the Fort Bayard weather record for the period from 1897 to 2010, the average winter precipitation is 2.78 inches and the average summer precipitation is 7.44 inches (WRCC 2016). Thus, the WHC requirements for a 3-foot-thick cover based on the long-term winter (2.78 inches X 0.95 = 2.64 inches or 0.88 inches per foot [in/ft]) and summer precipitation (7.44 inches X 0.35 = 2.60 inches or 0.87 in/ft) are essentially equivalent. To evaluate PCG overburden for compliance with the Copper Rule, the threshold WHC was set at 0.88 in/ft.

Soil hydraulic testing was performed on ten selected PCG samples to represent a range of physical characteristics (total rock volume and soil texture) in the development of material-specific SWCCs. The SWCCs were analyzed to determine the water holding capacity (WHC) to demonstrate that the constructed cover systems would meet the requirements in the New Mexico Copper Rule (20.6.7.33.F NMAC). The laboratory report associated with the hydraulic property testing program is provided in Appendix C.

The saturated water content (θ_s) of the <2-mm soil fraction for the PCG materials ranged between 45 and 49 percent (Table 5). Minor variations in fine earth θ_s are expected given the textural consistency of the PCG materials (Section 3.1). Whole soil θ_s ranged from 13 to 24 percent reflecting the variability of rock volumes ranging from 48.7 to 70.7 percent (Table 5). The saturated hydraulic conductivity (K_{sat}) of the <2-mm PCG samples ranged from 2.7 x 10⁻³ to 1.1 x 10⁻² cm/s (Table 5), which comports with the range of published values for sandy loams (Klute and Dirksen 1986). Whole soil K_{sat} for ranged for from 7.1 x 10⁻⁴ to 1.1 x 10⁻² cm/sec (Table 5). Other soil hydraulic parameters (residual water content [θ_r] and van Genuchten's α and N) in Table 5 compare well with standardized relationships among soil particle size and hydraulic properties of similarly textured soils (Rawls et al. 1982, Carsel and Parrish 1988).

The SWCC for each cover sample was developed using retention data (laboratory water content-pressure $[\theta-\Psi]$ pairs) fitted to the van Genuchten model using nonlinear least-squares parameter optimization (van Genuchten 1980, van Genuchten et al. 1991). The SWCCs were developed for the fine-earth fraction and for the whole soils after correction of the fine-earth fraction data for rock fragments. Specifically, the volumetric water content of the fine-earth fraction at each matric suction values was proportionally reduced relative to the volume of rock fragments in the whole soil (Bouwer and Rice 1984, Soil Survey Division Staff 2017, USDA NRCS 2019). This approach assumes the rock fragments do not hold appreciable water and are diluents in the whole soil matrix. For the fine-earth SWCC, θ_s was held at the lab measured value while residual water content (θ_r) and van Genuchten α and N parameters were calculated for each sample. The whole soil SWCCs held the α and N constant and each θ - Ψ pair was reduced proportionally based on the sample's field QC rock content. The fine-earth and whole soil SWCC for the 10 PCG samples used to determine WHC are graphical shown in Appendix C.

The WHC was determined by subtracting the water held at the traditionally defined field capacity from water held at wilting point (National Soil Survey Handbook [NSSH], Section 618.6.D.3). Because the PCG samples are all

sandy loams, they were considered coarse-textured and field capacity was determined at 100 centimeters (cm) of suction and wilting point was estimated as the water held at 15,000 cm of suction (USDA 2016). The water content at field capacity and wilting point were determined numerically (rather than graphically) from the SWCC function developed for each sample.

Figure 3 illustrates the rock-corrected SWCCs for the ten moderately coarse-textured PCG cover materials that was used to evaluate the appropriateness of the 100-cm field capacity set-point. For all PCG SWCCs, the 100-cm field capacity suction set-point is higher than their respective air-entry value (AEV, or the matric suction when air starts to enter the largest soil pores as it desaturates towards field capacity). The 100-cm suction point falls along the slope of the unsaturated transition zone between air-entry (the point where the SWCC bends sharply) and residual suctions. WSP believes the selected field capacity set point is justified for the PCG and is supported by the site-specific data.

Table 5 provides a summary of calculated fine earth and whole soil WHC for the PCG materials. Whole soil WHC is calculated by reducing the fine earth WHC in proportion to the rock fragment volumes based on the generalized relationship:

$$WHC_{ws} = WHC_{fe} \times (1 - RF_v)$$

where WHC_{ws} is whole soil WHC, WHC_{fe} is fine earth WHC and RF_v is the volume of rock fragments.

As discussed above, the target WHC_{ws} required by the Copper Rule for the PCG cover systems is 0.88 in/ft. For all ten samples, the average WHC_{ws} is 0.91 in/ft with six of the ten PCG samples exceeding the target WHC_{ws}. Figure 4 illustrates the WHC-rock fragment linear relationships developed for the PCG samples. Based on the material-specific linear relationship shown in Figure 4, a maximum rock volume that achieves the Copper Rule WHC requirement is 58.2 percent. Considering the rock contents measured in the PCG samples tested, 9A/9AX overburden samples would require a six percent rock volume reduction to achieve the WHC requirement while the PCG used in the Copper Leach Stockpile and USNR reclamation achieve the Copper Rule WHC rock content threshold. As mentioned in the previously section, Tyrone's MCHP has been effective in selecting PCG material with lower rock content to meet this requirement whether within stockpiles or at the pit face and also reducing overall rock content during the construction of cover soils.

3.3 Grizzly Rock Screening

Tyrone used an existing grizzly rock screen stationed at the 5A Stockpile to segregate rock for two PCG samples to determine the volume of oversized materials (>3-in). The use of the grizzly was a condition of MMD's approval of the SAP to verify that the ocular estimates of the rock fragment were accurate. Below is a summary of WSP's observation of the screening process. Appendix A-2 includes photos of this grizzly screening process and the PCG materials prior to and post screening.

Two loads of PCG were sourced from the 9A/9AX Overburden Stockpiles (one from each stockpile) for screening. Bulk samples (each approximately 12 cubic yards [CY]) were loaded into a rock truck and dumped near the grizzly. Prior to screening, WSP examined each bulk sample (9A-S and 9AX-S) to visually estimate rock volume. Given the large volume of the PCG materials, a 10-gallon sample was collected from each pile to evaluate the rock volume using the field testing method described in Section 2.1.1.

		Fi	ne Earth Fraction	(<2mm)			Whole Soil						
Sample ID	K _{sat}	α	N	θr	θs	WHC	Rock	K _{sat} *	θr	θs	WHC		
	(cm/sec)	1/cm	dimensionless	% vol		% vol (in/ft)		vol (in/ft)		(cm/sec)	%	vol	(in/ft)
9A-TP1	1.3E-02	0.0461	1.3646	4.69	46.08	2.11	61.1	3.74E-03	1.82	17.91	0.82		
9A-TP4	2.3E-02	0.0797	1.3577	4.78	47.32	2.04	61.4	6.74E-03	1.84	18.25	0.79		
9A-GB2	9.7E-03	0.0502	1.4356	3.44	46.08	2.37	50.3	3.84E-03	1.71	22.89	1.18		
9A-GB3	3.0E-02	0.0611	1.4214	3.46	44.55	1.92	52.4	1.12E-02	1.65	21.18	0.91		
9AX-TP2	5.8E-03	0.1117	1.2929	1.03	46.04	2.02	70.7	1.26E-03	0.30	13.49	0.59		
9AX-GB1	2.7E-03	0.0265	1.3383	7.73	49.38	2.72	64.5	7.13E-04	2.75	17.55	0.97		
CuL-GB1	1.1E-02	0.0491	1.4126	4.40	47.01	2.24	48.8	4.69E-03	2.25	24.05	1.15		
USNR-GB1	2.4E-02	0.0801	1.4046	4.14	46.46	1.87	54.2	8.68E-03	1.90	21.29	0.84		
USNR-GB3	2.1E-02	0.0827	1.3998	3.86	45.50	1.83	49.1	8.55E-03	1.96	23.16	0.93		
WIP-GB1	1.6E-02	0.0413	1.5957	6.22	47.13	1.93	52.0	6.21E-03	2.99	22.63	0.92		

Table 5: Soil Hydraulic Properties and Water Holding Capacity of Precambrian Granite

Notes: cm/sec = centimeters per second, 1/cm = per centimeter, % vol = percent by volume, in/ft = inches per foot

Tyrone's grizzly has a sloped stationary screen set at about 45 degrees with a nominal grid opening of 3 inches. The equipment is well used, and a portion of the screen has openings greater than 3 inches. A front-end loader was used to dump PCG material through the grizzly screen and segregate oversize materials. Two loader buckets of each bulk sample were processed through the grizzly.

Despite careful material loading, blockages were common when the oversized rock failed to roll off the grizzly. Blockages resulted in a portion of <3-in rock sliding off the screen into the oversized pile or remained on the screen despite gently shaking the grizzly with the loader bucket. Based on WSP's experience, the screened product did not have a sufficient amount of larger cobbles and smaller stones to provide long-term erosional stability of the cover system.

Following the screening operation, the screened and oversized rock were placed into separate piles. Note that the loader was unable to completely retrieve a portion of the <3-in material under the grizzly. To determine the volume of oversized rock to be included in the QC computation, the shape and dimensions of each pile were measured to determine their relative volumes and then calculate the proportion of oversized rock for each bulk PCG sample. For the volume of the clast-supported >3-in pile, it was assumed that 33 percent of the volume was voids. Table 6 provides the volume calculations for the grizzly fractions in comparison to ocular estimate for each bulk sample. The average absolute difference for the oversized fraction for the screened samples compared to the ocular estimate is 4 percent within the ± 5 percent threshold. This result further supports the use of ocular estimates by trained QC personnel to accurately determine the total rock volume in PCG materials.

Sample ID/	Approx.	Dimensio	ns (in)	Calcu	lated Volu	me (CY)	% volume				
Screened Fraction	Shape of Pile	Base	Height	Pile	Waste* Total		Grizzly	Ocular Estimate	Absolute Difference		
9A-S											
<3-in	Cone	71.5-radius	28	4.82	0.67	5.49	90.4				
>3-in	Triangular Prism	54-wide 108-long	14	0.88	NA	0.59**	9.6	12	2.4		
9AX-S											
<3-in	Cone	75-radius	36	6.82	1.5	8.32	77.3				
>3-in	Cone	60-radius	30	3.64	NA	2.44**	22.7	17	5.7		

Table 6: Grizzly Screening	ng Compared to Field Estimates of the Oversized Rock Fraction (>3	3-in)
----------------------------	---	-------

Notes: CY = cubic yard; * = approximate volume that could not be retrieved under screen; ** = assumes 33% voids in >3-in fraction (clast supported)

3.4 Little Rock PCG Samples

Little Rock PCG overburden materials were sampled in September 2023 and March 2024 by WSP. Twenty-one samples were collected from berms and test pits at the NRW and 9A Waste stockpiles, and Northern haul road (Figure 6). Appendix B provides the laboratory reports from Energy Laboratories. Chemically the Little Rock PCR samples are essentially identical to the PCG samples discussed above with respect to EC, organic matter, trace metals, and macronutrients with slightly more alkaline pH values (Table 7). Results of the physical testing of indicate the Little Rock PCG RCM samples are uniformly sandy loams (Table 8) with average volumetric rock content of 61 percent (range 51 to 71 percent) based on field gravimetric testing. Rock classes ranged from gravel to stones with occasional boulders.

	Donth		urated aste	Organic	Cation Exchange	Р	NO ₃	к			AB-D	ΤΡΑ Ε	Extracta	able M	etals		
Facility / Sample ID	Depth (in)	рН	Elec Cond	Matter	Capacity	P	as N	N	As	Cd	Cu	Fe	Pb	Mn	Мо	Ni	Zn
		s.u.	dS/m	%	meq/100g	mg/kg											
9A Stockpile																	
9A-1	0-18	8.0	0.4	<0.2	11.9	1	<1	75	0.04	0.1	66.8	7	0.6	3.5	0.3	<0.1	6.7
9A-2	0-18	7.7	0.4	<0.2	12.2	1	1	63	0.03	<0.1	63.9	7	0.5	4.0	0.2	<0.1	3.2
9A-3	0-18	7.5	0.3	<0.2	15.0	<1	1	58	0.02	<0.1	50.9	5	0.3	2.5	0.2	<0.1	2.4
Northern Haul R	oad																
HR-1	0-18	7.8	0.6	<0.2	17.1	2	3	64	0.03	0.1	54.8	5	1.5	4.3	0.2	<0.1	4.6
HR-2	0-18	7.6	0.4	0.3	13.7	1	3	83	0.03	0.2	87.4	7	5.8	2.5	0.1	<0.1	8.4
HR-3	0-18	7.8	0.3	<0.2	11.1	<1	2	80	0.02	<0.1	22.8	3	0.2	2.4	0.3	<0.1	2.3
NRW Waste Stoo	kpile																
NRW-1	0-18	8.1	0.2	<0.2	8.8	<1	1	65	0.06	0.1	55.2	4	13.1	9.3	0.1	<0.1	12.9
NRW-2	0-18	8.0	0.3	<0.2	6.4	<1	2	64	0.14	<0.1	74.2	5	26.8	4.8	0.2	<0.1	11
NRW-3	0-18	8.0	0.2	<0.2	10.8	<1	2	62	0.03	<0.1	61.2	3	4.9	7.1	<0.1	<0.1	8.8
NRW-4	0-18	7.4	0.1	<0.2	17.4	<1	<1	72	0.02	<0.1	71.4	3	2.7	15.4	0.2	<0.1	3.8
NRW-0324-01	0-108	8.1	0.4	<0.2	12.2	<1	4	73	0.05	<0.1	29	4	0.5	1.9	0.3	<0.1	6.7
NRW-0324-02	0-108	8.1	0.3	<0.2	11.6	<1	4	85	0.05	0.1	11.6	4	1	2	0.2	<0.1	3.2
NRW-0324-03	0-108	8.1	0.3	<0.2	10.8	<1	1	67	0.04	<0.1	28.4	5	0.4	2.7	0.2	<0.1	2.4
NRW-0324-04	0-108	8.1	0.2	<0.2	13.7	<1	2	73	0.06	0.3	12.5	3	2.2	1.3	0.2	<0.1	4.6
NRW-0324-05	0-108	8.1	0.3	<0.2	9.8	<1	3	63	0.04	0.2	28.7	6	0.7	3.3	0.1	<0.1	8.4
NRW-0324-06	0-108	8.1	0.4	<0.2	7.7	<1	3	52	0.06	<0.1	146	6	0.5	3.1	0.3	<0.1	2.3
NRW-0324-07	0-108	8.2	0.2	<0.2	8.0	<1	<1	56	0.06	<0.1	113	5	0.5	3.1	0.1	<0.1	12.9
NRW-0324-08	0-108	8.1	0.3	<0.2	7.9	<1	1	60	0.06	<0.1	113	6	0.5	3.5	0.2	<0.1	11
NRW-0324-09	0-108	7.8	0.5	<0.2	8.7	<1	<1	68	0.14	0.2	63.3	4	21.1	5.6	<0.1	<0.1	8.8
NRW-0324-10	0-108	7.9	0.2	<0.2	8.7	<1	<1	67	0.06	0.1	49.3	4	14.4	4.9	0.2	<0.1	3.8
NRW-0324-WR	0-18	8.0	0.4	<0.2	17.7	<1	10	53	0.04	<0.1	121	3	0.4	1.8	0.3	<0.1	6.7

Table 7: Chemical Properties of Little Rock Precambrian Granite Materials

Notes: dS/m = deciSeimens per meter, meq/100 g = milliequivalents per 100 grams, mg/kg = milligrams per kilogram

				Labor	atory		Field Rock Estimates					
Facility/ Sample ID	Depth	Sand	Silt	Clay	USDA	Sat %	Calc Rock	Ocular	Difference			
	in		% wt		Texture							
9A Stockpile		•										
9A-1	0-18	70	18	12	SL	30.2	60.5	60	0.5			
9A-2	0-18	70	16	14	SL	32.1	56.3	60	3.7			
9A-3	0-18	72	16	12	SL	30.4	53	59	6			
Northern Haul I	Road	•			•			•				
HR-1	0-18	66	18	16	SL	36.6	52.6	55	2.4			
HR-2	0-18	68	16	16	SL	35.3	51.0	48	3.8			
HR-3	0-18	74	14	12	SL	32.1	56.8	52	4.8			
NRW Waste Sto	ockpile	•					1	•	•			
NRW-1	0-18	74	16	10	SL	29.6	64.2	65	0.8			
NRW-2	0-18	76	16	8	SL	27.9	63.8	65	1.2			
NRW-3	0-18	78	12	10	SL	28.4	66.6	65	1.6			
NRW-4	0-18	68	18	14	SL	38.9	55.4	60	4.6			
NRW-0324-01	0-108	74	14	12	SL	33						
NRW-0324-02	0-108	72	14	14	SL	37.5	67	68	1			
NRW-0324-03	0-108	74	14	12	SL	31.2						
NRW-0324-04	0-108	76	12	12	SL	37.4	62	60	2			
NRW-0324-05	0-108	78	12	10	SL	31.2			-			
NRW-0324-06	0-108	80	10	10	SL	30.4	64	64	0			
NRW-0324-07	0-108	78	12	10	SL	28.8			-			
NRW-0324-08	0-108	78	14	8	SL	30.1	71	68	3			
NRW-0324-09	0-108	76	12	12	SL	31.4			-			
NRW-0324-10	0-108	76	14	10	SL	31.7	71	63	8			
NRW-0324-WR	0-18	70	14	16	SL	43						

Table 8: Laboratory and Field Physical Properties of Little Rock Precambrian Granite Materials

% wt = percent weight; % vol = percent volume SL = sandy loam Note:

4.0 SUMMARY

This study further demonstrates the suitability of PCG overburden materials at Tyrone and Little Rock as a reclamation cover material (RCM) and aligns with the results of four previous characterization studies (Golder 2005a and b, 2017a, 2020). Laboratory analyses indicate that the PCG overburden from the Little Rock Mine is relatively uniform and has no inherent chemical or physical limitations for the growth of native and adapted reclamation plant species. Chemical characteristics of the PCG samples indicate they are suitable with respect to pH, salinity, nutrient levels, CEC, and extracted metal concentrations.

The PCG overburden is uniformly a moderately coarse-textured sandy loam and generally contains a moderate volume of rock fragments. Native soils with PCG as a parent material surrounding the Little Rock exhibit similar physical characteristics (PDTI 1999). Based on the material-specific linear relationship between rock content and WHC (Figure 4), a maximum rock volume of 58.2 percent achieves the Copper Rule WHC requirement (0.88 in/ft) for the PCG RMC.

With respect to volumetric rock content, the average total rock content of the 9A/9AX PCG samples was 62.6 percent and 61 percent for recent Little Rock samples while the PCG cover soils at reclaimed sites averaged 48 percent. The differences in rock content found in this study between stockpile PCG and PCG cover soils demonstrates the effectiveness of Tyrone's MCHP using mine equipment to select and manage PCG borrow to achieve a lower rock content in constructed cover systems. Additionally, FMI has constructed several cover systems with suitable overburden at Miami, Morenci, Chino, Tyrone and Little Rock. Figure 5 illustrates established vegetation on these overburden covers in Arizona and New Mexico and well as volunteer vegetation observed on the 9A Stockpile.

The study also demonstrates the use of ocular estimates by trained QC personnel can accurately determine the total rock volume in PCG materials within the ± 5 percent threshold. The absolute average difference between the ocular estimates and the QC measurements was 4.9 percent for the 22 samples including those processed with the grizzly. Observations of the grizzly screening process strongly suggests the use of screening for full scale reclamation is both inefficient and ineffective. Moreover, based on WSP's experience, the screened materials do not have a sufficient volume of larger cobbles and smaller stones to provide long-term erosional stability of the cover system.

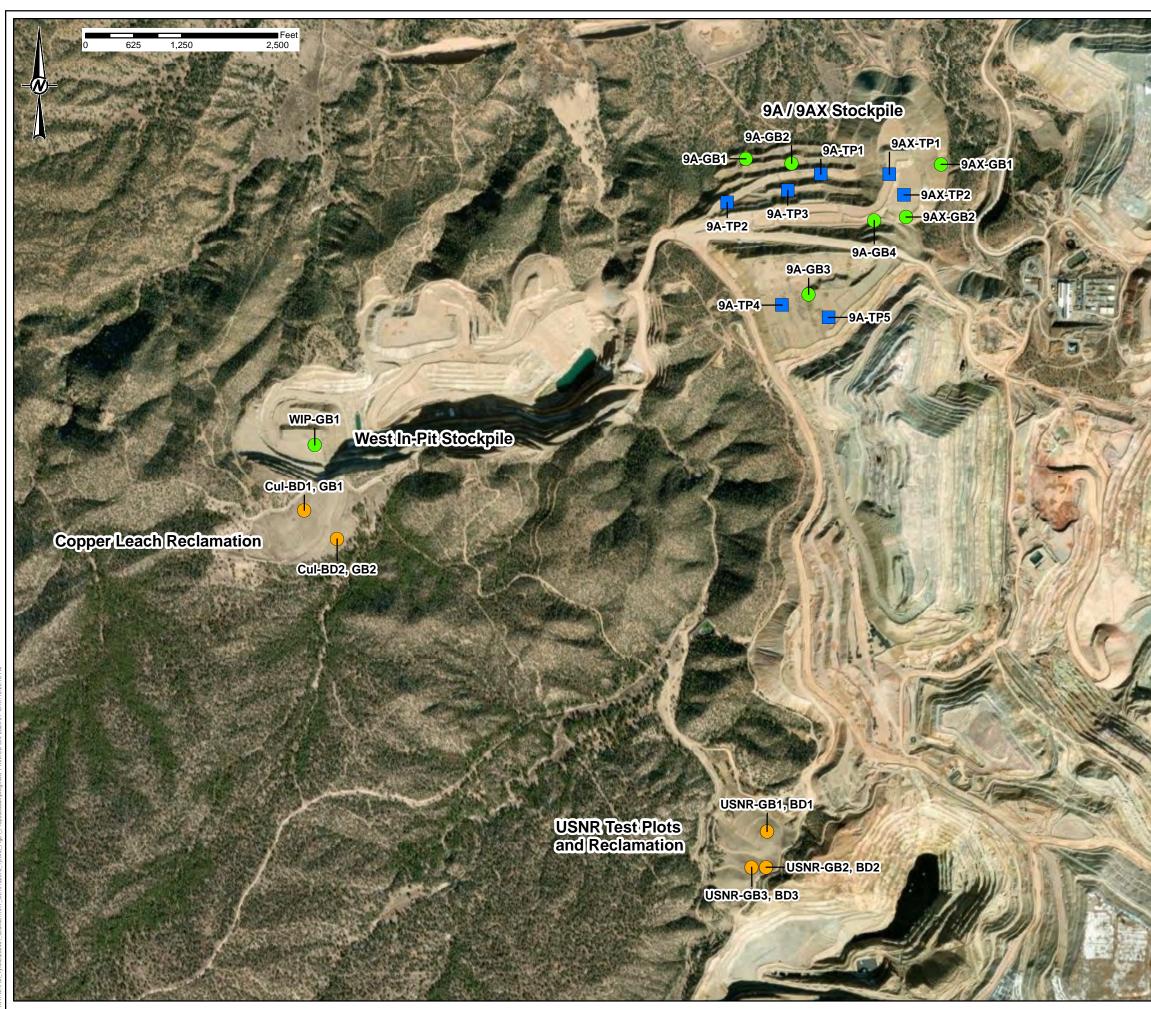
Tyrone's MCHP cover segregation methods as a normal course large scale reclamation, providing operational procedures that have been found effective in constructing cover systems with PCG overburden materials that meet the rock fragment specification. Quality control measures in the MCHP include:

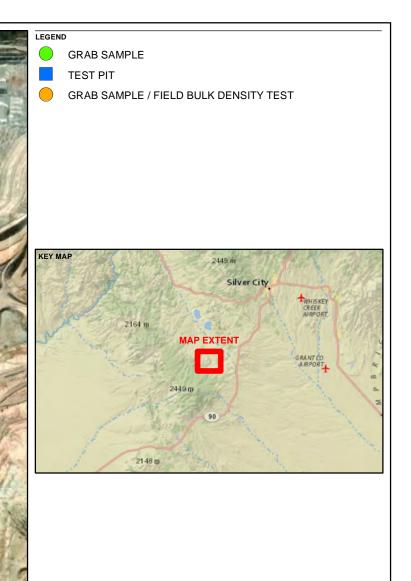
- 1. QC personnel visually monitoring the source material (at the shovel and/or the stockpiles) to determine whether the cover materials meet the specification and reject materials that are too coarse or have coarse materials blended with materials having a higher proportion of fines;
- 2. Managing materials during cover placement further reduce the overall volume of rock fragments through gravity segregation and blending; and
- 3. Visual inspections during the cover placement and after regrading are used to identify areas with excessive rock or surface conditions with limited fines. Areas where high concentrations of rock fragments are delineated and surveyed. The corrective action for these rocky surfaces is to amend them with finer-grained materials (i.e., having fewer rock fragments). This blending procedure was successful at increasing the fines in the seedbed in skeletal covers on the USNR test plots in 2015 (Golder 2017a).

Finally, quantitative vegetation studies further demonstrate that PCG overburden covers can support diverse and productive reclaimed plant communities that are resilient and capable of sustaining themselves under the adverse conditions typical of a semi-arid environment (Romig et al. 2023). The vegetation studies for PCG covers include those performed at the USNR (Golder 2019, 2021b, 2023b) and the Copper Leach Stockpile (Golder 2017b and 2022, WSP 2023c).

The cover requirement for the Mine/Stockpile Unit at Tyrone is approximately 13.3 million cubic yards (MCY) based on the current permit requirements. More than 32 MCY of PCG cover materials have been conservatively identified in the 9A/9AX Overburden Stockpiles (Golder 2020) with additional materials in the NRW Waste Stockpile and Northern Haul Road. The surplus of available PCG RCM will ultimately allow for flexibility in siting borrow stockpiles at Tyrone to account for closure planning, operations, and logistics.

5.0 REFERENCES


- Agronomy Society of America (ASA). 1982. Monograph 9: Methods of Soil Analysis. Soil Sci. Soc. Am., Madison, WI.
- Blake, G.R. and K.H. Hartge. 1986a. Particle Density. In: Klute A (ed). Methods of Soil Analysis Part 1: Physical and Mineralogical Methods. American Society of Agronomy, Madison, WI. p.363-375.
- Blake, G.R. and K.H. Hartge. 1986b. Bulk Density. In: Klute A (ed). Methods of Soil Analysis Part 1: Physical and Mineralogical Methods. American Society of Agronomy, Madison, WI. p.377-382.
- Bouwer, H., and R.C. Rice. 1984. Hydraulic Properties of Stony Vadose Zone. Groundwater 22:696-705.
- Campbell, G. and Gee. 1986. Water Potential: Miscellaneous Methods. Ch. 25, pp. 631-632, in A. Klute (ed.), Methods of Soil Analysis, American Society of Agronomy, Madison, WI.
- Carsel, R. F. and R. S. Parrish. 1988. Developing Joint Probability Distributions of Soil Water Retention Characteristics, Water Resources Research, Vol. 24, No. 5, pgs 755-769.
- Daniel B Stephens & Associates (DBS&A). 1997. Soil and Rock Suitability for Reclamation. Prepared for Phelps Dodge Tyrone Inc.
- DBS&A. 2020. Geochemical Modeling Update Little Rock Mine. Prepared for Freeport-McMoRan Tyrone, LLC.
- Freeport-McMoRan (FMI). 2014. United States Natural Resources (UNSR) Test Plot Work Plan: Condition 8.G of Permit Revision 97-1 of GR007RE and Condition 33 of Discharge Permit-1236 (DP-1236). Freeport-McMoRan Tyrone. November 26, 2014.
- Golder Associates Inc (Golder). 2005a. Leached Cap Analysis and Vegetation Summary-Little Rock Mine and Copper Mountain Pit Expansion Area. Prepared for Phelps Dodge Tyrone Inc.
- Golder. 2005b. Preliminary Borrow Source Materials Investigation Leach Ore and Waste Rock Stockpiles, DP-1341 Condition 79. Submitted to Phelps Dodge Tyrone Inc. October 31, 2005.
- Golder. 2016. Waste Rock Characterization and Handling Plan 9A and 9AX Waste Rock Stockpiles Tyrone Mine, DP-435 Prepared for Freeport-McMoRan Tyrone, LLC.
- Golder. 2017a. United States Natural Resources (USNR) Test Plot Annual Report No. 1. Little Rock and Tyrone Mines. Prepared for Freeport-McMoRan Tyrone, LLC. March 8, 2017.


- Golder. 2017b. Mid-Term Vegetation Success Monitoring: Copper Leach Stockpile Reclamation Unit, Tyrone/Little Rock Mine. Prepared for Freeport-McMoRan Tyrone, LLC. April 17, 2017.
- Golder. 2019. 2018 Quantitative Vegetation and Erosion Monitoring: Little Rock Mine, United States Natural Resources (USNR) Test Plots. Prepared for Freeport-McMoRan Tyrone and Little Rock Mines. April 25, 2019.
- Golder. 2020. Characterization and Volumetrics of Gila Conglomerate and Precambrian Granite Reclamation Cover Material. Prepared for Freeport-McMoRan Tyrone, LLC.
- Golder. 2021a. Characterization of Suitable Soils and Overburden and Soil Salvage Plan for the Emma Project. Prepared for Freeport-McMoRan Tyrone Inc., November 12, 2021
- Golder. 2021b. 2020 Quantitative Vegetation and Erosion Monitoring: Little Rock Mine, United States Natural Resources (USNR) Test Plots. Prepared for Freeport-McMoRan Tyrone and Little Rock Mines. April 28, 2021.
- Golder. 2022a. Vegetation Success Monitoring: Copper Leach Stockpile Reclamation Unit, 2021. Prepared for Freeport-McMoRan Tyrone Inc. April 2022.
- Klute, A., and C. Dirksen. 1986. Hydraulic conductivity and diffusivity: Laboratory methods. In: A. Klute (ed). Methods of Soil Analysis. Part 1-Physical and Mineralogical Methods, 2nd Edition. Soil Sci. Soc. Am., Madison, WI. Agron. 9:687-732.
- Mining and Minerals Division (MMD). 2022. Guidance for Soil and Cover Material Handling and Suitability for Part 5 Existing Mines. Mining Act Reclamation Program. December 2022.
- Paschke, M.W. and E.F. Redente. 2002. Copper Toxicity Thresholds for Important Restoration Grass Species of the Western United States. Environmental Toxicology and Chemistry, Vol. 21, No. 12, pp. 2692–2697.
- Phelps Dodge Tyrone Inc. (PDTI). 1999. Closure/Closeout Plan for the Little Rock Mine, Grant County, New Mexico. Submitted to the Mining and Minerals Division. September 30, 1999.
- Rawlins, S.L. and G.S. Campbell. 1986. Water Potential: Thermocouple Psychrometry. Chp.24, pp. 597-619, in A. Klute (ed.), Methods of Soil Analysis, Part 1. American Society of Agronomy, Madison, WI.
- Rawls, W.J., D.L. Brakensiek, and K.E. Saxton. 1982. Estimation of soil water properties. Trans. ASAE 25:1316– 1320 & 1328.
- Romig, D.E., C.E.B. DeCastro, M.S. Rabinowich, N.G. Buchanan, R. Roberts, and C.B. Krueger. 2023. Successful Revegetation of Run-of-Mine Overburden Soil Covers without Soil Amendments: Copper Mine Closure Studies in a Semi-Arid Environment. In Mine Closure 2023: Proceedings of the 16th International Conference on Mine Closure. Australian Centre for Geomechanics. October 2023.
- Salinity Laboratory Staff (SLS). 1954. Diagnosis and improvement of saline and alkali soils. Agricultural Handbook No. 60. USDA-Agricultural Research Service. US Government Printing Office, Washington, D.C.
- SARB Consulting. 1995.Little Rock Mine Project Geochemical Evaluation Technical Report. Prepared for Phelps Dodge Tyrone Inc.

- Sobek, A.A., W.A. Schuller, J.R. Freeman, and R.M. Smith. 1978. Field and laboratory methods applicable to overburdens and minesoils. EPA-600/2-78-054, Industrial Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio. March.
- Soil Science Division Staff. 2017. Soil survey manual. C. Ditzler, K. Scheffe, and H.C. Monger (eds.). USDA Handbook 18. Government Printing Office, Washington, D.C.
- Telesto Solutions. 2014. USNR Site and Copper Mountain South Pit Expansion CQA/CQC Report. Prepared for Freeport-McMoRan Tyrone, LLC.
- Tiedemann, A.R., and C.F Lopez. 1982. Soil Nutrient Assessments of Mine Spoils in Reclamation of Mined lands in the Southwest. Aldon, E.F. and W.R. Oaks (co-eds.), A Symposium. October 20-22, 1982, Albuquerque, New Mexico. Soil Conservation Society of America, New Mexico Chapter.
- USDA Natural Resource Conservation Service (NRCS). 2016. National Soil Survey Handbook. Title 430-VI. Available online. Accessed 3/24/2016.
- van Genuchten, M.Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. SSSAJ 44:892-898.
- van Genuchten, M.Th., F.J. Leij, and S.R. Yates. 1991. The RETC code for quantifying the hydraulic functions of unsaturated soils. Robert S. Kerr Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency. Ada, Oklahoma. EPA/600/2091/065. December 1991.
- Western Regional Climate Center (WRCC). 2016. Climate Summary for Ft. Bayard, New Mexico (NCDC #293265). http://www.wrcc.dri.edu/
- WSP USA, Inc. (WSP). 2023a. Sampling and Analysis Plan for Precambrian Granite Reclamation Cover Materials, Freeport McMoRan Tyrone and Little Rock Mines. Submitted to Freeport McMoRan Tyrone Mine Operations. March 30, 2023.
- WSP. 2023b. Mid-Term Vegetation Success Monitoring: USNR and Copper Mountain South Pit Expansion Reclamation Areas, 2022. Submitted to Freeport McMoRan Tyrone Mine Operations. April 27, 2023.
- WSP. 2023c. Vegetation Success Monitoring: Little Rock Copper Leach Stockpile, 2022. Submitted to Freeport McMoRan Tyrone Mine Operations. April 27, 2023.
- WSP. 2024. Seedbank and Greenhouse Studies: Continental Mine Test Plots: Chino Mines Company. Submitted to Freeport McMoRan Chino Mines Company. November 11, 2024.

https://wsponline.sharepoint.com/sites/gld-117323/project files/5 technical work/01 - usnr tp and pcg/2023 pcg 31406439.001/pcg 2025 report/31406439.001_pc granite suitability_r_n0_03042025.docx

Figures

REFERENCES

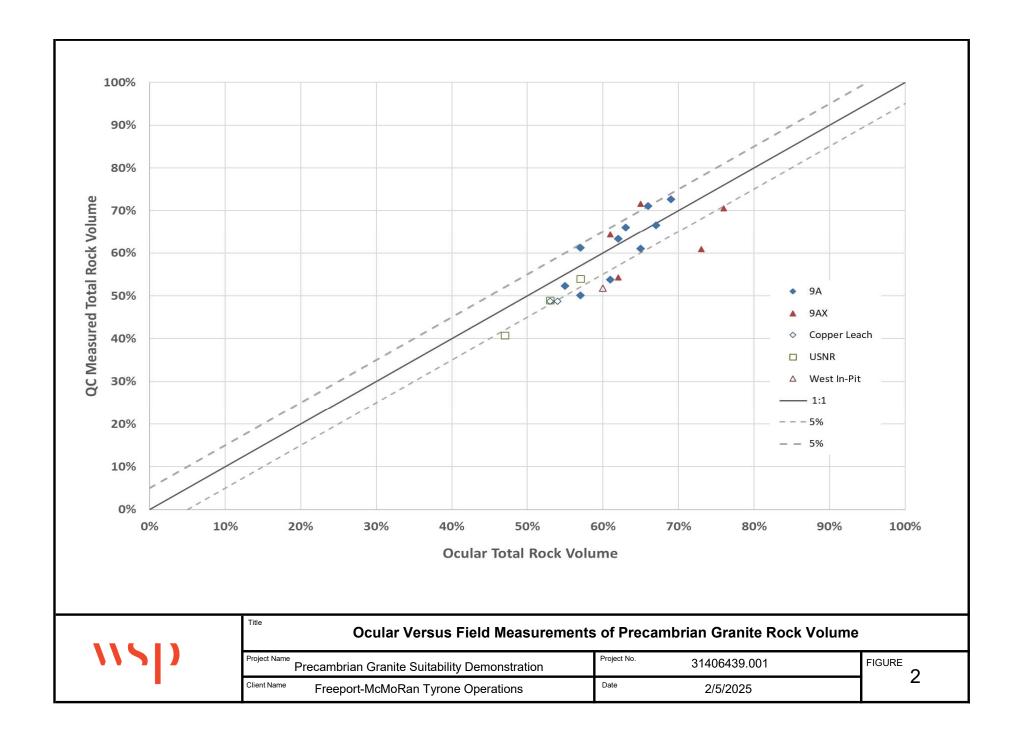
1. AERIALIMAGERY: ESRI PROVIDED BASEMAP SERVICE. VIVID. MAXAR. IMAGERY CAPTURED 4/24/2022.

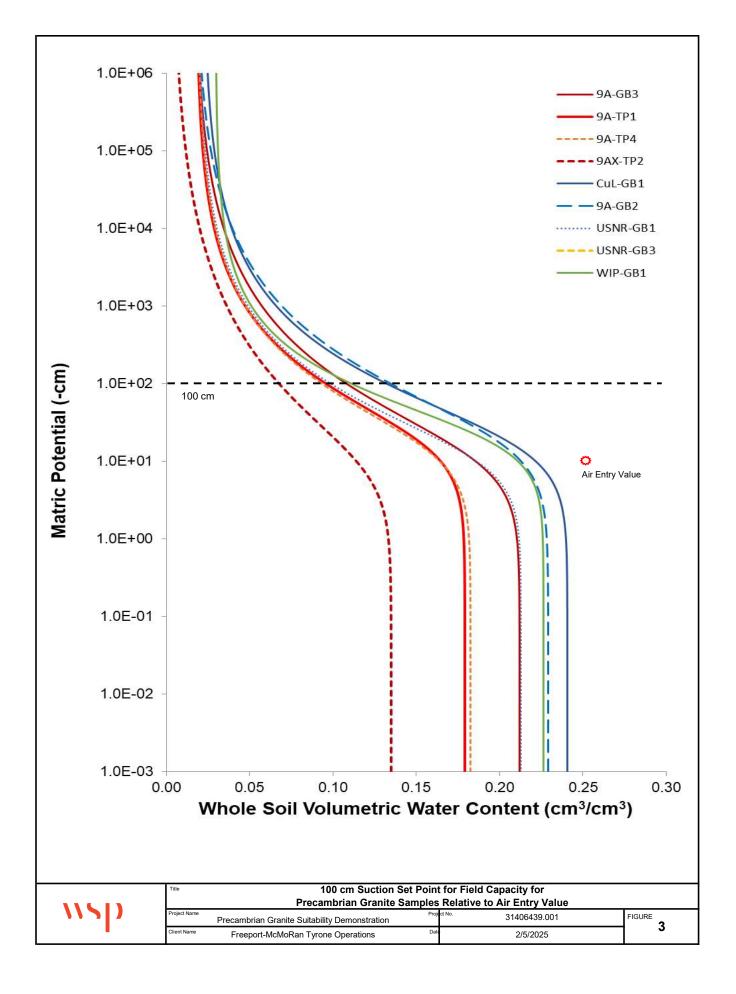
CLIENT

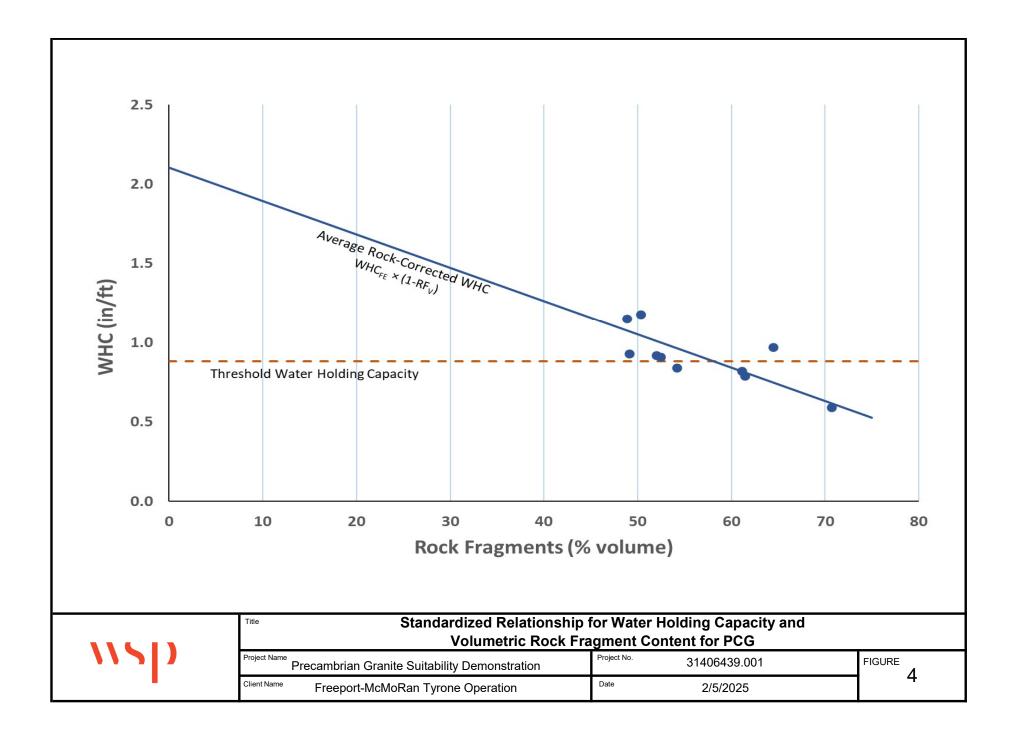
FREEPORT-MCMORAN TYRONE OPERATIONS TYRONE, NEW MEXICO

PROJECT PRECAMBRIAN GRANITE SUITABILITY DEMONSTRATION

TITLE


PRECAMBRIAN GRANITE SAMPLE LOCATIONS


CONSULTANT


YYYY-MM-DD 2024-11-16	-
DESIGNED NB	
PREPARED RHG	
REVIEWED DR	-
APPROVED DR	-
FIGURE	-

PROJECT NO. 31406439.001

1

Chino West Test Plots

USNR Reclamation

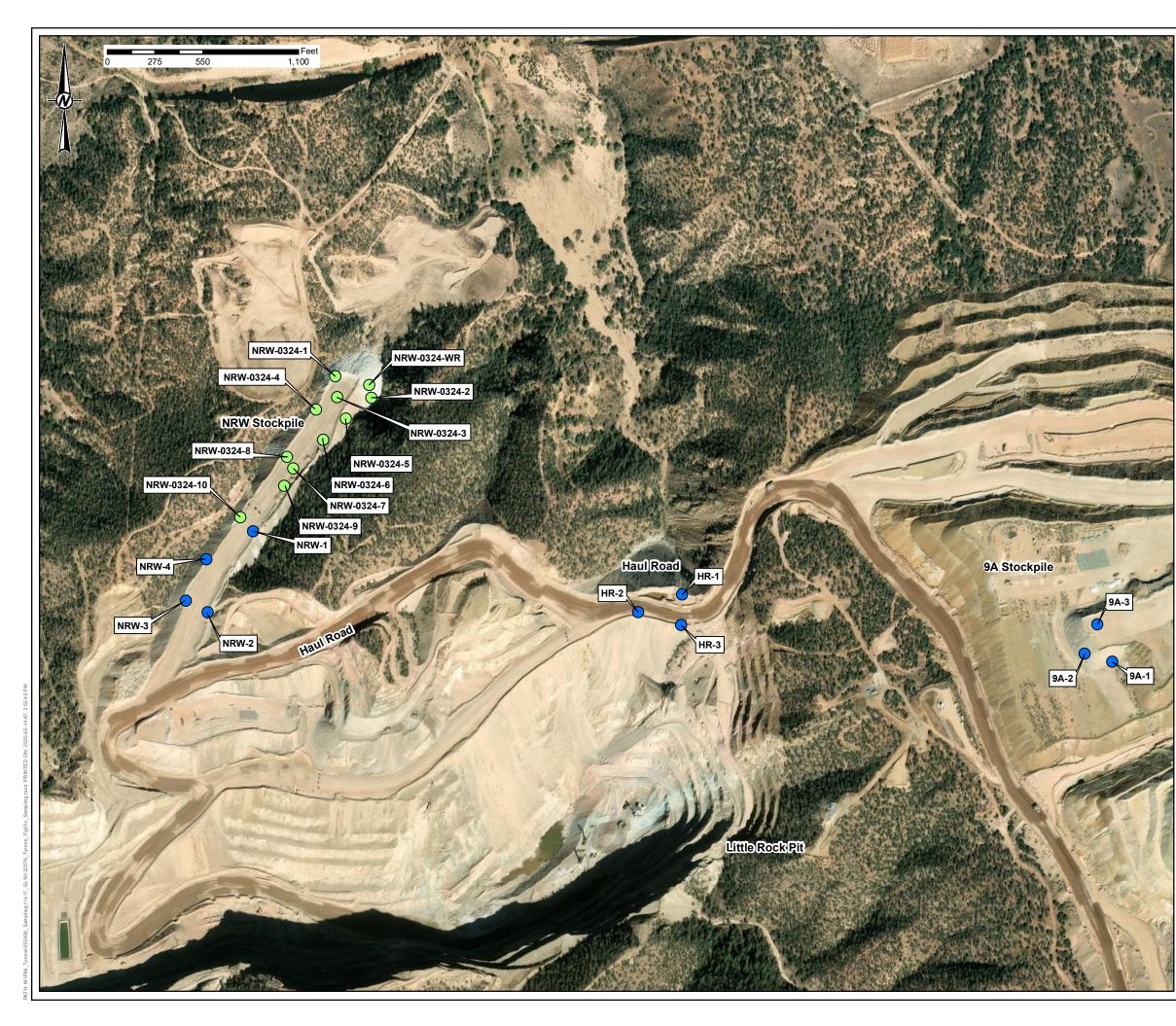
Copper Leach Stockpile

5

Volunteer Vegetation at the 9A Stockpile

Miami LP South

Miami LP Discards



MiamiMiami Lost Gulch

Morenci Rock Capping

Successful Vegetation on Overburden Soil Covers and PCG Stockpiles at FMI Mine Sites wsp 31406439.001 FIGURE Precambrian Granite Suitability Demonstration 2/5/2025 Freeport-McMoRan Tyrone Operations

LEGEND Sample Date

 \bigcirc

Samples Collected 03/2024

REFERENCES

1. AERIALIMAGERY: ESRI PROVIDED BASEMAP SERVICE. VIVID. MAXAR. IMAGERY CAPTURED 1/29/2023.

CLIENT

FREEPORT MCMORAN TYRONE MINE OPERATIONS TYRONE, NEW MEXICO

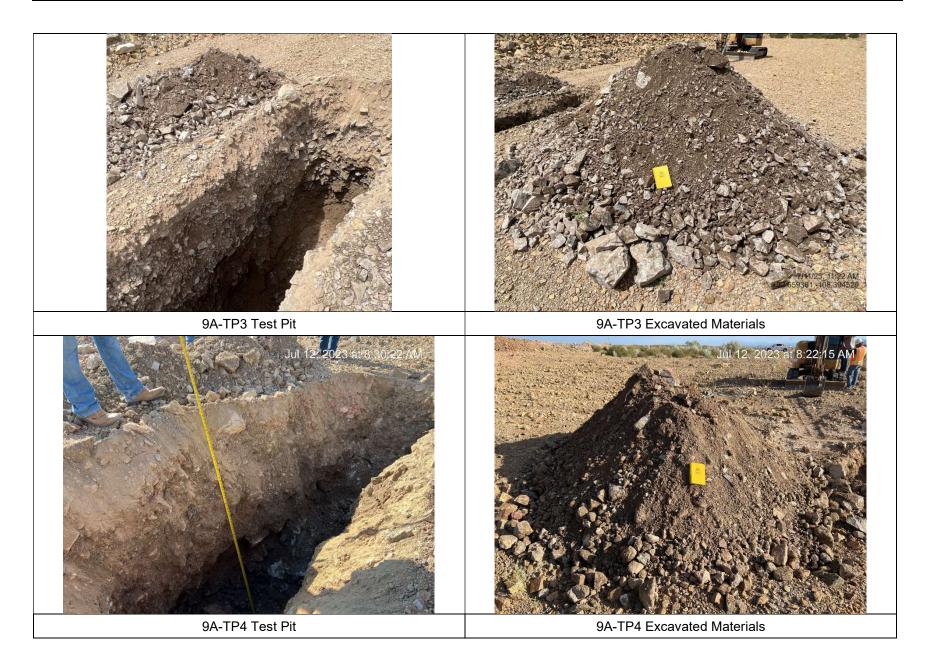
PROJECT PRECAMBRIAN GRANITE SUITABILITY STUDY

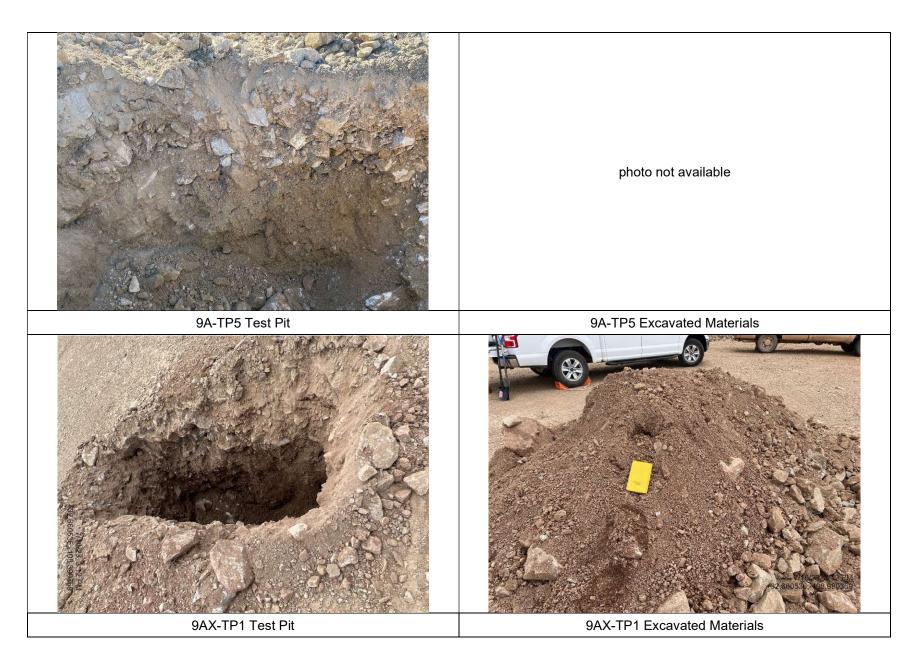
TITLE LITTLE ROCK PRECAMBRIAN GRANITE SAMPLE LOCATIONS

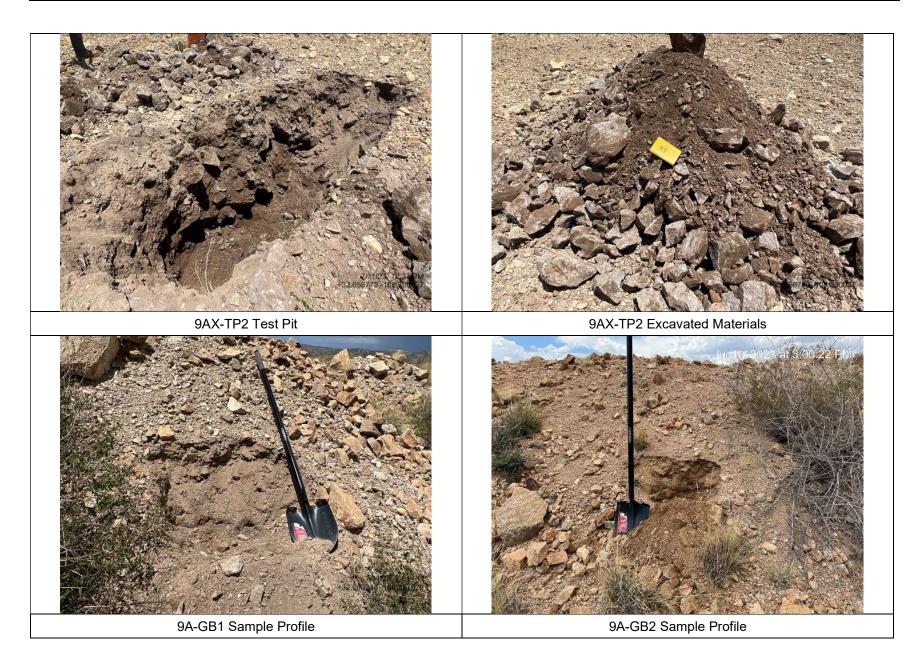
CONSULTANT

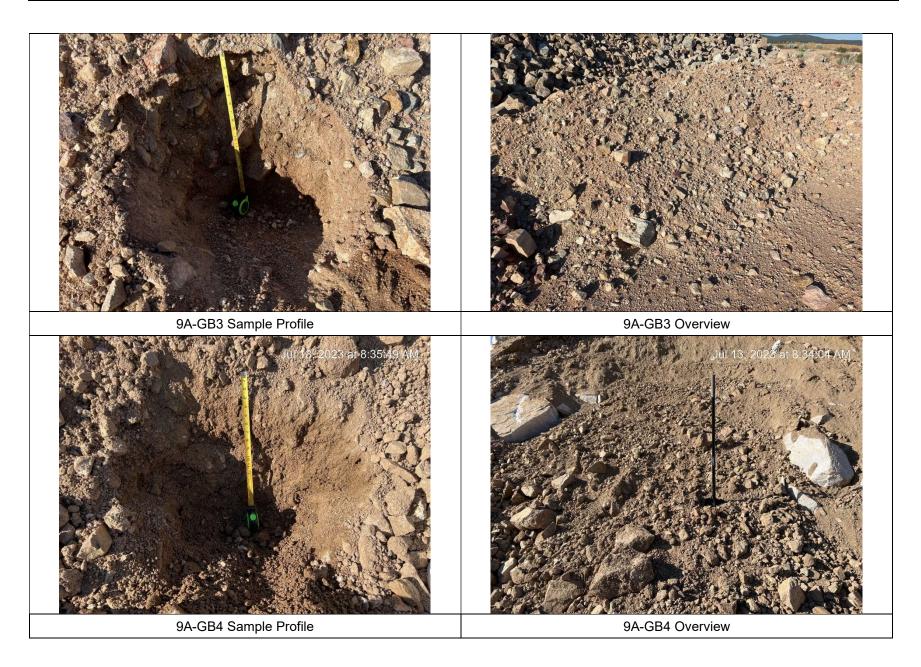
YYYY-MM-DD	2025-02-14
DESIGNED	AR
PREPARED	JTB
REVIEWED	-
APPROVED	-
	FIGURE

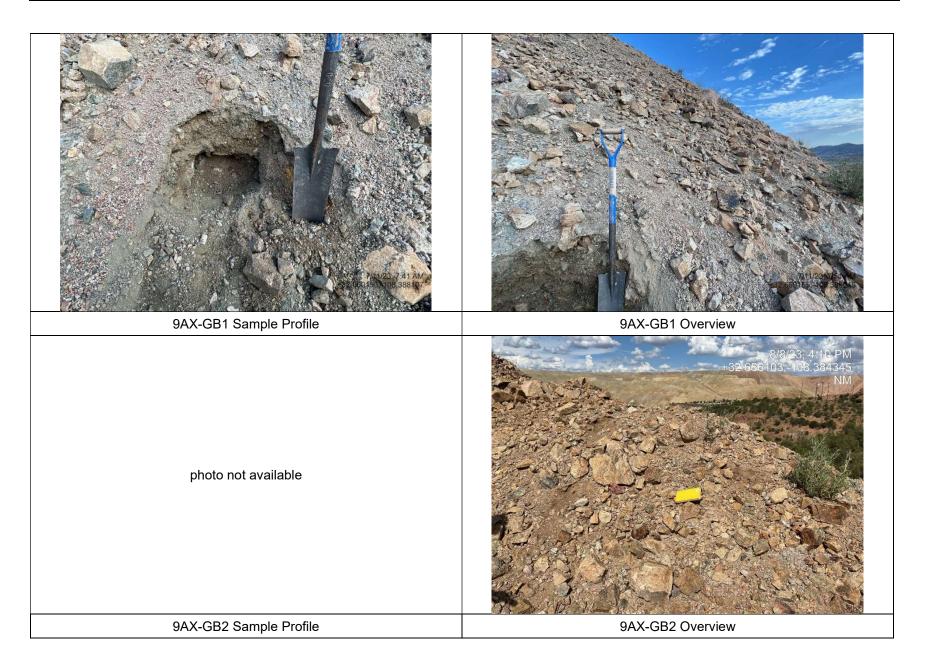
PROJECT NO. 31406439.2541

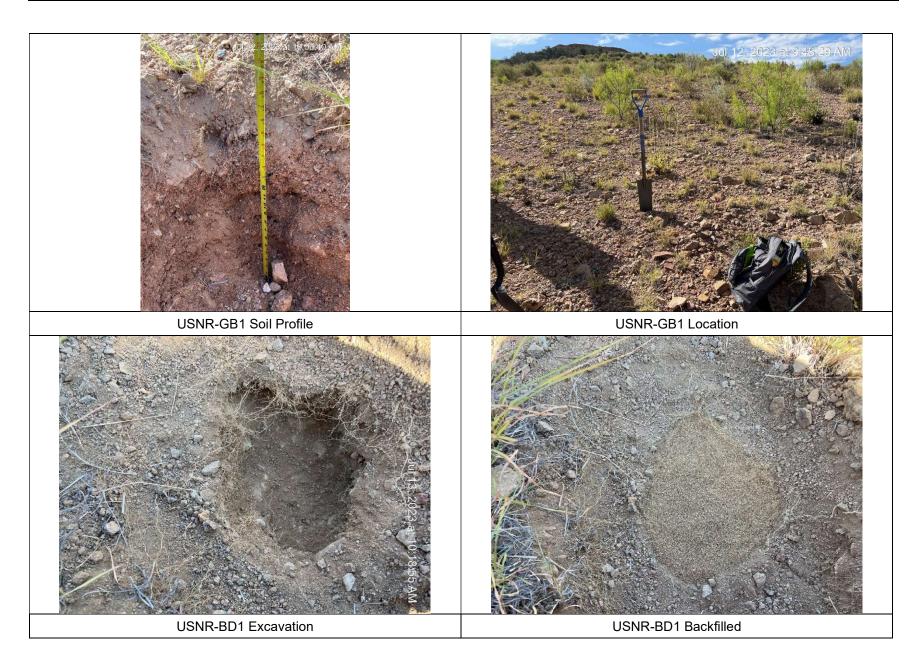

APPENDIX A

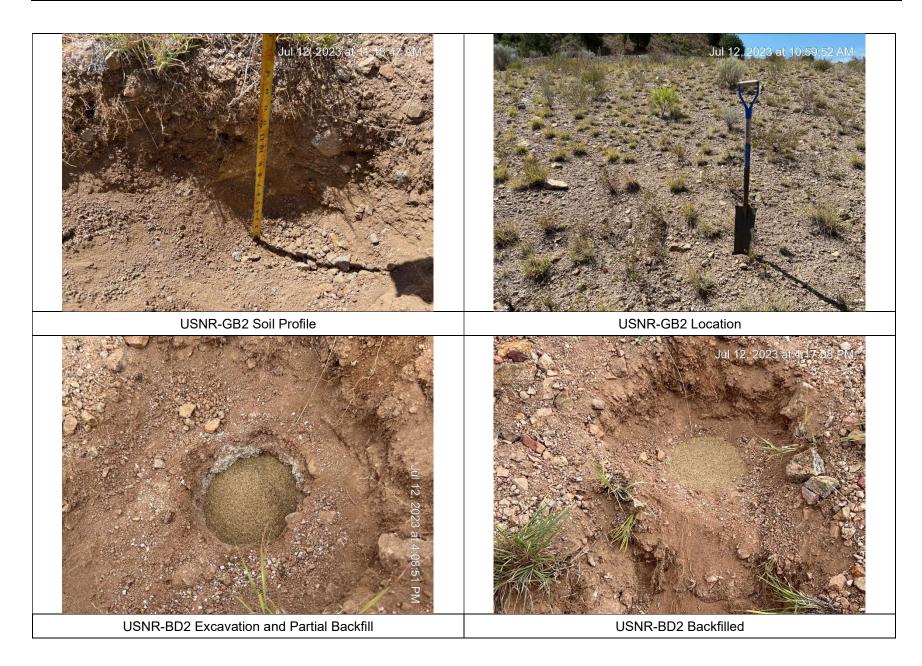

Project Photolog

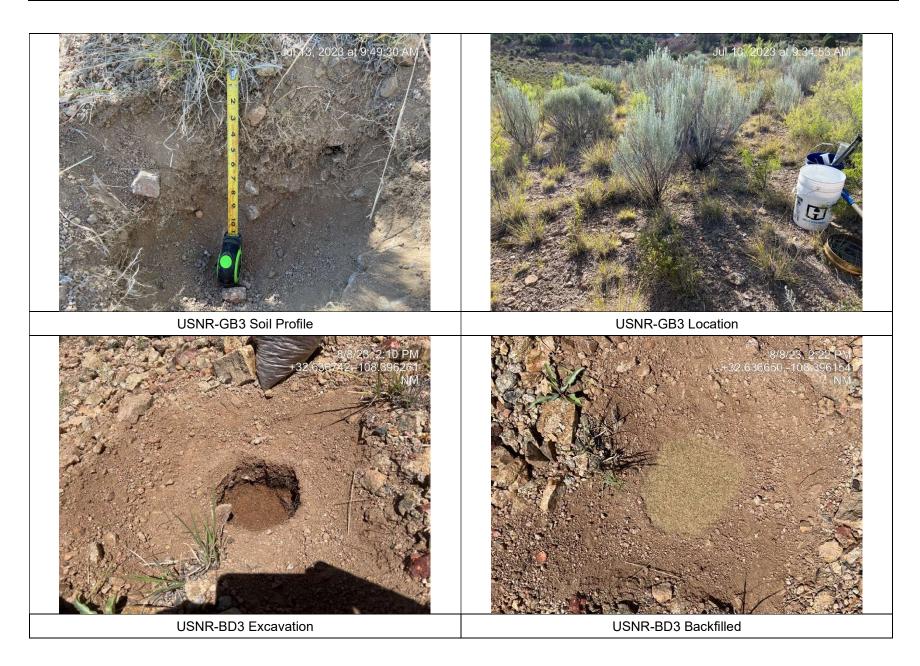

APPENDIX A-1


Test Pit Photolog

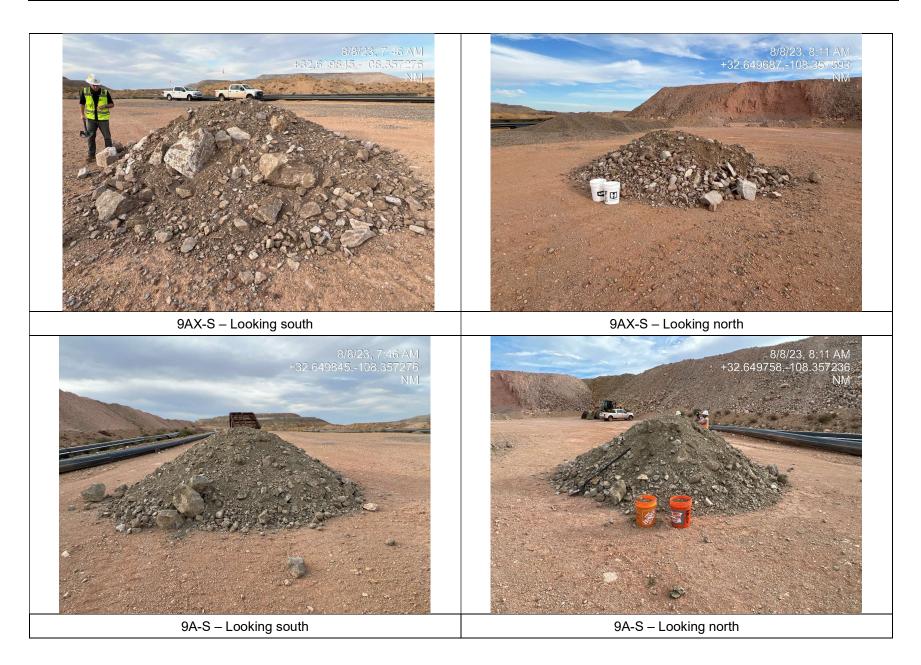


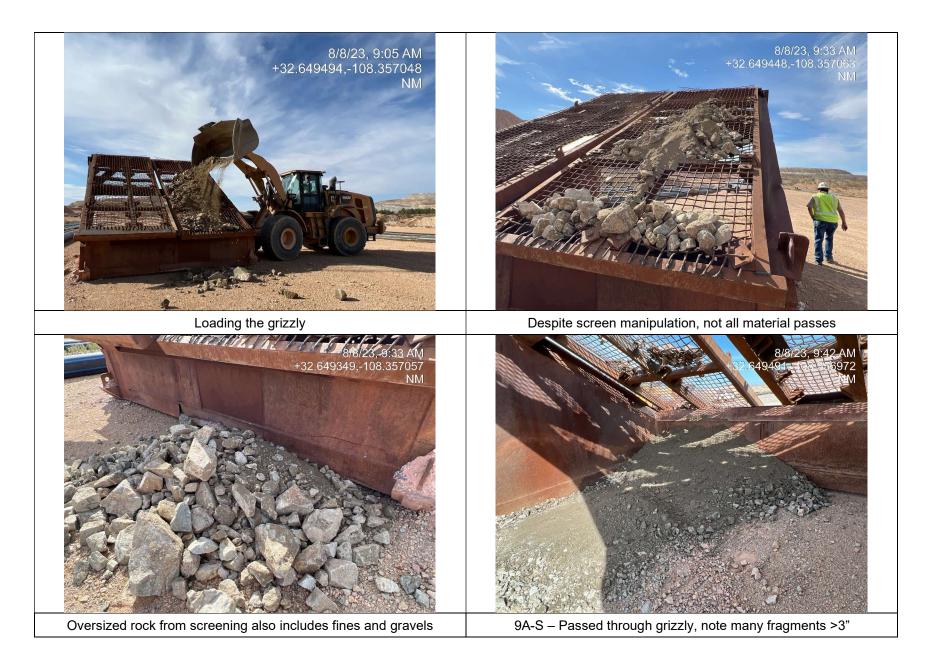


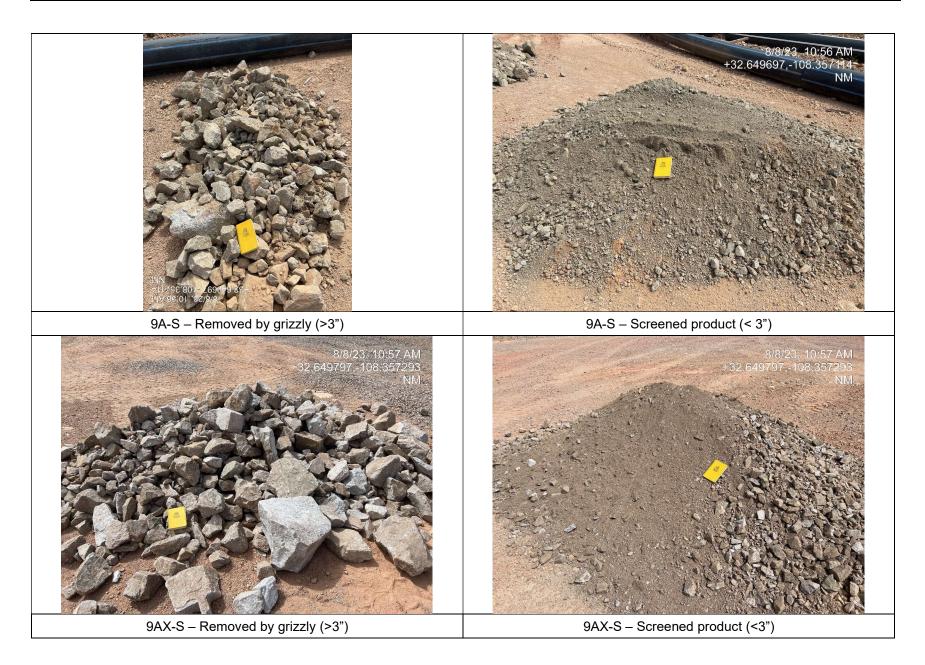












APPENDIX A-2

Grizzly Demonstration Photolog

APPENDIX B

Energy Laboratory Reports

ANALYTICAL SUMMARY REPORT

September 11, 2023

WSP Albuquerque 6616 Gulton Ct NE Ste 10 Albuquerque, NM 87109-4452

Work Order: B23081947

Project Name: 31406439 01 EXP

Energy Laboratories Inc Billings MT received the following 20 samples for WSP Albuquerque on 8/18/2023 for analysis.

B23081947-0019AX-TP107/10/23 0:0008/18/23SoilABDPTA extractable metals Cation Exchange Capacity Metals, NH4OAC Extractable Conductivity, Saturated Past Nitrate as N, KCL Extract Organic Carbon/Matter Walk Black pH, Saturated Paste Phosphorus-Olsen ABDTPA extraction for meta 5.2 NH4AC Soil Extraction for ClusDA19 Ammonium Acetate Extraction A AsA13-3 Saturated Paste Extraction A Particle Size Analysis / Textu Saturation PercentageB23081947-0029AX-TP207/11/23 13:0008/18/23SoilSame As AboveB23081947-0039AX-GB107/11/23 0:0008/18/23SoilSame As AboveB23081947-0049AX-GB208/08/23 0:0008/18/23SoilSame As Above	
B23081947-003 9AX-GB1 07/11/23 0:00 08/18/23 Soil Same As Above	e Extract sley- ls ASA3- EC on ASA
B23081947-004 9AX-GB2 08/08/23 0:00 08/18/23 Soil Same As Above	
B23081947-005 9A-GB1 07/11/23 14:45 08/18/23 Soil Same As Above	
B23081947-006 9A-GB2 07/11/23 14:58 08/18/23 Soil Same As Above	
B23081947-007 9A-GB3 07/13/23 8:00 08/18/23 Soil Same As Above	
B23081947-008 9A-GB4 07/13/23 9:00 08/18/23 Soil Same As Above	
B23081947-009 9A-TP1 07/11/23 9:15 08/18/23 Soil Same As Above	
B23081947-010 9A-TP2 [0-4.5]Feet 07/11/23 10:45 08/18/23 Soil Same As Above	
B23081947-011 9A-TP2 [4.5-8]Feet 07/11/23 11:00 08/18/23 Soil Same As Above	
B23081947-012 9A-TP3 07/11/23 11:30 08/18/23 Soil Same As Above	
B23081947-013 9A-TP4 07/12/23 0:00 08/18/23 Soil Same As Above	
B23081947-014 9A-TP5 08/02/23 0:00 08/18/23 Soil Same As Above	
B23081947-015 Cul-GB1 07/12/23 13:30 08/18/23 Soil Same As Above	
B23081947-016 Cul-GB2 08/08/23 0:00 08/18/23 Soil Same As Above	
B23081947-017 USNR-GB1 07/12/23 10:30 08/18/23 Soil Same As Above	
B23081947-018 USNR-GB2 07/12/23 0:00 08/18/23 Soil Same As Above	

ANALYTICAL SUMMARY REPORT

B23081947-019	USNR-GB3	07/12/23 10:26	08/18/23	Soil	Same As Above
B23081947-020	WIP-GB1	07/12/23 12:30	08/18/23	Soil	Same As Above

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client:WSP AlbuquerqueProject:31406439 01 EXP

Workorder: B23081947

Report Date: 09/11/23 **Date Received:** 08/18/23

	Analysis	Sand	Silt	Clay	Texture	pH, sat_ paste	COND	Saturation	Organic Carbon	CEC	Phos, Olsen	Nitrate as N	K- NH4OAC	As- ABDTPA
	Units	%	%	%		s_u_	mmhos/cm	%	%	meq/100g	mg/kg	mg/kg	mg/kg	mg/kg
Sample ID	Client Sample ID	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results
B23081947-001	9AX-TP1	72	18	10	SL	7.7	0.6	28.8	< 0.1	12.0	1	< 1	40	0.03
B23081947-002	9AX-TP2	77	16	7	SL	7.7	0.4	23.8	0.1	10.6	< 1	< 1	34	0.03
B23081947-003	9AX-GB1	57	30	13	SL	7.9	0.3	40.4	0.1	35.8	< 1	< 1	131	0.03
B23081947-004	9AX-GB2	65	23	12	SL	7.8	0.4	25.0	0.1	15.2	1	2	88	0.04
B23081947-005	9A-GB1	70	19	11	SL	7.4	0.4	25.5	0.2	15.0	2	1	73	< 0.02
B23081947-006	9A-GB2	71	20	9	SL	6.2	0.3	24.6	0.2	19.8	2	2	41	< 0.02
B23081947-007	9A-GB3	71	18	11	SL	7.6	0.5	26.3	0.1	14.7	1	< 1	88	0.02
B23081947-008	9A-GB4	72	19	9	SL	7.8	0.3	27.9	0.1	17.1	1	< 1	64	0.03
B23081947-009	9A-TP1	74	16	10	SL	7.9	0.5	28.8	0.1	15.4	1	< 1	48	< 0.02
B23081947-010	9A-TP2	76	16	8	SL	7.8	0.3	24.8	< 0.1	10.5	< 1	< 1	49	0.03
B23081947-011	9A-TP2	74	17	9	SL	7.4	0.3	24.1	0.1	15.2	< 1	< 1	50	0.02
B23081947-012	9A-TP3	76	17	7	SL	7.6	0.3	22.6	0.1	7.6	< 1	< 1	41	0.04
B23081947-013	9A-TP4	70	21	9	SL	7.7	0.4	29.4	< 0.1	18.6	< 1	< 1	72	0.03
B23081947-014	9A-TP5	68	21	11	SL	7.8	0.4	26.9	< 0.1	17.4	< 1	< 1	74	0.03
B23081947-015	Cul-GB1	66	21	13	SL	6.8	0.2	27.8	0.3	17.1	2	< 1	78	0.03
B23081947-016	Cul-GB2	66	23	11	SL	6.5	0.3	28.1	0.5	17.8	3	2	86	0.02
B23081947-017	USNR-GB1	70	19	11	SL	7.6	0.3	27.9	0.2	11.8	< 1	< 1	80	0.03
B23081947-018	USNR-GB2	70	20	10	SL	7.6	0.4	27.6	0.2	17.2	< 1	< 1	62	0.03
B23081947-019	USNR-GB3	69	20	11	SL	7.6	0.3	29.8	0.2	15.3	< 1	< 1	68	0.03
B23081947-020	WIP-GB1	76	15	9	SL	7.8	0.3	28.3	0.2	19.3	< 1	< 1	49	< 0.02

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

 Client:
 WSP Albuquerque

 Project:
 31406439 01 EXP

 Workorder:
 B23081947

Report Date: 09/11/23 **Date Received:** 08/18/23

	Analysi	is Cd- ABDTPA	Cu- ABDTPA	Fe- ABDTPA	Pb- ABDTPA	Mn- ABDTPA	Mo- ABDTPA	Ni- ABDTPA	Zn- ABDTPA
	Units		mg/kg						
Sample ID	Client Sample ID	Results	Results	Results	Results	Results	Results	Results	Results
B23081947-001	9AX-TP1	< 0.1	36.3	3	0.5	0.8	0.1	< 0.1	3.0
B23081947-002	9AX-TP2	< 0.1	39.8	3	2.2	0.9	0.1	< 0.1	2.3
B23081947-003	9AX-GB1	0.3	6.6	3	0.2	0.4	< 0.1	< 0.1	5.3
B23081947-004	9AX-GB2	< 0.1	61.7	3	1.6	1.1	< 0.1	< 0.1	3.7
B23081947-005	9A-GB1	0.1	82.8	4	0.5	1.7	< 0.1	< 0.1	3.8
B23081947-006	9A-GB2	< 0.1	27.6	4	0.2	4.2	0.1	< 0.1	3.7
B23081947-007	9A-GB3	< 0.1	26.7	4	0.8	1.1	0.2	< 0.1	3.4
B23081947-008	9A-GB4	< 0.1	42.7	4	1.0	0.6	0.2	< 0.1	3.1
B23081947-009	9A-TP1	< 0.1	44.8	2	0.3	0.6	< 0.1	< 0.1	1.6
B23081947-010	9A-TP2	< 0.1	63.6	4	0.6	0.8	< 0.1	< 0.1	2.1
B23081947-011	9A-TP2	0.2	41.7	4	1.2	0.7	0.3	< 0.1	3.8
B23081947-012	9A-TP3	0.2	43.2	5	0.9	1.1	0.2	< 0.1	4.8
B23081947-013	9A-TP4	0.2	26.3	4	1.4	1.0	0.2	< 0.1	4.1
B23081947-014	9A-TP5	0.1	42.6	4	1.2	0.8	0.2	< 0.1	3.1
B23081947-015	Cul-GB1	< 0.1	167	5	1.1	3.7	0.1	< 0.1	2.0
B23081947-016	Cul-GB2	< 0.1	172	7	1.2	3.0	0.1	< 0.1	2.4
B23081947-017	USNR-GB1	< 0.1	11.8	3	0.4	0.6	< 0.1	< 0.1	4.2
B23081947-018	USNR-GB2	0.1	18.6	5	0.5	1.3	< 0.1	< 0.1	3.0
B23081947-019	USNR-GB3	< 0.1	30.4	4	0.5	1.6	< 0.1	< 0.1	1.8
B23081947-020	WIP-GB1	< 0.1	15.1	3	0.1	0.7	< 0.1	< 0.1	1.0

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

QA/QC Summary Report

Client: WSP Albuquerque	Work C	Drder: B23081947	Report Date	: 09/11/23
Analyte	Result Units	RL %REC Low Limit	High Limit RPD	RPDLimit Qual
Method: ASA10-3				Batch: 182214
Lab ID:B23081947-009A DUPConductivity, sat. paste	Sample Duplicate	Run: MISC	C-SOIL_230825A	08/25/23 16:31
	0.470 mmhos/cm	0.10	6.2	30
Lab ID:B23081947-019A DUPConductivity, sat. paste	Sample Duplicate	Run: MISC	C-SOIL_230825A	08/25/23 16:31
	0.340 mmhos/cm	0.10	0.0	30
Lab ID: LCS-2308251631	Laboratory Control Sample	Run: MISC	C-SOIL_230825A	08/25/23 16:31
Conductivity, sat. paste	4.97 mmhos/cm	0.10 97 70	130	
Lab ID: B23081947-009A DUP	Sample Duplicate	Run: MISC	C-SOIL_230825A	08/25/23 16:31
pH, sat. paste	7.90 s.u.	0.10	0.0	10
Lab ID: B23081947-019A DUP	Sample Duplicate	Run: MISC	C-SOIL_230825A	08/25/23 16:31
pH, sat. paste	7.60 s.u.	0.10	0.0	10
Lab ID: LCS-2308251631	Laboratory Control Sample	Run: MIS0	C-SOIL_230825A	08/25/23 16:31
pH, sat. paste	7.10 s.u.	0.10 95 90	110	

Client:	WSP Albuquerque			Work Order:	B2308	1947	Repor	t Date:	09/11/23	
Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	ASA15-5								Batch:	R408208
Lab ID:	B23081947-001A DUP	Sample Duplic	ate			Run: MISC	-SOIL_230905A		09/05	5/23 11:11
Sand		72.0	%	1.0				0.0	30	
Silt		18.0	%	1.0				0.0	30	
Clay		10.0	%	1.0				0.0	30	
Lab ID:	B23081947-011A DUP	Sample Duplic	ate			Run: MISC	-SOIL_230905A		09/05	5/23 11:11
Sand		75.0	%	1.0				1.3	30	
Silt		16.0	%	1.0				6.1	30	
Clay		9.00	%	1.0				0.0	30	
Lab ID:	LCS-2309051111	Laboratory Co	ntrol Sampl	e		Run: MISC	-SOIL_230905A		09/05	5/23 11:11
Sand		36.0	%	1.0	100	70	130			
Silt		40.0	%	1.0	95	70	130			
Clay		24.0	%	1.0	109	70	130			

Client: W	/SP Albuquerque		W	ork Order:	B2308	1947	Repo	rt Date:	09/11/23	
Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	ASA24-5						Batch	n: OM_8	-31-2023_01	-18-22PM
Lab ID:	LCS	Laboratory Co	ontrol Sample			Run: FIA20)5-B_230831A		08/31	/23 13:19
Phosphorus	, Olsen	11	mg/kg	1.0	72	70	130			
Lab ID:	B23081947-001ADUP	Sample Dupli	cate			Run: FIA20)5-B_230831A		08/31	/23 13:27
Phosphorus	, Olsen	1.2	mg/kg	1.0				3.4	30	
Lab ID:	B23081947-001AMS	Sample Matri	x Spike			Run: FIA20)5-B_230831A		08/31	/23 13:29
Phosphorus	, Olsen	12	mg/kg	1.0	101	70	130			
Method:	ASA24-5						Batch	n: OM_8	-31-2023_02	-02-53PM
Lab ID:	B23081947-011ADUP	Sample Dupli	cate			Run: FIA20)5-B_230831A		08/31	/23 14:07
Phosphorus	, Olsen	ND	mg/kg	1.0					30	
Lab ID:	B23081947-011AMS	Sample Matri	x Spike			Run: FIA20)5-B_230831A		08/31	/23 14:09
Phosphorus	, Olsen	10	mg/kg	1.0	96	70	130			

Prepared by Billings, MT Branch

Client: WSP	Albuquerque			Work Order:	B2308	1947	Report	Date:	09/11/23	
Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: AS	A29-3								Batch	R408452
Lab ID: LC	s	Laboratory Co	ntrol Sample	e		Run: MISC	-SOIL_230908B		09/08	3/23 09:38
Organic Carbon		2.45	%	0.10	111	70	130			
Lab ID: B2	3081947-001ADUP	Sample Duplic	ate			Run: MISC	-SOIL_230908B		09/08	3/23 09:38
Organic Carbon		0.0644	%	0.10					30	J
Lab ID: B2	3081947-011ADUP	Sample Duplic	ate			Run: MISC	-SOIL_230908B		09/08	3/23 09:38
Organic Carbon		0.120	%	0.10				4.3	30	

Qualifiers:

RL - Analyte Reporting Limit

 ${\sf J}$ - Estimated value - analyte was present but less than the Reporting Limit (RL)

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: WSP Albuquerque	Work	Order:	B23081947	Repor	t Date: 09/11/23
Analyte	Result Units	RL %	%REC Low Limit	High Limit	RPD RPDLimit Qual
Method: ASA33-8				Batch	n: OM_8-30-2023_12-45-07PM
Lab ID: LCS	Laboratory Control Sample		Run: FIA20	5-B_230830A	08/30/23 12:46
Nitrate as N, KCL Extract	4.12 mg/kg	1.0	88 70	130	
Lab ID: B23081947-003ADUP	Sample Duplicate		Run: FIA20	5-B_230830A	08/30/23 13:17
Nitrate as N, KCL Extract	0.560 mg/kg	1.0			30 J
Lab ID: B23081947-003AMS	Sample Matrix Spike		Run: FIA20	5-B_230830A	08/30/23 13:17
Nitrate as N, KCL Extract	5.67 mg/kg	1.0	97 70	130	
Lab ID: B23081947-013ADUP	Sample Duplicate		Run: FIA20	5-B_230830A	08/30/23 13:26
Nitrate as N, KCL Extract	ND mg/kg	1.0			30
Lab ID: B23081947-013AMS	Sample Matrix Spike		Run: FIA20	5-B_230830A	08/30/23 13:26
Nitrate as N, KCL Extract	5.46 mg/kg	1.0	104 70	130	

Qualifiers:

RL - Analyte Reporting Limit

 ${\sf J}$ - Estimated value - analyte was present but less than the Reporting Limit (RL)

Prepared by Billings, MT Branch

Client: V	VSP Albuquerque			Work Order:	B2308	1947	Repor	t Date:	: 09/11/23	
Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6010B								Batc	h: 182309
Lab ID:	LCS-182309	Laboratory Co	ontrol Sample	Э		Run: ICP20	04-B_230830A		08/30)/23 12:27
Potassium		199	mg/kg	3.0	97	70	130			
Lab ID:	B23081947-001AMS2	Sample Matri	x Spike			Run: ICP20	04-B_230830A		08/30)/23 12:44
Potassium		693	mg/kg	3.1	129	70	130			
Lab ID:	B23081947-001ADUP	Sample Dupli	cate			Run: ICP20	04-B_230830A		08/30)/23 12:48
Potassium		49.3	mg/kg	3.0				20	30	
Lab ID:	B23081947-011AMS2	Sample Matrix	x Spike			Run: ICP20	04-B_230830A		08/30)/23 13:42
Potassium		740	mg/kg	3.1	125	70	130			
Lab ID:	B23081947-011ADUP	Sample Dupli	cate			Run: ICP20	04-B_230830A		08/30)/23 13:46
Potassium		51.8	mg/kg	3.0				4.0	30	
Lab ID:	B23082125-001AMS2	Sample Matri	x Spike			Run: ICP20	04-B_230830A		08/30	0/23 14:40
Potassium		700	mg/kg	3.1	110	70	130			
Method:	SW6010B								Batc	h: 182317
Lab ID:	B23081947-004AMS2	Sample Matrix	x Spike			Run: ICP20	04-B_230831A		08/31	1/23 20:24
Cadmium		4.22	mg/kg	0.10	82	50	150			
Copper		19.6	mg/kg	0.21		50	150			A
Molybdenu	m	9.32	mg/kg	0.21	93	50	150			
Nickel		8.29	mg/kg	0.21	83	50	150			
Lab ID:	B23081947-004ADUP	Sample Dupli	cate			Run: ICP20	04-B_230831A		08/32	1/23 20:28
Copper		57.0	mg/kg	0.20				8.0	30	
Method:	SW6010B								Batc	h: 182317
Lab ID:	LCS-182317	Laboratory Co	ontrol Sample	e		Run: ICP20	04-B_230901A		09/02	1/23 14:39
Copper		3.39	mg/kg	0.20	73	70	130			

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

A - Analyte level was greater than four times the spike level - in accordance with the method, percent recovery is not calculated

Client:	WSP Albuquerque	Wor	k Order:	B23081947	Repo	rt Date: 0	9/11/23
Analyte		Result Units	RL	%REC Low Lim	it High Limit	RPD R	PDLimit Qual
Method	SW6010B						Batch: 182559
Lab ID: Cation E	LCS-182559 Exchange Capacity	Laboratory Control Sample 15.6 meq/100g	0.26	Run: ICF 128 5	204-B_230907A D 150		09/08/23 06:02
Lab ID: Cation E	B23081947-001AMS2 Exchange Capacity	Sample Matrix Spike 59.6 meq/100g	0.27	Run: ICF 109 5	204-B_230907A) 150		09/08/23 06:10
Lab ID: Cation E	B23081947-001ADUP	Sample Duplicate 11.8 meq/100g	0.26	Run: ICF	204-B_230907A	1.4	09/08/23 06:14 30
Lab ID: Cation E	B23081947-011AMS2 Exchange Capacity	Sample Matrix Spike 62.7 meq/100g	0.45	Run: ICF 109 5	204-B_230907A D 150		09/08/23 07:09
Lab ID: Cation E	B23081947-011ADUP	Sample Duplicate 14.2 meq/100g	0.44	Run: ICF	204-B_230907A	7.0	09/08/23 07:13 30

Prepared by Billings, MT Branch

			-	y Billings, M			_		00/11/00	
Client: V	VSP Albuquerque		V	Vork Order:	B2308	31947	Repo	ort Date:	09/11/23	
Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6020								Batc	h: 18231
Lab ID:	LCS-182317	Laboratory Co	ontrol Sample			Run: ICPM	S208-B_23083	0A	08/31	/23 00:1
Arsenic		0.145	mg/kg	0.020	80	70	130			
Cadmium		0.0728	mg/kg	0.10	91	70	130			
Copper		3.64	mg/kg	0.10	78	70	130			
Iron		44.6	mg/kg	1.0	87	70	130			
Lead		3.05	mg/kg	0.10	77	70	130			
Manganese)	12.0	mg/kg	0.10	82	70	130			
Molybdenur	m	0.356	mg/kg	0.10	87	70	130			
Nickel		1.87	mg/kg	0.10	124	70	130			
Zinc		4.51	mg/kg	0.10	83	70	130			
Lab ID:	B23081947-004ADUP	Sample Dupli	cate			Run: ICPM	S208-B_23083	0A	08/31	/23 03:43
Arsenic		0.0375	mg/kg	0.020				3.3	30	
Cadmium		0.0954	mg/kg	0.10					30	J
Copper		59.0	mg/kg	0.10				3.3	30	Е
Iron		3.57	mg/kg	1.0				12	30	
Lead		1.64	mg/kg	0.10				1.8	30	
Manganese)	1.10	mg/kg	0.10				2.5	30	
Molybdenur	m	0.0525	mg/kg	0.10					30	J
Nickel		0.0216	mg/kg	0.10					30	J
Zinc		3.70	mg/kg	0.10				0.5	30	
Lab ID:	B23081947-005AMS	Sample Matri	x Spike			Run: ICPM	S208-B_23083	0A	08/31	/23 03:56
Arsenic		0.242	mg/kg	0.020	89	70	130			
Iron		27.8	mg/kg	1.0	96	70	130			Е
Manganese)	0.415	mg/kg	0.10		70	130			А
Molybdenur	m	0.238	mg/kg	0.10	78	70	130			
Nickel		0.252	mg/kg	0.10	92	70	130			
Zinc		0.603	mg/kg	0.10		70	130			А
Lab ID:	B23081947-014ADUP	Sample Dupli	cate			Run: ICPM	S208-B_23083	0A	08/31	/23 05:17
Arsenic		0.0328	mg/kg	0.020				3.3	30	
Cadmium		0.116	mg/kg	0.10				3.3	30	
Iron		4.12	mg/kg	1.0				11	30	
Lead		1.17	mg/kg	0.10				0.8	30	
Manganese)	0.796	mg/kg	0.10				3.5	30	
Molybdenur	m	0.204	mg/kg	0.10				5.0	30	
Nickel		0.0246	mg/kg	0.10					30	J
Zinc		3.29	mg/kg	0.10				7.2	30	
Lab ID:	B23081947-015AMS	Sample Matri	x Spike			Run: ICPM	S208-B_23083	0A	08/31	/23 05:43
Arsenic		0.251	mg/kg	0.020	90	70	130			
Cadmium		0.250	mg/kg	0.10	75	70	130			
Copper		16.1	mg/kg	0.10		70	130			AE
Iron		27.8	mg/kg	1.0	91	70	130			Е
Lead		0.339	mg/kg	0.10		70	130			А

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

A - Analyte level was greater than four times the spike level - in accordance with the method, percent recovery is not calculated E - Estimated value - result exceeds the instrument upper quantitation limit

Prepared by Billings, MT Branch

Client:	WSP Albuquerque	Work Order: B23081947	Report Date: 09/11/23
---------	-----------------	-----------------------	-----------------------

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6020								Batc	h: 182317
Lab ID:	B23081947-015AMS	Sample Matri	x Spike			Run: ICPM	S208-B_230830	A	08/31	/23 05:43
Manganese	9	0.621	mg/kg	0.10		70	130			А
Nickel		0.261	mg/kg	0.10	85	70	130			
Zinc		0.423	mg/kg	0.10		70	130			А

Qualifiers:

Client:	WSP Albuquerque			Work Order:	B2308	81947	Report	Date	09/11/23	
Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	USDA27a								Batc	h: 182214
Lab ID: Saturation	B23081947-009A DUP	Sample Duplic 27.8	ate %	0.10		Run: MISC	-SOIL_230905A	3.5	09/09 30	5/23 11:14
Lab ID: Saturation	B23081947-019A DUP	Sample Duplic 31.2	ate %	0.10		Run: MISC	-SOIL_230905A	4.6	09/05 30	5/23 11:14
Lab ID: Saturation	LCS-2309051114 n	Laboratory Co 34.4	ntrol Sampl %	e 0.10	91	Run: MISC 70	-SOIL_230905A 130		09/05	5/23 11:14

Work Order Receipt Checklist

WSP Albuquerque

B23081947

Login completed by: Richard L. Shular		Date F	Received: 8/18/2023
Reviewed by: gmccartney		Rec	eived by: dnh
Reviewed Date: 8/24/2023		Carr	ier name: Return-FedEx Ground
Shipping container/cooler in good condition? Custody seals intact on all shipping container(s)/cooler(s)? Custody seals intact on all sample bottles?	Yes ☑ Yes □ Yes □	No No No	Not Present Vot Present V
Chain of custody present?	Yes 🗹	No 🗌	
Chain of custody signed when relinquished and received?	Yes	No 🗹	
Chain of custody agrees with sample labels?	Yes 🗹	No 🗌	
Samples in proper container/bottle?	Yes 🗸	No 🗌	
Sample containers intact?	Yes 🗸	No 🗌	
Sufficient sample volume for indicated test?	Yes 🗹	No 🗌	
All samples received within holding time? (Exclude analyses that are considered field parameters such as pH, DO, Res CI, Sulfite, Ferrous Iron, etc.)	Yes 🗹	No 🗌	
Temp Blank received in all shipping container(s)/cooler(s)?	Yes	No 🗹	Not Applicable
Container/Temp Blank temperature:	28.0°C No Ice		
Containers requiring zero headspace have no headspace or bubble that is <6mm (1/4").	Yes	No 🗌	No VOA vials submitted
Water - pH acceptable upon receipt?	Yes 🗌	No 🗌	Not Applicable 🗹

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

Contact and Corrective Action Comments:

The Temperature Blank temperature for shipping container 1 was 28.0°C and shipping container 2 was 27.6°C.

Chain of Custody & Analytical Request Record

ELI-COC-10/18 v.3 N Energy Laboratories MUST be contacted prior to RUSH sample submittal for All turnaround times are standard unless marked as charges and scheduling -1323681947 See Instructions Page ELI LAB ID Laboratory Use Only of 28/12/23 OCIDD Signa Line Receipt Number (cash/check only) RUSH In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested. This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report. Page Signature Comments RUSH A • See Attached • . . • • . . • Amount Date/Time Analysis Requested □ EDD/EDT (contact laboratory) □ Other Report Information (if different than Account Information) Provided by Laboratory Aprility Payment Type th Check Cash Received by (print) 00 Receive Report DHard Copy Email LABORATORY USE ONLY On Ice ≺ N D LEVEL IV D NELAC Matrix (See Codes Above) Special Report/Form Company/Name B - Bioassay O - Other Temp Blank Y N Mailing Address Matrix Codes V - Vegetation City, State, Zip Other Drinking Water Soils/ Solids W- Water A - Air Contact Phone Number of Containers - MO ś Email Signature Signature Receipt Temp °C 8511 808 Email oN 📕 Shla 200 24:01 1300 Time 9:15 ١ Collection Sampler Phone (505) 821-3043 11e.(2) Byproduct Material (Can ONLY be Submitted to ELI Casper Location) EPA/State Compliance D Yes OL. EXP Receive Report DHard Copy URANIUM MINING CLIENTS MUST indicate sample type. DNOT Source or Byproduct Material Source/Processed Ore (Ground or Refined) **CALL BEFORE SENDING 7/11/23 7/11/23 7/13/23 7/11/23 81812 S2/01/2 Intact N 7/8/23 >/u/23 82/n/t 2/m/t **Bottle Order** Date Date/Time Date/Time 31406439 Custody Seals Y N C B City, State, Zip Albuquerque, NM 87113-2208 Mailing Address 6616 Gulton Ct NE, Suite 10 Account Information (Billing Information) doug.romig@wsp.com Sample Identification (Name, Location, Interval, etc.) Receive Invoice DHard Copy EEmail (505) 821-3043 Quote Relinquished by (print) Relinquished by (print) AN Cooler ID(s) Project Name, PWSID, Permit, etc. 27-0 Doug Romig Trust our People. Trust our Data Sampler Name Doug Romig Project Information Company/Name WSP Inc Sample Origin State NM 297-XAPP 9A7-63 2 OAX-TP1 -63 3 3 9AX- 43 9A -63 2 2 07- 40 94 - 63 94-68 91-1P Custody Record MUST [>]urchase Order Shipped By be signed AG Contact Phone Email 0 ß 9 0

Trust our People. Trust our Data	t our Data.				WWW.6	www.energylab.com	www.energylab.com			Page Z of C
Account Information (Billing information)	ion (Billing infe	ormation)			Report Infor	mation (#	Report Information (if different than Account Information)		Comments	nts
Company/Name WSP Inc	D				Company/Name					
Contact Doug Romig	Romig				Contact					
Phone (505) 82	(505) 821-3043			-	Phone					
Mailing Address 6616 Gulton Ct NE,		Suite 10			Mailing Address					
City, State, Zip Albuque	Albuquerque, NM 87113-2208	7113-2208			City, State, Zip					
Email doug.ro	doug.romig@wsp.com	mo			Email					
Receive Invoice DHard Copy	Copy EEmail	Receive Repo	Receive Report DHard Copy	Email	Receive Report DHard Copy	- C	Email			
Purchase Order	Quote NA		Bottle Order		Special Report/Formats	LAC	EDD/EDT (contact laboratory) Other_			
Project Information	u				Matrix Codes		Analysis Requested	sted		
Project Name, PWSID, Permit, etc.		31406439	DI. EXP							All turnaround times are
Sampler Name Doug Romig	mig	Sampler Phone	Sampler Phone (505) 821-3043	3043	N- Water S - Soils/	_				RUSH.
Sample Origin State NM		EPA/State Compliance	mpliance D Yes	es 🔳 No						Energy Laboratories MUST be contacted prior to
URANIUM MINING CLIENTS MUST indicate sample type. D NOT Source or Byproduct Material D Source/Processed Ore (Ground or Refined) **CALL BEFORE SENDING 1 3 10, 10, Burnardiam Material (Cron ONI V bio Submitted to ET (Created Torosion))	S MUST indicate loct Material Ground or Refin	eample type.	DRE SENDING	(ion)	B - Bioassay O - Other DW - Drinking DW - Water				bədəstt	RUSH sample submittal for charges and scheduling – See Instructions Page
Camelo Camelo	Cample Identification		Colle							
(Name, Loc	(Name, Location, Interval, etc.)	(Date	me	Containers (See Codes Above)				· ·	TAT Laboratory Use Only
9A-TP2 4.	4.5-81		711/23	2011					•	R2308194
2 9A-TP 3			£1/1/23	1130		_			•	
4012-46 E			7/11/23	ı					•	
4 9A-1PS			8/02/13	1					•	
5 Cul-Chi	1	1. A A A A A A A A A A A A A A A A A A A	7/1423	1330					•	
6 CuL-6B2	28		8/08/3	I					•	
- SNR -	-631		7/12/23	1030					•	
8 USNR-6	-627		RIALS	l					•	
	- 683		7/2/23						•	
10 WITP-681	18		Flicks	1230					•	
Custody Relinquishe	Relinquished by (print)	Da	Date/Time	Signature			Received by (print)	Date/Time	Ö	Signature
be signed Relinquishe	Relinquished by (print)	Da	Date/Time	Signature		I ABORATORY USE	Peceived by Aboratory (print)	Stellinges C	TATO Partice	Prature 1
Shipped By Coc	Cooler ID(s)	Custody Seals	Intact V N	Receipt Temp	Temp Blank	On Ice	CC Cash Check	Amount	Receipt	Receipt Number (cash/check only)

August 15, 2023

Project No. 31406439.000

Ms. Jillian Miller Energy Laboratories Inc. 1120 South 27th Street

Billings, MT 59107

LAB ANALYSES FOR PRECAMBRIAN GRANITE SAMPLES

Dear Ms. Miller:

This letter accompanies 2 coolers with a total of 20 soil samples from the Tyrone Mine for chemical and physical characterization. Please analyze the samples for the following parameters.

Analysis/Parameter	Source-Method
Saturated Paste pH	SLS 1954, Method 2 and 21a
Electrical Conductivity, saturated paste	SLS 1954, Method 3a and 4b
Saturation Percentage	SLS 1954, Method 27a
Particle Size Analysis	ASA 1982, Method 15-5
Organic Matter (Carbon)	ASA 1982, Method 29-3.5.2
N as Nitrate	ASA 1982, Method 33-8.1
Phosphorous (Olsen)	ASA 1982, Method 24-5.4
Potassium	ASA 1982, Method 13-3.5
Acid Base Accounts with sulfur forms*	Modified Sobek et al. (1978)
Cation Exchange Capacity	SLS 1954, Method 19
AB-DTPA extraction	ASA 1982, Method 3-5.2
Saturate Paste extraction	ASA 1982, Method 10-2.3.1
Extractable Metals (As, Cd, Cu, Fe, Pb, Mn, Mo, Ni, and Zn)	EPA Method 6010/6020

Note: * for samples with pH<5

Please call (505.962.2933) or email (doug.romig@wsp.com) if you have any questions.

Sincerely,

WSP USA Inc.

Douglas Romig Technical Principal

WSP USA Inc. 2440 Louisiana Boulevard NE, Suite 400, Albuquerque, New Mexico, USA 87110

T: +1 505 821 3043

wsp.com

ANALYTICAL SUMMARY REPORT

April 17, 2024

WSP Albuquerque 6616 Gulton Ct NE Ste 10 Albuquerque, NM 87109-4452

Work Order: B24040029 Quote ID: B17192

Project Name: US-WSP-31406439.2541

Energy Laboratories Inc Billings MT received the following 11 samples for WSP Albuquerque on 4/1/2024 for analysis.

Lab ID	Client Sample ID	Collect Date R	eceive Date	Matrix	Test
B24040029-001	NRW-0324-01	03/08/24 00:00	04/01/24	Soil	ABDPTA extractable metals Cation Exchange Capacity Metals, NH4OAC Extractable Conductivity, Saturated Paste Extract Nitrate as N, KCL Extract Organic Carbon/Matter Walkley- Black pH, Saturated Paste Phosphorus-Olsen ABDTPA extraction for metals ASA3- 5.2 NH4AC Soil Extraction for CEC USDA19 KCL Soil Extract ASA33-3 Ammonium Acetate Extraction ASA13-3 Saturated Paste Extraction ASA Particle Size Analysis / Texture Saturation Percentage
B24040029-002	NRW-0324-02	03/08/24 00:00	04/01/24	Soil	Same As Above
B24040029-003	NRW-0324-03	03/08/24 00:00	04/01/24	Soil	Same As Above
B24040029-004	NRW-0324-04	03/08/24 00:00	04/01/24	Soil	Same As Above
B24040029-005	NRW-0324-05	03/08/24 00:00	04/01/24	Soil	Same As Above
B24040029-006	NRW-0324-06	03/08/24 00:00	04/01/24	Soil	Same As Above
B24040029-007	NRW-0324-07	03/08/24 00:00	04/01/24	Soil	Same As Above
B24040029-008	NRW-0324-08	03/08/24 00:00	04/01/24	Soil	Same As Above
B24040029-009	NRW-0324-09	03/08/24 00:00	04/01/24	Soil	Same As Above
B24040029-010	NRW-0324-10	03/08/24 00:00	04/01/24	Soil	Same As Above
B24040029-011	NRW-0324-WR	03/08/24 00:00	04/01/24	Soil	Same As Above

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

Buand Pelze Digitally signed by Brandy A. Pelzel Date: 2024.04.17 13:19:34 -06:00

Report Date: 04/17/24

CASE NARRATIVE

Tests associated with analyst identified as ELI-H were subcontracted to Energy Laboratories, 3161 East Lyndale Ave, Helena, MT, EPA Number MT00945.

Report Date: 04/17/24 **Date Received:** 04/01/24

LABORATORY ANALYTICAL REPORT Prepared by Billings, MT Branch

Client: Project: Workorder

	Analysis	s Sand	Silt	Clay	Texture	pH, sat_ paste	COND	Saturation	Organic Matter	Organic Carbon	CEC	Phos, Olsen	Nitrate as N	K- NH40AC
	Units	%	%	%		s_u_	mmhos/cm	%	%	%	meq/100g	mg/kg	mg/kg	mg/kg
Sample ID	Client Sample ID	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results
B24040029-001	NRW-0324-01	74	14	12	SL	8.1	0.4	33.0	< 0.2	< 0.1	12.2	~	4	73
B24040029-002	NRW-0324-02	72	14	14	SL	8.1	0.3	37.5	< 0.2	< 0.1	11.6	v	4	85
B24040029-003	NRW-0324-03	74	14	12	SL	8.1	0.3	31.2	< 0.2	< 0.1	10.8	v	-	67
B24040029-004	NRW-0324-04	76	12	12	SL	8.1	0.2	37.4	< 0.2	< 0.1	13.7	v	7	73
B24040029-005	NRW-0324-05	78	12	10	SL	8.1	0.3	31.2	< 0.2	< 0.1	9.79	v	ო	63
B24040029-006	NRW-0324-06	80	10	10	SL	8.1	0.4	30.4	< 0.2	< 0.1	7.70	v	ю	52
B24040029-007	NRW-0324-07	78	12	10	SL	8.2	0.2	28.8	< 0.2	< 0.1	8.03	v	, ,	56
B24040029-008	NRW-0324-08	78	14	8	SL	8.1	0.3	30.1	< 0.2	< 0.1	7.88	v	٢	60
B24040029-009	NRW-0324-09	76	12	12	SL	7.8	0.5	31.4	< 0.2	< 0.1	8.73	v	, ,	68
B24040029-010	NRW-0324-10	76	14	10	SL	7.9	0.2	31.7	< 0.2	< 0.1	8.74	v	, L	67
B24040029-011	NRW-0324-WR	20	14	16	SL	8.0	0.4	43.0	< 0.2	< 0.1	17.7	v	10	53

				T	Prepared by billings, MII branch	v DIIIIIGS, IV	11 drancn				
Client:	WSP Albuquerque										Report Date: 04/17/24
Project:	US-WSP-31406439.2541	9.2541									Date Received: 04/01/24
Workorder:	B24040029										
	Analysis	As- ABDTPA	Cd- ABDTPA	Cu- ABDTPA	Fe- ABDTPA	Pb- ABDTPA	Mn- ABDTPA	Mo- ABDTPA	Ni- ABDTPA	Ni- Zn- ABDTPA ABDTPA	
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
Sample ID	Client Sample ID	Results	Results	Results	Results	Results	Results	Results	Results	Results	
B24040029-001	NRW-0324-01	0.05	< 0.1	29.0	4	0.5	1.9	< 0.1	< 0.1	2.0	
B24040029-002	NRW-0324-02	0.05	0.1	11.6	4	1.0	2.0	0.1	< 0.1	4.1	
B24040029-003	NRW-0324-03	0.04	< 0.1	28.4	5	0.4	2.7	< 0.1	< 0.1	2.2	
B24040029-004	NRW-0324-04	0.06	0.3	12.5	б	2.2	1.3	< 0.1	< 0.1	6.5	
B24040029-005	NRW-0324-05	0.04	0.2	28.7	9	0.7	3.3	0.1	< 0.1	4.6	
B24040029-006	NRW-0324-06	0.06	< 0.1	146	9	0.5	3.1	0.2	< 0.1	3.4	
B24040029-007	NRW-0324-07	0.06	< 0.1	113	5	0.5	3.1	0.2	< 0.1	1.5	
B24040029-008	NRW-0324-08	0.06	< 0.1	113	9	0.5	3.5	0.2	< 0.1	1.9	
B24040029-009	NRW-0324-09	0.14	0.2	63.3	4	21.1	5.6	0.4	< 0.1	23.5	
B24040029-010	NRW-0324-10	0.06	0.1	49.3	4	14.4	4.9	< 0.1	< 0.1	17.5	
B24040029-011	NRW-0324-WR	0.04	< 0.1	121	e	0.4	1.8	< 0.1	< 0.1	3.6	

LABORATORY ANALYTICAL REPORT

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 • Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

Trust our People. Trust our Data. www.energylab.com

ENERGY (

Client: WSP Albuquerque	Wor	k Order: E	324040029	Repor	rt Date: 04/17/24	Ļ
Analyte	Result Units	RL %	6REC Low Limit	High Limit	RPD RPDLimit	Qual
Method: ASA10-3				Anal	ytical Run: SOIL E	C_240408A
Lab ID: ICV_1_240404_1	Initial Calibration Verification Sta	andard			04/0)5/24 12:41
Conductivity, sat. paste	1.43 mmhos/cm	0.10	101 90	110		
Lab ID: CCV_1_240404_1	Continuing Calibration Verification	on Standard			04/0)5/24 12:41
Conductivity, sat. paste	4.90 mmhos/cm	0.10	98 90	110		
Lab ID: CCV1_1_240404_1	Continuing Calibration Verification	on Standard			04/0)5/24 12:42
Conductivity, sat. paste	0.961 mmhos/cm	0.10	96 90	110		
Lab ID: CCV_3_240404_1	Continuing Calibration Verification	on Standard			04/0)5/24 12:50
Conductivity, sat. paste	4.85 mmhos/cm	0.10	97 90	110		
Method: ASA10-3					Ва	atch: 71133
Lab ID: MB-71133	Method Blank		Run: SOIL	_ EC_240408A	04/0)5/24 12:42
Conductivity, sat. paste	ND mmhos/cm	0.05				
Lab ID: LCS-71133	Laboratory Control Sample		Run: SOIL	_EC_240408A	04/0)5/24 12:43
Conductivity, sat. paste	3.57 mmhos/cm	0.10	92 80	120		
Lab ID: B24040029-005ADUP	Sample Duplicate		Run: SOIL	_ EC_240408A	04/0)5/24 12:47
Conductivity, sat. paste	0.351 mmhos/cm	0.10			5.6 20	
Lab ID: B24040029-010ADUP	Sample Duplicate		Run: SOIL	_ EC_240408A	04/0)5/24 12:53
Conductivity, sat. paste	0.229 mmhos/cm	0.10			1.5 20	

Client:	WSP Albuquerque			Work Order:	B2404	0029	Rep	oort Date:	04/17/24	
Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	ASA10-3					al R	un: SOIL PH	METER - C	RION A211	_240408A
Lab ID:	ICV_1_240404_1	Initial Calibrati	on Verifica	ation Standard					04/05	5/24 09:19
pH, sat. p	aste	7.03	s.u.	0.10	100	98.6	101.4			
Lab ID:	CCV_1_240404_1	Continuing Ca	libration V	erification Standa	ırd				04/05	5/24 09:20
pH, sat. p	aste	7.03	s.u.	0.10	100	98.6	101.4			
Lab ID:	CCV1_1_240404_1	Continuing Ca	libration V	erification Standa	rd				04/05	5/24 09:21
pH, sat. p	aste	4.00	s.u.	0.10	100	97.5	102.5			
Lab ID:	CCV_3_240404_1	Continuing Ca	libration V	erification Standa	rd				04/05	5/24 09:37
pH, sat. p	aste	7.02	s.u.	0.10	100	98.6	101.4			
Method:	ASA10-3								Bat	ch: 71133
Lab ID:	LCS-71133	Laboratory Co	ntrol Sam	ple		Run: SOIL	PH METER -	ORION A2	2 04/05	5/24 09:22
pH, sat. p	aste	7.86	s.u.	0.10	99	95	105			
Lab ID:	B24040029-005ADUP	Sample Duplic	ate			Run: SOIL	PH METER -	ORION A2	2 04/05	5/24 09:28
pH, sat. p	aste	8.08	s.u.	0.10				0.1	20	
Lab ID:	B24040029-010ADUP	Sample Duplic	ate			Run: SOIL	PH METER -	ORION A2	2 04/05	5/24 09:41
pH, sat. p	aste	7.94	s.u.	0.10				0.3	20	

Client:	WSP Albuquerque	Work Order: B			B2404	0029	Repor	04/17/24		
Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	ASA15-5								Bat	ch: 71170
Lab ID:	LCS-71170	Laboratory Co	ntrol Sample	e		Run: SOIL	HYDROMETER	_240409	04/08	8/24 16:31
Sand		48.0	%	1.0	100	70	130			
Silt		30.0	%	1.0	103	70	130			
Clay		22.0	%	1.0	96	70	130			
Lab ID:	B24040029-010ADUP	Sample Duplic	cate			Run: SOIL	HYDROMETER	_240409	04/08	8/24 16:31
Sand		78.0	%	1.0				2.6	20	
Silt		12.0	%	1.0				15	20	
Clay		10.0	%	1.0				0.0	20	
Texture		SL		1.0						

Client: V	SP Albuquerque			Work Order:	B2404	0029	Repo	rt Date:	04/17/24	
Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	ASA24-5						Analytica	al Run: SI	EAL AA500_	_240411B
Lab ID:	CCV	Continuing C	Calibration Ve	erification Standa	rd				04/11	/24 11:35
Phosphorus	, Olsen	2.5	mg/kg-dry	1.0	100	85	115			
Lab ID:	CCV	Continuing C	Calibration Ve	erification Standa	rd				04/11	/24 12:04
Phosphorus	, Olsen	2.5	mg/kg-dry	1.0	100	85	115			
Lab ID:	CCV	Continuing C	Calibration Ve	erification Standa	rd				04/11	/24 12:29
Phosphorus	s, Olsen	-	mg/kg-dry	1.0	99	85	115			
Lab ID:	CCV	Continuing C	Calibration Ve	erification Standa	rd				04/11	/24 12:49
Phosphorus	, Olsen	2.5	mg/kg-dry	1.0	99	85	115			
Method:	ASA24-5								Bat	ch: 71146
Lab ID:	MB-71146	Method Blan	ık			Run: SEAL	. AA500_240411	В	04/11	/24 11:40
Phosphorus	, Olsen	ND	mg/kg-dry	0.05						
Lab ID:	LCS-71146	Laboratory C	Control Samp	le		Run: SEAL	AA500_240411	В	04/11	/24 11:43
Phosphorus	, Olsen	57	mg/kg-dry	1.0	129	70	130			
Lab ID:	B24040029-001AMS	Sample Mat	rix Spike			Run: SEAL	AA500_240411	В	04/11	/24 12:22
Phosphorus	, Olsen	40	mg/kg-dry	1.0	99	80	120			
Lab ID:	B24040029-002Adup	Sample Dup	licate			Run: SEAL	. AA500_240411	В	04/11	/24 12:25
Phosphorus	, Olsen	ND	mg/kg-dry	1.0					30	
Lab ID:	B24040029-011Adup	Sample Dup	licate			Run: SEAL	. AA500_240411	В	04/11	/24 12:47
Phosphorus	, Olsen	ND	mg/kg-dry	1.0					30	

Client: WSP Albuquerque	Wo	rk Order: B24040029	Report Date: 04/17/24	
Analyte	Result Units	RL %REC Low Limit	High Limit RPD RPDLimit Qu	ual
Method: ASA29-3			Batch: 7	71167
Lab ID: LCS-71167	Laboratory Control Sample	Run: MISC	SOILS_240411A 04/11/24	15:23
Organic Matter	1.22 %	0.17 101 70	130	
Lab ID: MB-71167	Method Blank	Run: MISC	SOILS_240411A 04/11/24	15:23
Organic Matter	ND %	0.2		
Lab ID: B24040029-010ADUP	Sample Duplicate	Run: MISC	SOILS_240411A 04/11/24	15:23
Organic Matter	ND %	0.17		

Client: WSP Albuquerque	Wo	rk Order: B240	40029	Report Da	te: 04/17/24
Analyte	Result Units	RL %RE	C Low Limit	High Limit RF	PD RPDLimit Qual
Method: ASA33-8				Analytical Rur	n: SEAL AA500_240411A
Lab ID: ICV	Initial Calibration Verification S	tandard			04/11/24 16:02
Nitrate as N, KCL Extract	1.06 mg/kg-dry	1.0 10	6 90	110	
Lab ID: CCV	Continuing Calibration Verifica	tion Standard			04/11/24 18:03
Nitrate as N, KCL Extract	0.958 mg/kg-dry	1.0 90	6 90	110	
Lab ID: CCV	Continuing Calibration Verifica	tion Standard			04/11/24 18:18
Nitrate as N, KCL Extract	0.968 mg/kg-dry	1.0 9	7 90	110	
Lab ID: CCV	Continuing Calibration Verifica	tion Standard			04/11/24 18:34
Nitrate as N, KCL Extract	0.958 mg/kg-dry	1.0 90	6 90	110	
Method: ASA33-8					Batch: 71154
Lab ID: MB-71154	Method Blank		Run: SEAL	AA500_240411A	04/11/24 16:56
Nitrate as N, KCL Extract	0.4 mg/kg-dry	0.2			
Lab ID: LCS-71154	Laboratory Control Sample		Run: SEAL	AA500_240411A	04/11/24 17:02
Nitrate as N, KCL Extract	8.88 mg/kg-dry	1.0 11	1 70	130	
Lab ID: H24040143-001AMS	Sample Matrix Spike		Run: SEAL	AA500_240411A	04/11/24 18:10
Nitrate as N, KCL Extract	13.0 mg/kg-dry	1.0 90	6 80	120	
Lab ID: B24040029-010Adup	Sample Duplicate		Run: SEAL	AA500_240411A	04/11/24 18:32
Nitrate as N, KCL Extract	0.726 mg/kg-dry	1.0			30
Lab ID: B24040029-010Adup	Sample Duplicate		Run: SEAL	AA500_240411A	04/11/24 18:32
Nitrate as N, KCL Extract	0.73 mg/kg-dry	1.0			30

Client:	WSP Albuquerque	Work Order: B24040029					Repo	rt Date:	04/17/24	
Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6010B						Ana	lytical Ru	un: ICP2-HE_	_240410C
Lab ID:	ICV	Initial Calibra	ation Verification Sta	andard					04/10)/24 11:10
Sodium		41.7	mg/L	1.0	104	90	110			
Lab ID:	ICSA	Interference	Check Sample A						04/10)/24 11:51
Sodium		0.0746	mg/L	1.0		0	0			
Lab ID:	ICSAB	Interference	Check Sample AB						04/10)/24 11:55
Sodium		19.7	mg/L	1.0	99	80	120			
Lab ID:	CCV	Continuing C	Calibration Verificati	on Standa	rd				04/11	/24 08:32
Sodium		25.2	mg/L	1.0	101	90	110			
Lab ID:	ccv	Continuing C	Calibration Verificati	on Standa	rd				04/11	/24 09:18
Sodium		25.3	mg/L	1.0	101	90	110			
Lab ID:	ccv	Continuing C	Calibration Verificati	on Standa	rd				04/11	/24 09:59
Sodium		24.1	mg/L	1.0	96	90	110			
Method:	SW6010B								Bat	ch: 71144
Lab ID:	MB-71144	Method Blan	ık			Run: ICP2-	HE_240410C		04/11	/24 08:24
Sodium		0.4	mg/kg	0.3						
Cation E	xchange Capacity	0.04	meq/100g	0.03						
Lab ID:	LCS-71144	Laboratory C	Control Sample			Run: ICP2-	HE_240410C		04/11	/24 08:39
Sodium		261	mg/kg	1.0	94	70	130			
Cation E	xchange Capacity	22.7	meq/100g	0.087	94	70	130			
Lab ID:	B24040029-001AMS2	Sample Mat	rix Spike				HE_240410C		04/11	/24 08:51
Sodium		626	mg/kg	1.0	97	75	125			
Cation E	xchange Capacity	54.5	meq/100g	0.087	97	75	125			
Lab ID:	B24040029-001AMSD2	Sample Mat	rix Spike Duplicate			Run: ICP2-	HE_240410C		04/11	/24 08:55
Sodium		645	mg/kg	1.0	101	75	125	2.9	20	
Cation E	xchange Capacity	56.1	meq/100g	0.087	101	75	125	2.9	20	

Client: V	VSP Albuquerque		-	Work Order:			Repo	ort Date:	04/17/24	
Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD I	RPDLimit	Qual
Method:	SW6010B						Ana	lytical Run	n: ICP2-HE	_240412A
Lab ID:	ICV	Initial Calibrat	ion Verificatio	on Standard					04/12	2/24 08:42
Potassium		40.7	mg/L	1.0	102	90	110			
Lab ID:	ICSA	Interference C	heck Sample	e A					04/12	2/24 08:58
Potassium		0.0425	mg/L	1.0		0	0			
Lab ID:	ICSAB	Interference C	heck Sample	AB					04/12	2/24 09:02
Potassium		20.1	mg/L	1.0	100	80	120			
Lab ID:	CCV	Continuing Ca	libration Veri	fication Standa	ırd				04/12	2/24 11:10
Potassium		26.0	mg/L	1.0	104	90	110			
Lab ID:	CCV	Continuing Ca	libration Veri	fication Standa	rd				04/12	2/24 11:54
Potassium		26.5	mg/L	1.0	106	90	110			
Lab ID:	CCV	Continuing Ca	libration Veri	fication Standa	ırd				04/12	2/24 12:32
Potassium		26.3	mg/L	1.0	105	90	110			
Lab ID:	CCV	Continuing Ca	libration Veri	fication Standa	rd				04/12	2/24 13:18
Potassium		26.7	mg/L	1.0	107	90	110			
Method:	SW6010B								Bat	ch: 71152
Lab ID:	MB-71152	Method Blank				Run: ICP2-	HE_240412A		04/12	2/24 11:17
Potassium		3	mg/kg	1						
Lab ID:	LCS-71152	Laboratory Co	ontrol Sample			Run: ICP2-	HE_240412A		04/12	2/24 11:25
Potassium		610	mg/kg	1.2	98	70	130			
Lab ID:	B24040029-006AMS2	Sample Matrix	<pre> Spike </pre>			Run: ICP2-	HE_240412A		04/12	2/24 12:13
Potassium		1150	mg/kg	1.3	109	75	125			
Lab ID:	B24040029-006AMSD2	Sample Matrix	<pre>spike Duplic</pre>	cate		Run: ICP2-	HE_240412A		04/12	2/24 12:17
Potassium		1140	mg/kg	1.3	109	75	125	0.5	20	

Prepared by Helena, MT Branch

V6020 ≎ V Ir	Result	Units	RL	%REC		Ligh Limit	RPD RPDLimit	
								Qual
; V Ir						Analytic	al Run: ICPMS206-H	_240412A
	nitial Calibrat	tion Verifica	ation Standard				04/1	2/24 16:29
	0.0592	mg/L	0.0010	99	90	110		
	0.0302	mg/L	0.0010	101	90	110		
	0.0603	mg/L	0.0010	100	90	110		
	0.302	mg/L	0.0010	101	90	110		
	0.0572	mg/L	0.0010	95	90	110		
	0.313	mg/L	0.0010	104	90	110		
	0.0572	mg/L	0.0010	95	90	110		
	0.0601	mg/L	0.0010	100	90	110		
SA Ir	nterference (Check Sam	ple A				04/1	2/24 16:39
	-0.000108	mg/L	0.0010					
	0.000132	mg/L	0.0010					
(0.0000308	mg/L	0.0010					
	102	mg/L	0.0010	101	70	130		
	0.000841	mg/L	0.0010					
	0.000300	mg/L	0.0010		0	0		
	0.844	mg/L	0.0010	105	70	130		
	0.000243	mg/L	0.0010		0	0		
:SAB Ir	nterference (Check Sam	ple AB				04/1	2/24 16:45
	0.0102	mg/L	0.0010	102	70	130		
	0.0104	mg/L	0.0010	104	70	130		
	0.0198	mg/L	0.0010	99	70	130		
	101	mg/L	0.0010	101	70	130		
-(0.0000525	mg/L	0.0010		0	0		
	0.0207	mg/L	0.0010	103	70	130		
	0.859	mg/L	0.0010	107	70	130		
	0.0203	mg/L	0.0010	101	70	130		
cv c	Continuing Ca	alibration V	erification Standa	rd			04/1	2/24 19:25
	0.0514	mg/L	0.0010	103	90	110		
	0.0507	-	0.0010	101	90	110		
	0.0514	mg/L	0.0010	103	90	110		
cv C	Continuing Ca	alibration V	erification Standa	rd			04/1	2/24 20:28
-	•		0.0010	109	90	110		
		-						
		-						
		-						
CI	- • •	0.0102 0.0104 0.0198 101 -0.0000525 0.0207 0.859 0.0203 V Continuing Ca 0.0514 0.0507 0.0516 1.35 0.0493 0.0517 0.0512 0.0514	0.0102 mg/L 0.0104 mg/L 0.0198 mg/L 101 mg/L -0.0000525 mg/L 0.0207 mg/L 0.0207 mg/L 0.0203 mg/L 0.0203 mg/L 0.0514 mg/L 0.0516 mg/L 1.35 mg/L 0.0517 mg/L 0.0517 mg/L 0.0517 mg/L 0.0512 mg/L 0.0514 mg/L 0.0514 mg/L 0.0517 mg/L 0.0512 mg/L 0.0514 mg/L 0.0514 mg/L 0.0512 mg/L 0.0514 mg/L 0.0514 mg/L 0.0514 mg/L 0.0514 mg/L 0.0514 mg/L 0.0514 mg/L 0.0514 mg/L 0.0521 mg/L 0.0530 mg/L 1.40 mg/L	0.0102 mg/L 0.0010 0.0104 mg/L 0.0010 0.0198 mg/L 0.0010 101 mg/L 0.0010 -0.0000525 mg/L 0.0010 0.0207 mg/L 0.0010 0.0203 mg/L 0.0010 0.859 mg/L 0.0010 0.0203 mg/L 0.0010 0.0514 mg/L 0.0010 0.0516 mg/L 0.0010 0.0516 mg/L 0.0010 0.0517 mg/L 0.0010 0.0517 mg/L 0.0010 0.0512 mg/L 0.0010 0.0514 mg/L 0.0010 0.0517 mg/L 0.0010 0.0514 mg/L 0.0010 0.0521 mg/L 0.0010 0.0530 m	0.0102 mg/L 0.0010 102 0.0104 mg/L 0.0010 104 0.0198 mg/L 0.0010 99 101 mg/L 0.0010 101 -0.0000525 mg/L 0.0010 103 0.0207 mg/L 0.0010 103 0.859 mg/L 0.0010 107 0.0203 mg/L 0.0010 107 0.0203 mg/L 0.0010 103 0.859 mg/L 0.0010 101 0.0203 mg/L 0.0010 103 0.0514 mg/L 0.0010 103 0.0516 mg/L 0.0010 103 1.35 mg/L 0.0010 103 0.0517 mg/L 0.0010 103 0.0512 mg/L 0.0010 103 0.0514 mg/L 0.0010 103 0.0514 mg/L 0.0010 103 0.0521 mg/L 0	0.0102 mg/L 0.0010 102 70 0.0104 mg/L 0.0010 104 70 0.0198 mg/L 0.0010 99 70 101 mg/L 0.0010 101 70 -0.0000525 mg/L 0.0010 103 70 0.0207 mg/L 0.0010 103 70 0.0203 mg/L 0.0010 107 70 0.0203 mg/L 0.0010 101 70 0.0514 mg/L 0.0010 103 90 0.0516 mg/L 0.0010 103 90 0.0517 mg/L 0.0010 103 90 0.0517 mg/L 0.0010 103 90 0.0512 mg/L 0.0010 103	0.0102 mg/L 0.0010 102 70 130 0.0104 mg/L 0.0010 104 70 130 0.0198 mg/L 0.0010 199 70 130 101 mg/L 0.0010 101 70 130 -0.0000525 mg/L 0.0010 103 70 130 -0.0207 mg/L 0.0010 103 70 130 0.859 mg/L 0.0010 107 70 130 0.0203 mg/L 0.0010 101 70 130 0.0203 mg/L 0.0010 101 70 130 0.0507 mg/L 0.0010 103 90 110 0.0516 mg/L 0.0010 103 90 110 0.0516 mg/L 0.0010 103 90 110 0.0517 mg/L 0.0010 103 90 110 0.0512 mg/L 0.0010	0.0102 mg/L 0.0010 102 70 130 0.0104 mg/L 0.0010 104 70 130 0.0198 mg/L 0.0010 99 70 130 101 mg/L 0.0010 101 70 130 -0.0000525 mg/L 0.0010 103 70 130 0.0207 mg/L 0.0010 107 70 130 0.859 mg/L 0.0010 101 70 130 0.0203 mg/L 0.0010 107 70 130 0.0203 mg/L 0.0010 101 70 130 0.0203 mg/L 0.0010 101 70 130 0.0203 mg/L 0.0010 103 90 110 0.0514 mg/L 0.0010 103 90 110 0.0516 mg/L 0.0010 103 90 110 0.0517 mg/L 0.0010 103 90 110 0.0512 mg/L 0.0010 103

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

Prepared by Helena, MT Branch

		Prepared	by Helena, M	I Branc	n				
Client: WSP Albuquerque			Work Order:	B2404	0029	Repo	ort Date:	: 04/17/24	
Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW6020						Analytic	al Run: I	CPMS206-H	_240412A
Lab ID: CCV	Continuing Ca	libration Ver	rification Standa	ard				04/12	2/24 20:28
Manganese	0.0520	mg/L	0.0010	104	90	110			
Molybdenum	0.0517	mg/L	0.0010	103	90	110			
Nickel	0.0525	mg/L	0.0010	105	90	110			
Lab ID: CCV	Continuing Ca	libration Ver	rification Standa	ard				04/12	2/24 21:11
Arsenic	0.0540	mg/L	0.0010	108	90	110			
Cadmium	0.0508	mg/L	0.0010	102	90	110			
Copper	0.0524	mg/L	0.0010	105	90	110			
Iron	1.34	mg/L	0.0010	103	90	110			
Lead	0.0494	mg/L	0.0010	99	90	110			
Manganese	0.0517	mg/L	0.0010	103	90	110			
Molybdenum	0.0504	mg/L	0.0010	101	90	110			
Nickel	0.0518	mg/L	0.0010	104	90	110			
Method: SW6020								Bat	ch: 71156
Lab ID: MB-71156	Method Blank					IS206-H 24041	24		2/24 19:32
Arsenic	0.005	mg/kg	0.001			13200-11_24041	28	04/12	2/24 19.32
Cadmium	0.0007		0.0005						
	0.007	mg/kg mg/kg	0.0003						
Copper Iron	ND	mg/kg mg/kg	0.01						
Lead	ND		0.005						
	ND	mg/kg	0.005						
Manganese	ND	mg/kg	0.02						
Molybdenum Nickel	ND	mg/kg	0.002						
Zinc	ND 0.2	mg/kg mg/kg	0.01						
						0000 11 04044		0.4/46	
Lab ID: LCS-71156	Laboratory Co 0.163			04		IS206-H_24041	ZA	04/12	2/24 19:38
Arsenic		mg/kg	0.10	94	70	130			
Copper	6.39	mg/kg	0.10	111	70	130			
Iron	97.2	mg/kg	1.0	83	70 70	130			
Lead	2.73	mg/kg	0.10	92	70 70	130			
Manganese	9.88	mg/kg	0.10	108	70 70	130			
Molybdenum	0.277 2.24	mg/kg mg/kg	0.10 0.10	102 94	70 70	130 130			
Nickel Zinc	10.8	mg/kg mg/kg	0.10	94 114	70 70	130			
ZIIC	10.0	шу/ку	0.10	114	70	150			
Lab ID: LFB-71156	Laboratory Fo					S206-H_24041	2A	04/12	2/24 20:18
Arsenic	5.74	mg/kg	0.10	115	80	120			
Cadmium	5.22	mg/kg	0.10	104	80	120			
Copper	5.75	mg/kg	0.10	115	80	120			
Lead	4.84	mg/kg	0.10	97	80	120			
Molybdenum	5.00	mg/kg	0.10	100	80	120			
Nickel	5.65	mg/kg	0.10	113	80	120			
Zinc	5.63	mg/kg	0.10	113	80	120			

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

Prepared by Helena, MT Branch

Client:	WSP Albuquerque	Work Order: B24040029	Report Date: 04/17/24
---------	-----------------	-----------------------	-----------------------

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6020								Bat	ch: 71156
Lab ID:	B24040029-001AMS	Sample Matrix	Spike			Run: ICPM	S206-H_240412/	4	04/12	2/24 20:21
Arsenic		6.00	mg/kg	0.10	119	75	125			
Cadmium		5.39	mg/kg	0.10	106	75	125			
Copper		34.4	mg/kg	0.10		75	125			А
Lead		5.37	mg/kg	0.10	97	75	125			
Molybdenu	m	5.24	mg/kg	0.10	103	75	125			
Nickel		5.60	mg/kg	0.10	111	75	125			
Zinc		7.72	mg/kg	0.10	111	75	125			

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

A - Analyte level was greater than four times the spike level - in accordance with the method, percent recovery is not calculated

Prepared by Helena, MT Branch

Client:	WSP Albuquerque		-	Work Order:			Repo	ort Date:	04/17/24	
Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6020						Analytic	al Run: I	CPMS206-H	_240414A
Lab ID:	ICV	Initial Calibrat	ion Verificatio	on Standard					04/14	4/24 13:46
Zinc	-	0.0604	mg/L	0.0010	101	90	110			
Lab ID:	ICSA	Interference (Chook Somple	~ ^					04/1	4/24 13:59
Zinc	1034	0.000362	mg/L	0.0010					04/14	+/24 13.39
	10045	la la dema se d							0.4/4	
Lab ID: Zinc	ICSAB	Interference C 0.0119	mg/L	е АВ 0.0010	119	70	130		04/14	4/24 14:05
Zine		0.0113	iiig/L	0.0010	115	70	100			
Lab ID:	CCV	Continuing Ca		fication Standa	rd				04/14	4/24 19:14
Zinc		0.0520	mg/L	0.0010	104	90	110			
Lab ID:	CCV	Continuina Ca	alibration Veri	fication Standa	rd				04/14	4/24 19:47
Zinc		0.0529	mg/L	0.0010	106	90	110			
Lab ID:	CCV	•		fication Standa					04/14	4/24 20:20
Zinc		0.0530	mg/L	0.0010	106	90	110			
Lab ID:	ICV	Initial Calibrat	ion Verificatio	on Standard					04/15	5/24 00:08
Zinc		0.0596	mg/L	0.0010	99	90	110			
Lab ID:		Interference	Chook Somple	~ ^					04/14	2/24 00.19
Zinc	ICSA	Interference C 0.000387	mg/L	0.0010					04/13	5/24 00:18
200		0.000007	iiig/L	0.0010						
Lab ID:	ICSAB	Interference C							04/18	5/24 00:25
Zinc		0.0117	mg/L	0.0010	117	70	130			
Method:	SW6020								Bat	ch: 71156
Lab ID:	MB-71156	Method Blank	Ι.			Run: ICPM	S206-H_24041	4A	04/14	4/24 19:20
Arsenic		0.003	mg/kg	0.0005						
Cadmium	I	0.0003	mg/kg	0.0003						
Copper		0.06	mg/kg	0.007						
Iron		ND	mg/kg	0.2						
Lead		ND	mg/kg	0.003						
Mangane		0.02	mg/kg	0.009						
Molybden	ium	0.001	mg/kg	0.0008						
Nickel		0.006	mg/kg	0.005						
Zinc		0.04	mg/kg	0.03						
Lab ID:	B24040029-004Adup	Sample Dupli				Run: ICPM	S206-H_24041	4A		4/24 19:40
Arsenic		0.0532	mg/kg	0.10					20	
Cadmium	I	0.239	mg/kg	0.10				1.8	20	
Copper		11.3	mg/kg	0.10				2.8	20	
Iron		3.31	mg/kg	1.0				3.5	20	
Lead		2.15	mg/kg	0.10				4.3	20	
Mangane		1.24	mg/kg	0.10				2.2	20	
Molybden	lum	0.0524	mg/kg	0.10					20	

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

Prepared by Helena, MT Branch

				, ,,,,							
Client: WSP Albuquerque				Work Order:	Work Order: B24040029			Report Date: 04/17/24			
Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual	
Method:	SW6020								Ва	tch: 71156	
Lab ID:	B24040029-004Adup	Sample Dupli	cate			Run: ICPN	IS206-H_240414	A	04/1	4/24 19:40	
Nickel		0.00768	mg/kg	0.10					20		
Zinc		6.38	mg/kg	0.10				1.2	20		
Lab ID:	B24040029-001AMS	Sample Matri	x Spike			Run: ICPN	IS206-H_240414	A	04/1	4/24 19:44	
Arsenic		2.90	mg/kg	0.10	114	75	125				
Cadmiur	n	2.60	mg/kg	0.10	101	75	125				
Copper		31.1	mg/kg	0.10		75	125			А	
Lead		2.91	mg/kg	0.10	94	75	125				
Molybde	num	2.53	mg/kg	0.10	98	75	125				
Nickel		2.65	mg/kg	0.10	105	75	125				
Zinc		4.66	mg/kg	0.10	108	75	125				

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

Client:	WSP Albuquerque			Work Order:	B2404	0029	029 Report Date: 04/17/24					
Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual		
Method:	USDA27a								Bat	ch: 71133		
Lab ID: Saturation	LCS-71133	Laboratory Co 42.7	ntrol Sample %	e 0.10	102	Run: SOIL 80	DRYING OVEN 120	1 2_24040	0 04/05	5/24 08:18		
Lab ID: Saturation	B24040029-005ADUP	Sample Duplic 30.2	cate %	0.10		Run: SOIL	DRYING OVEN	N 2_24040 3.3) 04/05 20	5/24 08:18		
Lab ID: Saturation	B24040029-010ADUP	Sample Duplic 31.1	cate %	0.10		Run: SOIL	DRYING OVEN	N 2_24040 2.0) 04/05 20	5/24 08:20		

Work Order Receipt Checklist

WSP Albuquerque

B24040029

Login completed by: Addison A. Gilbert		Date F	Received: 4/1/2024
Reviewed by: cjones		Rec	eived by: AAG
Reviewed Date: 4/3/2024		Carr	ier name: Return-FedEx Ground
Shipping container/cooler in good condition?	Yes 🗸	No 🗌	Not Present
Custody seals intact on all shipping container(s)/cooler(s)?	Yes	No 🗌	Not Present 🗹
Custody seals intact on all sample bottles?	Yes	No 🗌	Not Present 🗹
Chain of custody present?	Yes 🗹	No 🗌	
Chain of custody signed when relinquished and received?	Yes	No 🗹	
Chain of custody agrees with sample labels?	Yes 🗸	No 🗌	
Samples in proper container/bottle?	Yes 🗸	No 🗌	
Sample containers intact?	Yes 🗹	No 🗌	
Sufficient sample volume for indicated test?	Yes 🖌	No 🗌	
All samples received within holding time? (Exclude analyses that are considered field parameters such as pH, DO, Res CI, Sulfite, Ferrous Iron, etc.)	Yes 🗹	No 🗌	
Temp Blank received in all shipping container(s)/cooler(s)?	Yes	No 🗹	Not Applicable
Container/Temp Blank temperature:	10.8°C No Ice		
Containers requiring zero headspace have no headspace or bubble that is $<6mm$ (1/4").	Yes	No 🗌	No VOA vials submitted
Water - pH acceptable upon receipt?	Yes 🗌	No 🗌	Not Applicable 🗹

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Contact and Corrective Action Comments:

Samples were received without a collection time on the Chain of Custody or sample labels.

ELI-COC-10/18 v.3 Energy Laboratories MUST be contacted prior to RUSH sample submittal for charges and scheduling – See Instructions Page All turmaround times are standard unless marked as N Please retain samples for potential 6 6200h0h20 ELI LAB ID of Receipt Number (cash/check only) RUSH In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested. This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report. Page 1 additional testing. OP 50 Signature Signature Comments LAT RUS See Attached • • . • . . 12 X Man Mied Chain of Custody & Analytical Request Record Amount \$ Date/Time Analysis Requested Account Information) D Other Payment Type sh Check Received by Laboratory (print) EDD/EDT (contact laboratory) Cash Received by (print) Report Information (if different than www.energylab.com Email 8 ONL LABORATORY USE Receive Report DHard Copy 8 Z 5> Matrix (See Codes Temp Blank Y N Company/Name Bioassay Other Mailing Address Matrix Codes City, State, Zip V - Vegetation Drinking Water Solis/ Solids W- Water S S S S S S S S S S A- Air Contact Number of Containers - 0 - MO Phone 's Email ---5 -Signature Signature ----. Receipt Temp °C 115-USP-346439.754 Email No Time Collection Sampler Phone (951) 403-1528 11e.(2) Byproduct Material (Can ONLY be Submitted to ELI Casper Location) EPA/State Compliance D Yes Hard Copy URANIUM MINING CLIENTS MUST indicate sample type. D NOT Source or Byproduct Material D Source/Processed Ore (Ground or Refined) **CALL BEFORE SENDING 319121 Bottle Order Intact Y N Date Date/Time Date/Time Receive Invoice DHard Copy DEmail Receive Report C B Vailing Address 6616 Gulton Court NE, Suite 10 Project Name, PWSID, Permit, etc. Of A Propertie Account Information (Billing information) Custody Y N Albuquerque, NM 87109 JCHEI 8 M doug.romig@wsp.com Sample Identification terval, etc.) Sampler Name Nicholas Buchanan (505) 821-3043 Quote Relinquished by (print) Relinquished by (print) Cooler ID(s) Doug Romig **Trust our People. Trust our Data** ENERGY VRW - 0324 - 02 NRW - 0524 - 03 URW - 0321-04 20-1220 UAW-0524 - 06 16-1-260-WIN URW-0324-07 60- 1289-80-h2to -min Project Information 10 NRW-084- 10 Sample Origin State NM Company/Name WSP Custody Record MUST urchase Order Shipped By City, State, Zip likube signed NRW Contact Phone Email 9

Page 20 of 22

ELI-COC-10/18 v.3 MUST be contacted prior to RUSH sample submittal for standard unless marked as Please retain samples for potential charges and scheduling -All turnaround times are See Instructions Page Energy Laboratories 64 Only ELI LAB ID of Receipt Number (cash/check only) 1-100 RUSH Page 1 In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested. This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report. additional testing. Comments Signature Signer TAT See Attached • 820 Chain of Custody & Analytical Request Record Pate Time Day Amount Date/Time Analysis Requested Report Information (if different than Account Information) LEVEL IV DINELAC DIEDD/EDT (contact laboratory) Dither Payment Type sh Check Inder Processo & Low Cash Received by (print) www.energylab.com Temp Blank On Ice Receive Report DHard Copy Email 300 Special Report/Formats Matrix (See Codes Above) Company/Name Mailing Address City, State, Zip Matrix Codes Bioassay Vegetatio Drinking Water Soils/ Solids Other Water S S S S S Air S S S S S Contact Phone Number of Containers Email -A -M 's - > ч о - MO Signature Signature ~ --Receipt Temp °C Email No No Time Collection Sampler Phone (951) 403-1528 11e.(2) Byproduct Material (Can ONLY be Submitted to ELI Casper Location) EPA/State Compliance D Yes DHard Copy BEmail Receive Report DHard Copy NOT Source or Byproduct Material
 Source/Processed Ore (Ground or Refined) **CALL BEFORE SENDING Bottle Order Date 3/8/81 Y N Date/Time Date/Time Mailing Address 6616 Gulton Court NE, Suite 10 Custody Seals Y N C B Project Name, PWSID, Permit, etc. GL21455130.001 URANIUM MINING CLIENTS MUST indicate sample type Account Information (Billing information) Albuquerque, NM 87109 doug.romig@wsp.com Sample Identification val. etc.) Sampler Name Nicholas Buchanan (505) 821-3043 Quote AN NRW-0324 - LAR Relinquished by (print) Relinquished by (print) Cooler ID(s) frust our People. Trust our Data Doug Romig ENERGY (3) Project Information Sample Origin State NM Company/Name WSP Receive Invoice Record MUST be signed City, State, Zip urchase Order Shipped By Custody Contact Phone Email 10 9 8 ŝ 0

٩٧

LABORATORY TESTING FOR TYRONE MINE - NRW STOCKPILE SOIL CHARACTERIZATION

This letter accompanies 2 coolers with 21 soil samples for the Tyrone Little Rock Mine NRW Stockpile characterization project. Please analyze the samples for the following parameters:

Analysis/Parameter	Source-Method
Saturated Paste pH	SLS 1954, Method 2 and 21a
Electrical Conductivity, saturated paste	SLS 1954, Method 3a and 4b
Saturation Percentage	SLS 1954, Method 27a
Particle Size Analysis	ASA 1982, Method 15-5
Organic Matter (Carbon)	ASA 1982, Method 29-3.5.2
N as Nitrate	ASA 1982, Method 33-8.1
Phosphorous (Olsen)	ASA 1982, Method 24-5.4
Potassium	ASA 1982, Method 13-3.5
Cation Exchange Capacity	SLS 1954, Method 19
AB-DTPA extraction	ASA 1982, Method 3-5.2
Extractable Metals (As, Cd, Cu, Fe, Pb, Mn, Mo, Ni, and Zn)	EPA Method 6010/6020

Please call (505) 962-2933 or email (doug.romig@wsp.com) if you have any questions.

Sincerely,

WSP USA Inc.

WSP USA Inc. 701 Emerson Road, Suite 250, Creve Coeur, Missouri, 63141

T: +1 314 984 8800 F: +1 314 984-8770

wsp.com

ANALYTICAL SUMMARY REPORT

April 18, 2024

WSP Albuquerque 6616 Gulton Ct NE Ste 10 Albuquerque, NM 87109-4452

Project Name: US-WSP-31406439.7541

Energy Laboratories Inc Billings MT received the following 10 samples for WSP Albuquerque on 4/1/2024 for analysis.

Lab ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
B24040039-001	9A-1	09/22/23 0:00	04/01/24	Soil	ABDPTA extractable metals Cation Exchange Capacity Metals, NH4OAC Extractable Conductivity, Saturated Paste Extract Nitrate as N, KCL Extract Organic Carbon/Matter Walkley- Black pH, Saturated Paste Phosphorus-Olsen ABDTPA extraction for metals ASA3- 5.2 NH4AC Soil Extraction for CEC USDA19 KCL Soil Extract ASA33-3 Ammonium Acetate Extraction ASA13-3 Saturated Paste Extraction ASA Particle Size Analysis / Texture Saturation Percentage
B24040039-002	9A-2	09/22/23 0:00	04/01/24	Soil	Same As Above
B24040039-003	9A-3	09/22/23 0:00	04/01/24	Soil	Same As Above
B24040039-004	NRW-1	09/23/23 0:00	04/01/24	Soil	Same As Above
B24040039-005	NRW-2	09/23/23 0:00	04/01/24	Soil	Same As Above
B24040039-006	NRW-3	09/23/23 0:00	04/01/24	Soil	Same As Above
B24040039-007	NRW-4	09/23/23 0:00	04/01/24	Soil	Same As Above
B24040039-008	HR-1	09/22/23 0:00	04/01/24	Soil	Same As Above
B24040039-009	HR-2	09/22/23 0:00	04/01/24	Soil	Same As Above
B24040039-010	HR-3	09/22/23 0:00	04/01/24	Soil	Same As Above

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

Digitally signed by Keri Conter Date: 2024.04.18 10:32:57 -06:00

Trust our People. Trust our Data. www.energylab.com

CLIENT:WSP AlbuquerqueProject:US-WSP-31406439.7541Work Order:B24040039

Report Date: 04/18/24

CASE NARRATIVE

Tests associated with analyst identified as ELI-H were subcontracted to Energy Laboratories, 3161 East Lyndale Ave, Helena, MT, EPA Number MT00945.

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Report Date: 04/18/24 **Date Received:** 04/01/24

Client:WSP AlbuquerqueProject:US-WSP-31406439.7541

Workorder: B24040039

		Analysis	Sand	Silt	Clay	Texture	pH, sat_ paste	COND	Saturation	Organic Matter	Organic Carbon	CEC	Phos, Olsen	Nitrate as N	K- NH4OAC
		Units	%	%	%		s_u_	mmhos/cm	%	%	%	meq/100g	mg/kg-dry	mg/kg-dry	mg/kg
Sample ID	Client Sam	ple ID	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results
B24040039-001	9A-1		70	18	12	SL	8.0	0.4	30.2	< 0.2	< 0.1	11.9	1	< 1	75
B24040039-002	9A-2		70	16	14	SL	7.7	0.4	32.1	< 0.2	< 0.1	12.2	1	1	63
B24040039-003	9A-3		72	16	12	SL	7.5	0.3	30.4	< 0.2	< 0.1	15.0	< 1	1	58
B24040039-004	NRW-1		74	16	10	SL	8.1	0.2	29.6	< 0.2	< 0.1	8.77	< 1	1	65
B24040039-005	NRW-2		76	16	8	SL	8.0	0.3	27.9	< 0.2	< 0.1	6.43	< 1	2	64
B24040039-006	NRW-3		78	12	10	SL	8.0	0.2	28.4	< 0.2	< 0.1	10.8	< 1	2	62
B24040039-007	NRW-4		68	18	14	SL	7.4	0.1	38.9	< 0.2	< 0.1	17.4	< 1	< 1	72
B24040039-008	HR-1		66	18	16	SL	7.8	0.6	36.6	< 0.2	< 0.1	17.1	2	3	64
B24040039-009	HR-2		68	16	16	SL	7.6	0.4	35.3	0.3	0.2	13.7	1	3	83
B24040039-010	HR-3		74	14	12	SL	7.8	0.3	32.1	< 0.2	< 0.1	11.1	< 1	2	80

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client:WSP AlbuquerqueProject:US-WSP-31406439.7541

Workorder: B24040039

Report Date: 04/18/24 **Date Received:** 04/01/24

	Ana	lysis	As- ABDTPA	Cd- ABDTPA	Cu- ABDTPA	Fe- ABDTPA	Pb- ABDTPA	Mn- ABDTPA	Mo- ABDTPA	Ni- ABDTPA	Zn- ABDTPA
	Uı	nits	mg/kg								
Sample ID	Client Sample ID		Results								
B24040039-001	9A-1		0.04	0.1	66.8	7	0.6	3.5	0.3	< 0.1	6.7
B24040039-002	9A-2		0.03	< 0.1	63.9	7	0.5	4.0	0.2	< 0.1	3.2
B24040039-003	9A-3		0.02	< 0.1	50.9	5	0.3	2.5	0.2	< 0.1	2.4
B24040039-004	NRW-1		0.06	0.1	55.2	4	13.1	9.3	0.1	< 0.1	12.9
B24040039-005	NRW-2		0.14	< 0.1	74.2	5	26.8	4.8	0.2	< 0.1	11.0
B24040039-006	NRW-3		0.03	< 0.1	61.2	3	4.9	7.1	< 0.1	< 0.1	8.8
B24040039-007	NRW-4		0.02	< 0.1	71.4	3	2.7	15.4	0.2	< 0.1	3.8
B24040039-008	HR-1		0.03	0.1	54.8	5	1.5	4.3	0.2	< 0.1	4.6
B24040039-009	HR-2		0.03	0.2	87.4	7	5.8	2.5	0.1	< 0.1	8.4
B24040039-010	HR-3		0.02	< 0.1	22.8	3	0.2	2.4	0.3	< 0.1	2.3

Client: WSP Albuquerque	Woi	rk Order: B240	40039	Repo	rt Date: 04/1	7/24
Analyte	Result Units	RL %RE	C Low Limit	High Limit	RPD RPDL	.imit Qual
Method: ASA10-3				Anal	lytical Run: SO	IL EC_240408A
Lab ID: ICV_1_240404_1	Initial Calibration Verification St	andard				04/05/24 12:22
Conductivity, sat. paste	1.40 mmhos/cm	0.10 99	9 90	110		
Lab ID: CCV_1_240404_1	Continuing Calibration Verificati	ion Standard				04/05/24 12:23
Conductivity, sat. paste	5.05 mmhos/cm	0.10 10	1 90	110		
Lab ID: CCV1_1_240404_1	Continuing Calibration Verification	ion Standard				04/05/24 12:23
Conductivity, sat. paste	0.963 mmhos/cm	0.10 90	6 90	110		
Lab ID: CCV_3_240404_1	Continuing Calibration Verificati	ion Standard				04/05/24 12:33
Conductivity, sat. paste	4.99 mmhos/cm	0.10 10	0 90	110		
Lab ID: ICV_1_240404_1	Initial Calibration Verification St	andard				04/05/24 12:41
Conductivity, sat. paste	1.43 mmhos/cm	0.10 10	1 90	110		
Method: ASA10-3						Batch: 71132
Lab ID: MB-71132	Method Blank		Run: SOIL	EC_240408A		04/05/24 12:24
Conductivity, sat. paste	ND mmhos/cm	0.05				
Lab ID: LCS-71132	Laboratory Control Sample		Run: SOIL	EC_240408A		04/05/24 12:24
Conductivity, sat. paste	4.01 mmhos/cm	0.10 103	3 80	120		
Lab ID: B24040039-010ADUP	Sample Duplicate		Run: SOIL	EC_240408A		04/05/24 12:36
Conductivity, sat. paste	0.266 mmhos/cm	0.10			4.0	20

Client:	WSP Albuquerque			Work Order:	B2404	0039	Repo	Report Date: 04/17/24			
Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD R	RPDLimit	Qual	
Method:	ASA10-3					al R	un: SOIL PH N	IETER - OR	ION A211_	_240408A	
Lab ID:	ICV_1_240404_1	Initial Calibrati	on Verificati	on Standard					04/05	/24 08:38	
pH, sat. pa	aste	7.04	s.u.	0.10	101	98.6	101.4				
Lab ID:	CCV_1_240404_1	Continuing Ca	libration Ver	ification Standa	rd				04/05	/24 08:39	
pH, sat. pa	aste	7.02	s.u.	0.10	100	98.6	101.4				
Lab ID:	CCV1_1_240404_1	Continuing Ca	libration Ver	ification Standa	rd				04/05	/24 08:39	
pH, sat. pa	aste	4.01	s.u.	0.10	100	97.5	102.5				
Lab ID:	CCV_3_240404_1	Continuing Ca	libration Ver	ification Standa	rd				04/05	/24 08:55	
pH, sat. pa	aste	7.00	s.u.	0.10	100	98.6	101.4				
Lab ID:	ICV_1_240404_1	Initial Calibrati	on Verificati	on Standard					04/05	/24 09:19	
pH, sat. pa	aste	7.03	s.u.	0.10	100	98.6	101.4				
Method:	ASA10-3								Bate	ch: 71132	
Lab ID:	LCS-71132	Laboratory Co	ntrol Sample	e		Run: SOIL	PH METER - C	DRION A2	04/05	/24 08:41	
pH, sat. pa	aste	7.87	s.u.	0.10	99	95	105				
Lab ID:	B24040039-010ADUP	Sample Duplic	cate			Run: SOIL	PH METER - C	DRION A2	04/05	/24 09:00	
pH, sat. pa	aste	7.80	s.u.	0.10				0.3	20		

Client:	WSP Albuquerque			Work Order:	B2404	0039	Repo	rt Date:	04/17/24	
Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	ASA15-5								Bat	ch: 71170
Lab ID:	LCS-71170	Laboratory Co	ntrol Sample	e		Run: SOIL	HYDROMETER	R_240409	04/08	8/24 16:31
Sand		48.0	%	1.0	100	70	130			
Silt		30.0	%	1.0	103	70	130			
Clay		22.0	%	1.0	96	70	130			
Lab ID:	B24040039-010ADUP	Sample Duplic	cate			Run: SOIL	HYDROMETER	R_240409	04/08	8/24 16:31
Sand		74.0	%	1.0				0.0	20	
Silt		14.0	%	1.0				0.0	20	
Clay		12.0	%	1.0				0.0	20	
Texture		SL		1.0						

Client: W	SP Albuquerque		v	Vork Order:	B2404	0039	Report	Date	: 04/17/24	
Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	ASA24-5						Analytical	Run: S	SEAL AA500	_240417
Lab ID:	CCV	Continuing C	alibration Verifie	cation Standa	rd				04/17	7/24 10:4
Phosphorus,	Olsen	2.5	mg/kg-dry	1.0	100	85	115			
Lab ID:	ссу	Continuing C	alibration Verific	cation Standa	rd				04/17	7/24 11:1
Phosphorus,	Olsen	2.5	mg/kg-dry	1.0	99	85	115			
Method:	ASA24-5								Bat	ch: 7129
Lab ID:	MB-71293	Method Blan	k			Run: SEAL	AA500_240417	4	04/17	7/24 10:5
Phosphorus,	Olsen	ND	mg/kg-dry	0.05						
Lab ID:	LCS-71293	Laboratory C	ontrol Sample			Run: SEAL	AA500_240417	4	04/17	7/24 10:5
Phosphorus,	Olsen	52	mg/kg-dry	1.0	118	70	130			
Lab ID:	B24040039-001AMS	Sample Matr	ix Spike			Run: SEAL	AA500_240417	4	04/17	7/24 10:5
Phosphorus,	Olsen	42	mg/kg-dry	1.0	100	80	120			
Lab ID:	H24040277-001ADUP	Sample Dup	licate			Run: SEAL	AA500_240417	4	04/17	7/24 11:2
Phosphorus,	Olsen		mg/kg-dry	1.0				5.3	30	

Client: WSP Albu	querque		Work Order:	B24040	039	Report	t Date:	: 04/17/24	
Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: ASA29-3								Bat	ch: 71166
Lab ID: LCS-711	66 Laboratory C	ontrol Samp	le		Run: MISC	SOILS_240410A	\	04/10	0/24 10:21
Organic Matter	1.26	%	0.17	104	70	130			
Lab ID: MB-711	66 Method Blan	k			Run: MISC	SOILS_240410A	\	04/10	0/24 10:21
Organic Matter	ND	%	0.2						
Lab ID: B240400	39-010ADUP Sample Dupl	icate			Run: MISC	SOILS_240410A	\	04/10	0/24 10:21
Organic Matter	ND	%	0.17						

Client: WSP Albuquerque	Wo	rk Order: B24040	0039	Report Date	: 04/17/24
Analyte	Result Units	RL %REC	Low Limit High	Limit RPD	RPDLimit Qual
Method: ASA33-8				Analytical Run:	SEAL AA500_240411A
Lab ID: ICV	Initial Calibration Verification S	tandard			04/11/24 16:02
Nitrate as N, KCL Extract	1.06 mg/kg-dry	1.0 106	90	110	
Lab ID: CCV	Continuing Calibration Verificat	tion Standard			04/11/24 17:46
Nitrate as N, KCL Extract	0.969 mg/kg-dry	1.0 97	90	110	
Lab ID: CCV	Continuing Calibration Verificat	tion Standard			04/11/24 18:03
Nitrate as N, KCL Extract	0.958 mg/kg-dry	1.0 96	90	110	
Lab ID: ICV	Initial Calibration Verification S	tandard			04/11/24 16:02
Nitrate as N, KCL Extract	1.1 mg/kg-dry	1.0 106	90	110	
Method: ASA33-8					Batch: 71153
Lab ID: MB-71153	Method Blank		Run: SEAL AA50	0_240411A	04/11/24 16:55
Nitrate as N, KCL Extract	0.4 mg/kg-dry	0.2			
Lab ID: LCS-71153	Laboratory Control Sample		Run: SEAL AA50	0_240411A	04/11/24 17:01
Nitrate as N, KCL Extract	8.88 mg/kg-dry	1.0 111	70	130	
Lab ID: B24040039-001AMS	Sample Matrix Spike		Run: SEAL AA50	0_240411A	04/11/24 17:56
Nitrate as N, KCL Extract	10.3 mg/kg-dry	1.0 95	80	120	
Lab ID: B24040039-010Adup	Sample Duplicate		Run: SEAL AA50	0_240411A	04/11/24 18:08
Nitrate as N, KCL Extract	1.57 mg/kg-dry	1.0		4.6	30

Prepared by Helena, MT Branch

Client:	WSP Albuquerque			Work Order:	B2404	0039	Repo	ort Date:	04/17/24	
Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6010B						Ana	alytical Ru	In: ICP2-HE	_240410C
Lab ID:	ICV	Initial Calibra	ation Verificatio	n Standard					04/10)/24 11:10
Sodium		41.7	mg/L	1.0	104	90	110			
Lab ID:	ICSA	Interference	Check Sample	A					04/10)/24 11:51
Sodium		0.0746	mg/L	1.0		0	0			
Lab ID:	ICSAB	Interference	Check Sample	AB					04/10)/24 11:55
Sodium		19.7	mg/L	1.0	99	80	120			
Method:	SW6010B								Bat	ch: 71143
Lab ID:	MB-71143	Method Blan	k			Run: ICP2-	HE_240410C		04/11	1/24 07:06
Sodium		1	mg/kg	0.3						
Cation E	xchange Capacity	0.08	meq/100g	0.03						
Lab ID:	LCS-71143	Laboratory C	Control Sample			Run: ICP2-	HE_240410C		04/11	1/24 07:14
Sodium		257	mg/kg	1.0	93	70	130			
Cation E	xchange Capacity	22.4	meq/100g	0.087	93	70	130			
Lab ID:	B24040039-001AMS2	Sample Mat	ix Spike			Run: ICP2-	HE_240410C		04/11	1/24 07:26
Sodium		650	mg/kg	1.0	103	75	125			
Cation E	xchange Capacity	56.5	meq/100g	0.087	103	75	125			
Lab ID:	B24040039-001AMSD2	Sample Mati	ix Spike Duplic	ate		Run: ICP2-	HE_240410C		04/11	1/24 07:29
Sodium		630	mg/kg	1.0	99	75	125	3.0	20	
Cation E	xchange Capacity	54.9	meq/100g	0.087	99	75	125	3.0	20	
Lab ID:	B24040039-010Adup	Sample Dup	licate			Run: ICP2-	HE_240410C		04/11	1/24 08:16
Sodium		119	mg/kg	1.0				7.3	30	Н
Cation E	xchange Capacity	10.3	meq/100g	0.087				7.3	30	Н

Qualifiers:

RL - Analyte Reporting Limit

H - Analysis performed past the method holding time

Client: V	NSP Albuquerque		Work	Order:	B2404	0039	Repo	ort Date:	04/17/24	
Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6010B						Ana	alytical Ru	ın: ICP2-HE_	_240412A
Lab ID:	ICV	Initial Calibrat	on Verification Star	ndard					04/12	2/24 08:42
Potassium		40.7	mg/L	1.0	102	90	110			
Lab ID:	ICSA	Interference C	heck Sample A						04/12	2/24 08:58
Potassium		0.0425	mg/L	1.0		0	0			
Lab ID:	ICSAB	Interference C	heck Sample AB						04/12	2/24 09:02
Potassium		20.1	mg/L	1.0	100	80	120			
Method:	SW6010B								Bat	ch: 71151
Lab ID:	MB-71151	Method Blank				Run: ICP2-	HE_240412A		04/12	2/24 09:36
Potassium		2	mg/kg	1						
Lab ID:	LCS-71151	Laboratory Co	ntrol Sample			Run: ICP2-	HE_240412A		04/12	2/24 09:44
Potassium		584	mg/kg	1.2	94	70	130			
Lab ID:	B24040039-005AMS2	Sample Matrix	Spike			Run: ICP2-	HE_240412A		04/12	2/24 10:31
Potassium		. 1140	mg/kg	1.3	107	75	125			
Lab ID:	B24040039-005AMSD2	Sample Matrix	Spike Duplicate			Run: ICP2-	HE_240412A		04/12	2/24 10:35
Potassium		1130	mg/kg	1.3	107	75	125	0.5	20	

Prepared by Helena, MT Branch

Lab ID: IC Arsenic Cadmium Copper Iron Lead Manganese Molybdenum Nickel Zinc	W6020 CV CSA	Result Initial Calibrati 0.0583 0.0301 0.0596 0.292 0.0575 0.316 0.0565 0.0591 0.0604 Interference C	Units on Verificatio mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		97 100 99 97 96 105 94 99	Low Limit 90 90 90 90 90 90 90 90 90	110 110 110 110 110 110 110		RPDLimit CPMS206-H_ 04/14	Qual _240414A
Lab ID: IC Arsenic Cadmium Copper Iron Lead Manganese Molybdenum Nickel Zinc Lab ID: IC	cv	0.0583 0.0301 0.0596 0.292 0.0575 0.316 0.0565 0.0591 0.0604	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010	100 99 97 96 105 94 99	90 90 90 90 90 90	110 110 110 110 110 110 110	al Run: I(
Arsenic Cadmium Copper Iron Lead Manganese Molybdenum Nickel Zinc Lab ID: IC		0.0583 0.0301 0.0596 0.292 0.0575 0.316 0.0565 0.0591 0.0604	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010	100 99 97 96 105 94 99	90 90 90 90 90 90	110 110 110 110 110 110		04/14	1/24 13:46
Cadmium Copper Iron Lead Manganese Molybdenum Nickel Zinc Lab ID: IC	CSA	0.0301 0.0596 0.292 0.0575 0.316 0.0565 0.0591 0.0604	mg/L mg/L mg/L mg/L mg/L mg/L	0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010	100 99 97 96 105 94 99	90 90 90 90 90 90	110 110 110 110 110 110			
Copper Iron Lead Manganese Molybdenum Nickel Zinc Lab ID: IC	CSA	0.0596 0.292 0.0575 0.316 0.0565 0.0591 0.0604	mg/L mg/L mg/L mg/L mg/L	0.0010 0.0010 0.0010 0.0010 0.0010 0.0010	99 97 96 105 94 99	90 90 90 90 90	110 110 110 110 110			
Iron Lead Manganese Molybdenum Nickel Zinc Lab ID: IC	CSA	0.292 0.0575 0.316 0.0565 0.0591 0.0604	mg/L mg/L mg/L mg/L mg/L	0.0010 0.0010 0.0010 0.0010 0.0010	97 96 105 94 99	90 90 90 90	110 110 110 110			
Lead Manganese Molybdenum Nickel Zinc Lab ID: IC	CSA	0.0575 0.316 0.0565 0.0591 0.0604	mg/L mg/L mg/L mg/L	0.0010 0.0010 0.0010 0.0010	96 105 94 99	90 90 90	110 110 110			
Manganese Molybdenum Nickel Zinc Lab ID: IC	CSA	0.316 0.0565 0.0591 0.0604	mg/L mg/L mg/L	0.0010 0.0010 0.0010	105 94 99	90 90	110 110			
Molybdenum Nickel Zinc Lab ID: IC	CSA	0.0565 0.0591 0.0604	mg/L mg/L	0.0010 0.0010	94 99	90	110			
Nickel Zinc Lab ID: IC	CSA	0.0591 0.0604	mg/L	0.0010	99					
Nickel Zinc Lab ID: IC	CSA	0.0604	mg/L			90				
Lab ID: IC	CSA	0.0604	-	0.0010			110			
	CSA	Interference C			101	90	110			
Arsenic			heck Sample	Α					04/14	/24 13:59
		-0.0000527	mg/L	0.0010						
Cadmium		0.000168	mg/L	0.0010						
Copper		0.0000608	mg/L	0.0010						
Iron		102	mg/L	0.0010	102	70	130			
Lead		0.000870	mg/L	0.0010						
Manganese		0.000321	mg/L	0.0010		0	0			
Molybdenum		0.872	mg/L	0.0010	109	70	130			
Nickel		0.000238	mg/L	0.0010		0	0			
Zinc		0.000362	mg/L	0.0010		-	-			
Lab ID: IC	CSAB	Interference C	heck Sample	e AB					04/14	1/24 14:05
Arsenic		0.0110	mg/L	0.0010	110	70	130			
Cadmium		0.0107	mg/L	0.0010	107	70	130			
Copper		0.0205	mg/L	0.0010	102	70	130			
Iron		104	mg/L	0.0010	104	70	130			
Lead		1.63E-08	mg/L	0.0010		0	0			
Manganese		0.0212	mg/L	0.0010	106	70	130			
Molybdenum		0.894	mg/L	0.0010	112	70	130			
Nickel		0.0211	mg/L	0.0010	106	70	130			
Zinc		0.0119	mg/L	0.0010	119	70	130			
Lab ID: C	cv	Continuing Ca	libration Veri	fication Standa	ırd				04/14	l/24 18:14
Arsenic		0.0510	mg/L	0.0010	102	90	110			
Cadmium		0.0512	mg/L	0.0010	102	90	110			
Copper		0.0512	mg/L	0.0010	102	90	110			
Iron		1.31	mg/L	0.0010	101	90	110			
Lead		0.0490	mg/L	0.0010	98	90	110			
Manganese		0.0496	mg/L	0.0010	99	90	110			
Molybdenum		0.0508	mg/L	0.0010	102	90	110			
Nickel		0.0507	mg/L	0.0010	102	90	110			
Zinc		0.0530	mg/L	0.0010	106	90	110			
Lab ID: IC	cv	Initial Calibrat	on Verificatio	on Standard					04/15	5/24 00:08
Arsenic	-	0.0583	mg/L	0.0010	97	90	110		0.,10	

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

Prepared by Helena, MT Branch

Client: W	/SP Albuquerque			Work Order:	B2404	0039	Repo	rt Date:	04/17/24	
Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6020						Analytic	al Run: I	CPMS206-H	_240414A
Lab ID:	ICV	Initial Calibrati	ion Verificatio	n Standard					04/15	5/24 00:08
Cadmium		0.0294	mg/L	0.0010	98	90	110			
Copper		0.0594	mg/L	0.0010	99	90	110			
Iron		0.300	mg/L	0.0010	100	90	110			
Lead		0.0587	mg/L	0.0010	98	90	110			
Manganese		0.310	mg/L	0.0010	103	90	110			
Molybdenum	า	0.0561	mg/L	0.0010	94	90	110			
Nickel		0.0591	mg/L	0.0010	99	90	110			
Zinc		0.0596	mg/L	0.0010	99	90	110			
Lab ID:	ICSA	Interference C	heck Sample	A					04/15	5/24 00:18
Arsenic		-0.0000426	mg/L	0.0010						
Cadmium		0.000140	mg/L	0.0010						
Copper		0.0000861	mg/L	0.0010						
Iron		107	mg/L	0.0010	107	70	130			
Lead		0.000915	mg/L	0.0010						
Manganese		0.000349	mg/L	0.0010		0	0			
Molybdenum	n	0.860	mg/L	0.0010	108	70	130			
Nickel		0.000242	mg/L	0.0010		0	0			
Zinc		0.000387	mg/L	0.0010						
Lab ID:	ICSAB	Interference C	heck Sample	AB					04/15	5/24 00:25
Arsenic		0.0107	mg/L	0.0010	107	70	130			
Cadmium		0.0105	mg/L	0.0010	105	70	130			
Copper		0.0202	mg/L	0.0010	101	70	130			
Iron		107	mg/L	0.0010	107	70	130			
Lead		0.0000365	mg/L	0.0010		0	0			
Manganese		0.0213	mg/L	0.0010	106	70	130			
Molybdenum	n	0.898	mg/L	0.0010	112	70	130			
Nickel		0.0204	mg/L	0.0010	102	70	130			
Zinc		0.0117	mg/L	0.0010	117	70	130			
Method:	SW6020								Bat	ch: 71155
Lab ID:	MB-71155	Method Blank				Run: ICPM	S206-H_24041	4A	04/14	1/24 18:21
Arsenic		0.01	mg/kg	0.0005						
Cadmium		0.0007	mg/kg	0.0003						
Copper		0.04	mg/kg	0.007						
Iron		0.9	mg/kg	0.2						
Lead		ND	mg/kg	0.003						
Manganese		0.03	mg/kg	0.009						
Molybdenum	n	0.002	mg/kg	0.0008						
Nickel		0.008	mg/kg	0.005						
Zinc		0.05	mg/kg	0.03						
Lab ID:	LCS-71155	Laboratory Co	ontrol Sample			Run: ICPM	S206-H_24041	4A	04/14	4/24 18:24
Arsenic		0.170	mg/kg	0.10	98	70	_ 130			

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

Prepared by Helena, MT Branch

Client:	WSP Albuquerque			Work Order:	B2404	0039	Repo	rt Date:	04/17/24	
Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6020								Bat	ch: 71155
Lab ID:	LCS-71155	Laboratory Co	ontrol Sample	e		Run: ICPM	S206-H_240414	1A	04/14	1/24 18:24
Copper		6.04	mg/kg	0.10	105	70	130			
Iron		98.2	mg/kg	1.0	84	70	130			
Lead		2.70	mg/kg	0.10	91	70	130			
Mangane	ese	9.25	mg/kg	0.10	101	70	130			
Molybde	num	0.263	mg/kg	0.10	97	70	130			
Nickel		2.09	mg/kg	0.10	87	70	130			
Zinc		10.9	mg/kg	0.10	115	70	130			
Lab ID:	B24040039-009Adup	Sample Dupli	cate			Run: ICPM	S206-H_240414	1A	04/14	1/24 19:01
Arsenic		0.0254	mg/kg	0.10					20	н
Cadmiun	n	0.140	mg/kg	0.10				9.4	20	н
Copper		84.5	mg/kg	0.10				3.4	20	Н
Iron		6.16	mg/kg	1.0				6.5	20	Н
Lead		5.26	mg/kg	0.10				8.9	20	Н
Mangane	ese	2.36	mg/kg	0.10				6.4	20	Н
Molybde	num	0.106	mg/kg	0.10				9.8	20	Н
Nickel		0.0369	mg/kg	0.10					20	Н
Zinc		7.90	mg/kg	0.10				5.8	20	Н
Lab ID:	LFB-71155	Laboratory Fo	ortified Blank			Run: ICPM	S206-H_240414	1A	04/14	4/24 19:07
Arsenic		2.89	mg/kg	0.10	116	80	120			
Cadmiun	n	2.59	mg/kg	0.10	104	80	120			
Copper		2.74	mg/kg	0.10	110	80	120			
Lead		2.40	mg/kg	0.10	96	80	120			
Molybde	num	2.47	mg/kg	0.10	99	80	120			
Nickel		2.68	mg/kg	0.10	107	80	120			
Zinc		2.84	mg/kg	0.10	114	80	120			
Lab ID:	B24040039-001AMS	Sample Matrix	x Spike			Run: ICPM	S206-H_240414	1A	04/14	4/24 19:10
Arsenic		2.90	mg/kg	0.10	114	75	125			
Cadmiun	n	2.73	mg/kg	0.10	104	75	125			
Copper		66.5	mg/kg	0.10		75	125			А
Lead		2.96	mg/kg	0.10	95	75	125			
Molybde	num	2.82	mg/kg	0.10	101	75	125			
Nickel		2.62	mg/kg	0.10	103	75	125			
Zinc		9.23	mg/kg	0.10	100	75	125			

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

A - Analyte level was greater than four times the spike level - in accordance with the method, percent recovery is not calculated H - Analysis performed past the method holding time

Client:	WSP Albuquerque			Work Order:	B2404	0039	Repo	ort Date:	04/17/24	
Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	USDA27a								Bat	ch: 71132
Lab ID: Saturation	LCS-71132	Laboratory Co 40.0	ntrol Sample %	e 0.10	96	Run: SOIL 80	DRYING OVER 120	N 2_24040	0 04/05	5/24 08:01
Lab ID: Saturation	B24040039-010ADUP	Sample Duplic 31.2	ate %	0.10		Run: SOIL	DRYING OVE	N 2_24040 2.9	0 04/05 20	5/24 08:03

Work Order Receipt Checklist

WSP Albuquerque

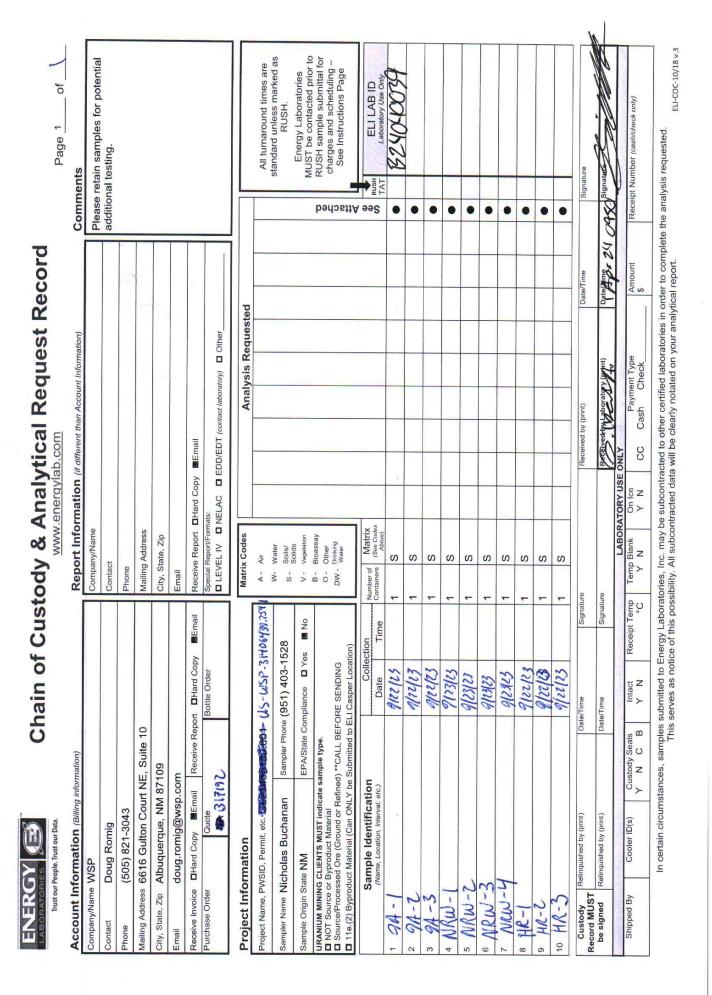
B24040039

Login completed by:	Addison A. Gilbert		Date F	Received: 4/1/2024
Reviewed by:	cjones		Rec	eived by: AAG
Reviewed Date:	4/3/2024		Carr	ier name: Return-FedEx Ground
Shipping container/cooler in	good condition?	Yes 🗸	No 🗌	Not Present
Custody seals intact on all sh	nipping container(s)/cooler(s)?	Yes	No 🗌	Not Present 🗹
Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present 🗹
Chain of custody present?		Yes 🗹	No 🗌	
Chain of custody signed whe	en relinquished and received?	Yes	No 🗹	
Chain of custody agrees with	a sample labels?	Yes 🗹	No 🗌	
Samples in proper container/	'bottle?	Yes 🗹	No 🗌	
Sample containers intact?		Yes 🗹	No 🗌	
Sufficient sample volume for	indicated test?	Yes 🗹	No 🗌	
All samples received within h (Exclude analyses that are co such as pH, DO, Res Cl, Su	onsidered field parameters	Yes 🗌	No 🗹	
Temp Blank received in all sh	nipping container(s)/cooler(s)?	Yes	No 🗹	Not Applicable
Container/Temp Blank tempe	erature:	13.0°C No Ice		
Containers requiring zero hea bubble that is <6mm (1/4").	adspace have no headspace or	Yes	No 🗌	No VOA vials submitted
Water - pH acceptable upon	receipt?	Yes 🗌	No 🗌	Not Applicable

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.


The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Contact and Corrective Action Comments:

Samples were received without a collection time on the Chain of Custody or sample labels.

Samples were received past the 180 day holding time for ABDPTA extractable metals, Cation Exchange Capacity, and NH4OAC Extractable Metals analyses. Samples were received past the 100 day holding time for KCL Soil Extract for Nitrate analysis. Proceed with all analyses per phone conversation with Doug Romig on 4/1/24.

Page 18 of 19

vsp

LABORATORY TESTING FOR TYRONE MINE - NRW STOCKPILE SOIL CHARACTERIZATION

This letter accompanies 2 coolers with 21 soil samples for the Tyrone Little Rock Mine NRW Stockpile characterization project. Please analyze the samples for the following parameters:

Analysis/Parameter	Source-Method
Saturated Paste pH	SLS 1954, Method 2 and 21a
Electrical Conductivity, saturated paste	SLS 1954, Method 3a and 4b
Saturation Percentage	SLS 1954, Method 27a
Particle Size Analysis	ASA 1982, Method 15-5
Organic Matter (Carbon)	ASA 1982, Method 29-3.5.2
N as Nitrate	ASA 1982, Method 33-8.1
Phosphorous (Olsen)	ASA 1982, Method 24-5.4
Potassium	ASA 1982, Method 13-3.5
Cation Exchange Capacity	SLS 1954, Method 19
AB-DTPA extraction	ASA 1982, Method 3-5.2
Extractable Metals (As, Cd, Cu, Fe, Pb, Mn, Mo, Ni, and Zn)	EPA Method 6010/6020

Please call (505) 962-2933 or email (doug.romig@wsp.com) if you have any questions.

Sincerely,

WSP USA Inc.

T: +1 314 984 8800 F: +1 314 984-8770

wsp.com

APPENDIX C

DBS&A Laboratory Report and Soil Water Characterization Curves

Laboratory Report Project # 31406439 01.EXP

Prepared for WSP Golder

Prepared by

DBS&A Soil Testing & Research Laboratory 4400 Alameda Blvd. NE, Suite C Albuquerque, New Mexico 87113 (505) 889-7752 www.dbstephens.com DB23.1010.00

October 10, 2023

October 10, 2023

Doug Romig WSP Golder 6616 Gulton Ct. #10 Albuquerque, NM 87109 (505) 962-2933

Re: DBS&A Laboratory Report for Project # 31406439 01.EXP

Dear Doug Romig:

Enclosed is the report for the requested laboratory services. Please review this report and provide any comments as samples will be held for a maximum of 30 days. After 30 days samples will be returned or disposed of in an appropriate manner.

All testing results were evaluated subjectively for consistency and reasonableness, and the results appear to be reasonably representative of the material tested. However, DBS&A does not assume any responsibility for interpretations or analyses based on the data enclosed, nor can we guarantee that these data are fully representative of the undisturbed materials at the field site. We recommend that careful evaluation of these laboratory results be made for your particular application.

The testing utilized to generate the enclosed report employs methods that are standard for the industry. The results do not constitute a professional opinion by DBS&A, nor can the results affect any professional or expert opinions rendered with respect thereto by DBS&A. You have acknowledged that all the testing undertaken by us, and the report provided, constitutes mere test results using standardized methods, and cannot be used to disqualify DBS&A from rendering any professional or expert opinion, having waived any claim of conflict of interest by DBS&A.

We are pleased to provide this service and look forward to future laboratory testing on other projects. If you have any questions about the enclosed data, please do not hesitate to call.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC. SOIL TESTING & RESEARCH LABORATORY

Willhem Jung

William Seward Assistant Laboratory Manager

Joleen Hines Laboratory Manager

Summaries

Summary of Tests Performed

	In	itial S	Soil		aturate Iydraul					Moi	isture				Particl	٩	Sne	ecific	Air		
Laboratory		operti			nductiv					Charac	teristi	cs ³			Size ⁴			vity ⁵	Perm-	Atterberg	Proctor
Sample Number	G	VM	VD	СН	FH	FW	HC	PP	FP	DPP	RH	EP	WHC K _{unsat}	DS	WS	Н	F	С	eability	Limits	Compaction
9A-GB3 (1.45 g/cc)	х	Х		Х			х	Х		Х	Х		х								
9A-TP1 (1.45 g/cc)	х	Х		х			х	Х		Х	Х		х								
9A-TP4 (1.45 g/cc)	х	Х		х			х	Х		х	Х		х								
9AX-TP2 (1.44 g/cc)	Х	Х		х			Х	Х		Х	Х		х								
9AX-GB1 (1.44 g/cc)	х	Х		х			х	Х		Х	Х		х								
CuL-GB1 (1.45 g/cc)	х	Х		х			х	Х		х	Х		х								
CuL-GB2 (1.45 g/cc)	х	Х		Х			х	Х		Х	Х		х								
USNR-GB1 (1.45 g/cc)	Х	Х		х			Х	Х		х	Х		х								
USNR-GB3 (1.45 g/cc)	Х	Х		Х			Х	Х		х	Х		х								
WIP-GB1 (1.45 g/cc)	Х	Х		Х			Х	Х		х	Х		х								

¹ G = Gravimetric Moisture Content, VM = Volume Measurement Method, VD = Volume Displacement Method

² CH = Constant Head Rigid Wall, FH = Falling Head Rigid Wall, FW = Falling Head Rising Tail Flexible Wall

³ HC = Hanging Column, PP = Pressure Plate, FP = Filter Paper, DPP = Dew Point Potentiometer, RH = Relative Humidity Box,

EP = Effective Porosity, WHC = Water Holding Capacity, Kunsat = Calculated Unsaturated Hydraulic Conductivity

⁴ DS = Dry Sieve, WS = Wet Sieve, H = Hydrometer

⁵ F = Fine (<4.75mm), C = Coarse (>4.75mm)

Notes

Sample Receipt:

Ten samples, each as loose <2mm material in a full 1-gallon resealable bag, were handdelivered on August 18, 2023. The samples were delivered together in a cooler and were received in good order.

Sample Preparation and Testing Notes:

A portion of each sample was remolded into a testing ring to a client-specified target density of 1.45 g/cm³. Prior to remolding, the sub-samples were moisture adjusted in order to achieve a moisture content that would facilitate compaction. The actual dry bulk density achieved (in g/cm³) was added to each sub-sample ID. Each of these remolded sub-samples was subjected to initial properties analysis, saturated hydraulic conductivity testing, and the hanging column and pressure chamber portions of the moisture retention testing. Separate sub-samples were obtained for the dewpoint potentiometer and relative humidity chamber portions of the moisture retention testing. Porosity calculations are based on the use of an assumed specific gravity value of either 2.65 or 2.85.

	Target Remold Parameters ¹	Actual Remold Data			Volume Change Post Saturation ²			Volume Change Post Drying Curve ³		
Sample Number	Dry Bulk Density (g/cm ³)	Moisture Content (%, g/g)	Dry Bulk Density (g/cm ³)	% of Target Density (%)	Dry Bulk Density (g/cm ³)	% Volume Change (%)	% of Initial Density (%)	Dry Bulk Density (g/cm ³)	% Volume Change (%)	% of Initial Density (%)
9A-GB3 (1.45 g/cc)	1.45	10.43	1.45	99.9%	1.45		100%	1.45		100%
9A-TP1 (1.45 g/cc)	1.45	10.32	1.45	99.9%	1.45		100%	1.45		100%
9A-TP4 (1.45 g/cc)	1.45	10.38	1.45	100.1%	1.45		100%	1.45		100%
9AX-TP2 (1.44 g/cc)	1.45	10.64	1.44	99.6%	1.44		100%	1.57	-8.1%	109%
9AX-GB1 (1.44 g/cc)	1.45	12.07	1.44	99.3%	1.44		100%	1.42	+1.6%	99%
CuL-GB1 (1.45 g/cc)	1.45	10.07	1.45	100.1%	1.45		100%	1.45		100%
CuL-GB2 (1.45 g/cc)	1.45	10.22	1.45	100.0%	1.45		100%	1.45		100%
USNR-GB1 (1.45 g/cc)	1.45	10.19	1.45	100.0%	1.45		100%	1.45		100%
USNR-GB3 (1.45 g/cc)	1.45	9.99	1.45	99.9%	1.45		100%	1.45		100%
WIP-GB1 (1.45 g/cc)	1.45	10.35	1.45	99.8%	1.45		100%	1.45		100%

Summary of Sample Preparation/Volume Changes

¹Target Remold Parameters: Remolded to a target dry bulk density of 1.45 g/cm³

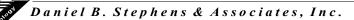
²Volume Change Post Saturation: Volume change measurements were obtained after saturated hydraulic conductivity testing.

³Volume Change Post Drying Curve: Volume change measurements were obtained throughout hanging column and pressure plate testing. The 'Volume Change Post Drying Curve' values represent the final sample dimensions after the last pressure plate point.

Notes:

"+" indicates sample swelling, "-" indicates sample settling, and "---" indicates no volume change occurred.

	As Received		Rem	olded	Dry Bulk	Wet Bulk	Calculated
Sample Number	Gravimetric (%, g/g)	Volumetric (%, cm ³ /cm ³)	Gravimetric (%, g/g)	Volumetric (%, cm ³ /cm ³)	Density (g/cm ³)	Density (g/cm ³)	Porosity (%)
	(70, 9/9)	(/0, CIII /CIII)	(70, 9/9)	(70, 01170111)	(g/cm/)	(g/cm/)	(70)
9A-GB3 (1.45 g/cc)	NA	NA	10.4	15.1	1.45	1.60	45.4
9A-TP1 (1.45 g/cc)	NA	NA	10.3	15.0	1.45	1.60	45.3
9A-TP4 (1.45 g/cc)	NA	NA	10.4	15.1	1.45	1.60	45.2
9AX-TP2 (1.44 g/cc)	NA	NA	10.6	15.4	1.44	1.60	45.5
9AX-GB1 (1.44 g/cc)	NA	NA	12.1	17.4	1.44	1.61	49.5
CuL-GB1 (1.45 g/cc)	NA	NA	10.1	14.6	1.45	1.60	45.2
CuL-GB2 (1.45 g/cc)	NA	NA	10.2	14.8	1.45	1.60	45.3
USNR-GB1 (1.45 g/cc)	NA	NA	10.2	14.8	1.45	1.60	45.3
USNR-GB3 (1.45 g/cc)	NA	NA	10.0	14.5	1.45	1.59	45.3
WIP-GB1 (1.45 g/cc)	NA	NA	10.4	15.0	1.45	1.60	45.4


Summary of Initial Moisture Content, Dry Bulk Density Wet Bulk Density and Calculated Porosity

NA = Not analyzed

	K _{sat}	Oversize Corrected K _{sat}	Mathad of	Apolycic
			Method of	
Sample Number	(cm/sec)	(cm/sec)	Constant Head	Falling Head
9A-GB3 (1.45 g/cc)	3.0E-02	NA	Х	
9A-TP1 (1.45 g/cc)	1.3E-02	NA	Х	
9A-TP4 (1.45 g/cc)	2.3E-02	NA	Х	
9AX-TP2 (1.44 g/cc)	5.8E-03	NA	Х	
9AX-GB1 (1.44 g/cc)	2.7E-03	NA	Х	
CuL-GB1 (1.45 g/cc)	1.1E-02	NA	Х	
CuL-GB2 (1.45 g/cc)	9.7E-03	NA	Х	
USNR-GB1 (1.45 g/cc)	2.4E-02	NA	Х	
USNR-GB3 (1.45 g/cc)	2.1E-02	NA	Х	
WIP-GB1 (1.45 g/cc)	1.6E-02	NA	Х	

Summary of Saturated Hydraulic Conductivity Tests

NA = Not applicable

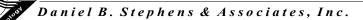
	Pressure Head	Moisture Content
Sample Number	(-cm water)	(%, cm ³ /cm ³)
9A-GB3 (1.45 g/cc)	0	44.5
	5	44.3
	14	38.3
	53	23.9
	205	18.9
	337	17.3
	6833	8.9
	60576	5.8
	284218	4.0
	849860	3.4
9A-TP1 (1.45 g/cc)	0	46.1
3A-TFT (1.45 g/cc)	5	45.8
	14	44.2
	53	26.3
	205	19.7
	337	17.7
	8362	9.9
	58333	6.3
	327764	4.3
	849860	3.8
0.4 TD 4 (1.45 g/ss)	0	47.3
9A-TP4 (1.45 g/cc)	0 5	47.3
	14	43.0
	53	25.5
	205	20.0
	337	18.0
	9688	8.8
	66899	6.3
	348160	4.7
	849860	4.3

Summary of Moisture Characteristics of the Initial Drainage Curve

. . . .

^{‡‡} Volume adjustments are applicable at this matric potential (see data sheet for this sample).

Sample Number	Pressure Head (-cm water)	Moisture Content (%, cm ³ /cm ³)
9AX-TP2 (1.44 g/cc)	0	46.0
3/00 H 2 (1.44 g/00)	5	44.7 #
	23	32.1 #
	79	23.3 #
	337	17.9 #
	8770	7.5 ^{‡‡}
	54661	4.3 ^{‡‡}
	398130	2.6 #
	849860	2.5 ^{‡‡}
9AX-GB1 (1.44 g/cc)	0	49.4
o, u (02 · (· g, co)	5	49.8 ^{‡‡}
	23	49.7 ^{‡‡}
	79	34.3 #
	337	27.7 #
	16215	14.7 #
	76485	11.6 #
	334290	9.1 ^{‡‡}
	849860	7.9 #
CuL-GB1 (1.45 g/cc)	0	47.0
	5	47.0
	14	44.9
	53	27.7
	205	21.1
	337	18.8
	17948	8.4
	174488	5.5
	408328	4.6
	849860	3.8


Summary of Moisture Characteristics of the Initial Drainage Curve (Continued)

^{‡‡} Volume adjustments are applicable at this matric potential (see data sheet for this sample).

	Pressure Head	Moisture Content
Sample Number	(-cm water)	(%, cm ³ /cm ³)
CuL-GB2 (1.45 g/cc)	0	46.5
	5	45.9
	14	44.1
	53	29.5
	205	22.1
	337	19.6
	8668	9.1
	51602	6.5
	387116	4.2
	849860	3.6
USNR-GB1 (1.45 g/cc)	0	46.5
(3)	5	46.4
	14	39.4
	53	22.9
	205	18.5
	337	16.9
	10198	8.3
	49154	6.2
	266780	4.1
	849860	3.3
USNR-GB3 (1.45 g/cc)	0	45.5
(3)	5	44.9
	14	38.1
	53	22.9
	205	17.8
	337	16.1
	8872	8.2
	100246	5.1
	483181	3.7
	849860	3.5

Summary of Moisture Characteristics of the Initial Drainage Curve (Continued)

^{‡‡} Volume adjustments are applicable at this matric potential (see data sheet for this sample).

Summary of Moisture Characteristics of the Initial Drainage Curve (Continued)

	Pressure Head	Moisture Content
Sample Number	(-cm water)	(%, cm ³ /cm ³)
WIP-GB1 (1.45 g/cc)	0	47.1
	5	47.0
	14	46.9
	53	25.0
	205	18.4
	337	17.0
	41404	8.3
	100144	6.2
	318280	5.6
	849860	4.8

^{‡‡} Volume adjustments are applicable at this matric potential (see data sheet for this sample).

Summary of Calculated Unsaturated Hydraulic Properties

					Oversize	Corrected
	α	Ν	θ_r	θ_{s}	θ_r	θ_{s}
Sample Number	(cm⁻¹)	(dimensionless)	(% vol)	(% vol)	(% vol)	(% vol)
9A-GB3 (1.45 g/cc)	0.0950	1.3458	3.31	45.90	NA	NA
9A-TP1 (1.45 g/cc)	0.0597	1.4171	4.53	47.56	NA	NA
9A-TP4 (1.45 g/cc)	0.0723	1.4054	4.64	48.77	NA	NA
9AX-TP2 (1.44 g/cc)	0.1275	1.2867	0.90	47.04	NA	NA
9AX-GB1 (1.44 g/cc)	0.0324	1.3240	7.48	50.85	NA	NA
CuL-GB1 (1.45 g/cc)	0.0591	1.3943	4.24	48.52	NA	NA
CuL-GB2 (1.45 g/cc)	0.0574	1.3451	3.17	47.61	NA	NA
USNR-GB1 (1.45 g/cc)	0.0955	1.3910	4.02	48.03	NA	NA
USNR-GB3 (1.45 g/cc)	0.0963	1.3878	3.76	46.79	NA	NA
WIP-GB1 (1.45 g/cc)	0.0482	1.5706	6.15	48.85	NA	NA

NA = Not applicable

Initial Properties

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Number: Sample Number:	WSP Golder DB23.1010.00 9A-GB3 (1.45 g/cc) 31406439 01.EXP <2mm	
	As Received	Remolded
Test Date:	NA	29-Aug-23

Field weight* of sample (g):	310.17
Tare weight, ring (g):	77.52
Tare weight, pan/plate (g):	0.00
Tare weight, other (g):	0.00
Dry weight of sample (g):	210.68
Sample volume (cm³):	145.48
Assumed particle density (g/cm³):	2.65

Gravimetric Moisture Content (% g/g):	10.4
Volumetric Moisture Content (% vol):	15.1
Dry bulk density (g/cm ³):	1.45
Wet bulk density (g/cm ³):	1.60
Calculated Porosity (% vol):	45.4
Percent Saturation:	33.3

Laboratory analysis by:D. O'DowdData entered by:D. O'DowdChecked by:J. Hines

Comments:

* Weight including tares

NA = Not applicable

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Name:	WSP Golder
Job Number:	DB23.1010.00
Sample Number:	9A-TP1 (1.45 g/cc)
Project:	31406439 01.EXP
Fraction Tested:	<2mm

	As Received	Remolded
Test Date:	NA	29-Aug-23
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g): Dry weight of sample (g): Sample volume (cm ³): Assumed particle density (g/cm ³):		311.90 77.00 0.00 0.00 212.93 146.95 2.65
Gravimetric Moisture Content (% g/g):		10.3
Volumetric Moisture Content (% vol):		15.0
Dry bulk density (g/cm ³):		1.45
Wet bulk density (g/cm ³):		1.60
Calculated Porosity (% vol):		45.3
Percent Saturation:		33.0
Laboratory analysis by: Data entered by: Checked by:		D. O'Dowd D. O'Dowd J. Hines

Comments:

* Weight including tares

NA = Not applicable

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Name:	WSP Golder
Job Number:	DB23.1010.00
Sample Number:	9A-TP4 (1.45 g/cc)
Project:	31406439 01.EXP
Fraction Tested:	<2mm

	As Received	Remolded
Test Date:	NA	29-Aug-23
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g): Dry weight of sample (g): Sample volume (cm ³): Assumed particle density (g/cm ³):		306.31 76.53 0.00 0.00 208.17 143.42 2.65
Gravimetric Moisture Content (% g/g):		10.4
Volumetric Moisture Content (% vol):		15.1
Dry bulk density (g/cm ³):		1.45
Wet bulk density (g/cm ³):		1.60
Calculated Porosity (% vol):		45.2
Percent Saturation:		33.3
Laboratory analysis by: Data entered by: Checked by:		D. O'Dowd D. O'Dowd J. Hines

Comments:

* Weight including tares

NA = Not applicable

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Number: Sample Number:	WSP Golder DB23.1010.00 9AX-TP2 (1.44 g/c 31406439 01.EXP <2mm	c)
	As Received	Remolded
Test Date:	NA	29-Aug-23
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g): Dry weight of sample (g): Sample volume (cm ³): Assumed particle density (g/cm ³):		316.00 83.28 0.00 0.00 210.34 145.65 2.65

10.6
15.4
1.44
1.60
45.5
33.8

Laboratory analysis by:D. O'DowdData entered by:D. O'DowdChecked by:J. Hines

Comments:

* Weight including tares

NA = Not applicable

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Number: Sample Number:	WSP Golder DB23.1010.00 9AX-GB1 (1.44 g/c 31406439 01.EXP <2mm	,
	As Received	Remolded
Test Date:	NA	29-Aug-23

i oot Bator	101 20 Aug 20	
Field weight* of sample (g):	321.08	
Tare weight, ring (g):	84.16	
Tare weight, pan/plate (g):	0.00	
Tare weight, other (g):	0.00	
Dry weight of sample (g):	211.40	
Sample volume (cm ³):	146.83	
Assumed particle density (g/cm ³):	2.85	

Gravimetric Moisture Content (% g/g):	12.1
Volumetric Moisture Content (% vol):	17.4
Dry bulk density (g/cm ³):	1.44
Wet bulk density (g/cm ³):	1.61
Calculated Porosity (% vol):	49.5
Percent Saturation:	35.1

Laboratory analysis by:D. O'DowdData entered by:D. O'DowdChecked by:J. Hines

Comments:

* Weight including tares

NA = Not applicable

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Number: Sample Number:	WSP Golder DB23.1010.00 CuL-GB1 (1.45 g/c 31406439 01.EXP <2mm	c)
	As Received	Remolded
Test Date:	NA	29-Aug-23
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g): Dry weight of sample (g): Sample volume (cm ³): Assumed particle density (g/cm ³):		323.08 89.72 0.00 0.00 212.01 146.06 2.65

Gravimetric Moisture Content (% g/g):	10.1
Volumetric Moisture Content (% vol):	14.6
Dry bulk density (g/cm ³):	1.45
Wet bulk density (g/cm ³):	1.60
Calculated Porosity (% vol):	45.2
Percent Saturation:	32.3
Laboratory analysis by:	D. O'Dowd

Laboratory analysis by:	D. O'Dowd
Data entered by:	D. O'Dowd
Checked by:	J. Hines

Comments:

* Weight including tares

NA = Not applicable

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Number: Sample Number:	WSP Golder DB23.1010.00 CuL-GB2 (1.45 g/cc) 31406439 01.EXP <2mm		
	As Received	Remolded	
Test Date:	NA	29-Aug-23	
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g): Dry weight of sample (g): Sample volume (cm ³): Assumed particle density (g/cm ³):		310.33 70.93 0.00 0.00 217.20 149.87 2.65	
Gravimetric Moisture Content (% g/g):		10.2	
Volumetric Moisture Content (% vol):		14.8	
Dry bulk density (g/cm ³):		1.45	
Wet bulk density (g/cm ³):		1.60	
Calculated Porosity (% vol):		45.3	

Laboratory analysis by:D. O'DowdData entered by:D. O'DowdChecked by:J. Hines

32.7

Comments:

* Weight including tares

Percent Saturation:

NA = Not applicable

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Number: Sample Number:	WSP Golder DB23.1010.00 USNR-GB1 (1.45 g 31406439 01.EXP <2mm	1.45 g/cc)		
	As Received	Remolded		
Test Date:	NA	29-Aug-23		
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g): Dry weight of sample (g): Sample volume (cm ³): Assumed particle density (g/cm ³):		313.37 73.99 0.00 0.00 217.25 149.82 2.65		
Gravimetric Moisture Content (% g/g):		10.2		
Volumetric Moisture Content (% vol):		14.8		
Dry bulk density (g/cm ³):		1.45		
Wet bulk density (g/cm ³):		1.60		

Calculated Porosity (% vol):45.3Percent Saturation:32.6Laboratory analysis by:D. O'DowdData entered by:D. O'DowdChecked by:J. Hines

Comments:

* Weight including tares

NA = Not applicable

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Number: Sample Number:	: WSP Golder : DB23.1010.00 : USNR-GB3 (1.45 g/cc) : 31406439 01.EXP : <2mm			
	As Received	Remolded		
Test Date:	NA	29-Aug-23		
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g): Dry weight of sample (g): Sample volume (cm ³): Assumed particle density (g/cm ³):		314.85 82.68 0.00 0.00 211.08 145.69 2.65		
Gravimetric Moisture Content (% g/g):		10.0		
Volumetric Moisture Content (% vol):		14.5		

Dry bulk density (g/cm³):1.45Wet bulk density (g/cm³):1.59Calculated Porosity (% vol):45.3Percent Saturation:31.9Laboratory analysis by:
Data entered by:
Checked by:D. O'Dowd
J. Hines

Comments:

* Weight including tares

NA = Not applicable

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Number: Sample Number:	WSP Golder DB23.1010.00 WIP-GB1 (1.45 g/c 31406439 01.EXP <2mm	c)
Test Date:	<u>As Received</u> NA	Remolded 29-Aug-23
ield weight* of sample (g):		310.79

Field weight* of sample (g):	310.79
Tare weight, ring (g):	81.48
Tare weight, pan/plate (g):	0.00
Tare weight, other (g):	0.00
Dry weight of sample (g):	207.80
Sample volume (cm ³):	143.59
Assumed particle density (g/cm ³):	2.65

Gravimetric Moisture Content (% g/g):	10.4
Volumetric Moisture Content (% vol):	15.0
Dry bulk density (g/cm ³):	1.45
Wet bulk density (g/cm ³):	1.60
Calculated Porosity (% vol):	45.4
Percent Saturation:	33.0

Laboratory analysis by:D. O'DowdData entered by:D. O'DowdChecked by:J. Hines

Comments:

* Weight including tares

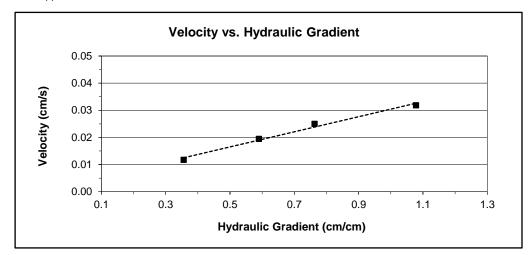
NA = Not applicable

Saturated Hydraulic Conductivity

Saturated Hydraulic Conductivity Constant Head Method

Job Name: WSP Golder Job Number: DB23.1010.00 Sample Number: 9A-GB3 (1.45 g/cc) Project: 31406439 01.EXP Fraction Tested: <2mm Type of water used: TAP Collection vessel tare (g): 29.37 Sample length (cm): 4.92 Sample diameter (cm): 6.14 Sample x-sectional area (cm²): 29.60

Date	Time	Temp (°C)	Head (cm)	Q + Tare (g)	Q (cm ³)	Elapsed time (sec)	Ksat (cm/sec)	Ksat @ 20°C (cm/sec)
Test # 1: 30-Aug-23 30-Aug-23	8:35:00 8:36:00	23.0	5.3	85.85	56.5	60	2.9E-02	2.7E-02
Test # 2: 30-Aug-23 30-Aug-23	9:11:00 9:12:00	23.0	3.75	73.77	44.4	60	3.3E-02	3.1E-02
Test # 3: 30-Aug-23 30-Aug-23	9:32:00 9:33:00	23.0	2.9	63.87	34.5	60	3.3E-02	3.1E-02
Test # 4: 30-Aug-23 30-Aug-23	9:52:00 9:53:00	23.0	1.75	50.16	20.8	60	3.3E-02	3.1E-02


Average Ksat (cm/sec): 3.0E-02

Oversize Corrected Ksat (cm/sec): NA

Comments:

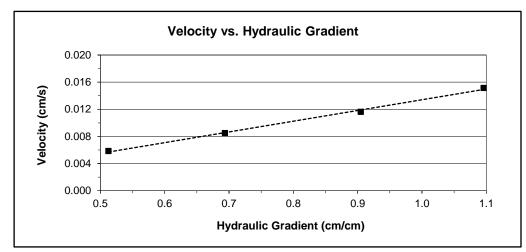
--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NA = Not applicable

Saturated Hydraulic Conductivity Constant Head Method

Job Name: WSP Golder Job Number: DB23.1010.00 Sample Number: 9A-TP1 (1.45 g/cc) Project: 31406439 01.EXP Fraction Tested: <2mm Type of water used: TAP Collection vessel tare (g): 29.46 Sample length (cm): 4.97 Sample diameter (cm): 6.14 Sample x-sectional area (cm²): 29.56

Date	Time	Temp (°C)	Head (cm)	Q + Tare (g)	Q (cm ³)	Elapsed time (sec)	Ksat (cm/sec)	Ksat @ 20°C (cm/sec)
Test # 1: 30-Aug-23 30-Aug-23	8:35:30 8:36:30	23.0	5.2	56.30	26.8	60	1.4E-02	1.3E-02
Test # 2: 30-Aug-23 30-Aug-23	9:11:30 9:12:30	23.0	4.25	50.08	20.6	60	1.4E-02	1.3E-02
Test # 3: 30-Aug-23 30-Aug-23	9:32:30 9:33:30	23.0	3.2	44.52	15.1	60	1.3E-02	1.2E-02
Test # 4: 30-Aug-23 30-Aug-23	9:52:30 9:53:30	23.0	2.3	39.82	10.4	60	1.3E-02	1.2E-02


Average Ksat (cm/sec): 1.3E-02

Oversize Corrected Ksat (cm/sec): NA

Comments:

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NA = Not applicable

Saturated Hydraulic Conductivity Constant Head Method

Job Name: WSP Golder Job Number: DB23.1010.00 Sample Number: 9A-TP4 (1.45 g/cc) Project: 31406439 01.EXP Fraction Tested: <2mm Type of water used: TAP Collection vessel tare (g): 29.37 Sample length (cm): 4.86 Sample diameter (cm): 6.13

Sample x-sectional area (cm²): 29.52

Date	Time	Temp (°C)	Head (cm)	Q + Tare (g)	Q (cm ³)	Elapsed time (sec)	Ksat (cm/sec)	Ksat @ 20°C (cm/sec)
Test # 1: 30-Aug-23 30-Aug-23	8:37:00 8:38:00	23.0	5.3	84.91	55.5	60	2.9E-02	2.7E-02
Test # 2: 30-Aug-23 30-Aug-23	9:13:00 9:14:00	23.0	3.85	64.42	35.1	60	2.5E-02	2.3E-02
Test # 3: 30-Aug-23 30-Aug-23	9:34:00 9:35:00	23.0	2.4	50.29	20.9	60	2.4E-02	2.2E-02
Test # 4: 30-Aug-23 30-Aug-23	9:54:00 9:55:00	23.0	1.5	40.58	11.2	60	2.0E-02	1.9E-02

Average Ksat (cm/sec): 2.3E-02

Oversize Corrected Ksat (cm/sec): NA

Comments:

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

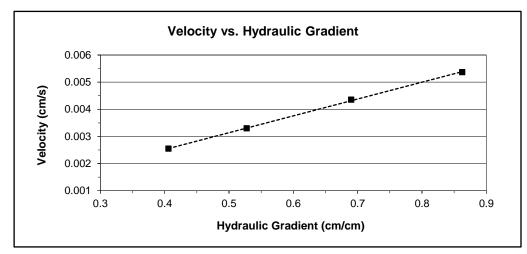
NA = Not applicable

Laboratory analysis by: D. O'Dowd Data entered by: D. O'Dowd Checked by: J. Hines

Saturated Hydraulic Conductivity Constant Head Method

Job Name: WSP Golder Job Number: DB23.1010.00 Sample Number: 9AX-TP2 (1.44 g/cc) Project: 31406439 01.EXP Fraction Tested: <2mm Type of water used: TAP Collection vessel tare (g): 29.26 Sample length (cm): 4.93 Sample diameter (cm): 6.14 Sample x-sectional area (cm²): 29.56

Date	Time	Temp (°C)	Head (cm)	Q + Tare (g)	Q (cm ³)	Elapsed time (sec)	Ksat (cm/sec)	Ksat @ 20°C (cm/sec)
Test # 1: 30-Aug-23 30-Aug-23	9:13:30 9:14:30	23.0	4.25	38.78	9.5	60	6.2E-03	5.8E-03
Test # 2: 30-Aug-23 30-Aug-23	9:34:30 9:35:30	23.0	3.4	36.98	7.7	60	6.3E-03	5.9E-03
Test # 3: 30-Aug-23 30-Aug-23	9:54:30 9:55:30	23.0	2.6	35.11	5.9	60	6.3E-03	5.8E-03
Test # 4: 30-Aug-23 30-Aug-23	10:10:00 10:11:00	23.0	2	33.78	4.5	60	6.3E-03	5.8E-03


Average Ksat (cm/sec): 5.8E-03

Oversize Corrected Ksat (cm/sec): NA

Comments:

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

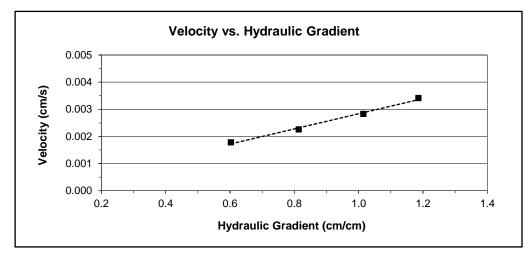
NA = Not applicable

Saturated Hydraulic Conductivity Constant Head Method

Job Name: WSP Golder Job Number: DB23.1010.00 Sample Number: 9AX-GB1 (1.44 g/cc) Project: 31406439 01.EXP Fraction Tested: <2mm Type of water used: TAP Collection vessel tare (g): 28.93 Sample length (cm): 4.98 Sample diameter (cm): 6.13

Sample x-sectional area (cm²): 29.51

Date	Time	Temp (°C)	Head (cm)	Q + Tare (g)	Q (cm ³)	Elapsed time (sec)	Ksat (cm/sec)	Ksat @ 20°C (cm/sec)
Test # 1: 30-Aug-23 30-Aug-23	8:39:00 8:40:00	23.0	5.9	34.97	6.0	60	2.9E-03	2.7E-03
Test # 2: 30-Aug-23 30-Aug-23	9:15:00 9:16:00	23.0	5.05	33.94	5.0	60	2.8E-03	2.6E-03
Test # 3: 30-Aug-23 30-Aug-23	9:36:00 9:37:00	23.0	4.05	32.92	4.0	60	2.8E-03	2.6E-03
Test # 4: 30-Aug-23 30-Aug-23	9:56:00 9:57:00	23.0	3	32.08	3.2	60	2.9E-03	2.7E-03


Average Ksat (cm/sec): 2.7E-03

Oversize Corrected Ksat (cm/sec): NA

Comments:

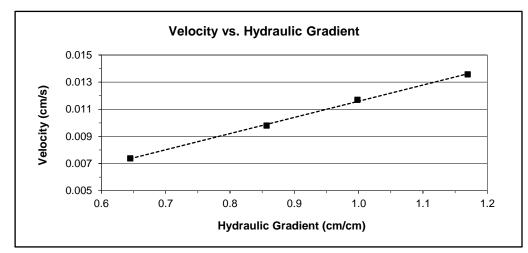
--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NA = Not applicable

Saturated Hydraulic Conductivity Constant Head Method

Job Name: WSP Golder Job Number: DB23.1010.00 Sample Number: CuL-GB1 (1.45 g/cc) Project: 31406439 01.EXP Fraction Tested: <2mm Type of water used: TAP Collection vessel tare (g): 29.95 Sample length (cm): 4.96 Sample diameter (cm): 6.13 Sample x-sectional area (cm²): 29.46

Date	Time	Temp (°C)	Head (cm)	Q + Tare (g)	Q (cm ³)	Elapsed time (sec)	Ksat (cm/sec)	Ksat @ 20°C (cm/sec)
Test # 1: 30-Aug-23 30-Aug-23	8:39:30 8:40:30	23.0	5.55	53.94	24.0	60	1.2E-02	1.1E-02
Test # 2: 30-Aug-23 30-Aug-23	9:15:30 9:16:30	23.0	4.7	50.63	20.7	60	1.2E-02	1.1E-02
Test # 3: 30-Aug-23 30-Aug-23	9:36:30 9:37:30	23.0	4	47.27	17.3	60	1.2E-02	1.1E-02
Test # 4: 30-Aug-23 30-Aug-23	9:56:30 9:57:30	23.0	2.95	42.99	13.0	60	1.2E-02	1.2E-02


Average Ksat (cm/sec): 1.1E-02

Oversize Corrected Ksat (cm/sec): NA

Comments:

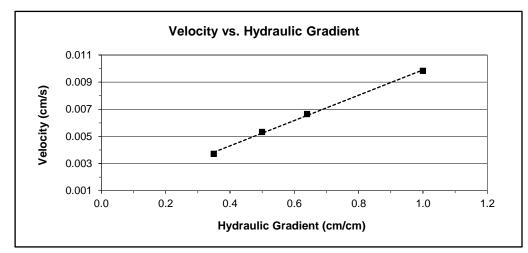
--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NA = Not applicable

Saturated Hydraulic Conductivity Constant Head Method

Job Name: WSP Golder Job Number: DB23.1010.00 Sample Number: CuL-GB2 (1.45 g/cc) Project: 31406439 01.EXP Fraction Tested: <2mm Type of water used: TAP Collection vessel tare (g): 29.48 Sample length (cm): 5.00 Sample diameter (cm): 6.18 Sample x-sectional area (cm²): 29.97

Date	Time	Temp (°C)	Head (cm)	Q + Tare (g)	Q (cm ³)	Elapsed time (sec)	Ksat (cm/sec)	Ksat @ 20°C (cm/sec)
Test # 1: 30-Aug-23 30-Aug-23	8:41:00 8:42:00	23.0	5	47.16	17.7	60	9.8E-03	9.2E-03
Test # 2: 30-Aug-23 30-Aug-23	9:38:00 9:39:00	23.0	3.2	41.43	12.0	60	1.0E-02	9.7E-03
Test # 3: 30-Aug-23 30-Aug-23	9:58:00 9:59:00	23.0	2.5	39.06	9.6	60	1.1E-02	9.9E-03
Test # 4: 30-Aug-23 30-Aug-23	10:10:30 10:11:30	23.0	1.75	36.15	6.7	60	1.1E-02	9.9E-03


Average Ksat (cm/sec): 9.7E-03

Oversize Corrected Ksat (cm/sec): NA

Comments:

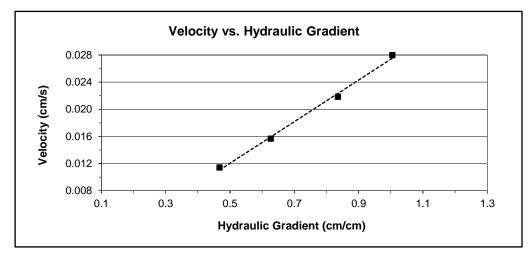
--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NA = Not applicable

Saturated Hydraulic Conductivity Constant Head Method

Job Name: WSP Golder Job Number: DB23.1010.00 Sample Number: USNR-GB1 (1.45 g/cc) Project: 31406439 01.EXP Fraction Tested: <2mm Type of water used: TAP Collection vessel tare (g): 29.06 Sample length (cm): 5.02 Sample diameter (cm): 6.16 Sample x-sectional area (cm²): 29.82

Date	Time	Temp (°C)	Head (cm)	Q + Tare (g)	Q (cm ³)	Elapsed time (sec)	Ksat (cm/sec)	Ksat @ 20°C (cm/sec)
Test # 1: 30-Aug-23 30-Aug-23	8:41:30 8:42:30	23.0	5.05	79.11	50.1	60	2.8E-02	2.6E-02
Test # 2: 30-Aug-23 30-Aug-23	9:17:30 9:18:30	23.0	4.2	68.13	39.1	60	2.6E-02	2.4E-02
Test # 3: 30-Aug-23 30-Aug-23	9:38:30 9:39:30	23.0	3.15	57.07	28.0	60	2.5E-02	2.3E-02
Test # 4: 30-Aug-23 30-Aug-23	9:58:30 9:59:30	23.0	2.35	49.48	20.4	60	2.4E-02	2.3E-02


Average Ksat (cm/sec): 2.4E-02

Oversize Corrected Ksat (cm/sec): NA

Comments:

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NA = Not applicable

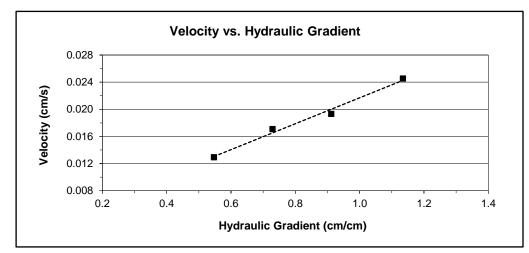
Saturated Hydraulic Conductivity **Constant Head Method**

Job Name: WSP Golder Job Number: DB23.1010.00 Sample Number: USNR-GB3 (1.45 g/cc) Project: 31406439 01.EXP Fraction Tested: <2mm

Type of water used: TAP Collection vessel tare (g): 51.04 Sample length (cm): 4.94 Sample diameter (cm): 6.13

Sample x-sectional area (cm²): 29.52

Date	Time	Temp (°C)	Head (cm)	Q + Tare (g)	Q (cm ³)	Elapsed time (sec)	Ksat (cm/sec)	Ksat @ 20°C (cm/sec)
Test # 1: 30-Aug-23 30-Aug-23	8:43:00 8:44:00	23.0	5.6	94.48	43.4	60	2.2E-02	2.0E-02
Test # 2: 30-Aug-23 30-Aug-23	9:19:00 9:20:00	23.0	4.5	85.25	34.2	60	2.1E-02	2.0E-02
Test # 3: 30-Aug-23 30-Aug-23	9:40:00 9:41:00	23.0	3.6	81.29	30.3	60	2.3E-02	2.2E-02
Test # 4: 30-Aug-23 30-Aug-23	10:00:00 10:01:00	23.0	2.7	73.93	22.9	60	2.4E-02	2.2E-02


Average Ksat (cm/sec): 2.1E-02

Oversize Corrected Ksat (cm/sec): NA

Comments:

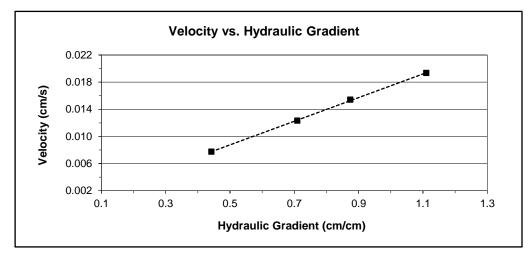
--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NA = Not applicable

Saturated Hydraulic Conductivity Constant Head Method

Job Name: WSP Golder Job Number: DB23.1010.00 Sample Number: WIP-GB1 (1.45 g/cc) Project: 31406439 01.EXP Fraction Tested: <2mm Type of water used: TAP Collection vessel tare (g): 67.91 Sample length (cm): 4.86 Sample diameter (cm): 6.13 Sample x-sectional area (cm²): 29.53

Date	Time	Temp (°C)	Head (cm)	Q + Tare (g)	Q (cm ³)	Elapsed time (sec)	Ksat (cm/sec)	Ksat @ 20°C (cm/sec)
Test # 1: 30-Aug-23 30-Aug-23	8:43:30 8:44:30	23.0	5.4	102.18	34.3	60	1.7E-02	1.6E-02
Test # 2: 30-Aug-23 30-Aug-23	9:19:30 9:20:30	23.0	4.25	95.21	27.3	60	1.8E-02	1.6E-02
Test # 3: 30-Aug-23 30-Aug-23	9:40:30 9:41:30	23.0	3.45	89.74	21.8	60	1.7E-02	1.6E-02
Test # 4: 30-Aug-23 30-Aug-23	10:00:30 10:01:30	23.0	2.15	81.64	13.7	60	1.8E-02	1.6E-02


Average Ksat (cm/sec): 1.6E-02

Oversize Corrected Ksat (cm/sec): NA

Comments:

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NA = Not applicable

Moisture Retention Characteristics

Moisture Retention Data Hanging Column / Pressure Plate (Soil-Water Characteristic Curve)

Job Name: WSP Golder Job Number: DB23.1010.00 Sample Number: 9A-GB3 (1.45 g/cc) Project: 31406439 01.EXP Fraction Tested: <2mm

Dry wt. of sample (g): 210.68 Tare wt., ring (g): 77.52 Tare wt., screen & clamp (g): 27.58 Initial sample volume (cm³): 145.48 Initial dry bulk density (g/cm³): 1.45

Assumed particle density (g/cm³): 2.65 Initial calculated total porosity (%): 45.35

	Date	Time	Weight* (g)	Matric Potential (-cm water)	Moisture Content [†] (% vol)
Hanging column:	30-Aug-23	13:20	380.59	0	44.55
	6-Sep-23	8:00	380.23	5.0	44.30
	13-Sep-23	10:30	371.43	14.0	38.25
	20-Sep-23	10:15	350.57	53.0	23.91
	27-Sep-23	9:00	343.23	205.0	18.87
Pressure plate:	7-Oct-23	12:45	340.89	337	17.26

	Volume Adjusted Data ¹						
					Adjusted		
	Matric	Adjusted	% Volume	Adjusted	Calculated		
	Potential	Volume	Change ²	Density	Porosity		
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)		
Hanging column:	0.0						
	5.0						
	14.0						
	53.0						
	205.0						
Pressure plate:	337						

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

- ⁺ Assumed density of water is 1.0 g/cm³
- ⁺⁺ Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: 9A-GB3 (1.45 g/cc)

Initial sample bulk density (g/cm³): 1.45

Fraction of bulk sample used (<2.00mm fraction) (%): 100.00

Dry weight* of dew point potentiometer sample (g): 189.90

Tare weight, jar (g): 115.29

			Weight*	Water Potential	Moisture Content [†]
	Date	Time	(g)	(-cm water)	(% vol)
Dew point potentiometer:	13-Sep-23	14:43	194.50	6833	8.93
	8-Sep-23	15:18	192.87	60576	5.76
	6-Sep-23	13:17	191.96	284218	4.00
-					

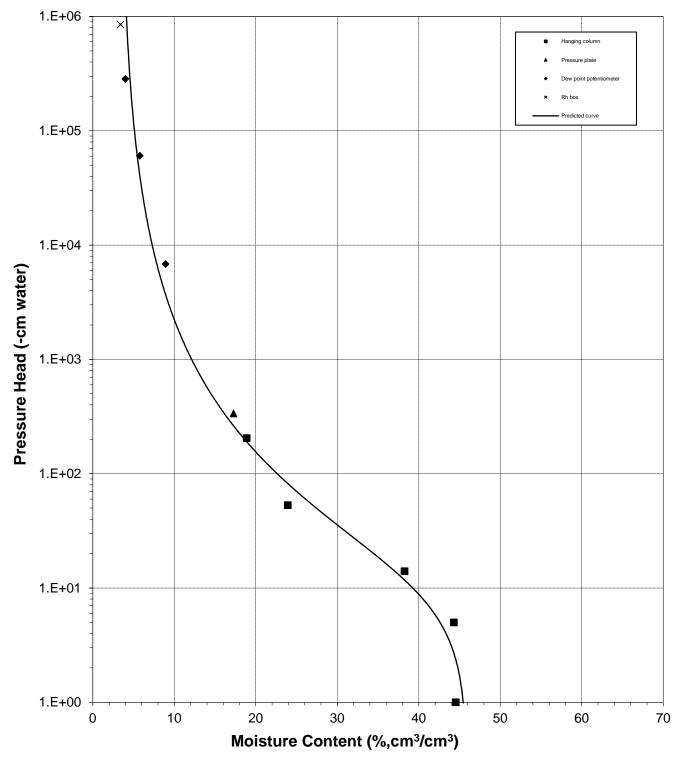
	Volume Adjusted Data ¹						
	Water	Adjusted	% Volume	Adjusted	Adjusted		
	Potential	Volume	Change ²	Density	Calc. Porosity		
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)		
Dew point potentiometer:	6833						
	60576						
	284218						

Dry weight* of relative humidity box sample (g): 74.74 Tare weight (g): 37.57

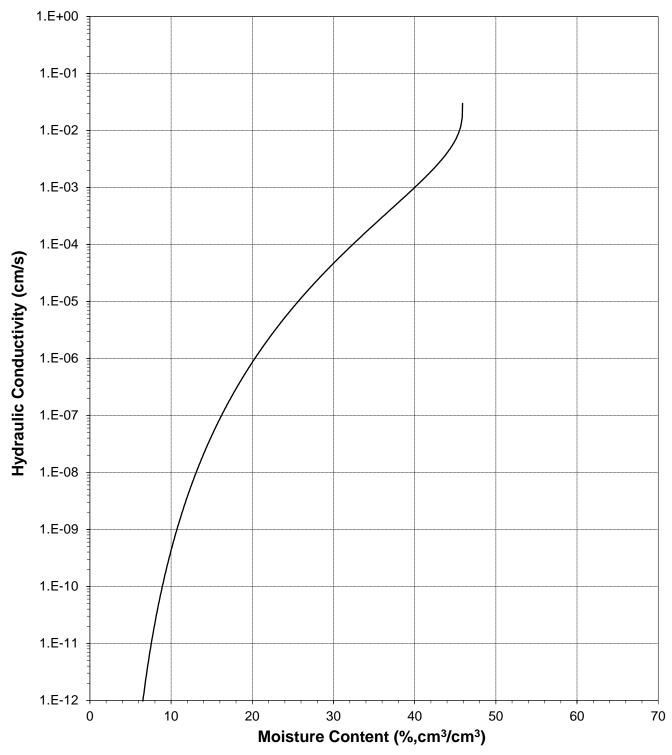
	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)			
Relative humidity box:	29-Aug-23	12:00	75.62	849860	3.40			
			Volume Adjusted Data ¹					
	Water	Adjusted	% Volume	Adjusted	Adjusted			
	Potential	Volume	Change ²	Density	Calc. Porosity			
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)			
Relative humidity box:	849860							

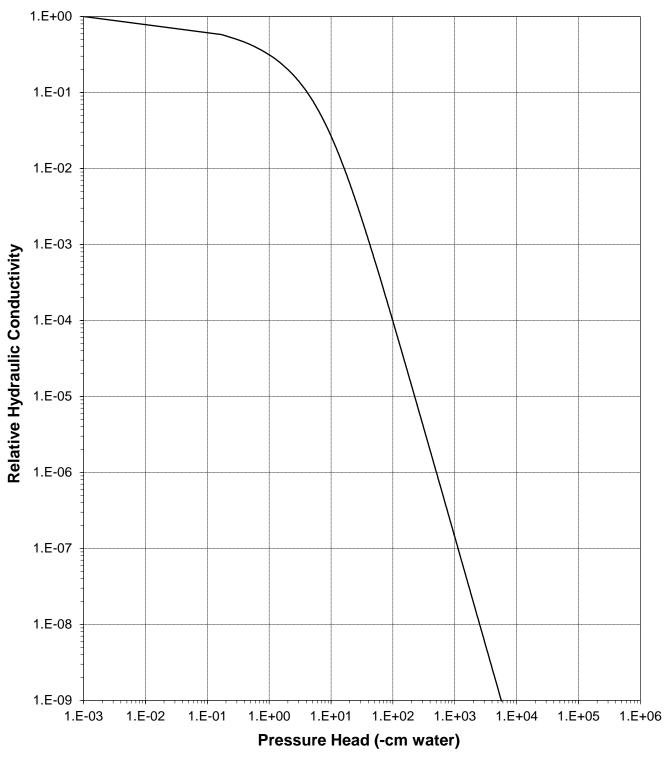
Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

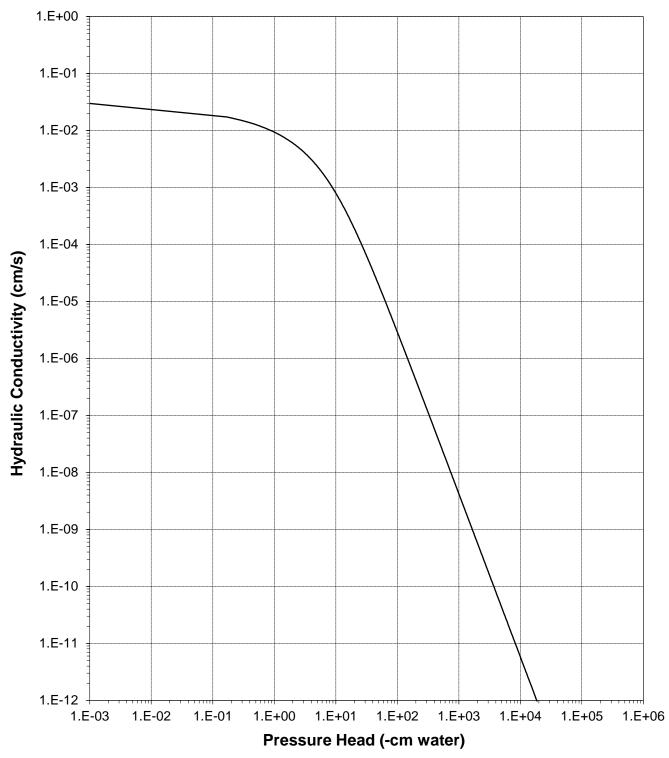

* Weight including tares

- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ⁺⁺ Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.


Water Retention Data Points


Predicted Water Retention Curve and Data Points

1.E+00 1.E-01 1.E-02 1.E-03 **Relative Hydraulic Conductivity** 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 20 60 0 10 30 50 40 70 Moisture Content (%,cm³/cm³)


Plot of Relative Hydraulic Conductivity vs Moisture Content

Plot of Hydraulic Conductivity vs Moisture Content

Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Moisture Retention Data Hanging Column / Pressure Plate (Soil-Water Characteristic Curve)

Job Name: WSP Golder Job Number: DB23.1010.00 Sample Number: 9A-TP1 (1.45 g/cc) Project: 31406439 01.EXP Fraction Tested: <2mm

Dry wt. of sample (g):	212.93
Tare wt., ring (g):	77.00
Tare wt., screen & clamp (g):	26.52
<i>Initial sample volume</i> (cm ³):	146.95
Initial dry bulk density (g/cm ³):	1.45
Assumed particle density (g/cm ³):	2.65

Initial calculated total porosity (%): 45.32

	Date	Time	Weight* (g)	Matric Potential (-cm water)	Moisture Content [†] (% vol)
Hanging column:	30-Aug-23	13:20	384.16	0	46.08
	6-Sep-23	8:00	383.74	5.0	45.79
	13-Sep-23	10:30	381.40	14.0	44.20
	20-Sep-23	10:15	355.09	53.0	26.30
	27-Sep-23	9:00	345.37	205.0	19.68
Pressure plate:	7-Oct-23	12:45	342.43	337	17.68

	Volume Adjusted Data ¹						
					Adjusted		
	Matric	Adjusted	% Volume	Adjusted	Calculated		
	Potential	Volume	Change ²	Density	Porosity		
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)		
Hanging column:	0.0						
	5.0						
	14.0						
	53.0						
	205.0						
Pressure plate:	337						

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

- ⁺ Assumed density of water is 1.0 g/cm³
- ⁺⁺ Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: 9A-TP1 (1.45 g/cc)

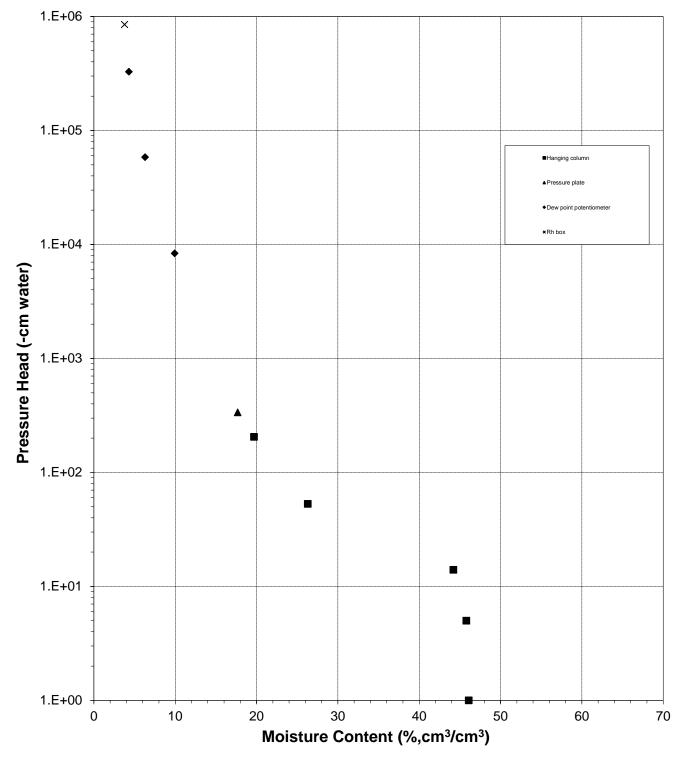
Initial sample bulk density (g/cm³): 1.45 Fraction of bulk sample used (<2.00mm fraction) (%): 100.00

Dry weight* of dew point potentiometer sample (g): 183.38

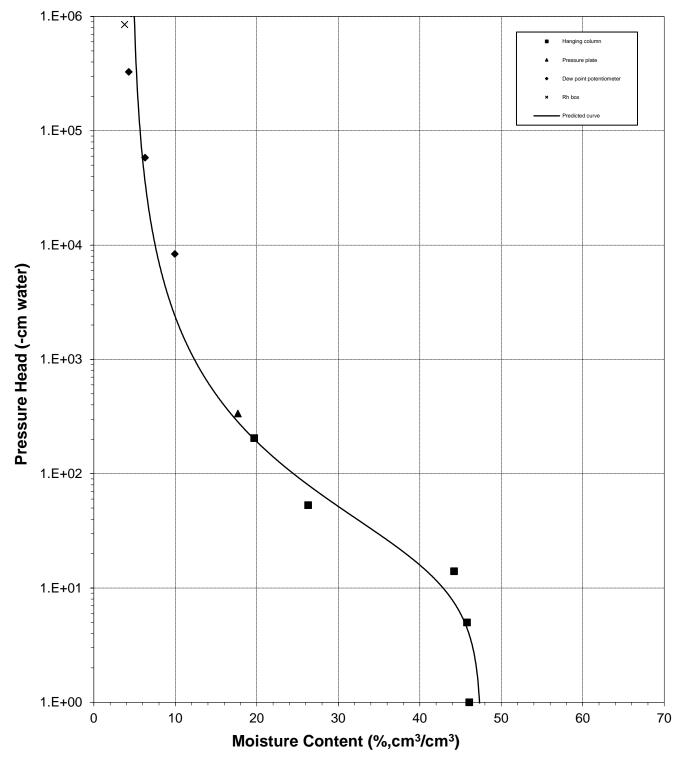
Tare weight, jar (g): 117.59

			Weight*	Water Potential	Moisture Content [†]
	Date	Time	(g)	(-cm water)	(% vol)
Dew point potentiometer:	14-Sep-23	10:35	187.89	8362	9.93
	8-Sep-23	15:36	186.24	58333	6.29
_	6-Sep-23	14:41	185.33	327764	4.29

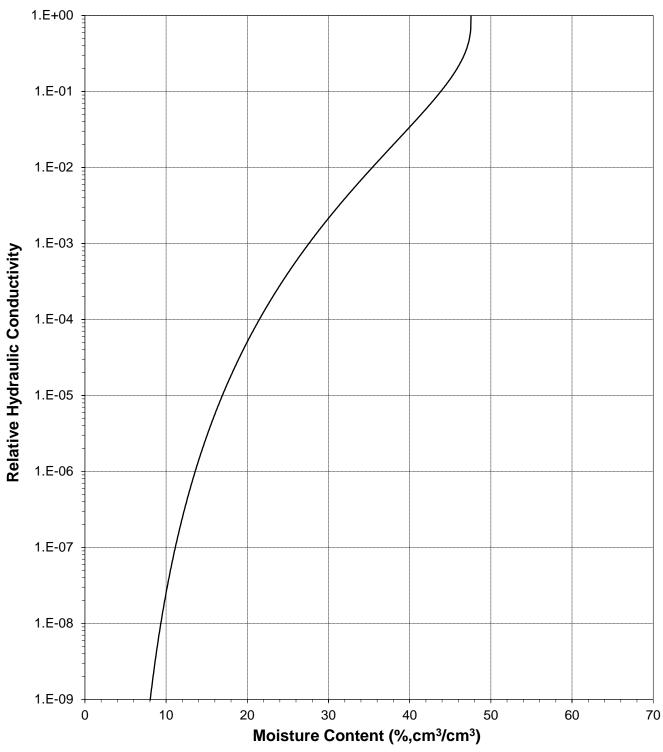
	Volume Adjusted Data ¹						
	Water	Adjusted	% Volume	Adjusted	Adjusted		
	Potential	Volume	Change ²	Density	Calc. Porosity		
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)		
Dew point potentiometer:	8362						
	58333						
	327764						

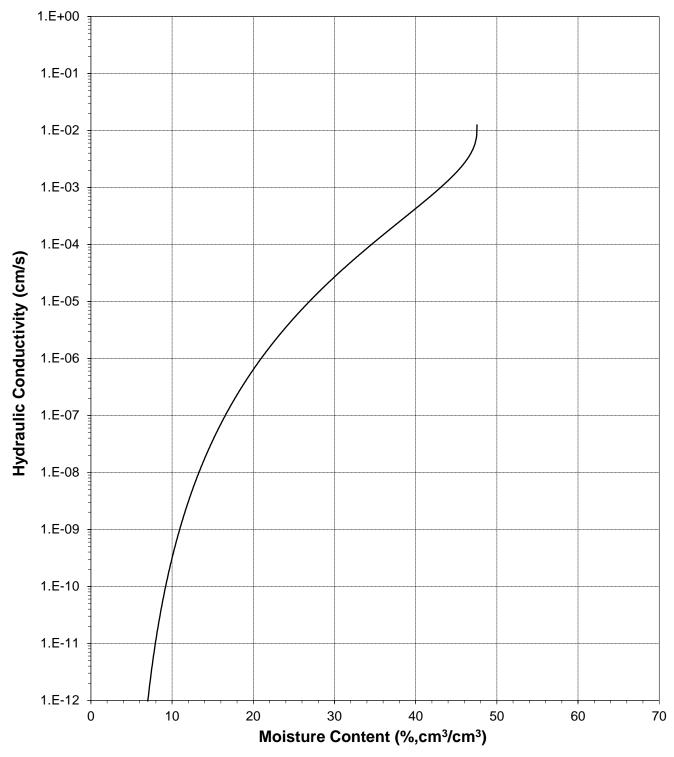

Dry weight* of relative humidity box sample (g): 92.56 Tare weight (g): 41.59

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)			
Relative humidity box:	29-Aug-23	12:00	93.89	849860	3.77			
			Volume Adjusted Data ¹					
	Water	Adjusted	% Volume	Adjusted	Adjusted			
	Potential	Volume	Change ²	Density	Calc. Porosity			
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)			
Relative humidity box:	849860							

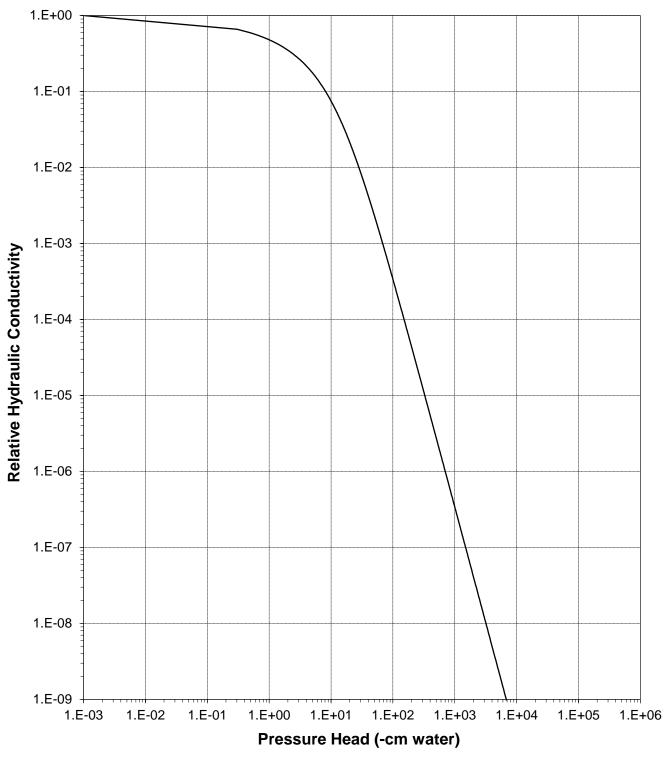

Comments:

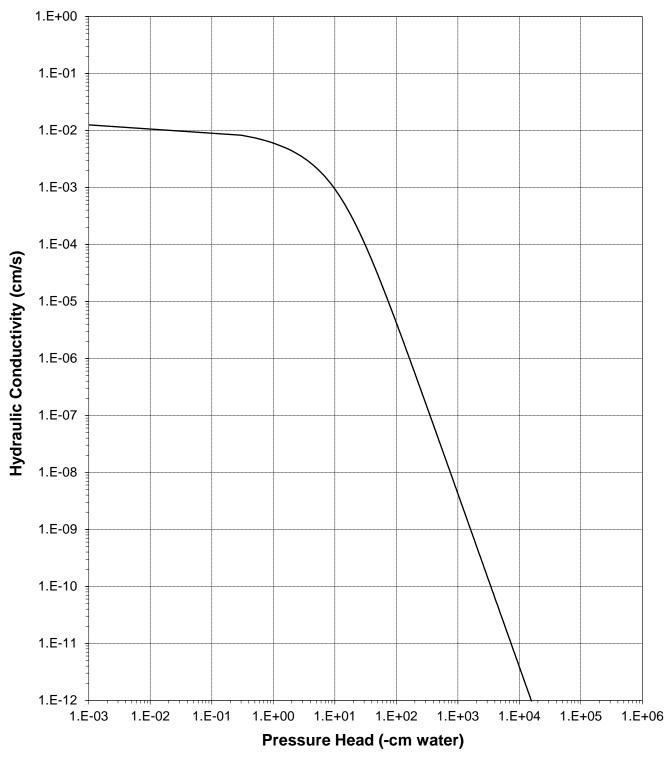
- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares
- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ⁺⁺ Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.


Water Retention Data Points


Predicted Water Retention Curve and Data Points

CEEPER COLORING


Daniel B. Stephens & Associates, Inc.


Plot of Relative Hydraulic Conductivity vs Moisture Content

Plot of Hydraulic Conductivity vs Moisture Content

Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Moisture Retention Data Hanging Column / Pressure Plate (Soil-Water Characteristic Curve)

Job Name: WSP Golder Job Number: DB23.1010.00 Sample Number: 9A-TP4 (1.45 g/cc) Project: 31406439 01.EXP Fraction Tested: <2mm

Dry wt. of sample (g):	208.17
Tare wt., ring (g):	76.53
Tare wt., screen & clamp (g):	27.36
Initial sample volume (cm ³):	143.42
Initial dry bulk density (g/cm ³):	1.45

Assumed particle density (g/cm³): 2.65 Initial calculated total porosity (%): 45.23

	Date	Time	Weight* (g)	Matric Potential (-cm water)	Moisture Content [†] (% vol)
Hanging column:	30-Aug-23	13:25	379.92	0	47.32
	6-Sep-23	8:00	379.61	5.0	47.10
	13-Sep-23	10:30	373.80	14.0	43.05
	20-Sep-23	10:15	348.68	53.0	25.53
	27-Sep-23	9:00	340.70	205.0	19.97
Pressure plate:	7-Oct-23	12:45	337.88	337	18.00

	Volume Adjusted Data ¹				
					Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Hanging column:	0.0				
	5.0				
	14.0				
	53.0				
	205.0				
Pressure plate:	337				

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

- ⁺ Assumed density of water is 1.0 g/cm³
- ⁺⁺ Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: 9A-TP4 (1.45 g/cc)

Initial sample bulk density (g/cm³): 1.45 Fraction of bulk sample used (<2.00mm fraction) (%): 100.00

Dry weight* of dew point potentiometer sample (g): 173.88

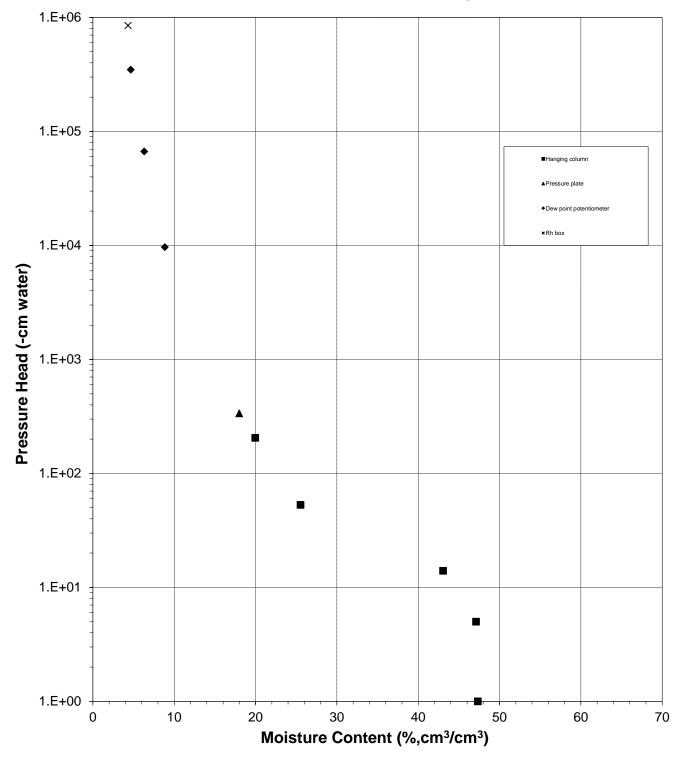
Tare weight, jar (g): 113.32

			Weight*	Water Potential	Moisture Content [†]
	Date	Time	(g)	(-cm water)	(% vol)
Dew point potentiometer:	14-Sep-23	10:55	177.57	9688	8.84
	11-Sep-23	15:10	176.51	66899	6.30
	7-Sep-23	12:35	175.83	348160	4.67
-					

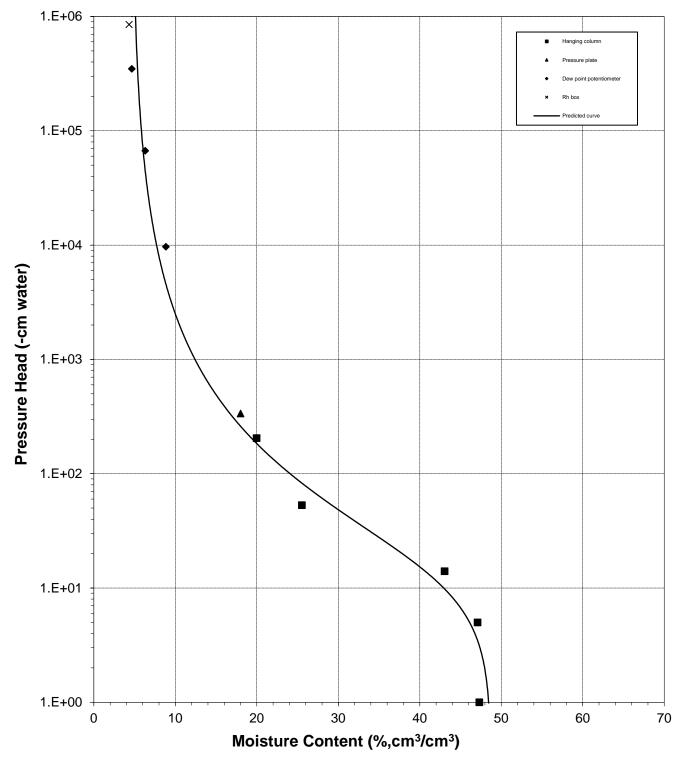
	Volume Adjusted Data ¹				
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Dew point potentiometer:	9688				
	66899				
	348160				

Dry weight* of relative humidity box sample (g): 81.34 Tare weight (g): 39.40

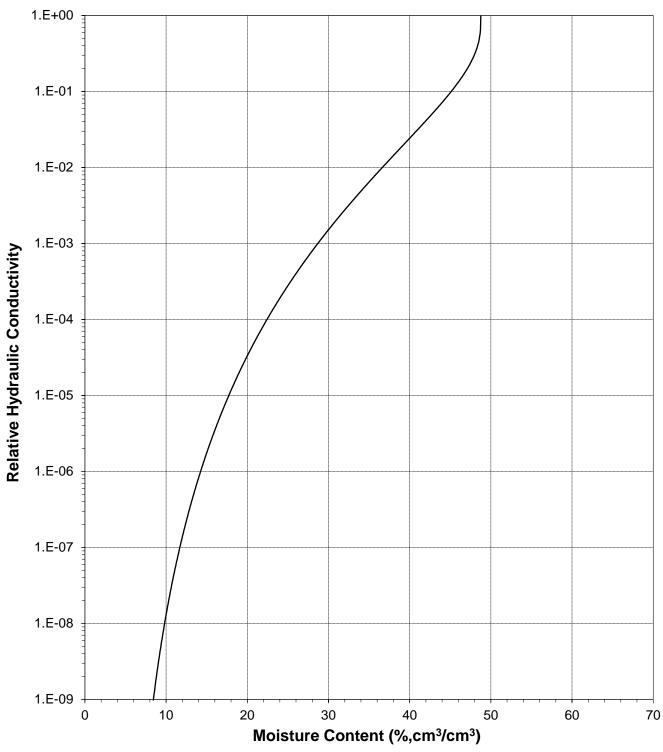
	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)		
Relative humidity box:	29-Aug-23	12:00	82.59	849860	4.32		
			Volume Adjusted Data ¹				
	Water	Adjusted	% Volume	Adjusted	Adjusted		
	Potential	Volume	Change ²	Density	Calc. Porosity		
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)		
Relative humidity box:	849860						

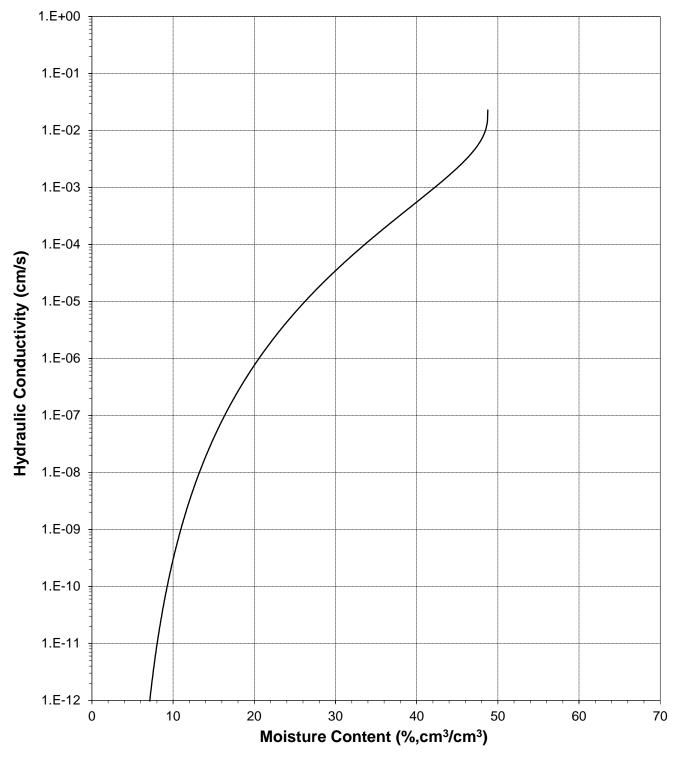

Comments:

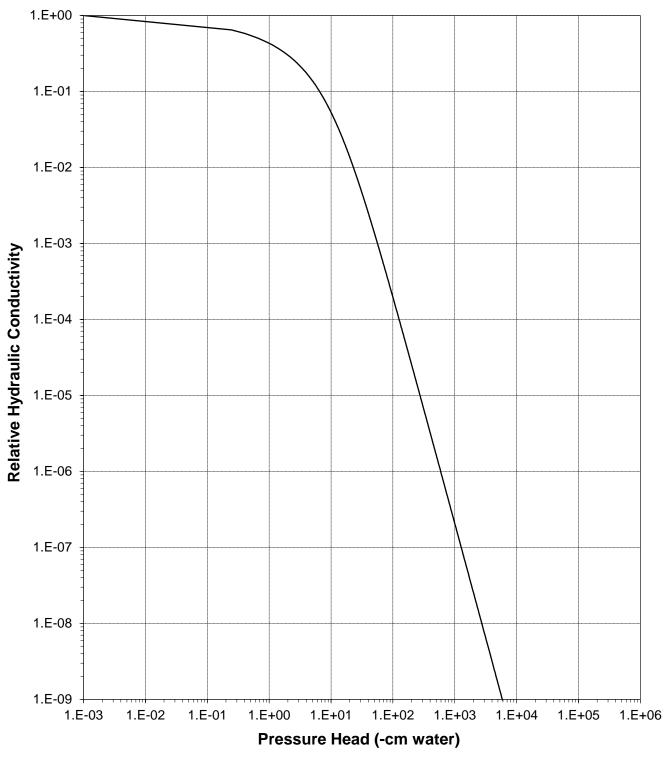
- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

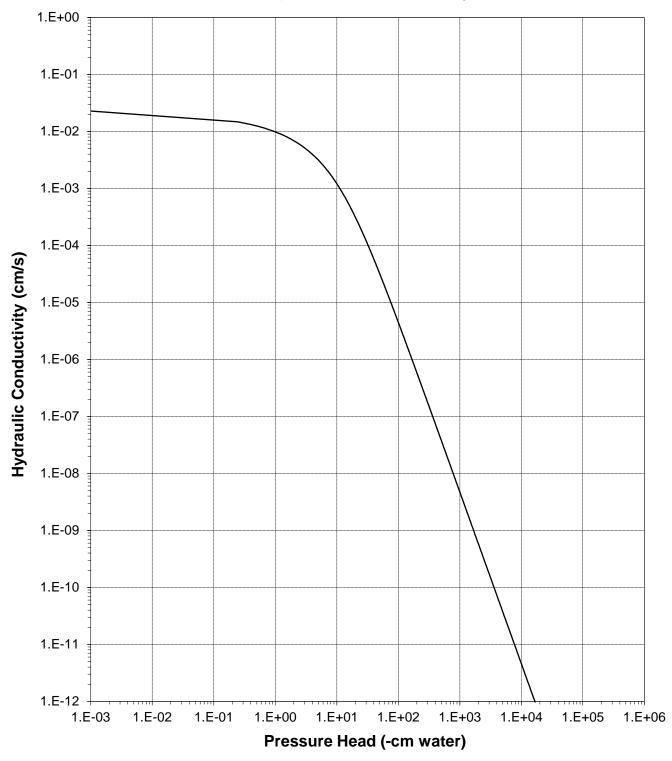

* Weight including tares

- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ⁺⁺ Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.




Water Retention Data Points


Predicted Water Retention Curve and Data Points


Plot of Relative Hydraulic Conductivity vs Moisture Content

Plot of Hydraulic Conductivity vs Moisture Content

Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Moisture Retention Data Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name: WSP Golder Job Number: DB23.1010.00 Sample Number: 9AX-TP2 (1.44 g/cc) Project: 31406439 01.EXP Fraction Tested: <2mm Dry wt. of sample (g): 210.34 Tare wt., ring (g): 83.28 Tare wt., screen & clamp (g): 27.90 Initial sample volume (cm³): 145.65 Initial dry bulk density (g/cm³): 1.44 Assumed particle density (g/cm³): 2.65

Initial calculated total porosity (%): 45.50

	Date	Time	Weight* (g)	Matric Potential (-cm water)	Moisture Content [†] (% vol)	
Hanging column:	30-Aug-23	13:35	388.57	0	46.04	_
	6-Sep-23	8:15	382.56	5.0	44.71	‡ ‡
	13-Sep-23	10:30	364.48	23.0	32.11	‡ ‡
	20-Sep-23	10:30	352.70	79.0	23.30	‡ ‡
Pressure plate:	2-Oct-23	6:30	345.50	337	17.92	

Volume Adjusted Data¹

	Matria			A diverse d	Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Hanging column:	0.0				
	5.0	136.51	-6.27%	1.54	41.86
	23.0	133.79	-8.14%	1.57	40.67
	79.0	133.79	-8.14%	1.57	40.67
Pressure plate:	337	133.79	-8.14%	1.57	40.67

Comments:

¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.

² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Assumed density of water is 1.0 g/cm³

⁺⁺ Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: 9AX-TP2 (1.44 g/cc)

Initial sample bulk density (g/cm³): 1.44

Fraction of bulk sample used (<2.00mm fraction) (%): 100.00

Dry weight* of dew point potentiometer sample (g): 189.62

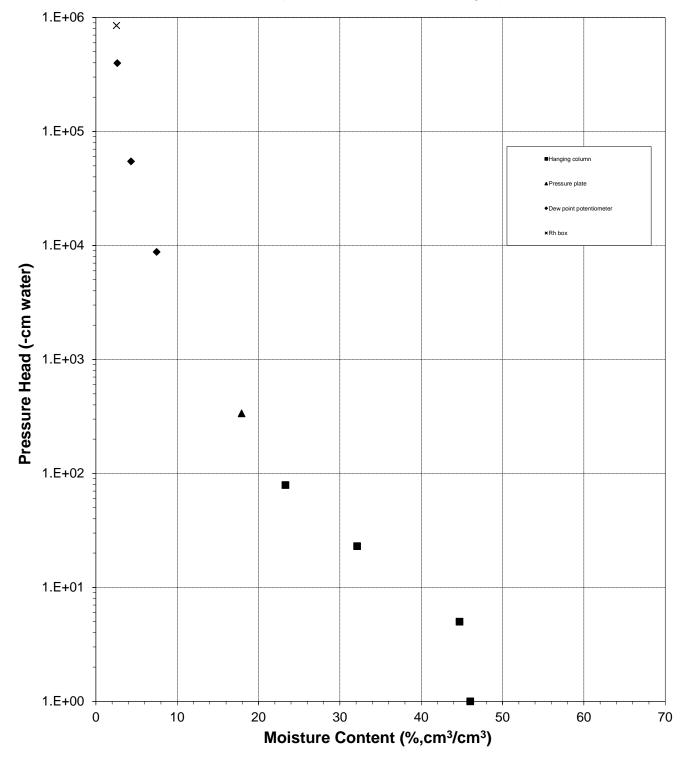
Tare weight, jar (g): 116.62

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)	
Dew point potentiometer:	18-Sep-23	13:02	193.09	8770	7.47	‡ ‡
	13-Sep-23	15:08	191.62	54661	4.32	‡ ‡
-	7-Sep-23	15:05	190.84	398130	2.64	

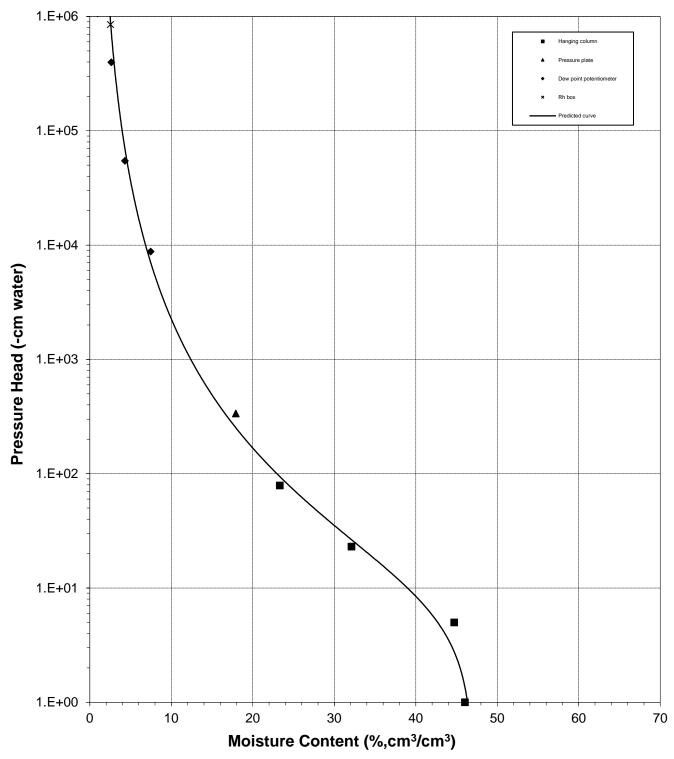
	Volume Adjusted Data ¹				
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Dew point potentiometer:	8770	133.79	-8.14%	1.57	40.67
	54661	133.79	-8.14%	1.57	40.67
	398130	133.79	-8.14%	1.57	40.67

Dry weight* of relative humidity box sample (g): 76.92 Tare weight (g): 37.28

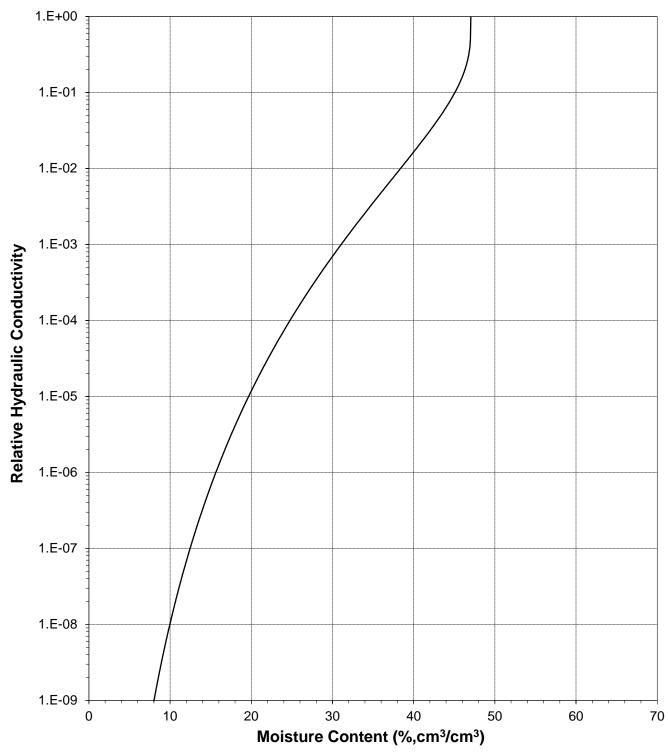
	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)	
Relative humidity box:	29-Aug-23	12:00	77.56	849860	2.53	‡‡
	Volume Adjusted Data ¹					
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	_
Relative humidity box:	849860	133.79	-8.14%	1.57	40.67	_

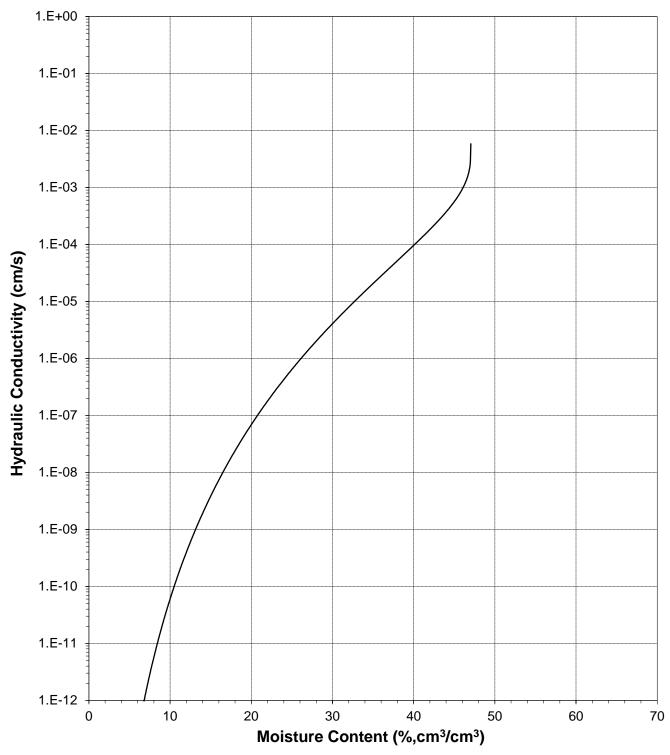

Comments:

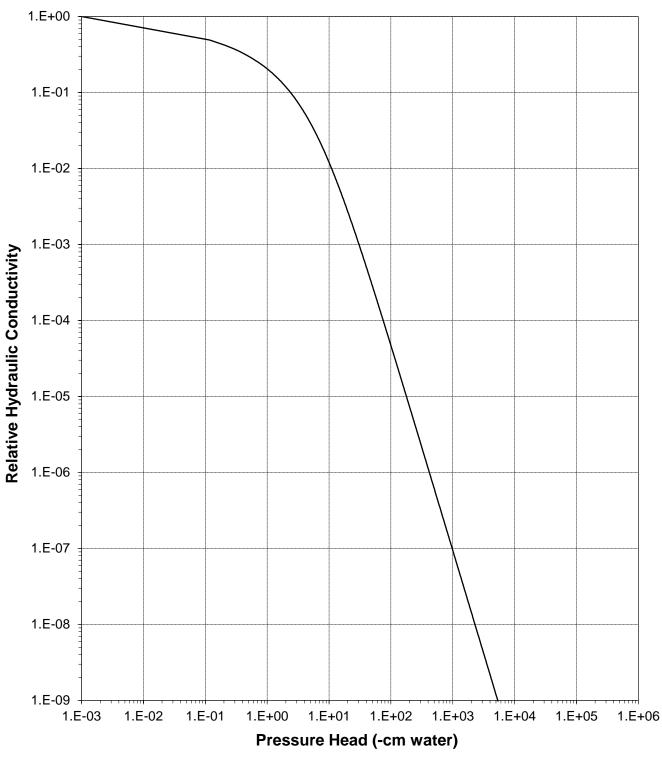
- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

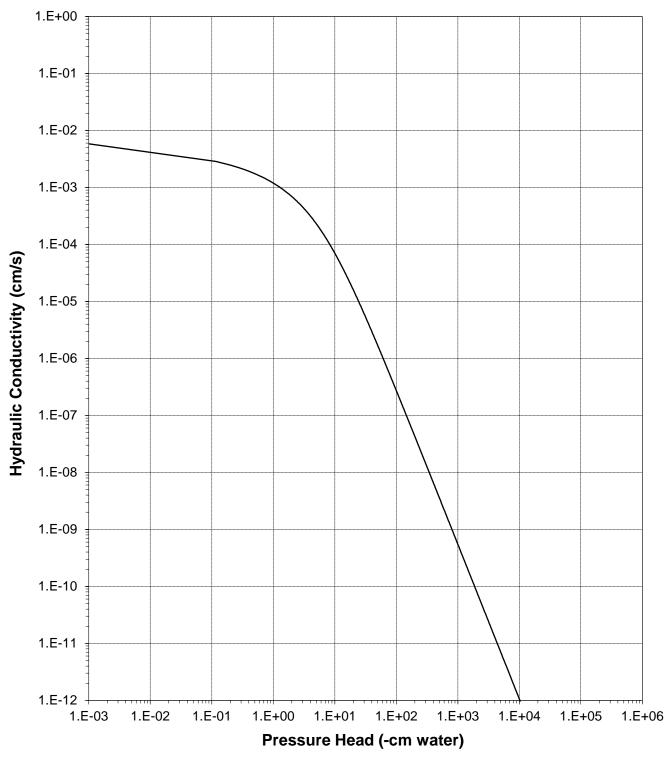

* Weight including tares

- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ⁺⁺ Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.




Water Retention Data Points


Predicted Water Retention Curve and Data Points


Plot of Relative Hydraulic Conductivity vs Moisture Content

Plot of Hydraulic Conductivity vs Moisture Content

Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Moisture Retention Data Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name: WSP Golder Job Number: DB23.1010.00 Sample Number: 9AX-GB1 (1.44 g/cc) Project: 31406439 01.EXP Fraction Tested: <2mm

Dry wt. of sample (g):	
Tare wt., ring (g):	84.16
Tare wt., screen & clamp (g):	24.29
<i>Initial sample volume</i> (cm ³):	
Initial dry bulk density (g/cm ³):	
Assumed particle density (g/cm ³):	2.85

Initial calculated total porosity (%): 49.48

	Date	Time	Weight* (g)	Matric Potential (-cm water)	Moisture Content [†] (% vol)	
Hanging column:	30-Aug-23	13:35	392.35	0	49.38	
	6-Sep-23	8:15	394.62	5.0	49.82	‡ ‡
	13-Sep-23	10:30	394.00	23.0	49.67	‡ ‡
	20-Sep-23	10:30	370.95	79.0	34.26	‡ ‡
Pressure plate:	2-Oct-23	6:30	361.16	337	27.70	‡‡

Volume Adjusted Data¹

	Matric Potential	Adjusted Volume	% Volume Change ²	Adjusted Density	Adjusted Calculated Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Hanging column:	0.0				
	5.0	150.07	+2.21%	1.41	50.57
	23.0	149.28	+1.67%	1.42	50.31
	79.0	149.16	+1.59%	1.42	50.27
Pressure plate:	337	149.16	+1.59%	1.42	50.27

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Assumed density of water is 1.0 g/cm³

⁺⁺ Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: 9AX-GB1 (1.44 g/cc)

Initial sample bulk density (g/cm³): 1.44

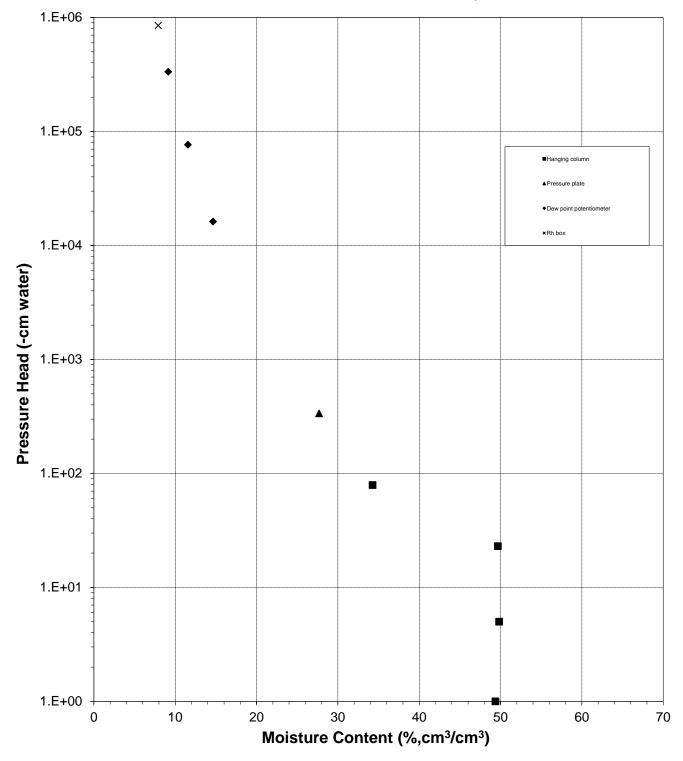
Fraction of bulk sample used (<2.00mm fraction) (%): 100.00

Dry weight* of dew point potentiometer sample (g): 174.49

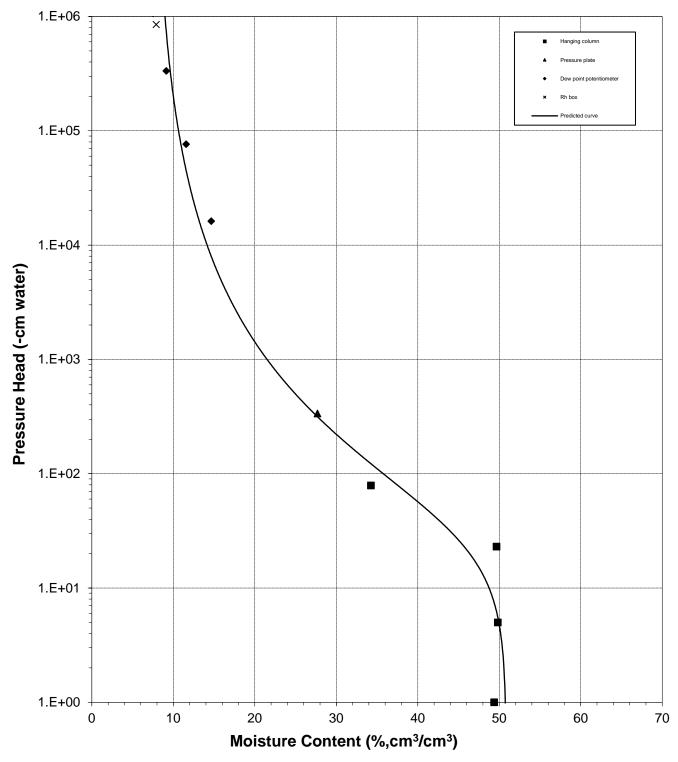
Tare weight, jar (g): 111.83

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)	
Dew point potentiometer:	15-Sep-23	9:06	180.97	16215	14.66	‡ ‡
	13-Sep-23	14:49	179.61	76485	11.57	‡ ‡
-	8-Sep-23	16:39	178.53	334290	9.14	_ ‡‡

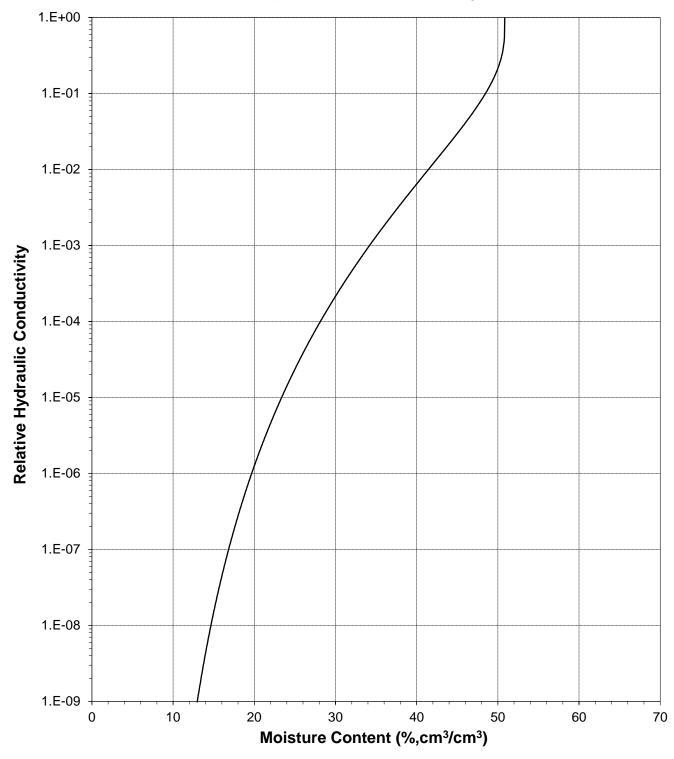
	Volume Adjusted Data ¹					
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
Dew point potentiometer:	16215	149.16	+1.59%	1.42	50.27	
	76485	149.16	+1.59%	1.42	50.27	
	334290	149.16	+1.59%	1.42	50.27	

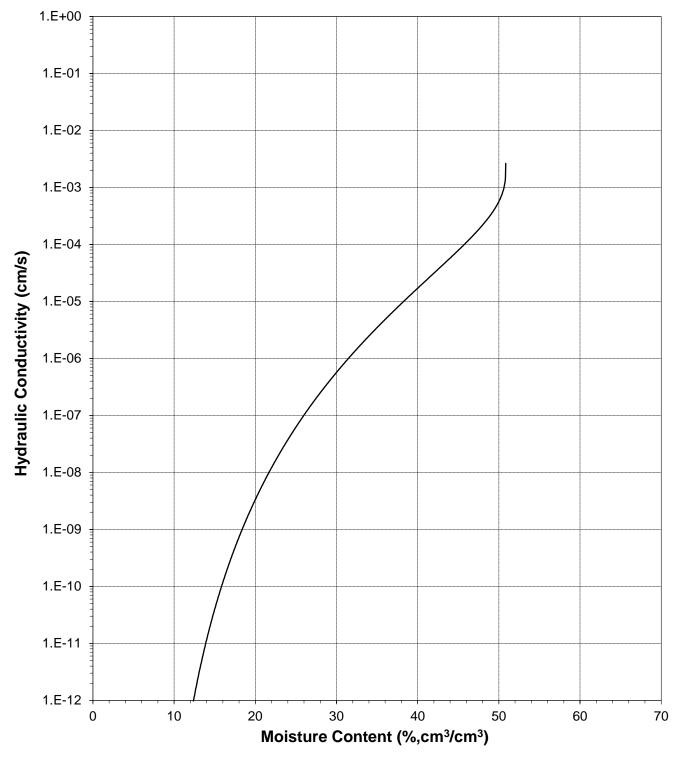

Dry weight* of relative humidity box sample (g): 77.97 Tare weight (g): 38.79

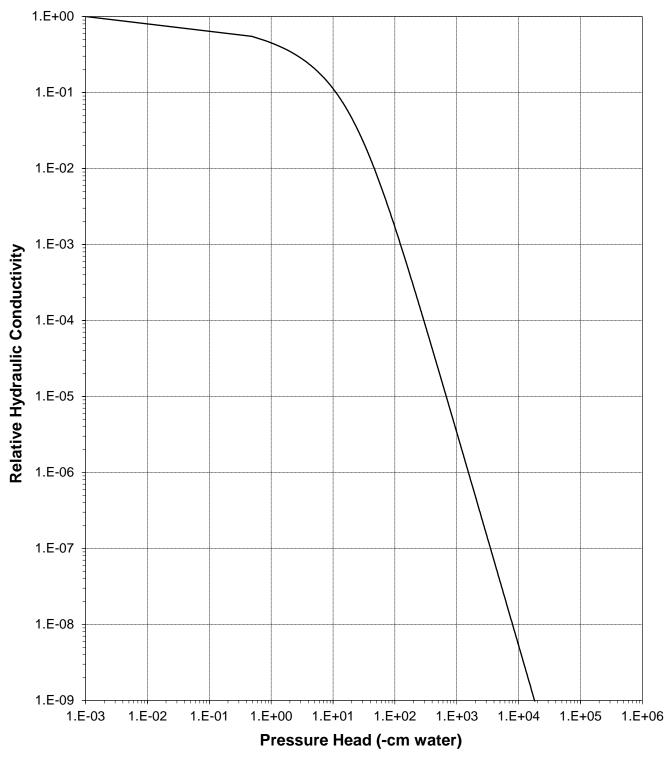
	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)		
Relative humidity box:	29-Aug-23	12:00	80.16	849860	7.91	‡‡	
	Volume Adjusted Data ¹						
	Water	Adjusted	% Volume	Adjusted	Adjusted		
	Potential	Volume	Change ²	Density	Calc. Porosity		
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	_	
Relative humidity box:	849860	149.16	+1.59%	1.42	50.27	_	

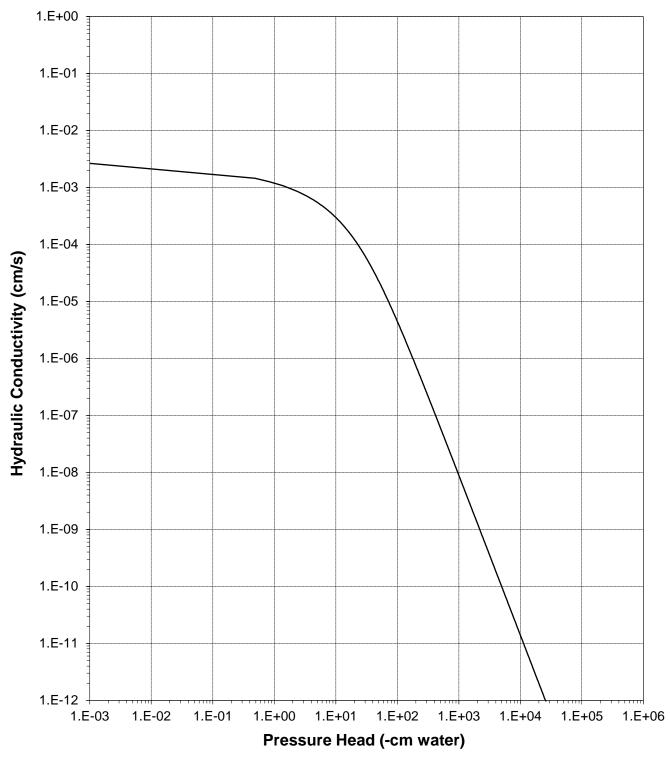

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares
- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ⁺⁺ Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.




Water Retention Data Points


Predicted Water Retention Curve and Data Points


Plot of Relative Hydraulic Conductivity vs Moisture Content

Plot of Hydraulic Conductivity vs Moisture Content

Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Moisture Retention Data Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name: WSP Golder Job Number: DB23.1010.00 Sample Number: CuL-GB1 (1.45 g/cc) Project: 31406439 01.EXP Fraction Tested: <2mm

Dry wt. of sample (g):	
Tare wt., ring (g):	89.72
Tare wt., screen & clamp (g):	24.11
<i>Initial sample volume</i> (cm ³):	146.06
Initial dry bulk density (g/cm ³):	1.45
Assumed particle density (g/cm ³):	2.65

Initial calculated total porosity (%): 45.22

	Date	Time	Weight* (g)	Matric Potential (-cm water)	Moisture Content [†] (% vol)
Hanging column:	30-Aug-23	13:40	394.50	0	47.01
5 5 5	6-Sep-23	8:00	394.49	5.0	47.00
	13-Sep-23	10:30	391.35	14.0	44.85
	20-Sep-23	10:15	366.23	53.0	27.65
	27-Sep-23	9:00	356.61	205.0	21.07
Pressure plate:	7-Oct-23	12:45	353.37	337	18.85

	Volume Adjusted Data ¹					
					Adjusted	
	Matric	Adjusted	% Volume	Adjusted	Calculated	
	Potential	Volume	Change ²	Density	Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
Hanging column:	0.0					
	5.0					
	14.0					
	53.0					
	205.0					
Pressure plate:	337					

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

- [†] Assumed density of water is 1.0 g/cm³
- ⁺⁺ Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Laboratory analysis by: D. O'Dowd Data entered by: W. Seward Checked by: J. Hines

Moisture Retention Data Dew Point Potentiometer / Relative Humidity Box

ew Point Potentiometer / Relative Humidity Bo

(Soil-Water Characteristic Curve)

Sample Number: CuL-GB1 (1.45 g/cc)

Initial sample bulk density (g/cm³): 1.45

Fraction of bulk sample used (<2.00mm fraction) (%): 100.00

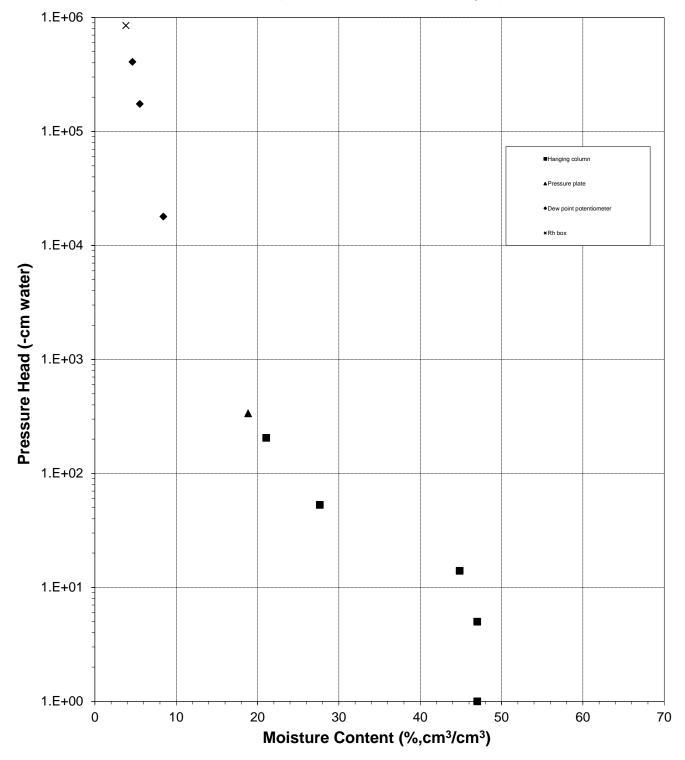
Dry weight* of dew point potentiometer sample (g): 190.28

Tare weight, jar (g): 111.60

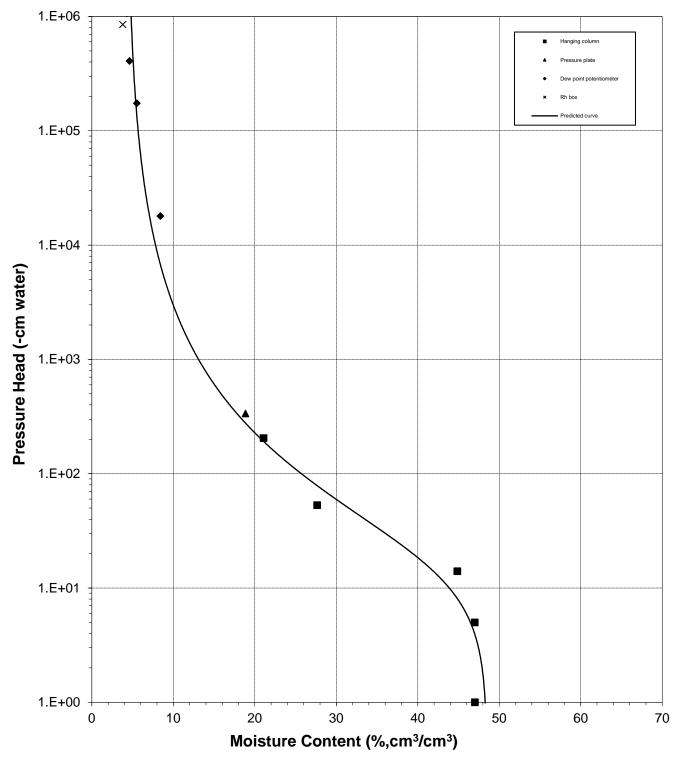
			Weight*	Water Potential	Moisture Content [†]
	Date	Time	(g)	(-cm water)	(% vol)
Dew point potentiometer:	14-Sep-23	13:10	194.84	17948	8.41
	8-Sep-23	16:09	193.27	174488	5.52
_	7-Sep-23	12:33	192.78	408328	4.61
-					

	Volume Adjusted Data ¹					
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
Dew point potentiometer:	17948					
	174488					
	408328					

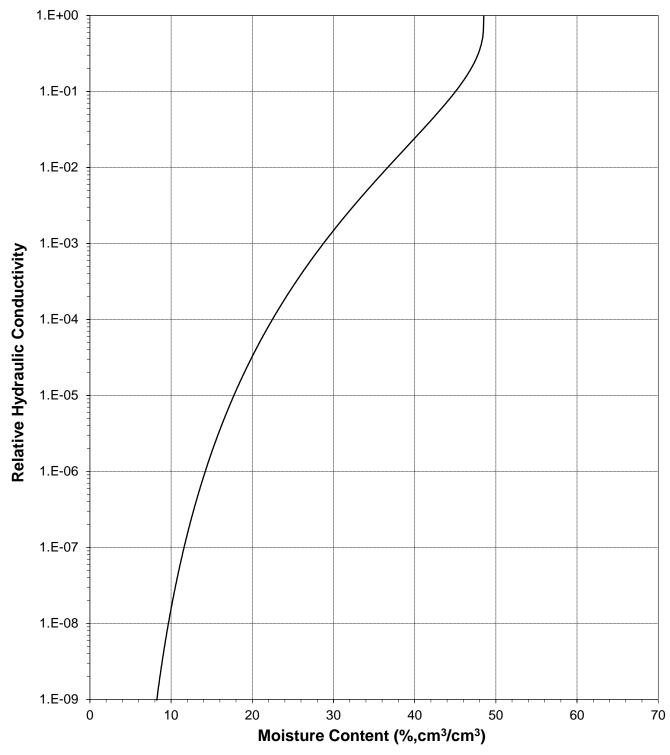
Dry weight* of relative humidity box sample (g): 83.02 Tare weight (g): 45.48

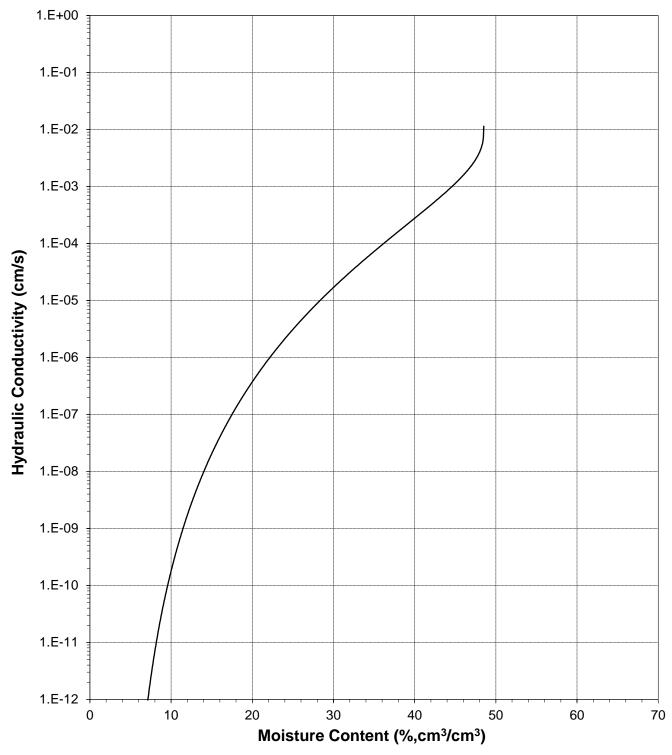

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)		
Relative humidity box:	29-Aug-23	12:00	84.00	849860	3.81		
			Volume Adjusted Data ¹				
	Water	Adjusted	% Volume	Adjusted	Adjusted		
	Potential	Volume	Change ²	Density	Calc. Porosity		
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)		
Relative humidity box:	849860						

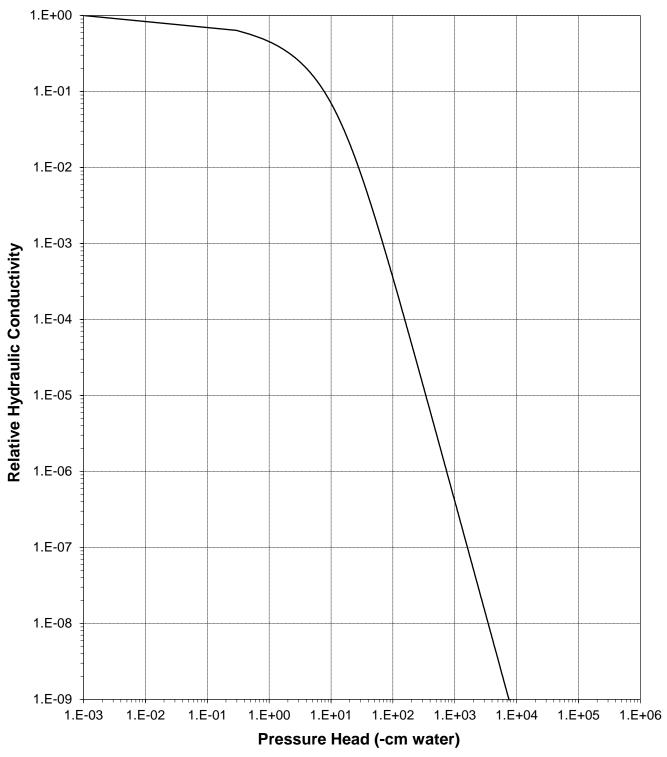
Comments:

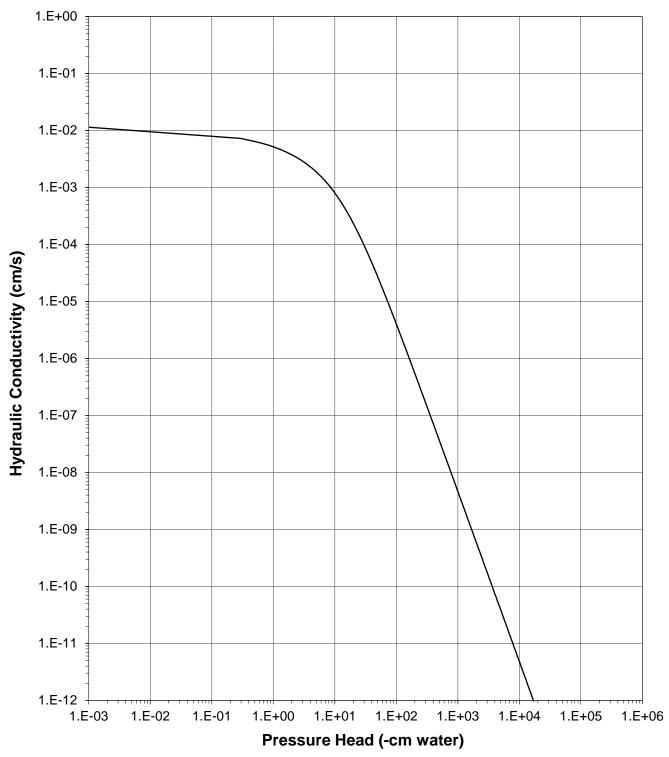

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares
- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ⁺⁺ Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Laboratory analysis by: D. O'Dowd Data entered by: W. Seward Checked by: J. Hines




Water Retention Data Points


Predicted Water Retention Curve and Data Points


Plot of Relative Hydraulic Conductivity vs Moisture Content

Plot of Hydraulic Conductivity vs Moisture Content

Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Moisture Retention Data Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name: WSP Golder Job Number: DB23.1010.00 Sample Number: CuL-GB2 (1.45 g/cc) Project: 31406439 01.EXP Fraction Tested: <2mm

Dry wt. of sample (g):	217.20
Tare wt., ring (g):	70.93
Tare wt., screen & clamp (g):	
<i>Initial sample volume</i> (cm ³):	149.87
Initial dry bulk density (g/cm ³):	
Assumed particle density (g/cm ³):	2.65

Initial calculated total porosity (%): 45.31

	Date	Time	Weight* (g)	Matric Potential (-cm water)	Moisture Content [†] (% vol)
Hanging column:	30-Aug-23 6-Sep-23	13:45 8:00	385.27 384.27	0 5.0	46.55 45.88
	6-Sep-23 13-Sep-23	10:30	381.60	14.0	45.88 44.10
	20-Sep-23	10:15	359.78	53.0	29.54
	27-Sep-23	9:00	348.69	205.0	22.14
Pressure plate:	7-Oct-23	12:45	344.88	337	19.60

	Volume Adjusted Data ¹					
					Adjusted	
	Matric	Adjusted	% Volume	Adjusted	Calculated	
	Potential	Volume	Change ²	Density	Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
Hanging column:	0.0					
	5.0					
	14.0					
	53.0					
	205.0					
Pressure plate:	337					

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

- [†] Assumed density of water is 1.0 g/cm³
- ⁺⁺ Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Laboratory analysis by: D. O'Dowd Data entered by: W. Seward Checked by: J. Hines

Moisture Retention Data Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: CuL-GB2 (1.45 g/cc)

Initial sample bulk density (g/cm³): 1.45

Fraction of bulk sample used (<2.00mm fraction) (%): 100.00

Dry weight* of dew point potentiometer sample (g): 190.07

Tare weight, jar (g): 110.55

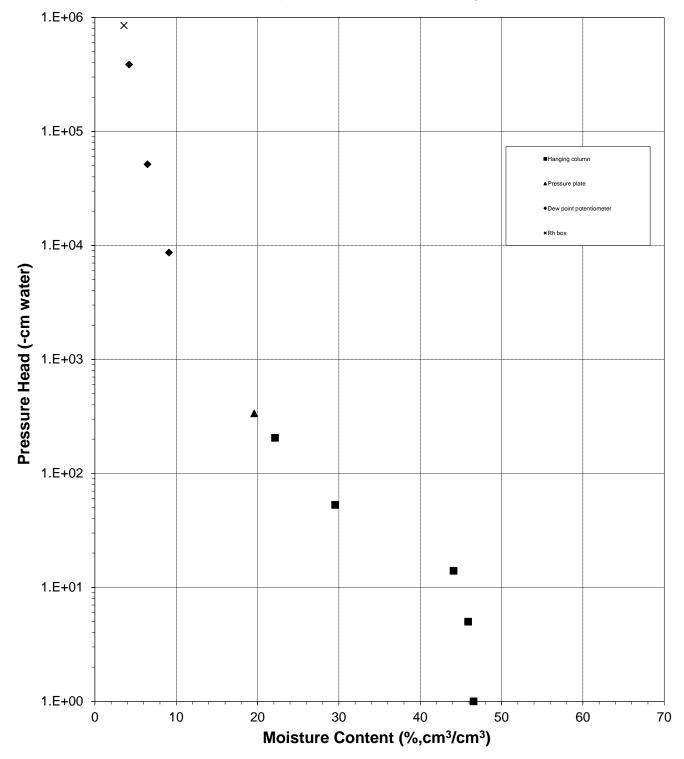
			Weight*	Water Potential	Moisture Content [†]
	Date	Time	(g)	(-cm water)	(% vol)
Dew point potentiometer:	15-Sep-23	9:55	195.07	8668	9.11
	11-Sep-23	15:47	193.61	51602	6.46
	7-Sep-23	13:04	192.37	387116	4.20

	Volume Adjusted Data ¹					
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
Dew point potentiometer:	8668					
	51602					
	387116					

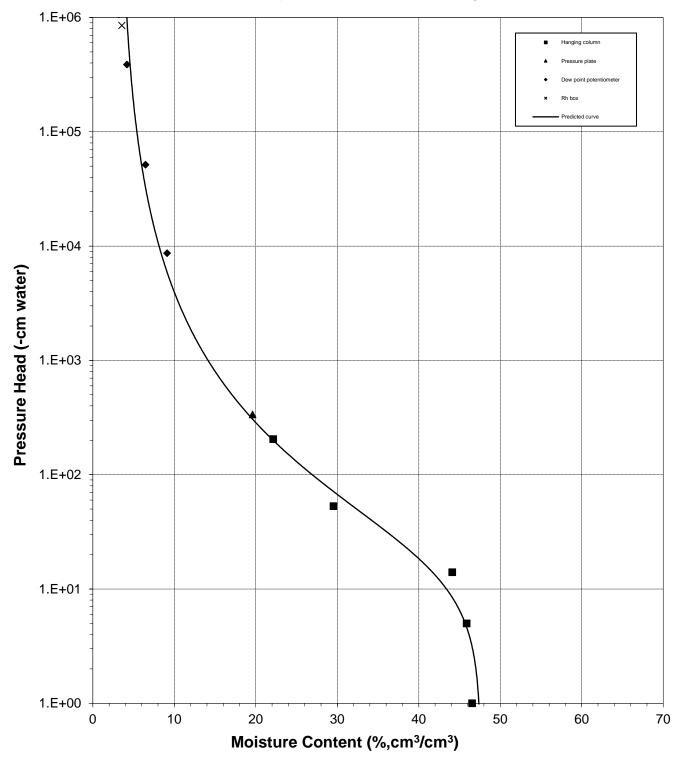
Dry weight* of relative humidity box sample (g): 93.24 Tare weight (g): 42.57

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)		
Relative humidity box:	29-Aug-23	12:00	94.49	849860	3.57		
			Volume Adjusted Data ¹				
	Water	Adjusted	% Volume	Adjusted	Adjusted		
	Potential	Volume	Change ²	Density	Calc. Porosity		
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)		
Relative humidity box:	849860						

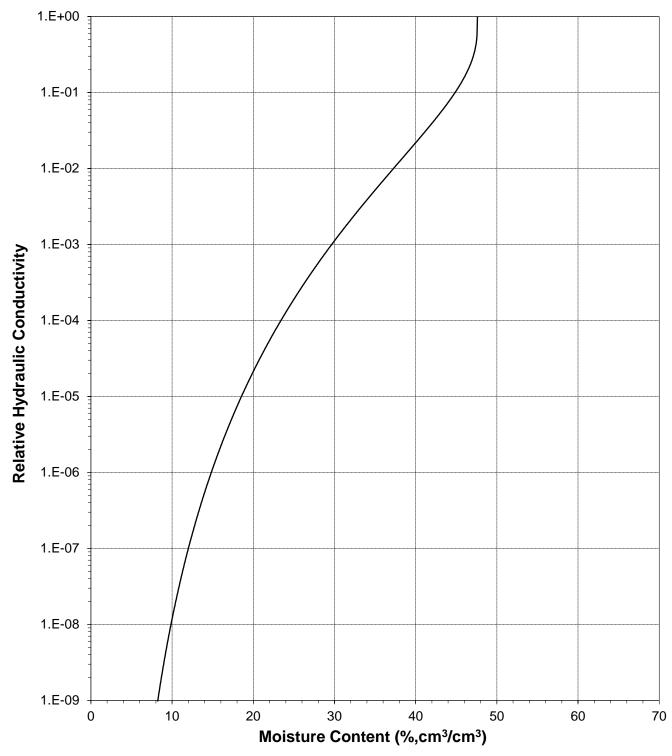
Comments:

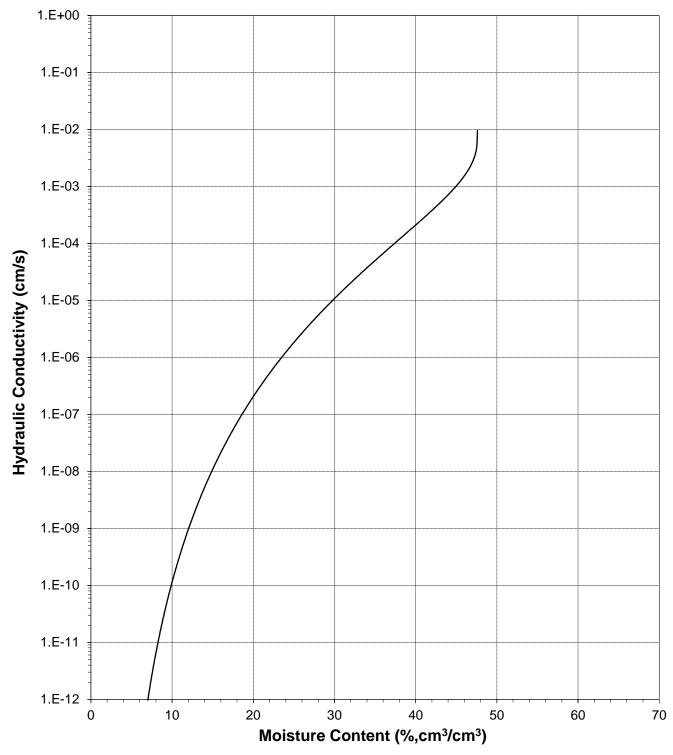

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

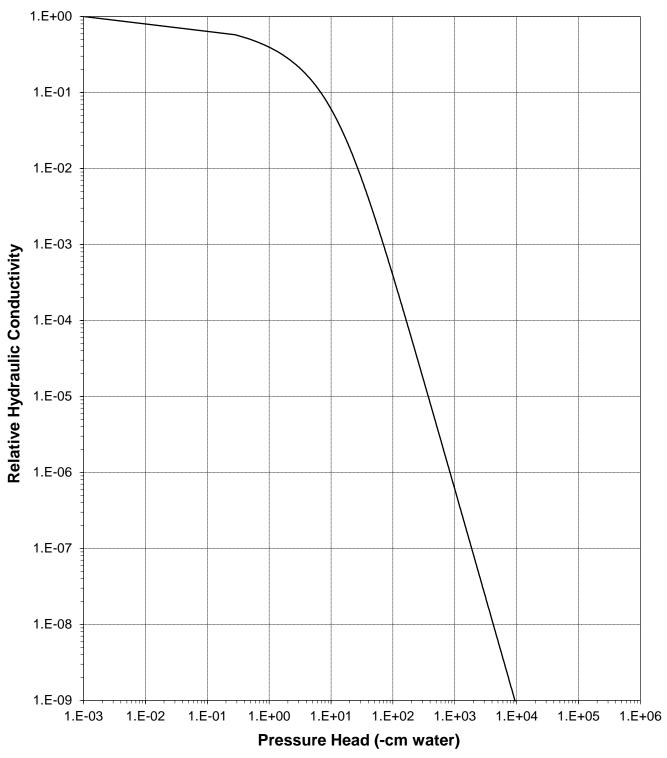

- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ⁺⁺ Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

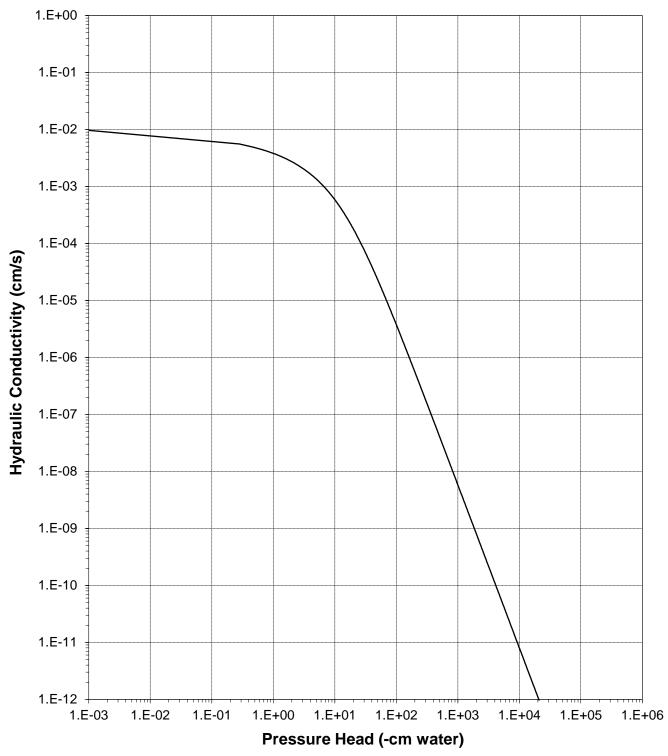
Laboratory analysis by: D. O'Dowd Data entered by: W. Seward Checked by: J. Hines




Water Retention Data Points

Predicted Water Retention Curve and Data Points


Plot of Relative Hydraulic Conductivity vs Moisture Content


Plot of Hydraulic Conductivity vs Moisture Content

CIESCO CALL

Daniel B. Stephens & Associates, Inc.

Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Moisture Retention Data Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name: WSP Golder Job Number: DB23.1010.00 Sample Number: USNR-GB1 (1.45 g/cc) Project: 31406439 01.EXP Fraction Tested: <2mm

Dry wt. of sample (g): 217.25	
Tare wt., ring (g): 73.99	
Tare wt., screen & clamp (g): 28.02	
Initial sample volume (cm ³): 149.82	
Initial dry bulk density (g/cm ³): 1.45	
Assumed particle density (g/cm ³): 2.65	

Initial calculated total porosity (%): 45.28

			\\/aiabt*	Matric Potential	Moisture Content [†]
	Date	Time	Weight*	(-cm water)	(% vol)
_		-	(g)	(-cill water)	· / /
Hanging column:	30-Aug-23	13:55	388.87	0	46.46
	6-Sep-23	8:00	388.78	5.0	46.40
	13-Sep-23	10:30	378.24	14.0	39.37
	20-Sep-23	10:15	353.53	53.0	22.87
	27-Sep-23	9:00	346.91	205.0	18.45
Pressure plate:	7-Oct-23	12:45	344.58	337	16.90

	Volume Adjusted Data ¹					
					Adjusted	
	Matric	Adjusted	% Volume	Adjusted	Calculated	
	Potential	Volume	Change ²	Density	Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
Hanging column:	0.0					
	5.0					
	14.0					
	53.0					
	205.0					
Pressure plate:	337					

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

- [†] Assumed density of water is 1.0 g/cm³
- ⁺⁺ Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: USNR-GB1 (1.45 g/cc)

Initial sample bulk density (g/cm³): 1.45 Fraction of bulk sample used (<2.00mm fraction) (%): 100.00

Dry weight* of dew point potentiometer sample (g): 172.01

Tare weight, jar (g): 113.35

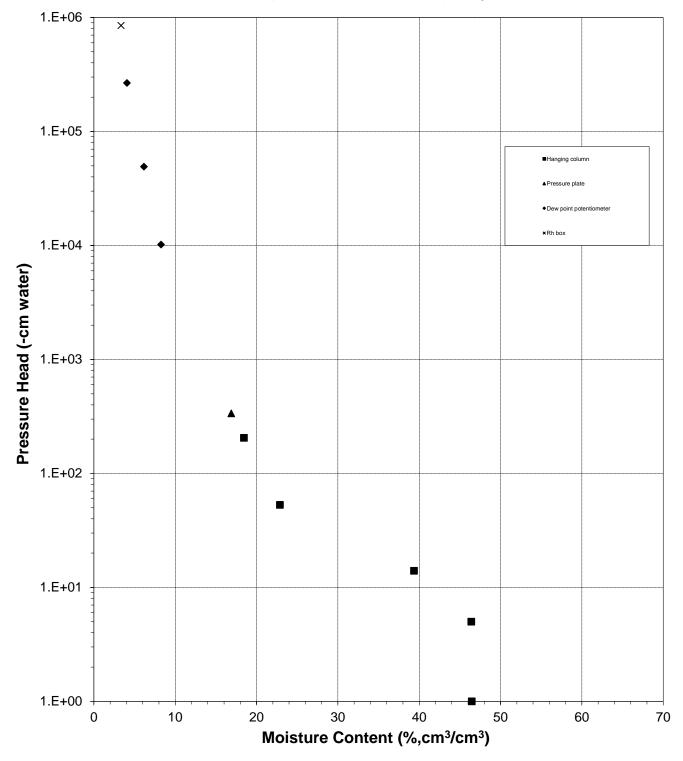
		Weight*	Water Potential	Moisture Content [†]
Date	Time	(g)	(-cm water)	(% vol)
18-Sep-23	13:25	175.35	10198	8.26
14-Sep-23	13:37	174.50	49154	6.16
7-Sep-23	14:14	173.65	266780	4.06
	18-Sep-23 14-Sep-23	18-Sep-2313:2514-Sep-2313:37	Date Time (g) 18-Sep-23 13:25 175.35 14-Sep-23 13:37 174.50	DateTime(g)(-cm water)18-Sep-2313:25175.351019814-Sep-2313:37174.5049154

	Volume Adjusted Data ¹					
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
Dew point potentiometer:	10198					
	49154					
<u> </u>	266780					

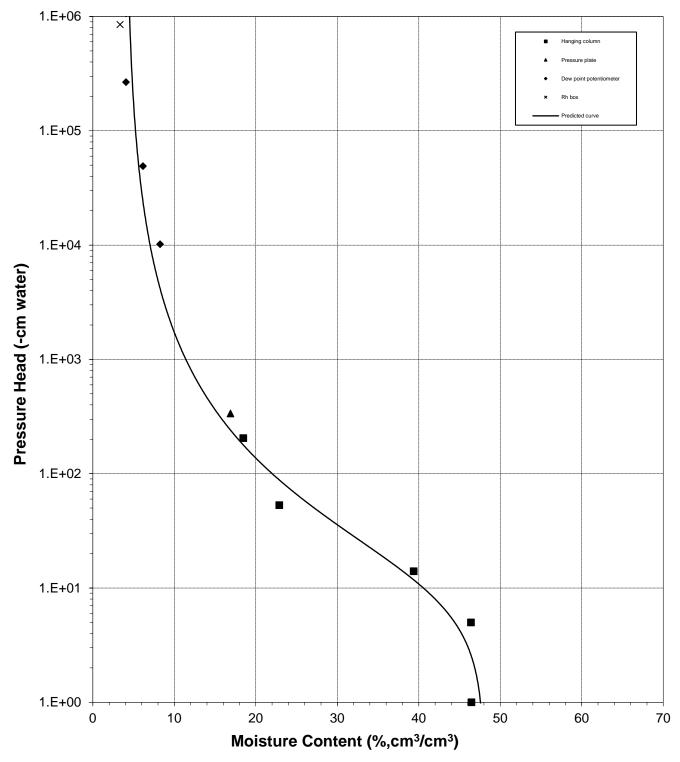
Dry weight* of relative humidity box sample (g): 87.24 Tare weight (g): 46.66

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)		
Relative humidity box:	29-Aug-23	12:00	88.18	849860	3.35		
		Volume Adjusted Data ¹					
	Water	Adjusted	% Volume	Adjusted	Adjusted		
	Potential	Volume	Change ²	Density	Calc. Porosity		
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)		
Relative humidity box:	849860						

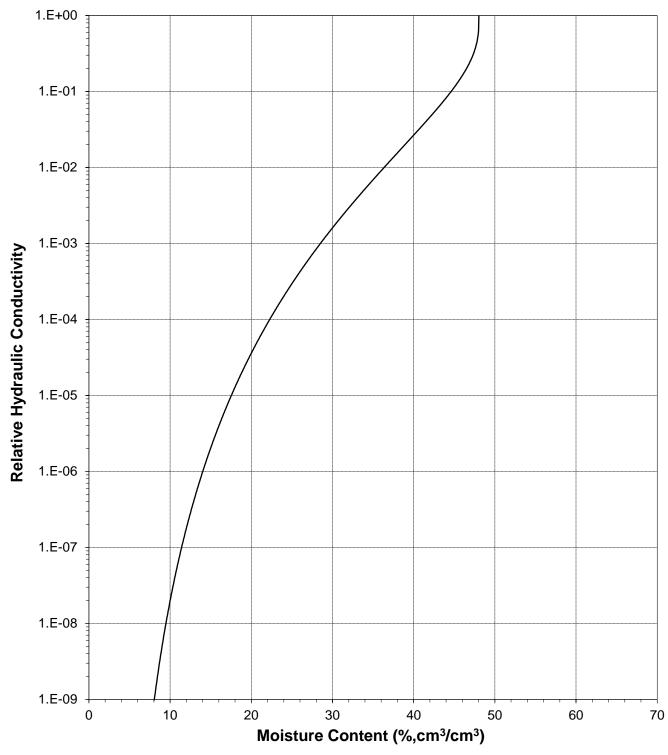
Comments:

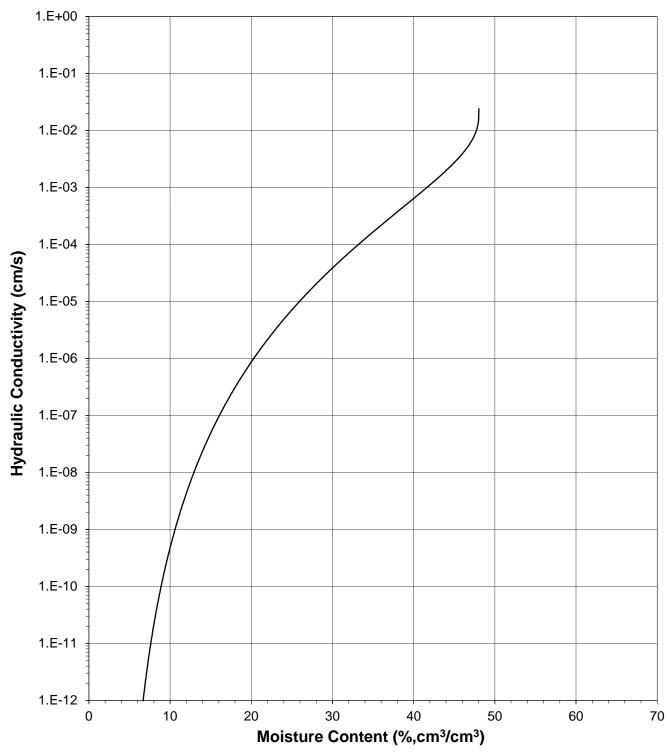

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

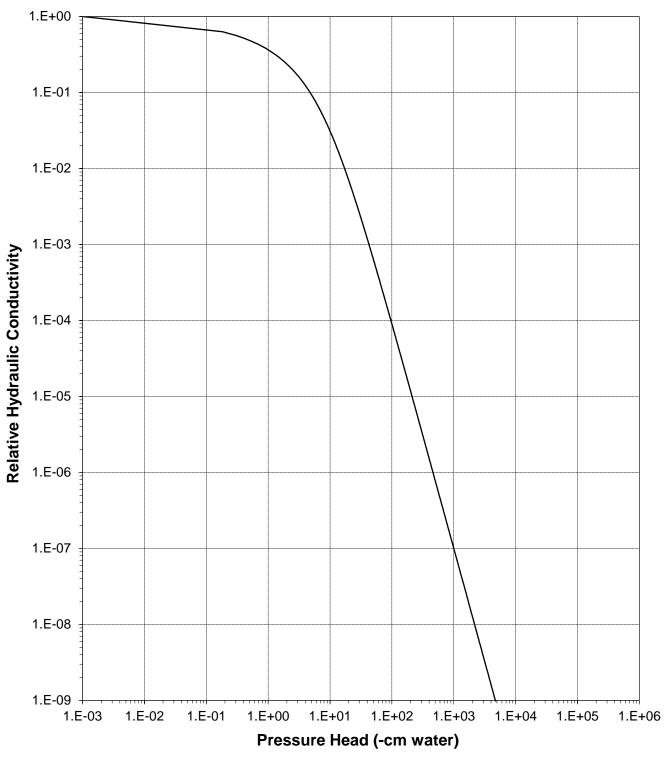
* Weight including tares

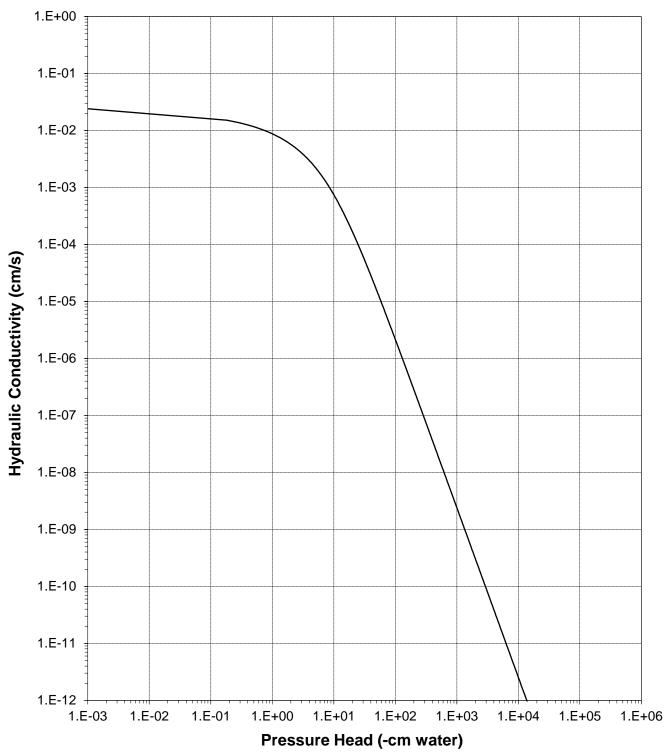

- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ⁺⁺ Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Laboratory analysis by: D. O'Dowd Data entered by: W. Seward Checked by: J. Hines




Water Retention Data Points


Predicted Water Retention Curve and Data Points


Plot of Relative Hydraulic Conductivity vs Moisture Content

Plot of Hydraulic Conductivity vs Moisture Content

Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Moisture Retention Data Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name: WSP Golder Job Number: DB23.1010.00 Sample Number: USNR-GB3 (1.45 g/cc) Project: 31406439 01.EXP Fraction Tested: <2mm

Dry wt. of sample (g):	211.08
Tare wt., ring (g):	82.68
Tare wt., screen & clamp (g):	27.89
<i>Initial sample volume</i> (cm ³):	145.69
Initial dry bulk density (g/cm ³):	1.45
Assumed particle density (g/cm ³):	2.65

Initial calculated total porosity (%): 45.33

	Date	Time	Weight* (g)	Matric Potential (-cm water)	Moisture Content [†] (% vol)
Hanging column:	30-Aug-23	14:00	387.94	0	45.50
	6-Sep-23 13-Sep-23	8:00 10:30	387.02 377.14	5.0 14.0	44.87 38.09
	20-Sep-23	10:15	355.01	53.0	22.90
	27-Sep-23	9:00	347.52	205.0	17.76
Pressure plate:	7-Oct-23	12:45	345.14	337	16.12

	Volume Adjusted Data ¹					
					Adjusted	
	Matric	Adjusted	% Volume	Adjusted	Calculated	
	Potential	Volume	Change ²	Density	Porosity	
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
Hanging column:	0.0					
	5.0					
	14.0					
	53.0					
	205.0					
Pressure plate:	337					

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

- ⁺ Assumed density of water is 1.0 g/cm³
- ⁺⁺ Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: USNR-GB3 (1.45 g/cc)

Initial sample bulk density (g/cm³): 1.45 Fraction of bulk sample used (<2.00mm fraction) (%): 100.00

Dry weight* of dew point potentiometer sample (g): 185.42

Tare weight, jar (g): 111.95

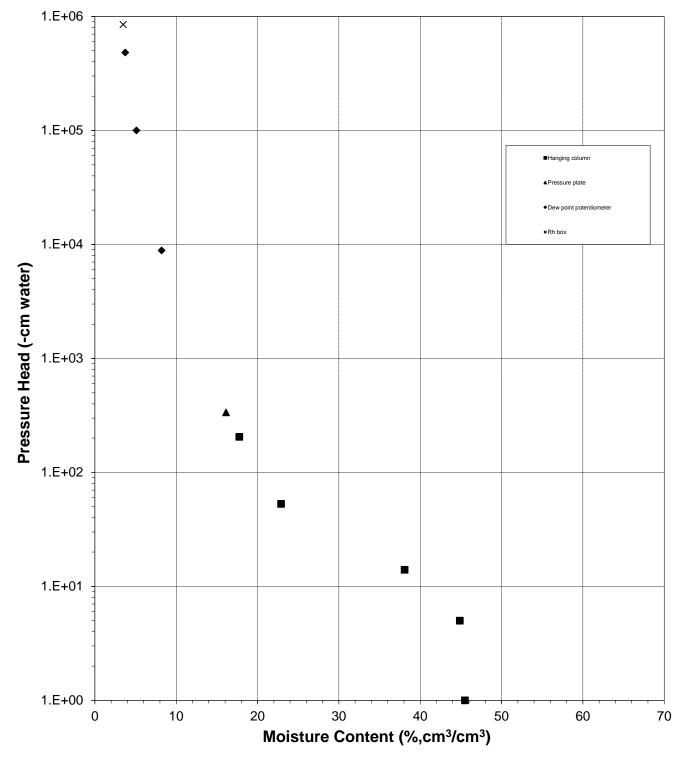
			Weight*	Water Potential	Moisture Content [†]
	Date	Time	(g)	(-cm water)	(% vol)
Dew point potentiometer:	19-Sep-23	10:54	189.58	8872	8.20
	14-Sep-23	13:50	188.01	100246	5.11
	8-Sep-23	17:15	187.31	483181	3.73

	Volume Adjusted Data ¹					
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
Dew point potentiometer:	8872					
	100246					
<u> </u>	483181					

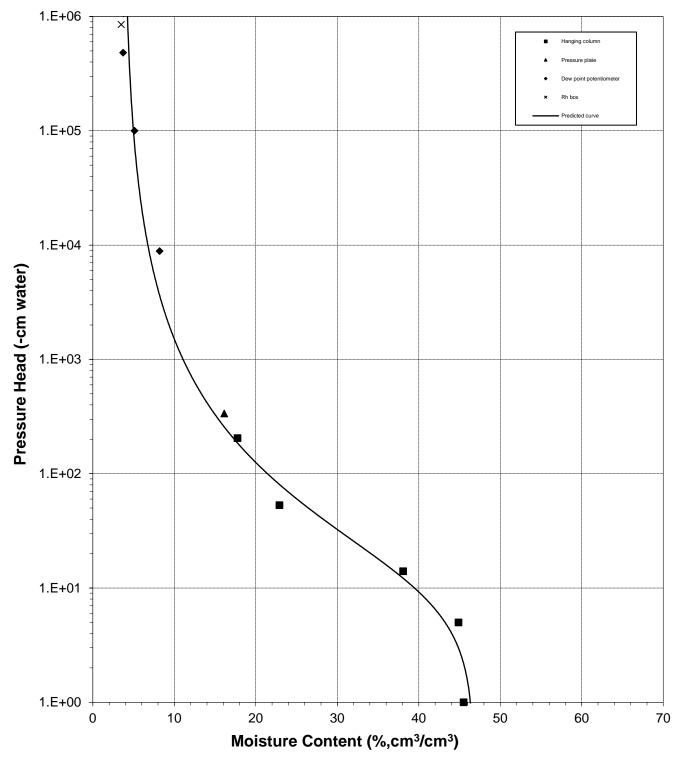
Dry weight* of relative humidity box sample (g): 99.88 Tare weight (g): 40.67

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)		
Relative humidity box:	29-Aug-23	12:00	101.30	849860	3.48		
		Volume Adjusted Data ¹					
	Water	Adjusted	% Volume	Adjusted	Adjusted		
	Potential	Volume	Change ²	Density	Calc. Porosity		
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)		
Relative humidity box:	849860						

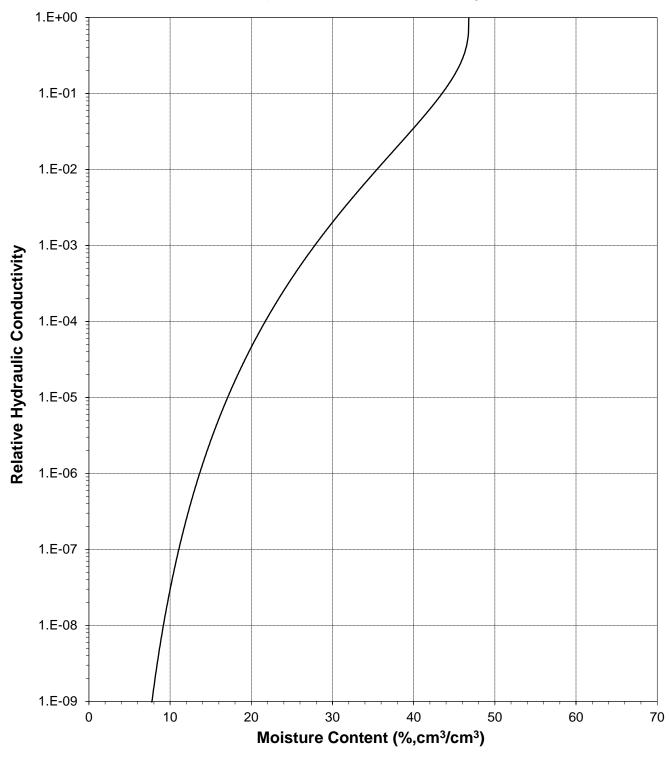
Comments:

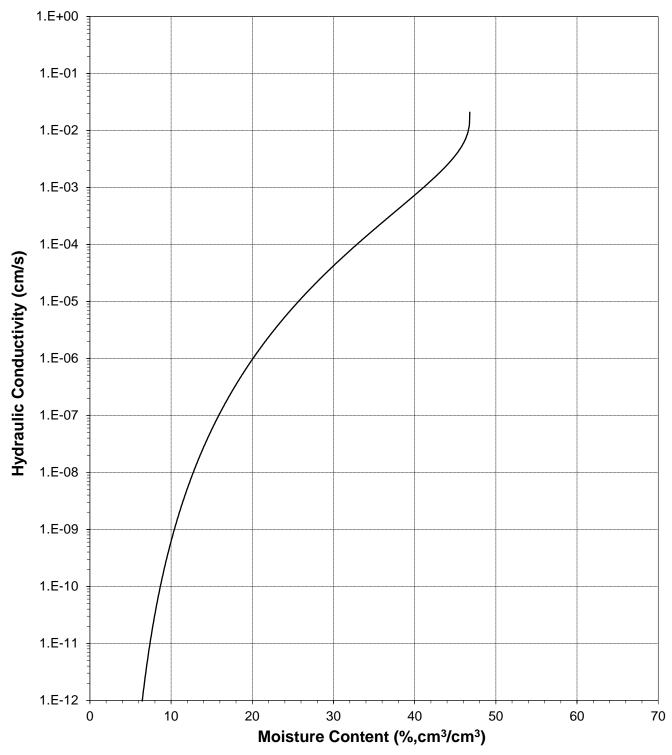

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

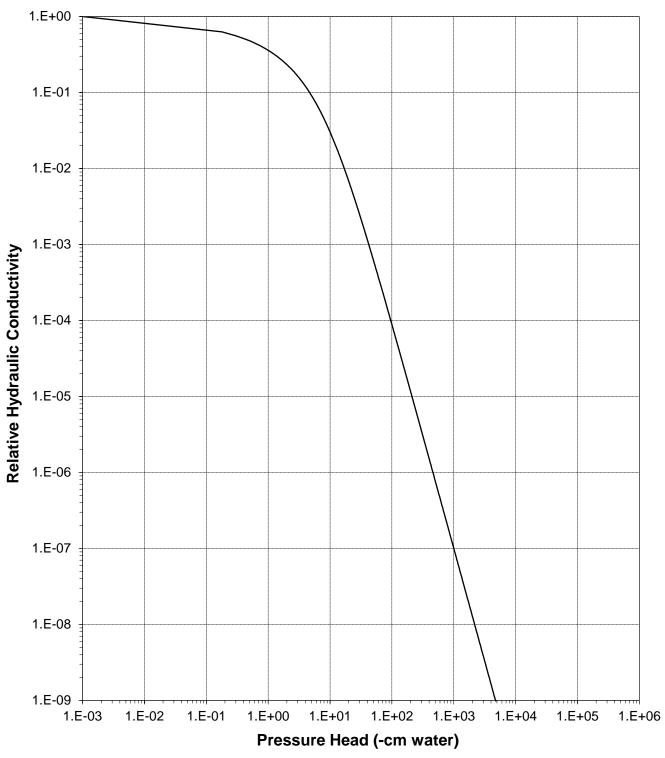
* Weight including tares


- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ⁺⁺ Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

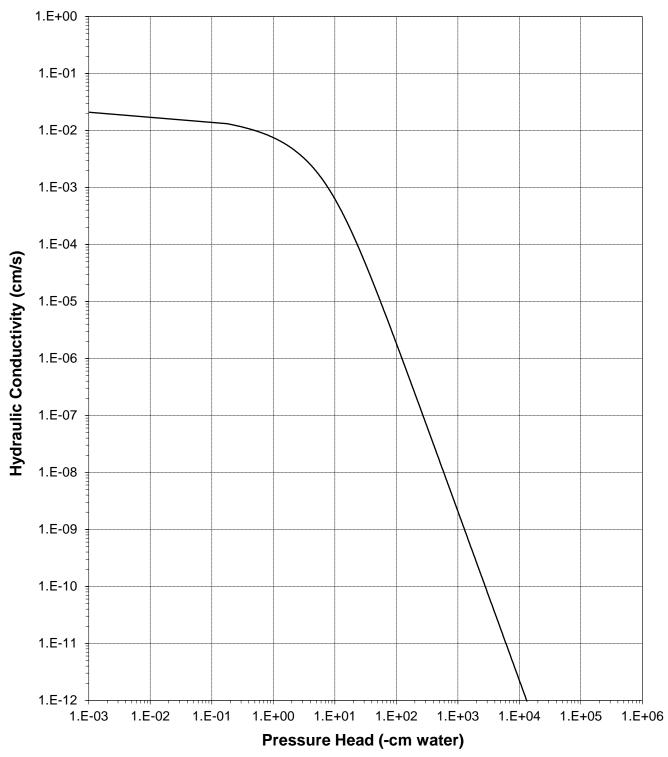
Laboratory analysis by: D. O'Dowd Data entered by: W. Seward Checked by: J. Hines




Water Retention Data Points


Predicted Water Retention Curve and Data Points

Plot of Relative Hydraulic Conductivity vs Moisture Content



Plot of Hydraulic Conductivity vs Moisture Content

Plot of Relative Hydraulic Conductivity vs Pressure Head

Sample Number: USNR-GB3 (1.45 g/cc)

Plot of Hydraulic Conductivity vs Pressure Head

Sample Number: USNR-GB3 (1.45 g/cc)

Moisture Retention Data Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name: WSP Golder Job Number: DB23.1010.00 Sample Number: WIP-GB1 (1.45 g/cc) Project: 31406439 01.EXP Fraction Tested: <2mm

Dry wt. of sample (g):	207.80
Tare wt., ring (g):	81.48
Tare wt., screen & clamp (g):	
<i>Initial sample volume</i> (cm ³):	
Initial dry bulk density (g/cm ³):	
Assumed particle density (g/cm ³):	2.65

Initial calculated total porosity (%): 45.39

				Matric	Moisture
			Weight*	Potential	Content [†]
	Date	Time	(g)	(-cm water)	(% vol)
Hanging column:	30-Aug-23	13:05	381.20	0	47.13
	6-Sep-23	8:00	381.08	5.0	47.05
	13-Sep-23	10:30	380.88	14.0	46.91
	20-Sep-23	10:15	349.47	53.0	25.03
	27-Sep-23	9:00	339.95	205.0	18.40
Pressure plate:	7-Oct-23	12:45	337.96	337	17.01

	Volume Adjusted Data ¹				
					Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Hanging column:	0.0				
	5.0				
	14.0				
	53.0				
	205.0				
Pressure plate:	337				

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

- [†] Assumed density of water is 1.0 g/cm³
- ⁺⁺ Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: WIP-GB1 (1.45 g/cc)

Initial sample bulk density (g/cm³): 1.45

Fraction of bulk sample used (<2.00mm fraction) (%): 100.00

Dry weight* of dew point potentiometer sample (g): 195.00

Tare weight, jar (g): 114.66

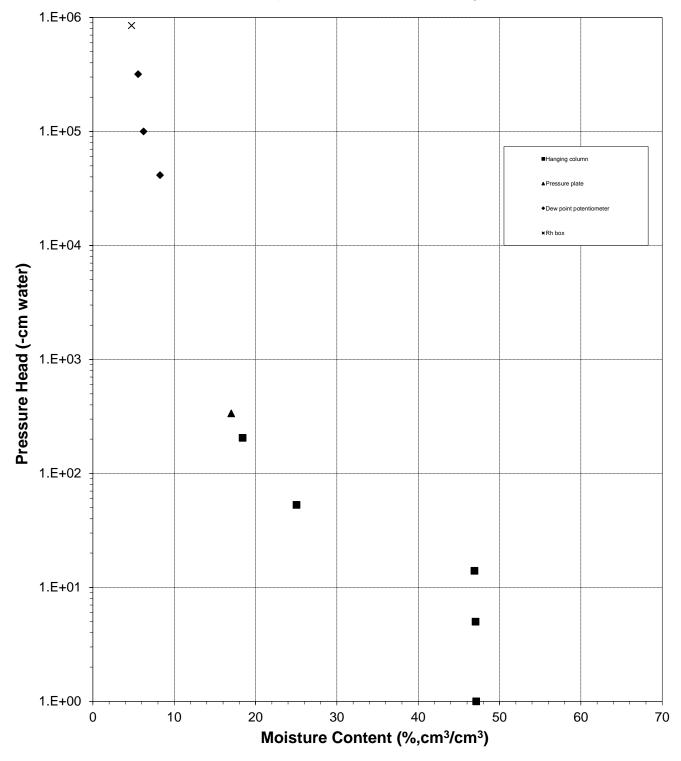
			Weight*	Water Potential	Moisture Content [†]
	Date	Time	(g)	(-cm water)	(% vol)
Dew point potentiometer:	15-Sep-23	10:31	199.58	41404	8.25
	11-Sep-23	16:22	198.46	100144	6.23
-	8-Sep-23	17:21	198.08	318280	5.56

	Volume Adjusted Data ¹				
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Dew point potentiometer:	41404				
	100144				
	318280				

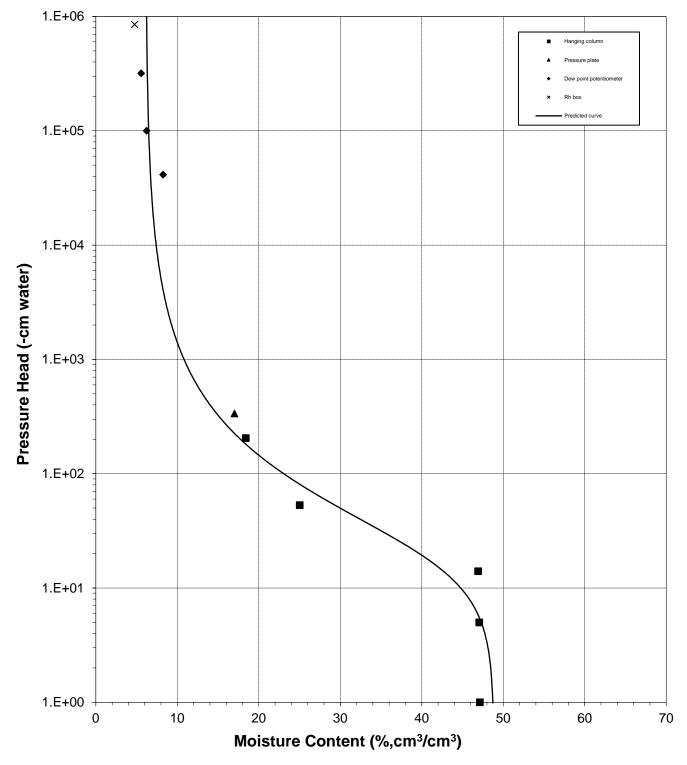
Dry weight* of relative humidity box sample (g): 74.99 Tare weight (g): 39.91

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)
Relative humidity box:	29-Aug-23	12:00	76.14	849860	4.76
			Volume Adjust	ed Data ¹	
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Relative humidity box:	849860				

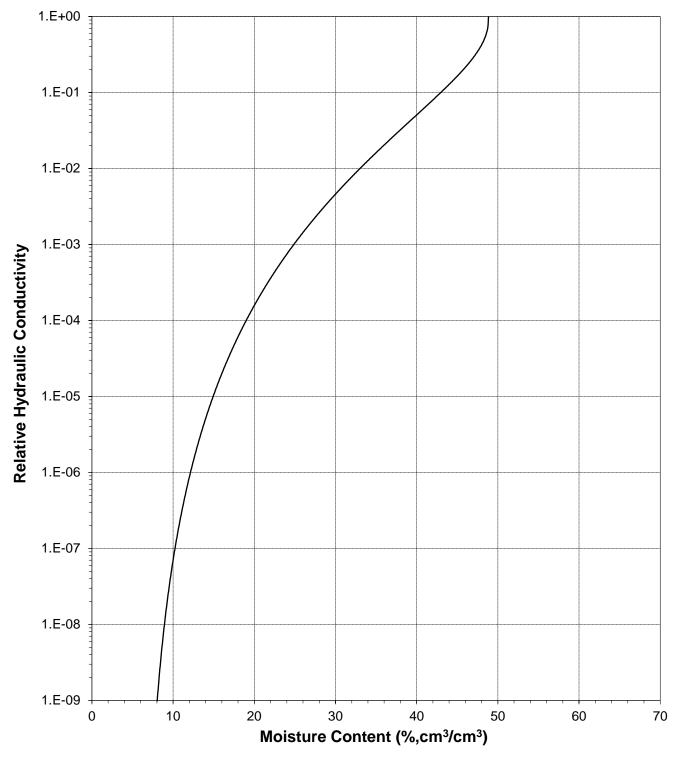
Comments:

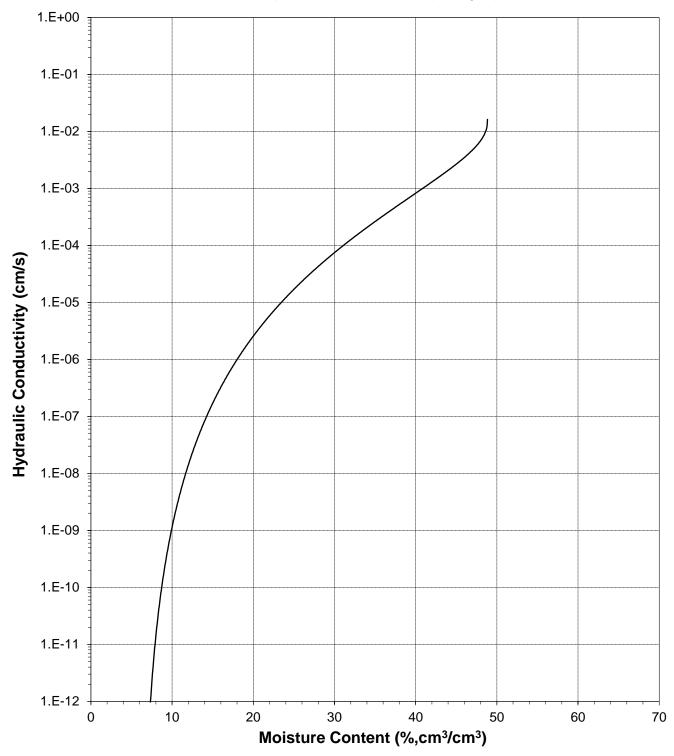

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

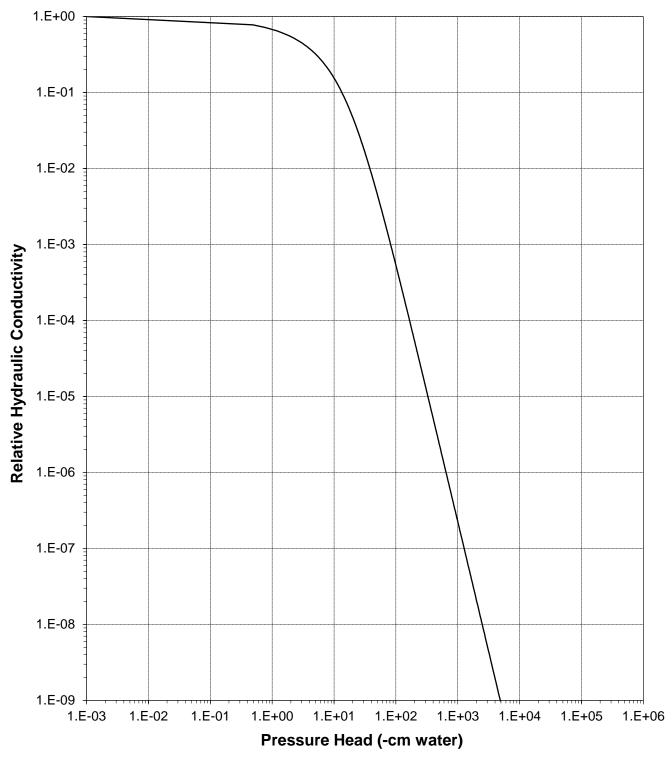

- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ⁺⁺ Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Laboratory analysis by: D. O'Dowd Data entered by: W. Seward Checked by: J. Hines

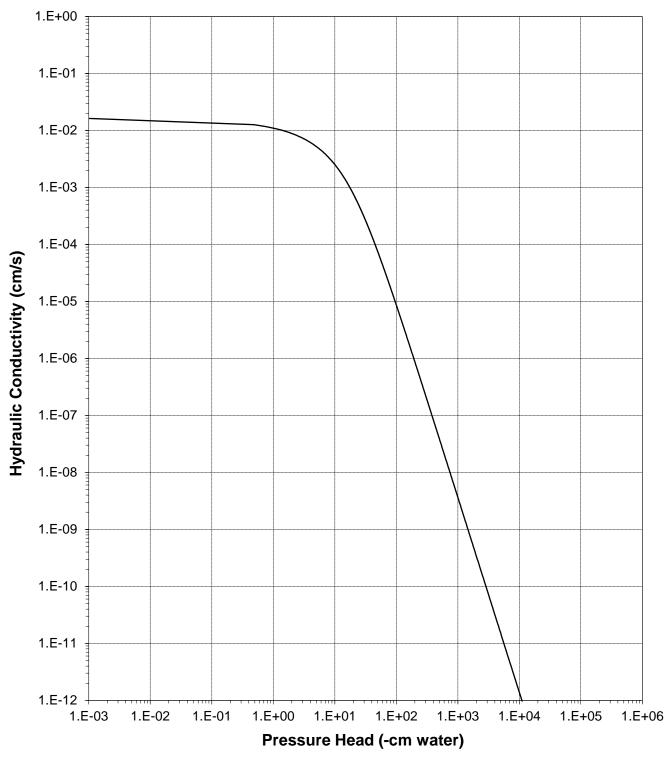



Water Retention Data Points

Predicted Water Retention Curve and Data Points



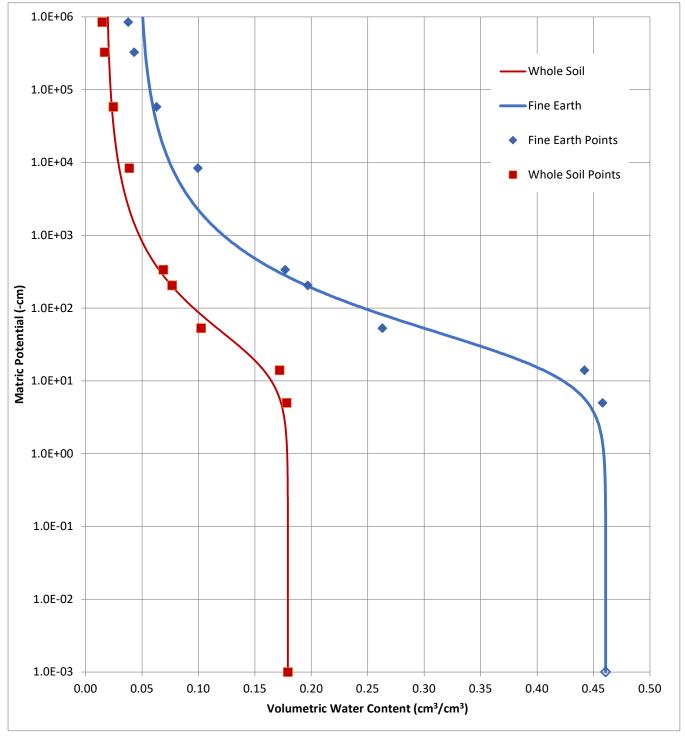
Plot of Relative Hydraulic Conductivity vs Moisture Content

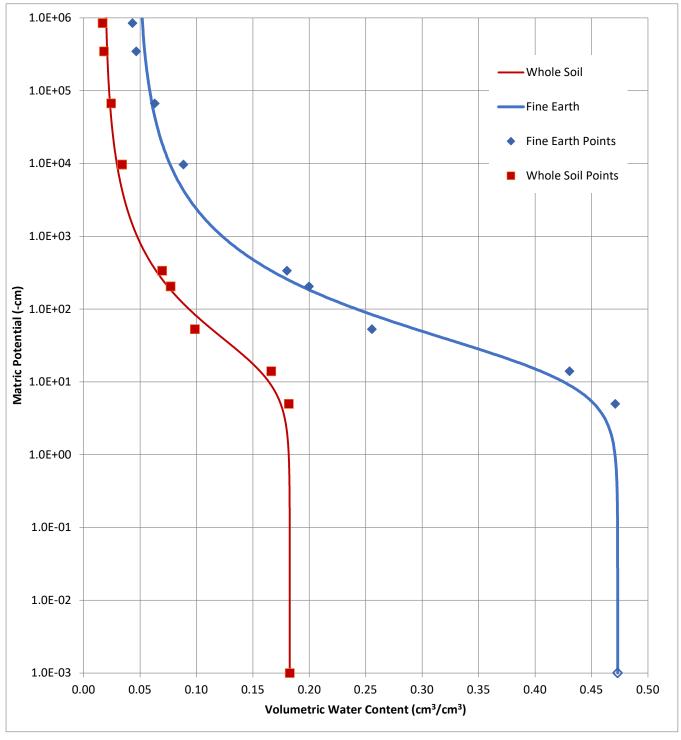


Plot of Hydraulic Conductivity vs Moisture Content

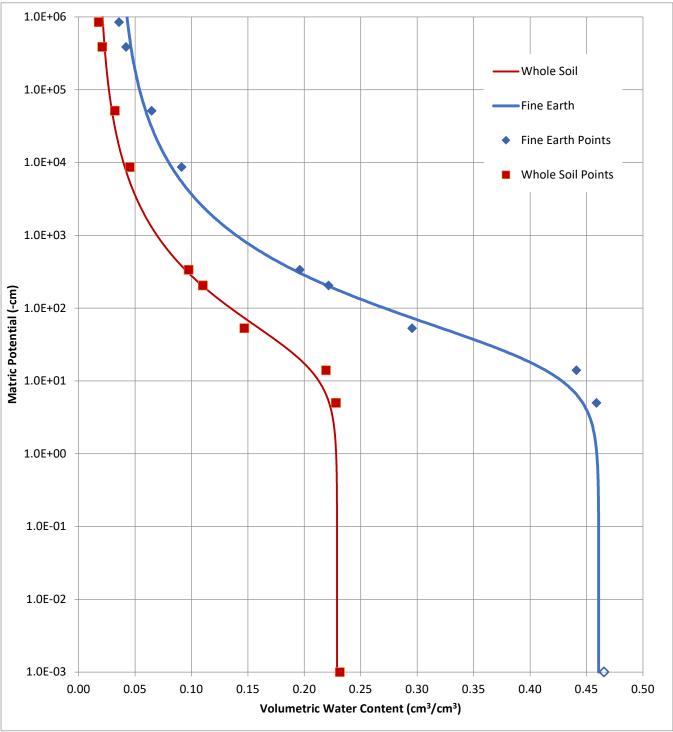
Plot of Relative Hydraulic Conductivity vs Pressure Head

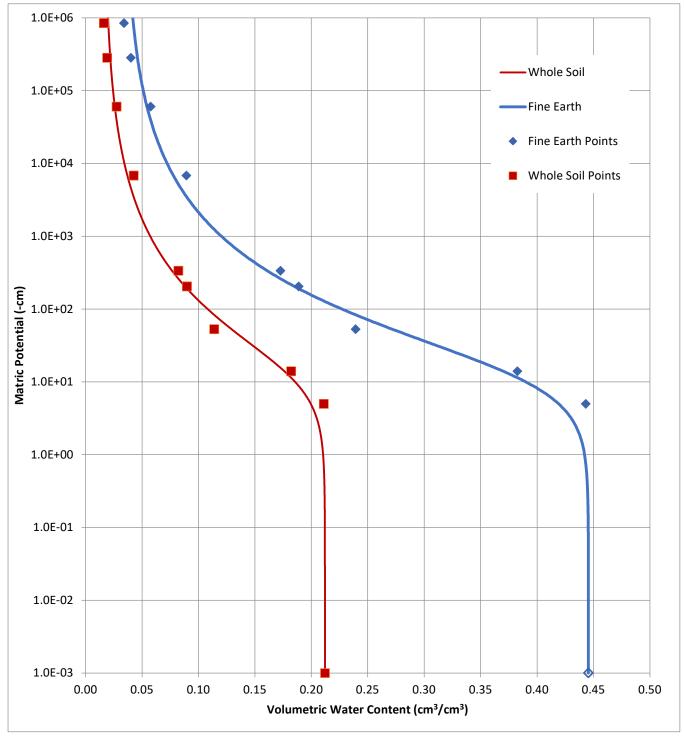
Plot of Hydraulic Conductivity vs Pressure Head


Laboratory Tests and Methods


Tests and Methods

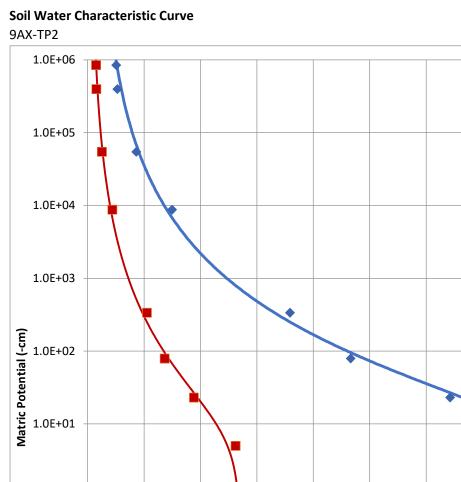
Dry Bulk Density:	ASTM D7263
Moisture Content:	ASTM D7263, ASTM D2216
Calculated Porosity:	ASTM D7263
Saturated Hydraulic Conductivit Falling or Constant Head: (Rigid Wall)	y: ASTM D5856M
Hanging Column Method:	ASTM D6836 (modified apparatus)
Pressure Plate Method:	ASTM D6836
Water Potential (Dewpoint Potentiometer) Method:	ASTM D6836
Relative Humidity (Box) Method:	Campbell, G. and G. Gee. 1986. Water Potential: Miscellaneous Methods. Chp. 25, pp. 631-632, in A. Klute (ed.), Methods of Soil Analysis. Part 1. American Society of Agronomy, Madison, WI; Karathanasis & Hajek. 1982. Quantitative Evaluation of Water Adsorption on Soil Clays. SSA Journal 46:1321-1325
Moisture Retention Characteristics & Calculated Unsaturated Hydraulic Conductivity:	ASTM D6836; van Genuchten, M.T. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. SSSAJ 44:892-898; van Genuchten, M.T., F.J. Leij, and S.R. Yates. 1991. The RETC code for quantifying the hydraulic functions of unsaturated soils. Robert S. Kerr Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Ada, Oklahoma. EPA/600/2091/065. December 1991

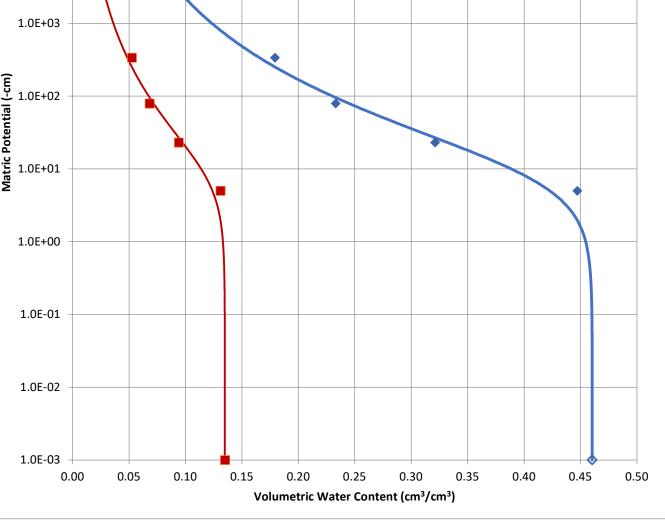




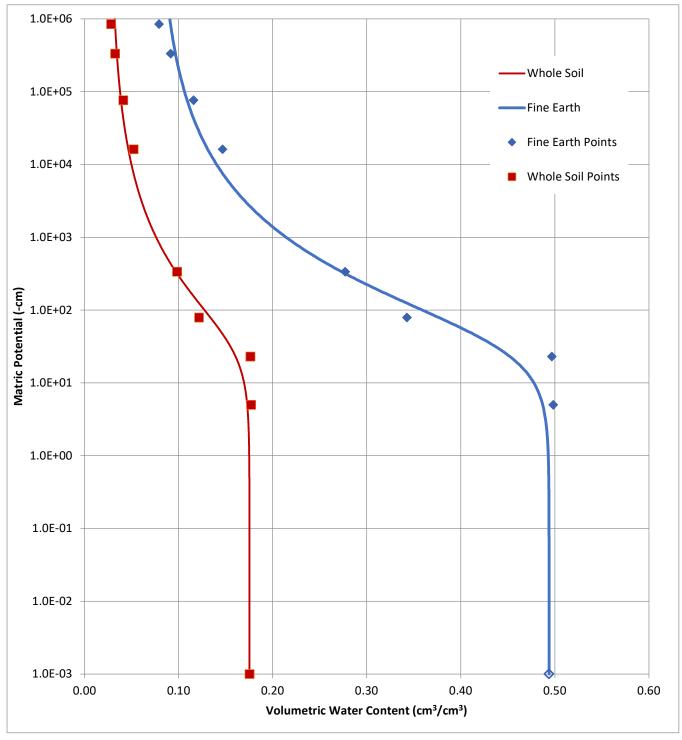
31406439.001

9A-GB3

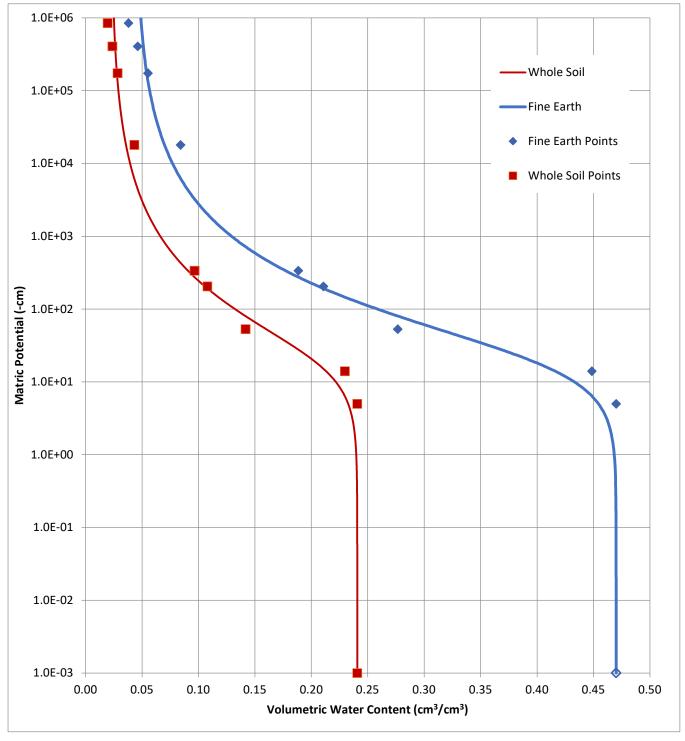


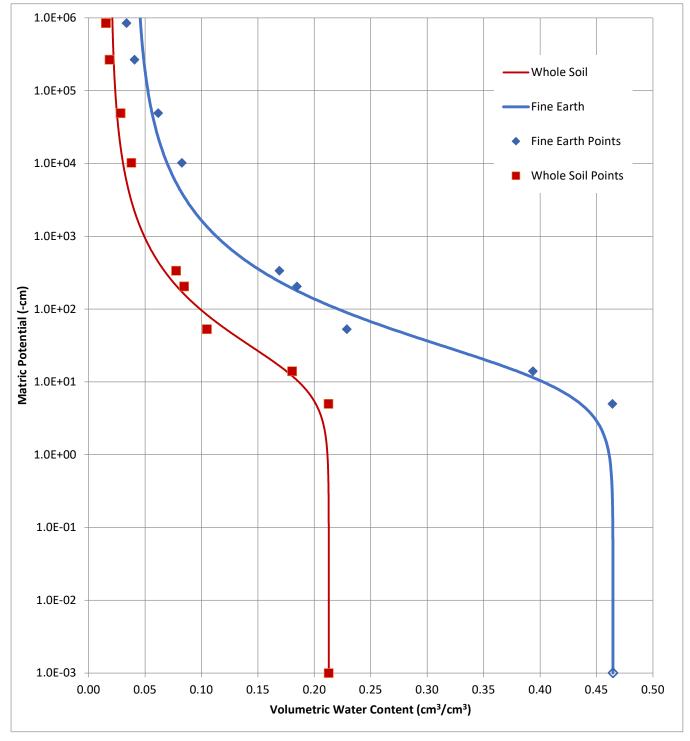

Whole Soil

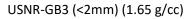
Fine Earth

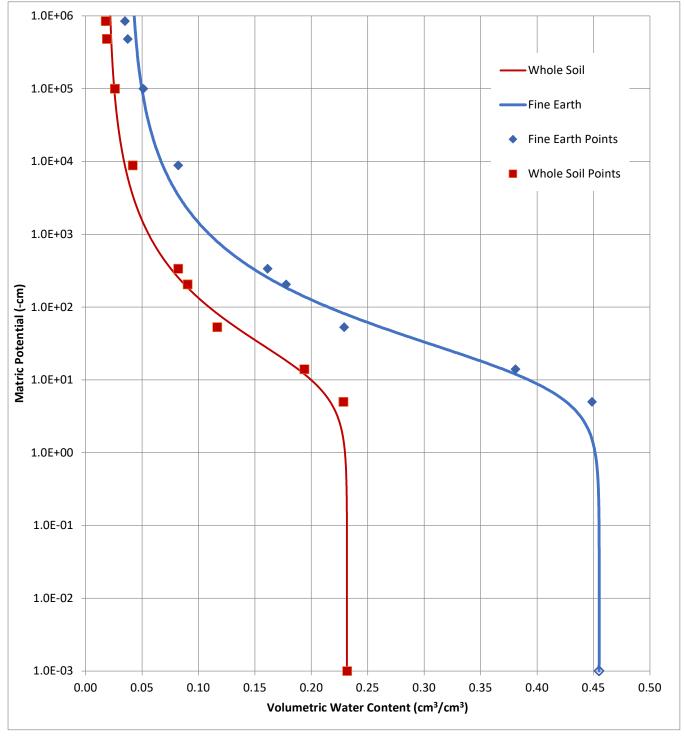

• Fine Earth Points

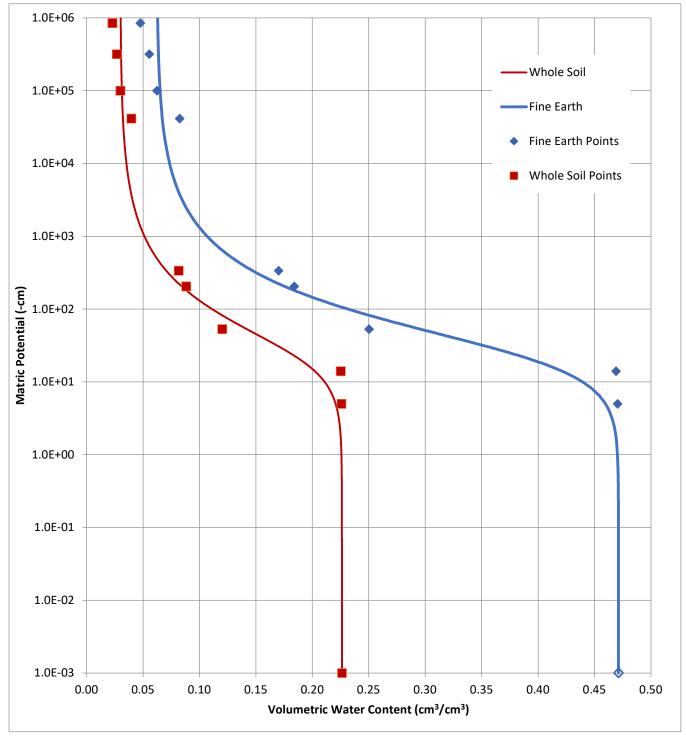
Whole Soil Points




9AX-GB1




CuL-GB1


USNR-GB1

WIP-GB1

