

REPORT

2013 TYRONE MINE CLOSURE/CLOSEOUT PLAN UPDATE – BASIS OF COST ESTIMATE FOR WATER MANAGEMENT AND TREATMENT

Freeport-McMoRan Tyrone Operations

Tyrone, New Mexico

Submitted to:

Freeport-McMoRan Tyrone Operations P.O. Box 571 Tyrone, NM 88065

Prepared by:

Golder Associates Inc. 7245 W Alaska Drive, Suite 200, Lakewood, Colorado, USA 80226

+1 303 980-0540

181-06417.002.R.Rev1

April 28, 2020

Table of Contents

1.0	INTRO	DDUCTION1
	1.1	Sources of Water to be Treated and/or Managed1
	1.2	Performance Objectives1
2.0	BACK	GROUND
3.0	ETS S	SYSTEM
	3.1	Background4
	3.2	Current ETS Plan4
	3.3	System Design Basis5
	3.3.1	Climate5
	3.3.2	Estimated Quantity of Residual Process Solutions to be Evaporated5
	3.3.2.1	Water in Open Pits5
	3.3.2.2	Solutions in Reservoirs and Impoundments5
	3.3.2.3	Average Circulated Inventory6
	3.3.3	Estimated Process Water Flows to be Evaporated6
	3.3.4	Water Quality7
	3.3.5	Operational Periods7
	3.4	Short-Term ETS Recirculation System7
	3.5	Short-Term ETS Forced Spray and Drip Irrigation System8
	3.6	Long-Term ETS Forced Spray System
	3.7	Salt Disposal Facility9
4.0	TTS A	ND ASSOCIATED SLUDGE DISPOSAL FACILITY9
	4.1	System Design Basis
	4.1.1	Water Treatment and Sludge Systems10
	4.2	TTS Water Treatment System10
	4.2.1	Membrane System11
	4.2.2	HDS System Assumptions11
	4.3	Sludge Disposal Facility

	4.4	Discharge Pipeline and Structure	.12
5.0	WATE	R CONVEYANCE	.12
6.0	соѕт	ESTIMATION	.12
	6.1	Capital Cost Development	.13
	6.2	Operations and Maintenance Cost Development	.13
	6.2.1	Labor Rates	.14
	6.2.2	Reagents	.14
	6.2.3	Membrane System	.14
	6.2.4	Maintenance	.15
	6.2.5	Sampling and Analysis	.15
	6.2.6	Electrical Power Consumption	.16
	6.2.7	Sludge Disposal	.16
	6.2.8	Salt Disposal	.16
	6.2.9	Indirect Costs	.16
7.0	CLOS	ING	.17
8.0	REFE	RENCES	.18

TABLES

Table 7: Summary of Water Flow and Sulfate Concentrations for Influent Streams Sent to the TTS Treatment System	21
Table 8: Summary of Water Flow and Sulfate Concentrations for Influent Stream Sent to the TTS Membrane Treatment System	
Table 9: Summary of Water Flow and Sulfate Concentrations for Influent Streams Sent to the TTS HDS System	21
Table 10: Annual Rate of Sludge Generation from Water Treatment System	22
Table 11: Labor Costs	22

Table 1:	Inventoried Process Waters at the Beginning of the Short-Term Evaporative Treatment System Operation
Table 2:	Surface Impoundment, Pond, and Tank Evaporation Schedule - Years 1 through 9
Table 3:	Surface Impoundment, Pond, and Tank Evaporation Schedule - Years 10 through 14

Table 4:	Surface Impoundment, Pond, and Tank Evaporation Schedule - Years 15 through 100
Table 5:	Evaporation Treatment Schedule
Table 6:	Annual Rate of Salt Generation from Evaporative Treatment System (Years 10 Through 100)
Table 7:	Summary of Water Flow and Sulfate Concentrations for Influent Streams Sent to the TTS Treatment System
Table 8:	Summary of Water Flow and Sulfate Concentrations for Influent Streams Sent to the TTS Membrane Treatment System
Table 9	Summary of Water Flow and Sulfate Concentrations for Influent Streams Sent to the TTS HDS System
Table 10:	Annual Rate of Sludge Generation from Water Treatment System
Table 11:	Labor Costs

FIGURES

Figure 1:	Mine Location Map
Figure 2:	Areas Utilized for the Short-Term Evaporative Treatment System (Years 1 Through 9)
Figure 3:	Areas Utilized for the Long-Term Evaporative Treatment System (Years 10 Through 14)
Figure 4:	Areas Utilized for the Long-Term Evaporative Treatment System (Years 15 Through 100)
Figure 5:	Proposed TTS Water Treatment Facility and Sludge Disposal Facility
Figure 6:	Water Treatment System Block Flow Diagram (Years 15 Through 100)

ATTACHMENTS

- Attachment A Summary Table of Post Mining Process Water Management and Water Treatment Flow Rates
- Attachment B Equipment and Material Quotes and Cost Backup Details
- Attachment C Water Management and Treatment Cost Estimate Tables

1.0 INTRODUCTION

This Freeport-McMoRan report for the Tyrone Mine (Tyrone) describes the cost basis for the updated closure mine water management and treatment system for the Tyrone Closure Closeout Plan (CCP). Tyrone operates an open-pit copper mine and solution extraction-electrowinning (SX/EW) plant located approximately 10 miles southwest of Silver City in Grant County, New Mexico (Figure 1). The associated water management system existing to support mine activities includes wells, tanks, pipelines, pumps, and process water ponds. The ancillary infrastructure includes roads/railway, fuel storage tanks, power lines, and stormwater controls. The updated closure water management and treatment system presented in this document utilizes some of the existing equipment and features and also includes new equipment and systems described in this document. The closure water management and treatment system presented herein was developed in accordance with Section 20.6.7.33.H NMAC and includes short-term and long-term evaporative treatment components, chemical precipitation with lime treatment and ancillary components, and membrane treatment components.

1.1 Sources of Water to be Treated and/or Managed

There are five sources of process water that are likely to be sent to the water management and treatment systems. Process waters are defined in the Copper Mine Rules (20.6.7 NMAC) as "any water containing water contaminants in excess of the standards of 20.6.2.3103 NMAC that is generated, managed or used within a copper mine facility including raffinate; PLS; leachate collected from waste stockpiles, leach stockpiles, and reclaimed tailings impoundments; tailings decant water; pit dewatering water; intercepted ground water, laboratory or other waste discharges containing water contaminants; and domestic wastes mixed with process water". As part of the development of the Tyrone water management and treatment program, process waters are separated into: (1) high TDS and sulfate (>10,000 milligrams per Liter [mg/L] TDS and >7,500 mg/L sulfate) waters; and (2) low TDS and sulfate (<10,000 mg/L TDS and <7,500 mg/L sulfate) waters. At the end of mining, there will be reclamation activities that will result in significant source control and this source control will reduce the quantity of poor quality water that will have to be treated over time. The five sources of process water streams to be sent to the proposed water management and treatment systems are assumed to be:

- Residual process solutions from the leach operation;
- Meteoric water that infiltrates through the acid-generating stockpiles to seepage collection;
- Storm water runoff that comes into contact with un-reclaimed stockpiles and storm water that falls within the Revised Open Pit Surface Drainage Area (Revised OPSDA);
- Dewatering water from the existing open pits; and
- Impacted groundwater captured in seepage collection and interceptor well systems.

These sources of process waters will be managed and or treated throughout site reclamation activities and for a duration of 100 years following cessation of mining operations. The following methods described in the sections below are proposed for management and treatment of process waters.

1.2 Performance Objectives

The primary performance objective for water management and treatment is to collect process waters associated with mine operations and to treat these waters to meet the applicable New Mexico Water Quality Control Commission (NMWQCC) criteria for discharge. To meet the performance objectives the following strategies will be utilized:

- A short-term evaporative treatment system (ST-ETS) will be utilized to evaporate all process waters from Year 1 through Year 9 following closure.
- A long-term evaporative treatment system (LT-ETS) will be utilized to evaporate all process waters from Year 10 through Year 14, and high TDS and sulfate source waters beginning in Year 15 and continuing through Year 100 after closure. The LT-ETS will also be utilized to evaporate brine reject waters from the membrane system beginning in Year 15 and continuing through Year 100 after closure.
- A combined High-Density Sludge (HDS) and membrane system will be utilized beginning in Year 15 and continuing through Year 100 following closure to treat all low TDS and sulfate waters collected. The HDS and membrane system are collectively referred to as the Tyrone Treatment System (TTS).
- Minimization of impacted surface runoff requiring treatment. Storm water runoff will be managed through surface reclamation of areas located outside the Revised OPSDA and Revised Conditional Waiver Area associated with the end of year (EOY) 2014 Mine Plan Topography to preclude potential for contact with stockpiles. Impacted storm water runoff will be collected and treated for a period of 100 years following closure.
- Minimization of impacted pit water requiring treatment through the installation and operation of a pit inflow groundwater interceptor well system.
- Release non-impacted water (meteoric and storm water surface runoff), where possible, in accordance with state regulations and the Tyrone Mine Stormwater Handling Plan (Freeport-McMoRan Tyrone Inc., 2015). Manage potentially impacted sources in a manner to prevent their contact with non-impacted water where possible. Non-impacted water sources will not require treatment prior to discharge.
- Temporary storage of stockpile seep water and groundwater from seepage collection and interceptor systems in surface impoundments and tanks to allow for sampling and analysis prior to final disposition. Water that is shown to be in compliance with applicable NMWQCC water quality standards (Title 20, Chapter 6, Part 2, Subparts II and III), will be discharged in accordance with state regulations. Impacted water will be conveyed to the appropriate water management and treatment systems.

This strategy will maximize the quantity of non-impacted water and minimize the quantity of impacted water that must be treated prior to release. These sources will be managed and/or treated during reclamation activities and for a duration of 100 years following cessation of mining operations.

This report includes the following components:

- Characterization of the influent from flow and water quality predictions;
- Description of processes for water management and treatment;
- Capital and operating and maintenance (O&M) cost development assumptions and strategies for closure water management and treatment;
- Capital and O&M cost detail for the closure water management and treatment components; and
- Summary costs for the 100-year closure period.

2.0 BACKGROUND

This water management and treatment plan supports financial assurance cost estimates for closure/closeout based on the EOY 2014 mine plan (highest liability year). Use of the EOY 2014 mine plan is consistent with the snapshot in time philosophy that was adopted by Tyrone and the Agencies early in the closure planning process and represents the year with the greatest volume of regrading and cover placement required between 2012 and 2017. If mining activities were to cease between the years 2012 and 2017, the highest financial assurance requirements would be associated with the EOY 2014 conditions. Additionally, Tyrone recently evaluated the mine plans through year 2022. This analysis also showed that the EOY 2014 mine plan represents the year with the greatest volume of required between 2012 and 2022. Thus, the EOY 2014 plan is expected to represent the most onerous condition from a cost perspective.

The New Mexico Environment Department (NMED) requires a water management and treatment plan in the event of mine closure that includes water collection, handling, and treatment for 100 years. Impacted waters are to be treated to ensure compliance with applicable NMWQCC water quality standards (Title 20, Chapter 6, Part 2, Subparts II and III). The Tyrone water management and treatment plan in part is based on previous evaporative treatment studies (M3, 2004), water treatment studies (Van Riper Consulting [VRC], 2002 and 2008), and sludge handling plans (VRC, 2004), with updated projected water flows and water quality for the various sources of water to be treated. The components of the Tyrone water management and treatment plan include the following:

- Water conveyance systems that include pipelines and pumps required to move water to one of the water management and treatment facilities (ST-ETS, LT-ETS, TTS) and discharge treated water from the TTS;
- A ST-ETS for treatment of all process waters from Year 1 through Year 9 following closure;
- A LT-ETS for treatment of all process waters from Year 10 through Year 14, and all high TDS and sulfate waters beginning in Year 15 and continuing through Year 100 after closure. The LT-ETS will also be utilized to evaporate brine reject waters from the membrane system beginning in Year 15 and continuing through Year 100 after closure;
- Membrane and lime HDS treatment processes included in the planned TTS. The HDS system will be used to pretreat the low TDS and sulfate water streams. The membrane system will further treat the pre-treated HDS water. This strategy will be used for treatment of all low TDS and sulfate water streams from Year 15 through Year 100 during the closure period; and
- A Sludge Disposal Facility for sludge produced by the HDS system beginning in Year 15 and continuing through Year 100, and a Salt Disposal Facility for salt produced from the LT-ETS beginning in Year 10 and continuing through Year 100.

The proposed concept and other associated information for the evaporative treatment system (ETS) and TTS is presented in the following sections.

3.0 ETS SYSTEM

The following sections present information on previous evaporative treatment studies for Tyrone, and details of the current ETS plans for the mine associated with the Tyrone CCP.

3.1 Background

The NMED issued Supplemental Discharge Permit for Closure, DP-1341 to Tyrone on April 8, 2003 (NMED, 2003). Condition 88 of DP 1341 required that Tyrone perform a process solution elimination (PSE) study. The purpose of the PSE study was to evaluate alternatives and identify proven and cost-effective methods to treat and/or eliminate process solutions and impact water following cessation of operation or closure at the Tyrone Mine Facility.

In accordance with Condition 88, an initial ETS was conducted in 2004 (M3, 2004) that was based on post-mining water management and water treatment flow rates provided in the 2001 Tyrone Mine Closure/Closeout Plan (M3, 2001). The initial ETS was revised in 2006 based on comments received by the NMED on the initial PSE study (M3, 2006). This report provides an update to the 2006 ETS and is based on 2019 updated post-mining water management and water treatment flow rates and updated mine plans.

The 2006 ETS study proposed process solution elimination (evaporation) by natural (passive) and forced evaporation on previously disturbed stockpile areas. The inventoried process waters were comprised of pregnant leach solution (PLS), stockpile seepage, impacted runoff from stockpiles and impacted groundwater from inceptor wells and open pit sumps.

Two alternatives were previously examined to remove the water: Option 1 – recirculation, forced spray evaporation and drip irrigation system; and Option 2 - recirculation and drip irrigation system. The study assumed that processing of residual fluids for copper recovery ceases at the close of operations. In practice, leach stockpiles will continue to operate and generate copper production for many years after ore shipment to stockpiles ends. Over time, the copper production rate will decrease until leaching is no longer economic; therefore, this is a conservative water management and treatment plan only intended for closure/closeout planning.

The previous study projected both alternatives as capable of evaporating the inventoried process solutions within the prescribed 5-year time period for the 2001 Tyrone Mine Closure/Closeout Plan. Option 1 was the recommended alternative due to the smaller stockpile surface areas required, higher evaporative loss rates, and overall lower costs (M3, 2006).

3.2 Current ETS Plan

This report provides an update to the previous Condition 88 studies (M3, 2004 and 2006) and is based on the EOY 2014 mine plan and a 2019 estimate of the volume and sources of residual fluids that would be required to be handled upon cessation of mining operations. In addition, updated information on new spray evaporative technologies have been obtained, estimates of the volume of impacted water that will be required to be treated have been updated, and the impoundments and tanks available for use in the ETS have been updated as part of this CCP Update.

The updated ETS is based on recirculation of process water and residual process solutions with:

- Year 1 through Year 9: Use the existing drip irrigation systems at the mine and operation of new forced spray evaporation systems on top of the leach stockpiles (ST-ETS program);
- Year 10 through Year 14: Continued use of forced spray evaporation systems at newly constructed lined evaporation ponds for treatment of all process solutions (LT-ETS program); and

Year 15 through Year 100: Continued use of forced spray evaporation systems at newly constructed lined evaporation ponds for treatment of all high TDS and high sulfate waters and brine reject waters from the TTS membrane system (LT-ETS program).

These high TDS and sulfate concentration waters and the brine reject water will be collected and treated over the 100-year closure period to provide life cycle operational cost benefits and reduce the quantity of residual solids generated by alternative treatment methods such as chemical precipitation.

3.3 System Design Basis

3.3.1 Climate

See Section 2.3.3 in the Tyrone Mine Closure/Closeout Plan Update for climate assumptions utilized in the water management and treatment plan.

3.3.2 Estimated Quantity of Residual Process Solutions to be Evaporated

The first step of the updated ETS analysis is to identify the volume of water requiring treatment or elimination. During the mining and copper leaching operations approximately 30,615 gallons per minute (gpm) of leach solution is circulated through the copper production system (Tyrone, 2019). Figure 2 outlines the projected configuration of the stockpiles at the EOY 2014 and the associated areas that will be utilized for the ST-ETS program between Years 1 through 9. Table 1 presents the estimated volumes of residual process solutions to be evaporated from the individual sources at the mine.

Estimates of the volume of residual process solutions to be evaporated are assumed to be accurate within plus or minus 25 percent. Actual inventory fluctuates with seasonal variations in precipitation and other climatic conditions such as temperature and humidity and with the production goals of the SX/EW plant. Table 1 identifies the total estimated quantity of residual process solutions to be evaporated at the beginning of the ST-ETS operation at approximately 1,862,873,600 gallons. Sections 3.3.2.1 through 3.3.2.3 provide a description of the methods used to estimate the volumes of residual process solutions to be evaporated.

3.3.2.1 Water in Open Pits

The estimated volume of water in open pits requiring elimination at the cessation of operations is based on measured open pit water stage readings and associated open pit storage information for the Main, Gettysburg, Copper Mountain, and San Salvador pits provided by the Tyrone Mine Engineering Group. The estimated residual pit volumes presented in Table 1 represents the average combined storage within these pits from January 2017 through December 2018.

3.3.2.2 Solutions in Reservoirs and Impoundments

The estimated volume of process solutions within the reservoirs and impoundments requiring elimination at the cessation of operations is calculated according to the following methodology:

- Volumes of process solutions within the surface impoundments and storage tanks at the start of evaporation program are assumed to be at 60 percent of their capacities;
- For HDPE-lined overflow ponds, it is assumed that process solutions will be added to the ponds (60 percent of their capacities) from the circuit at the start of the evaporation program to enhance surface evaporation of the fluids;

- The 4C and 6C collection ponds are actually collection points with drains at the base and do not store process solutions; and
- The overflow ponds will contain no process solutions at the inception of ST-ETS operation.

A summary of the surface impoundments, overflow ponds, and tanks included in the ST-ETS analysis are provided in Table 2 (Years 1 through 9) along with the estimated annual evaporation from each. A summary of the surface impoundments, overflow ponds, and tanks included in the LT-ETS analysis are provided in Table 3 (Years 10 through 14) and Table 4 (Years 15 through 100). The total volume of process solutions contained in the surface impoundments and tanks at the beginning of the ST-ETS is estimated to be approximately 17,612,200 gallons, and the estimated volume of process solutions added to, and maintained within, the surface impoundments and tanks is approximately 11,308,800 gallons.

3.3.2.3 Average Circulated Inventory

The initial Average Circulated Inventory (ACI) is calculated based on experience with leach operations at Tyrone. During mining and copper leaching operations, approximately 30,615 gpm of leach solution (raffinate) is circulated through the copper leach circuit and onto the leach stockpiles, referred to as the initial raffinate flow rate. The make-up water requirement during leaching operations typically averages eight percent of the initial raffinate flow rate. Therefore, after cessation of the mining operations, leaching operations are expected to be shut down and the process leach solution flow rate is estimated at 92 percent of the initial raffinate flow rate. Additionally, based on experience at Tyrone, the flow rate at a leach stockpile diminishes to approximately ten percent of the full flow rate in 45 days after leaching operations are halted. Based on these assumptions, the total estimated initial ACI is approximately 1,642,629,500 gallons (Table 1).

3.3.3 Estimated Process Water Flows to be Evaporated

Estimated flows for the individual sources contributing water to the ETS systems are provided in Attachment A. The estimates of the flow rates and sulfate concentrations for the individual seepage collection and interceptor well systems at the Tyrone Mine was based on existing flow and water quality data collected between January 2017 and the end of December 2018 for the individual systems that is recorded by Tyrone in accordance with applicable operational discharge plans (DPs). Sources of water in-flow to the system related to open pit dewatering were based on the Daniel B. Stephens & Associates, Inc. (DBS&A) Stage 2 Abatement Plan Proposal groundwater flow model (DBS&A, 2012) that was updated with the EOY 2014 base case mine plan configuration and associated regrade plan. DBS&A developed geochemical mixing models using PHREEQC Interactive (version 3.0) (Parkhurst and Appelo, 1999) to support the Tyrone CCP Update (DBS&A, 2019). The mixing models estimate future water quality at the Main, Gettysburg, Copper Mountain, and Savanna pits at 15, 50, and 100 years post-closure. Initial (year zero) water quality for each of the open pits was based on 2018 water quality data. A linear interpolation was subsequently performed by Golder to estimate the water quality of the open pits between the Year 0, 15, 50, and 100 mixing models estimates.

Surface water runoff flows and sulfate concentration estimates were derived from implementation of a conceptual mathematical dynamic system model (DSM) using the GoldSim simulation software platform and the proposed reclamation plan presented in this updated CCP report. The DSM is a dynamic, probabilistic simulation model that projects the behavior of the mine system and the influence of various closure activities have on its performance. Runoff sources are segregated into impacted and non-impacted flows in the DSM. Runoff from reclaimed stockpile surfaces is non-impacted and can be discharged to the environment and is not conveyed to the ETS or water treatment system.

3.3.4 Water Quality

The water quality of the process waters is estimated to be the same as that which is currently collected from the individual sources listed in Sections 3.3.2 and 3.3.3.

3.3.5 **Operational Periods**

There are two ETS programs and associated operational periods. The ST-ETS analysis is based on an operational period of Years 1 through 9. During Years 1 through 9, the leach stockpiles will largely be unreclaimed and the ST-ETS will include recirculation of all process solutions with drip irrigation systems, operational spigots, and forced spray evaporation systems on top of the leach stockpiles.

During Years 10 through 14, reclamation of all the leach stockpiles will have been initiated, which will preclude recirculation of the process solutions on top of the leach stockpiles. For this time period, the LT-ETS program will be initiated for treatment of all process solutions. The LT-ETS will include forced spray evaporation systems installed at two new HDPE-lined spray evaporation ponds constructed in the footprint of the Decant Ponds located east of the 2A Leach stockpile and near the SX/EW Plant (Figure 3). Beginning in Year 15, the LT-ETS will be used to treat all high TDS and sulfate waters and brine reject waters from the TTS membrane system and will operate for the remainder of the 100-year closure water management and treatment period. All the remaining low TDS and sulfate water sources will be treated through the TTS (membrane and lime/HDS treatment systems) for the remainder of the 100-year closure water management and treatment period. The ETS schedule for the 100-year closure water management and treatment period.

3.4 Short-Term ETS Recirculation System

As part of the recirculation system at the Tyrone Mine, the existing mine process solution distribution system (drip system) will be utilized to recirculate all residual process solutions to the top surface areas of the leach stockpiles for a period of nine years (Figure 2). These waters will be collected and treated by evaporation by the ST-ETS system to allow time for construction of the TTS and to reduce the volume of process waters requiring treatment with the TTS during the initial years of closure.

Using the ST-ETS for residual process solutions allows for minimization of secondary waste (sludge) generation and associated optimization of operational costs. Evaporation during this nine-year period will mostly occur at the top surface of the leach stockpiles and to a lesser amount at the surface impoundments, overflow ponds, and tanks listed in Table 2. The residual process solutions will drain through the leach stockpiles and then will be recirculated through the existing mine process solution distribution system.

At the onset of the ST-ETS operation, residual process solutions will drain from the leach stockpiles into their respective surface impoundments or tanks. Initially the drain down water will be transferred to the SX/EW feed pond. Once the level in each of the surface impoundments, overflow ponds, and tanks have stabilized at sixty percent of their maximum capacities, the transfer is complete. This is the assumed fill level and operational level for these facilities for the entire 9 years of the ST-ETS operation.

Water from the SX/EW PLS Feed Pond will be transferred to the existing raffinate tanks. From the raffinate tanks, the water will be pumped to the leach stockpiles through the existing raffinate distribution system. Residual process solutions that are not evaporated during this process will drain through the stockpiles and be pumped through the existing distribution systems back to the existing PLS collection pond/tanks located adjacent to the leach stockpiles to complete the recirculation loop.

Initiation of leach stockpile reclamation will begin at the 6A Leach at the EOY 5, and reclamation of the remaining leach stockpiles will be initiated in the beginning of the second quarter of Year 10. Beginning in Year 9, two new HDPE-lined spray evaporation ponds will be constructed (one 7-acre pond in the footprint of the Decant Ponds located east of the 2A Leach stockpile, and one 3.2-acre pond constructed in the SX/EW Plant area). LT-ETS operations will then begin in Year 10 as detailed below in Section 3.6.

3.5 Short-Term ETS Forced Spray and Drip Irrigation System

The ST-ETS program will utilize the existing PLS drip systems and a new forced spray evaporation system to maximize the evaporation rate of the impacted water and residual process solutions distributed to the top surface areas of the leach stockpiles. Evaporation of the process waters during the first year of the ST-ETS program will occur through drip irrigation alone. During this first year, a mechanical forced spray system will be installed on top of the leach stockpiles and will be fully operational by the beginning of Year 2 of ST-ETS operation (Figure 2). Forced evaporation of these waters will be accomplished with mechanical spray systems designed to handle flows up to 123 gpm per unit. The forced spray evaporation and drip irrigation evaporation systems are expected to operate concurrently for Years 2 through 9; however, the time of operation may vary based on actual results.

Additional evaporation will naturally occur from the surfaces of the surface impoundments, overflow ponds, tanks, and pit lakes during this time (Figure 2). The stockpile areas that will be utilized for both drip irrigation (Year 1 through 9) and mechanical forced spray evaporation (Year 2 through 9) are shown on Figure 2. The surface impoundments, overflow ponds and tanks to be utilized in the ST-ETS program are included in Table 2.

The flow rate of the evaporation system will initially be the same as the flow rate during leaching operations and will be reduced each year thereafter as the water in storage is depleted. Table 5 provides a summary of the ETS schedule. Capital and operations and maintenance (O&M) cost estimates for the ST-ETS are provided in Attachment C and include spray evaporation units, piping, and pumps and their O&M. The basis for these estimates are provided in Attachment B.

3.6 Long-Term ETS Forced Spray System

The LT-ETS consists of forced evaporation and wetted surface evaporation. Prior to the start of the LT-ETS program at the beginning of Year 10, 7.4 acres of the existing footprint of the Decant Ponds located east of the 2A Leach stockpile will be prepared, and a 7-acre HDPE-liner installed for spray evaporation pond #1. An additional 3.5-acre area located immediately south of the existing raffinate tanks will be prepared, and a 3.2-acre HDPE-liner installed for spray evaporation pond #2. At EOY 9, the mechanical spray systems will be relocated from the leach stockpiles (Figure 2) to the two new HDPE-lined spray evaporation ponds (Spray Evaporation Ponds #1 and #2 on Figure 3). Additionally, the No. 3 PLS Overflow Pond will no longer be needed for surface evaporation of waters from the 3A collection systems and will be reclaimed in Year 9. For Years 10 through 14 forced evaporation of all process waters will occur from the spray systems installed at the two new evaporation ponds and from wetted surface evaporation from the surface impoundments and tanks listed in Table 3. The No. 3 PLS Overflow Pond will be replaced with a new 20,000 gallon polyethylene above-ground storage tank in Year 9 for transferring low TDS and sulfate waters from the 3A collection systems to the LT-ETS (Years 10 through 14) and TTS (Years 15 through 100).

Beginning in Year 15, all of the low TDS and sulfate waters will be conveyed to the TTS. The LT-ETS program will continue to utilize forced evaporation systems that were installed at the two new HDPE-lined spray evaporation ponds and wetted surface evaporation from the surface impoundments and tanks to maximize the evaporation rate of the high TDS and sulfate process waters. These waters will be collected and treated via evaporation over

the 100-year treatment period to reduce the quantity of residual solids generated by alternative treatment methods such as chemical precipitation. The leach stockpile seepage contains the highest concentrations of sulfate and TDS of all water sources to be treated via evaporation following completion of the ST-ETS program. The LT-ETS will also be utilized to evaporate brine reject waters from the TTS membrane system beginning in Year 15 and continuing through Year 100 after closure. The existing water conveyance pipelines and associated pumping systems will be utilized to direct high TDS and sulfate concentration process waters.

The flow rates of the evaporation system will drop off over time as the stockpiles are reclaimed. Stockpile seepage flows in the toe collection systems will be reduced following reclamation of the leach stockpiles. The transition from uncovered to covered seepage rates is spread over a 20-year period with a linear rate decrease between Year 12 and 32. The estimated quantity of residual process solutions that will be handled as part of the LT-ETS is provided in Attachment A, and the LT-ETS schedule is summarized in Table 5. Capital and O&M cost estimates for the LT-ETS are provided in Attachment C and include construction of the two new HDPE-lined evaporation ponds, and any additional spray evaporation units, piping and pumps required and their O&M. The areas that will be utilized for the LT-ETS are shown on Figure 3 (Year 10 through 14) and Figure 4 (Year 15 through 100).

3.7 Salt Disposal Facility

Salts produced from the LT-ETS (Years 10 through 100) will be periodically removed from the two spray evaporation ponds and hauled to and stored at an HDPE-lined Salt Disposal Facility. The proposed Salt Disposal Facility will be constructed immediately north of spray evaporation pond #1 (Figure 4). Approximately 15 acres of existing Decant Pond area located east of the 2A Leach stockpile will be lined with 80-mil HDPE and an earthen berm will be constructed around the perimeter.

An estimated 1,265,300 cubic yards (cy) of salt will require storage at the Salt Disposal Facility during the 90-year LT-ETS operational period (Year 10 through 100). The total estimated amount of salts produced annually is summarized in Table 6. These values are based on the estimated water quality and flows associated with the combined process waters (Year 10 through 14) and high TDS and sulfate concentration waters (Year 15 through 100) treated via evaporation over the 90-year period where salt generated is disposed in the Salt Disposal Facility. As shown on Table 6, the amount of salt generation drops off in Year 15 when the TTS comes online and the LT-ETS begins to only treat the high TDS and sulfate concentration waters. The capacity of the disposal facility is adequate for salt produced for 90 years of operation of the LT-ETS. Capital and O&M cost estimates for the Salt Disposal Facility are provided in Attachment C and include construction and O&M of the 15-acre HDPE-lined Salt Disposal Facility. The cost basis for these components are included in Attachment B.

4.0 TTS AND ASSOCIATED SLUDGE DISPOSAL FACILITY

The proposed primary treatment processes and associated primary and ancillary equipment sizing for the TTS was based on the treatability studies conducted by Van Riper Consulting (2002 and 2008), Hazen Research (VRC, 2008), and HW Process Technologies (VRC, 2008). Construction of the TTS will be completed in Year 14 of the 100-year period, and operations will be started in Year 15.

A Sludge Disposal Facility will be constructed and associated with the TTS for the management of dewatered sludge from the HDS system (Figure 5). An overview of the TTS and the Sludge Disposal Facility is provided in the following sections along with flow and quality information for water to be treated in the TTS and used in the development of the capital and annual operations and maintenance costs. The conveyance system (pipeline and

tank) and energy dissipation structure for treated water discharged from the TTS are also included in this section and the costs are included with the TTS costs in Attachment C.

4.1 System Design Basis

Beginning in Year 15 and continuing through Year 100, the remaining low TDS and sulfate water streams will be sent to the TTS facility for treatment. A summary table of the post-mining water management and water treatment flow rates for the TTS is included in Attachment A.

4.1.1 Water Treatment and Sludge Systems

Table 7 presents a summary of the flow and sulfate concentration sent to the TTS in Years 15, 25, 50, 75 and 100. The flows and concentrations are presented at intervals over the 85 years of TTS operation (Year 15 through 100) to demonstrate that the overall flow or sulfate concentration of the influent do not change significantly over that time period. Tables 8 and 9 present the flow and sulfate information over the same time intervals for the pretreated stream from the lime HDS system to the membrane system, and the influent to the HDS system. The membrane system is expected to see fairly consistent influent quality since the HDS system provides pretreatment for the membranes while the HDS system influent varies in a similar manner as the raw water influent to the TTS.

Estimated sludge volumes, from the HDS system, to be sent to the Sludge Disposal Facility were calculated from the projected sulfate concentrations. Table 10 presents the sludge mass predictions to be sent to the Sludge Disposal Facility; an estimated 1,635,108 cy of sludge (50% solids by weight) will require storage at the Sludge Disposal Facility during the 85-year TTS operation period.

4.2 TTS Water Treatment System

The Tyrone TTS water treatment system will include both membrane filtration and HDS lime precipitation systems located within the SX/EW Plant area (Figure 5). A block flow diagram of the proposed TTS is presented in Figure 6.

This conceptual treatment configuration optimizes capital and operating costs while meeting regulatory limits for discharge of treated effluent. The concept and process development of the HDS and membrane filtration treatment components and associated primary and ancillary equipment sizing is based on the treatability studies conducted by Van Riper Consulting (2002 and 2008), Hazen Research (VRC, 2008), and HW Process Technologies (VRC, 2008).

All low TDS and sulfate process water streams will be sent to the HDS system to increase the pH and remove metals and sulfate. The TTS is shown in Figure 6, which includes an HDS System, TSS Membrane, and TSS. A Micofiltration (MF) unit provides suspended solids removal to prevent fouling of the Reverse Osmosis (RO) membrane. Treated effluent (permeate) from the MF unit will be sent to the RO unit. The RO unit uses a series of semi-permeable membranes that removes dissolved monovalent and divalent (and higher valences) constituents including some metals and sulfate. The MF and RO reject streams will be sent to the LT-ETS.

Chemical precipitation is a conventional and widely used treatment for the removal of a portion of the sulfate concentration down to the gypsum solubility limit. With the addition of lime, the pH is adjusted to the range of approximately 10 to 11 in order to achieve the minimum solubility for the target compounds. The dissolved contaminant forms an insoluble precipitate, which is then removed from the water by clarification. A flocculent is

added to increase the settling rate of precipitated solids. Acid will be added to the clarified process stream to reduce the pH to the target range (7.5 to 9) prior to discharge as shown in the block flow diagram in Figure 6.

Precipitated solids removed during clarification, will be further dewatered by a filter press. The treatment of the highest concentration sulfate solutions in the ETS reduces the sulfate load to the HDS plant reducing overall chemical requirements and the quantity of sludge produced. Based on operations of similar HDS systems and the Van Riper Consulting test work, it is expected that dewatering in a filter press will achieve approximately 50% solids by weight in the dewatered sludge. Dewatered sludge will be sent to the on-site Sludge Disposal Facility.

4.2.1 Membrane System

The membrane system is currently included to treat both the TTS influent and approximately 300 gpm of groundwater from a new groundwater interceptor well system (GIWS) located in the Main Pit (see Figure 5). The feasibility of intercepting groundwater upgradient of the Main Pit was previously evaluated by John Shomaker and Associates, Inc. (JSAI, 2003) and JSAI and Eddie Livingston (2005) and it was determined to be a viable option to reduce groundwater inflows into the Main Pit.

The membrane system will include 2 trains of MF and 2 trains of RO to provide system flexibility. Recovery for the membrane system is projected based on the treatability studies conducted by Van Riper Consulting and HW Process Technologies (VRC, 2002 and 2008), and adjusted based on projected influent sulfate concentrations for the individual treatment streams updated in 2019.

Based on the projected TTS water quality, it is assumed that it can be treated in a conventional membrane system using pretreatment by microfiltration and removal of dissolved constituents by RO similar to the system proposed in the last Tyrone Mine CCP Update (Golder, 2013). The recoveries and other information from the HW Process Technologies treatability study are assumed to be applicable to the more conventional membrane system (RO) with the MF pretreatment.

The influent water stream has moderate concentrations of scaling and fouling constituents (aluminum, iron, manganese, sulfate, hardness) and low pH, and so pretreatment to remove these constituents is included to allow higher recoveries in the RO system. The GIWS water is projected to have elevated concentrations of fouling constituents such as aluminum, iron and manganese based on previous analyses of the extracted water from the earlier groundwater interceptor pilot system (JSAI and Eddie Livingston, 2005). For this CCP Update, it is assumed that the low TDS and sulfate process water streams and the GIWS water will be pretreated using the HDS system prior to being sent for treatment through the membrane.

4.2.2 HDS System Assumptions

It is assumed that the low TDS and sulfate water streams and the GIWS water will be sent to an HDS system located at the SX/EW Plant area. Capital cost for the lime HDS system are included in Attachment C and were determined by obtaining new vendor quotes for major equipment and by using engineering experience based on recent construction of new HDS facilities for the Colorado Department of Public Health and Environment (CDPHE) for the Summitville Mine site (2009 construction) and the Central City/Clear Creek OU4 Water Treatment Plant (2018 construction). The basis of the capital costs for the lime HDS system are included in Attachment B.

Both the lime handling system and the sludge management systems have been resized to reflect lime usage and sludge production expected from the segregation of the high TDS and sulfate water streams in the LT-ETS. The CCP cost estimates for sludge dewatering will include a filter press to dewater the sludge to approximately 50% solids before disposal in the Sludge Disposal Facility located on approximately 25 acres of the top surface of the

3A Leach stockpile. The 50% dewatered solids value was provided by Van Riper Consulting based on experience with other sludges that were primarily calcium sulfate.

4.3 Sludge Disposal Facility

Dewatered sludge will be hauled to and stored at the Sludge Disposal Facility. The proposed Sludge Disposal Facility will cover an area of approximately 25 acres on the top surface of the 3A Leach stockpile, and the TTS will be located nearby within the SX/EW Plant area (Figure 5).

The sludge volume is calculated based on the results of HDS treatability studies conducted by Hazen Research under the direction of Van Riper Consulting (VRC, 2008). The quantities are scaled based on the projected flow and sulfate concentration. The predictions show consistently decreasing flow rates and changes in water chemistry, which decrease the rate of sludge production through the operational life of the treatment plant. The capacity of the disposal facility is adequate for sludge produced for 85 years of operation of lime/HDS treatment plant.

4.4 Discharge Pipeline and Structure

The treated effluent from the TTS will be conveyed in a new pipeline from the treatment plant to a selected discharge point located within the diversion channel tributary arroyo to Mangas Wash located west of the 3A Leach stockpile. The discharge system includes a steel transfer tank, a 14-inch DR-17 HDPE conveyance pipeline, and an energy dissipation structure constructed with articulated concrete block. The system costs are developed in the same manner as described in Section 5 below. The energy dissipation structure costs for the TTS effluent system are included in Attachment C and are based off of the energy dissipation costs that were originally developed by Telesto Solutions Incorporated (Telesto) for the 2019 Chino CCP site-wide financial assurance cost proposal (Freeport McMoRan Chino Mines Company, 2019). The basis of the costs estimate is provided in Attachment B.

5.0 WATER CONVEYANCE

Existing pumps, pipelines, tanks, and reservoirs will be utilized to the extent practical to convey the various process water sources to the ETS and/or TTS. Where new pipelines and pumps are required, the associated capital costs have been included. The basis for development of the capital cost estimates for the water conveyance systems are provided in Attachment B and the cost estimates are provided in Attachment C.

6.0 COST ESTIMATION

Capital and O&M cost estimates presented in Attachment C have been developed using similar methodology as previous CCP Updates for Chino and Tyrone. Costs have been updated as appropriate according to the sources used including vendor quotes, RS Means, State of New Mexico Department of Labor Rates, and Public Service Company of New Mexico rate schedules for costs gathered in late 2018 and early 2019. In addition, modifications to cost factors based on the agreement reached in December 2018 in the Financial Assurance (FA) Work Group and approved by the State of New Mexico in January 2019 have been incorporated. The costs are detailed in Attachment C and a separate Excel spreadsheet file included on the CD attached this report. The spreadsheet contains several worksheets which are organized by color with a set of worksheets prepared for each major system and a set of summary sheets. Cost-specific assumptions not discussed in previous sections are outlined in the following sections and provide additional background for how the capital and O&M cost estimates were developed. Additional details on the cost basis for the water management and treatment systems are provided in Attachment B.

6.1 Capital Cost Development

Equipment and material cost estimates have been developed based on the information presented in Sections 2.0 through 5.0. Quotes were obtained for equipment, materials, consumables and other cost items associated with the TTS, ETS, conveyance system, TTS discharge system, and sludge and salt disposal facilities. The backup equipment and material quotes are included in Attachment B. Equipment installation and site construction have been estimated based on craft personnel, labor hours, and prevailing wage rates. The 2019 prevailing wage rates for Heavy Industry were used for the TTS construction as follows:

2019 NM Department of Labor Type H (Heavy Engineering) 2019 labor rates. Rates include base hourly wage, fringe benefit, and apprenticeship contribution. For cost estimate purposes it was assumed that all construction labor would have to travel more than 90 miles so that applicable Subsistence, Zone, and Incentive Pay is included per the 2019 rates for each category of construction labor.

Other costs, including freight on process equipment and the TTS building, and commissioning, have been estimated as lump sums.

For the TTS, the specific treatment train and associated primary and ancillary equipment sizes have been calculated based on the treatability studies conducted by Van Riper Consulting (2002 and 2008), Hazen Research, Inc. (2007), and HW Process Technologies, Inc. (2007). The results of the treatability studies have been updated with 2019 water quality and flow projections for the individual treatment streams, and updated treatment trains have been developed by the Freeport-McMoRan Inc. water treatment group. Other cost elements have been based on engineering judgment, updated cost quotes, and previous Golder experience with treatment plant construction and equipment installation projects.

A similar strategy was used for development of the ST-ETS cost, the LT-ETS cost, the conveyance system, the Salt Disposal Facility associated with the ETS, and the Sludge Disposal Facility associated with the TTS.

It is assumed that indirect costs, for capital, is 30% of the estimated direct capital cost based on the 2018 FA Work Group meetings and agreement and the associated approval letter issued by the State of New Mexico in January 2019. Indirect costs include but are not limited to:

- Mobilization and demobilization;
- Contingency;
- Engineering redesign;
- Contractor profit and overhead;
- Project management fee; and
- State procurement fee.

6.2 Operations and Maintenance Cost Development

O&M cost estimates have been developed for the 100-year closure period. Costs are presented as current costs and include labor, reagents, maintenance, sampling and analysis costs, and electrical power for all treatment and management systems for which a capital cost was developed. The cost basis for these items is described in the following sections.

6.2.1 Labor Rates

Labor rates and markup for benefits for all categories of operations personnel were based on New Mexico Department of Labor's prevailing wage rate for Type "A" work as follows:

- 2019 NM Type "A" Street, Highway, Utility & Light Engineering Prevailing Wages. All Operator groups. https://www.dws.state.nm.us/Portals/0/DM/LaborRelations/Prevailing_Wage_Poster_A_2019_final.pdf
 - Base hourly wage listed in Table 11
 - The fringe rate for operators, supervisors and maintenance was set at \$5.94/hour based on the New Mexico prevailing wage table for 'Type A' operators

Staffing levels were estimated based on Golder's experience and operations staff are assumed to be local. Assumptions include:

- Overtime up to 10% of straight-time hours for supervisors and 15% for operators
- Overtime wages 1.5 times the base rates

6.2.2 Reagents

Lime, flocculent, and acid will be used at the TTS for the HDS system, and anti-scalent and cleaning chemicals for the membrane system as discussed in Section 4.2. Assumptions include:

- Lime:
 - Lime consumption was calculated based on the Van Riper Consulting treatability study and metal hydroxide removal rates and adjusted based on the influent sulfate concentrations.
 - Lime cost was obtained from a current vendor price from L'hoist North America (2019) using a street price strategy without benefit of any FMI preferred pricing for bulk deliveries.
- Flocculent:
 - Flocculent consumption for solid–liquid separation and clarification was calculated based on previous engineering experience and adjusted based on the influent sulfate concentrations and associated sludge projections.
 - Flocculent cost was based on a late 2018 vendor quote obtained without benefit of FMI preferred pricing.
- Acid:
 - Acid consumption was calculated based on the Van Riper Consulting treatability study and adjusted based on the influent sulfate concentrations.
 - Acid cost was obtained from a 2019 street price from Univar.

6.2.3 Membrane System

The membrane system requires cleaning chemicals and anti-scalent to prevent membrane fouling and increase removal efficiency of the contaminants of concern.

- Membrane chemical quantity has been estimated based on previous engineering experience and conversations with chemical suppliers.
- Chemical costs have been obtained from a 2019 vendor price quote for a street price.

6.2.4 Maintenance

Replacement O&M and routine maintenance are both included as separate cost categories and both are based on a percentage of the total capital cost. The routine maintenance is set at 1.5% annually of the total capital cost for each component with the exception of the Sludge Disposal Facility and the Salt Disposal Facility. These two components of water treatment and management are not expected to require routine maintenance.

The replacement O&M is also a percentage of the total capital for each component except the ST-ETS, which is not expected to be replaced. The replacement O&M factor for the other components is set between 0.25% and 1.8% depending on the expected system life, initial cost, and whether new or used equipment was included. The replacement O&M is set at 1.5% for the TTS, at 1.8% for the LT-ETS and water conveyance systems, at 1% for the Sludge Disposal Facility, and at 0.25% for the Salt Disposal Facility.

6.2.5 Sampling and Analysis

The frequency of sampling and analysis associated with the water management and treatment system is as follows:

- Sampling is not required as part of the O&M of the ST-ETS. The only sampling required during the ST-ETS operational period is associated with the NPDES compliance points (two associated with NPDES Permit NMR05GB76);
- The high TDS and sulfate water sources will not need to be sampled as part of the O&M for the LT-ETS;
- TTS performance monitoring including (2) influent and (1) effluent discharge from water treatment plant: monthly beginning in Year 15 and continuing though Year 100;
- NPDES compliance points: quarterly from Year 1 through Year 12, semiannual from Year 13 through Year 32, and annual thereafter (through Year 100);
- Collection points for the low TDS and sulfate water streams to the TTS (1X1 Pond, 1A PLS Tank, 1B PLS Tank, Oak Grove Pond, and the new 20,000 gallon polyethylene AST replacement for the No. 3 PLS Overflow Pond): quarterly from Year 15 through Year 32 (transition period between un-reclaimed and reclaimed stockpile flows), and annual thereafter (through Year 100);
- Discharge from groundwater interceptor system (4 interceptor wells): quarterly from Year 15 through Year 32 (transition period between un-reclaimed and reclaimed stockpile flows), and annual thereafter (through Year 100). The GIWS will be sampled at the point that all 4 wells are combined into one pipeline; and
- Pits (3 sample points): quarterly from Year 15 through Year 32 (transition period between un-reclaimed and reclaimed stockpile flows), and annual thereafter (through Year 100).

Costs for sampling and analysis have been escalated from previous CCP updates and include shipping and materials based on an updated 2018 quote from a local analytical laboratory (Hall, 2018). Additional site-wide monitoring and sampling is included in the reclamation cost estimate developed by Telesto (2019).

6.2.6 Electrical Power Consumption

The unit cost for electric power is based on the most currently available Public Service Company of New Mexico Electrical Services 21st Revised Rate No. 4B Large Power Service - Time of Use Rate (Effective Date January 1, 2019). Specific cost backup details for the power consumption and rates are provided in Attachment B.

6.2.7 Sludge Disposal

Sludge volume has been projected based on the Van Riper Consulting treatability study and adjusted based on the influent sulfate concentrations. The sludge is expected to dewater to 50% solids by using a filter press, based on the experience of Van Riper Consulting. Costs for loading, hauling, unloading, and disposal have been based on material handling unit rates developed by Telesto (2019) and 2019 RS Means values on a quantity basis.

6.2.8 Salt Disposal

Salt volumes are based on the estimated concentration of the combined process water stream (Year 10 through 14) and high TDS and sulfate concentration waters captured in seepage collection, interceptor well systems, the brine reject waters from the TTS membrane system (Year 15 through 100), and the estimated evaporation rates between Years 10 and EOY 100 of the LT-ETS operational period. The total salt residual is calculated based on the TDS of the water evaporated and the total quantity evaporated annually with a 50% additional factor to account for waters of hydration expected during natural evaporation of salts. Costs for excavating, loading, hauling, unloading, and disposal have been based on material handling unit rates developed by Telesto (2019) and 2019 RS Means values on a quantity basis.

6.2.9 Indirect Costs

It is assumed that indirect O&M costs in total are 17.5% of the estimated direct O&M cost per the FA Work Group agreement on all O&M cost items. Indirect O&M costs include but not limited to:

- Contingency;
- Profit and overhead;
- Project management fee;
- Engineering redesign; and
- State procurement cost.

7.0 CLOSING

We trust the foregoing provides the information you need at this time. Should you have any questions or require additional information, please do not hesitate to contact the undersigned.

Golder Associates Inc.

Tork 12

Bridgette Hendricks Senior Engineer

KB/BH/TS/ap/js

Todd Stein Senior Hydrogeologist

Golder and the G logo are trademarks of Golder Associates Corporation

https://golderassociates.sharepoint.com/sites/35255g/proposal project management/500_reporting/510_reports/512_finals/18106417.002.r.rev1/18106417-002-r-rev1-tyroneccpupdate-20200428.docx

8.0 **REFERENCES**

- Daniel B. Stephens & Associates, Inc. (DBS&A). 2012. Tyrone Mine Facility Stage 2 Abatement Plan Proposal. Prepared for Freeport McMoRan Tyrone, Inc., Tyrone, New Mexico. February 29, 2012.
- DBS&A. 2017 Application Requirements for Discharge Permits at a Copper Mine Facility (20.6.7 NMAC). Submitted to Freeport-McMoRan Tyrone Inc. June 9.
- DBS&A. 2019. Geochemical Modeling of Water Quality at the Main, Gettysburg, and Copper Mountain Pits, Tyrone Mine Closure/Closeout Plan Technical Memorandum. Submitted to Mandy Lilla, Freeport-McMoRan Tyrone Inc. April 23.
- Freeport-McMoRan Tyrone Inc. (Tyrone). 2015. Stormwater Handling Plan/Emergency Response Plan for Tyrone and Little Rock Mine Areas, Discharge Permits DP-27, DP-166, DP-286, DP-363, DP-396, DP-435, DP-455, DP-896, DP-1236. September.
- Tyrone. 2019. Email communication from Brandon Gay (Tyrone) to Mandy Lilla (Tyrone) regarding Raffinate Flows at the Tyrone Mine. Data Provided by FMI Tyrone in "2011-2018 Raff Flow.xlsx" March 18.
- Golder Associates Inc. (Golder). 2008. Tyrone and Chino Closure Closeout Plan Updates Bases for Water Treatment Facility Cost Estimating Technical Memorandum. February 11.
- Golder. 2013. Tyrone Mine Closure/Closeout Plan Update. Freeport-McMoRan Tyrone, Inc., Tyrone, New Mexico. July 21.
- Hall Environmental Analysis Laboratory (Hall). 2018. Analytical Testing Quote provided by Jackie Bolte on October 5, 2018.
- Hazen Research, Inc. 2007. Lime Precipitation Experiments and Analyses for Chino Ivanhoe Water Treatment Process Development (ITS), Hazen Report 10464, Revision 1. August 22.
- HW Process Technologies, Inc. 2007a. Bench Test Report for EMS ® Treatment of Estrella Pit Acid-Mine-Drainage. Prepared For: Van Riper Consulting and Phelps-Dodge. January 23.
- HW Process Technologies, Inc. 2007b. Chino North (Ivanhoe Treatment System) Water Treatment Bench Test, March 14, 2007 Engineered Membrane Separation, EMS® Treatment To Produce Surface Discharge Water. Prepared For: Van Riper Consulting and Phelps-Dodge. May 14.
- John Shomaker and Associates, Inc. (JSAI). 2003. Summary of Findings for Main Pit Water Management Project, Tyrone Mine, Submitted from Steven Finch (JSAI) to Phelps Dodge Corporation - Tyrone Mine. January.
- JSAI and Eddie Livingston. 2005. Evaluation of the Suitability of Main Pit Interceptor Well Water for Industrial Supply, Tyrone Mine, New Mexico. Submitted from Steven Finch (JSAI) to Phelps Dodge Corporation -Tyrone Mine. June.
- L'hoist North America. 2019. Quote dated June 21, 2019.
- M3 Engineering and Technology Corporation (M3). 2001. End of Year 2001 through Year 2006 Closure/Closeout Plan, Chino Mines. March 17, 2001.
- M3. 2004. Process Solution Elimination Study, Phelps Dodge Tyrone, Inc. Tyrone, New Mexico. June.

- M3. 2006. Revised Process Solution Elimination Study, Phelps Dodge Tyrone, Inc., Tyrone, New Mexico. March.
- New Mexico Environment Department (NMED). 2003. Supplemental Discharge Permit for Closure DP-1341, Phelps Dodge Tyrone, Inc., Tyrone Mines Facility. Issued April 8, 2003.
- New Mexico Water Quality Control Commission (NMWQCC) Water Quality Standards. 1995. Title 20, Chapter 6, Part 2, Subpart III, Section 3103, Standards for Groundwater of 10,000 mg/L TDS concentrations or less, dated December 1, 1995.
- Parkhurst, D.L. and C.A.J. Appelo. 1999. User's guide to PHREEQC (version 2)—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. USGS Water-Resources Investigations Report 99-4259.
- Telesto Solutions Inc. (Telesto). 2019. Tyrone Stockpile-Tailing Earthwork Reclamation Cost Estimate Spreadsheet "20190501_Tyrone_Stockpile_Tailing_Earthwork_RCE.xlsx". May 1.
- Van Riper Consulting (VRC). 2002. Tyrone Post-Closure Water Treatment System Engineered Membrane Alternative. April 27.
- VRC. 2004. Preliminary Sludge Handling Plan and Cost Estimate DP-1341 Condition 86. October 22.
- VRC. 2008. Development of a Site-Wide Water Treatment Process for the Chino Mines Company. March.

Tables

Parameter	Volume				
Total Posid	gallons I Process Solutions				
Water In Pits ¹	202,125,100				
Process Waters in Reservoirs and Impoundments	17,612,200				
Average Circulated Inventory	1,642,629,500				
Rounded Total	1,862,366,800				
	er In Open Pits				
Location	Estimated Volume at Start of Evaporation Program (gallons)				
Main, Gettysburg, and Copper Mountain	202,125,049				
Rounded Total	202,125,100				
Reservoirs and Impoundments (Process	Water in Storage at Start of Evaporation Program)				
Location	Estimated Volume at Start of Evaporation Program (gallons)				
1X1 Pond ^{2,3}	1,139,400				
4C Drain ³	0				
2 PLS Pond ^{2,3}	3,161,400				
North Racket PLS Pond ^{2,3}	1,317,000				
SX/EW PLS Feed Pond ^{2,3}	639,000				
Raffinate Tank 1 ^{2,3}	238,000				
Raffinate Tank 2 ^{2,3}	1,440,000				
5E Seepage Collection Pond ^{2,3}	60,000				
5E Surge Pond ³	0				
No. 3 PLS Collection Pond ^{2,3}	4,906,200				
No. 3 PLS Overflow Pond ^{2,3}	0				
1A AST Overflow Pond ^{2,3}	0				
1A PLS Tank ^{2,3}	18,000				
1B PLS Overflow Pond ^{2,3}					
1B PLS Tank ^{2,3}	28,000				
	228,000				
Oak Grove Pond ^{2,3}	90,000				
2A West PLS Tank ^{2,3}	50,000				
2A East PLS Overflow (Pennington Pond) ^{2,3}	0				
Land Bridge Booster ^{2,3}	4,200,000				
6C-2 PLS Pond ^{2,3}	144,000				
Gettysburg Highwall Tank ^{2,3}	1,800				
1 AST Tank ^{2,3}	1,400				
1 AST Overflow Pond ^{2,3}	0				
Rounded Total	17,612,200				
	rocess Water added to Storage in First Year)				
	Estimated Volume of PLS Added (gallons)				
5E Surge Pond ^{2,3}	1,200,000				
No. 3 PLS Overflow Pond ^{2,3}	4,029,000				
1A PLS Overflow Pond ^{2,3}	1,954,800				
1B PLS Overflow Pond ^{2,3}	3,111,600				
2A East PLS Overflow (Pennington Pond) 2,3	929,400				
1 AST Overflow Pond ^{2,3}	84,000				
Rounded Total	11,308,800				
	-				

Table 1: Inventoried Process Waters at the Beginning of the Short-Term Evaporative Treatment System Operation

Table 1: Inventoried Process Waters at the Beginning of the Short-Term Evaporative Treatment System Operation

Parameter	Volume
	gallons
Average Circu	lated Inventory (ACI)
Initial Raffinate Flow (gpm)	30,615
Make-Up Water Requirement	8%
PLS from Stockpile Diminish	10%
PLS from Stockpile Diminish Duration (days)	45
Rounded Total	1,642,629,500

Notes:

¹ - Based on information provided Mandy Lilla on 5/31/19 in the file "190531_PitWaterInventory.xlsx". Represents the average combined storage within all the pits at Tyrone from January 2017 through December 2018.

² - Estimated reservoir volumes at start of evaporation program are assumed to be 60 percent of the reservoir capacities for impoundments and tanks. For overflow ponds, it is assumed that PLS will be added to the ponds at the start of the evaporation program from the PLS circuit (i.e., there is no PLS present in the overflow ponds during mine operations).

³ - Based on information provided in the June 9, 2016 report from Daniel B. Stephens & Associates, Inc. titled Application Requirements for Discharge Permit at a Copper Mine Facility (20.6.7.11 NMAC), also commonly referred to as the "Master Document".

April 2020

Location	Reservoir Surface Area ¹ (acres)	Calculated Reservoir Water Surface Area ² (acres)	Estimated Capacity (Gallons)	Estimated Reservoir Volume at Start of Evaporation Program ² (gallons)	Average Annual Evaporation (gallons per year) ³	Average Annual Evaporation (gallons per minute) ³
1X1 Pond	0.75	0.45	1,899,000	1,139,400	612,071	1.16
4C Drain	0.00	0.00	0	0	0	0.00
2 PLS Pond ⁴	1.05	0.63	5,269,000	3,161,400	856,900	1.63
North Racket PLS Pond	0.93	0.56	2,195,000	1,317,000	758,968	1.44
SX/EW PLS Feed Pond ⁴	0.34	0.20	1,065,000	639,000	277,472	0.53
Raffinate Tank 1	0.08	0.08	397,000	238,200	108,813	0.21
Raffinate Tank 2	0.25	0.25	2,400,000	1,440,000	340,040	0.65
5E Seepage Collection Pond	0.10	0.06	100,000	60,000	81,609	0.16
5E Surge Pond	0.84	0.50	2,000,000	1,200,000	685,520	1.30
No. 3 PLS Collection Pond ⁴	1.58	0.95	8,177,000	4,906,200	1,289,430	2.45
No. 3 PLS Overflow Pond ⁴	1.52	0.91	6,715,000	4,029,000	1,240,464	2.36
1A AST Overflow Pond ⁴	1.00	0.75	3,258,000	1,954,800	1,020,119	1.94
1A PLS Tank	0.01	0.01	30,000	18,000	13,602	0.03
1B PLS Overflow Pond	1.37	0.82	5,186,000	3,111,600	1,118,050	2.13
1B PLS Tank	0.02	0.02	47,000	28,200	27,203	0.05
Oak Grove Pond	0.25	0.15	380,000	228,000	204,024	0.39
2A West PLS Tank	0.01	0.01	150,000	90,000	13,602	0.03
2A East PLS Overflow (Pennington Pond) ⁴	0.68	0.41	1,549,000	929,400	554,945	1.06
Land Bridge Booster	0.40	0.24	7,000,000	4,200,000	326,438	0.62
6C-2 PLS Pond	0.13	0.08	240,000	144,000	106,092	0.20
Gettysburg Highwall Tank	0.001	0.001	3,000	1,800	1,360	0.003
1 AST Tank	0.001	0.001	2,260	1,356	1,360	0.003
1 AST Overflow Pond	0.12	0.07	140,000	84,000	97,931	0.19
Total :	11.43	7.16	48,202,260	28,921,356	9,736,012	18.52

Notes:

¹ - Based on information provided in the June 9, 2016 report from Daniel B. Stephens & Associates, Inc. titled Application Requirements for Discharge Permit at a Copper Mine Facility (20.6.7.11 NMAC), also commonly referred to as the "Master Document".

² - Estimated reservoir volumes at start of evaporation program are assumed to be 60 percent of the reservoir capacities for impoundments and tanks. For overflow ponds, it is assumed that PLS will be added to the ponds at the start of the evaporation program from the PLS circuit (i.e., there is no PLS present in the overflow ponds during mine operations).

³ - Mean annual evaporation of 93.85 inches calculated from historical pan evaporation data from the Tyrone Mine (Tailing Dam #1, Tailing Dam #3, and No. 1A Stockpile). Mean annual evaporation for the surface impoundments was estimated at 65.7 inches by applying a pan coefficient of 0.70. Total evaporation from surface impoundments of 50.09 inches accounts for long-term (1897 to 2011) average annual precipitation of 15.61 inches reported for the Fort Bayard weather station.

⁴ - Reservoir surface area from Google Earth⁻

Location	Reservoir Surface Area ¹ (acres)	Calculated Reservoir Water Surface Area ² (acres)	Estimated Capacity (Gallons)	Estimated Reservoir Volume at Start of Evaporation Program ² (gallons)	Average Annual Evaporation (gallons per year) ³	Average Annual Evaporation (gallons per minute) ³
1X1 Pond	0.75	0.45	1,899,000	1,139,400	612,071	1.16
New Spray Evaporation Pond 1	7.00	5.60	19,668,800	15,735,040	7,616,886	14.49
New Spray Evaporation Pond 2	3.20	2.56	8,679,900	6,943,920	3,482,005	6.62
2 PLS Pond ⁴	1.05	0.63	5,269,000	3,161,400	856,900	1.63
North Racket PLS Pond	0.93	0.56	2,195,000	1,317,000	758,968	1.44
SX/EW PLS Feed Pond ⁴	0.34	0.20	1,065,000	639,000	277,472	0.53
Raffinate Tank 1	0.08	0.08	397,000	238,200	108,813	0.21
Raffinate Tank 2	0.25	0.25	2,400,000	1,440,000	340,040	0.65
5E Seepage Collection Pond	0.10	0.06	100,000	60,000	81,609	0.16
5E Surge Pond	0.84	0.50	2,000,000	1,200,000	685,520	1.30
No. 3 PLS Collection Pond ⁴	1.58	0.95	8,177,000	4,906,200	1,289,430	2.45
1A AST Overflow Pond ⁴	1.00	0.75	3,258,000	1,954,800	1,020,119	1.94
1A PLS Tank	0.01	0.01	30,000	18,000	13,602	0.03
1B PLS Overflow Pond	1.37	0.82	5,186,000	3,111,600	1,118,050	2.13
1B PLS Tank	0.02	0.02	47,000	28,200	27,203	0.05
Oak Grove Pond	0.25	0.15	380,000	228,000	204,024	0.39
2A West PLS Tank	0.01	0.01	150,000	90,000	13,602	0.03
2A East PLS Overflow (Pennington Pond) ⁴	0.68	0.41	1,549,000	929,400	554,945	1.06
Land Bridge Booster	0.40	0.24	7,000,000	4,200,000	326,438	0.62
6C-2 PLS Pond	0.13	0.08	240,000	144,000	106,092	0.20
Gettysburg Highwall Tank	0.001	0.001	3,000	1,800	1,360	0.003
1 AST Tank	0.001	0.001	2,260	1,356	1,360	0.003
1 AST Overflow Pond	0.12	0.07	140,000	84,000	97,931	0.19
Total :	20.11	14.41	69,855,960	47,583,316	19,594,439	37.28

Table 3: Surface Impoundment, Pond, and Tank Evaporation Schedule - Years 10 through 14

Notes:

¹ - Based on information provided in the June 9, 2016 report from Daniel B. Stephens & Associates, Inc. titled Application Requirements for Discharge Permit at a Copper Mine Facility (20.6.7.11 NMAC), also commonly referred to as the "Master Document".

² - Estimated reservoir volumes at start of evaporation program are assumed to be 60 percent of the reservoir capacities for impoundments and tanks. New spray evaporation pond 1 and 2 are assumed to be filled to 80% of capacity throughout the long-term ETS operations.

³ - Mean annual evaporation of 93.85 inches calculated from historical pan evaporation data from the Tyrone Mine (Tailing Dam #1, Tailing Dam #3, and No. 1A Stockpile). Mean annual evaporation for the surface impoundments was estimated at 65.7 inches by applying a pan coefficient of 0.70. Total evaporation from surface impoundments of 50.09 inches accounts for long-term (1897 to 2011) average annual precipitation of 15.61 inches reported for the Fort Bayard weather station.

⁴ - Reservoir surface area from Google Earth⁻

Location	Reservoir Surface Area ¹ (acres)	Calculated Reservoir Water Surface Area ² (acres)	Estimated Capacity (Gallons)	Estimated Reservoir Volume at Start of Evaporation Program ² (gallons)	Average Annual Evaporation (gallons per year) ³	Average Annual Evaporation (gallons per minute) ³
1X1 Pond	0.75	0.45	1,899,000	1,139,400	612,071	1.16
New Spray Evaporation Pond 1	7.00	5.60	19,668,800	15,735,040	7,616,886	14.49
New Spray Evaporation Pond 2	3.20	2.56	8,679,900	6,943,920	3,482,005	6.62
5E Seepage Collection Pond	0.10	0.06	100,000	60,000	81,609	0.16
No. 3 PLS Collection Pond ⁴	1.58	0.95	8,177,000	4,906,200	1,289,430	2.45
1A PLS Tank	0.01	0.01	30,000	18,000	13,602	0.03
1B PLS Tank	0.02	0.02	47,000	28,200	27,203	0.05
Oak Grove Pond	0.25	0.15	380,000	228,000	204,024	0.39
1 AST Tank	0.001	0.001	2,260	1,356	1,360	0.003
Total :	17.76	9.80	38,983,960	29,060,116	13,328,190	25.36

Table 4: Surface Impoundment, Pond, and Tank Evaporation Schedule - Years 15 through 100

Notes:

¹ - Based on information provided in the June 9, 2016 report from Daniel B. Stephens & Associates, Inc. titled Application Requirements for Discharge Permit at a Copper Mine Facility (20.6.7.11 NMAC), also commonly referred to as the "Master Document".

² - Estimated reservoir volumes at start of evaporation program are assumed to be 60 percent of the reservoir capacities for impoundments and tanks. New spray evaporation pond 1 and 2 are assumed to be filled to 80% of capacity throughout the long-term ETS operations.

³ - Mean annual evaporation of 93.85 inches calculated from historical pan evaporation data from the Tyrone Mine (Tailing Dam #1, Tailing Dam #3, and No. 1A Stockpile). Mean annual evaporation for the surface impoundments was estimated at 65.7 inches by applying a pan coefficient of 0.70. Total evaporation from surface impoundments of 50.09 inches accounts for long-term (1897 to 2011) average annual precipitation of 15.61 inches reported for the Fort Bayard weather station.

⁴ - Reservoir surface area from Google Earth⁻

April 2020

Year Following Closure			Run 3 No Plants (A Stockpile in Tyrone (Golder, 2007))			Evaporatio	on from Drip Areas		Evaporation fro		ers (SMI Mega PoleCa 5 HP pump)	t -25HP fan motor an		from 25 GPM Spra 25HP fan motor ai			66 GPM Sprayers an motor and 7.5	s (SMI Super PoleCa HP pump)	nt Evaporation f	from Reservoirs, Im Tanks	poundments, and	Precipitati	on on Drip Areas	Precipitatio	on on Spray Areas		on on Reservoirs, nents, and Tanks
		ст	in	ft	Drip Area (Acres)	acre-ft	gallons	gpm	No. of Spray Units (run time)	acre-ft	gallons	gpm	No. of Spray Units (run time)	acre-ft	gallons	No. of Spray Units (run time)	acre-ft	gallons	Surface Area (acres)	acre-ft	gallons	acre-ft	gallons	acre-ft	gallons	acre-ft	gallons
1 2	2015 2016	270.83 270.83	106.62 106.62	8.89 8.89	382 367	3,397.8 3,264.5	1,107,165,199 1,063,735,602	2,106 2,024	0.0 25.0	0.0 2,534.3	0 825,817,127	0 1,571	0	0.0 0.0	0	0 0	0.0	0	7.2 7.2	39.2 39.2	12,769,162 12,769,162	497.4 477.9	162,091,101 155,732,925	0.0	0 6,358,176	9.3 9.3	3,034,122 3,034,122
3 4	2017 2018	270.83 270.83	106.62 106.62	8.89 8.89	367 367	3,264.5 3,264.5	1,063,735,602 1,063,735,602	2,024 2,024	25.0 25.0	2,534.3 2,534.3	825,817,127 825,817,127	1,571 1,571	0	0.0	0	0	0.0	0	7.2	39.2 39.2	12,769,162 12,769,162	477.9 477.9	155,732,925 155,732,925	19.5 19.5	6,358,176 6,358,176	9.3 9.3	3,034,122 3,034,122
5	2019	270.83	106.62	8.89	367	3,264.5	1,063,735,602	2,024	25.0	2,534.3	825,817,127	1,571	0	0.0	0	0	0.0	0	7.2	39.2	12,769,162	477.9	155,732,925	19.5	6,358,176	9.3	3,034,122
6 7	2020 2021	270.83 270.83	106.62 106.62	8.89 8.89	367 367	3,264.5 3,264.5	1,063,735,602 1,063,735,602	2,024 2,024	25.0 25.0	2,534.3 2,534.3	825,817,127 825,817,127	1,571 1,571	0	0.0	0	0	0.0	0	7.2	39.2 39.2	12,769,162 12,769,162	477.9 477.9	155,732,925 155,732,925	19.5 19.5	6,358,176 6,358,176	9.3 9.3	3,034,122 3,034,122
8	2022 2023	270.83 270.83	106.62 106.62	8.89 8.89	367 367	3,264.5 3,264.5	1,063,735,602 1,063,735,602	2,024 2,024	25.0 25.0	2,534.3 2,534.3	825,817,127 825,817,127	1,571 1,571	0	0.0 0.0	0	0	0.0 0.0	0	7.2	39.2 39.2	12,769,162 12,769,162	477.9 477.9	155,732,925 155,732,925	19.5 19.5	6,358,176 6,358,176	9.3 9.3	3,034,122 3,034,122
9 10	2023	270.83	106.62	8.89	0	0.0	0	0	25.0	2,534.3	825,817,127	1,571	0.00	0.0	0	0.00	0.0	0	6.2	39.2	11,142,244	0.0	0	19.5	6,358,176	8.1	2,647,544
11 12	2025 2026	270.83 270.83	106.62 106.62	8.89 8.89	0	0.0	0	0	25.0 25.0	2,534.3 2,534.3	825,817,127 825,817,127	1,571 1,571	0.00	0.0 0.0	0	0.00	0.0	0	6.2 6.2	34.2 34.2	11,142,244 11,142,244	0.0 0.0	0	19.5 19.5	6,358,176 6,358,176	8.1 8.1	2,647,544 2,647,544
12	2020	270.83	106.62	8.89	0	0.0	0	0	21.4	2,334.3	706,899,461	1,345	0.00	0.0	0	0.00	0.0	0	6.2	34.2	11,142,244	0.0	0	16.7	5,442,599	8.1	2,647,544
14 15	2028 2029	270.83 270.83	106.62 106.62	8.89 8.89	0	0.0	0	0	21.0 4.00	2,128.8 405.5	693,686,387 132,130,740	1,320 251	0.00	0.0 0.0	0	0.00	0.0	0	6.2 7.4	34.2 40.5	11,142,244 13,199,082	0.0 0.0	0	16.4 3.1	5,340,868 1,017,308	8.1 9.6	2,647,544 3,136,276
16	2029	270.83	106.62	8.89	0	0.0	0	0	4.00	405.5	132,130,740	251	0.00	0.0	0	0.00	0.0	0	7.4	40.5	13,199,082	0.0	0	3.1	1,017,308	9.6	3,136,276
17 18	2031 2032	270.83 270.83	106.62 106.62	8.89 8.89	0	0.0	0	0	4.00 3.90	405.5 395.4	132,130,740 128,827,472	251 245	0.00	0.0 0.0	0	0.00	0.0	0	7.4	40.5 40.8	13,199,082 13,306,116	0.0	0	3.1 3.0	1,017,308 991,875	9.6 9.7	3,136,276 3,161,709
19	2032	270.83	106.62	8.89	0	0.0	0	0	3.90	395.4	128,827,472	245	0.00	0.0	0	0.00	0.0	0	7.5	40.8	13,306,116	0.0	0	3.0	991,875	9.7	3,161,709
20	2034 2035	270.83 270.83	106.62 106.62	8.89 8.89	0	0.0	0	0	3.80	385.2 385.2	125,524,203 125,524,203	239 239	0.00	0.0	0	0.00	0.0	0	7.5	41.2 41.2	13,413,150 13.413.150	0.0	0	3.0	966,443 966,443	9.8 9.8	3,187,142 3,187,142
22	2036	270.83	106.62	8.89	0	0.0	0	0	3.75	380.2	123,872,569	236	0.00	0.0	0	0.00	0.0	0	7.5	41.3	13,466,667	0.0	0	2.9	953,726	9.8	3,199,858
23	2037 2038	270.83 270.83	106.62 106.62	8.89 8.89	0	0.0	0	0	3.70 3.70	375.1 375.1	122,220,935 122,220,935	233	0.00	0.0	0	0.00	0.0	0	7.6	41.5 41.5	13,520,184 13,520,184	0.0	0	2.9	941,010 941,010	9.9 9.9	3,212,574 3,212,574
25	2039	270.83	106.62	8.89	0	0.0	0	0	3.65	370.0	120,569,301	229	0.00	0.0	0	0.00	0.0	0	7.6	41.7	13,573,701	0.0	0	2.8	928,294	9.9	3,225,291
26 27	2040 2041	270.83 270.83	106.62 106.62	8.89 8.89	0	0.0	0	0	3.60	364.9 364.9	118,917,666 118,917,666	226 226	0.00	0.0	0	0.00	0.0	0	7.6	41.8	13,627,218 13,627,218	0.0	0	2.8	915,577 915,577	9.9	3,238,007 3,238,007
28	2042	270.83	106.62	8.89	0	0.0	0	0	3.55	359.9	117,266,032	223	0.00	0.0	0	0.00	0.0	0	7.7	42.0	13,680,735	0.0	0	2.8	902,861	10.0	3,250,723
29 30	2043 2044	270.83 270.83	106.62 106.62	8.89 8.89	0	0.0	0	0	3.50 3.45	354.8 349.7	115,614,398 113,962,764	220	0.00	0.0	0	0.00	0.0	0	7.7	42.1 42.3	13,734,252 13,787,769	0.0	0	2.7	890,145 877,428	10.0	3,263,440 3,276,156
31	2045	270.83	106.62	8.89	0	0.0	0	0	3.45	349.7	113,962,764	217	0.00	0.0	0	0.00	0.0	0	7.7	42.3	13,787,769	0.0	0	2.7	877,428	10.1	3,276,156
32	2046 2047	270.83 270.83	106.62 106.62	8.89 8.89	0	0.0	0	0	3.40	344.7 344.7	112,311,129 112,311,129	214	0.00	0.0	0	0.00	0.0	0	7.8	42.5	13,841,286 13.841,286	0.0	0	2.7	864,712 864,712	10.1	3,288,873 3,288,873
34	2048	270.83	106.62	8.89	0	0.0	0	0	3.40	344.7	112,311,129	214	0.00	0.0	0	0.00	0.0	0	7.8	42.5	13,841,286	0.0	0	2.7	864,712	10.1	3,288,873
35 36	2049 2050	270.83 270.83	106.62 106.62	8.89 8.89	0	0.0	0	0	3.40	344.7 339.6	112,311,129 110,659,495	214	0.00	0.0	0	0.00	0.0	0	7.8	42.5 42.6	13,841,286 13,894,803	0.0	0	2.7	864,712 851,996	10.1	3,288,873 3,301,589
37	2051	270.83	106.62	8.89	0	0.0	0	0	3.35	339.6	110,659,495	211	0.00	0.0	0	0.00	0.0	0	7.8	42.6	13,894,803	0.0	0	2.6	851,996	10.1	3,301,589
38 39	2052 2053	270.83	106.62 106.62	8.89 8.89	0	0.0	0	0	3.35	339.6 339.6	110,659,495 110,659,495	211	0.00	0.0	0	0.00	0.0	0	7.8	42.6	13,894,803 13,894,803	0.0	0	2.6	851,996 851,996	10.1	3,301,589 3,301,589
40	2054	270.83	106.62	8.89	0	0.0	0	0	3.30	334.5	109,007,861	207	0.00	0.0	0	0.00	0.0	0	7.8	42.8	13,948,320	0.0	0	2.6	839,279	10.2	3,314,305
41 42	2055 2056	270.83 270.83	106.62 106.62	8.89 8.89	0	0.0	0	0	3.30	334.5 334.5	109,007,861 109,007,861	207	0.00	0.0	0	0.00	0.0	0	7.8	42.8	13,948,320 13,948,320	0.0 0.0	0	2.6 2.6	839,279 839,279	10.2	3,314,305 3,314,305
43	2057	270.83	106.62	8.89	0	0.0	0	0	3.30	334.5	109,007,861	207	0.00	0.0	0	0.00	0.0	0	7.8	42.8	13,948,320	0.0	0	2.6	839,279	10.2	3,314,305
44	2058 2059	270.83 270.83	106.62 106.62	8.89 8.89	0	0.0	0	0	3.30 3.30	334.5 334.5	109,007,861 109,007,861	207	0.00	0.0	0	0.00	0.0	0	7.8	42.8	13,948,320 13,948,320	0.0 0.0	0	2.6 2.6	839,279 839,279	10.2	3,314,305 3,314,305
46	2060	270.83	106.62	8.89	0	0.0	0	0	3.25	329.5	107,356,227	204	0.00	0.0	0	0.00	0.0	0	7.8	43.0	14,001,837	0.0	0	2.5	826,563	10.2	3,327,022
47 48	2061 2062	270.83 270.83	106.62 106.62	8.89 8.89	0	0.0	0	0	3.25 3.25	329.5 329.5	107,356,227 107,356,227	204	0.00	0.0	0	0.00	0.0	0	7.8	43.0 43.0	14,001,837 14,001,837	0.0 0.0	0	2.5 2.5	826,563 826,563	10.2 10.2	3,327,022 3,327,022
49	2063	270.83	106.62	8.89	0	0.0	0	0	3.25	329.5	107,356,227	204	0.00	0.0	0	0.00	0.0	0	7.8	43.0	14,001,837	0.0	0	2.5	826,563	10.2	3,327,022
50 51	2064 2065	270.83 270.83	106.62 106.62	8.89 8.89	0	0.0	0	0	3.25 3.20	329.5 324.4	107,356,227 105,704,592	204 201	0.00	0.0 0.0	0	0.00	0.0	0	7.8	43.0 43.1	14,001,837 14,055,354	0.0 0.0	0	2.5 2.5	826,563 813,847	10.2 10.2	3,327,022 3,339,738
52 53	2066 2067	270.83 270.83	106.62 106.62	8.89 8.89	0	0.0	0	0	3.20 3.20	324.4 324.4	105,704,592 105,704,592	201 201	0.00	0.0 0.0	0	0.00	0.0 0.0	0	7.9 7.9	43.1 43.1	14,055,354 14,055,354	0.0 0.0	0	2.5 2.5	813,847 813,847	10.2 10.2	3,339,738 3,339,738
53	2067	270.83	106.62	8.89	0	0.0	0	0	3.20	324.4	105,704,592	201	0.00	0.0	0	0.00	0.0	0	7.9	43.1	14,055,354	0.0	0	2.5	813,847	10.2	3,339,738
55 56	2069 2070	270.83 270.83	106.62 106.62	8.89 8.89	0	0.0	0	0	3.20 3.20	324.4 324.4	105,704,592 105,704,592	201 201	0.00	0.0	0	0.00	0.0	0	7.9 7.9	43.1 43.1	14,055,354 14,055,354	0.0	0	2.5 2.5	813,847 813,847	10.2 10.2	3,339,738 3,339,738
57	2070	270.83	106.62	8.89	0	0.0	0	0	3.20	324.4	105,704,592	201	0.00	0.0	0	0.00	0.0	0	7.9	43.1	14,055,354	0.0	0	2.5	813,847	10.2	3,339,738
58 59	2072 2073	270.83 270.83	106.62 106.62	8.89 8.89	0	0.0	0	0	3.15 3.15	319.3 319.3	104,052,958 104,052,958	198 198	0.00	0.0	0	0.00	0.0	0	7.9	43.3 43.3	14,108,871 14,108,871	0.0	0	2.5 2.5	801,130 801,130	10.3 10.3	3,352,454 3,352,454
60	2074	270.83	106.62	8.89	0	0.0	0	0	3.15	319.3	104,052,958	198	0.00	0.0	0	0.00	0.0	0	7.9	43.3	14,108,871	0.0	0	2.5	801,130	10.3	3,352,454
61 62	2075 2076	270.83 270.83	106.62 106.62	8.89 8.89	0	0.0	0	0	3.15 3.15	319.3 319.3	104,052,958 104,052,958	198 198	0.00	0.0	0	0.00	0.0	0	7.9	43.3 43.3	14,108,871 14,108,871	0.0 0.0	0	2.5 2.5	801,130 801,130	10.3 10.3	3,352,454 3,352,454
63	2077	270.83	106.62	8.89	0	0.0	0	0	3.15	319.3	104,052,958	198	0.00	0.0	0	0.00	0.0	0	7.9	43.3	14,108,871	0.0	0	2.5	801,130	10.3	3,352,454
64 65	2078 2079	270.83 270.83	106.62 106.62	8.89 8.89	0	0.0	0	0	3.15 3.15	319.3 319.3	104,052,958 104,052,958	198 198	0.00	0.0	0	0.00	0.0	0	7.9	43.3 43.3	14,108,871 14,108,871	0.0	0	2.5 2.5	801,130 801,130	10.3 10.3	3,352,454 3,352,454
66	2080	270.83	106.62	8.89	0	0.0	0	0	3.15	319.3	104,052,958	198	0.00	0.0	0	0.00	0.0	0	7.9	43.3	14,108,871	0.0	0	2.5	801,130	10.3	3,352,454
67 68	2081 2082	270.83 270.83	106.62 106.62	8.89 8.89	0	0.0	0	0	3.10 3.10	314.3 314.3	102,401,324 102,401,324	195 195	0.00	0.0	0	0.00	0.0	0	7.9 7.9	43.5 43.5	14,162,389 14,162,389	0.0	0	2.4 2.4	788,414 788,414	10.3 10.3	3,365,171 3,365,171
69	2082	270.83	106.62	8.89	0	0.0	0	0	3.10	314.3	102,401,324	195	0.00	0.0	0	0.00	0.0	0	7.9	43.5	14,162,389	0.0	0	2.4	788,414	10.3	3,365,171
70 71	2084 2085	270.83 270.83	106.62 106.62	8.89 8.89	0	0.0	0	0	3.10 3.10	314.3 314.3	102,401,324 102,401,324	195 195	0.00	0.0	0	0.00	0.0	0	7.9 7.9	43.5 43.5	14,162,389 14,162,389	0.0	0	2.4 2.4	788,414 788,414	10.3 10.3	3,365,171 3,365,171
72	2085 2086	270.83	106.62	8.89	0	0.0	0	0	3.10	314.3	102,401,324	195	0.00	0.0	0	0.00	0.0	0	7.9	43.5	14,162,389	0.0	0	2.4	788,414	10.3	3,365,171
73 74	2087 2088	270.83 270.83	106.62 106.62	8.89 8.89	0	0.0	0	0	3.10 3.10	314.3 314.3	102,401,324 102.401.324	195 195	0.00	0.0 0.0	0	0.00	0.0	0	7.9 7.9	43.5 43.5	14,162,389 14,162,389	0.0 0.0	0	2.4 2.4	788,414 788,414	10.3 10.3	3,365,171 3,365,171
74	2089	270.83	106.62	8.89	0	0.0	0	0	3.10	314.3	102,401,324	195	0.00	0.0	0	0.00	0.0	0	7.9	43.5	14,162,389	0.0	0	2.4	788,414	10.3	3,365,171
76 77	2090 2091	270.83 270.83	106.62 106.62	8.89 8.89	0	0.0	0	0	3.10 3.10	314.3 314.3	102,401,324 102,401,324	195 195	0.00	0.0	0	0.00	0.0	0	7.9 7.9	43.5 43.5	14,162,389 14,162,389	0.0	0	2.4 2.4	788,414 788,414	10.3 10.3	3,365,171 3,365,171
	2031	210.00	100.02	0.09	U	0.0	U		3.10	514.3	102,401,324	1 190	0.00	0.0		0.00	0.0		1.9	40.0	1 14,102,309	0.0	U	2.4	1 100,414	10.0	J,JUJ, F7 F

Table 5: Evaporation Treatment Schedule

181-06417

Total Evaporation

	acre-ft	gallons
	2,930.2	954,809,139
	5,331.3	1,737,196,661
	5,331.3	1,737,196,661
	5,331.3	1,737,196,661
	5,331.3	1,737,196,661
	5,331.3	1,737,196,661
	5,331.3	1,737,196,661
	5,331.3 5,331.3	1,737,196,661 1,737,196,661
	2,540.9	827,953,643
	2,540.9	827,953,643
	2,540.9	827,953,643
	2,178.8	709,951,555
	2,138.5	696,840,212
;	433.3	141,176,237
; ;	433.3	141,176,237
	433.3	141,176,237
	433.3	137,980,002
	423.4	137,980,002
	413.6	134,783,768
	413.6	134,783,768
	413.6	133,185,651
	408.7	133,185,651
	403.8	131,587,533
	398.9	129,989,416
	398.9	129,989,416
	394.0 394.0	128,391,299
	394.0 389.1	128,391,299
	389.1	
		125,195,065
	379.3	123,596,947
	379.3	123,596,947
	374.4	121,998,830
	374.4	121,998,830
	374.4	121,998,830
	374.4	121,998,830
	369.5	120,400,713
	369.5	120,400,713
	369.5 369.5	120,400,713 120,400,713
	369.5	120,400,713
	364.6 364.6	118,802,596
	364.6 364.6	118,802,596
	364.6	118,802,596
	364.6	
	364.6 364.6	118,802,596
		118,802,596
	359.7	117,204,478
	359.7	117,204,478
	359.7	117,204,478
	359.7	117,204,478
	359.7	117,204,478
	354.8	115,606,361
	354.8 354.8	115,606,361
		115,606,361
	354.8 354.8	115,606,361 115,606,361
		115,606,361
	354.8 354.8	115,606,361
		115,606,361
	349.9 349.9	
		114,008,244
	349.9	114,008,244
	349.9	114,008,244
	349.9	114,008,244
	349.9	114,008,244
	349.9	114,008,244
	349.9	114,008,244
	349.9	114,008,244
	345.0	112,410,127
	345.0	112,410,127
	345.0	112,410,127
	345.0	112,410,127
	345.0	112,410,127
	345.0	112,410,127
	345.0	112,410,127
	345.0	112,410,127
	345.0	112,410,127
	345.0 345.0 345.0	112,410,127 112,410,127

April 2020

Year Following Closure	EOY	UNSAT-H Model Ru for Uncovered Sto				Evaporation fr	om Drip Areas		Evaporation from		rs (SMI Mega PoleCat - HP pump)	25HP fan motor and		from 25 GPM Spra -25HP fan motor a	· · · · · · · · · · · · · · · · · · ·		66 GPM Sprayers an motor and 7.5	s (SMI Super PoleCa HP pump)	It Evaporation fro	om Reservoirs, Im Tanks	poundments, and	Precipitat	ion on Drip Areas	Precipitatio	n on Spray Areas		on Reservoirs, nts, and Tanks	Total Ev	vaporation
		ст	in	ft	Drip Area (Acres)	acre-ft	gallons	gpm	No. of Spray Units (run time)	acre-ft	gallons	gpm	No. of Spray Units (run time)	acre-ft	gallons	No. of Spray Units (run time)	acre-ft	gallons	Surface Area (acres)	acre-ft	gallons	acre-ft	gallons	acre-ft	gallons	acre-ft	gallons	acre-ft	gallons
78	2092	270.83	106.62	8.89	0	0.0	0	0	3.10	314.3	102,401,324	195	0.00	0.0	0	0.00	0.0	0	7.9	43.5	14,162,389	0.0	0	2.4	788,414	10.3	3,365,171	345.0	112,410,127
79	2093	270.83	106.62	8.89	0	0.0	0	0	3.10	314.3	102,401,324	195	0.00	0.0	0	0.00	0.0	0	7.9	43.5	14,162,389	0.0	0	2.4	788,414	10.3	3,365,171	345.0	112,410,127
80	2094	270.83	106.62	8.89	0	0.0	0	0	3.10	314.3	102,401,324	195	0.00	0.0	0	0.00	0.0	0	7.9	43.5	14,162,389	0.0	0	2.4	788,414	10.3	3,365,171	345.0	112,410,127
81	2095	270.83	106.62	8.89	0	0.0	0	0	3.05	309.2	100,749,690	192	0.00	0.0	0	0.00	0.0	0	8.0	43.6	14,215,906	0.0	0	2.4	775,697	10.4	3,377,887	340.1	110,812,010
82	2096	270.83	106.62	8.89	0	0.0	0	0	3.05	309.2	100,749,690	192	0.00	0.0	0	0.00	0.0	0	8.0	43.6	14,215,906	0.0	0	2.4	775,697	10.4	3,377,887	340.1	110,812,010
83	2097	270.83	106.62	8.89	0	0.0	0	0	3.05	309.2	100,749,690	192	0.00	0.0	0	0.00	0.0	0	8.0	43.6	14,215,906	0.0	0	2.4	775,697	10.4	3,377,887	340.1	110,812,010
84	2098	270.83	106.62	8.89	0	0.0	0	0	3.05	309.2	100,749,690	192	0.00	0.0	0	0.00	0.0	0	8.0	43.6	14,215,906	0.0	0	2.4	775,697	10.4	3,377,887	340.1	110,812,010
85	2099	270.83	106.62	8.89	0	0.0	0	0	3.05	309.2	100,749,690	192	0.00	0.0	0	0.00	0.0	0	8.0	43.6	14,215,906	0.0	0	2.4	775,697	10.4	3,377,887	340.1	110,812,010
86	2100	270.83	106.62	8.89	0	0.0	0	0	3.05	309.2	100,749,690	192	0.00	0.0	0	0.00	0.0	0	8.0	43.6	14,215,906	0.0	0	2.4	775,697	10.4	3,377,887	340.1	110,812,010
87	2101	270.83	106.62	8.89	0	0.0	0	0	3.05	309.2	100,749,690	192	0.00	0.0	0	0.00	0.0	0	8.0	43.6	14,215,906	0.0	0	2.4	775,697	10.4	3,377,887	340.1	110,812,010
88	2102	270.83	106.62	8.89	0	0.0	0	0	3.05	309.2	100,749,690	192	0.00	0.0	0	0.00	0.0	0	8.0	43.6	14,215,906	0.0	0	2.4	775,697	10.4	3,377,887	340.1	110,812,010
89	2103	270.83	106.62	8.89	0	0.0	0	0	3.05	309.2	100,749,690	192	0.00	0.0	0	0.00	0.0	0	8.0	43.6	14,215,906	0.0	0	2.4	775,697	10.4	3,377,887	340.1	110,812,010
90	2104	270.83	106.62	8.89	0	0.0	0	0	3.05	309.2	100,749,690	192	0.00	0.0	0	0.00	0.0	0	8.0	43.6	14,215,906	0.0	0	2.4	775,697	10.4	3,377,887	340.1	110,812,010
91	2105	270.83	106.62	8.89	0	0.0	0	0	3.05	309.2	100,749,690	192	0.00	0.0	0	0.00	0.0	0	8.0	43.6	14,215,906	0.0	0	2.4	775,697	10.4	3,377,887	340.1	110,812,010
92	2106	270.83	106.62	8.89 8.89	0	0.0	0	0	3.05	309.2	100,749,690 100,749,690	192 192	0.00	0.0	0	0.00	0.0	0	8.0	43.6	14,215,906	0.0	0	2.4	775,697	10.4	3,377,887	340.1	110,812,010
93	2107	270.83	106.62 106.62	8.89	0	0.0	0	0	3.05	309.2 309.2	100,749,690	192	0.00	0.0	0	0.00	0.0	0	8.0	43.6	14,215,906 14,215,906	0.0	0	2.4	775,697 775,697	10.4	3,377,887 3,377,887	340.1 340.1	110,812,010 110,812,010
94	2108 2109	270.83 270.83	106.62	0.09	0	0.0	0	0	3.05 3.05	309.2	100,749,690	192	0.00	0.0	0	0.00	0.0	0	8.0 8.0	43.0	14,215,906	0.0	0	2.4	775,697	10.4	3,377,887	340.1	110,812,010
95			106.62	8.89	0	0.0	0	0	3.05	309.2	100,749,690	192	0.00	0.0	0	0.00	0.0	0	8.0	43.6	14,215,906	0.0	0	2.4	775,697	10.4	3,377,887	340.1	110,812,010
90	2110	270.83	106.62	8.89	0	0.0	0	0	3.05	309.2	100,749,690	192	0.00	0.0	0	0.00	0.0	0	8.0	43.6	14,215,906	0.0	0	2.4	775,697	10.4	3,377,887	340.1	110,812,010
08	2111	270.83	106.62	8 80	0	0.0	0	0	3.05	309.2	100,749,690	192	0.00	0.0	0	0.00	0.0	0	8.0	43.6	14,215,906	0.0	0	2.4	775,697	10.4	3,377,887	340.1	110,812,010
99	2112	270.83	106.62	8.89	0	0.0	0	0	3.05	309.2	100,749,690	192	0.00	0.0	0	0.00	0.0	0	8.0	43.6	14,215,906	0.0	0	2.4	775,697	10.4	3,377,887	340.1	110,812,010
100	2113	270.83	106.62	8.89	0	0.0	0	0	3.05	309.2	100,749,690	192	0.00	0.0	0	0.00	0.0	0	8.0	43.6	14,215,906	0.0	0	2.4	775,697	10.4	3,377,887	340.1	110,812,010
				2.00	Ť		-	, , , , , , , , , , , , , , , , , , ,			,,			5.0	, , , , , , , , , , , , , , , , , , ,		0.0	Ť			,_ 10,000		~				-,,		,
Total		27,083	10,662.43	888.535	58	29,514	9,617,050,017	18,29	97	60,718	19,784,926,740.57	37,642.5	5	-	-		-	-		4,212	1,372,597,501.97	4,321	1,407,954,499.61	467	152,329,181.28	1,001	326,147,302.01	88,654	28,888,143,077.85

Table 5: Evaporation Treatment Schedule

181-06417

Year Following Closure	Salt Generation (Tons/Year)	Salt Generation (cy/Year)
10	140,093	93,396
11	117,549	78,366
12	95,319	63,546
13	70,040	46,693
14	49,346	32,897
15	20,630	13,753
16	20,387	13,591
17	20,145	13,430
18	19,904	13,269
19	19,663	13,109
20	19,423	12,949
21	19,186	12,791
22	18,954	12,636
23	18,727	12,484
24	18,504	12,336
25	18,284	12,189
26	18,068	12,045
27	17,855	11,903
28	17,644	11,763
29	17,436	11,624
30	17,230	11,487
31	17,027	11,351
32	16,825	11,217
33	16,785	11,190
34	16,745	11,164
35	16,708	11,139
36	16,672	11,114
37	16,637	11,091
38	16,603	11,069
39	16,571	11,047
40	16,539	11,026
41	16,509	11,006
42	16,479	10,986
43	16,451	10,967
44	16,423	10,949
45	16,396	10,931
46	16,370	10,914
47	16,345	10,897
48	16,321	10,880
49	16,297	10,865
50	16,264	10,843
51	16,202	10,802
52	16,182	10,788
53	16,161	10,774
54	16,142	10,761

Table 6: Annual Rate of Salt Generation from Evaporative Treatment System (Years 10 Through 100)

Year Following Closure	Salt Generation (Tons/Year)	Salt Generation (cy/Year)
55	16,122	10,748
56	16,104	10,736
57	16,085	10,723
58	16,067	10,712
59	16,050	10,700
60	16,033	10,689
61	16,016	10,678
62	16,000	10,667
63	15,985	10,656
64	15,969	10,646
65	15,954	10,636
66	15,939	10,626
67	15,925	10,617
68	15,911	10,607
69	15,897	10,598
70	15,884	10,589
71	15,871	10,580
72	15,858	10,572
73	15,845	10,563
74	15,835	10,556
75	15,824	10,550
76	15,814	10,543
77	15,804	10,536
78	15,795	10,530
79	15,785	10,523
80	15,776	10,517
81	15,766	10,511
82	15,757	10,505
83	15,748	10,499
84	15,740	10,493
85	15,731	10,487
86	15,722	10,482
87	15,714	10,476
88	15,706	10,470
89	15,698	10,465
90	15,690	10,460
91	15,682	10,454
92	15,674	10,449
93	15,667	10,444
94	15,659	10,439
95	15,652	10,434
96	15,644	10,430
97	15,637	10,425
98	15,630	10,420
99	15,623	10,416
100	15,617	10,411

Table 6: Annual Rate of Salt Generation from Evaporative Treatment System (Years 10 Through 100)

Year	Flow Rate (gpm)	Sulfate (mg/L)
15	1,189	2,811
25	1,109	2,706
50	1,013	2,538
75	966	2,483
100	944	2,433

Table 7: Summary of Water Flow and Sulfate Concentrations for Influent Streams Sent to the TTS Treatment System

Table 8: Summary of Water Flow and Sulfate Concentrations for Influent Stream Sent to the TTS Membrane Treatment System

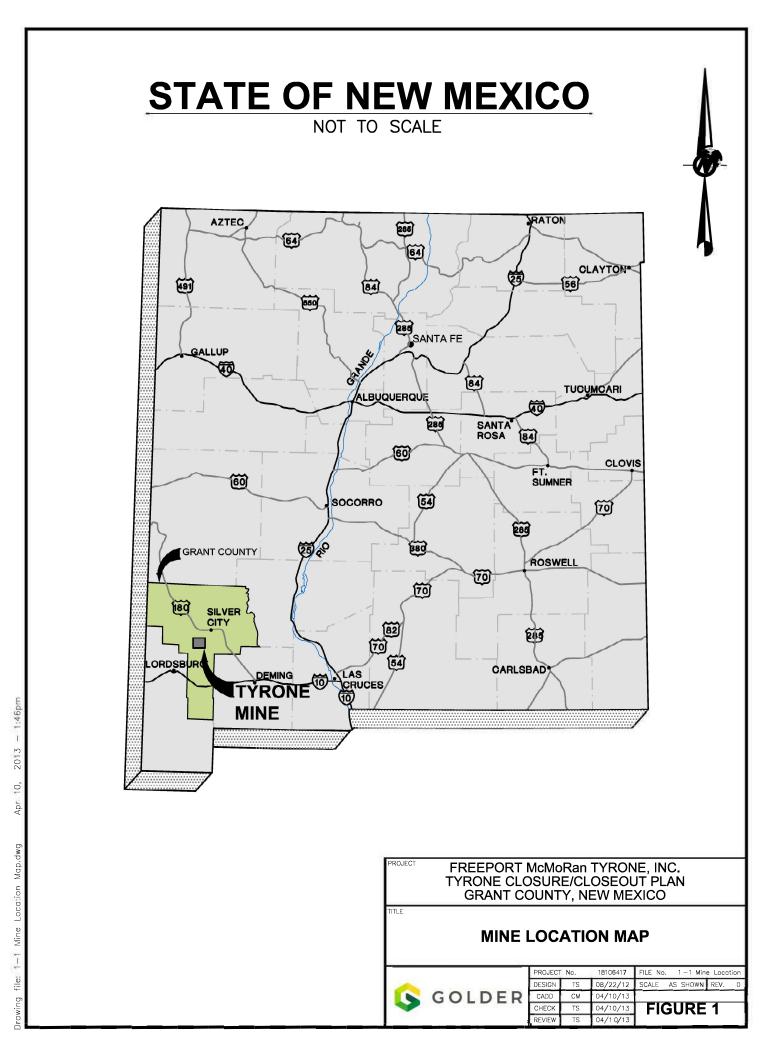
Year	Flow Rate (gpm)	Sulfate (mg/L)	
15	925	1,600	
25	862	1,600	
50	786	1,600	
75	749	1,600	
100	732	1,600	

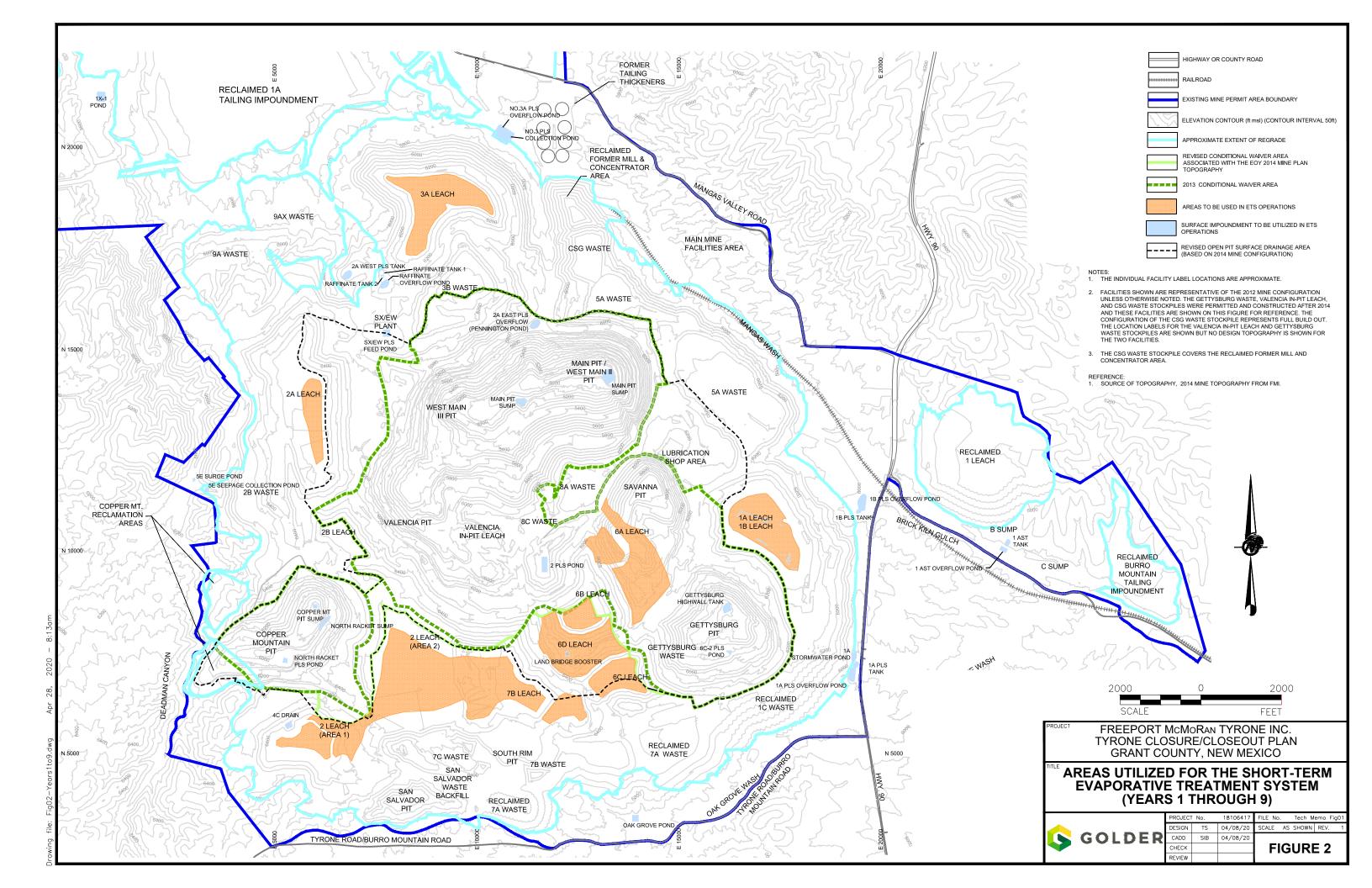
Year	Flow Rate (gpm)	Sulfate (mg/L)	
15	1,285	2,788	
25	1,197	2,691	
50	1,091	2,536	
75	1,040	2.484	
100	1,016	2,438	

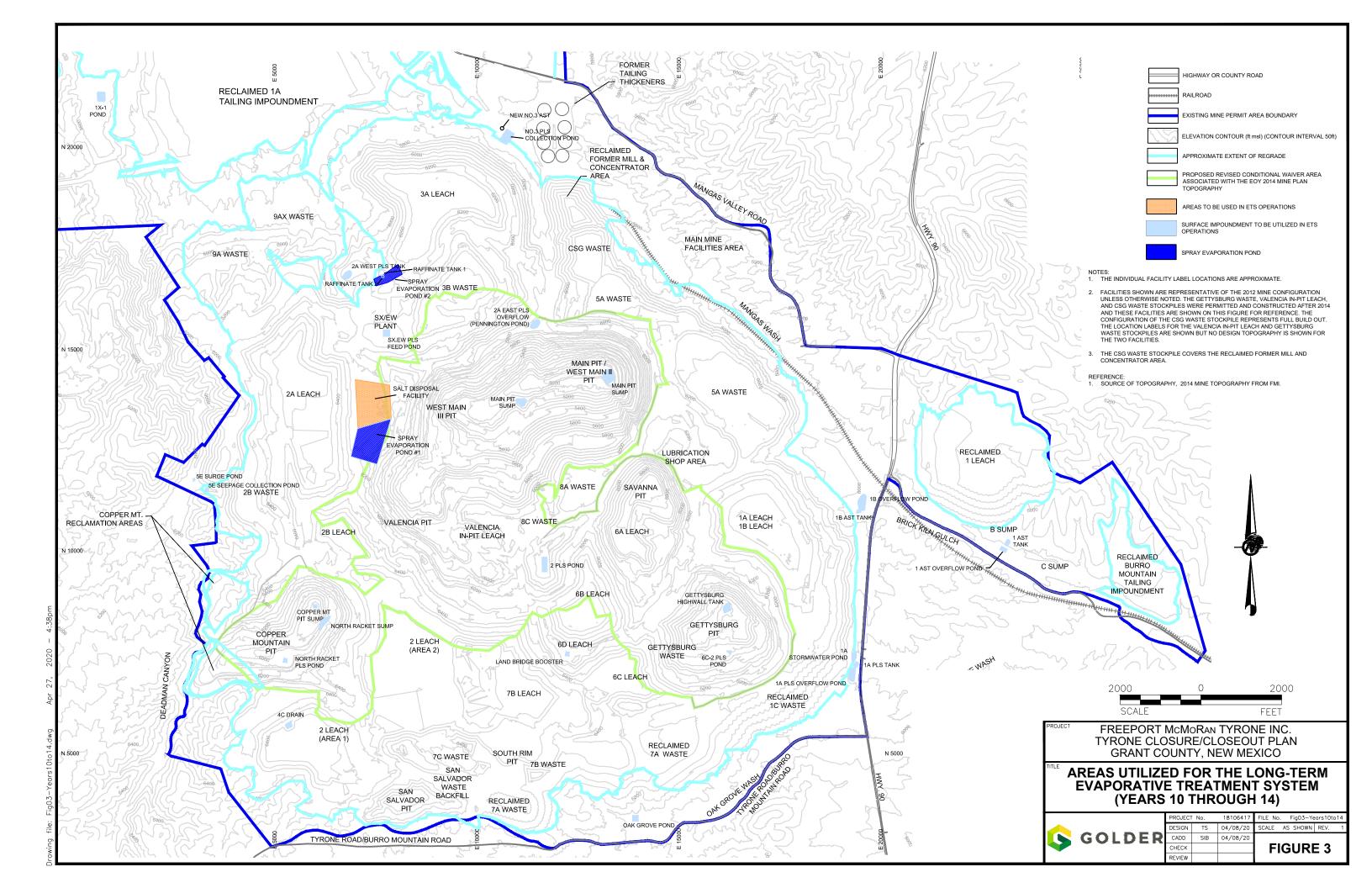
Year	Sludge, 50% (tons/year)	Sludge, 50% (cy/year)
15	32,844	24,329
25	29,526	21,871
50	25,363	18,788
75	23,680	17,541
100	22,703	16,817

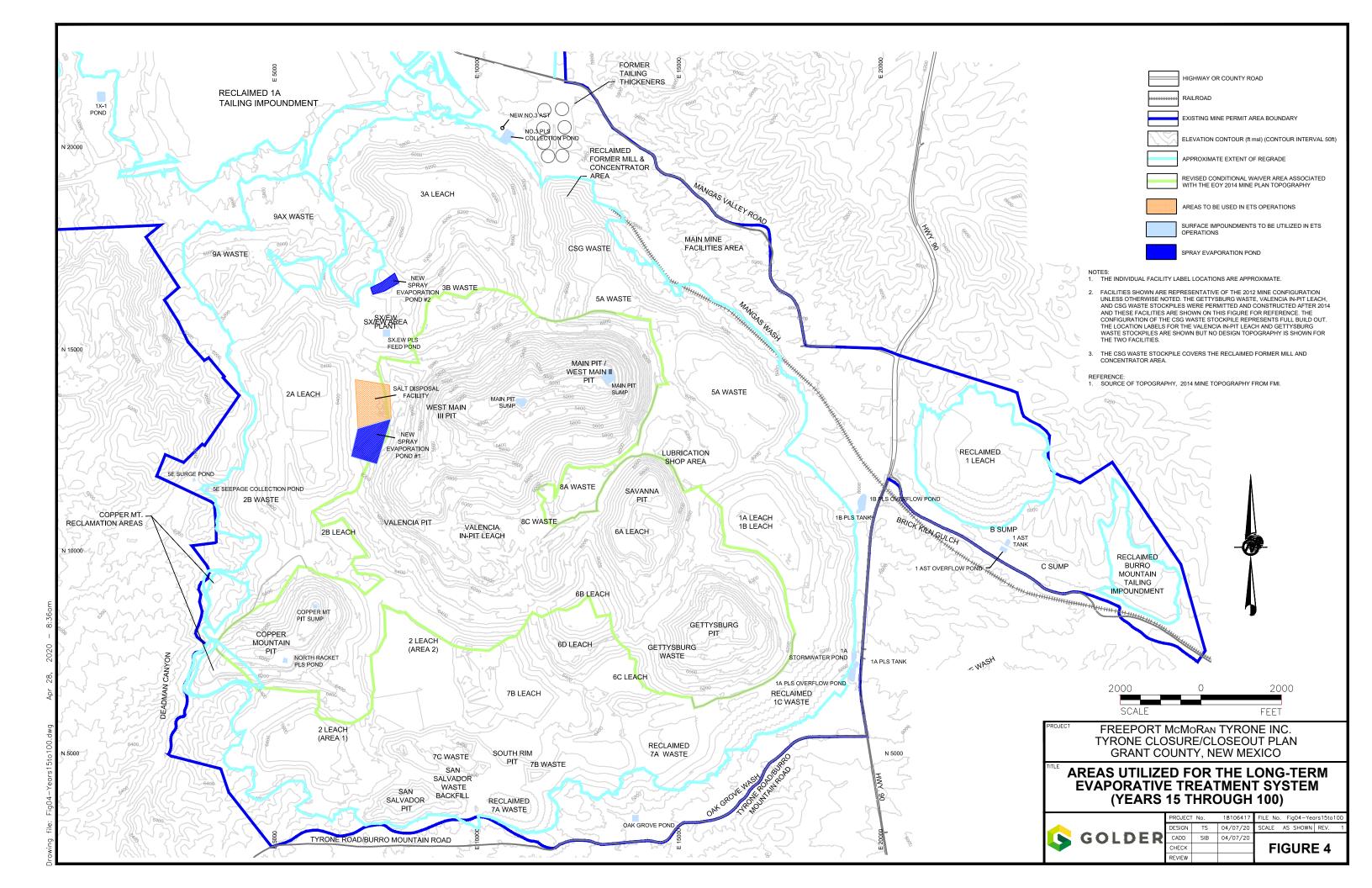
Table 10: Annual Rate of Sludge Generation from Water Treatment System

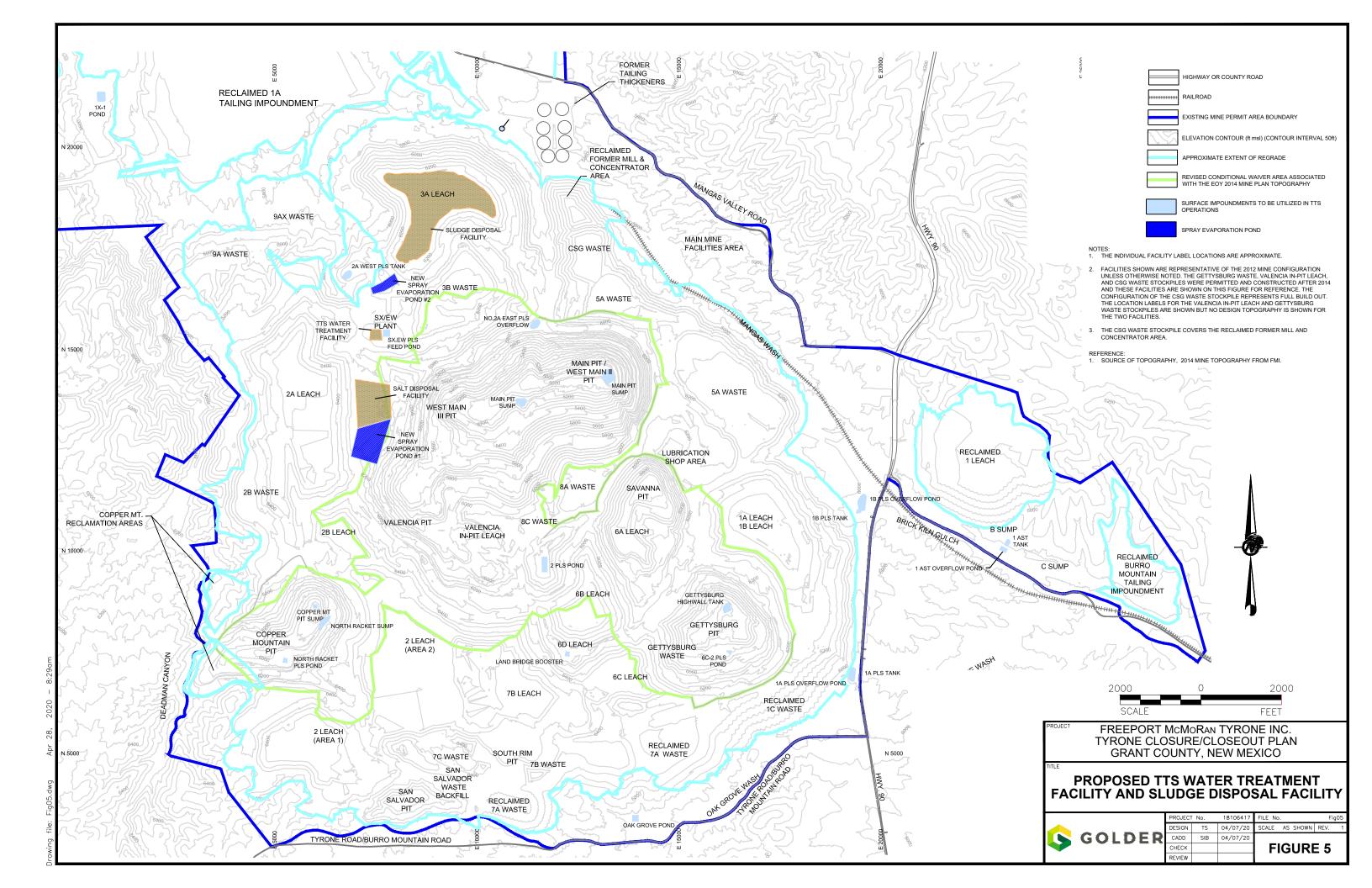
Table 11: Labor Costs

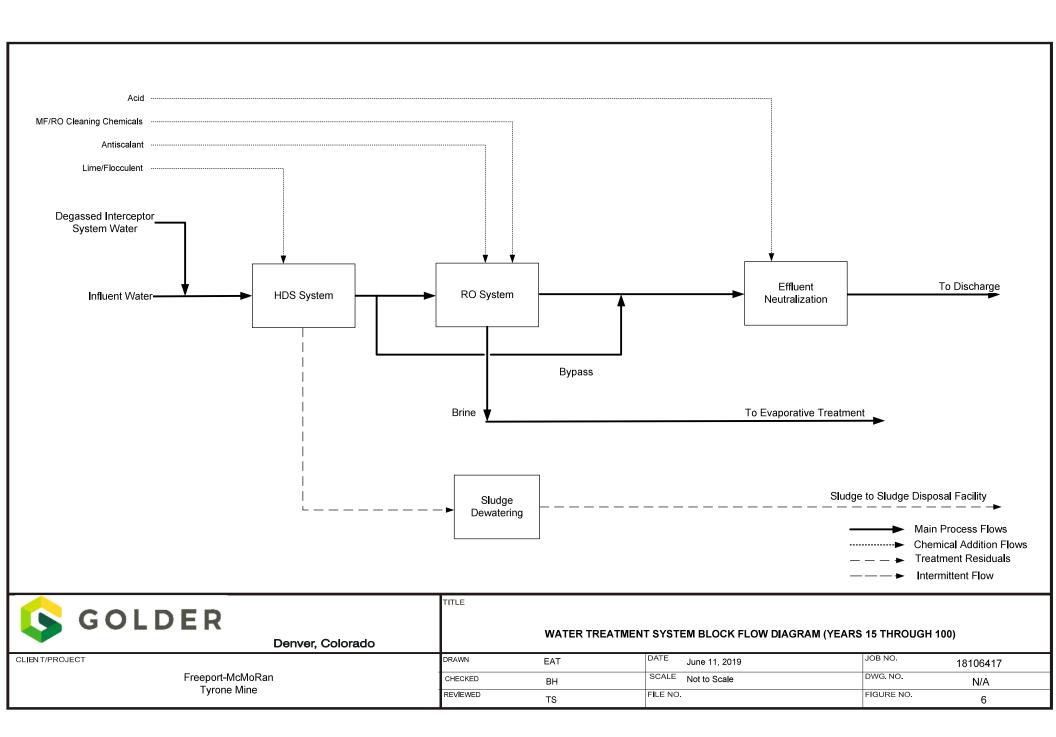

Labor Category	Base Hourly Wage*
Plant Operator	\$18.60
O&M Supervisor	\$31.10
Maintenance Technician	\$19.83


Notes:


*These salaries are based on 2019 prevailing wage rates in New Mexico.




Figures



ATTACHMENT A

Summary Table of Post Mining Process Water Management and Water Treatment Flow Rates

Attachment A

			Ро	st Mining Pro	ocess Water	Managem	100-	Year Wate	r Handling	Plan with V	Nater Tre	Treatment S eatment Plan d April 2020)	ystem and W	ater Treatme	nt Plant Oper	ations		
			Evaporatio	on Schedule						Inflows - In	• •				w	ater Treatm	ent Schedu	lle
		Evaporati	on System Water	Flow Rates	Storage			Pit Water	In-flows			SI	ockpile Water In-f	ows	Total Impacted Water Flows	Water Treatm	ent Schedule	
End of Year	Year Following	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)
	Closure	Rate (gpm)	Evaporation System Water Loss (gallons per year)	Impacted Water Included In Evaporation System Flow Rate (gpm)	Water in Storage at the End of Year (gallons)	Groundwater Inflow (gpm)	Gettysburg Pit Groundwater Inflow (gpm)	Groundwater Inflow (gpm)	Main Pit Storm Water Run-on Inflow (gpm)	Run-on Inflow (gpm)	Copper Mt. Pit Storm Water Run- on Inflow (gpm)	Storm Water Run-Off Outside Waiver Area (gpm)	Flow from Higher TDS/Sulfate Toe Collections and GW Interceptor Systems (gpm)	Flow from Lower TDS/Sulfate Toe Collections and GW Interceptor Systems (gpm)	Combined Impacted Water from Mine Sources Flow Rate (gpm)	Flow Rate to Water Treatment Plant (gpm)	RO Brine Effluent from WTP to ETS (gpm)	Total Water Flow Rate to Beneficial Use (gpm)
2015 2016	1	32,222 28,886	954,809,139 1,737,196,661	1,629 1,616	1,752,451,561 864,624,500	<u>1,092</u> 1,083	61 61				8	159 159	60 60	112 112			-	-
2016	2	25,557		1,610	- 004,024,500	1,063	60				8	159	68	112		-	-	-
2018	4	22,221	1,737,196,661	1,599	-	1,066	60	44	75	6	8	159	68	112	1,599	-	-	-
2019	5	18,877	, , ,	1,578	-	1,058	59		-		8	159	66	104	1,578	-	-	-
2020 2021	6	15,533 12,270	1,737,196,661	1,558 1,619	-	1,050 1,042	59 58		-		8	5 159 5 159	65 64	95 168	1,558 1,619	-	-	-
2021	8	8,927	1,737,196,661	1,599	-	1,042	57				8	159	62	159	1,599	-	-	-
2023	9	5,584	1,737,196,661	1,580	-	1,027	57	36	75		8	159	61	151	1,580	-	-	-
2024	10	2,371	827,953,643	1,561	-	1,019	56				8	159	60	142		-	-	-
2025 2026	11 12	1,541 1,522	827,953,643 827,953,643	1,541 1,522	-	<u>1,012</u> 1,004	55 55				8	159 159	58 57	133 125	1,541 1,522	-	-	-
2020	13	1,322	729,618,570	1,279	-	939	54		-	-	8	-	54	116			-	-
2028	14	1,259	729,618,570	1,259	-	932	53				8	-	52	108	/	-	-	-
2029	15	255	141,176,237	255	-	925	53				8	-	51	99	1,240	1,189	204	
2030 2031	16 17	252 250	141,176,237 141,176,237	252 250	-	<u>918</u> 911	52 51				8	-	50 49	99 99		1,180 1,172	202	
2031	18	230	137,980,002	230	-	904	50				8	-	43	99		1,163	199	
2033	19	245		245	-	897	49	25			8	-	47	99		1,154	197	956
2034	20	242	134,783,768	242	-	890	49				8	-	46	99	,	1,146		
2035 2036	21 22	240 238	134,783,768 133,185,651	240 238	-	884 878	48				8	-	45	99 99	,	1,137 1,130	195 193	
2030	22	235	131,587,533	235	-	872	46				8	-	43	99		1,130		
2038	24	233	131,587,533	233	-	867	46	-			8	-	42	99	1,158	1,116	191	925
2039	25	231	129,989,416	231	-	862	45				8	-	41	99		1,109	190	
2040 2041	26 27	229 227	128,391,299 128,391,299	229 227	-	<u>858</u> 853	44	-			8	-	41 40	99 99	1,143 1,136	1,102 1,096	189 188	
2042	28	225		225	-	849	43				8	-	39		,	1,000		
2043	29	223	125,195,065	223	-	845	43				8	-	38			1,086	186	
2044	30	221		221	-	842	42	-			8	-	37		/	1,081		
2045 2046	31 32			220 218	-	838 835	41				8	-	36 35			1,076 1,072		
2040	33	217	, ,	210	-	831	40				8	-	35		,	1,068		
2048	34			216	-	828	40				8	-	35			1,063	182	
2049	35			216	-	825	40				8	-	35		,	1,059		
2050 2051	36 37	215 214	, ,	215 214	-	823 820	39 39				8	-	35 35			1,056 1,052		
2052	38	214	, ,	214	-	817	38	11			8	-	35		,	1,048		869
2053	39	213	, ,	213	-	815	38				8	-	35			1,045		
2054 2055	40 41	213 212	, ,	213	-	812	37				8	-	35			1,042 1,038		
2055	41	212	, ,	212 212	-	810 807	37				8	-	35 35		,	1,038		
2057	43	211	, ,	211	-	805	36				8	-	35	99		1,032		856
2058	44	211	, ,	211	-	803	36				8	-	35		,	1,029		
2059 2060	45 46	210 210	, ,	210 210	-	801 799	36 35				8	-	35		,	1,027 1.024		
2060	46 47	210	, - , -	210	-	799 797	35		68		8	-	35 35		,	1,024	-	
2062	48		, ,	203	-	795	35		68		8		35		/	1,021		

			Evaporatio	on Schedule					System	Inflows - In	pacted V	Water			N N	ater Treatmo	ent Schedul	e
		Evaporati	on System Water	Flow Rates	Storage			Pit Water	In-flows			SI	tockpile Water In-fl	ows	Total Impacted Water Flows	Water Treatm	ent Schedule	
End of Year	Year Following	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)
	Closure	Evaporation System Flow Rate (gpm)	Evaporation System Water Loss (gallons per year)	Impacted Water Included In Evaporation System Flow Rate (gpm)	Water in Storage at the End of Year (gallons)	Main Pit Groundwater Inflow (gpm)	Gettysburg Pit Groundwater Inflow (gpm)	Groundwater Inflow (gpm)	Inflow (gpm)	Gettysburg Pit Storm Water Run-on Inflow (gpm)	Copper Mt. Pit Storm Water Run- on Inflow (gpm)	Storm Water Run-Off Outside Waiver Area (gpm)	Flow from Higher TDS/Sulfate Toe Collections and GW Interceptor Systems (gpm)	Flow from Lower TDS/Sulfate Toe Collections and GW Interceptor Systems (gpm)	Combined Impacted Water from Mine Sources Flow Rate (gpm)	Flow Rate to Water Treatment Plant (gpm)	RO Brine Effluent from WTP to ETS (gpm)	Total Water Flow Rate to Beneficial Use (gpm)
2063 2064	49 50	208 208	117,204,478 117,204,478	208 208	-	793 791	34		68 68	7	8	-	<u>35</u> 35	99 99		1,016 1.013	173 173	843 840
2065	50	208	115,606,361	208	-	791	34	-	68	7	8	-	35		,	1,013	173	835
2066	52	206	115,606,361	206	-	787	33		68	7	8	-	35			1,004	171	833
2067	53	206	115,606,361	206	-	786	33		68	7	8	-	35		,	1,002	171	831
2068	54	205	115,606,361	205	-	784	33		68	7	8	-	35			999	171	829
2069 2070	55 56	205 205	115,606,361 115,606,361	205 205	-	783 781	33 32		68 68	7	8	-	35 35			997 995	170 170	827 825
2070	57	203	115,606,361	203	-	780	32		68	7	8	·	35		,	993	170	824
2072	58	204	114,008,244	204	-	778	32		68	7	8	-	35		,	991	169	822
2073	59	204	114,008,244	204	-	777	32	3	68	7	8	-	35	95	,	990	169	821
2074	60	203	114,008,244	203	-	776	32		68	7	8	-	35			988	169	820
2075 2076	61 62	203 203	114,008,244 114,008,244	203 203	-	774 773	31 31	3	68 68	7	8	-	35 35	95 95		986 984	168 168	818 816
2070	63	203	114,008,244	203	-	772	31	2	68	7	8	-	35		,	983	168	816
2078	64	202	114,008,244	202	-	770	31		68	7	8	-	35			981	167	814
2079	65	202	114,008,244	202	-	769	31	2	68	7	8	-	35			979	167	812
2080	66	202	114,008,244	202	-	768	30	1	68	7	8	-	35		,	978	167	811
2081	67	201	112,410,127	201	-	767	30		68	7	8	-	35		,	976	167	810
2082 2083	68 69	201 201	112,410,127 112,410,127	201 201	-	766 765	30 30	1	68 68	7	0	-	35 35		,	975 973	166 166	809 807
2003	70	201	112,410,127	201	-	764	30	1	68	7	8	-	35			972	166	806
2085	71	200	112,410,127	200	-	763	29		68	7	8	-	35		,	971	166	806
2086	72	200	112,410,127	200	-	762	29		68	7	8	-	35		,	969	165	804
2087	73	200	112,410,127	200	-	761	29		68	7	8	-	35			968	165	803
2088 2089	74 75	200 199	112,410,127 112,410,127	200 199	-	760 759	29 29		68 68	7	8		35 35			967 966	165 165	802 802
2089	76	199	112,410,127	199	-	758	29	0	68	7	8	-	35		,	965	165	801
2000	77	199	112,410,127	199	-	757	29	0	68	7	8		35			964	164	800
2092	78	199	112,410,127	199	-	756	28	0	68	7	8	-	35	95	997	962	164	798
2093	79	199	112,410,127	199	-	755	28		68	7	8	-	35			961	164	797
2094	80	199	112,410,127	199	-	755	28	-	68	7	8	-	35			960	164	796
2095 2096	81 82	198 198		198 198	-	754 753	28 28		68 68		8		35 35			960 959	164 164	797 796
2090	83	198		198	-	752	28		68	7	8	-	35			958	163	790
2098	84	198		198	-	751	28		68	7	8	-	35				163	794
2099	85	198		198	-	750	27		68	7	8	-	35			956	163	793
2100	86	198		198	-	750	27		68	7	8	-	35			955	163	792
2101 2102	87 88	197 197	110,812,010 110,812,010	197 197	-	749 748	27 27		68 68	7	8	-	35 35			954 953	163 163	792 791
2102	00 89	197	110,812,010	197	-	746	27		68	7	8		35			953	163	791
2100	90	197	110,812,010	197	-	747	27		68	7	8	-	35			951	162	789
2105	91	197	110,812,010	197	-	746	27	0	68	7	8		35			951	162	789
2106	92	197	, ,	197	-	745			68	7	8		35			950	162	788
2107	93 94	197 196	110,812,010	197 196	-	745	27 26		68 68	7	8		35			949 948	162 162	787 787
2108 2109	94 95	196		196	-	744 743				-	8	-	35 35				162	
2109	90	190	110,012,010	190	-	743	20	0	00	1	0	-		90	902	547	102	100

			Evaporatio	on Schedule					System I	nflows - Im	pacted V	Vater			W	ater Treatme	ent Schedul	le
		Evaporat	ion System Water	Flow Rates	Storage			Pit Water	In-flows			S	ockpile Water In-fl	ows	Total Impacted Water Flows	Water Treatmo	ent Schedule	
End of Year	Year Following	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)
	Closure	Evaporation System Flow Rate (gpm)	Evaporation System Water Loss (gallons per year)	Impacted Water Included In Evaporation System Flow Rate (gpm)	Water in Storage at the End of Year (gallons)	Groundwater	Gettysburg Pit Groundwater Inflow (gpm)	Groundwater	Main Pit Storm Water Run-on	Gettysburg Pit Storm Water	Water Run-	Storm Water Run-Off Outside Waiver Area (gpm)	Collections and GW Interceptor	Flow from Lower TDS/Sulfate Toe Collections and GW Interceptor Systems (gpm)	from Mine	Flow Rate to Water Treatment Plant (gpm)	RO Brine Effluent from WTP to ETS (gpm)	Total Water Flow Rate to Beneficial Use (gpm)
2110	96	196	110,812,010	196	-	743	26	0	68	7	8	-	35	95	982	947	161	786
2111	÷.	196	110,812,010		-	742	-		68	7	8	-	35	95	981	946	161	785
2112		196	, ,	196	-	741	-	-	68	7	8	-	35	95	980	945	161	784
2113		196	, ,	196	-	741	-	-	68	7	8	-	35	95	980	945	161	784
2114	100	196	110,812,010	196	-	740	26	0	68	7	8	-	35	95	979	944	161	783

Notes:

This table presents the water solution volumes and flow rates associated with a 100-year water handling plan. Identifed are:

a. System in-flow components of impacted water that must be handled and flow rates of the components,

b. Schedule for reduction of water in storage through operation of an evaporation system,

c. A schedule of water treatment plant operating rates that correspond to impacted water in-flow rates that require treatment

(1) - During the mining and copper leaching operations approximately 30,615 gpm of water is circulated through the copper production system (Average raffinate flow rate from January 2017 through December 2018). After cessation of the mining operation, the leaching operation will stop. However continued operation of the existing leach drip system as an evaporation system in combination with new spray systems will deplete the leach system water contained in storage. The flow rate of the evaporation system can be as high as the flow rate during leaching operations and it will be reduced as the water in storage is depleted. Data Provided by FMI in "2011-2018 Raff Flow.xlsx"

(2) - "Evaporation Sytem Water Water Loss" (EWL) is based on daily potential evaporation from UNSAT-H Model Run 3 No Plants, and associated area under drip system. Spray evaporation based on daily evaporation chart for Model 1210 evaporator systems provided by Duane Thompson of Minetek on June 28, 2012. Fifth degree polynomial fit through data set and mechanical spray system flow rates applied to evaporation chart. Evaporation from PLS surface impoundments and tanks is also included as well as the average annual precipitation (15.61 inches) on the stockpile areas under drip and the surface impoundments, and spray areas. A pan coefficient of 0.7 was applied to pan evaporation data for surface impoundment evaporation estimates. Drip System only in Year 1 with 382 acres under drip. Requires a 25 spray system operating for Years 2 through 12, 22 spray system operating for Years 13 and 14, and 4 spray system operating between Years 15 and the end of Year 100. Drip areas (Year 1: 382 acres).

(3) - For Years 1 through 14, Total Combined Impacted Water In-flow (column-14) will be included in the short-term evaporation system. For Years-15 through Year-100, high TDS and sulfate water streams will be treated in the long-term evaporative system, and the low TDS and sulfate water streams will be treated at the Water Treatment Plant.

(4) - Water in Storage at the end of a year in the schedule. Initial "Water in Storage" (WIS) = Water in PLS impoundments/tanks (18,119,418 gal.) - PLS added to empty overflow ponds (11,308,800 gal.) + water in pits (202,125,049 gal.) + "Average Circulated Inventory" (ACI). ACI is calculated based on experience with leach operations which show that when raffinate application is stopped, PLS flow rates from stockpiles diminish to 10% of the full application flow rate in 45 days. Make-up water requirement = 8% of Raffinate Flow Rate during leaching (Therefore 92% of the Raffinate Flow Rate reports to PLS.). For an initial raffinate flow rate of 30,615 gallons per minute (average measured raffinate flow rates between January 2017 and the end of December 2018), the ACI is calculated as follows: ((30,615 gpm x 92%) x 60 min/hr x 24 hr/day x 45 day drain-down cycle) x 0.90 = 1,642,629,456 gallons. And the initial water in storage can be calculated as follows: Initial "Water in Storage" = (18,119,418 - 11,308,800 + 202,125,049 + 1,642,629,456) gallons = 1,851,565,200 gal. rounded).

(5) - Sources of water in-flow to the system related to the Main Pit groundwater inflows and the estimated flow rates based on DBS&A Stage 2 Abatement Plan GW flow model updated with 2014 base case mine plan configuration and associated regrade plan. Estimated flows provided by DBS&A on 1/18/2019 "Pit GW Inflow Estimates_Golder_DBSA.xlsx"

(6) - Sources of water in-flow to the system related to the Gettysburg Pit groundwater inflows and the estimated flow rates based on DBS&A Stage 2 Abatement Plan GW flow model updated with 2014 base case mine plan configuration and associated regrade plan. Estimated flows provided by DBS&A on 1/18/2019 "Pit GW Inflow Estimates_Golder_DBSA.xlsx"

(7) - Sources of water in-flow to the system related to the Copper Mountain Pit groundwater inflows and the estimated flow rates based on DBS&A Stage 2 Abatement Plan GW flow model updated with 2014 base case mine plan configuration and associated regrade plan. Estimated flows provided by DBS&A on 1/18/2019 "Pit GW Inflow Estimates_Golder_DBSA.xlsx"

(8) - Sources of water in-flow to the system related to the Main Pit storm water run-on and the estimated average flow rates for both 2014 base-case (uncovered stockpile surfaces Years 1 through 12) and post closure periods (covered stockpile surfaces Years 13 though 100). Includes storm water run-on in Savanna Pit which is assumed to be pumped into Main Pit. Appendix E to Stage DBS&A Stage 2 Abatement Plan (Golder, July 2012). Final updated 2014 EOY and Regrade stockpile areas provided by MWH on 8/3/2012.
 (9) - Sources of water in-flow to the system related to the Gettysburg Pit storm water run-on and the estimated average flow rates for both 2014 base-case (uncovered stockpile surfaces Years 1 through 12) and post closure periods (covered stockpile surfaces Years 13 though 100). Appendix E to Stage DBS&A Stage 2 Abatement Plan (Golder, July 2012) and post closure periods (covered stockpile surfaces Years 13 though 100). Appendix E to Stage DBS&A Stage 2 Abatement Plan (Golder, July 2012). Final updated 2014 EOY and Regrade stockpile areas provided by MWH on 8/3/2012.

(10) - Sources of water in-flow to the system related to the Copper Mountain Pit storm water run-on and the estimated average flow rates for both 2014 base-case (uncovered stockpile surfaces Years 1 through 12) and post closure periods (covered stockpile surfaces Years 13 though 100). Appendix E to Stage DBS&A Stage 2 Abatement Plan (Golder, July 2012). Final updated 2014 EOY and Regrade stockpile areas provided by MWH on 8/3/2012.

(11) - Sources of water in-flow to the system related to storm water run-off outside pit watershed areas and the estimated average flow rates for both 2014 base-case operational and post closure periods. Assumed all stockpiles are covered by year 12 and surface water runoff will be directed to natural drainages at this point. Appendix E to Stage DBS&A Stage 2 Abatement Plan (Golder, July 2012). Final updated 2014 EOY and Regrade stockpile areas provided by MWH on 8/3/2012.

(12) - Sources of water in-flow to the system from the high TDS (>10,000 mg/L) and high sulfate (>7,500 mg/L) stockpile toe collections and groundwater interceptor systems and the estimated average flow rate of each source. The high TDS and sulfate waters from these sources will be included in the short-term evaporative treatment system for Years 1 through 14, and will be included in the long-term evaporative treatment system for Years 15 through 100. Flow and water quality estimates for the individual stockpile toe collections and groundwater interceptor systems provided by DBS&A in the file "Seep WQ and Flows Initial Projections_DBSA 2019_Update.xlsx".

(13) - Sources of water in-flow to the system from the low TDS (<10,000 mg/L) and low sulfate (<7,500 mg/L) stockpile toe collections and groundwater interceptor systems and the estimated average flow rate of each source. The low TDS and sulfate waters from these sources will be included in the short-term evaporative treatment system for Years 1 through 14, and will be included in the Water Treatment Plant flow stream for Years 15 through 100. Flow and water quality estimates for the individual stockpile toe collections and groundwater interceptor systems provided by DBS&A in the file "Seep WQ and Flows Initial Projections_DBSA 2019_Update.xlsx".

(14) - Combined Impacted Water In-Flow Rate (CIW) is total of in-flows columns, column-5 through column-13.

(15) - Flow Rate to Water Treatment Plant is the flow rate that is the basis for determining the WTP operating cost.

(16) - RO Brine Effluent from the membrane system at the Water Treatment Plant that will be included in the long-term evaporative treatment system between Years 15 through Year 100.

(17) - Treated water flow rate going to beneficial use.

Flows to the Evaporative Treatment Systems (short-term and long-term ETS's)

Flows to the Water Treatment Plant (Tyrone Treatment System)

ATTACHMENT B

Equipment and Material Quotes and Cost Backup Details

ATTACHMENT B1 ETS Equipment Backup

Tab 1: Water Management Variables Evaporative Treatmentand Water Conveyance Systems

Description	Variable
RSMeans NM Discount Rate	0.847
Steel Tank Life Expectancy (yr)	50
Lined Pond Life Expectancy (yr)	30
Pump Life Expectancy (yr)	20
HDPE Pipeline Life Expectancy (yr)	100
Reclamation Start Year (End of Year 2014)	0
Reclamation Finished (End of Year 2031)	17
Vegetation Established Assume stormwater released	12
Short-Term Evaporative Treatment System Start Year (Beginning of Year 2015)	1
Short-Term Evaporative Treatment System Finish Year (End of Year 2023)	9
Long-Term Evaporative Treatment System Start Year (Beginning of Year 2024)	10
Long-Term Evaporative Treatment System Finish Year (End of Year 2114)	100

 Tab 2: LONG-TERM EVAPORITION TREATMENT SYSTEM - CAPEX

 Rev. 1

Pipelines CAPEX and Replacement Schedule

From	То	Length (ft)	Max Flow (gpm)	Replacement Material	Nom. Replacement Pipe Size (in)	Replacement Pipe Schedule	Existing Pipeline	Material and Installation Cost	Total Installed Direct Cost	Comments	Assumed Age at Start of LT-ETS (Yr 10)		2nd Relacement Year	3rd Relacement Year	Year NA	5th Relacement Year
							Process Wate	er Sources to LT ETS								
No. 3 Stockpile Interceptor Barrier Trenches	No. 3 PLS Collection Pond	3880	5.39	HDPE PE4710	2	17	Yes	\$6.45	\$25,026.00	RS Means bare costs for materials and installation, based on a curve fit of individual	20	90	NA	NA	NA	NA
No. 3 Stockpile New Canyon 6 Area Collection	No. 3 PLS Collection Pond	900	1.56	HDPE PE4710	2	17	Yes	\$6.45	\$5,805.00	bare rate costs for pipe sizes provided in RS Means (Line No's. 331413350100 through	20	90	NA	NA	NA	NA
No. 3 PLS Collection Pond	Spray Evap Pond #1	7625	6.95	HDPE PE4710	2	9	Yes	\$6.45	\$49,181.25	331413350900)	20	90	NA	NA	NA	NA
Oak Grove Interceptor Barrier Trenches	1 AST Tank	4784	19.69	HDPE PE4710	2	17	Yes	\$6.45	\$30,856.80		20	90	NA	NA	NA	NA
1 AST Tank	1B PLS Tank	3958	19.69	HDPE PE4710	2	9	No	\$6.45	\$25,529.10	RS Means bare costs for materials and installation, based on a curve fit of individual	0	NA	NA	NA	NA	NA
No. 1B Stockpile Seep Collections	1B PLS Tank	600	8.86	HDPE PE4710	2	17	Yes	\$6.45	\$3,870.00	bare rate costs for pipe sizes provided in RS Means (Line No's. 331413350100 through	20	90	NA	NA	NA	NA
1 AST Tank	1B PLS Tank	6500	2.2	HDPE PE4710	2	17	Yes	\$6.45	\$41,925.00	331413350900)	20	90	NA	NA	NA	NA
1B PLS Tank	Spray Evap Pond #1	21839	30.75	HDPE PE4710	2	9	No	\$6.45	\$140,861.55		0	NA	NA	NA	NA	NA
5E Seepage Collection Pond	Spray Evap Pond #1	13110	13.44	HDPE PE4710	2	17	No	\$6.45	\$84,559.50	RS Means bare costs for materials and installation, based on a curve fit of individual bare rate costs for pipe sizes provided in RS Means (Line No's. 331413350100 through 331413350900)	0	NA	NA	Relacement Year Relace Year NA N NA N	NA	NA
Brine Reject from TTS	Spray Evap Pond #1	2320	204	HDPE PE4710	4	17	No	\$6.70	\$15,544.00	RS Means bare costs for materials and installation (Line No. 331413350100)	0	NA	NA	NA	NA	NA

Total Piping:

Created by:	Antonio Herilalaina
Checked by:	Wade Wang
Approved by:	JP Wu
Revised by:	Todd Stein (4/14/2020)

\$423,158

Tab 2: LONG-TERM EVAPORITION TREATMENT SYSTEM - CAPEX Rev. 1

Pumps																
From	То	Quantity	Design Flow Rate (gpm)	Total Head (ft)	Assumed Motor Rating, hp	Material Cost	Total Material	Installation Cost	Total Installed Direct Cost	Comments	Assumed Age at Start of LT-ETS (Yr 10)	1st Relacement Year	2nd Relacement Year	3rd Relacement Year	4th Relacement Year	5th Relacement Year
No. 3 Stockpile Interceptor Barrie Trenches Flow	^r No. 3 PLS Collection Pond	10	5	50	0.5	\$7,500	\$75,000	\$6,269	\$81,269		0	30	50	70	90	NA
No. 3 Stockpile New Canyon 6 Area Collection Flow	No. 3 PLS Collection Pond	2	5	200	0.5	\$7,500	\$15,000	\$6,269	\$21,269		0	30	50	70	90	NA
No. 3 PLS Collection Pond	Spray Evap Pond #1	1	10	610	2	\$10,000	\$10,000	\$6,269	\$16,269		0	30	50	70	90	NA
Oak Grove Interceptor Barrier Trenches	1 AST Tank	3	10	50	0.5	\$7,500	\$22,500	\$6,269	\$28,769	Sump pump estimate based on historical	0	30	50	70	90	NA
1 AST Tank	1B PLS Tank	1	50	141	5	\$10,000	\$10,000	\$6,269	\$16,269	database of actual pump costs on various Golder projects. Unit hours required to install each pump		30	50	70	90	NA
No. 1B Stockpile Seep Collections	s 1B PLS Tank	2	10	50	0.5	\$7,500	\$15,000	\$6,269	\$21,269	were taken from Estimator Piping Man-Hour Manual Book, based on pump horse power.	0	30	50	70	90	NA
1 AST Tank	1B PLS Tank	1	10	90	2	\$10,000	\$10,000	\$6,269	\$16,269	\$85/hr was used for labor rate.	0	30	50	70	90	NA
1B PLS Tank	Spray Evap Pond #1	1	80	510	5	\$10,000	\$10,000	\$6,269	\$16,269		0	30	50	70	90	NA
5E Seepage Collection Pond	Spray Evap Pond #1	1	50	500	5	\$10,000	\$10,000	\$6,269	\$16,269		0	30	50	70	90	NA
5E Collections	5E Seepage Collection Pond	2	10	20	0.5	\$7,500	\$15,000	\$6,269	\$21,269		0	30	50	70	90	NA

ALLOWANCE FOR MINOR MECHANICAL, ELECTRICAL, INSTRUMENTATION, AND UNDEFINED SCOPE (5%): TOTAL DIRECT COST: TOTAL CONSTRUCTION COST: Pump Life Expectancy – 20 years HDPE Pipeline Life Expectancy – 100 years Second quarter 2019 RS Means used for pipe costs. NA - Not applicable

Total Pumps:

SOLDER

Created by: Checked by: Approved by:

Antonio Herilalaina Wade Wang JP Wu Revised by: Todd Stein (4/14/2020)

> \$255,194 \$33,917.60 \$712,270 \$713,000

Tab 3: LONG-TERM EVAPORITION TREATMENT SYSTEM - CAPEX Rev. 1

Reservoirs and Tanks CAPEX and Replacement Schedule

						Assumed Age at			2nd	
		New/Replacement	New/Replacement	New	/Replacement	Start of LT-ETS		1st Relacement	Relacement	3rd Relacemen
Reservoir/Tank ID	Current Size (ac)	Size (ac)	Size (sf)		Cost	(Yr 10)	CAPEX	Year	Year	Year
New Spray Evaporation Pond #1	7.4	7.4	322,344	\$	481,078	0	\$ 481,078	40	70	NA
New Spray Evaporation Pond #2	3.5	3.5	152,460	\$	228,462	0	\$ 228,462	40	70	NA
							Will be removed a			
Raffinate Tank 1	0.08	0.08	100,000 gal	\$	-	20	the EOY 14 (no	NA	NA	NA
							longer needed) so			
Raffinate Tank 2	0.25	0.25	100,000 gal	\$	-	20	costs not included	NA	NA	NA
5E Seepage Collection Pond	0.1	0.1	4,356	\$	6,447	20		20	50	80
5E Surge Pond	0.84	0.84	36,590	\$	54,154	20		20	50	80
No. 3 PLS Collection Pond	1.58	1.58	68,919	\$	102,000	20		20	50	80
1A PLS Tank	0.01	0.01	20,000 gal	\$	32,000	20		40	90	NA
1B PLS Tank	0.02	0.02	100,000 gal	\$	239,572	20		40	90	NA
1 AST Tank	0.001	0.001	20,000 gal	\$	32,000	20		40	90	NA
Total for Complete System:				\$	1,175,713		\$ 709,540			
Notes:										
Heavy Duty Plastic Tank Life Expectancy (yr)	50									
Steel Tank Life Expectancy (yr)	50									
Lined Pond Life Expectancy (yr)	30									
Norwesco 20,000 Gallon Heavy Duty Vertical	Liquid Storage Tank Ju	ly 2019 online quote (\$2	24,000 = assumed \$3,00	00 shij	oping and \$5,000) installation. Total	= \$32,000)			
			Second Quarter 2019 F	RS Me	ans 3105195311	100-310519531300) (1500 sf daily outp	ut), Pond and rese	rvoir liners, men	brane lining syste
80 mil Geomembrane Liner	\$ 1.48	\$/SF	100,000 S.F. or more, 8	80 mil	thick, per S.F.					
NA - Not applicable										

NA - Not applicable

181-06417

Created by:	Todd Stein
Date:	4/14/2020

ems HDPE,

Tab 4: EVAPORATION TREATMENT SYSTEM - CAPEXRev. 1

Mechanical Spray Systems CAPEX and Replacement Schedule

Description	Quantity	Design Flow Rate (gpm)	Assumed Motor and Fan Rating, hp	Material Cost	Installation Cost	Total Installed Direct Cost		Assumed Age at Start of ST- ETS (Yr 1)	Assumed Age at Start of LT-ETS (Yr 10)	1st Relacement Year	2nd Relacement Year	3rd Relacement Year	4th Relacement Year
Short-Term ETS Spray Systems (SMI Mega Polecat) ^a	25	123	60	\$52,500	\$18,800	\$1,331,300	a	0	10	NA	NA	NA	NA
Long-Term ETS Spray Systems (SMI Mega Polecat) ^b	4	123	60	\$55,125	\$6,510	\$227,010	b	0	10	20	40	60	80
TOTAL CONSTRUCTION COST:						\$1,558,310							

Notes:

^aSMI Quote Dated 10/4/18, includes \$52,500 per Mega Polecat unit, \$18,800 for supplier system setup (9 days total). Submersible pump not required, will use existing Raff distribution system. Total not including freight. ^bSMI Quote Dated 10/4/18, includes \$52,500 per Mega Polecat unit, \$6200 for supplier system setup (2 days total). Includes 5% allowance for undefined scope. Total not including freight. NA - Not applicable

Created by: Todd Stein Date: 7/23/2019

Tab 5: ELECTRICITY RATE CALCULATIONSRev. 1

5	•			· ·								
Assume a load of ### kW	1617.5											
Assume a demand of 100% of the kW	1617.5											
On-Peak kWh	429792.9	388200.0	429792.9	415928.6	429792.9	415928.6	429792.9	429792.9	415928.6	429792.9	415928.6	429792.9
Off-Peak kWh	773627.1	698760.0	773627.1	748671.4	773627.1	748671.4	773627.1	773627.1	748671.4	773627.1	748671.4	773627.1
Total kWh for the month	1203420	1086960	1203420	1164600	1203420	1164600	1203420	1203420	1164600	1203420	1164600	1203420
On-Peak cost	\$ 10,199.1	\$ 9,212.1	\$ 10,199.1	\$ 9,870.1	\$ 10,199.1	\$ 12,569.2	\$ 12,988.2	\$ 12,988.2	\$ 9,870.1	\$ 10,199.1	\$ 9,870.1	\$ 10,199.1
Off peak cost	\$ 12,141.8	\$ 10,966.8	\$ 12,141.8	\$ 11,750.1	\$ 12,141.8	\$ 11,750.1	\$ 12,141.8	\$ 12,141.8	\$ 11,750.1	\$ 12,141.8	\$ 11,750.1	\$ 12,141.8
demand charge	\$ 26,672.6	\$ 26,672.6	\$ 26,672.6	\$ 26,672.6	\$ 26,672.6	\$ 38,318.6	\$ 38,318.6	\$ 38,318.6	\$ 26,672.6	\$ 26,672.6	\$ 26,672.6	\$ 26,672.6
Customer charge	\$ 585.3											
Total bill (not including fuel adjustment &										ſ		
taxes)	\$ 49,598.7	\$ 47,436.7	\$ 49,598.7	\$ 48,878.0	\$ 49,598.7	\$ 63,223.2	\$ 64,033.8	\$ 64,033.8	\$ 48,878.0	\$ 49,598.7	\$ 48,878.0	\$ 49,598.7
Average cost (not including fuel												
adjustment & taxes) \$/kWh	\$ 0.041	\$ 0.044	\$ 0.041	\$ 0.042	\$ 0.041	\$ 0.054	\$ 0.053	\$ 0.053	\$ 0.042	\$ 0.041	\$ 0.042	\$ 0.041

Table 1. ETS and Water Conveyance System Operational Electricity Rate Calculations (Years 1 through 14)

Assume a load of ### kW	706.6											
Assume a demand of 100% of the kW	706.6											
On-Peak kWh	187753.7	169584.0	187753.7	181697.1	187753.7	181697.1	187753.7	187753.7	181697.1	187753.7	181697.1	187753.7
Off-Peak kWh	337956.7	305251.2	337956.7	327054.9	337956.7	327054.9	337956.7	337956.7	327054.9	337956.7	327054.9	337956.7
Total kWh for the month	525710.4	474835.2	525710.4	508752	525710.4	508752	525710.4	525710.4	508752	525710.4	508752	525710.4
On-Peak cost	\$ 4,455.4	\$ 4,024.3	\$ 4,455.4	\$ 4,311.7	\$ 4,455.4	\$ 5,490.8	\$ 5,673.9	\$ 5,673.9	\$ 4,311.7	\$ 4,455.4	\$ 4,311.7	\$ 4,455.4
Off peak cost	\$ 5,304.1	\$ 4,790.8	\$ 5,304.1	\$ 5,133.0	\$ 5,304.1	\$ 5,133.0	\$ 5,304.1	\$ 5,304.1	\$ 5,133.0	\$ 5,304.1	\$ 5,133.0	\$ 5,304.1
demand charge	\$ 11,651.8	\$ 11,651.8	\$ 11,651.8	\$ 11,651.8	\$ 11,651.8	\$ 16,739.4	\$ 16,739.4	\$ 16,739.4	\$ 11,651.8	\$ 11,651.8	\$ 11,651.8	\$ 11,651.8
Customer charge	\$ 585.3											
Total bill (not including fuel adjustment &												
taxes)	\$ 21,996.7	\$ 21,052.2	\$ 21,996.7	\$ 21,681.8	\$ 21,996.7	\$ 27,948.5	\$ 28,302.6	\$ 28,302.6	\$ 21,681.8	\$ 21,996.7	\$ 21,681.8	\$ 21,996.7
Average cost (not including fuel												
adjustment & taxes) \$/kWh	\$ 0.042	\$ 0.044	\$ 0.042	\$ 0.043	\$ 0.042	\$ 0.055	\$ 0.054	\$ 0.054	\$ 0.043	\$ 0.042	\$ 0.043	\$ 0.042

Notes:

Based on Public Service Company of New Mexico Electrical Services 21st Revised Rate No. 4B Large Power Service - Time of Use Rate (Effective Date January 1, 2019)

181-06417

Created by: Antonio Herilalaina Checked by: Wade Wang Approved by: Todd Stein Date: 7/23/2019

Avg (\$/kWh)

0.045

Avg (\$/kWh)

0.045

Todd Stein Senior Hydrogeologist Golder Associates Inc. 5200 Pasadena Avenue N.E. Suite C Albuquerque, New Mexico, USA 87113 T: +1 (505) 821-3043 D: +1 (505) 821-3043 F: +1 (505) 821-5273 E: Todd_Stein@golder.com www.golder.com

Todd,

Thank you for your time and discussions about the Chino Mine in New Mexico. As discussed, please find the below offers for a variety of equipment we can provide for the project:

A. Equipment and Pricing Kid PoleCat Evaporator with Standalone Controls

Description	Qty.	Unit	USD(\$)/unit	Total USD(\$)
SMI Kid Polecat Evaporator with 480V/60Hz 7.5 HP (5.6 kW) fan motor, painted steel fan housing with stainless steel inlet screen, stainless steel spray manifold with 1-1/2 inch male stainless steel cam and groove fitting and 16 Teflon spiral tip nozzles (rated 35 gpm at 100 psi or 133 lpm at 6.9 bar), mounted on 3- wheel galvanized steel chassis with tow bar, manual hand crank jack for adjusting fan inclination from 0- 45°, 40° oscillation, control panel with manual controls, 150ft* of 10/4 SEOOW power cord and no plug.	1	Each	22,908.00	\$22,908.00

A. Equipment and Pricing Kid PoleCat Evaporator with Standalone Controls (continued)

Description	0-			
 Description	Qty.	Unit	USD(\$)/unit	Total USD(\$)
Continued: Package includes upgrades from manual controls to standalone automated operation, weather control panel, weather device with temperature, relative humidity, wind speed and wind direction, and control panel upgrades for automatic control. System will automatically shut down for high winds or unfavorable wind direction. Low temperature set point to keep the system idle during freezing temperatures and user settable humidity so the system does not operate when raining or for high humidity. *Automation pricing subject to change if SMI pump is				
not chosen.				
2 HP (1.5 kW) 480V/60Hz 304 stainless steel self- priming submersible pump in PVC sleeve to cool pump, plastic pontoon float system with stainless steel framework, junction box for terminating pump leads with Kellems grip for strain relief, 1.5 in. x 100ft water feed hose from pump to Evaporator, 100 ft of 10/4 SEOOW pump power cord with Hubbell HBL2431SW twist lock plug with water tight safety shroud to connect to Hubbell receptacle 2430SW mounted on the bottom of the Evaporator control panel.	1	Each	3,950.00	\$3,950.00
Plastic power cord floats (1 per 3.3m of cable)	10	Each	14.75	\$147.50
SMI Automation technician on-site 1 day for automation, machine and system training, supervision and startup including expenses. The machines will be	1	Each	4,400.00	\$4,400.00

A. Equipment and Pricing Kid PoleCat Evaporator with Standalone Controls (continued)

	Description	Qty.	Unit	USD(\$)/unit	Total USD(\$)			
	Continued: commissioned to verify fan, pump, and controls operate correctly and that each machine can be controlled and interfaced from the weather control panel. Wind set points will be input to the software for shutting down the equipment when conditions are not favorable for evaporation and to minimize drift. SMI Automation technician will also inspect for proper machine installation and spacing, wiring of machines to machine control panels on panel shelters. Equipment must be installed and have power to the system before the Automation technician arrives.							
	Additional consecutive days \$1,800.00/per day. Recommended 1 day per 4 evaporators.							
Total F.O.B. Midland, MI	Total F.O.B. Midland, MI for Kid PoleCat with Standalone Controls							

* Additional power cord above the 150 ft/machine is \$2.35/ft

B. Equipment and Pricing Super PoleCat Evaporator with Standalone Controls

Description	Qty.	Unit	USD(\$)/unit	Total USD(\$)
SMI Super Polecat Evaporator with 480V/60Hz 25 HP (18.7 kW) fan motor, painted steel fan housing with stainless steel inlet screen, stainless steel spray manifold with 2-way stainless steel ball valve for flow regulation , 1-1/2 inch male stainless steel cam and groove fitting on water inlet and 30 Teflon spiral tip nozzles (rated 66 gpm at 100 psi or 250 lpm at 6.9 bar), mounted on 3-wheel galvanized steel A-frame chassis with anchor jacks and tow bar, manual hand crank jack for adjusting fan inclination from 0-45°, no oscillation, control panel with manual controls, 150ft* of 8/4 type W power cord and no plug.	1	Each	26,984.00	\$26,984.00

B. Equipment and Pricing Super PoleCat Evaporator with Standalone Controls (continued)

B. Equipment and Pricing Su	Description	Qty.	Unit	USD(\$)/unit	Total USD(\$)
	Continued: Package includes upgrades from manual controls to standalone automated operation, weather control panel, weather device with temperature, relative humidity, wind speed and wind direction, and control panel upgrades for automatic control. System will automatically shut down for high winds or unfavorable wind direction. Low temperature set point to keep the system idle during freezing temperatures and user settable humidity so the system does not operate when raining or for high humidity.				
	7.5HP (5.6 kW) 480V/60Hz 304 stainless steel self- priming submersible pump in PVC sleeve to cool pump, plastic pontoon float system with stainless steel framework, junction box for terminating pump leads with Kellems grip for strain relief, 1.5 in. x 100ft water feed hose from pump to Evaporator, 100 ft of 10/4 SEOOW pump power cord with Hubbell HBL2431SW twist lock plug with water tight safety shroud to connect to Hubbell receptacle 2430SW mounted on the bottom of the Evaporator control panel.	1	Each	6,500.00	\$6,500.00
	Plastic power cord floats (1 per 3.3m of cable)	10	Each	14.75	\$147.50
	SMI Automation technician on-site 1 day for automation, machine and system training, supervision and startup including expenses. The machines will be commissioned to verify fan, pump, and controls operate correctly and that each machine can be controlled and interfaced from the weather control panel.	1	Each	4,400.00	\$4,400.00

	Description	Qty.	Unit	USD(\$)/unit	Total USD(\$)	
	Continued: Wind set points will be input to the software for shutting down the equipment when conditions are not favorable for evaporation and to minimize drift.					
	SMI Automation technician will also inspect for proper machine installation and spacing, wiring of machines to machine control panels on panel shelters.					
	Equipment must be installed and have power to the system before the Automation technician arrives.					
	Additional consecutive days \$1,800.00/per day. Recommended 1 day per 4 evaporators.					
Total F.O.B. Midland, MI for SPC with Manual Controls						

B. Equipment and Pricing Super PoleCat Evaporator with Standalone Controls (continued)

* Additional power cord above the 150 ft/machine is \$4.85/ft

C. Equipment and Pricing Mega PoleCat Evaporator with Standalone Controls

Description	Qty.	Unit	USD(\$)/unit	Total USD(\$)
SMI Mega Polecat with 480V/60Hz 60HP (45 kW) fan motor, painted steel fan housing with stainless steel inlet screen, 2-1/2 inch large diameter stainless steel spray manifold with 1-1/2 inch 2-way stainless steel ball valve for flow regulation, 1-1/2 inch male stainless steel cam and groove fitting on water inlet and 30 Teflon spiral tip nozzles (rated 123 gpm at 100 psi or 466 lpm at 6.9 bar), mounted on galvanized enclosure and skid mount with integrated fork pockets for easy transport on-site, electric head jack for adjusting fan inclination from 0-45°, 359 degree oscillation with center water feed, control panel with PLC, Wye-Delta start and HMI touch screen interface for machine control, 150ft* of 4/4 type W power cord and no plug and no on-board pump.	1	Each	52,490.50	\$52,490.50

C. Equipment and Pricing Mega PoleCat Evaporator with Standalone Controls

Description	Qty.	Unit	USD(\$)/unit	Total USD(\$)
Continued: Package includes upgrades from manual controls to standalone automated operation, weather control panel, weather device with temperature, relative humidity, wind speed and wind direction, and control panel upgrades for automatic control. System will automatically shut down for high winds or unfavorable wind direction. Low temperature set point to keep the system idle during freezing temperatures and user settable humidity so the system does not operate when raining or for high humidity.				
30HP (22.4 kW) 480V/60Hz 304 stainless steel self- priming submersible pump in PVC sleeve to cool pump, plastic pontoon float system with stainless steel framework, junction box for terminating pump leads with Kellems grip for strain relief, 2.5 in. x 100ft water feed hose from pump to Evaporator and 10 hose floats, 100 ft of 8/4 tray pump power cord with Hubbell HBL460P5W pin and sleeve plug to connect to Hubbell HBL460R5W receptacle mounted on the bottom of the Evaporator control panel.	1	Each	23,023.50	\$23,023.50
Plastic power cord floats (1 per 3.3m of cable)	10	Each	14.75	\$147.50

C. Equipment and Pricing Mega PoleCat Evaporator with Standalone Controls

	Description	Qty.	Unit	USD(\$)/unit	Total USD(\$)
	SMI Automation technician on-site 1 day for	1	Each	4,400.00	\$4,400.00
	automation, machine and system training, supervision				
	and startup including expenses. The machines will be				
	commissioned to verify fan, pump, and controls				
	operate correctly and that each machine can be				
	controlled and interfaced from the weather control				
	panel. Wind set points will be input to the software for				
	shutting down the equipment when conditions are not				
	favorable for evaporation and to minimize drift.				
	SMI Automation technician will also inspect for proper				
	machine installation and spacing, wiring of machines to				
	machine control panels on panel shelters.				
	Equipment must be installed and have power to the				
	system before the Automation technician arrives.				
	Additional consecutive days \$1,800.00/per day.				
	Recommended 1 day per 4 evaporators.				
otal F.O.B. Midland, MI for Me	ega PoleCat with Standalone Controls				\$80,061.50

* Additional power cord above the 150 ft/machine is \$9.27/ft for 4/4 type W and \$10.78/ft for 2/4 type W

D. Equipment and Pricing 420F Evaporator with Standalone Controls

Description	Qty.	Unit	USD(\$)/unit	Total USD(\$)
SMI 420F standalone automated Evaporator with 480V/60Hz 25 HP (18.7 kW) fan motor, vibration switch, stainless steel motor enclosure, water manifold and propeller, mounted on galvanized steel support and plastic pontoon float system with 480V/60Hz 2 HP (1.5 kW) stainless steel submersible pump, automatic control panel with PLC, and VFD controls, and 300ft* of 18/7 & 10/7 custom and 10/4 SEOOW pump cord.	1	Each	33,200.00	\$33,200.00

	Description	Qty.	Unit	USD(\$)/unit	Total USD(\$)
	Weather control panel, weather devices (includes wind speed, wind direction, humidity and temperature)	1	Each	1,500.00	\$1,500.00
	Plastic power cord floats (1 per 3.3m of cable)	50	Each	14.75	\$737.50
	SMI Automation technician on-site 1 day for automation, machine and system training, supervision and startup including expenses. The machines will be commissioned to verify fan, pump, and controls	1	Each	4,400.00	\$4,400.00
Total F.O.B. Midland, MI for 420	0F with Standalone Controls				\$39,837.50

D. Equipment and Pricing 420F Evaporator with Standalone Controls (continued)

*Additional cord above 300 ft/420F Evaporator at \$8/ft

E. Equipment and Pricing 420B Evaporator with Standalone Controls

Description	Qty.	Unit	USD(\$)/unit	Total USD(\$)
 SMI 420B standalone fully automatic Evaporator with 480V/60Hz 25 HP (18.7 kW) fan motor, vibration switch, stainless steel motor enclosure, water manifold and propeller, mounted on galvanized steel boom, upright and platform assembly and concrete counterweight. Automatic control panel with PLC, custom urethane coated jack for raising/lowering the boom, non-metallic junction box mounted to the boom for connecting 200ft* 18/7 & 10/7 custom power cord to the machine control panel. 1.5kW (2HP) 480V/60Hz stainless steel submersible pump in PVC sleeve to cool pump, plastic pontoon float system with stainless steel framework, junction box for terminating pump leads with Kellems grip for strain 	1	Each	39,265.00	\$39,265.00
relief, 1.5 in. x 100ft water feed hose from pump to Evaporator, 300ft** of 10/4 SEOOW pump power cord from pump back to the machine control panel.				
Weather control panel, weather devices (includes wind speed, wind direction, humidity and temperature)	1	Each	1,500.00	\$1,500.00
Plastic power cord floats (1 per 3.3m of cable)	10	Each	14.75	\$147.50

E. Equipment and Pricing 420B Evaporator with Standalone Controls (continued)

	Description	Qty.	Unit	USD(\$)/unit	Total USD(\$)
	 SMI Automation technician on-site 1 day for automation, machine and system training, supervision and startup including expenses. The machines will be commissioned to verify fan, pump, and controls operate correctly and that each machine can be controlled and interfaced from the weather control panel. Wind set points will be input to the software for shutting down the equipment when conditions are not favorable for evaporation and to minimize drift. SMI Automation technician will also inspect for proper machine installation and spacing, wiring of machines to machine control panels on panel shelters. Equipment must be installed and have power to the system before the Automation technician arrives. Additional consecutive days \$1,800.00/per day. Recommended 1 day per 4 evaporators. 	1	Each	4,400.00	\$4,400.00
Total F.O.B. Midland, MI for 420F with Standalone Controls				\$45,312.50	

*Additional 10/7 & 18/7 custom cord above 150 ft/420B Evaporator at \$5.65/ft

1. Delivery and Conditions

Pricing is F.O.B. Midland, Michigan. SMI equipment to carry a 6-month warranty on any defective parts and workmanship. Customer is responsible for applicable taxes.

Visit <u>www.evapor.com</u> for Terms and Conditions.

2. Payment Terms

50% due with signed contract 50% + Freight due Net on invoice after delivery

Terms are based upon receiving satisfactory credit references.

3. Customer Responsibilities

- 1. 480V 3-phase equipment power source
- 2. All wiring of equipment.
- 3. All permits.
- 4. All installation, construction, site engineering and preparation.
- 5. All fencing, signage and equipment protection
- 6. All lifting equipment for Evaporators.
- 7. All Civil Engineering work for the site.
- 8. Regulatory compliance and permits.
- 9. Evaporator/Pump shore anchoring including foundation blocks and positioning cables and cable clamps and thimbles.
- 10. Mounting control panels.
- 11. Mounting weather devices.

SMI also offers annual evaporation system service agreements per requirements. Please call me at 775-772-6983 if you have any questions. We look forward to hearing from you soon and working with you on this project.

Best Regards,

Nic Horgan SMI – West Ph 775 772 6983 nic@evapor.com www.evapor.com

ATTACHMENT B2

TTS Equipment Quotes

Golder Acid Mine Drainage

Lakewood, Colorado Contact: Elizabeth Travis (303) 980-0540 Elizabeth Travis@golder.com

Represented by

Golden, Colorado Contact: Will McHale (303) 584-9000 / (303) 656-5498 wmchale@cogentcompanies.co

The Fairchild Company Tempe, Arizona Contact: Voni Rice (480) 345-4570 / (602) 363-8448 Voni.rice@fairchildcompany.com

Furnished by Kib Huefner <u>khuefner@westech-inc.com</u>

George Laird glaird@westech-inc.com

Proposal No.: 1910329 Date: May 31, 2019

Cover Letter

May 31, 2019

Ms. Elizabeth Travis Environmental Process Engineer 44 Union Boulevard, Suite 300 Lakewood, Colorado 80228 303-980-0540 Elizabeth Travis@golder.com

Dear Zee,

Thank you for inviting us to propose a system to treat the water at this mine in New Mexico. You have requested treatment for 1600 gpm using HDS clarifier, a filter presses, and a UF/RO system. Attached is the process flow diagram highlighting the equipment we are supplying. The same PFD shows equipment we are not providing in lighter lines.

Please call us with any questions. We look forward to helping you and your client in these 2 mine wastewater treatment applications.

Thanks, Kib Huefner Regional Sales Manager WesTech Engineering 3665 South West Temple Salt Lake City, Utah 84115 801-290-1229 khuefner@westech-inc.com

Table of Contents

Technical Proposal

- Item A One 80'x14' Flocculating Clarifier (CLS25L) & Bolted AC Tank (TKC11B)
- Item B Three 200 ft3 Automatic Filter Presses, Model PFA63C
- Item C Ultrafiltration System, Model UFT82A
- Item D Reverse Osmosis System, Model ROT83B
- Item E Two 20'x23' HDS Mix Tanks with Mechanical Mixer for One Train, TKC11B
- Item F- One 20' x 23' sludge holding tank prior to filter press feed pumps, TKC11B
- Item G One 10'x6' FRP Densification Tank with Mechanical Mixer on Legs, TKE40

Commercial Budget Proposal

Warranty

Process Flow Diagram

Process Equipment Scope of Services

Item A – WesTech Clarifier Mechanism, Model CLS25L

General Scope of Supply				
Description	Dimension/Capacity	Unit		
Number of Clarifiers	1	Each		
Application	TSS & TDS Removal -			
Clarifier Diameter	80	ft.		
Tank Side Wall Depth14ft.		ft.		
Design Flow Rate	1,600	gallons/min		

Detailed Scope of Supply					
Item	Description	Unit/Size	Material		
Bridge Structures	Truss Design	-	Mild Stool		
Bridge Walkway Type	Half Span - Mild Steel		Ivillu Steel		
Grating	1 1/4	in	HDG Steel		
Handrail	1-1/2, 2-Rail, Pipe	-	Steel		
Rake Arm Type	Truss	-	Mild Steel		
Rake Arms Quantity	2 Long Arms	Each	Ivillu Steel		
Tank Bottom Slope	1.75: 12	-	-		
Center Shaft Diameter	16	in	Mild Steel		
Discharge Cone Diameter	8	ft.	Mild Steel		
Feedwell Type	Standard	-			
Feedwell Method	Tangential Feed	-	Mild Steel		
Feedwell Diameter	8	ft.	iviliu steel		
Feedwell Height	7	ft.			
Feed Pipe	16	in	Mild Steel		
Bolts & Fasteners		-	304 SS/A325		

Drive Unit				
Description	Dimension/Capacity	Unit		
Drive Type	Shaft	-		
Duty-rated Torque	150,000	ft·lbs		
Rake Speed	0.072	RPM		
Rake Power	3	hp		
Motor RPM/Voltage/Hz/Phase	1800 / 460 / 60 / 3	RPM / V / Hz / Phase		
Lift Height	24	in		
Lift Capacity	15	ton		
Lift Power	1.5	hp		
Lift Motor RPM/Voltage/Hz/Phase	1800 / 460 / 60 / 3	RPM / V / Hz / Phase		
Alarm Cutouts	30%	Alarm		
	50%	Raise Rake		
	85%	Motor Cutout		
	100%	Full Scale		
Main Gear & Pinions Lubrication	Oil bath	Unit		
Main Bearing & Reducers Lubrication	Grease	-		

Controls and Instrumentation					
Description Type Output Signal Notes					
Control Panel Type	NEMA 4X	Alarm	Painted Steel		
Remote Torque TransmitterLoadcell4-20 mAIndication/Recording					
Remote Rake Lift Transmitter Laser Sensor 4-20 mA					

		Surface Coatings				
Coating Area	Sandblast SSPC	Paint Type	Brand	Product #	Total DFT	Coats
Submerged Coating	SP10	Ероху	Tnemec	N69	3-7	2
Non-Submerged	SP6	Ероху	Tnemec	N69	3-7	2
Non-Submerged Second Coat	N/A	Urethane	Tnemec	1074U	2-5	1
Drive First Coat	SP6	Ероху	Tnemec	N140-1255	3-9	1
Drive Second Coat	N/A	Urethane	Tnemec	1074U	2-5	1

WesTech Trips to Installation Site				
Number of Trips	-	0		
Time per Trip	Days	0		

MudMax[™] Mud Level Sensor (OPTION)

In place of an ultrasonic bed level sensor we propose the use of WesTech's MudMax[™] Bed Level Instrument. It introduces an entirely new, more reliable, and lower maintenance approach to continuously monitoring sludge bed level in a thickener. The MudMax[™] allows monitoring of the entire 360-degree profile at various bed heights.

Optimizing performance is best achieved with an automated and repeatable measurement. The MudMax[™] replaces standard "single-point" measurement of the bed, increasing accuracy and vision of mud level in real time. Optimizing thickener performance is one of many benefits of automation. With the high degree of accuracy and consistency the MudMax[™] delivers, the operator can anticipate upstream and downstream plant demands.

The Solution to Real-Time Mud Level Monitoring

WesTech's Patented MudMax[™] system directly measures bed level and provides real-time feedback as it moves through the mud with the rake arm. This Patented instrument uses sensors that span the zone targeted for optimal bed level.

Accurate definition of the sludge bed is determined by mathematically extrapolating between sensors. The methodology has been tested extensively and confirmed in minerals industry thickener environments. The bed level sensors transmit real-time data wirelessly to a receiver mounted on the thickener bridge. From the receiver panel a 4 – 20 mA signal relays the information to the customer's distributed control system (DCS). This consistent and continuous data is then used to determine the solid bed level, which will enable automation of the system.

MudMax[™] Instrumentation

Instrumentation					
Description	Туре	Output Signal	Notes		
MudMax™	Pressure Transducers	4-20 mA	Time, Rake Angle, and Bed Pressure		
Remote Transmitter	-	4-20 mA	Antenna Mounted on Walkway		

Bolted On-Grade Anchor Ring HDS Clarifier Tank, Model TKC11B

	General Design Criteria		
Description	Description		
Quantity	1		
Size	80 ft x 14 ft		
Material of construction	Carbon Steel Bolted Flat Panel		
Floor	Sloped 1.75:12 Concrete Floor (Concrete/concrete design are not by WesTech)		
Design Flow	1680 gpm		
Launder	Peripheral launder with drop out box		
Weir	Included		
Access	Ladder Included, Fall Arrest System Provided by Others		
Nozzles	(1) Feed, (1) Overflow		
Manway	(1) 30" Manway		
Grounding Lugs	2		
Design Style	Bolted		
Sealant	Manus Bond 75-AM and EPDM for panel construction		
Shop Coatings	Fusion Bonded Epoxy Coated		
Field Erection	By Others		
Governing Codes	API650, ASTM, ASME, AISC, AWWA D-101 etc. as the basis in establishing its own design, fabrication, quality criteria, standards, practices, methods and tolerances for tanks. Corrosion allowance not required nor included on tank.		
Nozzle Loads	External pipes must be fully supported; nozzles not designed for load bearing.		

Item B – Three 200 ft³ Electric/Hydraulic Automatic Filter Presses

General Process Information and Scope of Supply			
Description	Dimension / Capacity / Units	Material / Comments	
Application	Mining	Wastewater Treatment	
Design Parameters*			
Slurry Feed	250-400 gpm	Average 24-hour Rate	
Solids Concentration	10-15 wt% -		
Cycles and Cycle Time	24 cycles/day	1 hr/cycle	
Size of Filter Plates	1500mm x 1500mm	Polypropylene	
Max. Operating Pressure	100 psig -		
Frame Construction	Side Bar	Steel	

* Slurry testing is required to verify equipment selection and performance.

Additional Information and Details on the Scope of Supply

Detailed Unit Scope of Supply – Unit Basis			
Description	Dimension / Capacity / Units	Material / Comments	
Filtration Surface Area	4123 ft ²	-	
Number of Filter Plates	103 Plates	1500mm x 1500mm	
Plate Construction	Polypropylene	Recessed – Non-Gasketed	
Cake Thickness	32 mm	-	
Filter Cloths	103 cloths (one set each unit)	Polypropylene, Multifilament	
Type of Closure	Automatic	Electric / Hydraulic	
Plate Shifter	Automatic	Electric, Servomotors	
Drip Trays	Automatic	Hydraulic, Steel Frame/304L Covers	
Filtrate Manifold & Valves	Automatic Valves	304L SS Pipe & Valves	
Feed Style	Center Feed	Dual Feed Flange Option Included	
Filtrate Porting	4-Ports	-	
Paint	-	Manufacturer's Standards	
Control Panels	AB CompactLogix PLC	6" Operating Interface, NEMA 4X	
Safety Package	Safety Curtains, both sides	Includes E-stop Lanyards, full length	

Estimated Utility Requirements – Unit Basis				
Description	Capacity / Units	Material / Comments		
Control Panel	-	460V/3Ph/60Hz		
Hydraulic Power Unit	10 hp	460V/3Ph/60Hz		
Pneumatic (Air)				
Instruments etc.	~15 scfm at 100 psig	Intermittent		
Cake Blow	~400 scfm at 60 psig	For 10 minutes/cycle		
Core Blow	~80 scfm at 80 psig	For 1 minutes/cycle		

Approximate Dimensions and Weight – Unit Basis				
Description Units Capacity				
Press Dimensions (L x W x H)	inches	408 x 84 x 86		
Press weight (Empty Weight)	lbs	52,500		

Design Overview			
Description	Unit	Dimension/Capacity	
Application	-	Mine Water Treatment	
WesTech System Model	-	UFT82A, Membrane Filtration System	
Membrane Module	-	Toray HFU-2020N	
Gross Influent Flow Rate	gpm	700 – 1,200	
Net Product Flow Rate	gpm	675 – 1,155	
Redundancy and Unit Quantity	-	2 x 50%, (2) total units	
Approximate Dimensions	Per Unit	18'-2" L x 3'-6" W x 11'-4" H	
Number of Modules	Per Unit	20 installed, 22 capacity	

Item C – Ultrafiltration System Model Number UFT82A

WesTech is a leader in innovative membrane filtration system technology, including VersaFilter[™] openplatform systems, AltaPac[™] packaged systems, retrofit engineering solutions, intelligent controls and performance analysis technology. Systems are skid-mounted and factory-tested for ease of installation, straightforward operation, and long-term reliability. Major equipment and valves are pre-configured for efficient and error-free commissioning. Controls are fully-automated and completed by in-house electrical engineers and process automation experts.

In addition to UF/MF equipment, WesTech is one of the only membrane system suppliers that offers pre- and post-treatment equipment for an integrated, complete process with consolidated equipment support. Notably, WesTech has more pretreatment equipment to UF/MF systems than any supplier.

Our membrane filtration team has provided more than 100 membrane systems throughout North America with UF/MF installations in excess of 6,945 gpm. As a company, WesTech has 530 employees, 190 degreed engineers, and more than 15,000 process equipment installations throughout the world. This significant experience translates into reliable, time-tested equipment.

Process Description

The preliminary system design consists of two (2) membrane filtration units each sized treat 400 to 700 gpm in order to meet the specified feed flow requirement of 700 gpm to 1,200 gpm. Each unit has capacity for up to 22 modules, with 20 installed.

The filtration process is an outside/in, pressure-driven process to remove suspended solids and turbidity, and to achieve 4-log reduction of pathogens like *Giardia* and *Cryptosporidium*. Raw water from the upstream pretreatment clarifier is directly fed to the membrane system. VFD-controlled feed pumps (VFDs by others) direct the source water to a 200 µm pre-strainer for removal of larger debris.

Filtrate is sent to the backwash supply tank. Backwashing is used to remove accumulated foulants by reversed inside/out flow at an interval of 20 - 60 minutes with air scour for increased agitation. A drain or filter-to-waste step is used to remove any additional accumulated material. Membrane integrity testing is conducted automatically once every 24 hours. The pressure decay test (PDT) is capable of detecting a single fiber break.

Maintenance cleans (MCs)/chemically-enhanced backwashes (CEBs) and clean-in-place (CIP) procedures are automated chemical cleaning processes used to recover membrane permeability. MCs/CEBs are typically performed with NaOCl once per day to once per week. The automated clean-in-place procedure is designed to occur no more frequently than once per month, is conducted with either NaOCl or acid, and is initiated when membrane permeability decreases to a specified value.

Following chemical cleaning procedures, the membrane units are drained by gravity or a pressurized drain-to-waste, and waste is subsequently sent to the discharge location. A rinse step and backwashing are used to remove residual chemical prior to resuming production. If desired, chemical cleaning waste can be captured and neutralized prior to discharge.

Design Information

Water Quality

WesTech UF/MF systems will consistently produce high purity treated water even with variation in the feed source due to a small nominal pore size in an absolute barrier configuration.

Feed Water Quality*			
Description	Unit	Concentration	
Source	-	Mine Water	
рН		10	
Temperature	°C	20	
Turbidity	NTU	< 10	
Total Suspended Solids	mg/L	< 10	
Total Organic Carbon	mg/L	< 3	
Iron	mg/L	≤ 0.04	
Manganese	mg/L	≤ 0.01	

*Values are assumed and should be verified. It should be noted that the use of charged polymeric flocculant aids increases risk of irreversible membrane fouling and should be discussed with WesTech, and this risk is applicable to all polymeric MF/UF membrane manufacturers. The presence of oil and grease in the source water should also be avoided.

Treated Water Quality			
Description	Unit	Concentration	
Turbidity	NTU	\leq 0.10 NTU 95% of the time with a maximum turbidity of 0.3 NTU	
Total Suspended Solids	mg/L	< 1	
Silt Density Index	-	≤ 3	
Giardia Removal Credits*	-	≥ 4 log (99.99%)	
Cryptosporidium Removal Credits*	-	≥ 4 log (99.99%)	
Virus Removal*	-	≥ 1.0 log removal (90.00%)	
Certification Standards		NSF 61, NSF 419, CDDW, Title 22, UL 508A Listed	

* Challenge-testing certification is provided by independent evaluation through the California Division of Drinking Water and NSF/ANSI 419. Typical removal levels exceed the certification level and are often on the order of 6-log. Additionally, the UF membranes achieve 1.5 log removals of viruses, though virus removal certification is only recognized up to 1.0 log by CDDW for any membrane filter.

Complete Process Design Summary

Detailed Design	Summary	
Parameter	AES	SI
Number of Units in System	2	2
Number of Units in Operation	2	2
WesTech System Model	UFT82A, WesTee	ch Ultrafiltration
Installed Modules per Unit	2	0
Total Module Capacity per Unit	2	2
Module Model	Toray HF	U-2020N
Membrane Area per Module	775 ft ²	72 m²
Membrane Area in Operation	31,000 ft ²	2,880 m ²
Design Temperature	68.0 °F	20.0 °C
Production Cycle Time	30 ו	min
Flux Rates		
Instantaneous Flux at Design Temp.	61.6 gfd	104.6 lmh
Normalized Flux (20°C) at Design Temp.	61.6 gfd	104.6 lmh
Flow Rates		
Instantaneous Flow Rate	1,326 gpm	301 m³/hr
Average Gross Flow Rate	1,200 gpm	273 m³/hr
Average Net Filtrate	1,155 gpm	262 m³/hr
Backwash Flow Rate	729 gpm	166 m³/hr
Approx. Net Filtrate Production per Day	1,663,590 gpd	6,297 m³/day
Backwash Waste Volume per Day	31,509 gpd	119 m³/day
Influent Used for Rinsing/Draining per Day	32,897 gpd	125 m³/day
Water Recovery	96.	3 %
Estimated Maintenance Clean Frequency	Daily to	Weekly
Estimated Clean-In-Place Frequency	30 c	lays

Scope of Supply Information

Scope of Supply – Ultrafiltration System			
Item	Quantity	Description	Brand (or equal)
Membrane Modules	20/unit 40/system	Hollow-fiber, outside-in UF, PVDF/TIPS, 0.01 μm	Toray
Skid Frames	2 x 50%	Welded carbon steel, baked powder-coat	-
Manifold and Supply Piping	-	Schedule 80 PVC, HDPE 8" feed/filtrate connections	-
Feed Pump	2 x 50%	-	Goulds
Backwash Pump	1 x 100%	-	Goulds
Pre-strainer	2 x 50%	200 micron, automatic backwashing	Forsta
Compressed Air System	1 x 100%	Compressor, receiver, oil filter, and dryer	Quincy
Turbidimeter	1 common feed 1/unit filtrate 3 total	TU5300 sc TU5300 sc	Hach Hach
Flow Meters	1/unit 2 total	Bi-directional magnetic flow meter with transmitter	Siemens
Pressure Instrumentation	-	Transmitters, switches, gauges	Wika, Ashcroft
Valves / Actuators	-	Manual and actuated valves	Bray
Electrical Controls	1 Master Panel* 2 Local Panels	NEMA 4, 480 V, 3 ph, PLC, HMI	-
Tanks	By WesTech	Backwash HDPE with level measurement	-

*Master Panel will also control the Reverse Osmosis System

Sco	pe of Supply	– Clean-in-Place System	
Item	Quantity	Description	Brand (or equal)
Skid Frames	1	Welded carbon steel, baked powder-coat	-
Manifold and Supply Piping	-	Schedule 80 PVC 6" CIP supply/return connections	-
Recirculation Pump	1 x 100%	Frame mounted, close-coupled end suction centrifugal	Goulds
Heater	2	12 kW	Chromalox
Chemical Metering Pumps			
Sodium Hypochlorite	1 x 100%	CIP/MC process	ProMinent
Citric Acid	1 x 100%	CIP/MC process	ProMinent
Instrumentation pH Sensor/Transmitter Temperature Transmitter Flow Switch	1 1 1	-	GF Signet Dwyer Dwyer
Pressure Instrumentation	-	Transmitters, switches, gauges	Wika, Ashcroft
Valves / Actuators	-	Manual and actuated valves	Bray
Electrical Controls	1 CIP Panel	NEMA 4, 480 V, 3 ph	-
Tank	By WesTech	Off-skid HDPE with level measurement	Norwesco

Design Overview			
Description	Unit	Dimension/Capacity	
Application	-	Mine Water Treatment	
WesTech System Model	-	ROT83B, Reverse Osmosis System	
Membrane Manufacturer	-	Toray	
Net Product Flow Rate	gpm	499 – 866	
Gross Influent Flow rate	gpm	665 – 1,155	
Anticipated Recovery	%	75	
Redundancy and Unit Quantity	-	3 x 33%, (3) total units	
Approximate Dimensions	Per Skid	To Be Determined	
Array	-	7:3 7M	

Item D – Reverse Osmosis System Model Number ROT83B

WesTech is an experienced and reliable provider of nanofiltration/reverse osmosis (NF/RO) systems including new installations, retrofit and support of existing systems, and packaged systems. Systems are designed for ease of installation, straightforward operation, and long-term reliability. WesTech systems are provided as skid-mounted, factory-tested units to minimize field assembly. Major equipment and valving is pre-configured on the skids for efficient and error-free commissioning. Controls are fully-automated and completed by in-house electrical engineers and process automation experts.

Our membrane filtration team has provided more than 100 membrane systems throughout North America with NF/RO installations in excess of 4,800 gpm. As a company, WesTech has 530 employees, 190 degreed engineers, and more than 15,000 process equipment installations throughout the world. This significant experience translates into reliable, time-tested equipment.

Process Description

The system consists of three (3) membrane filtration units each sized to treat a feed capacity of 222 – 385 gpm for an overall treated capacity 665 – 1,155 gpm. Each unit is designed as a single-pass, twostage system in a 7:3 7M configuration with 70 elements per skid installed. The overall system recovery is targeted as 75%.

Reverse osmosis technology uses semi-permeable membranes for removal of dissolved contaminants, such as TDS, chlorides, and hardness from water. The basic principle of RO involves application of high pressure to counteract natural osmotic pressure to drive water from a more concentrated, feed solution to a pure water permeate. Dissolved impurities are removed during this process.

The process utilizes cross-flow filtration to remove dissolved contaminants from the feed stream, producing a purified water stream (permeate) and a high-solute waste stream (concentrate). Feed water quality will determine the amount of permeate capable of being recovered from feed water. Raw water from the upstream ultrafiltration system is transferred to the feed tank. VFD-controlled feed pumps (VFDs by others) direct the source water to a 5- μ m cartridge filter for removal of larger debris. VFD-controlled high-pressure pumps (VFDs by others) boost the feed pressure provided by the feed pumps and drive water through the membranes.

Clean-in-place (CIP) procedures are automated chemical cleaning processes used to recover membrane permeability. The automated clean-in-place procedure is conducted with either sodium hydroxide or hydrochloric acid. A CIP is initiated when normalized permeate flow decreases by \geq 10%, normalized salt passage increases by \geq 10%, or normalized differential pressure increases by \geq 15%.

Following chemical cleaning procedures, the membrane units are flushed to remove residual chemical prior to resuming production. If desired, chemical cleaning waste can be captured and neutralized prior to discharge.

Design Information

Water Quality

Projected Water Quality				
Description	Unit	Feed	Concentrate	Permeate
Source	-	Ultrafiltration Filtrate	-	-
Silt Density Index	-	< 3	-	-
Calcium	mg/L	530	2,113	2.36
Magnesium	mg/L	25	99.65	0.11
Sodium	mg/L	120.6	477.5	1.61
Potassium	mg/L	70	276.4	1.21
Barium	mg/L	0.3	1.2	0.001
Strontium	mg/L	1.5	5.98	0.007
Sulfate	mg/L	1,500	5,974	8.5
Chloride	mg/L	150	595.1	1.61
Fluoride	mg/L	0.6	2.34	0.02
Boron	mg/L	0.02	0.06	0.005
Silica	mg/L	0.5	1.98	0.008
TDS	mg/L	2,404	9,567	15.7
Temperature	°C	20	20	20
рН	-	10	10.2	9.3

*Values are assumed and should be verified. Permeate water quality values are projected estimates, not guaranteed values. Water quality may be improved or hampered by changes in the water quality and fluctuations in dissolved constituent concentrations. It should be noted that the use of upstream charged polymeric flocculant aids increases risk of irreversible membrane fouling and should be discussed with WesTech, and this risk is applicable to all polymeric membranes. The presence of oil and grease in the source water should also be avoided.

The recovery of the system is preliminarily designed as 75%, but may be improved or hampered by changes in the water quality and fluctuations in dissolved constituent concentrations, like TDS. The RO system has a nominal rejection rate of 95 – 99% of dissolved materials including hardness and TDS.

Complete Process Design Summary

Detailed Design Summary			
Parameter	AES	SI	
Number of Skids and Redundancy	3 x 3	33%	
Array Configuration	7:3 7M; Single P	ass / Two-Stage	
Membrane Element	Toray TM	G20D-400	
Elements per Skid	7	0	
Membrane Area per Element / Diameter	400 ft ²	/ 8 in	
Total Membrane Area Installed	84,000 ft ²	7,807 m ²	
Design Temperature	68 °F	20 °C	
Average Flux Rate	14.8 gfd	25.2 lmh	
Operating Flow Rates			
Feed Flow Rate	1,155 gpm	262.5 m³/hr	
Permeate Flow Rate	866 gpm	196.8 m³/hr	
Concentrate Flow Rate	289 gpm	65.7 m³/hr	
Approx. Total Net Permeate Production per Day	1,247,040 gpd	4,723 m³/day	
Approx. Total Concentrate Volume per Day	416,160 gpd	1,577 m³/day	
Overall System Recovery	75 %	75 %	
Projected Feed Pressure	121.1 psig	8.3 bar	

Scope of Supply Information

Scop	oe of Supply – I	Reverse Osmosis System	
Item	Quantity	Description	Brand (or equal)
Membrane Elements	70/unit 210/system	Spiral wound, thin-film composite, polyamide	Toray
Skid Frames	3 x 33%	Welded carbon steel, baked powder-coat	-
Manifold and Supply Piping	-	Low Pressure: Sch 80 PVC High Pressure: 316 SS	-
Element Housings	10/unit	FRP	Codeline
Feed / Transfer Pump	3 x 33%	End-suction centrifugal	Goulds
High Pressure Pump	1/unit	Multi-stage; note that pressure to the high-pressure pump must be 30 psi or greater	Goulds
Cartridge Filters and Vessels	1/unit	Stainless steel	Fil-Trek
Compressed Air System	By Others	Plant air is available for valve actuation	-
Instrumentation			
Conductivity Sensor ORP Sensor/Trans. pH Sensor/Trans. Temperature Trans.	2/unit 1 1 1	Feed/permeate Combined feed Combined feed Combined feed	GF Signet GF Signet GF Signet Dwyer
Flow Meters	2/unit 6 total	Magnetic flow meter Feed / concentrate	Siemens
Pressure Instrumentation	-	Transmitters, switches, gauges	Wika
Valves / Actuators	-	Manual and actuated valves	Bray
Electrical Controls	Master Panel* 3 Local Panels	NEMA 4, Allen-Bradley PLC NEMA 4, Allen-Bradley Flex I/O	-
Tanks	By WesTech	Feed, Permeate HDPE with level measurement	-
Feed Chemical Addition			
Antiscalant Pump Sodium Bisulfite Pump	1 x 100% 1 x 100%	-	ProMinent ProMinent

*Master Panel shared with Ultrafiltration System

Scope of Supply – Clean-in-Place System				
Item	Quantity	Description	Brand (or equal)	
Skid Frames	1	Welded carbon steel, baked powder-coat	-	
Manifold and Supply Piping	-	Schedule 80 PVC	-	
Recirculation Pump	1 x 100%	End-suction centrifugal	Goulds	
Cartridge Filters	1 x 100%	5 micron pore size	Fil-Trek	
Heater	2	12 kW	Chromalox	
Chemical Metering Pumps				
Acid	1 x 100%	CIP process	ProMinent	
Alkaline	1 x 100%	CIP process	ProMinent	
Instrumentation				
pH Sensor/Transmitter	1	-	GF Signet	
Temperature Transmitter	1	-	Dwyer	
Flow Switch	1	-	IFM Efector	
Pressure Instrumentation	-	Transmitters, switches, gauges	Wika, Ashcroft	
Valves / Actuators	-	Manual and actuated valves	Bray	
Electrical Controls	1 CIP Panel	NEMA 4, 480 V 3 ph	-	
Tank	By WesTech	Off-skid; HDPE with level meas.	Norwesco	

Item E - Bolted On-Grade Anchor Ring HDS Mix Tank with Mechanical Mixer for One Train in Series, Model TKC11B

Tank List					
Name	Tank Qty	Volume (working)	Volume (total)	Dia. x Height	Retention Time
HDS Mix Tank	2	50,400 gal / tank*	54,017 gal / tank	20'x23'	30 minutes per tank @ 1680 gpm

*Mixer design is for a constant water level in tank with a 2' freeboard.

	General Design Criteria
Description	Description
Quantity	2
Size	20 ft x 23 ft
Material of construction	Carbon Steel Bolted Flat Panel
Floor	Flat Concrete Floor (Concrete/concrete design are not by WesTech)
Design Flow	1680 gpm
Mixer Bridge	Steel bridge with 2-rail steel handrail and grating
Mixer	Top Mounted Mechanical Mixer
	Wetted Carbon Steel Ends are Rubber Coated
Mixer Controls	Local Start/Stop Pushbutton station
	VFD provided by Others
Access to Mixer Bridge	Ladder Included, Fall Arrest System Provided by Others
Down-comer Outlet	Included
Pipe	
Baffles	Vertical mix baffles on tank wall
Nozzles, per Tank	(1) Inlet, (1) Outlet, (1) Drain
Manway	(2) 30" Manway
Design Style	Bolted
Sealant	Manus Bond 75-AM and EPDM for panel construction
Shop Coatings	Fusion Bonded Epoxy Coated
Field Erection	By Others
Governing Codes	API650, ASTM, ASME, AISC, AWWA D-101 etc. as the basis in establishing its
	own design, fabrication, quality criteria, standards, practices, methods and
	tolerances for tanks. Corrosion allowance not required nor included on tank.
Nozzle Loads	External pipes must be fully supported; nozzles not designed for load
	bearing.
Shinmont: Tank bridge an	al antisent also a second also

General Design Criteria

Shipment: Tank, bridge and mixer ship separately.

Item F – Sludge storage or Filter Press Feed Tank

Bolted On-Grade Anchor Ring HDS Mix Tank with Mechanical Mixer for One Train in Series, Model TKC11B

Tank List					
Name	Tank Qty	Volume (working)	Volume (total)	Dia. x Height	Retention Time
HDS Mix Tank	1	50,400 gal / tank*	54,017 gal / tank	20'x23'	Approximately 3 filter press
					volumes

*Mixer design is for a constant water level in tank with a 2' freeboard.

WesTech has used the same sizing for this tank as that used for the two HDS mix tanks. Golder requested three filter presses and this volume should feed three separate presses depending on the sludge concentration to reduce engineering.

Item G - FRP Densification Tank with Mechanical Mixer on Legs, Model TKE40

Tank List					
Name	Tank Qty	Volume (working)	Volume (total)	Dia. x Height	Retention Time
Densification Tank	1	8400 gal*	9400 gal	10'x16'	5 minutes @ 1690 gpm

*Mixer design is for a constant water level in tank with 1.5' freeboard.

Tank General Scope of Supply			
Tank Type	Circular, Flat Bottom Tank on 8' high elevated legs to gravity		
	feed into the HDS Mix Tank		
Resin	Standard Polyester a CoNAP/MEKP cure		
Corrosion Allowance	Nominal corrosion barrier thickness of 100 mils		
SG of contents	1.05		
Anchors	Not Included		
Tank Material of Construction	FRP, based on RTP-1 standards. Non-Stamped		
Тор	Open		
Access to Top of Tank	Ladder Included, OSHA Approved Fall Arrest System by Others		
Mixer Bridge	Steel bridge with 2-rail steel handrail and grating		
Mixer	Top Mounted Mechanical Mixer		
	Wetted Carbon Steel Ends are Rubber Coated		

Mixer Controls	Local Start/Stop Pushbutton Station VFD provided by Others
Baffles	Vertical mix baffles on tank wall
Down-comer Outlet Pipe	Included
Nozzles	(1) Inlet, (1) Outlet, (1) Drain
Nozzle Loads	External pipes must be fully supported; nozzles not designed
	for load bearing.

Shipment: Tank and mixer ship separately.

Items Not Included in WesTech's Base Scope of Supply

- Electrical controls and wiring not described above
- Piping, valves, or fittings
- Lubricants
- Unloading or storage
- Erection or assembly
- Weir, scum baffle, & supports
- Concrete

Clarifications

- Slurry testing is required to verify equipment selection and performance.
- Any item not listed above to be furnished by others.
- Cake discharge handled by others.
- Pneumatic air supplied by others.
- Cloth wash system not included.
- Membrane squeeze system not included.
- Feed pumps not included.
- Platform not included.
- Cake dumpsters not included.
- Concrete sump (if required) is by others.
- The information provided above is for budgetary purposes only. The equipment sizes listed may vary depending on the final design criteria and flows.
- All information provided in this proposal is preliminary in nature and will be finalized during the detail engineering phase of this project.
- WesTech used an assumed feed water quality to provide an effluent water quality projection from the reverse osmosis system. WesTech also assumed three (3) reverse osmosis units would be required to meet the specified treatment range. WesTech can look into the possibility of reducing the number of RO trains but will need a feed water quality analysis in order to perform projections for the different flow scenarios.
- USA Tariffs and Current Trade Laws: All prices are based on current USA and North America tariffs and trade laws/agreements at time of bid. Any changes in costs due to USA Tariffs and trade laws/ agreements will be passed through to the purchaser at cost.

Commercial Budget Proposal

Proposal Name: Golder Mine Water Treatment Date: May 31, 2019

Proposal Number: 1910329

1. Bidder's Contact Inform	ation			
Company Name	WesTech Engineer	WesTech Engineering, Inc.		
Contact Name	Kib Huefner			
Phone	801.265.1000			
Email	khuefner@wested	<u>h-inc.com</u>		
Address: Number/Street	3665 S West Temp	ble		
Address: City, State, Zip	Salt Lake City, UT	84115		
2. Pricing				
Currency			US Dollars	
Scope of Supply				
Item A – One 80'x14' Flocculat	ing Clarifier (CLS25L)	& Bolted AC Tank (TKC11B)	\$377,200	
Item B – Three 200 ft ³ Automa	tic Filter Presses, Model PFA63C \$1,058,000			
Item C – Ultrafiltration System	, Model UFT82A \$562,200			
Item D – Reverse Osmosis Syst	- Reverse Osmosis System, Model ROT83B \$783,500			
Item E – Two 20'x23' HDS Mix	Tanks with Mechanic	al Mixer for One Train, TKC11B	\$258,000	
Item F – One 20'x23' Sludge Ho	olding Tank (Filter pre	ss feed) TKC11B	\$143,200	
Item G – One 10'x6' FRP Densi	fication Tank with Me	echanical Mixer on Legs, TKE40	\$88,400	
			\$3,270,500	
Taxe	s (sales, use, VAT, IVA	A, IGV, duties, import fees, etc.)	NOT INCLUDED	
Optional MudMax			\$56,000	
Prices are for a period not to exceed 30 days fron	h date of proposal.			

Prices are for a period not to exceed 30 days from date of proposal.

Field Service	
Included Field Service	None
Daily Rate	\$1,200
Prices do not include field service unless noted, but it is available at the daily rate plus expenses. The customer will be charged	for a minimum of three

days for time at the jobsite. Travel will be billed at the daily rate. Any canceled charges due to the customer's request will be added to the invoice. The greater of visa procurement time or a two week notice is required prior to trip departure date.

Submittals Approved	15%
Major Materials in Shop	35%
Notification of Ready to Ship	40%

All payments are net 30 days. Partial shipments are allowed. Other terms per WesTech proforma invoice.

4. Schedule			
Submittals, after PO receipt	6 weeks		
Ready to Ship, after Submittal	20 weeks		
Ready to Ship, after Submittal	24 weeks		
Start-up & Commissioning	4 weeks		
5. Freight			
		3 for UF Equipment	
Not included – Approximate n	3 for RO Equipment		

Terms & Conditions: This proposal, including all terms and conditions contained herein, shall become part of any resulting contract or purchase order. Changes to any terms and conditions, including but not limited to submittal and shipment days, payment terms, and escalation clause shall be negotiated at order placement, otherwise the proposal terms and conditions contained herein shall apply.

Paint: If your equipment has paint included in the price, please take note to the following. Primer paints are designed to provide only a minimal protection from the time of application (usually for a period not to exceed 30 days). Therefore, it is imperative that the finish coat be applied within 30 days of shipment on all shop primed surfaces. Without the protection of the final coatings, primer degradation may occur after this period, which in turn may require renewed surface preparation and coating. If it is impractical or impossible to coat primed surfaces within the suggested time frame, WesTech strongly recommends the supply of bare metal, with surface preparation and coating performed in the field. All field surface preparation, field paint, touch-up, and repair to shop painted surfaces is not by WesTech.

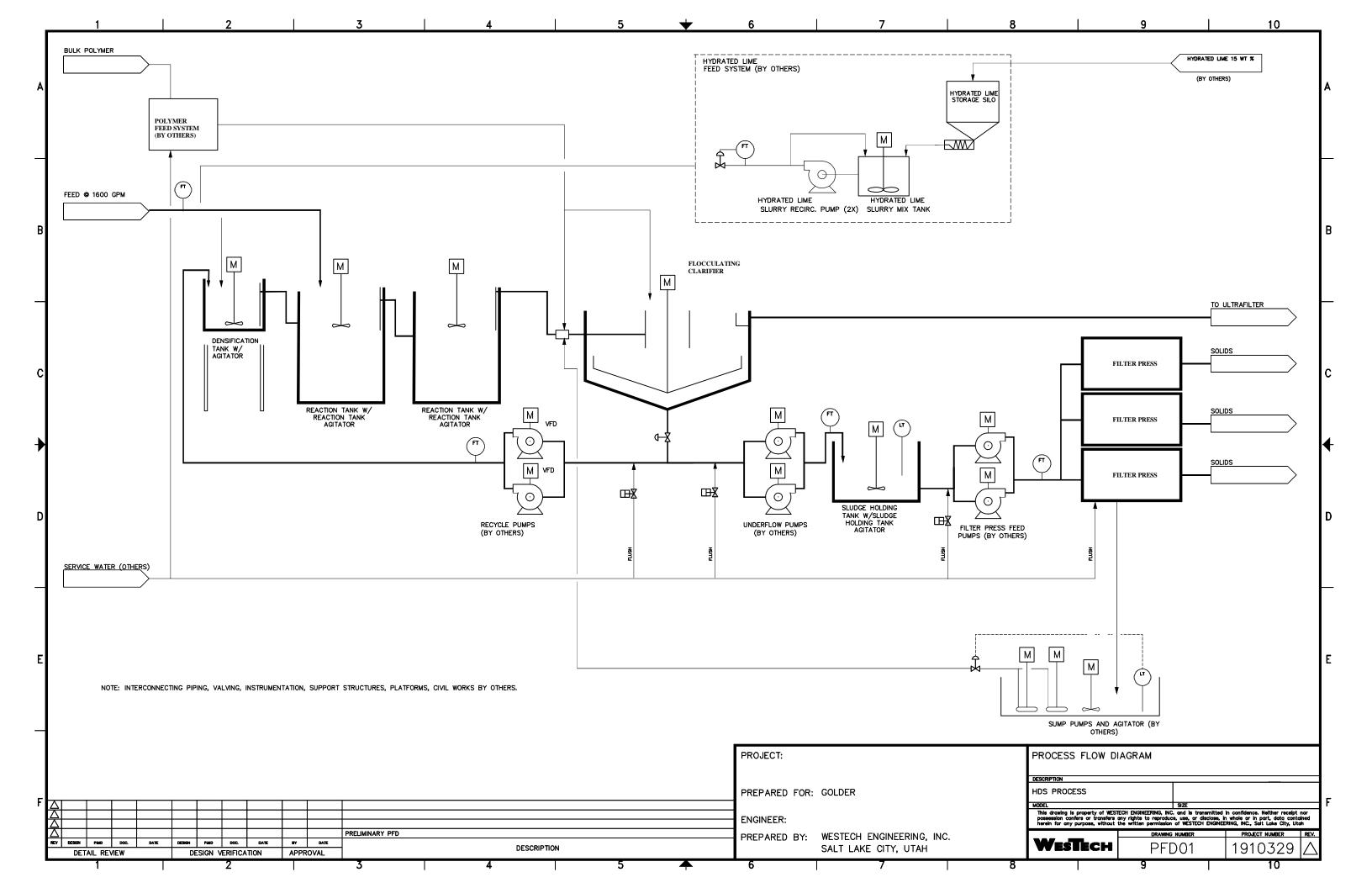
One-Year Warranty

WesTech equipment is backed by WesTech's reputation as a quality manufacturer, and by many years of experience in the design of reliable equipment.

Equipment manufactured or sold by WesTech Engineering, Inc., once paid for in full, is backed by the following warranty:

For the benefit of the original user, WesTech warrants all new equipment manufactured by WesTech Engineering, Inc. to be free from defects in material and workmanship, and will replace or repair, F.O.B. its factories or other location designated by it, any part or parts returned to it which WesTech's examination shall show to have failed under normal use and service by the original user within one (1) year following initial start-up, or eighteen (18) months from shipment to the purchaser, whichever occurs first.

Such repair or replacement shall be free of charge for all items except for those items such as resin, filter media and the like that are consumable and normally replaced during maintenance, with respect to which, repair or replacement shall be subject to a pro-rata charge based upon WesTech's estimate of the percentage of normal service life realized from the part. WesTech's obligation under this warranty is conditioned upon its receiving prompt notice of claimed defects, which shall in no event be later than thirty (30) days following expiration of the warranty period, and is limited to repair or replacement as aforesaid.


This warranty is expressly made by WesTech and accepted by purchaser in lieu of all other warranties, including warranties of merchantability and fitness for particular purpose, whether written, oral, express, implied, or statutory. WesTech neither assumes nor authorizes any other person to assume for it any other liability with respect to its equipment. WesTech shall not be liable for normal wear and tear, corrosion, or any contingent, incidental, or consequential damage or expense due to partial or complete inoperability of its equipment for any reason whatsoever.

This warranty shall not apply to equipment or parts thereof which have been altered or repaired outside of a WesTech factory, or damaged by improper installation, application, or maintenance, or subjected to misuse, abuse, neglect, accident, or incomplete adherence to all manufacturer's requirements, including, but not limited to, Operations & Maintenance Manual guidelines & procedures.

This warranty applies only to equipment made or sold by WesTech Engineering, Inc.

WesTech Engineering, Inc. makes no warranty with respect to parts, accessories, or components purchased by the customer from others. The warranties which apply to such items are those offered by their respective manufacturers.

June 3, 2019

Zee Travis Golder Associates Inc. 44 Union Boulevard, Sute 300. Lakewood, CO 80228 EQUIPMENT

Dear Zee:

Thank you for your interest in our line of Belding Fiberglass Tanks and Brawn Mixers. Pricing for your Tyrone Mine Project is as follows. Mixers are quoted based on waterlike SG and viscosity.

Floc Tank

1- 7,670 gallon Fiberglass Tank, flat bottom, open top, single wall, 144"ID x 108" tall with 2" fill fitting, 2" outlet fitting, 2" level fitting, 3" overflow fitting, carbon steel mixer bridge, four (4) mixing baffles.

\$17,000 plus freight

1- 3BTO2-42 mixer assembly with 2 HP 230/460V 3 phase TEFC motor gear reduced to 42 RPMs, 2" x 108" shaft, single 48" A35 impeller, fixed plate mount and 304 SS wetted parts. Minimum liquid level in tank with mixer operating is 36" (based on the mixer mounting at 120").

\$9,000 plus freight

Neutralization Tank

27,122 gallon Fiberglass Tank, flat bottom, open top, single wall, 168"ID x 292" tall with 4" fill fitting, 4" outlet fitting, 4" level fitting, 6" overflow fitting, carbon steel mixer bridge, four (4) mixing baffles.

\$40,000 plus freight

6BTO7.5-35 mixer assembly with 7.5 HP 230/460V 3 phase TEFC motor gear reduced to 35 RPMs, 3.5" x 270" shaft, dual 64" A35 impeller, fixed plate mount and 304 SS wetted parts. Minimum liquid level in tank with mixer operating is 72" (based on the mixer mounting at 312").

\$9,000 plus freight

Page 2.

Discharge Tank

1- 46,045 gallon Fiberglass Tank, flat bottom, closed dome top, single wall, 168"ID x 480" straight side x 508" overall height, with 24" top manway, 6" fill fitting, 6" outlet fitting, 6" level fitting, 6" overflow fitting and 8" U-vent.

\$48,000 plus freight

Sludge Storage Tank

1- 11,086 gallon Fiberglass Tank, cone bottom, closed dome top, single wall, 144"ID x 134" straight side x 246" overall height, with 24" top manway, 4" fill fitting, 4" outlet fitting, 4" level fitting, 6" U-vent and shop[painted carbon steel tank stand.

\$33,000 plus freight

Filter Tank

3,090 gallon Fiberglass Tank, flat bottom, closed dome top, single wall, 96"ID x 100" straight side x 116" overall height, with 24" top manway, 2" fill fitting, 2" outlet fitting, 2" level fitting, 3" overflow fitting and 3" U-vent.

\$10,000 plus freight

Process Water Tank

3,090 gallon Fiberglass Tank, flat bottom, closed dome top, single wall, 72"ID x 175" straight side x 187" overall height, with 24" top manway, 2" fill fitting, 2" outlet fitting, 2" level fitting, 3" overflow fitting and 3" U-vent.

\$10,000 plus freight

Notes:

- Prices quoted are firm for 30 days.
- Lead-time is 13-17 weeks after drawing approval.
- All sales are subject to Tank Equipment Terms & Conditions W.A.C. which can be viewed on our website at <u>www.tankequipment.com</u>. Some orders may be subject to a down payment and/or progress payments

Please let me know if I can answer any questions or be of further assistance.

Sincerely,

Matt Licknosky Tank Equipment, Inc.

Office: 303-833-9200 Direct: 303-962-7814 Email: matt@tankequipment.com TANK EQUIPMENT, INC. · 3752 Imperial Street, Unit F · Frederick, CO 80516 · 303-833-9200 · Fax: 303-833-9205 Email: sales@tankequipment.com · www.tankequipment.com

TECHNICAL Heavy Duty Slurry Pump

EMW

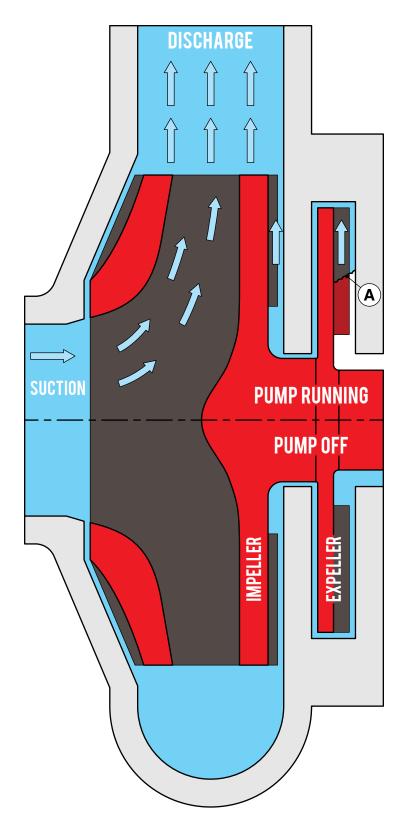
.

Wilfley Sealing N Technology

No Flush Water Required

WILFLEY SEALING TECHNOLOGY

Wilfley Sealing Technology is the premier sealing solution for the toughest pumping applications and has proven to be a superior alternative to conventional sealing systems like mechanical seals and compression packing. It has been the foundation for every Wilfley pump design, dating back to the ground-breaking Model A slurry pump in 1919.


Wilfley Sealing Technology provides **leak free** operation at all times by partnering a dynamic seal (page 2) with a static seal (page 3). The dynamic seal prevents leakage while the pump is running and the static seal prevents leakage while the pump is off.

The harmony between the dynamic and static seal is what makes Wilfley Sealing Technology excel beyond conventional seals.

Wilfley Expellers

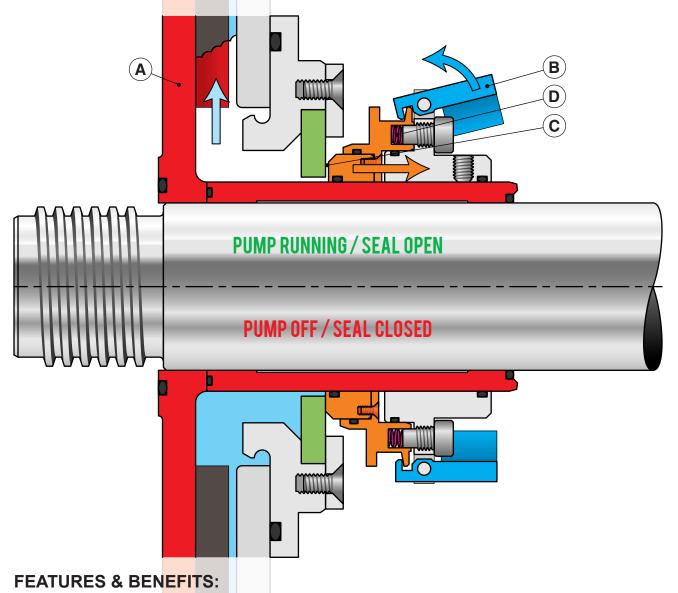
WILFLEY DYNAMIC EXPELLER SEAL

FEATURES & BENEFITS:

- A superior alternative to compression packing / mechanical seals and their associated flush systems
- Excellent solids / slurry handling capabilities
- Product dilution is eliminated
- Operational abuse tolerant, e.g. cavitation and vibration
- Reduces maintenance costs and maximizes production time through increased mean time between maintenance (MTBM)
- Exceptional dry running capability

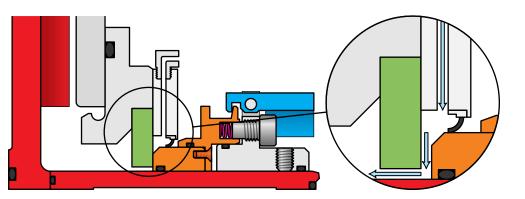
HOW THE WILFLEY DYNAMIC EXPELLER SEAL WORKS:

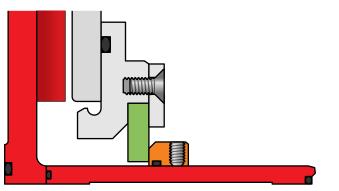
- The positively-driven expeller has specially designed vanes that act directly on the pump fluid
- A liquid partition **(A)** is established during pump operation by centrifugal forces generated by the expeller
- This liquid partition effectively isolates the pump fluid from the shaft
- The governor-actuated SolidLock® static seal manages all fluid containment during idle conditions


WILFLEY SolidLock® STATIC SEAL

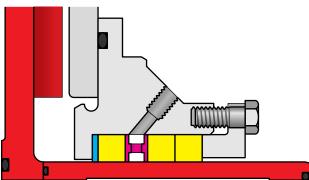
HOW THE SOLIDLOCK[®] SEAL WORKS:

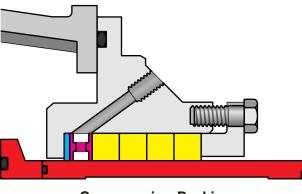
At start up, the expeller **(A)** generates hydraulic forces that evacuate the pump fluid away from the seal faces. As this happens, centrifugal force moves weights **(B)** outwards to open seal faces **(C)** and prevent any rubbing contact.

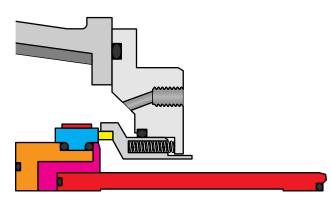

At shut down, the liquid partition dissipates and the pumped fluid is pushed towards the seal faces. Isolated springs **(D)** force the seal faces to close before any of the pump fluid can escape.

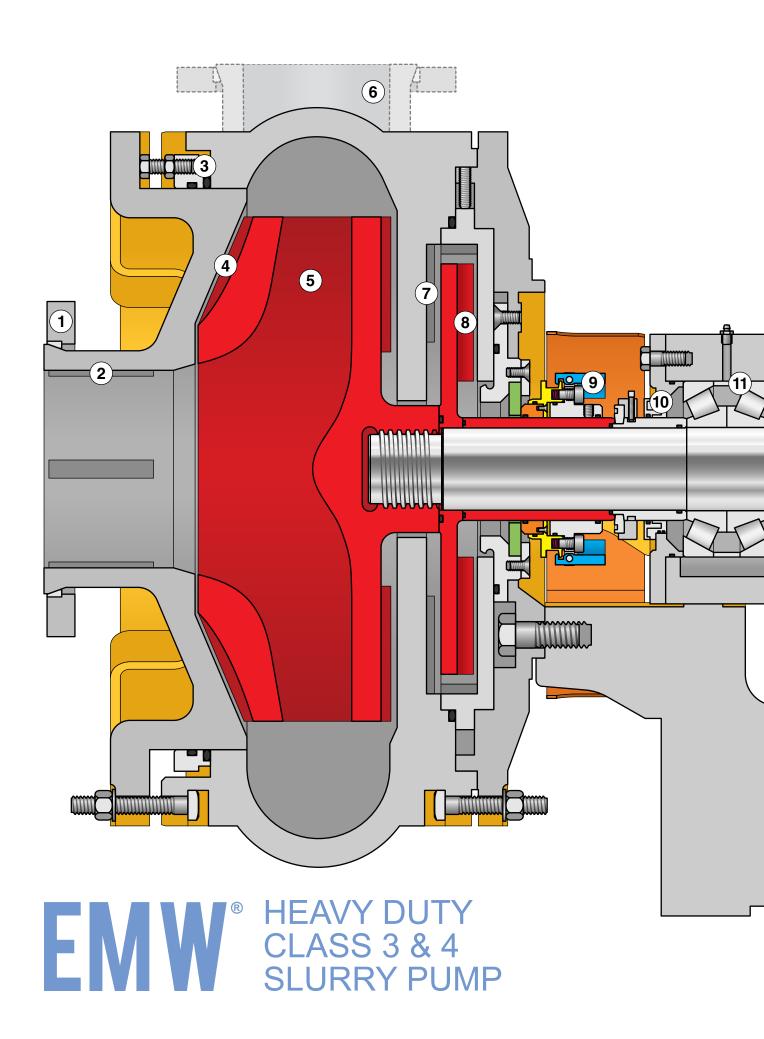

- Leak free operation Precise and controlled opening and closing of the seal faces
- **Reliable and repeatable seal actuation** The spring force is specifically set for your application and can be easily adjusted in the field if necessary
- Easy to install / maintain Simple and effective design, no special tools needed

EMW® SLURRY PUMP SEALING OPTIONS

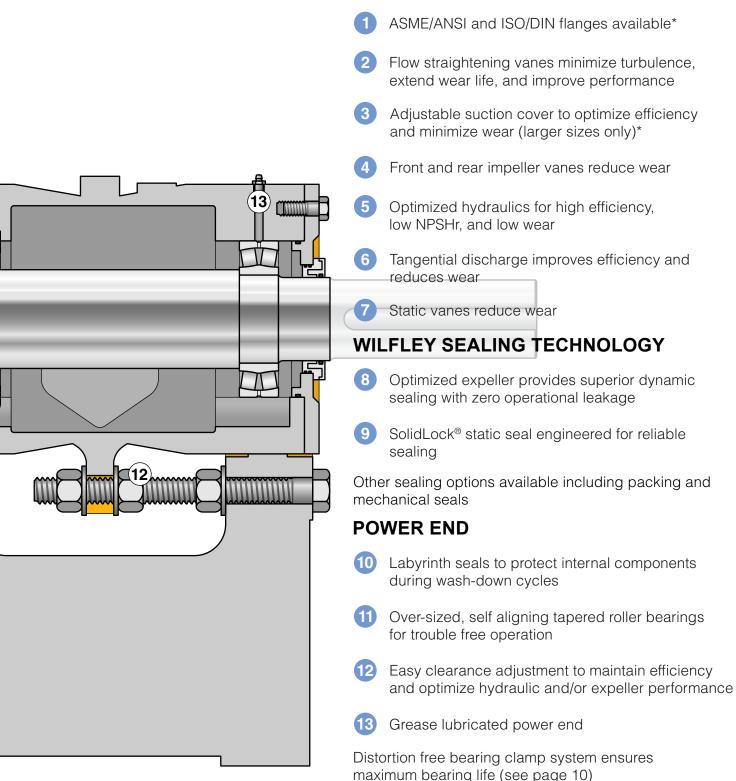

The EMW[®] pump has been designed to accommodate a wide variety of sealing options to specifically suit your application.


SolidLock[®] with Purge Port (Start Up and / or Shut Down Washout Capability)

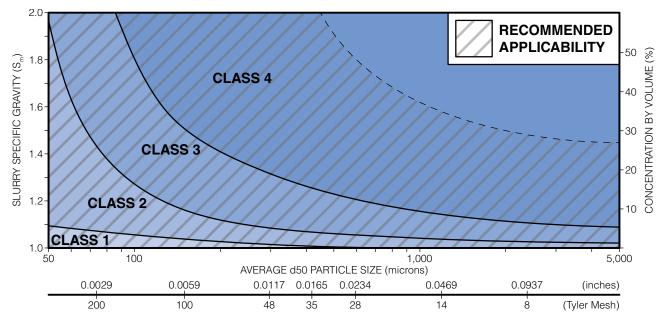

SolidLock[®] Lite (Diaphragm Seal with Expeller)


Expeller with Compression Packing (Weep Configuration Shown)

Compression Packing (Flush Configuration Shown)



Single / Double Mechanical Seals


EMW[®] SLURRY PUMP FEATURES & BENEFITS

WET END

*Available on metallic wet end only

DESIGNED FOR CLASS 3 & 4 Slurry Services

For use as a first guide only, assumes 2.65 s silica-based solids. Adjust rating to account for solids of different abrasivity using ASTM G75-95.

Courtesy of Hydraulic Institute, Parsippany, NJ www.pumps.org

ROBUST CONSTRUCTION

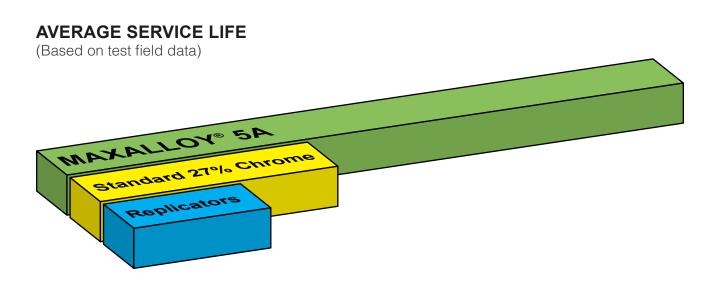
The wet end construction of the EMW[®] pump is built to last and features components with double the thickness of comparable medium duty slurry pumps. This type of design, combined with Wilfley's proprietary MAXALLOY[®] 5A hard iron and elastomer liners, creates the ideal slurry pump for abrasive applications.

21st CENTURY HYDRAULICS

Wilfley used the latest computational fluid dynamics software to determine the optimal balance between hydraulic performance and wear life. This design was then validated with extensive empirical testing in the field.

BREAKTHROUGH Materials

Wilfley works discreetly with key suppliers, such as Western Foundries, to provide a variety of engineered metallurgies and proprietary processes for the longest possible pump and parts life and reliability.


WILFLEY KNOWS METALLURGY

This also allows Wilfley to provide very competitive lead times for both complete pumps and spare parts.

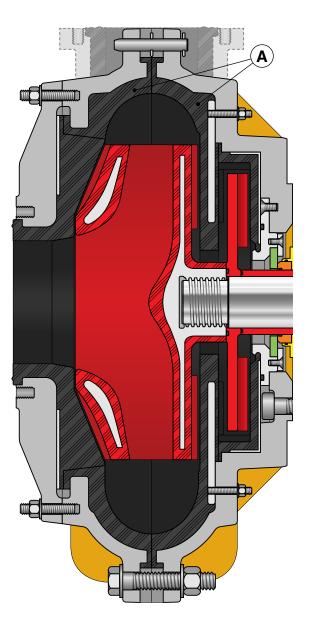
MAXALLOY® 5A

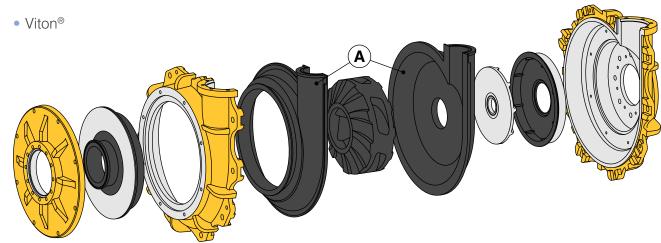
Wilfley's proprietary MAXALLOY[®] 5A was developed specifically for the toughest slurry applications, combining unsurpassed hardness for wear resistance with superior toughness for durability.

Through special proprietary processing, chromium carbides are evenly distributed in a fully martensitic matrix with an average hardness of **740 HBN**. The microstructure is designed to avoid any retained austenite, delta ferrite and secondary carbides resulting in extraordinary wear performance as compared to commonly available high chrome irons.

LINED WET END

THE EMW[®] PUMP IS ALSO AVAILABLE WITH ELASTOMER LINED WET END CONFIGURATIONS


- High wear resistance
- · Chemically resistant
- Replaceable wear liners (A)
- Maintenance friendly split casing
- Uses the same robust power end as the metallic wet end
- Available with the same sealing options as the metallic wet end

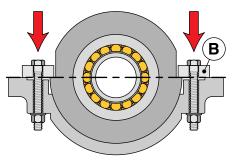

APPLICABILITY

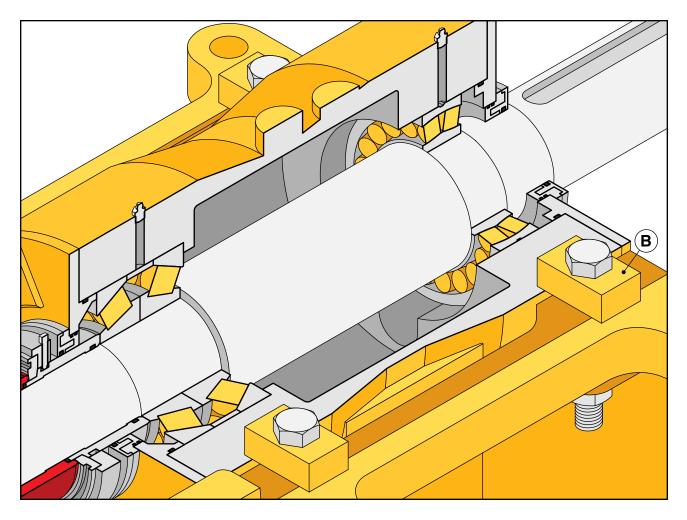
- Particle type: Spherical (non-sharp)
- Max Particle Size: 0.24 in (6 mm)
- Max Temperature: 180°F (80°C)
- Max Peripheral Speed: 5,500 ft/min (28 m/s)

AVAILABLE MATERIALS

- Natural Rubber
- Synthetic Rubber (Butyl)
- Hypalon®
- Neoprene

EXTREME DUTY POWER END

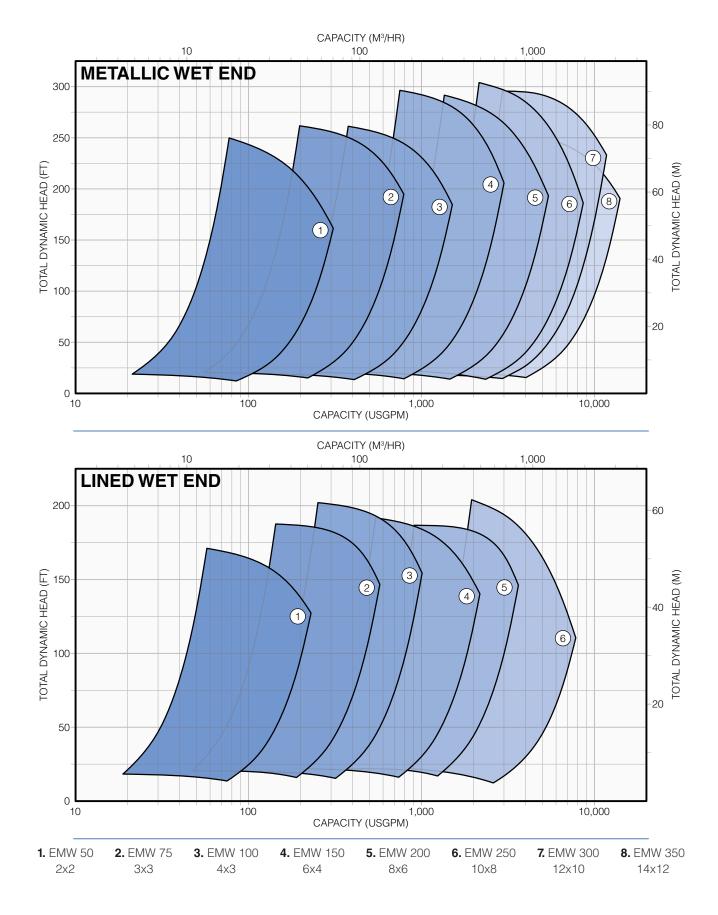

The power end of the EMW[®] pump has been engineered to handle the most difficult and demanding slurry applications.


ULTRA-LOW L³/D⁴ SHAFT STIFFNESS RATIOS

EMW 50	EMW 75	EMW 100	EMW 150	EMW 200	EMW 250	EMW 300	EMW 350
2x2	3x3	4x3	6x4	8x6	10x8	12x10	14x12
8.6	3.6	2.6	1.3	1.0	1.1	0.7	

DISTORTION FREE BEARING CLAMP SYSTEM

The bearing cartridge is held in place with specially designed clamps **(B)**, which eliminate hoop stress on the bearings and provide distortion free operation and extended L_{10} life.



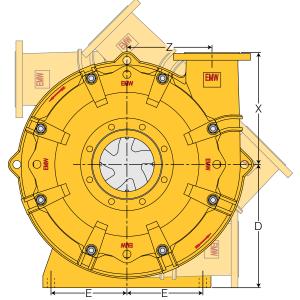
CONSTRUCTION DETAILS

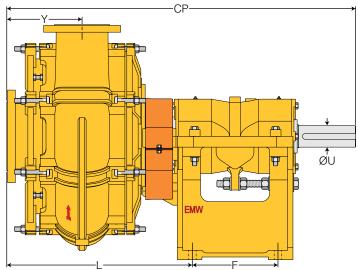
					METALLIC	WET END			
		EMW 50 2x2	EMW 75 3x3	EMW 100 4x3	EMW 150 6x4	EMW 200 8x6	EMW 250 10x8	EMW 300 12x10	EMW 350 14x12
GENERAL									
Bare Pump	lbs	360	485	590	1,165	2,345	3,445	7,585	9,025
Weight	kg	163	220	268	528	1,064	1,563	3,440	4,094
Max Passable	in	0.71	0.79	1.57	1.97	2.36	2.76	3.74	4.33
Solids Size	mm	18	20	40	50	60	70	95	110
SHAFT									
Diameter at	in	1.11	1.22	1.57	2.13	2.72	3.11	3.50	3.90
Impeller	mm	28	31	40	54	69	79	89	99
Diameter at	in	1.30	1.77	2.17	2.56	3.15	3.54	3.94	4.53
Coupling	mm	33	45	55	65	80	90	100	115

				LINED W	/ET END		
		EMW 50 2x2	EMW 75 3x3	EMW 100 4x3	EMW 150 6x4	EMW 200 8x6	EMW 250 10x8
GENERAL							
Bare Pump	lbs	310	430	615	1,095	1,930	3,485
Weight	kg	141	195	279	497	875	1,581
Max Passable	in	0.71	0.79	1.18	1.57	2.36	2.76
Solids Size	mm	18	20	30	40	60	70
SHAFT							
Diameter at	in	1.11	1.22	1.57	2.13	2.72	3.11
Impeller	mm	28	31	40	54	69	79
Diameter at	in	1.30	1.77	2.17	2.56	3.15	3.54
Coupling	mm	33	45	55	65	80	90

EMW[®] SLURRY PUMP CAPACITIES

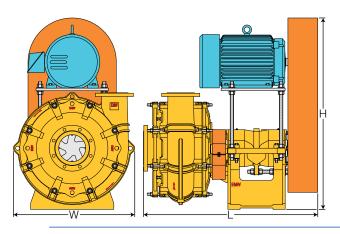
DIMENSIONS

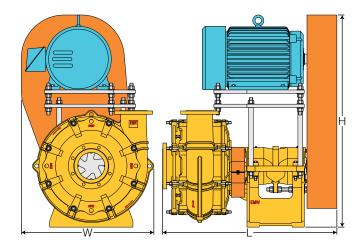

PUMP DIMENSIONS Inches (Millimeters)


Pump Size	Suction Flange	Discharge Flange	СР	D	E	F	L	U	x	Y	z	KEYWAY
METALLIC	WET END											
EMW 50	2	2	27	10	6.4	7.8	13.2	1.3	8.5	4.5	4.9	0.4 x 0.4
2x2	(50)	(50)	(684)	(254)	(161)	(197)	(335)	(33)	(215)	(114)	(123)	(10 x 8)
EMW 75	3	3	30.3	10	6.4	7.8	16	1.8	8.3	6	6.3	0.6 x 0.4
3x3	(75)	(75)	(769)	(254)	(161)	(197)	(404)	(45)	(209)	(152)	(160)	(14 x 9)
EMW 100	4	3	33	10	6.9	8.5	18	2.2	10.1	6.9	6.8	0.6 x 0.4
4x3	(100)	(75)	(837)	(254)	(173)	(215)	(457)	(55)	(255)	(173)	(172)	(16 x 10)
EMW 150	6	4	39.6	13.2	8.3	9	21.8	2.6	13.3	9.1	9.6	0.7 x 0.4
6x4	(150)	(100)	(1004)	(335)	(210)	(227)	(553)	(65)	(336)	(230)	(242)	(18 x 11)
EMW 200	8	6	50.9	18	11.1	12.5	27.1	3.2	16.3	11	12.5	0.9 x 0.6
8x6	(200)	(150)	(1291)	(457)	(281)	(316)	(687)	(80)	(414)	(278)	(315)	(22 x 14)
EMW 250	10	8	67.6	24.1	17.9	21.6	31.3	3.6	19.1	12.3	14.9	1 x 0.6
10x8	(250)	(200)	(1715)	(610)	(454)	(548)	(793)	(90)	(484)	(310)	(378)	(25 x 14)
EMW 300	12	10	72.3	24.1	17.9	21.6	34.8	4.0	25.6	15.3	19.7	1.2 x 0.7
12x10	(300)	(250)	(1835)	(610)	(454)	(548)	(882)	(100)	(650)	(388)	(500)	(28 x 16)
EMW 350	14	8	75.2	24.1	17.9	21.6	38.0	4.6	28.2	16.5	22	1.3 x 0.8
14x12	(350)	(300)	(1908)	(610)	(454)	(548)	(965)	(115)	(715)	(418)	(557)	(32 x 18)
LINED WE	T END											
EMW 50	2	2	26.7	10	6.4	7.8	12.7	1.3	6.9	3.6	4.9	0.4 x 0.4
2x2	(50)	(50)	(678)	(254)	(161)	(197)	(321)	(33)	(175)	(90)	(123)	(10 x 8)
EMW 75	3	3	29.2	10	6.4	7.8	14.4	1.8	8.5	4.8	6.3	0.6 x 0.4
3x3	(75)	(75)	(740)	(254)	(161)	(197)	(365)	(45)	(215)	(121)	(160)	(14 x 9)
EMW 100	4	3	32.5	10	6.9	8.5	17.2	2.2	11.2	5.8	6.8	0.7 x 0.4
4x3	(100)	(75)	(825)	(254)	(173)	(215)	(435)	(55)	(283)	(145)	(172)	(16 x 10)
EMW 150	6	4	38.5	13.2	8.3	9	20.7	2.6	14.1	7.1	9.6	0.8 x 0.5
6x4	(150)	(100)	(976)	(335)	(210)	(227)	(525)	(65)	(358)	(178)	(242)	(18 x 11)
EMW 200	8	6	48.6	18	11.1	12.5	24.4	3.2	17.4	8.8	12.5	0.9 x 0.6
8x6	(200)	(150)	(1232)	(457)	(281)	(316)	(618)	(80)	(440)	(221)	(315)	(22 x 14)
EMW 250	10	8	65.5	24.1	17.9	21.6	29.2	3.6	20.1	10.4	14.9	1 x 0.6
10x8	(250)	(200)	(1663)	(610)	(454)	(548)	(740)	(90)	(510)	(263)	(378)	(25 x 14)

These dimensions are not for construction. Certified dimension prints are available for your specific installation

ASME/ANSI and ISO/DIN flanges available.


The discharge can rotate in 45° increments to specifically meet your needs.



DRIVE CONFIGURATIONS

INLINE OVERHEAD (Small Motors)

OFFSET OVERHEAD (Medium Motors)

SIDE BY SIDE (Large Motors)

Approximate Dimensions

Pump Size	Motor Range	L	w	н
EMW 50	143T-213T	30	21	41
2x2	(90S-112M)	(762)	(533)	(1041)
EMW 75	143T-213T	33	21	41
3x3	(90S-112M)	(838)	(533)	(1041)
EMW 100	143T-215T	36	21	41
4x3	(90S-132M)	(914)	(533)	(1041)
EMW 150	143T-256T	46	29	64
6x4	(90S-132M)	(1168)	(737)	(1626)
EMW 200	256T-326T	55	36	68
8x6	(160S-200L)	(1397)	(914)	(1727)
EMW 250	286T-405T	73	43	75
10x8	(180S-280M)	(1854)	(1092)	(1905)
EMW 300	326T-445T	80	55	85
12x10	(200M-280M)	(2032)	(1397)	(2159)
EMW 350	364T-447T	83	63	100
14x12	(250S-315L)	(2108)	(1600)	(2540)

Approximate Dimensions Inches (Millimeters) - NEMA (IEC)

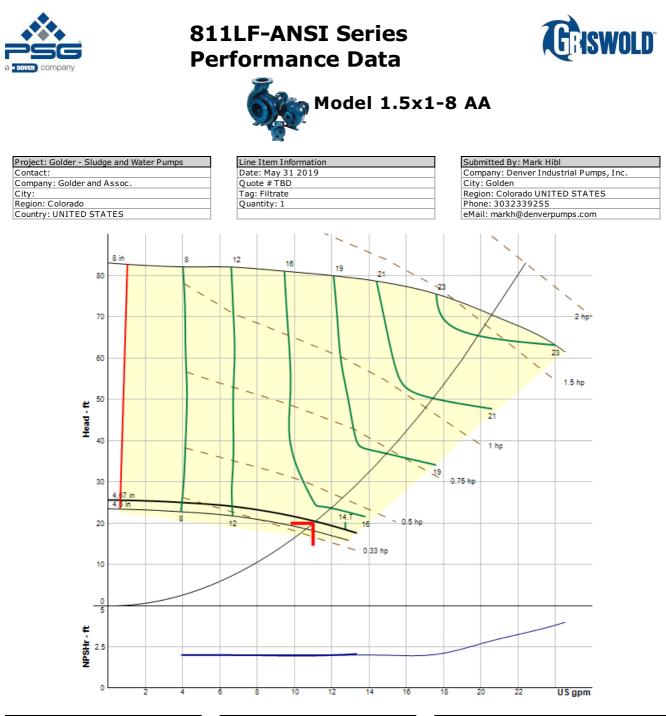
Pump Size	Motor Range	L	w	н
EMW 50	215T-405T	34	32	52
2x2	(132S-250M)	(864)	(813)	(1321)
EMW 75	215T-405T	35	32	52
3x3	(132S-250M)	(889)	(813)	(1321)
EMW 100	254T-405T	38	32	52
4x3	(160M-250M)	(965)	(813)	(1321)
EMW 150	284T-405T	44	35	64
6x4	(160M-250M)	(1118)	(889)	(1626)
EMW 200	364T-405T	53	39	69
8x6	(225S-250M)	(1346)	(991)	(1753)
EMW 250 10x8				
EMW 300 12x10	All overhe	ad con are inlin	0	ons
EMW 350 14x12				

Approximate Dimensions Inches (Millimeters) - NEMA (IEC)

	Pump Size	Motor Range	L	w	н			
	EMW 50 2x2		All belt driven configurations					
	EMW 75 3x3	are overhead						
	EMW 100	444T-449T	41	69	29			
	4x3	(280S-315L)	(1041)	(1753)	(737)			
Ţ	EMW 150	444T-449T	46	75	29			
	6x4	(280S-315L)	(1168)	(1905)	(737)			
2	EMW 200	444T-586T	60	84	35			
	8x6	(280S-355L)	(1524)	(2134)	(889)			
н	EMW 250	444T-589T	73	90	44			
	10x8	(315S-400L)	(1854)	(2286)	(1118)			
	EMW 300	444T-589T	80	105	55			
	12x10	(315S-400L)	(2032)	(2667)	(1397)			
	EMW 350	444T-589T	83	114	70			
	14x12	(315S-400L)	(2108)	(2896)	(1778)			

Direct drive configurations are also available, contact Wilfley for more information

VISIT WWW.WILFLEY.COM to see our full range of pumping solutions


A9 Chemical Pump

Kpro[®] Slurry Pump

HEAVY DUTY CENTRIFUGAL PUMPS

5870 E. 56th Avenue, Commerce City, CO 80022, USA Toll Free: 1-800-525-9930 • Telephone: +1 (303) 779-1777 • Fax: +1 (303) 779-1277 pumps@wilfley.com • www.wilfley.com

Pump Details	
Model	1.5x1-8 AA
Suction	1.5 in
Discharge	1 in
Speed	1800 RPM
Impeller Diameter	4.67 in
Ns	325
Nss	3625
Curve	GLF-1804

Fluid	
Liquid	*Filtrate
Viscosity	4.00
Specific Gravity	1
Temperature	70 °F
Vapor Pressure	

11 gpm
20.1 feet
14%
0.385 HP
1750 RPM
2.02 feet

25.6 feet
0.636 gpm
14% at 12.7 gpm
0.405 HP at 13.3
gpm

Max Curve	
Max Power	1.66 HP at 24
	gpm

Motor	
Power	0.5 HP
Speed	1800 RPM
Frame	56
Туре	NEMA
Enclosure	TEFC
Sizing Criteria	Max power on design curve

Pump Selection Warnings

Performance data and curves are based on test data, interpolations and accuracy of application input data. As a result, actual performance may vary.

Pump Quote

Project: Golder - Sludge and Water Pumps

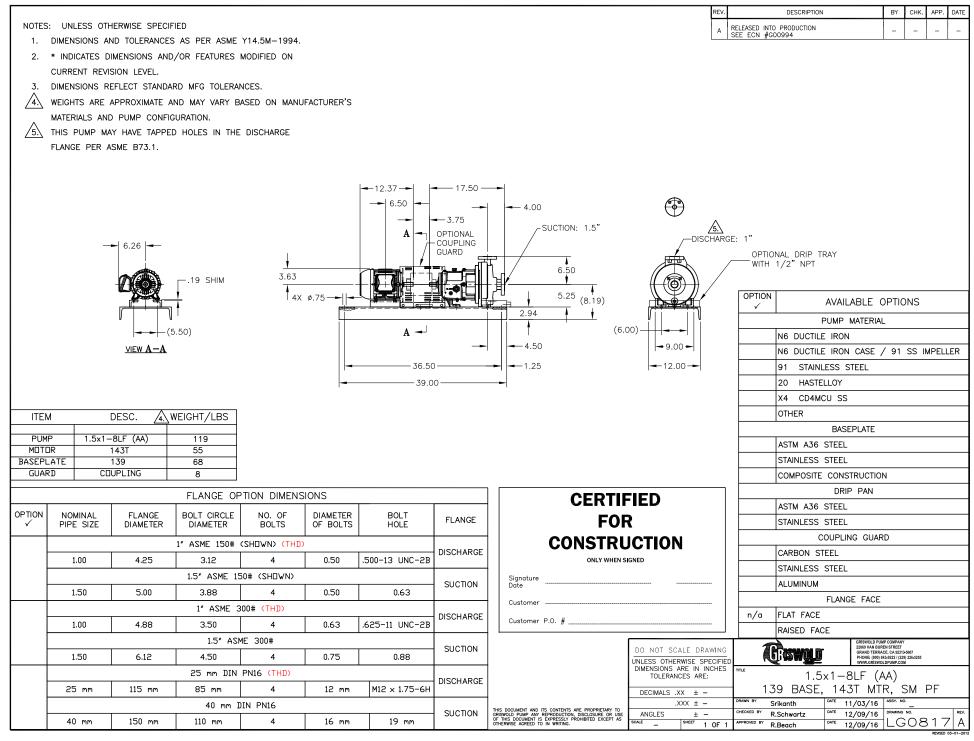
Quoted To:				Quote Number: Your Ref Number: TBD				
Golder and Assoc. Colorado UNITED STATES				Quote Date: 5/31/2019	Quote E 6/30/201	xpiration Date		
			Ī	Rev Number:	Currence USD (\$			
Quoted By	Contact			Email				
Denver Industrial Pumps, Inc. Golden Colorado UNITED STATES	Mark Hibl 3032339255			markh@denv	verpumps	.com		
Tag Item/Description		Qty I	UOM	l Lead-Time (Working Days)	Weight	List Price		
	0012022 le Iron ace Flanges lozzle Tap ex) dard) ard) ard) bel 140`5.25`CARBON STEEL Coated Carbon Steel (Standard) DS/SC5 1-143T`1HP`1800RPM`TEFC`143T`WEG cases and stuff boxes may be upgraded		EA			\$6,630.00		
					Total:	\$6,630.00		

Total: \$6,630.00

Warranty Policy

Griswold Pump Company warrants that 811 pumps, accessories and parts manufactured by it to be free from defects in material and workmanship under normal use and service for a period of five (5) years from date of shipment.

Griswold Pump Company warrants that E, F, G and H Series pumps, accessories and parts manufactured by it to be free from defects in material and workmanship under normal use and service for a period of one(1) year from date of shipment.

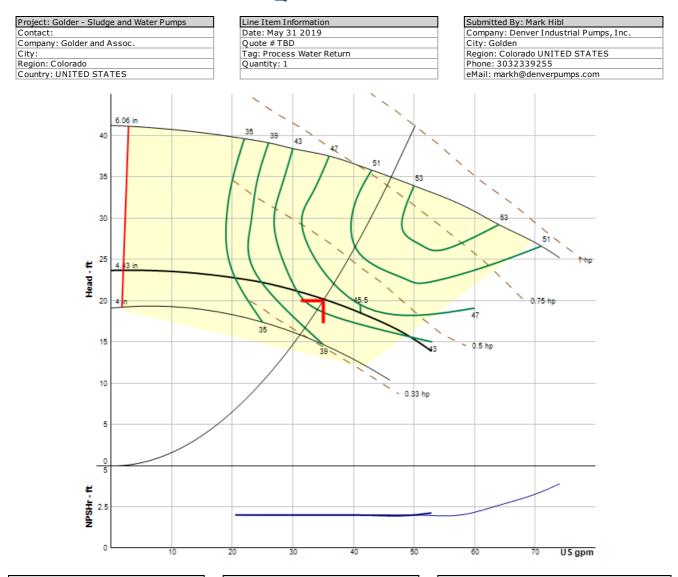

Additional Notes:

We attempt to ship our orders as prompt as possible. However, orders are only accepted on the express understanding that PSG will not be liable for any loss or damage resulting from any delay in shipment or delivery due to any cause whatsoever.

Price Sheet: Griswold ALL - January 2019

Denver Industrial Pumps, Inc. * 15165 W. 44th Ave., Golden, Colorado 80403 * Phone: 3032339255 www.denverpumps.com

CAD generated and maintained drawing. All printed and electronic copies outside of Griswold's engineering database are "Uncontrolled" and shall be used for reference only.



811-ANSI Series Performance Data

6

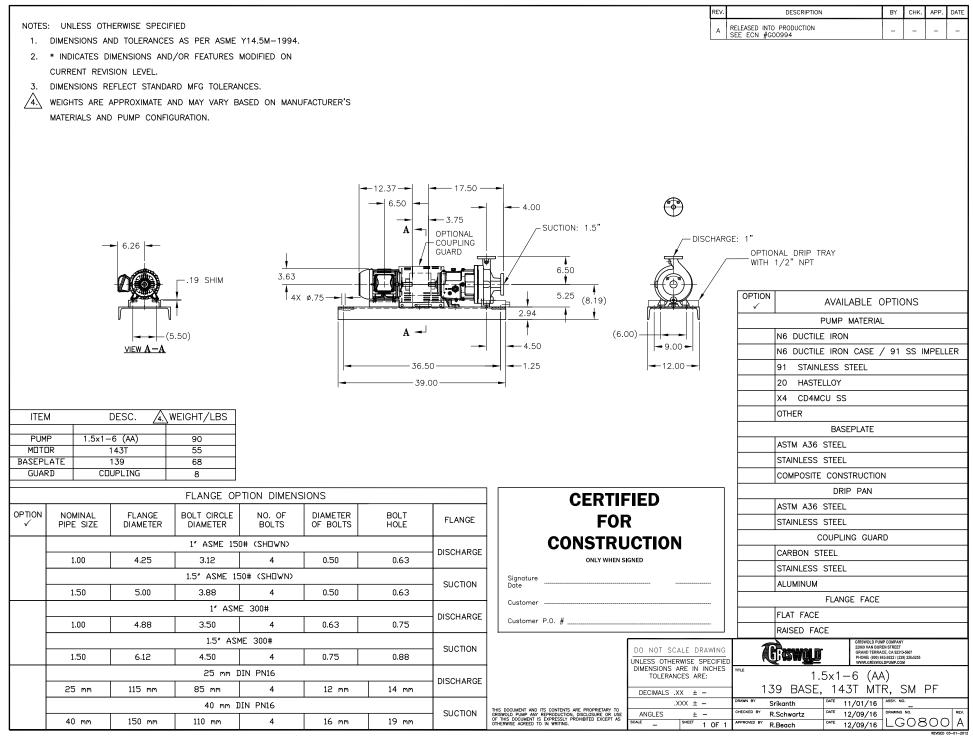
Model 1.5x1-6 AA

Pump Details	
Model	1.5x1-6 AA
Suction	1.5 in
Discharge	1 in
Speed	1800 RPM
Impeller Diameter	4.43 in
Ns	950
Nss	8150
Curve	G-1801

Fluid	
Liquid	Process Water
Viscosity	1.00
Specific Gravity	1
Temperature	70 °F
Vapor Pressure	

Rated Point	
Flow	35 gpm
Head	20.1 feet
Efficiency	44%
Power	0.399 HP
Speed	1750 RPM
NPSHr	2 feet

Design Curve	
Shutoff Head	23.7 feet
Min. Flow	2.06 gpm
BEP	44% at 41.2 gpm
NOL Power	0.453 HP at 49.4
	gpm


Max Curve	
Max Power	0.941 HP at 74
	gpm

Motor	
Power	0.5 HP
Speed	1800 RPM
Frame	56
Туре	NEMA
Enclosure	TEFC
Sizing Criteria	Max power on design curve

Pump Selection Warnings

Performance data and curves are based on test data, interpolations and accuracy of application input data. As a result, actual performance may vary.

CAD generated and maintained drawing. All printed and electronic copies outside of Griswold's engineering database are "Uncontrolled" and shall be used for reference only.

WILFLEY[®]

Wilfley Quotation System 19.1.4

		Pump Perform	ance Datasheet			
Customer	:		Quote number	: 742587		
Customer reference	•		Size	EMW-M 50 2x2-8.5 8.27E		
Item number	: Golder - Sludge		Stages	: 1		
Service	: Sludge Pump		Based on curve number	: 2x2-8.5-E VS (EMW-M) Rev 1-57		
Quantity	: 1		Date last saved	: 31 May 2019 12:10 PM		
	Operating Cond	litions		Liquid		
Flow, rated	Operating Cont	: 40.00 USgpm	Liquid type	: Customer Defined		
Differential head / press	ire rated (request		Additional liquid description	: HDS Solids / Sludge		
Differential head / press		: 30.08 ft	Solids diameter, max	: 0.00 in		
Intake head / pressure, i		: 0.00 ft	Solids concentration, by weight	: 50.00 %		
NPSH available, rated	nax	: Ample	Temperature, max	: 68.00 deg F		
Frequency		: 60 Hz	Fluid density, rated / max	: 1.500 / 1.500 SG		
Frequency	Desterment		Viscosity, rated	: 1.00 cP		
On and material	Performance		Vapor pressure, rated	: 0.34 psi.a		
Speed, rated		: 1140 rpm		•		
Speed, maximum		: 3000 rpm		laterial		
Speed, minimum		: 850 rpm	Material selected	: MAXALLOY® 5A		
Impeller diameter, rated		: 8.66 in		sure Data		
Efficiency	required	: 28.93 %	Maximum working pressure	: 20.89 psi.g		
NPSH required / margin		: 1.10 / 0.00 ft	Maximum allowable working pressu			
nq (imp. eye flow) / S (in	,	: 21 / 62 Metric units	Max / min allowable suction head /	: 10.72 / N/A ft		
Minimum continuous sta		: 33.65 USgpm	pressure			
Head maximum, rated s	heed	: 32.16 ft	Hydrostatic test pressure	: 299.0 psi.g		
Head rise to shutoff		: 6.94 %		wer Data		
Flow, best eff. point Flow ratio, rated / BEP		: 111.8 USgpm : 35.78 %	Power, rated	: 1.58 hp		
· ·	\		Power, maximum, rated diameter	: 2.63 hp		
Speed ratio (rated / max		: 38.00 %				
Head ratio (rated speed		: 13.84 %				
Cq/Ch/Ce/Cn [ANSI/HI	9.6.7-2010]	: 1.00 / 1.00 / 1.00 / 1.00				
Selection status		: Acceptable				
3.2						
		Power				
сц 2.4 у 1.6 о 0.8		rower				
b 1.6						
Ž						
Ö 0.8						
_				Shutoff power = 1,14 hp		
0.0						
250		, <u>, ,</u>				
			Minimu	um continuous stable flow		
225 3000 r						
		32 37 41				
200			44			
175			46			
1/5				46		
<u>ب</u> 150	/					
р 125 Н 100		/ / /				
H 100	/	<u>/ / /</u> /				
± 100						
75	/_/					
50 1140 г						
25						
0 850 rp	m N					
₩ 12						
· ·		NPSHr				
v 6 − − −						
JH 12 JHSAN 0						
2 0 0 20	0 40 60 80	100 120 140 160 180	200 220 240 260 280 300 32	20 340 360 380 400		
		Flow -	USgpm			
		-				

<u>WILFLEY</u>®

Wilfley Quotation System 19.1.4

Customer	:		Quote num	iber	: 742587					
Customer reference	:		Size		: EMW-M 50 2x2-8.5 8.27E					
tem number	: Golder - Sludge		Stages		: 1					
Service	: Sludge Pump		Speed, rate	ed	: 1140 rpm					
Quantity	:1		Intellicode		: '					
, , , , , , , , , , , , , , , , , , ,			Date last s	aved	: 31 May 2019 12:	10 PM				
	Performance Data		2 410 1401 0		ed and Solids Limits					
lead, maximum spee		: 217.3 ft	Stages, ma		: 1					
lead, minimum spee		: 16.28 ft	Stages, mi		:1					
lead maximum, rated		: 32.16 ft	-	ed limit, maximum		00 rpm				
Efficiency adjustment		: 1.00		ed limit, minimum		0 rpm				
Power adjustment, tot		: 0.00 hp		ed limit, maximum		00 rpm				
Head adjustment factor		: 0.90	· ·	ed limit, minimum		0 rpm				
Flow adjustment facto		: 1.00	· ·	beed limit, minimum	: -	o ipin				
	or, efficiency only (shift	: 1.00	Solids dian		: 0.7	'1 in				
BEP)			Solius dial		. 0.7	1 111				
•	or, end-of-curve only, total	: 1.00								
actor	stable flow adjustment	: 1.00								
low max adjustment		: 1.00								
NPSHr adjustment fac		: 1.00								
NPSHr slope correction	on factor	: 1.00								
Jser applied performa	ance adjustment comments	s :								
NPSH margin dictated	d by pump supplier	: 0.00 ft								
VPSH margin dictated	d by user	: 0.00 ft								
NPSH margin used (a	added to 'required' values)	: 0.00 ft								
	Mechanical Limits									
forque, rated power,	rated speed	: 0.14 hp/100 rpm	n							
Forque, maximum po	wer, rated speed	: 0.23 hp/100 rpm	n							
Forque, driver power,	full load speed	: 0.09 hp/100 rpm	n							
Forque, driver power,	rated speed	: 0.26 hp/100 rpm	n							
		: 0.26 hp/100 rpm : 7.45 hp/100 rpm								
Forque, pump shaft li	mit									
Torque, pump shaft lin Radial load, worst cas	mit	: 7.45 hp/100 rpm								
Forque, pump shaft lin Radial load, worst cas Radial load limit	mit Se	: 7.45 hp/100 rpm : -								
Forque, pump shaft lin Radial load, worst cas Radial load limit mpeller peripheral sp	mit se eed, rated	: 7.45 hp/100 rpn : - : -								
Forque, pump shaft lin Radial load, worst cas Radial load limit mpeller peripheral sp mpeller peripheral sp	mit se eed, rated eed limit	: 7.45 hp/100 rpn : - : - : - : -		Efficiency (%)	NPSHr (ft)	Power (hp)				
Forque, pump shaft lin Radial load, worst cas Radial load limit mpeller peripheral sp mpeller peripheral sp Various Pe	mit Se eed, rated eed limit rformance Data	: 7.45 hp/100 rpn : - : - : -	n	Efficiency (%)	NPSHr (ft)	Power (hp) 1.14				
Forque, pump shaft lin Radial load, worst cas Radial load limit mpeller peripheral sp mpeller peripheral sp Various Per Shutoff, rated diameter	mit se eed, rated eed limit rformance Data er	: 7.45 hp/100 rpm : - : - : - Flow (USgpm) 0.00	Head (ft) 32.16							
Forque, pump shaft lin Radial load, worst cas Radial load limit mpeller peripheral sp mpeller peripheral sp Various Per Shutoff, rated diameter Shutoff, maximum dia	mit se eed, rated eed limit rformance Data er meter	: 7.45 hp/100 rpm : - : - : - : - Flow (USgpm) 0.00 0.00	Head (ft) 32.16 222.7	-	-	1.14 19.25				
Forque, pump shaft lin Radial load, worst cas Radial load limit mpeller peripheral sp mpeller peripheral sp Various Pe Shutoff, rated diamete Shutoff, maximum dia Minimum continuous	mit Se eed, rated eed limit rformance Data er imeter stable flow	: 7.45 hp/100 rpm : - : - : - Flow (USgpm) 0.00	Head (ft) 32.16			1.14				
Forque, pump shaft lin Radial load, worst cas Radial load limit mpeller peripheral sp mpeller peripheral sp Various Pe Shutoff, rated diamete Shutoff, maximum dia Minimum continuous Rated flow, minimum	mit se eed, rated eed limit rformance Data er imeter stable flow diameter	: 7.45 hp/100 rpm : - : - : - : - Flow (USgpm) 0.00 0.00 33.65	Head (ft) 32.16 222.7 30.42	25.83	-	1.14 19.25 1.50				
Torque, pump shaft lin Radial load, worst cas Radial load limit mpeller peripheral sp mpeller peripheral sp Various Per Shutoff, rated diameter Shutoff, maximum dia Alinimum continuous s Rated flow, minimum Rated flow, maximum	mit se eed, rated eed limit rformance Data er imeter stable flow diameter diameter	: 7.45 hp/100 rpm : - : - : - : - Flow (USgpm) 0.00 0.00 33.65 40.00 40.00	Head (ft) 32.16 222.7 30.42 16.28 217.3	- 25.83 34.26 15.07	- - 1.00 - -	1.14 19.25 1.50 0.72 21.85				
Forque, pump shaft lin Radial load, worst cas Radial load limit mpeller peripheral sp Various Per Shutoff, rated diameter Shutoff, maximum dia Alinimum continuous se Rated flow, minimum BEP flow, rated diameter	mit se eed, rated eed limit rformance Data er imeter stable flow diameter diameter eter	: 7.45 hp/100 rpm : - : - : - : - Flow (USgpm) 0.00 0.00 33.65 40.00 40.00 111.8	Head (ft) 32.16 222.7 30.42 16.28 217.3 24.44	- 25.83 34.26 15.07 43.27	- - 1.00 - - 6.03	1.14 19.25 1.50 0.72 21.85 2.39				
Forque, pump shaft lin Radial load, worst cas Radial load limit mpeller peripheral sp mpeller peripheral sp Various Per Shutoff, rated diameter Shutoff, maximum dia Minimum continuous s Rated flow, minimum Rated flow, maximum BEP flow, rated diameter 120% rated flow, rated	mit se eed, rated eed limit rformance Data er immeter stable flow diameter diameter eter d diameter	: 7.45 hp/100 rpm : - : - : - : - Flow (USgpm) 0.00 0.00 33.65 40.00 40.00 111.8 48.00	Head (ft) 32.16 222.7 30.42 16.28 217.3 24.44 29.62	- 25.83 34.26 15.07 43.27 32.25	- - 1.00 - - - 6.03 1.30	1.14 19.25 1.50 0.72 21.85 2.39 1.67				
Torque, pump shaft lin Radial load, worst cas Radial load limit mpeller peripheral sp Various Pe Shutoff, rated diamete Shutoff, maximum dia Minimum continuous Rated flow, minimum Rated flow, maximum BEP flow, rated diamete 120% rated flow, rated End of curve, rated diameted	mit se eed, rated eed limit rformance Data er imeter stable flow diameter diameter eter d diameter ameter	: 7.45 hp/100 rpm : - : - : - Flow (USgpm) 0.00 0.00 33.65 40.00 40.00 111.8 48.00 133.9	h Head (ft) 32.16 222.7 30.42 16.28 217.3 24.44 29.62 21.63	25.83 25.83 34.26 15.07 43.27 32.25 41.70	- - 1.00 - - - 6.03 1.30 8.70	1.14 19.25 1.50 0.72 21.85 2.39 1.67 2.63				
Forque, pump shaft lin Radial load, worst cas Radial load limit mpeller peripheral sp mpeller peripheral sp Various Pel Shutoff, rated diameter Shutoff, maximum dia Minimum continuous Rated flow, minimum Rated flow, maximum BEP flow, rated diameter 20% rated flow, rated and of curve, rated diameter End of curve, minimum	mit se eed, rated beed limit rformance Data er umeter stable flow diameter diameter eter d diameter ameter ameter m diameter	: 7.45 hp/100 rpm : - : - : - Flow (USgpm) 0.00 0.00 33.65 40.00 40.00 111.8 48.00 133.9 99.95	Head (ft) 32.16 222.7 30.42 16.28 217.3 24.44 29.62 21.63 12.01	25.83 25.83 34.26 15.07 43.27 32.25 41.70 41.71	- - 1.00 - - - - - - - - - - - - - - - - - -	1.14 19.25 1.50 0.72 21.85 2.39 1.67 2.63 1.09				
Forque, pump shaft lin Radial load, worst cas Radial load limit mpeller peripheral sp mpeller peripheral sp Various Pe Shutoff, rated diamete Shutoff, maximum dia Minimum continuous Rated flow, minimum Rated flow, maximum BEP flow, rated diamete 120% rated flow, rated ind of curve, rated di End of curve, minimum End of curve, maximum	mit se eed, rated eed limit rformance Data er imeter stable flow diameter diameter eter d diameter ameter ameter m diameter im diameter	: 7.45 hp/100 rpm : - : - : - Flow (USgpm) 0.00 0.00 33.65 40.00 40.00 111.8 48.00 133.9	Head (ft) 32.16 222.7 30.42 16.28 217.3 24.44 29.62 21.63 12.01 149.8	- 25.83 34.26 15.07 43.27 32.25 41.70 41.71 44.97	- - 1.00 - - - 6.03 1.30 8.70	1.14 19.25 1.50 0.72 21.85 2.39 1.67 2.63 1.09 44.44				
Torque, pump shaft lin Radial load, worst cas Radial load limit mpeller peripheral sp mpeller peripheral sp Various Per Shutoff, rated diameter Shutoff, maximum dia Alinimum continuous s Rated flow, minimum Rated flow, maximum BEP flow, rated diameter 20% rated flow, rated and of curve, rated di End of curve, minimum End of curve, maximum Maximum value, rated	mit se eed, rated eed limit rformance Data er immeter stable flow diameter diameter eter d diameter ameter m diameter im diameter d diameter	: 7.45 hp/100 rpm : - : - : - Flow (USgpm) 0.00 0.00 33.65 40.00 40.00 111.8 48.00 133.9 99.95	Head (ft) 32.16 222.7 30.42 16.28 217.3 24.44 29.62 21.63 12.01	- 25.83 34.26 15.07 43.27 32.25 41.70 41.71 44.97 43.27	- - 1.00 - - - - - - - - - - - - - - - - - -	1.14 19.25 1.50 0.72 21.85 2.39 1.67 2.63 1.09 44.44 2.63				
Torque, pump shaft lin Radial load, worst cas Radial load limit mpeller peripheral sp mpeller peripheral sp Various Pel Shutoff, rated diamete Shutoff, maximum dia Ainimum continuous s Rated flow, maximum BEP flow, rated diame 20% rated flow, rated and of curve, rated di and of curve, maximum daximum value, rated Maximum value, maximum	mit se eed, rated eed limit rformance Data er immeter stable flow diameter diameter diameter eter d diameter ameter m diameter im diameter d diameter im diameter d diameter im diameter d diameter	: 7.45 hp/100 rpm : - : - : - Flow (USgpm) 0.00 0.00 33.65 40.00 40.00 111.8 48.00 133.9 99.95	Head (ft) 32.16 222.7 30.42 16.28 217.3 24.44 29.62 21.63 12.01 149.8 32.16 -	- 25.83 34.26 15.07 43.27 32.25 41.70 41.71 44.97 43.27 46.63	- - - - - - - - - - - - - - - - - - -	1.14 19.25 1.50 0.72 21.85 2.39 1.67 2.63 1.09 44.44 2.63 44.44				
Torque, pump shaft lin Radial load, worst cas Radial load limit mpeller peripheral sp mpeller peripheral sp Various Per Shutoff, rated diameter Shutoff, rated diameter Shutoff, maximum dia Ainimum continuous s Rated flow, minimum Rated flow, maximum BEP flow, rated diame 20% rated flow, rated flow, rated diame 20% rated flow, rated and of curve, minimum and of curve, maximum Maximum value, rated Maximum value, maximum	mit se eed, rated eed limit rformance Data er immeter stable flow diameter diameter diameter eter d diameter ameter m diameter im diameter d diameter em diameter ameter m diameter d diameter em diameter ameter m diameter	: 7.45 hp/100 rpm : - : - : - Flow (USgpm) 0.00 0.00 33.65 40.00 40.00 111.8 48.00 133.9 99.95 352.2 - -	Head (ft) 32.16 222.7 30.42 16.28 217.3 24.44 29.62 21.63 12.01 149.8 32.16 - @ Density	- 25.83 34.26 15.07 43.27 32.25 41.70 41.71 44.97 43.27 46.63 y, rated	- - 1.00 - - - 6.03 1.30 8.70 4.83 58.53 - - - - - - - - - - - - - - - - - - -	1.14 19.25 1.50 0.72 21.85 2.39 1.67 2.63 1.09 44.44 2.63 44.44 ity, max				
Torque, pump shaft lin Radial load, worst cas Radial load limit mpeller peripheral sp mpeller peripheral sp Various Pe Shutoff, rated diamete Shutoff, rated diamete Shutoff, maximum dia Ainimum continuous Rated flow, minimum Rated flow, maximum BEP flow, rated diame 20% rated flow, rated flow, rated f	mit se eed, rated eed limit rformance Data er imeter stable flow diameter diameter eter d diameter ameter m diameter im diameter d diameter em diameter em diameter em differential pressure rated flow, rated diameter	: 7.45 hp/100 rpm : - : - : - : - Flow (USgpm) 0.00 0.00 33.65 40.00 40.00 40.00 111.8 48.00 133.9 99.95 352.2 - (psi)	Head (ft) 32.16 222.7 30.42 16.28 217.3 24.44 29.62 21.63 12.01 149.8 32.16 - @ Density	25.83 34.26 15.07 43.27 32.25 41.70 41.71 44.97 43.27 46.63 y, rated	- - 1.00 - - - - - - - - - - - - - - - - - -	1.14 19.25 1.50 0.72 21.85 2.39 1.67 2.63 1.09 44.44 2.63 44.44 ity, max				
Torque, pump shaft lin Radial load, worst cas Radial load limit mpeller peripheral sp mpeller peripheral sp Various Per Shutoff, rated diameter Shutoff, maximum dia Minimum continuous Rated flow, minimum Rated flow, maximum BEP flow, rated diameter 20% rated flow, rated and of curve, rated diameter and of curve, rated diameter and of curve, minimum maximum value, rated Maximum value, maximum Maximum value, maximum Syster Differential pressure,	mit se eed, rated eed limit rformance Data er imeter stable flow diameter diameter eter d diameter ameter m diameter im diameter d diameter imum diameter em differential pressure rated flow, rated diameter (ps	: 7.45 hp/100 rpm : - : - : - Flow (USgpm) 0.00 0.00 33.65 40.00 40.00 111.8 48.00 133.9 99.95 352.2 - (psi) i)	Head (ft) 32.16 222.7 30.42 16.28 217.3 24.44 29.62 21.63 12.01 149.8 32.16 - @ Density 19.5 20.8	- 25.83 34.26 15.07 43.27 32.25 41.70 41.71 44.97 43.27 46.63 y, rated 33 99	- - 1.00 - - - - - - - - - - - - - - - - - -	1.14 19.25 1.50 0.72 21.85 2.39 1.67 2.63 1.09 44.44 2.63 44.44 ity, max .53 .89				
Torque, pump shaft lin Radial load, worst cas Radial load limit mpeller peripheral sp mpeller peripheral sp Various Per Shutoff, rated diameter Shutoff, maximum dia Minimum continuous Rated flow, minimum Rated flow, maximum BEP flow, rated diameter 20% rated flow, rated and of curve, rated diameter and of curve, rated diameter and of curve, minimum Maximum value, rated Maximum value, maximum Maximum value, maximum value, maximum Max	mit se eed, rated eed limit rformance Data er imeter stable flow diameter diameter diameter eter d diameter ameter m diameter d diameter imut diameter imut diameter em differential pressure rated flow, rated diameter ishutoff, rated diameter (ps shutoff, maximum diamete	: 7.45 hp/100 rpm : - : - : - Flow (USgpm) 0.00 0.00 33.65 40.00 40.00 111.8 48.00 133.9 99.95 352.2 - (psi) i)	Head (ft) 32.16 222.7 30.42 16.28 217.3 24.44 29.62 21.63 12.01 149.8 32.16 - @ Density 19.5 20.6 144	- 25.83 34.26 15.07 43.27 32.25 41.70 41.71 44.97 43.27 46.63 y, rated 33 39 6	- - 1.00 - - - 6.03 1.30 8.70 4.83 58.53 - - - - - @ Dens 19 20 14	1.14 19.25 1.50 0.72 21.85 2.39 1.67 2.63 1.09 44.44 2.63 44.44 53 .89 4.6				
Torque, pump shaft lin Radial load, worst cas Radial load limit mpeller peripheral sp mpeller peripheral sp Various Pe Shutoff, rated diamete Shutoff, maximum dia Minimum continuous Rated flow, maximum Rated flow, maximum BEP flow, rated diamete 120% rated flow, rated 120% rated flow, rated and of curve, rated di End of curve, minimum Aximum value, rated Maximum value, maximum Maximum value, maximum Syste Differential pressure, Differential pressure,	mit se eed, rated eed limit rformance Data er imeter stable flow diameter diameter diameter eter d diameter ameter m diameter d diameter imum diameter em differential pressure rated flow, rated diameter shutoff, rated diameter (ps shutoff, maximum diamete Discharge pressure	: 7.45 hp/100 rpm : - : - : - Flow (USgpm) 0.00 0.00 33.65 40.00 40.00 40.00 111.8 48.00 133.9 99.95 352.2 - (psi) i) r (psi)	Head (ft) 32.16 222.7 30.42 16.28 217.3 24.44 29.62 21.63 12.01 149.8 32.16 - @ Densit 19.5 20.8 144 @ Suction pressure, rated	25.83 34.26 15.07 43.27 32.25 41.70 41.71 44.97 43.27 46.63 y, rated 33 99 .6 @ Suction pressure, max	- - - 1.00 - - - - - - - - - - - - - - - - - -	1.14 19.25 1.50 0.72 21.85 2.39 1.67 2.63 1.09 44.44 2.63 44.44 53 .89 4.6 @ Suction pressure, max				
Forque, pump shaft lin Radial load, worst cas Radial load limit mpeller peripheral sp mpeller peripheral sp Various Per Shutoff, rated diameter Shutoff, maximum dia Minimum continuous a Rated flow, minimum Rated flow, maximum BEP flow, rated diameter 120% rated flow, rated 120% rated flow, rated 120% rated flow, rated End of curve, maximum Aaximum value, rated Maximum value, maximum Maximum value, maximum Maximum value, maximum Colifferential pressure, polifferential pressure, recommendent Discharge pressure, recommendent Discharge pressure, recommendent Maximum value, rated Discharge pressure, recommendent Subscharge pressure, recommendent Sub	mit se eed, rated eed limit rformance Data er imeter stable flow diameter diameter diameter eter d diameter ameter m diameter im diameter d diameter imum diameter en differential pressure rated flow, rated diameter (ps shutoff, maximum diamete Discharge pressure ated flow, rated diameter (: 7.45 hp/100 rpm : - : - : - Flow (USgpm) 0.00 0.00 33.65 40.00 40.00 111.8 48.00 133.9 99.95 352.2 - (psi) i) r (psi) psi.g)	Head (ft) 32.16 222.7 30.42 16.28 217.3 24.44 29.62 21.63 12.01 149.8 32.16 - @ Density 19.5 19.53	- 25.83 34.26 15.07 43.27 32.25 41.70 41.71 44.97 43.27 46.63 y, rated 33 99 .6 @ Suction pressure, max 19.53	- - - 1.00 - - - - - - - - - - - - - - - - - -	1.14 19.25 1.50 0.72 21.85 2.39 1.67 2.63 1.09 44.44 2.63 44.44 2.63 44.44 53 .89 4.6 @ Suction pressure, max 19.53				
Torque, pump shaft lin Radial load, worst cas Radial load limit Impeller peripheral sp Impeller peripheral sp Various Per Shutoff, rated diamete Shutoff, maximum dia Minimum continuous s Rated flow, minimum Rated flow, maximum BEP flow, rated diamete 120% rated flow, rated End of curve, rated di End of curve, minimum End of curve, maximum Maximum value, rated Maximum value, maximum Maximum value, maximum Differential pressure, Differential pressure, r Discharge pressure, s	mit se eed, rated eed limit rformance Data er imeter stable flow diameter diameter diameter eter d diameter ameter m diameter d diameter imum diameter em differential pressure rated flow, rated diameter shutoff, rated diameter (ps shutoff, maximum diamete Discharge pressure	: 7.45 hp/100 rpm : - : - : - : - Flow (USgpm) 0.00 0.00 33.65 40.00 40.00 111.8 48.00 133.9 99.95 352.2 - (psi) i) r (psi) psi.g) .g)	Head (ft) 32.16 222.7 30.42 16.28 217.3 24.44 29.62 21.63 12.01 149.8 32.16 - @ Densit 19.5 20.8 144 @ Suction pressure, rated	25.83 34.26 15.07 43.27 32.25 41.70 41.71 44.97 43.27 46.63 y, rated 33 99 .6 @ Suction pressure, max	- - - 1.00 - - - - - - - - - - - - - - - - - -	1.14 19.25 1.50 0.72 21.85 2.39 1.67 2.63 1.09 44.44 2.63 44.44 53 .89 4.6 @ Suction pressure, max				

<u>WILFLEY®</u>

Pump Performance - Additional Data

Maximum flow / rated flow, rated diameter	: 334.66 %	Head rated diameter / head minimum diameter, rated flow	: 184.70 %					
	Const	ruction						
Seal Type	: SolidLock™ Static Seal							
	Wilfley Slurr	y Corrections						
Percent Solids By Weight	: 20 to 50% Solids							

WILFLEY®

Wilfley Quotation System 19.1.4

				P	Pum	pΡ	erfc	orma	ance) Da	itas	hee	t							
Customer :															74	2587				
Customer reference													: 742587 : EMW-M 75 3x3-10.5 8.19E							
	Golder -	Inderf	low												:1					
	Underflo										urve	numhé	۹r			3-10 5	-F \/S		W-M) Rev 1.	-57
	1	w r uni	٢						Based on curve number : 3x3-10.5-E VS (EMW-M) Rev 1-57						57					
,	Operatin	n Con	dition	s					Date last saved : 31 May 2019 2:45 PM Liquid											
Flow, rated	operatin	g con	antion		5.0119	Sgpm			Liquid	l type					iquit		istom	er Del	fined	
Differential head / pressur	e rated (request	ted)	: 55.0		Jgpin					iauid i	descri	ntion						Sludge	
Differential head / pressur				: 55.2						s diam			puon				00 in		oludge	
	head / pressure, max			: 0.0								tion, b	v weir	nht			.00 %			
NPSH available, rated	-									eratu			y worg	Jin			.00 d			
Frequency				: 60	•							ed / m	ax					1.200	SG	
Performance										sity, r		00711	an				00 cP	1.200	00	
Speed, rated	I GII	orman	66	· 12/	l0 rpr	n				r pres		rated					34 psi	а		
Speed, maximum				: 280	•									M	lateria					
Speed, minimum				: 715	•				Mate	ial se	lector	4					ΔχΔι	LOY®) 5A	
Impeller diameter, rated				: 10.2	•				mate	101 30		•		Droe	sure					
Efficiency				: 58.2					Movin	num	Vorkin	g pres	CUTO .	Tres	sure		20 -	si a		
NPSH required / margin re	auired				20 /0 6 / 0.0	00 ft						• •		press			.29 p: 0.0 p:			
ng (imp. eye flow) / S (imp		v)					c units	5						head /			0.0 p 31 / N			
Minimum continuous stabl		-,				Sgpm		-	press		hww	50		ieau /		. 1.5	יו / וכ	w//∿ II		
Head maximum, rated spe				: 60.2		- 36.11					test r	oressu	ire			· 20	9.0 p	si a		
Head rise to shutoff				: 8.8					riyurt					Po	wer D		5.0 p	J		
Flow, best eff. point						Sgpm			Power	r, rate	d				wer D		19 hp			
Flow ratio, rated / BEP					63 %							n, rate	d diam	notor			19 np 74 hp			
Speed ratio (rated / max)				: 44.					FOWE	i, ma	ximun	i, iale	u ulan	letel		. 0. /	ич пр			
Head ratio (rated speed / r	max spee	ed)			21 %															
Cq/Ch/Ce/Cn [ANSI/HI 9.						00 / 1	.00 / 1	.00												
Selection status	_5.0				eptal															
10.0																			7	
e 7.5						\sim	Powe	ŧr											1	
CL 7.5 - 5.0 - 2.5																				
5 .0														$\left - \right $					-	
ŭ 2.5																			1	
0.0															Shu	toff pov	ver = 3	3.35 hp		
400													 _	Minimu	im con	tinuour	stahl	flow	7	
200													Ľ						-	
360																				
320 - 2800 rpn	n			15															-	
				45	5	1	56		60											
280		<i>⊢i</i> +		/ +	-					62		63	<u> </u>				<u> </u>		-	
		<u> </u>											63	L A	2					
₩ ²⁴⁰		1				1									\sim	60]	
200		/	$ \rightarrow $			/		[-/									4	
			/				\checkmark	//	1											
160					/	-/												-	1	
400																				
120	1				/	/													1	
80 1240 rpn		$ \land$	$ \land$																-	
12.0 p.																				
40	\prec						-											+	-	
0 715 rpm																			_	
₩ 12							NPS	Hr						,				1	7	
							115	1"												
H 6				-														-	1	
2 0 50	100 15	50 200) 250	o 30	0 35	50 4	00 4	50 5	00 5	50 6	00 6	50 7	00 7	50 80	00 8	50 9	00 9	50 1,	000	
							FI	ow -	USgp	m										
									- 31											

<u>WILFLEY®</u>

Wilfley Quotation System 19.1.4

		Pump Perfo	orman	ce - Addit	tional Data			
Customer	:			Quote numb		: 742587		
Customer reference				Size		: EMW-M 75 3x3-1	0.5.8.19E	
Item number	: Golder - Underflow			Stages		: 1	0.0 0.102	
Service	: Underflow Pump			Speed, rated	4	: 1 : 1240 rpm		
	Quantity : 1			Intellicode	,			
Quantity	. 1		Date last saved			: : 31 May 2019 2:45 PM		
	Performance Data			Date last sa		ed and Solids Limits		
Head, maximum speed,		: 303.5 ft		Stages, max		eu anu sonus Linnis : 1		
Head, minimum speed,		: 14.67 ft		Stages, max				
Head maximum, rated s		: 60.24 ft		0	d limit, maximum	: 1		
Efficiency adjustment fa					limit, minimum	: 2800 rpm		
		: 1.00				: 715 rpm		
Power adjustment, total		: 0.00 hp			d limit, maximum	: 2800 rpm : 715 rpm		
Head adjustment factor		: 1.00			d limit, minimum		rpm	
Flow adjustment factor,		: 1.00		-	ed limit, minimum	:-	0 :	
Flow adjustment factor, BEP)		: 1.00		Solids diame	eter limit	: 0.7	9 IN	
Flow adjustment factor,		: 1.00						
Minimum continuous sta factor	able flow adjustment	: 1.00						
Flow max adjustment fa		: 1.00						
NPSHr adjustment facto		: 1.00						
NPSHr slope correction	factor	: 1.00						
User applied performan	ce adjustment comments	s :						
NPSH margin dictated b	by pump supplier	: 0.00 ft						
NPSH margin dictated b	by user	: 0.00 ft						
NPSH margin used (ad	ded to 'required' values)	: 0.00 ft						
	Mechanical Limits							
Torque, rated power, ra	ted speed	: 0.50 hp/100 r	pm					
Torque, maximum powe	er, rated speed	: 0.71 hp/100 r	pm					
Torque, driver power, fu	Il load speed	: 0.28 hp/100 r	pm					
Torque, driver power, ra	ated speed	: 0.81 hp/100 r	pm					
Torque, pump shaft limi	t	: 9.80 hp/100 r	pm					
Radial load, worst case		: -						
Radial load limit		:-						
Impeller peripheral spee	ed, rated	:-						
Impeller peripheral spee	ed limit	: -						
Various Perfo	ormance Data	Flow (USgpr	n)	Head (ft)	Efficiency (%)	NPSHr (ft)	Power (hp)	
Shutoff, rated diameter		0.00		60.16	-	-	3.35	
Shutoff, maximum diam	eter	0.00		307.0	-	-	39.05	
Minimum continuous sta	able flow	88.64		59.65	35.91	1.58	4.46	
Rated flow, minimum di		215.0		14.67	60.05	-	1.59	
	ameter	210.0					1.00	
Rated flow, maximum d		215.0		303.5	37.80	-	52.32	
Rated flow, maximum d BEP flow, rated diameter	liameter			303.5 49.38		- 6.80		
BEP flow, rated diameter	iameter er	215.0			37.80	- 6.80 5.18	52.32	
	iameter er diameter	215.0 308.8		49.38	37.80 62.31		52.32 7.41	
BEP flow, rated diameter 120% rated flow, rated of	iameter er diameter neter	215.0 308.8 258.0		49.38 52.84	37.80 62.31 61.12	5.18	52.32 7.41 6.76	
BEP flow, rated diameter 120% rated flow, rated of End of curve, rated diam	iameter er diameter neter diameter	215.0 308.8 258.0 403.2		49.38 52.84 41.28	37.80 62.31 61.12 57.68	5.18 10.05	52.32 7.41 6.76 8.74	
BEP flow, rated diamete 120% rated flow, rated diam End of curve, rated diam End of curve, minimum	iameter er diameter neter diameter i diameter	215.0 308.8 258.0 403.2 232.5		49.38 52.84 41.28 13.73 216.9	37.80 62.31 61.12 57.68 57.44 59.48	5.18 10.05 3.35	52.32 7.41 6.76 8.74 1.68 97.30	
BEP flow, rated diameter 120% rated flow, rated of End of curve, rated diameter End of curve, minimum End of curve, maximum Maximum value, rated of	iameter er diameter neter diameter diameter diameter	215.0 308.8 258.0 403.2 232.5		49.38 52.84 41.28 13.73	37.80 62.31 61.12 57.68 57.44 59.48 62.31	5.18 10.05 3.35	52.32 7.41 6.76 8.74 1.68 97.30 8.74	
BEP flow, rated diameter 120% rated flow, rated diameter End of curve, rated diameter End of curve, minimum End of curve, maximum Maximum value, rated of Maximum value, maxim	iameter er diameter neter diameter diameter diameter um diameter	215.0 308.8 258.0 403.2 232.5		49.38 52.84 41.28 13.73 216.9 60.24	37.80 62.31 61.12 57.68 57.44 59.48 62.31 63.16	5.18 10.05 3.35 48.86 - -	52.32 7.41 6.76 8.74 1.68 97.30 8.74 97.30	
BEP flow, rated diameter 120% rated flow, rated diameter End of curve, rated diameter End of curve, minimum End of curve, maximum Maximum value, rated of Maximum value, maxim System	iameter er diameter neter diameter diameter diameter diameter num diameter n differential pressure	215.0 308.8 258.0 403.2 232.5 880.6 - -		49.38 52.84 41.28 13.73 216.9 60.24 - @ Density,	37.80 62.31 61.12 57.68 57.44 59.48 62.31 63.16 rated	5.18 10.05 3.35 48.86 - - @ Densi	52.32 7.41 6.76 8.74 1.68 97.30 8.74 97.30 ty, max	
BEP flow, rated diameter 120% rated flow, rated diameter End of curve, rated diameter End of curve, minimum End of curve, maximum Maximum value, rated of Maximum value, maxim System Differential pressure, rated	iameter er diameter neter diameter diameter diameter diameter num diameter n differential pressure ted flow, rated diameter	215.0 308.8 258.0 403.2 232.5 880.6 - - (psi)		49.38 52.84 41.28 13.73 216.9 60.24 - - @ Density, 28.71	37.80 62.31 61.12 57.68 57.44 59.48 62.31 63.16 rated	5.18 10.05 3.35 48.86 - - @ Densi 28.	52.32 7.41 6.76 8.74 1.68 97.30 8.74 97.30 ty, max 71	
BEP flow, rated diameter 120% rated flow, rated diameter 20% rated flow, rated diameter End of curve, rated diameter End of curve, maximum Maximum value, rated of Maximum value, maxim System Differential pressure, rated Differential pressure, show	iameter er diameter neter diameter diameter diameter num diameter n differential pressure ted flow, rated diameter nutoff, rated diameter (ps	215.0 308.8 258.0 403.2 232.5 880.6 - - (psi) i)		49.38 52.84 41.28 13.73 216.9 60.24 - @ Density, 28.71 31.25	37.80 62.31 61.12 57.68 57.44 59.48 62.31 63.16 rated	5.18 10.05 3.35 48.86 - - - 28. 31.	52.32 7.41 6.76 8.74 1.68 97.30 8.74 97.30 ty, max 71 25	
BEP flow, rated diameter 120% rated flow, rated diameter End of curve, rated diameter End of curve, minimum End of curve, maximum Maximum value, rated of Maximum value, maxim System Differential pressure, ra Differential pressure, sh	iameter er diameter neter diameter diameter diameter bum diameter n differential pressure ted flow, rated diameter	215.0 308.8 258.0 403.2 232.5 880.6 - - (psi) i)		49.38 52.84 41.28 13.73 216.9 60.24 - @ Density, 28.71 31.25 159.5 uction	37.80 62.31 61.12 57.68 57.44 59.48 62.31 63.16 rated	5.18 10.05 3.35 48.86 - - 28. 31. 155 @ Suction	52.32 7.41 6.76 8.74 1.68 97.30 8.74 97.30 ty, max 71 25 9.5 @ Suction	
BEP flow, rated diameter 120% rated flow, rated diameter End of curve, rated diameter End of curve, maximum End of curve, maximum Maximum value, rated of Maximum value, rated of Maximum value, maxim System Differential pressure, ra Differential pressure, sh Differential pressure, sh	iameter er diameter neter diameter diameter diameter num diameter n differential pressure ted flow, rated diameter nutoff, rated diameter (ps nutoff, maximum diamete scharge pressure	215.0 308.8 258.0 403.2 232.5 880.6 - - (psi) i) rr (psi)	pressu	49.38 52.84 41.28 13.73 216.9 60.24 - @ Density, 28.71 31.25 159.5 uction re, rated	37.80 62.31 61.12 57.68 57.44 59.48 62.31 63.16 rated @ Suction pressure, max	5.18 10.05 3.35 48.86 - - 28. 31. 155 @ Suction pressure, rated	52.32 7.41 6.76 8.74 1.68 97.30 8.74 97.30 ty, max 71 25 9.5 @ Suction pressure, max	
BEP flow, rated diameter 120% rated flow, rated diameter 120% rated flow, rated diameter End of curve, rated diameter End of curve, maximum Maximum value, rated of Maximum value, rated of Maximum value, maxim System Differential pressure, rated Differential pressure, she Differential pressure, she Differential pressure, she Differential pressure, she	iameter diameter neter diameter diameter diameter diameter num diameter num diameter num diameter ted flow, rated diameter nutoff, maximum diameter scharge pressure ed flow, rated diameter (215.0 308.8 258.0 403.2 232.5 880.6 - - (psi) i) or (psi)	pressu 28	49.38 52.84 41.28 13.73 216.9 60.24 - 28.71 31.25 159.5 uction re, rated 3.71	37.80 62.31 61.12 57.68 57.44 59.48 62.31 63.16 rated @ Suction pressure, max 28.71	5.18 10.05 3.35 48.86 - - 28. 31. 155 © Suction pressure, rated 28.71	52.32 7.41 6.76 8.74 1.68 97.30 8.74 97.30 ty, max 71 25 0.5 @ Suction pressure, max 28.71	
BEP flow, rated diameter 120% rated flow, rated diameter 120% rated flow, rated diameter End of curve, rated diameter End of curve, maximum Maximum value, rated of Maximum value, rated of Maximum value, maxim System Differential pressure, rat Differential pressure, sho Discharge pressure, rate Discharge pressure, sho	iameter er diameter neter diameter diameter diameter num diameter n differential pressure ted flow, rated diameter nutoff, rated diameter (ps nutoff, maximum diamete scharge pressure	215.0 308.8 258.0 403.2 232.5 880.6 - - (psi) i) r (psi) i) psi.g) .g)	pressu 28 31	49.38 52.84 41.28 13.73 216.9 60.24 - @ Density, 28.71 31.25 159.5 uction re, rated	37.80 62.31 61.12 57.68 57.44 59.48 62.31 63.16 rated @ Suction pressure, max	5.18 10.05 3.35 48.86 - - 28. 31. 155 @ Suction pressure, rated	52.32 7.41 6.76 8.74 1.68 97.30 8.74 97.30 ty, max 71 25 9.5 @ Suction pressure, max	

<u>WILFLEY®</u>

Wilfley Quotation System 19.1.4

Pump Performance - Additional Data

Maximum flow / rated flow, rated diameter	: 187.52 %	Head rated diameter / head minimum diameter, rated flow : 3				
Construction						
Seal Type	: SolidLock™ Static Seal					
Wilfley Slurry Corrections						
Percent Solids By Weight	: Up to 10% Solids					

Proposal

Date of Proposal: 6/7/2019

Proposal #: VR19-1975

Revision:

Proposal For: Elizabeth Travis Golder <u>Elizabeth Travis@golder.com</u> 303-980-0540

Project: New Mexico HDS Polymer System

Equipment: VeloBlend Liquid Polymer Activation System

VeloDyne Contact Information:

Sales Manager: Vincent Rada VeloDyne Louisville, CO 80027 Phone: (303) 530-3298 (238) vrada@velodynesystems.com

V E L 🔷 D Y N E

PROPOSED SCOPE OF SUPPLY

Bid Type: Budget.

QTY.

VeloDyne is pleased to offer the following proposal for the liquid polymer blending equipment, including options and accessories as indicated below.

DESCRIPTION

<u>1</u> VeloBlend Model VM-1P-120-D-O-A-1 Liquid Polymer Blending System

Polymer Flow Range: 0.05 to 1.0 GPH Dilution Water Flow: 0.2 to 2.0 GPM

Each unit shall include the following unless otherwise indicated:

- Polymer Mixing Chamber: 1
 - A. Series: VeloBlend VM
 - B. Type: Staged Hydro-Mechanical
 - C. Mixer Motor: ½ HP, 90 VDC, 1750 RPM, wash-down duty
 - D. Mixer Shaft Seal: Mechanical with seal flushing assembly
 - E. VeloCheck[™] Neat Polymer Check Valve with Quick Release Pin
 F. Construction:
 - - Body: Stainless steel
 Impeller: Stainless steel
 Mechanical Seal: Ceramic, Carbon, Stainless steel, Viton
 - 4. Cover: Clear polycarbonate with stainless steel reinforced flange & discharge
 - G. Pressure Rating: 100 psi
 - H. Pressure Relief Valve: Brass
- Neat Polymer Metering Pump Assembly: 1
 - A. PVC FNPT union style polymer inlet
 - B. Type: Progressive Cavity type
 - C. Motor: 1/2 HP, 1750 RPM, 90 VDC, Wash-down duty motor with gear reducer
 - D. Loss of polymer flow sensor
 - E. Metering pump calibration assembly with isolation valves: 100 ml (1.5 GPH)
 - F. Plumbing: SCH. 80 PVC
- Dilution Water Inlet Assembly shall be provided, including the following: 1
 - A. Stainless steel FNPT water inlet connection
 - B. Dilution water ON/OFF solenoid valve
 - C. Control Valve: Manual rate control valve
 - D. Primary dilution water flow meter type: Rotameter
 - E. Low differential pressure alarm switch
 - F. 0-160 psi inlet water pressure gauge (stainless steel, liquid filled)
 G. Plumbing SCH. 80 PVC
- 1 Solution Discharge Assembly:

 - A. Stainless steel FNPT solution discharge connection
 B. 0-160 psi solution discharge pressure gauge (stainless steel, liquid filled)
 C. Plumbing SCH. 80 PVC

- 1 Control Panel:
 - (Discrete Control Panel)
 - A. Enclosure: NEMA 4X (FRP)
 - B. Power:
 - Required: 120 VAC, 60 Hz., 1 Ph 1.
 - 2. Disconnect: 10' power cord with 120 VAC plug
 - C. Motor controllers:
 - 1. Mixing Chamber
 - 2. Neat polymer metering pump
 - D. Miscellaneous:
 - 1. Control circuit protection
 - 2. Control relays
 - 3. Power supplies
 - 4. Grounding blocks
 - 5. Numbers terminal blocks
 - 6. Wire labels, shrink-tube type
 - E. Certification: uL 508A
 - (Series D)
 - F. Operator Interface Discrete Selector Switch
 - 1. System ON / OFF(reset) / REMOTE
 - 2. Ten-Turn Potentiometer Metering Pump Control
 - 3. One-Turn Potentiometer Mixer Speed Control
 - G. Status / Alarm Indicators:
 - 1. System Running Indication
 - 2. Main Power ON Indication
 - 3. LED Display Metering Pump Rate
 - 4. Low Water Differential Pressure Alarm
 - 5. Low Polymer Flow Alarm
 - H. Inputs (signals by others):

 - Remote Start / Stop (discrete dry contact)
 Pacing Signal Based on Process Flow (4-20mA)
 - Outputs: Ι.
 - 1. System Running (discrete dry contact)
 - 2. System Remote Mode (discrete dry contact)
 - Common Alarm (discrete dry contact) 3.

1 System Skid:

- A. Frame: 304 stainless steel, open frame design for access to all components
- B. Fasteners: 304 SS
- C. Designed for bolt-down
- 1 Accessories (NONE PROVIDED PLEASE REQUEST):
 - A. (0) Drum Suction Pipe
 - B. (0) Drum Dollie
 - C. (0) Drum Cart / Dispenser
 - D. (0) Drum Level sensor
 - E. (0) Drum Desiccant / Drier
 - F. (0) Drum Mixer
 - G. (0) Drum / Tote Suction Valve & Quick Disconnect Assembly
 - H. (0) Tote Mixer
 - Ι. (0) Tote Truck / Tilt
 - J. (0) Tote Level sensor
 - K. (0) Tote Rack
 - L. (0) Set Spare Parts Progressive Cavity Pump: One (1) Rotor, One (1) Stator, One (1) set packing

- 1 Engineering & Documentation:
 - A. Submittals for approval (electronic version in PDF & hard copies, if applicable)
 - 1. Detailed scope of supply
 - 2. Mechanical drawings (solids models in shaded isometric and wire orthogonal views)
 - 3. Mechanical component data sheets annotated for specific models, features, etc.
 - 4. Pump performance curves
 - 5. Electrical schematics with interconnecting layout
 - 6. Process & Instrumentation Drawings
 - 7. Process description
 - 8. Electrical component data sheets annotated for specific models, features, etc.
 - B. O&M Manuals for approval (electronic version in PDF & hard copies)
- 1 Start-Up / Field Services:
 - A. Factory Start-Up & Field Services:
 - 1. Number of Trips:1
 - 2. Number of Days (total on site):1

Note: a minimum of four (4) weeks' notice required for domestic orders prior to factory services being scheduled

Clarifications:

- 1. This proposal shall become part of the final purchase order documents.
- 2. Any equipment or appurtenances not specifically listed in the scope of supply shall be provided by others.
- 3. VeloDyne has proposed its standard equipment as detailed above, modified only to the extent to meet the intent of the project requirements.
- 4. Where there are contradictions between project specifications and drawings or omissions, VeloDyne is providing our best interpretation of the intent of the design as detailed in our scope of supply.
- 5. Unless otherwise indicated above, standard submittals and O&M manuals are included herein.
- 6. This proposal is based on equipment delivery within one year of date of customer's purchase order.
- 7. Unless otherwise indicated above, the following are not included in this proposal: Installation. Chemicals. Interconnecting wiring, conduit, piping and valves. Anchor bolts. Field Painting. Taxes. Tariffs. Duties. Bonds.

Commercial Terms Summary (see complete terms & conditions attached):

- 1. Price Valid For 90 Days
- 2. Payment Terms: Net 30
- 3. Freight: FOB factory, full freight allowed
- 4. *Submittals: 4-6 weeks after acceptance of order
- 5. *Shipment: 4-6 weeks after acceptance of order or customer's written approval and release for production

* Note: lead times are estimates based on the current engineering and production work load at the time of bid. Actual lead times may vary based on the workloads at the time of order and release for production – consult factory at time for order and release for production to confirm lead times.

Total Price Including Field Services & Freight: \$18,525

VELODYNE STANDARD TERMS & CONDITIONS OF SALE

All orders placed with Velocity Dynamics, LLC. d/b/a VeloDyne (the "Company" or "Seller"), if accepted, shall be accepted subject to VeloDyne Standard Terms and Conditions of Sale ("Terms and Conditions") as set forth below and incorporated by reference into the Purchase Contract:

1. CONTRACT; OFFER AND ACCEPTANCE. These Terms and Conditions, together with the product descriptions, prices and other terms appearing on the face hereof or in a separate document submitted to you, (collectively, "our Quotation"), as such may result in a final Purchase Contract between us (all such documents collectively referred to as the "Contract"), shall constitute the only terms and conditions of our offer. If our Quotation is submitted in response to an offer made by you, whether your offer is in the form of a request for proposal or otherwise, our Quotation is expressly conditioned on your acceptance of these Terms and Conditions, which are incorporated into any offer, acceptance, response, acknowledgment, invoice, amendment and/or any other document issued by you or the Company in connection with your Order (the "Contract" or "Contract Documents"), and any reference thereto shall include these Terms and Conditions. No waiver, alteration, or modification of these Terms and Conditions shall be valid unless expressly agreed to in writing by the Company. In any event, we object to all additional or conflicting terms and conditions that may appear in your order or other form of acceptance you may submit to us in response to our Quotation. The Company shall supply to Purchaser the equipment and parts (the "Products") in accordance with the design, manufacturing and performance specifications set forth in the Company's Quote and incorporated in the Purchase Contract (including these Terms and Conditions). No representation, promise or warranty of any kind has been made by us except as set forth in the Contract, which conclusively supersedes all prior writings, representations and negotiations with respect thereto. The Company has no obligation to furnish other equipment, materials or services that may be shown in any plans and/or specifications except for those goods actually ordered by you for a project to which the goods ordered herein pertain.

2. <u>PRICES</u>. Unless otherwise noted in the Contract, prices are net Ex-Works our facility and firm for 30 days. <u>Prices do not include</u>: freight; permitting, licensing and/or export fees; labor charges; storage fees; or taxes. If you require the Company's assistance for installation or setup, we will invoice you at standard rates (please contact us for current pricing). Regarding taxes as set forth below, you will either (i) pay to the appropriate authority all applicable taxes and other government charges upon the production, sale, shipment or use of the goods and provide us with proof of payment; or (ii) provide us with a tax exemption certificate from the appropriate taxing authorities. You agree to provide us with written proof of payment of taxes (or exemption therefrom) within ninety (90) calendar days of your receipt of the goods. Time is of the essence.

3. CREDIT AND PAYMENT. Unless otherwise stated in the Contract, payment terms are net 30 days from the date of our invoice(s). Any payment outstanding beyond sixty (60) calendar days from the date of any Company invoice shall be subject to a late payment charge on the overdue balance in the amount of 1.5% per month calculated on the outstanding payment amount (or such lesser amount as is the maximum rate of interest allowed by law). Purchaser shall be responsible for all reasonable costs (including attorney's fees) incurred by the Company while collecting any delinquent balance. For international shipments, payment terms are cash only (unless otherwise approved in writing by us). The Company may decline to deliver except for cash, or stop goods in transit, should we develop any reasonable doubt as to Purchaser's financial responsibility. Pro-rata payments shall become due with partial shipments. If Purchaser is responsible for any delay in shipment: (a) the Company may treat the date of completion of goods as the date of shipment for purposes of invoice and payment, (b) completed goods shall be held at Purchaser's cost and risk, and (c) Purchaser shall be responsible for reasonable storage and insurance expenses, with storage fees accruing at a rate of two percent (2%) of the Purchase Price per month or \$500 per

Project: Golder New Mexico HDS Polymer Page 5 of 7 Proposal #VR19-1975

month, whichever is greater, beginning on the first day of the first calendar month following the date the equipment was scheduled to ship. If retainages are accepted by the Company, the retainage shall be based on an agreed upon percentage of the total invoice amount. Unless otherwise agreed in writing, (a) retainage will not be held for more than 180 calendar days from the date of shipment and (b) no retainage will be imposed for approval of shop drawings, O&M manuals or any other documentation.

4. <u>DELIVERY AND ACCEPTANCE OF PRODUCTS: TRANSFER OF TITLE</u>.

(A) **Products to be Used in the United States.** Seller will deliver Products manufactured and to be used by Purchaser in the United States Ex-Works at our facility ("Shipping Point") Incoterms 2010, or in such other manner as may be mutually agreed to by us and set forth in separate Shipping Terms under the Contract. On all shipments marked "Ex-Works (or EXW) Shipping Point," the Company shall make the Products available to Purchaser at the Company's facility, which shall constitute delivery, and Purchaser shall bear all costs and risks of moving the Products from our facility to Purchaser's destination. Any claim for loss or damages in transit must be entered with the freight carrier and prosecuted by you.

(B) **Products to be Used Outside of the United States.** Seller will deliver all Products to be used by Purchaser outside of the United States "FAS (Free Alongside Ship) Named Port of Shipment" ("Shipping Point") Incoterms 2010, which means the Company will deliver the Products to the designated port, origin point or designated freight forwarder, with Purchaser bearing all costs and risk of loss or damage from the origin point to Purchaser's destination point outside of the United States. Automatic States and use taxes, or to recover such taxes through appropriate procedures and documentation under applicable law.

(C) **Shipping**. Goods will be boxed or crated as Seller may deem proper for protection against normal handling, and extra charge will be made for preservation, waterproofing or similar added protection of goods. Routing and manner of shipment will be at Seller's discretion, and may be insured at Purchaser's expense, value to be stated at order price.

(D) Delivery, Shipment & Installation Dates. Delivery, shipment and installation dates are estimates only, not guarantees, and unless otherwise specified, are calculated from the date of Seller's receipt of complete technical data and approved drawings as such may be necessary to fulfill the Contract. In estimating such dates, no allowance has been made, nor shall we be liable directly or indirectly, for delays of third-party vendors, carriers or delays from labor difficulties, shortages, strikes or stoppages of any sort, fires, accidents, failure or delay in obtaining materials or manufacturing facilities, acts of government affecting us directly or indirectly, bad weather, or any cause beyond our control or causes designated as Acts of God or forced by any court of law, and the estimated delivery date shall be extended accordingly without penalty to the Company. We will not be liable for any damages or penalties whatsoever, whether direct, indirect, special or consequential, liquidated or otherwise, resulting from our failure to perform or delay in performing. Overtime and other expenses incurred to hasten delivery at Purchaser's request shall be added to the quoted prices and charged to and paid for by Purchaser. Shipment of goods ready for delivery can be deferred beyond the date for delivery on with Seller's written consent.

(E) **Delivery Terms**. Seller's obligation to deliver the goods shall be fulfilled when we have delivered the same in good condition to a carrier at the designated Shipping Point. Unless otherwise specified in the Contract, Purchaser shall be charged with and pay for the costs of all transportation, freight, insurance, loading, packaging and handling charges, taxes, duties, fees, storage, and all other charges applicable

VeloDyne - 543 S. Pierce Ave., Louisville, CO 80027 (P) 303.530.3298 www.velodynesystems.com

Date: 6/7/2019

to the goods. Purchaser shall not be responsible for any taxes based on Seller's income.

(F) **Title / Security**. Title to the goods shall be retained by Seller as a vendor's lien until such goods are paid for in full by the Purchaser, even though risk of loss shall be borne by Purchaser as set forth in paragraphs 4(A) and (B) respectively. Purchaser herby grants to Seller, and Seller hereby reserves, a purchase money security interest in and to the goods sold to Purchaser, together with all proceeds thereof, to secure Purchaser's payment and performance. Purchaser agrees upon Seller's request to do all acts and execute all documents reasonably necessary to assist Purchaser's perfection and maintenance of any such security title and right of possession including, but not limited to, executing and filing documents with the appropriate governmental agency.

(G) Cancellation and Returned Equipment. Orders may be canceled or amended only with our written consent, and must be returned within 30 days of Seller's written authorization at Purchaser's cost. If Purchaser returns the goods in the manner required under the previous sentence, and if the returned goods are (i) in substantially the same condition that existed on the date the Seller delivered the Products to you, undamaged; and (ii) not more than 12 months after the original Invoice date; the returned goods will, subject to the applicable handling charge, be accepted by the Seller for return. Used or discontinued goods or parts or equipment specially manufactured will not be accepted for credit unless specifically agreed to by the Seller in our sole discretion. Purchaser's sole remedy for returns will be a credit for the purchase price less any handling charges. Returned goods are subject to a minimum of 20% restocking and handling charge. Returns found to be free of material and workmanship defects will be held for 30 days and if Purchaser does not provide the Seller with repair or return instructions, then we will scrap or resell the goods. Purchaser will be charged for placing returned goods in saleable condition, any sales expenses then incurred by us, plus a restocking charge and any out-going and in-coming transportation costs which the Company pays.

(H) Acceptance by Purchaser. Purchaser shall conduct any incoming inspection tests on delivered Products within 10 days of delivery, and if delivery is made in multiple shipments, then Purchaser shall conduct incoming inspections of Products within 10 days of receipt of each delivery. In the event of a shortage, damage or discrepancy in any shipment, Purchaser shall promptly give notice to Seller in writing (at such address designated by Seller for such purpose) but in no event later than 30 days of the subject delivery, detailing the exact nature of the shortage, damage or discrepancy and provide such supporting documentation as Seller shall deem necessary and appropriate (i.e., photos, insurance reports, etc.). If such evidence indicates, in Seller's reasonable judgment, that such shortage, damage or discrepancy existed at the time of delivery of the goods to the carrier, Seller will promptly deliver additional or substitute goods to Purchaser; provided, however, that Seller may, in its sole and absolute discretion, require Purchaser to return all damaged goods to the Company prior to delivery of substitute goods. If Purchaser shall fail to timely give Seller such written notice, the goods shall be deemed to conform to the requirements of the Contract, and Purchaser shall be deemed to have accepted the goods and shall pay for the goods in accordance therewith.

(I) **Purchaser's Specifications**. Purchaser shall be solely responsible for ensuring that all specifications, drawings, information, advice, recommendations or requests provided to the Company by Purchaser or any of its agents are accurate and suitable for Purchaser's purposes. The Company's examination or consideration of any such specifications, drawings, information, advice, recommendations or requests shall not result in any liability on the part of the Company.

5. **TERMINATION.** The Company shall have the right to cancel for default hereunder all or any part of Purchaser's Order. This right of cancellation is in addition to and not in lieu of any other remedies that the Company may have in law or equity.

6. TAXES & IMPORT- EXPORT CHARGES.

Project: Golder New Mexico HDS Polymer Page 6 of 7 Proposal #VR19-1975

(A) Purchaser's Responsibility for Taxes, Reports and Withholding. Seller shall be responsible for reporting and paying all state and federal income taxes associated with sales of equipment and products to Purchaser under this Contract. However, Purchaser shall be responsible for all liabilities or claims for taxes that any taxing authority having jurisdiction over this Contract may assess or levy relating to the Products or this Contract. Purchaser shall comply with all applicable tax requirements, file all registrations (including all Transaction and Sales Tax registrations) and reports, and take all actions necessary to make its tax payments (or secure exemptions from or reductions in payments of same). Within 90 days from the date of any payment by Purchaser under Seller's Invoice, Purchaser shall provide Seller with tax receipts (or other proof of payment or written evidence of tax exemption) for all taxes to be paid by Purchaser under this Contract.

(B) **Import and Export Charges.** Purchaser shall be solely responsible for all import and export charges, licenses, permits ad any other lawfully payable charge related to the import or export of Products under this Contract.

(C) **Export Controls & Related Regulations.** Purchaser represents and warrants that it is not designated on, or associated with, any party designated on any of the U.S. government restricted parties lists, including without limitation, the U.S. Commerce Department Bureau of Industry and Security ("BIS") Denied Persons List; Entity List or Unverified List; the U.S. Treasury Department Office of Foreign Assets Control ("OFAC") Specially Designated Nationals and Blocked Persons List; or the U.S. State Department Directorate of Defense Trade Controls ("DDTC") Debarred Parties List. Purchaser shall comply with all applicable U.S. economic sanctions and export control laws and regulations, including without limitation, the regulations administered by the OFAC, the Export Administration Regulations administered by BIS, and the International Traffic in Arms Regulations administered by DDTC. Seller may terminate this Contract and discontinue any ongoing supply to or business with Purchaser immediately, without notice and without liability, upon Seller becoming aware that Purchaser is named on any restricted party list.

7. WARRANTY; LIMITED REMEDIES.

(A) **Seller Warranties.** Seller shall provide the standard warranties provided in the form Warranty Agreement (a copy of which is attached and incorporated by reference into our Contract).

(B) **Assignment.** Seller assigns to Purchaser all warranties given by manufacturers and vendors of Seller as such relate to the Products (equipment or components). These warranties are not exclusive.

(C) Limitation on Damages. Other than as set forth in Paragraph 9 (Purchaser Indemnification) and any breaches of Paragraph 11 below (Confidentiality), each party's cumulative liability for damages to the other party for any cause whatsoever, and regardless of the form of action, whether in contract or in tort, including but not limited to, negligence, shall be limited to the total Contract price of the goods sold hereunder, plus or minus, as applicable, the amounts of all unpaid accounts payable and receivable between the parties. In no event shall Seller's liability exceed the limits of the Company's insurance coverage.

8. <u>SOLE REMEDY</u>. The sole and exclusive remedy for breach of any non-warranty obligation of the Company and the sole remedy for the Company's liability of any kind (including negligence) with respect to the goods and services provided to Purchaser shall be to use all commercially reasonable efforts to promptly cure such breach. Purchaser must prosecute any claim for a cause of action arising hereunder with one year from the date on which the facts that gave rise to the cause of action first occurred subject to the terms set forth in Section 14 (Governing Law and Resolution of Disputes).

9. **INDEMNIFICATION.** Purchaser shall hold harmless, indemnify and defend the Company (at the Company's request) for any and all damages, liabilities, costs and expenses (including the costs of any dispute resolution, including but not limited to, attorneys' fees and any other costs and expenses), fines, or losses in connection with any threatened or actual claims, actions, demands, investigations, suits, including but not limited to, claims or suits by third parties, arising out

Date: 6/7/2019

of any of the following: (a) Purchaser's negligent or willful acts, or those of its employees and/or agents, (b) such goods being repaired or altered by persons other than Seller (unless expressly authorized in writing by the Seller), (c) any claim of patent infringement arising out of the manufacture by Seller of goods created in accordance with a design or specifications furnished to Seller by Purchaser, (d) in the event that Purchaser modifies, or combines with any non-Seller goods, any of the goods purchased from Seller, and such modification or combination results in the actual or alleged infringement of any intellectual property rights of any third party, (e) from goods produced by Seller according to Purchaser's specifications, (f) any violations of export control laws by Purchaser, (g) any violations of state or federal tax laws by Purchaser, or (h) Purchaser's breach of any provisions of these Terms and Conditions.

SELLER'S INTELLECTUAL PROPERTY INDEMNIFICATION. 10. Seller will defend, indemnify and hold harmless Purchaser from and against any and all loss, damage, cost or expense arising as a result of any claim that the goods sold hereunder infringe any third party U.S. patent, copyright, trademark, trade secret or intellectual property right. Otherwise, Seller will not be liable for any claim of infringement. If you notify us promptly of any such claim of infringement and, if we so request, authorize us to defend or settle any suit or controversy involving such claim, we will indemnify you against the reasonable expenses of any such suit and will satisfy any judgment or settlement in which we acquiesce, but only to an amount not exceeding the price paid for the allegedly infringing goods. If an injunction is issued against the further use of allegedly infringing goods, the Company shall have the option of procuring for you the right to use the goods, or replacing them with non-infringing goods, or modifying them so that they become non-infringing or of removing them and refunding the purchase price. The foregoing states the Company's entire and exclusive liability with respect to a claim of infringement, and we will not be liable for any damages whatsoever suffered by reason of any infringement claimed, except as provided herein.

11. <u>CONFIDENTIALITY</u>. "Confidential Information" means any of the Company's business information, specifications and all related writings, drawings, designs, software applications and similar works or any other information disclosed by the Company that are disclosed as "Confidential" or proprietary. All Confidential Information shall be the exclusive property of the Company and we retain all right, title and interest in and to the same. Purchaser agrees to use Confidential Information to disclose or provide any Confidential Information to any third party and to take all necessary measures to prevent any such disclosure by its employees, agents, contractors or consultants. Upon request of the Company or completion of the Company and provide certification of such return.

12. **TOOLING; SPECIAL JIGS, FIXTURES & PATTERNS**. Charges made for tools, jigs, fixtures, patterns and equipment made or acquired by the Company in connection with your Order and utilized in manufacturing will be considered the exclusive property of the Company, without credit to Purchaser.

13. **INSPECTION, RECORDS, AUDITS & PROPRIETARY DATA.** Inspection of goods in our facility by Purchaser and/or its representative will be permitted, provided that (a) Purchaser gives reasonable written notice of its desire to inspect the goods, and (b) the inspection does not unduly interfere with the Company's production work flow. Neither Purchaser nor any of Purchaser's representatives shall have any right to examine or audit the Company's cost accounts, books or records of any kind, or be entitled to, or have control over, any engineering or production prints, drawings or technical data which the Company, in our sole discretion, may consider in whole or in part to be proprietary to our business.

14. GOVERNING LAW & DISPUTE RESOLUTION.

(A) **Governing Law.** The Contract and these Terms and Conditions are governed by and interpreted under the laws of the State of Colorado, without regard to its choice of law rules unless the matters in dispute come within the scope of Article 2 of the Uniform Commercial Code (UCC-Sales) prepared under the joint sponsorship of The American Law Institute and the National Conference of Commissioners on Uniform State Laws, in which event the dispute shall be governed by and interpreted under the referenced Code in effect on the date of this Contract.

(B) **Dispute Resolution.** Except for any action where the sole relief sought is an injunction, any controversy or claim arising out of or relating to the Contract and these Terms and Conditions, or the making, performance or interpretation hereof, and the dispute cannot be settled by direct negotiations, either Party may initiate mediation. If the parties fail to settle the dispute within 30 days of notice of mediation, either party may initiate binding arbitration under this paragraph. The place of arbitration shall be in the Boulder-Denver Metro-Area of Colorado, and shall be conducted by one arbitrator in accordance with the Commercial Arbitration Rules of the American Arbitration Association. Judgment upon any binding arbitration award may be entered in any court having jurisdiction thereof.

15. GENERAL PROVISIONS.

(A) **Prior Agreements.** This Contract comprises the complete and exclusive agreement between the parties regarding the subject matter of this Contract, and supersedes all oral and written communications, negotiations, representations or agreements made or entered into before the Effective Date.

(B) **Amendments.** No amendment to this Contract is effective unless made in writing and signed by authorized representatives of Purchaser and Seller. Specifications, drawings, price lists and documents of a technical nature prepared by Seller and submitted to Purchaser to describe the equipment and parts being purchased hereunder automatically become part of this Contract.

(C) **Survival.** All provisions set forth herein regarding warranty, confidential information, indemnification, liability and limits thereon, and any other provisions that survive on their terms including all provisions relating to tax, import / export, inspection, dispute resolution and governing laws, and all causes of action which arose prior to completion or termination of this Contract shall survive indefinitely until, by their respective terms, they are no longer operative.

(D) **Conflicts.** If a conflict exists between these Terms and Conditions and any other writings connected with this Contract, these Terms and Conditions shall prevail with respect to such conflict. In the event that any provisions of these Terms and Conditions is held to be illegal, invalid or unenforceable under the present or future law, rule or regulation, such provision shall be deemed stricken from these Terms and Conditions, but such illegality, invalidity or unenforceability shall not invalidate any of the other provisions of these Terms and Conditions.

September 27, 2018

Ms. Paige Pruisner Golder 44 Union Blvd. – Suite 300 Lakewood, CO 80228 Phone: 303-980-0540

RE: INQ #2100 NM LIME SLAKING SYSTEM

Dear Ms. Pruisner,

Thank you for contacting us about this project and providing your process data to allow us to size this system and provide budget pricing for your feasibility study.

Proposed equipment descriptions and scope limits are as follows:

LIME SLAKING SYSTEM OVERVIEW:

1. Lime system shall be comprised of 1 field erected bolted, skirted, silo that would be located outdoors, and be complete with dust filter, fill pipe, interior lighting, heat, and ventilation, internal access to the feeder level platform, and a local control panel.

2. System shall utilize a vibrating bin activator mounted on the silo cone discharging to a metering screw to the slaker pre-mixer inlet. Lime slurry flows out of the slaker through a vibrating grit screen and through an equipment support floor to the 2,500 gallon slurry holding tank located at the grade level of the skirted silo.

3. Internal silo components shall be provided loose for field installation on and inside the skirted silo. Interconnecting piping and wiring shall be provided by others on site.

4. Scope limits would be the inlet connection on the 4" lime fill pipe. On the slurry discharge side, Vulcan scope ends at the 2 pump outlet flanges on the exterior of the skirted silo.

A. EQUIPMENT PRICING: (USD\$)

BUDGET PRICING:

Lime Slaking System: Field Erected by Others -DV-50 Horizontal Detention Slaking System – w/10,000 CF MT SILO \$985,000

Estimated Freight Costs: 1. Estimated Lump Sum Freight costs, FCA Origin	EST	\$45,000
 B. Commercial Rates of Payment: (Daily Rates \$USD) 1. Field erection advisor 2. Electrical engineer for verification of proper wiring 3. Commissioning of equipment ADDL DAYS 4. Operator training 	STD \$1800 \$2000 \$2000 \$2000	

C. Terms of Payment

-20% with order

-20% on transmittal of approval drawings
-20% on release for purchase for major material purchases
-20% on start of shop fabrication for silo and slaker
-20% on notification of readiness to ship major components

D. Proposed warranty is 12 months from startup or 18 months from shipment (as requested), whichever occurs first.

E. Budget pricing valid for 10 days from submission date.

NOTES:

1. Shipping costs to site location have not been included and have been listed as an additional item.

2. Equipment startup services for a total of 10 days on site have not been included.

3. Spare parts lists with costs shall be provided as part of the equipment submittal for approval prior to fabrication.

Thank you for your interest in our products and systems, and we look forward to working with you on this project.

Do not hesitate to contact me if you have questions or need additional information.

Sincerely, Michael D. Mohle Louisville Dryer Company Ph: 712-461-1332 www.vulcanironworksonline.com Your solution provider for kilns, dryers, ball mills and other processing equipment!

VULCAN IRON WORKS EQUIPMENT DIVISION

DATE: 9-27-19

- TO: GOLDER ASSOCIATES Quote #2100
- RE: LIME SLAKING SYSTEM, Rev. 0

DESIGN CRITERIA: Code NBC 2005

- A. Seismic 2A; Importance Factor:
- B. Wind 100 MPH; Exposure:
- C. Silo Pressure/Vacuum Design:
 - 1. Pressure: 4 oz.
 - 2. Vacuum: .4 oz.

LEAD TIME:

SUBMITTAL DRAWINGS AND DOCUMENTATION: 8-10 weeks ARO FOR SHIPMENT AFTER RELEASE TO PROCEED WITH FABRICATION: 24-28 weeks ARAD

NOTE: Equipment described below is for supply of 1 field assembled lime slaking system.

EQUIPMENT DESCRIPTION:

- A1. Storage Silo: 1
 - 1. 10,000 CF field bolted and gasketed storage silo; 55 PCF material volume calculations, 80 PCF for structural calculations
 - 2. 20' diameter, 60 Deg cone, skirted
 - 3. 32' storage cylinder height, 70' approx. eave height
 - 4. 7' flanged opening for bin activator
 - 5. 24" manway with pressure/vacuum relief valve
 - 6. 4" flange for lime inlet fill pipe with elbow and target box
 - 7. HI and LO bin level silo penetrations with paddle guards for horizontal mounted units, 1-1/4" couplings
 - a. Roof mounted flange for Radar level indicator transducer
 - 8. Dust Filter Flange on silo roof
 - 9. Storage silo shall be constructed of A-36 carbon steel.
 - 10. Silo provided as factory coated carbon steel silo, bolted and gasketed construction, materials on site, for field assembly and interior equipment installation by others.
 - 11. Interior and exterior silo and skirt panels provided with factory applied epoxy powder coating.
- A2. Silo Support Structure:
 - 1. Skirted with interior platform at the feeder level, internal spiral stair access, HDG coated carbon steel.
 - a. Double door opening at grade level.
 - 2. Height of discharge above floor approximately 12 feet (subject to change), to allow access to lime screw to slaker inlet chute and bin activator.
- B. Silo Access:
 - 1. HDG steel ladder cage from grade to silo roof with rest platforms.

- 2. 2 rail roof and platform handrail provided as galvanized steel pipe, 1.5" diameter Schedule 40, with bolted pipe connections.
- 3. Roof toeplate provided as painted carbon steel.
- 4. Access components field mounted during field erection of silo
- C. Bin Activator: 1
 - 1. 7' diameter with carbon steel mounting ring
 - 2. 10" diameter flanged outlet
 - 3. 3 HP, 460/3/60 vibrator motor
 - 4. Field mounted and wired
- D. Silo Knife Gate: 1
 - 1. 10" diameter, manual chainwheel operated, open and closed limit switches
 - 2. Cast Iron body with SS blade
 - 3. Packing: PTFE
 - 4. Field mounted
 - 5. Flexible connection provided between knife gates and feeder inlets
- E1. Silo Point Level Indicators: 2 (High and Low level)
 - 1. Rotating paddle type with SS paddles
 - 2. NEMA 4X exterior housing, SPDT switch
 - 3. 120/1/60 powered
 - 4. Field mounted and wired by installation contractor
- E2. Silo Continuous Level Indicator: 1
 - 1. Roof mounted radar level indicator (Siemens/Milltronics)
 - 2. Transducer field installed, with 30 meter range
 - a. 24VDC 2 wire loop powered
 - 3. E-Z Aimer kit provided
 - 4. Indicator/controller shipped loose for field mounting and wiring
- F. Silo Fill System:
 - 1. 4", Sch. 40 carbon steel pipe coated to match silo finish color
 - 2. Pipe sections connected with compression couplings with connecting straps
 - 3. Fill elbow provided as 90 degree cast iron Vortice Ell or wide-sweep
 - 4. Truck coupling, limit switch, and end cap provided on pipe end
 - 5. Fill pipe assembly field installed
- G. Dust Filter: 1
 - 1. Roof mounted on silo flange
 - 2. Welded CS housing painted to match silo
 - 3. 1200 CFM pulse-jet bag filter, with 250 Sq. Ft. minimum cloth area
 - 4. 3 HP 460/3/60 fan motor 3450 RPM
 - 5. Ships loose for field attachment and wiring
- H. Fill Station Panel: 1
 - 1. NEMA 4X enclosure
 - 2. Panel complete with indicating lights, alarm horn, and H-O-A switch, interlocked to silo dust collector and fan
 - 3. Panel ships loose for field mounting and wiring by others
- I. Lime Feed Screw: 1
 - 1. Volumetric screw conveyor, SS contact parts, 6" diameter tube with 4" screw
 - 2. 1.5 HP AC motor 460/3/60, inverter duty
 - 3. Sized for transfer rate of up to 5,000 PPH (3/4" minus @ 55 pcf)
 - 4. Fabricated SS feed chute provided on feeder outlet to slaker
 - 5. Feeder shipped loose for field assembly and installation on site

- J. Detention Lime Slaker: 1
 - 1. Vulcan DV-50 detention type lime slaker, carbon steel construction
 - a. Slaker max output 50 GPM of 20-25% solids hydrated lime slurry
 - 2. Sized for feed rate of 500-5,000 PPH
 - 3. Slaker provided with 5 HP 460/3/60 motor, belt driven
 - 4. Slaker provided with draft inducer with fan, factory mounted
 - 5. Makeup water piping (galvanized) with the following plumbing components and valves factory mounted:
 - a. 1 Makeup water ON-OFF solenoid valve
 - b. 1 Pneumatic water control segmented ball valve
 - c. 1 Magnetic flow meter/transmitter with local display
 - d. 1 Aspirator spray ON-OFF valve
 - e. 1 Manual ball valve for water inlet shutoff
 - f. 1 Direct reading temperature gauge with 2 switch control
 - 1. 1 Temperature transmitter with 4-20mA out to PLC
 - g. 1 Solenoid for emergency/high-temp water feed
 - 6. Slaker shall be factory welded and coated (exterior only), with valves and piping factory mounted and wired. Field installed in silo skirt area on 2nd equipment level platform of skirted silo
 - 7. Slaker shall be provided with premixer for warming of incoming water prior to injection into the slaker reactor. Slaker body shall be insulated and provided with an exterior 16 gauge shell, to protect the insulation material.
- K. Grit Removal Equipment: 1
 - 1. 30" diameter vibrating screen unit, SS cloth, 16 mesh
 - 2. Screen unit provided with carbon steel housing, base, and cover
 - 3. Unit provided with 0.5 HP, 460/3/60 motor
 - 4. Flexible chutes provided on the screen inlet and outlet
 - 5. Field mounted and wired in silo skirted area on second level
- L. Grit Screw: 1
 - 1. 6" diameter carbon steel helicoid full-pitch, carbon steel
 - 2. Length 10' nominal, with inlet and outlet flanges
 - 3. Motor: 1/2 HP, 460/3/60
 - 4. Field installed
- M. Slurry Storage Tank: 1
 - 1. 2,500 gallon capacity, 1/4" thick A-36 carbon steel, 8' diameter, 6' tall with flat bottom and flat top
 - a. Tank design factory welded, exterior coated with epoxy
 - 2. All tank penetrations, mounting brackets, flanges, and couplings factory completed based on system design requirements
 - a. Tank overflow and drain piping shall be provided as Sch. 40 threaded carbon steel, with manual gate valve at tank bottom for draining, factory installed
 - 3. Tank provided with hinged 20" roof mounted access/inspection manway
 - 4. Tank provided with 2 outlet flanges
- N. Slurry Tank Level Indication: 1
 - 1. Ultrasonic type, top tank mount, 8m transducer
 - 2. 4-20 mA output to PLC
 - 3. 2 Wire loop powered
 - 4. Factory mounted and wired on tank top

- O. Slurry Tank Mixer: 1
 - 1. 1.5 HP, TEFC, 460/3/60 motor
 - 2. 316 SS shaft and single impeller, 350 RPM
 - 3. Factory mounted and wired, with shaft/impeller removed for shipment, requiring reinstallation on site by installation contractor
- P. Slurry Tank Dilution Water Plumbing Piping and Components: SEE P&ID FOR DETAILS
 - 1. Water inlet piping:
 - a. Galvanized threaded water piping, Sch. 40
 - b. 1 Bronze pressure reducing valve with strainer
 - c. 1 Pressure indicating valve
 - d. 1 Pressure switch
 - e. 1 Local reading flow meter/transmitter
 - f. 1 Solenoid water feed valve
 - g. 1 globe water valve for water inlet control
 - 2. Slurry Piping: SEE P&ID FOR REQUIREMENTS
 - a. Schedule 40 steel
 - b. Manual ball valves for water flush
 - c. Manual rubber lined pinch valves for on/off control
- Q. Slurry Pumps: 2
 - 1. Horizontal Centrifugal, Cast-iron, rubber lined construction, constant speed
 - a. Overhead belt-drive with guard
 - 2. Warman 1.5/1 BAH, or equal
 - 3. Capacity: 60 GPM @ 80' TDH
 - a. 10HP, 1750 RPM, TEFC motors
 - 4. Seals: Packed gland seals, water flushed
 - 5. Factory skid mounted, for field mounting in grade level of skirted silo
- R. Wiring:
 - 1. Conduit and wiring field installed and mounted on silo for integral components (provided an installed by others)
 - a. Lime Slaker shall be factory wired to local junction box
 - 2. Internal and External Lighting: By others
- S. System Local Controls: (Feed/Slaking area)
 - 1. NEMA 4X-SS enclosure
 - 2. Terminal strips provided for connection to MCC and DCS
 - a. VFD by others in MCC
 - 3. External mounted 3 phase to single phase transformer not included
 - 4. PLC not included
 - 5. Plain language operating description provided to allow PLC programming (programming by others)
 - 6. Control panel shipped loose for mounting on slaker work level platform
 - 7. Interconnecting wiring between panel and devices/JBs by others
- T. Paint and Coatings:
 - 1. SP-10 prep for silo shell exterior and equipment area interior
 - 2. Silo:
 - a. Interior of silo storage area: Epoxy power coating, 4 mils
 - b. Skirt area and Silo Exterior: 2 coat powder coat system epoxy/polyester
 - 1. 6 mils minimum DFT
 - 3. Paint colors to be determined by customer/engineer
 - 4. Touch up paint provided

- 5. Purchased products shall be provided with manufacturer's standard paint
- 6. Field erected silo provided with factory applied coating
- U. Environmental Components:

Silo interior provided with the following components loose for field mounting and wiring by others:

- 1. 4 x 10 kW 575/3/60 heaters
- 2. 8 x 75 W 120/1/60 HPS vapor tight light fixtures
- 3. 1 x 24" square ventilation fan, 300 CFM, 120/1/60
- 4. Double man door shall be provided for installation at grade level of silo, included as part of the silo assembly
- 5. Interior skirt insulation has not been included
- V. Preparation for Shipment:
 - 1. Controls shall be factory tested prior to shipment, panels ship loose
- W. Startup Service:
 - 1. 1 man, 2 trips, 5 days per trip on site for startup and commissioning recommended
 - 2. Field erection/assembly advisor: 1 man 10 days, 2 trips **ADDITIONAL COST**
- X. Spares:
 - 1. None Included
 - 2. Spare parts list provided in submittal and O&M electronic manual
- Y. Special Freight Information: FCA Shipping point (various), No Freight Allowed FCA Locations:
 - 1. Parsons, KS
 - 2. Louisville, KY
- Z. O&M Documentation:
 - 1. 3 CD electronic copies shall be provided in PDF format, English language

ITEMS AND SERVICES NOT INCLUDED IN THIS PROPOSAL:

- 1. Freight costs, unloading at site, erection, or installation
- 2. Hook up/supply of utilities (water, power, air)
- 3. Foundation design or supply, or anchor bolts
- 4. Chemicals
- 5. Slaker water heater or water pressure supply system
- 6. Skirt insulation
- 7. Silo aeration system air supply system

Equipment Proposal - All equipment is sold subject to the terms and conditions stated on Attachment #1 (below) which by this reference is incorporated as part of this proposal.

Louisville Dryer Company Page 8

Attachment #1

LOUISVILLE DRYER COMPANY

DBA: VULCAN IRONWORKS

PROJECTS and PARTS ORDERS GENERAL LIMITATION OF LIABILITY

Except to the extent that Vulcan Ironworks is entitled to be indemnified under a policy of insurance effected pursuant to the requirements of the contract, the liability of Vulcan for any defect in the goods supplied or work performed is limited to the repair or replacement, at Vulcan's option, of any nonconforming goods or work resulting from defects in material or workmanship under normal use and service which are reported within 12 months after the date of the contract covering such goods or work.

THE REMEDY OF REPAIR OR REPLACEMENT OF THE NONCONFORMING GOODS OR WORK SHALL BE THE SOLE AND EXCLUSIVE REMEDY AVAILABLE TO THE BUYER OR ANY OTHER PERSON. IN THE EVENT THAT REPAIR OR REPLACEMENT IS NOT ACHIEVED OR OTHERWISE IS AN INEFFECTIVE REMEDY, THE BUYER'S SOLE AND EXCLUSIVE ADDITIONAL REMEDY IS THE RIGHT TO RECOVER AN AMOUNT NOT TO EXCEED THE AMOUNT PAID TO FOR THE NONCONFORMING GOODS OR WORK. EXCEPT FOR SUCH REPAIR, REPLACEMENT, OR REFUND, VULCAN SHALL NOT BE LIABLE FOR ANY LOSS, INJURY, EXPENSE, OR DAMAGE, WHETHER DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, PUNITIVE OR OTHERWISE, RESULTING FROM THE GOODS OR WORK OR IKD'S ACTION UNDER THIS AGREEMENT, WHETHER A CLAIM FOR SUCH DAMAGES IS BASED UPON WARRANTY, CONTRACT, NEGLIGENCE, OR ANY OTHER LEGAL OR EQUITABLE THEORY.

All completion or start-up dates specified in the contract are estimates only and are not guaranteed. VULCAN SHALL NOT BE LIABLE FOR ANY LOSSES OR DAMAGES (WHETHER DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, PUNITIVE OR OTHERWISE) RESULTING FROM ANY DELAYS IN COMPLETION OF THE FIELD SERVICE PROJECT OR START-UP OF THE EQUIPMENT.

These limitations of liability apply to all liability whatsoever arising under, or out of, or in the course of this contract or the performance thereof and continue to apply notwithstanding rescission, repudiation or termination of the contract for any reason, whether deliberate, unintentional or by operation of law.

19-39973

May 09, 2019

Entered by: Steve Blake

15165 W. 44th Avenue Golden, CO 80403 303-233-9255 FAX 303-233-9031

PUMP QUOTATION

To:Paige PruisnerFax:303.985.2080Phone:303.980.0540Email:Paige_Pruisner@golder.com

GOLDER ASSOCIATES INCORPORAT 44 UNION BLVD SUITE 300 LAKEWOOD, CO 80228

We are pleased to offer the following quote for your consideration.

QTY: 1, DSS-S2-DDA-7.5-16-PEF-C-BNNR-P5050W, GRUNDFOS DUPLEX METERING SKID

INCLUDES: QTY-2 MODEL DDA 7.5-16 AR-PVC/E/C-F-31U7U7 PUMPS W/ STANDARD CHECK VALVES CONTROL INPUT CABLE RELAY OUTPUT CABLE HOA TYPE PANEL 1/2" PVC PIPE VALVES CALIBRATION COLUMN DUPLEX FLOOR MOUNT SKID

CONDITIONS OF SERVICE FLUID: COAGULANT FLOW RATE: 0.1 GPH TO 2 GPH DISCHARGE:10 PSI VISCOSITY: 12 CP NO 304SS MATERIAL NO OTHER CONDITIONS OF SERVICE GIVEN OR APPLY

CLARIFICATIONS AND EXCEPTIONS

- 1. DOES NOT INCLUDE PULSATION DAMPENER, EBOX OR ANALOG OUTPUT CABLE
- 2. CUSTOMER TO VERIFY THAT THE QUOTED DUPLEX PUMP METERING SKID SPECIFICATIONS MEETS THEIR SYSTEM REQUIREMENTS

SHIPMENT: 2-4 WEEKS ARO, FOB FACTORY, PLUS TRANSIT TIME

QuoteTotal:

\$7,053.00

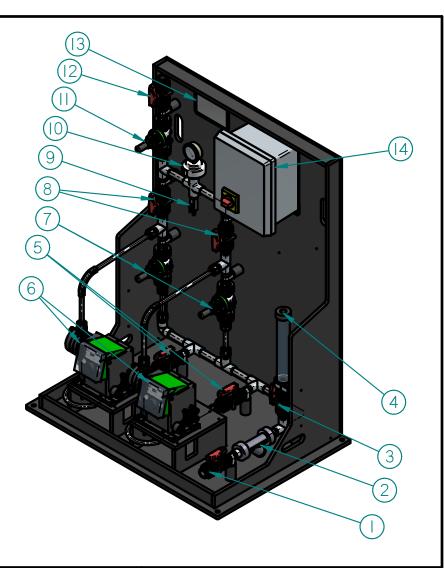
Sincerely, David Wellington / Steve Blake

Denver Industrial Pumps, Inc. has a complete service shop for pump repair, rebuild, modifications, and custom packaged units. Our field service technicians offer on-site pump removal, installation, repair, alignment services, and maintenance contracts. If we can be of further assistance please contact us. Please be advised, pricing good for 30 days of quotation and standard Terms and Conditions of sales are incorporated by reference posted at www.denverpumps.com All equipment quoted FOB factory unless otherwise stated.

FOB factory means freight from the origin will be added to invoice and purchaser takes title to equipment at shipping point. Availability subject to prior sale.

Taxes will be added to your invoice unless a current tax exempt certificate is supplied.

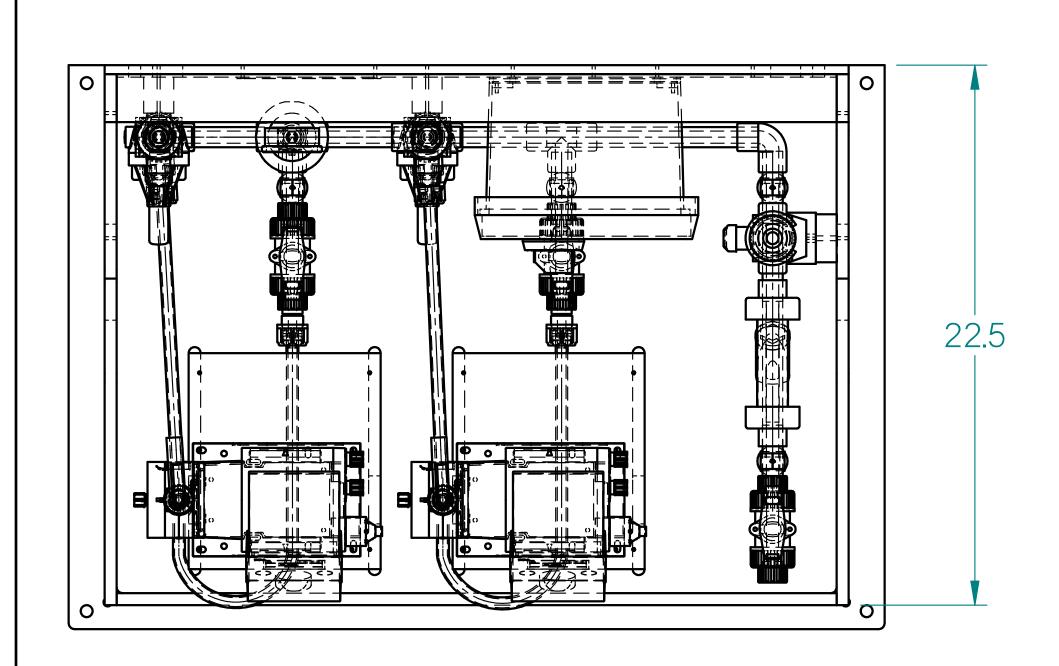
For all orders totaling \$50,000.00 or more progress payments may be required.

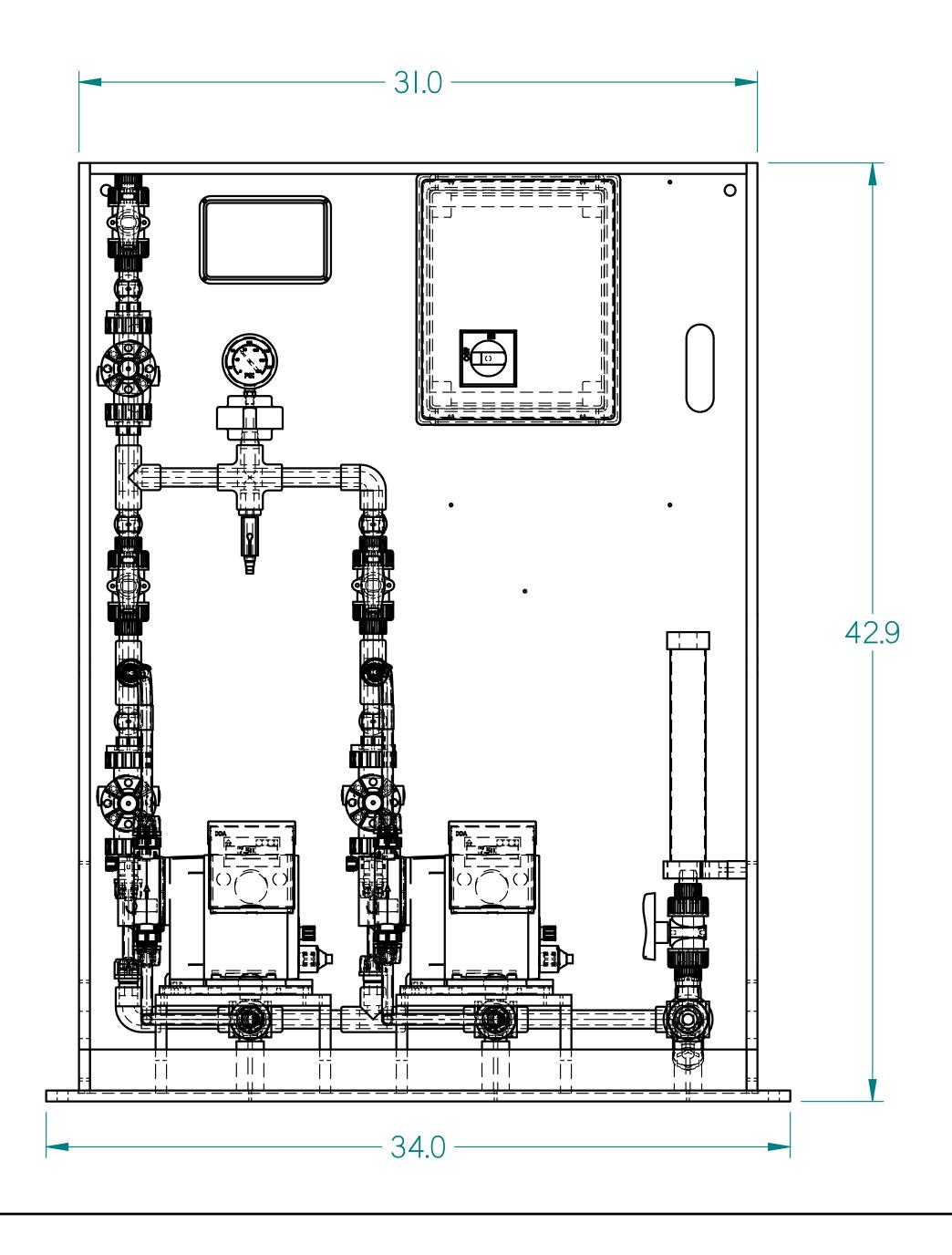

Equipment left over 90 days are subject to scrap/disposal.

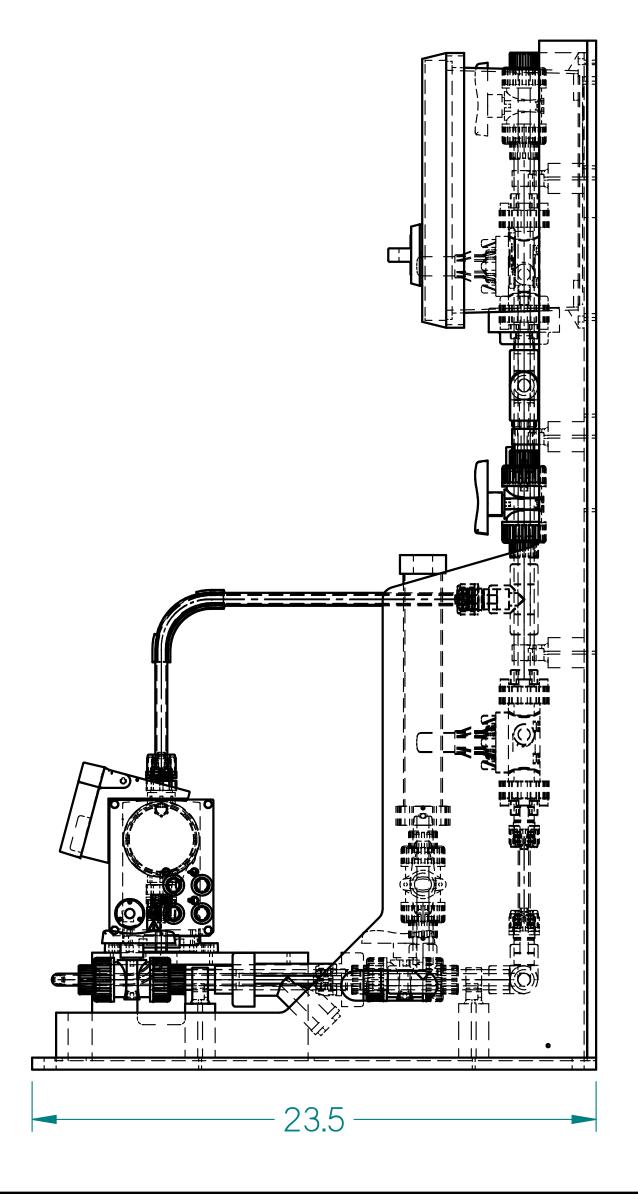
APPRO\/FD·

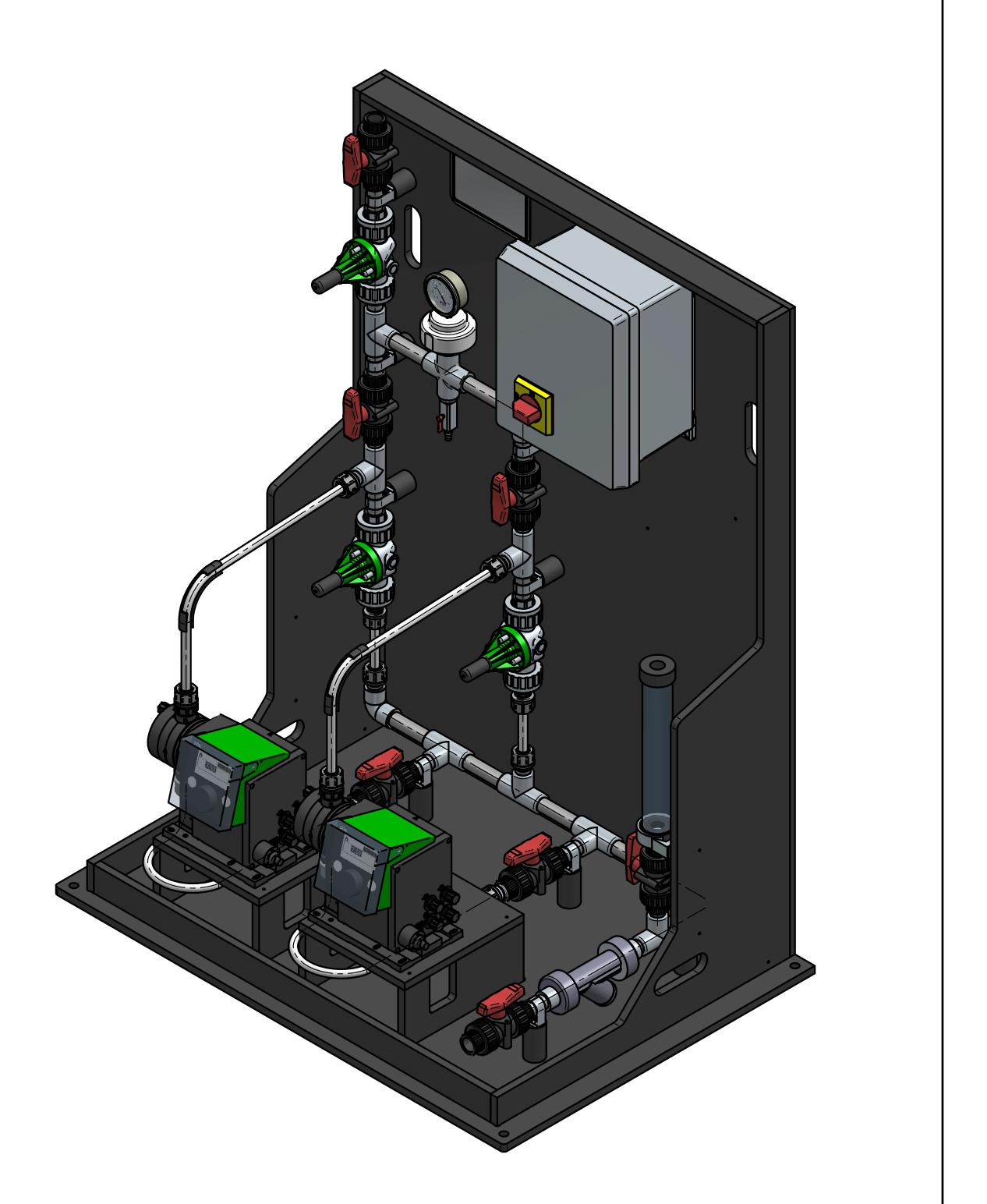
If not sending a hard copy Purchase Order, we require that you sign and return a copy of this quote when placing your order. Please verify item quantities, shipping address and shipping method.

Signature	Date
Purchase Order No	Attached: Yes No
Shipping/Special Instructions:	

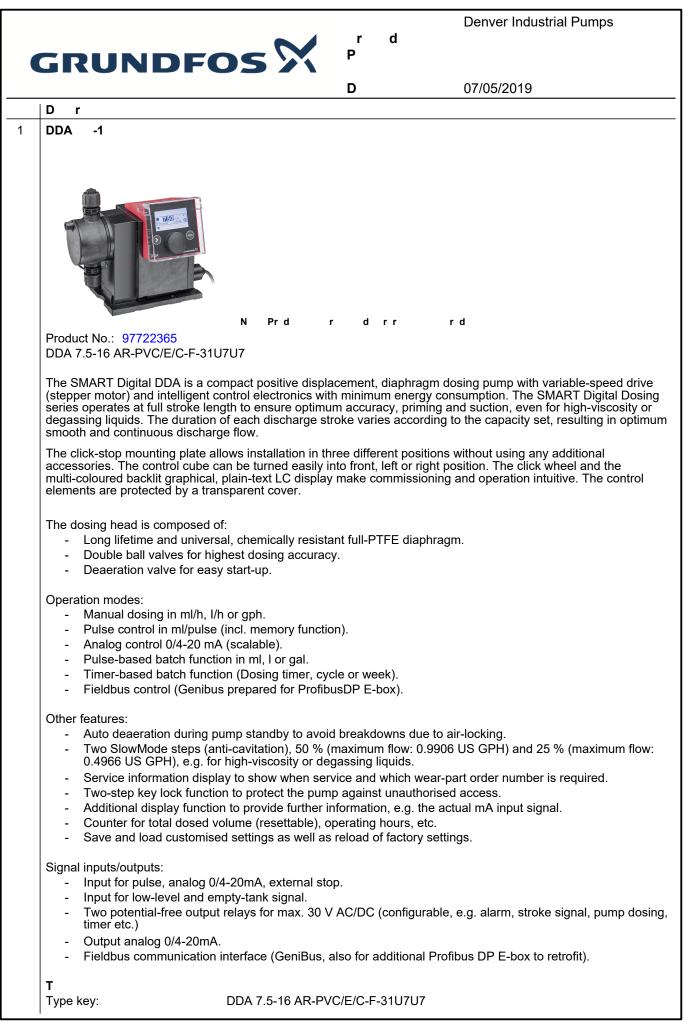

POS.	Description
	FNW Inlet Isolation Valve
2	Spears Y-Strainer
3	FNW Calibration Column Isolation Valve
4	Primary Fluids Calibration Column
5	FNW Dosing Pump Inlet Isolation Valve
6	Grundfos Dosing Pump
7	Primary Fluids Pressure Relief Valve
8	FNW Dosing Pump Outlet Isolation Valve
9	Spears Sample Valve/Bleed Valve
10	Wika Pressure Gauge with Blacoh Fluid
	Control Diaphragm Gauge Guard
	Primary Fluids Back Pressure Valve
12	FNW Discharge Isolation Valve
13	Grundfos Nameplate
4	Junction Box/Control Panel (Optional)

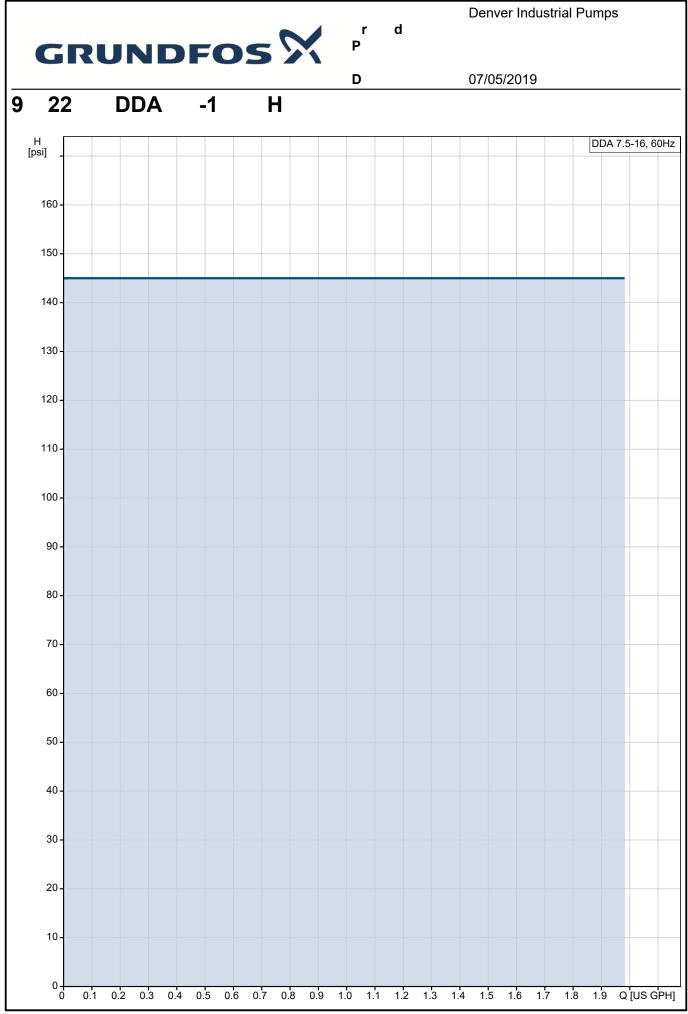



For Reference Only. Not For Construction.


GRUNDFOS [®]
FRESNO, CALIFORNIA 93727 USA
As this is the property of GRUNDFOS a/s it must not be passed on to any person not authorized by GRUNDFOS or be copied or otherwise utilized by anybody without GRUNDFOS' expressed written permission.

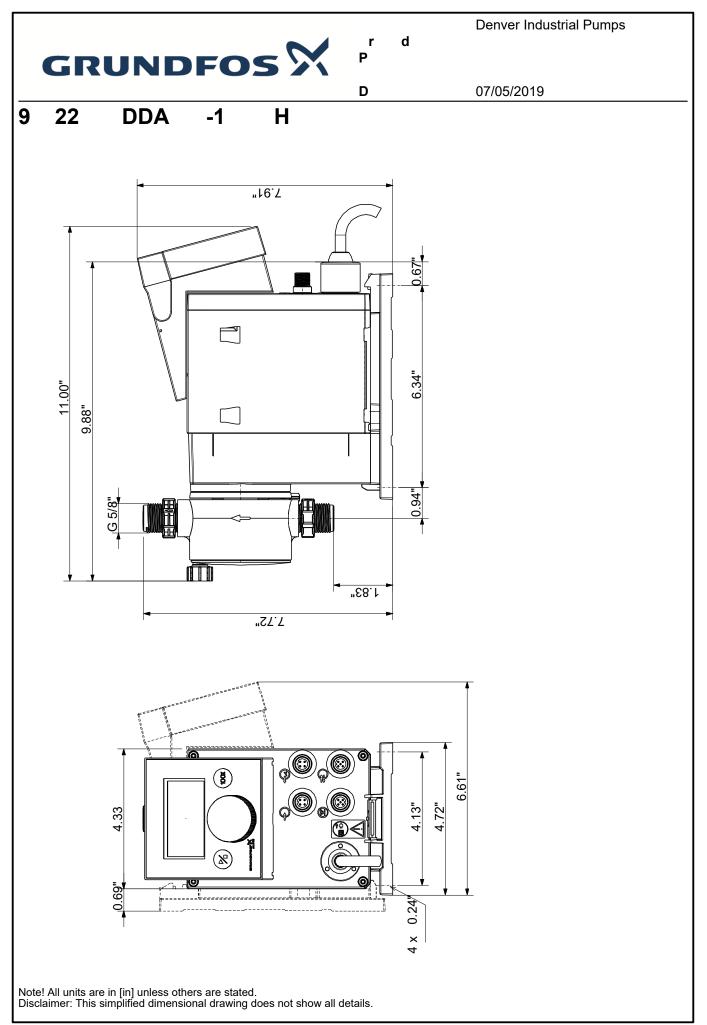
ECM	NAME	DATE	DRAWING TYPE: Solid Edge Drawing					
			RELATED DOCUMENTS:					
			2 PUMP PVC DOSING SKIA					
DRAWN	58847	3/14/16	Parts Callout					
CHECKED			SIZE DWG NO	REV				
ENG APPR	,							
MGR APPR	í –		FILE NAME: Two Pump Production Launch P					
			SCALE: I:12 WEIGHT: SHEET I O	FI				
	DRAWN CHECKED ENG APPR	DRAWN 58847 CHECKED ENG APPR	DRAWN 58847 3/14/16 CHECKED ENG APPR	Image: Solid Edge Drawing Solid Edge Drawing Solid Edge Drawing RELATED DOCUMENTS: DRAWN 58847 3/14/16 ENG APPR MGR APPR Image: Solid Edge Drawing RELATED DOCUMENTS: DESCRIPTION: 2 Pump PVC Dosing Ski Parts Callout SIZE MGR APPR	Low NNL DATE Solid Edge Drawing Solid Edge Drawing Solid Edge Drawing RELATED DOCUMENTS: DRAWN 58847 3/14/16 DRAWN 58847 3/14/16 CHECKED Image: Solid Edge Drawing ENG APPR Size MGR APPR Image: Solid Edge Drawing			




As this is the prope not be passed on to by GRUNDFOS or be by anybody withou written permission.

FOR REFERENCE ONLY NOT FOR CONSTRUCTION

N	ECM	NAME	DATE	DRAWING TYPE	: Solid Ed	lge Drawing	
NDFOS				RELATED DOCU	JMENTS:	<u> </u>	
D, CALIFORNIA 93727 USA							4
				DESCRIPTION:	Duron Croart	Digital PVC DSS	
	DRAWN	GMUCJM	01/12/16	TWC	S Pump Smult	Digital PVC DSS	
operty of GRUNDFOS a/s it must	CHECKED			SIZE DWG NO	REFERE		/
n to any person not authorized	ENG APPR					U	
nout GRUNDFOS' expressed	MGR APPR			FILE NAME:	Two Pump Pro	duction Launch	n PVC.dft
on.				SCALE:	WEIGHT:	SHEET I OF I	
							_


		d	Denver Industrial Pumps
GRUNDF		u	
KUNDF			
	D		07/05/2019
Dr			
Max. Flow:	1.981 US GPH		
Max. flow in slow mode 50%:			
Max. flow in slow mode 25%:	0.4966 US GPH		
Min flow:	2.5 ml/h		
Turn-down ratio: Approvals on nameplate:	1:3000 CE,CSA-US,NSF61,RCM		
Valve type:	Standard		
Maximum viscosity at 100 %:			
Maximum viscosity in slow mod			
Maximum viscosity in slow mod			
Accuracy of repeatability:	1 %		
M r			
Dosing head:	PVC (Polyvinyl chloride)		
Valve ball:	Ceramic		
Gasket:	EPDM		
I			
Range of ambient temperature			
Maximum operating pressure:			
Installation set: Installation type:	NO No installation set		
Pump inlet:	0.17x 1/4, 1/4x3/8, 3/8x1/2'	,	
Pump outlet:	0.17x 1/4, 1/4x3/8, 3/8x1/2		
Max. Suction lift during operation			
Max. Suction lift during priming			
L d			
Pumped liquid: Liquid temperature range:	Water 14 113 F		
Selected liquid temperature:			
Density at selected liquid temp			
Erd			
Maximum power input - P1:	24 W		
Mains frequency:	60 Hz		
Rated voltage:	1 x 100-240 V		
Enclosure class (IEC 34-5):	IP65 / NEMA 4X		
Length of cable:	4.92 ft		
Type of cable plug:	USA, Canada		
Inrush current:	25A at 230V for 2ms		
r Ocurtariante			
Control variant: Level control:	AR YES		
Analog input:	ΥΕS 0/4-20 MA		
Pulse control:	YES		
Ext. Stop input:	YES		
Analog output:	0/4-20 MA		
Output relays:	2		
Bus communication:	YES		
0 r			
Net weight:	4.41 lb		
	6.62 lb		
Gross weight:			
	RED 8413.50.0050		

Printed from Grundfos Product Centre [2019.02.004]

	\sim	Denver Industrial Pumps r d P					
GRUND	FOSX	P D 07/05/2019					
		н				DA 7.5-16, 60Hz	
D r	V	[psi] -					
G r r		160 -					
Product name:	DDA 7.5-16						
Product No:	97722365	150 -					
EAN number:	5710622725070						
Т		140 -					
Type key:	DDA 7.5-16 AR-PVC/E/C-F-31U7U7						
		130 -					
Max. Flow:	1.981 US GPH						
Max. flow in slow mode 50%:	0.9906 US GPH	120 -					
Max. flow in slow mode 25%:	0.4966 US GPH						
Min flow:	2.5 ml/h						
Turn-down ratio:	1:3000	100 -					
Approvals on nameplate:	CE,CSA-US,NSF61,RCM	100-					
Valve type:	Standard	90 -					
Maximum viscosity at 100 %:	50 mPas						
Maximum viscosity in slow mode 50 %:	1800 mPas	80 -					
Maximum viscosity in slow mode 25 %:	2500 mPas	70 -					
Accuracy of repeatability:	1 %	60 -					
M r							
Dosing head:	PVC (Polyvinyl chloride)	50 -					
Valve ball:	Ceramic						
Gasket:	EPDM	40 -					
	EPDIM						
	00 440 E	30 -					
Range of ambient temperature:	32113 F						
Maximum operating pressure:	145.04 psi	20 -					
Installation set:	NO						
Installation type:	No installation set	10 -					
Pump inlet:	0.17x 1/4, 1/4x3/8, 3/8x1/2"	•					
Pump outlet:	0.17x 1/4, 1/4x3/8, 3/8x1/2"	0	0.2 0.4 0.6	3 0.8 1.0	1.2 1.4 1.6	Q [US GPH]	
Max. Suction lift during operation:	19.7 ft						
Max. Suction lift during priming:	6.56 ft			۹ ۹	11.00" 9.88"		
Pumped liquid:	Water	0.69	4.33	<u>G 5/8"</u>			
Liquid temperature range:	14113 F	— h	1			\Box	
Selected liquid temperature:	68 F						
Density at selected liquid							
temperature:	62.29 lb/ft ³			7.72"		16.2	
E r d							
Maximum power input - P1:	24 W			2] –[
	24 W 60 Hz			1:83			
Mains frequency:		4 <u>x 0.24</u>	4.13"	0.94"	6.34"	0.67	
Rated voltage:	1 x 100-240 V		4.72" 6.61"				
Enclosure class (IEC 34-5):	IP65 / NEMA 4X	P					
Length of cable:	4.92 ft						
Type of cable plug:	USA, Canada						
Inrush current:	25A at 230V for 2ms						
r							
Control variant:	AR						
Control panel:	FRONT-MOUNTED						
Level control:	YES						
Analog input:	0/4-20 MA						
Pulse control:	YES						
Ext. Stop input:	YES						
Analog output:	0/4-20 MA						
Output relays:	2						
Bus communication:	YES						
O r							
Net weight:	4.41 lb						

GRUN	IDFOS 🕅	r P	d	Denver Industrial Pumps
		D		07/05/2019
Dr	V			
Gross weight:	6.62 lb	_		
Color:	RED			
Custom tariff no.:	8413.50.0050			

GRUNDFOS PRODUCT GUIDE

DSS Dosing skid systems

BE THINK INNOVATE

- 22	۲ ۳
Ċ	D
	2
	5

1.	Product introduction Features and benefits	3 3
2.	Identification Type key	4 4
3.	Components Standard skid systems with polypropylene base Standard skid systems with stainless steel base P&ID	6 6 8 10
4.	Special application systems Selcoperm Conex® Chlorine dioxide systems	11 11 11 11
5.	Technical data DDA DDC DDE DDI 222 AR DME DMX DMH	12 12 12 13 13 14 15
6.	Further documentation WebCAPS WinCAPS	16 16 17

1. Product introduction

Grundfos Dosing Skid Systems (DSS) are designed to feed liquid chemicals from a supply source (usually tank or drum) to an injection point.

Systems typically include:

- pre-piped pumps
- fittings

DSS

 other components (depending on the system) i.e. strainers, calibration columns, back pressure valves, pressure gauges, pulsation dampeners, pressure relief valves.

Grundfos Dosing Skid Systems (DSS) can range from pre-engineered, standard one- and two-pump systems on polypropylene or stainless steel bases, to custom systems with multiple pumps and tanks all piped on a common skid with complete controls.

Dosing Skid Systems (DSS) are available for all models of Grundfos metering pumps: hydraulically actuated and mechanically actuated pumps including Digital Dosing pumps with stepper motor technology offering up to 3000:1 flow turndown.

Features and benefits

Grundfos Dosing Skid Systems offer critical benefits:

- Faster and easier onsite installation in comparison with the purchase of individual components that must be separately piped, installed, wired and tested.
- Each system is delivered as a complete package so many installations may be as simple as connecting the piping and electrical.
- System designs can cover a wide range of capabilities and materials to suit most applications and environments.
- Systems can operate with manual control or can be provided with automation options to improve process control, efficiency and reliability.
- System pumps, piping and control panels are factory inspected and tested prior to shipment.

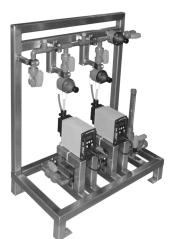


Fig. 1 Stainless steel base - floor mounted system

TM05 4968 3112

TM05 1990 3012

Fig. 2 FRP base - floor mounted system

Fig. 3 Polypropylene base - floor mounted system

Fig. 4 Polypropylene panel - wall mounted system

TM05 4965 3012

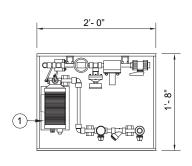
3

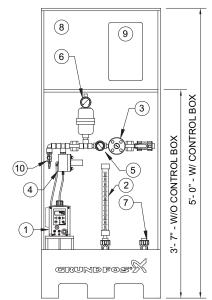
2. Identification

Type key

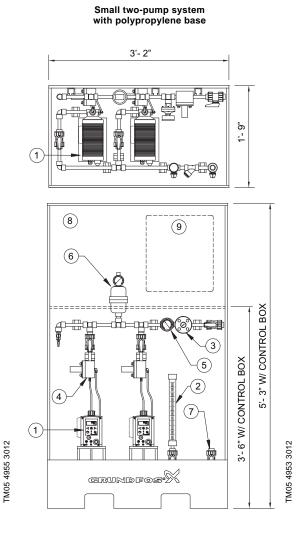
Example	DSS	s	2 ·	DMH	- PP	FM	- N	- P -	- A9 -	A9 - N
Dooing Skid System									1	Piping connection type
Dosing Skid System										N: NPT (threaded)
System type		-								S: Weld: socket/solvent/but
S: Standard										F: Flanged
C: Custom										Discharge pipe size
Pumps per skid			_1							A9: 0.5"
1: one pump										A7: 0.75"
2: two pumps										V1: 1"
Pump model				-						V2: 1.5"
DME pump										20: 2"
DDI pump										30: 3"
DMI pump									Suction	n pipe size
DMX pump									A9: 0.5	"
DMH pump									A7: 0.7	5"
DDA pump					V1: 1"					
DDC pump					V2: 1.5	"				
DDE pump									20: 2"	
Base material									30: 3"	
SS: Stainless steel								Pipir	ng materi	al
PP: Polypropylene								P: P	VC	
FR: FRP								S: S	S	
CS: Carbon steel								C: C	PVC	
PC: PVC								F: P	VDF	
Mounting						-		A: A	lloy 20	
FM: Floor / base mounted s	kid						Con	trol pa	nel optio	n
WM: Wall mounted panel							C: C	Control	panel	
TM: Tank mounted							N: N	lo con	trol pane	I

Identification

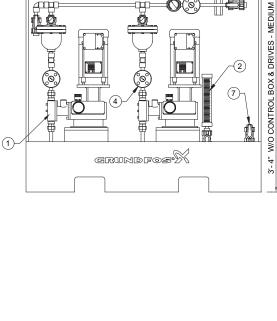

This page intentionally left blank.


Identification

3. Components


Standard skid systems with polypropylene base

Small one-pump system with polypropylene base



Pos.	Component
1	Metering pumps
2	Calibration cylinder
3	Back pressure valve
4	Pressure relief valve
5	Pressure gauge
6	Pulsation dampener
7	Ball valve
8	Skid
9	FRP enclosure
10	Sample valve

3

3

Medium and large two-pump system with polypropylene base

ĝų

(10)

_ ____

1

— _

4000

5'- 6" - LARGE

3'- 8" - MEDIUM

<u>р</u>п

8

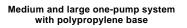
5

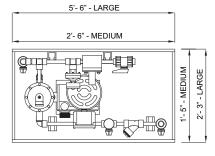
Ô

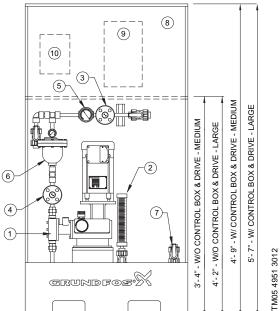
 \square

Ш

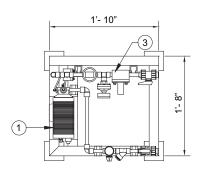
9

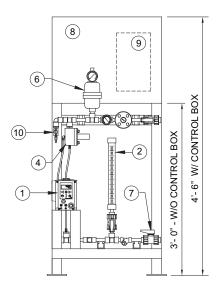

p


1'- 8" - MEDIUM 2'- 3" - LARGE


4'- 9" W/ CONTROL BOX & DRIVES - MEDIUM 5'- 7" W/ CONTROL BOX & DRIVES - LARGE

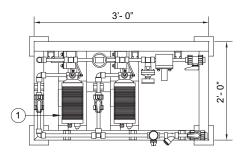
4'- 2" W/O CONTROL BOX & DRIVES - LARGE

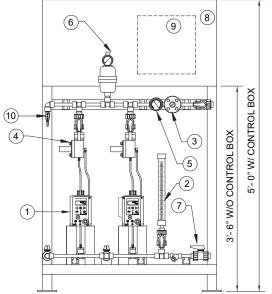



Pos.	Component
	•
1	Metering pumps
2	Calibration cylinder
3	Back pressure valve
4	Pressure relief valve
5	Pressure gauge
6	Pulsation dampener
7	Ball valve
8	Skid
9	FRP enclosure
10	Optional controller
11	Sample valve

Standard skid systems with stainless steel base

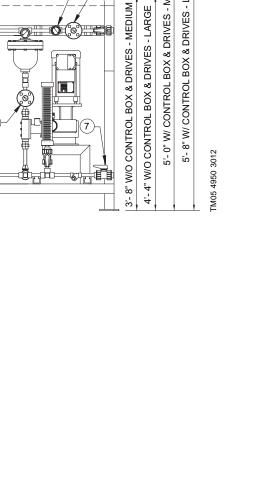
TM05 4956 3012


Small one-pump system with stainless steel base



Pos.	Component
1	Metering pumps
2	Calibration cylinder
3	Back pressure valve
4	Pressure relief valve
5	Pressure gauge
6	Pulsation dampener
7	Ball valve
8	Skid
9	FRP enclosure
10	Sample valve

Small two-pump system with stainless steel base



TM05 4954 3012

3

3

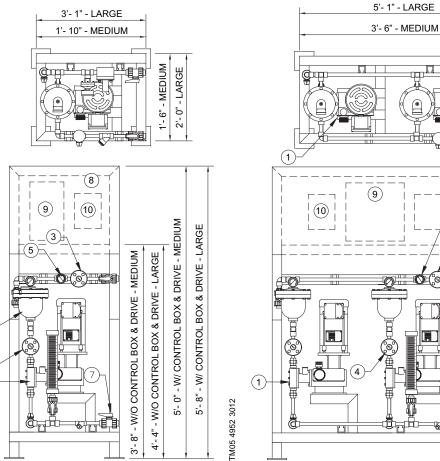
1'- 6" - MEDIUM

沮

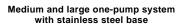
(8)

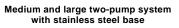
5

0(0)


shq ti

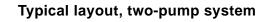
3

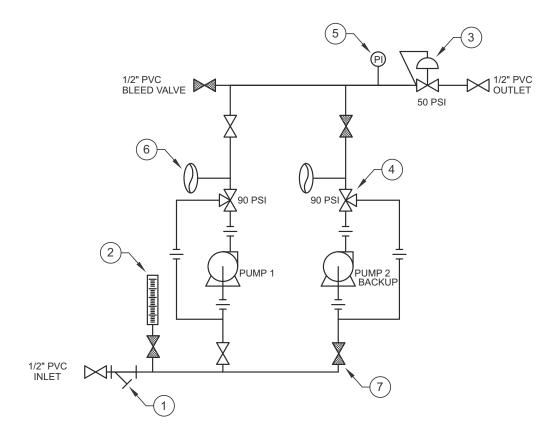

2' - 0" - LARGE


5'- 0" W/ CONTROL BOX & DRIVES - MEDIUM

5'- 8" W/ CONTROL BOX & DRIVES - LARGE

Pos.	Component
1	Metering pumps
2	Calibration cylinder
3	Back pressure valve
4	Pressure relief valve
5	Pressure gauge
6	Pulsation dampener
7	Ball valve
8	Skid
9	FRP enclosure
10	Optional controller
11	Sample valve





6

(4 (1)

P&ID

Typical system components*

Pos.	Component
1	PVC, strainer
2	Calibration cylinder
3	Back pressure valve
4	Pressure relief valve
5	Pressure gauge
6	Pulsation dampener
7	Ball valve

* Review layout, general arrangement, component and P&ID drawings issued on specific orders as these may differ from "Typical" as shown here.

TM05 2012 4214

TM04 6823 0910

Conex®

Compact measuring systems

Our DSS systems with Conex® utilize our tried-andtested electrodes and controllers, combined to suit specific applications, and installed on a mounting board ready for quick installation.

Fig. 6 Conex® compact measuring systems

TM05 4046 1506

4. Special application systems

Selcoperm

Electrolytic chlorination systems

Selcoperm electrolytic chlorination systems offer easy and reliable generation of a hypochlorite solution for disinfection applications.

Fig. 5 Selcoperm electrolytic chlorination system

Chlorine dioxide systems

Continuous chlorine dioxide dosing ensures highly effective disinfection and prevents the build-up of biofilm in water pipes. Grundfos chlorine dioxide disinfection systems can be installed in existing systems without disrupting operations.

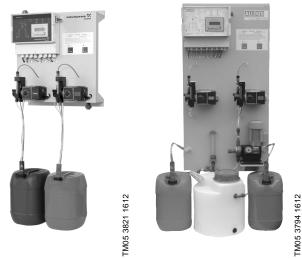
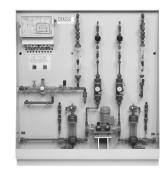



Fig. 7 Chlorine dioxide systems

TM05 3793 1612

5. Technical data

DDA

SMART Digital Series (0.0007 to 8.0 gph)

Technical data		7.5-16	12-10	17-7	30-4	
Turndown ratio (setting range)	[1:X]	3000	1000	1000	1000	
Max. dosing capacity	[gph (l/h)]	2.0 (7.5)	3.1 (12.0)	4.5 (17.0)	8.0 (30.0)	
Min. dosing capacity	[gph (l/h)]	0.0007 (0.0025)	0.0031 (0.0120)	0.0045 (0.0170)	0.0080 (0.0300)	
Max. operating pressure	[psi (bar)]	230 (16)	150 (10)	100 (7)	60 (4)	
Accuracy of repeatability	[%]		±	1	•	
Max. suction lift during operation ¹⁾	[ft (m)]	19.68 (6)				
Weight (PVC, PP, PVDF)	[lb (kg)]	5.3 (2.4)	5.3	(2.4)	5.8 (2.6)	
Weight (stainless steel)	[lb (kg)]	7.1 (3.2)	7.1	(3.2)	8.9 (4.0)	
Diaphragm diameter	[in (mm)]	1.73 (44)	1.97	(50)	2.92 (74)	

TM05 4007 1912

¹⁾ Data is based on measurements with water

DDC

SMART Digital Series (0.0015 to 4.0 gph)

Technical data		6-10	9-7	15-4
Turndown ratio (setting range)	[1:X]	1000	1000	1000
Max. dosing capacity	[gph (l/h)]	1.5 (6.0)	2.4 (9.0)	4.0 (15.0)
Min. dosing capacity	[gph (l/h)]	0.0015 (0.0060)	0.0024 (0.0090)	0.0040 (0.0150)
Max. operating pressure	[psi (bar)]	150 (10)	100 (7)	60 (4)
Accuracy of repeatability	[%]		± 1	
Max. suction lift during operation ¹⁾	[ft (m)]	19.68 (6)		
Weight (PVC, PP, PVDF)	[lb (kg)]	5.3 (2.4)		
Weight (stainless steel)	[lb (kg)]	7.1 (3.2)		
Diaphragm diameter	[in (mm)]	1.73 (44) 1.97		1.97 (50)

TM05 4008 1912

¹⁾ Data is based on measurements with water

DDE

SMART Digital Series (0.0015 to 4.0 gph)

Technical data		6-10	15-4	
Turndown ratio (setting range)	[1:X]	1000	1000	
Max. dosing capacity	[gph (l/h)]	1.5 (6.0)	4.0 (15.0)	
Min. dosing capacity	[gph (l/h)]	0.0015 (0.0060)	0.0040 (0.0150	
Max. pressure	[psi (bar)]	150 (10)	60 (4)	
Accuracy of repeatability	[%]	± 5		
Max. suction lift during operation ¹⁾	[ft (m)]	19.68 (6)		
Weight (PVC, PP, PVDF)	[lb (kg)]	5.3 (2.4)		
Weight (stainless steel)	[lb (kg)]	7.1 (3.2)		
Diaphragm diameter	[in (mm)]	1.73 (44)	1.97 (50)	

TM05 4009 1912

¹⁾ Data is based on measurements with water

DDI 222 AR

(0.02 to 39.7 gph)

Technical data								
Pump Model Vstro			Max. pressure ¹⁾		Capacity ²⁾ [gph	Max.		
Pump Mo	woder	Vstroke [cm ³]	[psi (bar)]	Normal	Slow Mode - 1	Slow Mode - 2	 stroke rate [strokes/min] 	
DDI 60-10	222 AR	6.63	145 (10)	15.9 (60)	10.6 (40)	6.5 (24.7)	180	
DDI 150-4	222 AR	13.9	58 (4)	39.7 (150)	26.4 (100)	16.4 (62)	180	

 Observe the maximum permissible temperatures. When dosing the more viscous liquids, observe the maximum permissible viscosity.

2) The maximum dosing flow of HV type pumps is reduced by up to 10%.

The maximum capacity is measured at maximum pump back pressure.

The pump can be operated in the range of 0.125% to 100% of the maximum dosing capacity.

Electrical data

Power supply	100-240 V, 50/60 Hz
Power consumption	50 VA

DME

DME 60/150

(0.02 to 39.7 gph)

Pump type		DME 60-10	DME 150-4
Capacity at max. pressure	[gph (l/h)]	15.85 (60)	39.6 (150)
Min. capacity	[gph (l/h)]	0.0198 (0.075)	0.0497 (0.188)
Max. pressure	[psi (bar)]	145 (10)	58 (4)
Setting range		80	0:1
Stroke frequency	[spm]	16	50
Power supply	[V, Hz]	1×100-240	V, 50-60 Hz
Accuracy	[%]	±1% rep	eatability
Pump head material		PP, PVDF, si	ainless steel
Suction lift: primed/dry	[ft (m)]	6 (*	1.5)
Viscosity (Slow Mode)	[cps]	3000* at 50	% capacity

*with spring-loaded valves

DME 375/940

(0.13 to 248 gph)

Technical data		DME 375-10	DME 940-4	
Capacity at max. pressure	[gph (l/h)]	99.1 (375)	248.3 (940)	
Min. capacity	[gph (l/h)]	0.124 (0.47)	0.31 (1.18)	
Max. pressure	[psi (bar)]	145 (10)	58 (4)	
Setting range		800):1	
Stroke frequency	[spm]	16	0	
Power supply	[V, Hz]	1×100-240\	/, 50-60 Hz	
Accuracy	[%]	±1 % repe	eatability	
Pump head material		PP, PVDF	, 316 SS	
Suction lift: primed/dry [ft (m)]		19 (4.9) / 6 (1.5)		
Viscosity (Slow Mode) [cps]		3000* at 50 % capacity		

*with spring-loaded valves

5

Technical data

DMX

(0.13 to 2 x 166 gph)

TM05 4033 1912

DMX 221	Max ca	apacity	Strokes	Max.	Max. suc	tion lift*	Motor	Accuracy	Linearity
pump	[gph (l/h)]	[psi (bar)]	per minute [spm]	viscosity* [cps]	Primed [ft]	Dry [ft]	voltage	[%]	[%]
4-10	1.3 (5)	145 (10.0)	35	400	13.1	13.1			
7-10	2.1 (8)	145 (10.0)	35	400	13.1	13.1	_		
7,2-16	2.3 (8.6)	232 (16.0)	75	400	13.1	13.1	_		
8-10	2.6 (10)	145 (10.0)	75	400	13.1	13.1	_		
9-10	2.9 (11)	145 (10.0)	35	200	9.8	9.8	_		+/- 4%
12-10	3.7 (14)	145 (10.0)	35	200	9.8	8.2	_	+/- 1.5%	
13,7-16	4.0 (16)	232 (16.0)	144	200	11.5	8.2	_		
14-10	4.5 (17)	145 (10.0)	75	400	13.1	13.1	_		
16-10	5.0 (19)	145 (10.0)	144	200	11.5	8.2	_		
17-4	5.3 (20)	58 (4.0)	35	200	3.3	3.3	1 x 115 V,		
18-10	5.8 (22)	145 (10.0)	75	200	9.8	9.8	50/60 Hz		
25-3	7.9 (30)	44 (3.0)	35	200	3.3	3.3	_		
26-10	8.2 (31)	145 (10.0)	75	200	9.8	8.2	_		
27-10	8.4 (32)	145 (10.0)	144	200	11.5	8.2	_		
35-10	11.0 (42)	145 (10.0)	144	100	8.2	6.5	_		
39-4	12.0 (47)	58 (4.0)	75	100	3.3	3.3	-		
50-10	16.0 (60)	116 (8.0)	144	100	8.2	4.9			
60-3	19.0 (72)	44 (3.0)	75	100	3.3	3.3	_		
75-3,5	24.0 (90)	51 (3.5)	144	100	1.6	1.6	_		
115-3	36.0 (138)	36 (2.5)	144	100	1.6	1.6	_		

DMX 226	Max ca (Duple	apacity ex X 2)	Strokes Max. per minute viscosity*		Max. suc	Max. suction lift*		Accuracy	Linearity
pump	[gph (l/h)]	[psi (bar)]	[spm]	[cps]	Primed [ft]	Dry [ft]	voltage	[%]	[%]
52-8	16.4 (62)	116 (8.0)	76	700	8.2	3.2			
67-10	21.1 (80)	145 (10.0)	68	700	8.2	3.2			+/- 4%
82-5	25.9 (98)	72 (5.0)	76	500	8.2	3.2			
95-8	30.0 (114)	116 (8.0)	68	500	8.2	3.2		+/- 1.5%	
100-8	31.7 (120)	116 (8.0)	144	400	8.2	3.2	DMX-B:		
130-3	41.2 (156)	44 (3.0)	76	400	6.6	3.2	— no motor, NEMA 56C		
132-10	41.7 (158)	116 (8.0)	144	400	8.2	3.2	flange		
152-6	48.0 (182)	87 (6.0)	68	400	6.6	3.2			
160-5	50.7 (192)	72 (5.0)	144	200	8.2	3.2	DMX-AR: 1 X 115V.		
199-8	63.1 (239)	116 (8.0)	144	200	8.2	3.2	60 Hz		
249-3	78.9 (299)	44 (3.0)	68	100	3.2	1.6			
255-3	80.8 (306)	44 (3.0)	144	100	6.6	3.2			
321-6	102.0 (385)	58 (4.0)	144	100	6.6	3.2			
525-3	166.3 (630)	44 (3.0)	144	50	3.2	1.6			

*Suction lift data is for water-like fluids. Please see the pump's Installation and Operating Instructions for more details and dimensional data.

DMH

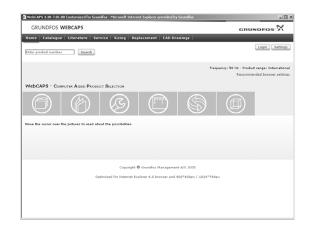
(0.07 to 2 x 278 gph)

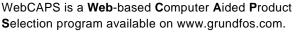
TM05 4045 1912

DMH 280

DMH 250

DMH 250 Series pump		Мах сар	acity	Strokes per minute	Max.	Max. suction
		[gph (l/h)]	[psi (bar)]	at 60 Hz [spm]	viscosity* [cps]	lift [ft]
	2,2-25	0.69 (2.6)	363 (25)	17		
	2,3-16	0.74 (2.8)	232 (16)	17		
	2,4-10	0.77 (2.9)	145 (10)	17	300	3.3
	4,5-25	1.43 (5.4)	363 (25)	35	500	5.5
	4,9-16	1.55 (5.9)	232 (16)	35		
251	5,0-10	1.58 (6.0)	145 (10)	35		
231	11-25	3.43 (13.0)	363 (25)	75		
	12-16	3.7 (14.0)	232 (16)	75		
	13-10	4.22 (16.0)	145 (10)	75	100	
	17-25	5.28 (20.0)	363 (25)	115	100	_
	18-16	5.81 (22.0)	232 (16)	115		
	19-10	6.07 (23.0)	145 (10)	115		
	10-16	3.17 (12.0)	232 (16)	35	300	
	11-10	3.45 (13.1)	145 (10)	35	- 300	
252	23-16	7.13 (27.0)	232 (16)	75		3.3
292	24-10	7.66 (29.0)	145 (10)	75	100	3.3
	36-16	11.35 (43.0)	232 (16)	115	100	
	37-10	11.62 (44.0)	145 (10)	115	•	
	21-10	6.6 (25.0)	145 (10)	35	300	
253	43-10	13.7 (51.9)	145 (10)	75	100	3.3
253	67-10	20.6 (78.0)	145 (10)	115	100	3.3
	83-10	26.1 (98.8)	145 (10)	144	10	•
	50-10	15.8 (59.8)	145 (10)	32	300	
	97-16	30.6 (115.8)	232 (16)	65		•
	102-10	32.2 (121.9)	145 (10)	65	•	
	136-16	43 (162.8)	232 (16)	90	•	
254	143-10	45.4 (171.9)	145 (10)	90	100	3.3
	166-16	52.8 (199.9)	232 (16)	110	•	
	175-10	55.4 (209.7)	145 (10)	110	•	
	202-16	63.9 (241.9)	232 (16)	134	•	
	213-10	67.3 (254.8)	145 (10)	134	5	
	194-10	61.5 (232.8)	145 (10)	65		
255	270-10	85.5 (323.7)	145 (10)	90	200	Eloodod**
255	332-10	105 (397.5)	145 (10)	110	•	Flooded**
	403-10	128 (484.5)	145 (10)	134	5	
	220-10	69.7 (263.8)	145 (10)	33		
	440-10	139.4 (527.7)	145 (10)	65		2.2
257	575-10	182.2 (689.7)	145 (10)	90	200	3.3
	770-10	244 (923.6)	145 (10)	110	•	
	880-10	278 (1052.3)	145 (10)	134	5	Flooded**


280 Series [gph (l/h)] [psi (bar)] at 60 Hz [spm] viscosity [cps] lift [ft] 280 1,3-200 0.5 (1.9) 2900 (200) 76 [cps] [ift] 280 2,2-200 0.7 (2.6) 2900 (200) 115 5 Flooded 2,5-200 0.9 (3.4) 2900 (200) 144 5 5 Flooded 281 4,2-100 1.3 (4.9) 1450 (100) 35 100 4,2-100 3.3 (450 (100) 115 50 3.3 6,4-100 2.0 (7.6) 1450 (100) 144 5 5 3.3 20100 6.1 (23.1) 1450 (100) 144 5 5 3.3 27-100 8.4 (31.8) 1450 (100) 110 3.3 3 3 20-100 6.3 (23.8) 1450 (100) 134 5 3.3 3 20-100 6.3 (23.8) 1450 (100) 138 50 3.3 3 20-100 6.6 (62.8) 1450 (100) 188		DMH	Max ca	pacity	Strokes	Max.	Max. suction
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			[gph (l/h)]	[psi (bar)]	at 60 Hz		lift
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1,3-200	0.5 (1.9)	2900 (200)	76	_	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	280	2,2-200	0.7 (2.6)	2900 (200)	115	5	Flooded**
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2,5-200	0.9 (3.4)	2900 (200)	144	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2-100	0.6 (2.3)	1450 (100)	35	100	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	281	4,2-100	1.3 (4.9)	1450 (100)	76	50	2.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	201	6,4-100	2.0 (7.6)	1450 (100)	115	50	5.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		8-100	2.5 (9.5)	1450 (100)	144	5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		19-100	6.1 (23.1)	1450 (100)	65		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	202	27-100	8.4 (31.8)	1450 (100)	90	50	2.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	203	33-100	10.6 (40.1)	1450 (100)	110	-	3.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		40-100	12.7 (48.1)	1450 (100)	134	5	
285 52-100 16.6 (62.8) 1450 (100) 88 50 3.3 70-100 22.2 (84.0) 1450 (100) 118 5 3.3 80-100 25.3 (95.8) 1450 (100) 134 5 50 3.3 85-50 26.9 (101.8) 725 (50) 67 50 3.3 111-50 35.1 (132.9) 725 (50) 88 50 3.3 170-50 53.9 (204.0) 725 (50) 134 5 Flooded 18-200 5.8 (22.0) 2900 (200) 67 23.200 7.4 (28.0) 2900 (200) 88 50 3.3 31-200 9.8 (37.1) 2900 (200) 118 3.3 3.3 3.3 36-200 11.4 (43.2) 2900 (200) 134 5 50 3.3 36-200 1.4 (43.2) 2900 (200) 134 5 3.3 3.3 10-200 3.3 (12.5) 2900 (200) 67 3.3 3.3 3.3		20-100	6.3 (23.8)	1450 (100)	33	100	
70-100 22.2 (84.0) 1450 (100) 118 80-100 25.3 (95.8) 1450 (100) 134 5 85-50 26.9 (101.8) 725 (50) 67 50 3.3 111-50 35.1 (132.9) 725 (50) 88 50 3.3 170-50 53.9 (204.0) 725 (50) 134 5 Flooded 286 170-50 5.8 (22.0) 2900 (200) 67 23.2 3.3 287 23-200 7.4 (28.0) 2900 (200) 118 50 3.3 36-200 11.4 (43.2) 2900 (200) 134 5 60 3.3 36-200 11.4 (43.2) 2900 (200) 134 5 7.5-200 2.4 (9.1) 2900 (200) 67 288 10-200 3.3 (12.5) 2900 (200) 67 3.3 3.3		40-100	12.7 (48.1)	1450 (100)	67		
80-100 25.3 (95.8) 1450 (100) 134 5 286 111-50 35.1 (132.9) 725 (50) 67 50 3.3 170-50 53.9 (204.0) 725 (50) 134 5 Flooded 287 18-200 5.8 (22.0) 2900 (200) 67 3.3 31-200 9.8 (37.1) 2900 (200) 118 50 3.3 36-200 11.4 (43.2) 2900 (200) 134 5 7.5-200 2.4 (9.1) 2900 (200) 67 3.3 10-200 3.3 (12.5) 2900 (200) 134 5 3.3 3.3	285	52-100	16.6 (62.8)	1450 (100)	88	50	3.3
85-50 26.9 (101.8) 725 (50) 67 50 3.3 286 111-50 35.1 (132.9) 725 (50) 88 50 3.3 170-50 53.9 (204.0) 725 (50) 134 5 Flooded 287 18-200 5.8 (22.0) 2900 (200) 67 3.3 31-200 9.8 (37.1) 2900 (200) 118 50 3.3 36-200 11.4 (43.2) 2900 (200) 134 5 7.5-200 2.4 (9.1) 2900 (200) 67 288 10-200 3.3 (12.5) 2900 (200) 88 50 3.3		70-100	22.2 (84.0)	1450 (100)	118	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		80-100	25.3 (95.8)	1450 (100)	134	5	
286 111-50 35.1 (132.9) 725 (50) 88 170-50 53.9 (204.0) 725 (50) 134 5 Flooded 170-50 53.9 (204.0) 725 (50) 134 5 Flooded 18-200 5.8 (22.0) 2900 (200) 67 32.200 7.4 (28.0) 2900 (200) 88 50 3.3 36-200 11.4 (43.2) 2900 (200) 134 5 50 3.3 7.5-200 2.4 (9.1) 2900<(200) 67 50 3.3		85-50	26.9 (101.8)	725 (50)	67	50	2.2
18-200 5.8 (22.0) 2900 (200) 67 287 23-200 7.4 (28.0) 2900 (200) 88 50 31-200 9.8 (37.1) 2900 (200) 118 3.3 36-200 11.4 (43.2) 2900 (200) 134 5 7.5-200 2.4 (9.1) 2900 (200) 67 10-200 3.3 (12.5) 2900 (200) 88 50	286	111-50	35.1 (132.9)	725 (50)	88	- 50	5.5
287 23-200 7.4 (28.0) 2900 (200) 88 50 3.3 31-200 9.8 (37.1) 2900 (200) 118 5 3.3 36-200 11.4 (43.2) 2900 (200) 134 5 7.5-200 2.4 (9.1) 2900 (200) 67 10-200 3.3 (12.5) 2900 (200) 88 50		170-50	53.9 (204.0)	725 (50)	134	5	Flooded**
287 31-200 9.8 (37.1) 2900 (200) 118 3.3 36-200 11.4 (43.2) 2900 (200) 134 5 7.5-200 2.4 (9.1) 2900 (200) 67 10-200 3.3 (12.5) 2900 (200) 88 50		18-200	5.8 (22.0)	2900 (200)	67		
31-200 9.8 (37.1) 2900 (200) 118 36-200 11.4 (43.2) 2900 (200) 134 5 7.5-200 2.4 (9.1) 2900 (200) 67 10-200 3.3 (12.5) 2900 (200) 88 50	297	23-200	7.4 (28.0)	2900 (200)	88	50	2.2
7.5-200 2.4 (9.1) 2900 (200) 67 10-200 3.3 (12.5) 2900 (200) 88 50 3.3	207	31-200	9.8 (37.1)	2900 (200)	118	-	5.5
288 10-200 3.3 (12.5) 2900 (200) 88 50 3.3		36-200	11.4 (43.2)	2900 (200)	134	5	
288 33		7.5-200	2.4 (9.1)	2900 (200)	67		
200 <u>13-200</u> <u>4.1 (15.5)</u> <u>2900 (200)</u> <u>118</u> <u>3.3</u>	200	10-200	3.3 (12.5)	2900 (200)	88	50	2.2
	200	13-200	4.1 (15.5)	2900 (200)	118	-	3.3
15-200 4.9 (18.5) 2900 (200) 134 5		15-200	4.9 (18.5)	2900 (200)	134	5	•


*Viscosity rating at 60 Hz maximum strokes per minute. **Flooded suction recommended. The stated values are approximate and apply to standard pumps.

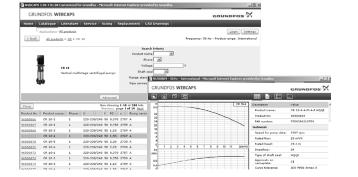
	DMH B	NEMA 56C: 251, 252, 253, 254, 255, 280, 281, 283, 288
Motor	DIVITI	NEMA 145TC: 257,285,286,287
	DMH AR	1ø115V, 60 HZ
		Models 251, 252, 253, 280, 281 only
Accuracy	Flow	+/- 1%
Accuracy	Linearity	+/- 2%

6. Further documentation

WebCAPS

WebCAPS contains detailed information on more than 185,000 Grundfos products in more than 20 languages.

In WebCAPS, all information is divided into 6 sections:


This section is based on fields of application and pump types, and

 curves (QH, Eta, P1, P2, etc) which can be adapted to the density and viscosity of the pumped liquid and show the

- Catalog
- Literature
- Service
- Sizing
- Replacement
- · CAD drawings.

Catalog (

containstechnical data

X

Literature (M

product photos

dimensional drawingswiring diagrams

quotation texts, etc.

In this section you can access all the latest documents of a given pump, such as

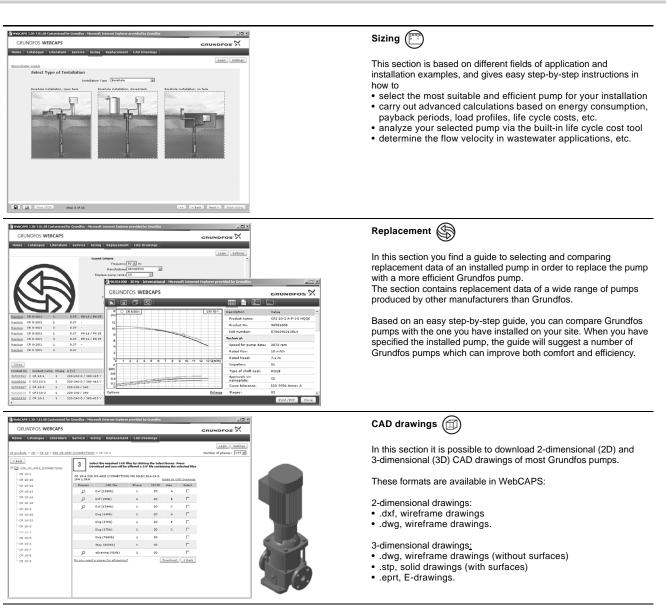
- product guides
- installation and operating instructions

number of pumps in operation

- service documentation, such as Service kit catalog and Service kit instructions
- quick guides
- · product brochures, etc.

This section contains an easy-to-use interactive service catalog. Here you can find and identify service parts of both existing and discontinued Grundfos pumps.

Furthermore, this section contains service videos showing you how to replace service parts.


New showing 1-10 of 231 hits Previous page 1 of 22 <u>Next</u>

U f P2 n i 220-230/240 50 0,570 2757 220-230/240 50 0,750 2759 220-230/240 50 1,10 2769

6

reduct No. 🕴 Pred

CR 10-1 CR 10-2 CR 10-3

WinCAPS

Fig. 8 WinCAPS CD-ROM

WinCAPS is a **Win**dows-based **C**omputer **A**ided **P**roduct **S**election program containing detailed information on more than 185,000 Grundfos products in more than 20 languages.

The program contains the same features and functions as WebCAPS, but is an ideal solution if no Internet connection is available.

WinCAPS is available on CD-ROM and updated once a year.

Further documentation

GRUNDFOS X 19

L-DSS-PG-01 0812 ECM:

The name Grundfos, the Grundfos logo, and the payoff Be–Think–Innovate are registrated trademarks owned by Grundfos Management A/S or Grundfos A/S, Denmark. All rights reserved worldwide.

GRUNDFOS Pumps Corporation 17100 West 118th Terrace Olathe, Kansas 66061 Phone: +1-913-227-3400 Telefax: +1-913-227-3500 **GRUNDFOS Canada Inc.** 2941 Brighton Road Oakville, Ontario L6H 6C9

Canada Phone: +1-905 829 9533 Telefax: +1-905 829 9512 Bombas GRUNDFOS de Mexico S.A. de C.V. Boulevard TLC No. 15 Parque Industrial Stiva Aeropuerto Apodaca, N.L. Mexico 66600 Phone: +52-81-8144 4000 Telefax: +52-81-8144 4010

ATTACHMENT B3

From:	David Anderson	
CC:		Date: June 21, 2019
Attn:	Kristina Minchow	
_		
	Silver City, NM	
	Golder	Main office: 702 818 1575
То:	Golder	Henderson, NV 89052
		Lhoist West Business Unit 2900 W Horizon Ridge Pkwy #120

Lhoist North America is pleased to provide the following price for **1186 Hi-Calcium Hydrated Lime - small** utilized for your the operation in Silver, City, NV.

Lime Origin	Project Location	Quicklime	
Peach Springs, AZ (Nelson)	To: Silver City (Tyrone, Mine)	\$150-160/ton	
	Freight (Rail from Nelson to Deming and truck from Deming, NM to Silver City, NM)	~\$70/ton +24%FSC	
		Est. \$228/ton – truck	

**Truck Fuel Surcharges are estimated at 24% of the truck shipping cost.

**Customer will be charged a 25 ton minimum on all truckloads or quicklime and 20 ton minimum on hydrated lime if they choose to order less than a full load.

**Freight is for rail from Nelson to Deming and then trucked from Deming to Silver City, NM.

Ordering Lime: please call Lhoist NA Customer Service @ 800-423-1956

Lhoist NA requires that all orders be placed at least 48 hours in advance prior to delivery. Nelson Plant is available to load 24 hours per day / 7 days a week. The price quoted above is subject to all applicable taxes subsequent to this quotation. Payment Terms are NET 30 Days. See the below terms and conditions. Please call my cell phone or email me if you have any questions. **PRICING ABOVE IS ESITMATE ONLY.**

Regards,

Masen

David Anderson Lhoist Sales Manger <u>david.anderson@lhoist.com</u> Mobile: 702-280-3122

Standard Terms and Conditions of Lhoist North America of Arizona, Inc.

- Acceptance of orders, whether oral or written, is based upon the express condition that buyer ("Buyer") agrees to all of the terms and conditions contained herein. These terms and conditions are intended by the parties as a final expression to their agreement with respect to such terms and also as a complete and exclusive statement of all terms, unless LHOIST NORTH AMERICA OF ARIZONA, INC. ("Seller") approves such change in terms and conditions explicitly and in writing signed by an authorized representative of Seller. No modification of these terms and conditions shall be affected by Seller's shipment of goods following receipt of Buyer's purchase order, shipping request, or similar forms containing printed terms and conditions which may be conflicting or inconsistent with the terms and conditions herein.
- 2. All taxes and excises of any nature whatsoever now or hereafter levied by any governmental authority, whether federal, state, or local, upon the sales, use, or transportation of any goods to Buyer shall be paid and borne by the Buyer.
- 3. All transportation costs and expenses for the delivery of any goods delivered by Seller to Buyer shall be for the account of Buyer. The number of net tons of goods delivered by Seller hereunder shall be determined as follows: (i) if delivered in railroad cars, the net weight of each carload shall be the difference between the gross and tare weight of the car and the gross weight shall be established by the carrier's bill of lading or weigh bill, or at Buyer's option and expense, by light weighing the car; or (ii) if delivered by trucks, the net weight of each truck load shall be the difference between the gross and light weight of the truck.. Seller shall establish the gross and light weights by weighing the truck on certified truck scales, which shall be shown on bills of lading, weigh bills or scale records.
- 4. Title to all goods sold and delivered to Buyer shall pass to Buyer upon delivery thereof to carrier. Delivery to carrier shall constitute delivery to Buyer and thereafter all risk of loss shall be borne by Buyer. Any claim by Buyer against Seller for shortage or damage occurring prior to such delivery shall be made within five (5) days after Buyer's receipt of such goods and shall be accompanied by an original transportation bill signed by the carrier which shall state that the carrier received goods from Seller in the condition claimed. In the event there is a claim against a carrier for shortage or damage occurring after such delivery or for transportation overcharges, Buyer may, and at Seller's request shall, forward such claim to Seller for processing with carrier, together with the original paid transportation bill signed by carrier and noting the shortage or damage if such is claimed. Buyer hereby agrees that Seller's responsibility shall be limited to crediting Buyer only to such adjustments in price as are allowed by carrier to Seller, and to which Buyer under the terms hereof is entitled.
- 5. Seller warrants that the goods sold to Buyer shall conform to the specifications, if any, attached hereto. SELLER MAKES NO FURTHER WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY INTENDED USE OR PURPOSE.

Seller is only selling such right or title to the goods being sold as Seller may have on the date on which Buyer requested delivery of the goods and disclaims any warranty of title to the goods. Buyer, in furnishing specifications to Seller, agrees to indemnify and hold Seller harmless against

any claims by way of infringement or the like that arise out of compliance with the specifications. Seller has made no affirmation of fact or promise relating to the goods being sold that has become any basis of this bargain. Further, Seller has made no affirmation of fact or promise relating to the goods being sold that has become any basis of this bargain. Further, Seller has made no affirmation of fact or promise relating to the goods being sold that has become any basis of this bargain. Further, Seller has made no affirmation of fact or promise relating to the goods being sold that has created or amounted to an express warranty that the goods would conform to any such affirmation or promise.

The goods described in this agreement are sold on an "as is" basis, and Seller disclaims any implied warranties with respect to the goods, except for any express warranties which are contained in this paragraph.

Seller shall not be liable for incidental or consequential losses, damages, or expenses, directly or indirectly arising from the sale, handling, or use of the goods, or from any other cause relating thereto, and Seller's liability hereunder in any case is expressly limited to the replacement (in the form originally shipped) of goods not complying with applicable specifications, or, at Seller's election of the repayment of crediting Buyer with, an amount equal to the purchase price of such goods, whether such claims are for breach of warranty or negligence. Buyer hereby agrees to indemnify and hold Seller harmless for any incidental or consequential losses, damages, or expenses, directly or indirectly arising from Buyer's sale, handling, or use of the goods, or from any other cause relating thereto.

Any claim by Buyer with reference to the goods sold hereunder for any cause shall be deemed waived by the Buyer unless submitted to Seller in writing ten (10) days from the date Buyer received such goods or in the case of a breach of the express warranty under Paragraph 6 hereof within ninety (90) days from the date Buyer received such goods.

Seller shall not be liable under the express warranty contained in this Paragraph if any loss or damage is caused by improper application or use of the goods or if the goods are not applied and used according to the Seller's current printed directions and specifications free copies of which are available to Buyer or any other third party upon request.

- 6. Seller reserves the right to require payment for the goods in advance or satisfactory security, if the financial responsibility of Buyer becomes unsatisfactory to Seller, as determined by Seller in its sole discretion. If Buyer fails to make payment or fails to comply with any provisions hereof, Seller may, at its option, in addition to other remedies, cancel any unshipped portion of its order, and all sums owing from Buyer to Seller shall forthwith at Seller's option become due and payable, and Seller may bring an action at law or equity for any or all sums due or to become due from Buyer to Seller; and Buyer shall be liable to Seller for all of Seller's costs of collection, including, but not limited to, reasonable attorneys' fees, prejudgment interest at the maximum rate which the law allows, and post judgment interest at the maximum rate which the law allows. The exercise of any rights hereunder shall not be deemed a waiver by Seller of any other existing rights which Seller may have under applicable laws.
- 7. If the performance of any obligation of Seller hereunder is prevented, hindered or delayed by reason of acts of God or the public enemy; accidents, fires or floods; strikes, work stoppages, slowdowns; shortage of cars, fuel, electric power or labor; delays in transportation; plant closure; compliance with any governmental order or regulation; inability to obtain on reasonably acceptable terms any public or private license, permit or other authorization; curtailment or suspension of activities to remedy or avoid an actual or alleged, present or prospective enforcement of federal, state or local environmental standards; or any other similar or dissimilar contingency beyond the control of

Seller, then Seller shall be excused from such performance during the continuance of such contingency; provided that Seller notifies Buyer as promptly as is reasonably possible (i) of Seller's inability to perform and (ii) when, in Seller's reasonable judgment, full performance is likely to be resumed.

- 8. If extraordinary circumstances beyond the Seller's reasonable control significantly increase Seller's cost of performance of its obligations hereunder, upon the request of Seller, the parties shall adjust the conditions of related to Seller's obligations hereunder in order to reasonably alleviate the effect of such extraordinary circumstances. If the parties do not reach an agreement with regard to adjusted conditions occasioned by such extraordinary circumstances within thirty (30) days following the Seller's notification of the request, then Seller shall have the right, at its sole discretion, to terminate any obligation to Buyer upon thirty (30) days' notice to Buyer.
- 9. The purchase price shall be adjusted for all costs incurred by Seller hereunder in order to comply with any Federal, State or local law, regulation or order enacted, changed or amended after the date of the placement of any order by Buyer including, without limitation, fuel and other taxes, laws, regulations or orders relating to health, safety, conservation, reclamation, environmental protection, pollution control and air, water and soil standards but specifically excluding any and all income taxes. In the event that any Federal, State or local law, regulation or order is enacted, changed or amended after the date of the placement of any order by Buyer, Seller shall determine the cost per ton of goods sold hereuner to Seller in order to comply with such laws, regulations or orders and advise Buyer of such costs, verified by adequate supporting documentation. The amount so determined shall be added to the purchase price as an adjustment to become effective as and when such costs are incurred by Seller.
- 10. Buyer acknowledges and agrees that it is purchasing the goods from Seller for use in its operations, and that Buyer will not resell the goods to third parties at any time without the express written consent of Seller.
- 11. Buyer may not return either goods or orders or both once accepted by Buyer without Seller's prior written consent. If Seller consents to the return of goods hereunder, a cancellation fee shall be charged to Buyer in an amount equaling the total costs to Seller to restock such returned goods.
- 12. Unless otherwise stated, where bagged products are quoted or sold by weight, the weight shown shall include the containers.
- 13. Seller's obligation to perform hereunder is subject to the availability of goods sold hereunder at Seller's plant at the time shipment is required, and, in the event of shortage, Seller shall be obligated to sell and deliver only Buyer's pro rata share of goods available.
- 14. Prices quoted on annual contracts, if accepted within thirty (30) days by Buyer, shall be subject to revision unilaterally by Seller upon Seller's written notice thirty (30) days prior to the effective date of such revision.
- 15. Buyer shall not disclose any information related to the transaction between Buyer and Seller to any person, except to Seller's personnel as may reasonably be necessary to enable Seller to exercise its rights and perform its obligations. Notwithstanding the foregoing, Buyer may disclose any confidential information to the extent that disclosure is compelled in connection with legal or government proceedings or requests, or if the Buyer is required to report or disclose such confidential information by law or pursuant to the rules or regulations of any regulatory authority

having jurisdiction over the Buyer; provided, however, that should such disclosure be compelled or reporting required, the Buyer shall give notice to the Seller, as promptly as is reasonably practicable, before any such disclosure or reporting in order to permit the Seller to contest such disclosure or reporting.

- 16. Buyer and Seller acknowledge that the transaction contemplated hereunder bears a reasonable relation to the State of Arizona and agree that the internal law, and not the law of conflicts, of the State of Arizona will govern the rights and duties of Buyer and Seller hereunder. The Buyer and Seller specifically intend that the provisions of the Arizona Uniform Commercial Code shall control all aspects of the transaction between Buyer and Seller and its interpretation, and that all definitions contained in the Arizona Uniform Commercial Code shall be applicable here except when expressly provided otherwise herein.
- 17. These Standard Terms and Conditions reflect the negotiations of the Buyer and Seller. Language used herein shall be deemed to be the language chosen by the Buyer and Seller to express their mutual intent and no rule of strict construction shall be applied.
- 18. Whenever possible, each provision herein shall be interpreted in such a manner as to be effective and valid under applicable law; but if any provision herein is held to be prohibited by or invalid under applicable law, such prohibition or invalidity shall be effective only to the extent of such prohibition or invalidity without invalidating the remainder of the agreement between Buyer and Seller.
- 19. Buyer shall not assign any rights or obligations hereunder without Seller's prior written consent. The transaction between Buyer and Seller shall inure to the benefit of and be binding upon the Buyer and Seller and their respective permitted successors and assigns.

From:	Brereton, Robert
To:	Minchow, Kristina
Subject:	Re: Chemical Quote update
Date:	Thursday, May 30, 2019 1:33:27 AM
Attachments:	image001.png
	image001.png

EXTERNAL EMAIL

Hello Kristina, Pricing has increased slightly in 2019. For the 8182.15 the updated price is \$3.36/lb and for the 8131.15 it is \$0.93/lb. (.15 is our package code for drums) Let me know if you need any additional info.

Best regards, Robert Brereton Global Mining-M2 208-848-6237

On May 29, 2019, at 10:23 AM, Minchow, Kristina <<u>Kristina_Minchow@golder.com</u>> wrote:

Caution: This email originated from outside of the organization. **DO NOT CLICK** on links or open attachments unless you recognize the sender and know the content is safe.

Robert,

My colleague Choolwe passed along your contact information.

Rolf helped us back in September providing a budgetary prices for a flocculant and coagulant. For an estimate on a similar project, can you tell us if the price of these chemicals (quote attached) has changed at all?

Flocculant 8182 aka 8872 is \$3.29/lb in 55 gallon drums Coagulant 8131 is \$ 0.85/lb in 55 gallon drums

Thank you very much, Kristina

<!--[if !vml]--><image003.jpg><!--[endif]-->**Kristina Minchow** *Environmental Process Engineer*

44 Union Boulevard, Suite 300, Lakewood, Colorado, USA 80228 T: +1 303 980-0540 | D: +1 303 980-0540 x20552 | golder.com LinkedIn | Facebook | Twitter

Work Safe, Home Safe

This email transmission is confidential and may contain proprietary information for the exclusive use of the intended recipient. Any use, distribution or copying of this transmission, other than by the intended recipient, is strictly prohibited. If you are not the intended recipient, please notify the sender and delete all copies. Electronic media is susceptible to unauthorized modification, deterioration, and incompatibility. Accordingly, the electronic media version of any work product may not be relied upon.

Golder and the G logo are trademarks of Golder Associates Corporation

Please consider the environment before printing this email.

<O&M Tab 2 - Flocculent.pdf>

CONFIDENTIALITY NOTICE: This e-mail communication and any attachments may contain proprietary and privileged information for the use of the designated recipients named above. Any unauthorized review, use, disclosure or distribution is prohibited. If you are not the intended recipient, please contact the sender by reply e-mail and destroy all copies of the original message.

From:	<u>Amanda Billingsley</u>
То:	Minchow, Kristina; Candy Fitzgerald
Cc:	bridgette.hendrick@golder.com
Subject:	RE: HCL price
Date:	Wednesday, May 29, 2019 11:55:37 AM
Attachments:	image002.png

Hi Kristina,

Product costs have not changed since October. You can still use the quote of 0.21# for bulk HCL 35%.

Thank you,

Amanda Billingsley Commercial Support Lead - Energy Univar Solutions Office 801-933-6140

From: Minchow, Kristina <Kristina_Minchow@golder.com>
Sent: Wednesday, May 29, 2019 11:01 AM
To: Amanda Billingsley <amanda.billingsley@UnivarSolutions.com>; Candy Fitzgerald
<candy.fitzgerald@UnivarSolutions.com>
Cc: bridgette.hendrick@golder.com
Subject: FW: HCL price

CAUTION: External email. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Amanda and Candy,

My original email to Tom bounced back. Can either of you help me with this estimate?

We were going to use the cost you provided us in October for an estimate on a similar project, can you tell us if the price of bulk HCl has changed at all?

The approximate delivery location would be the same, Silver City, NM.

Thank you very much, Kristina From: Tom Carroll <<u>tom.carroll@univar.com</u>> Sent: Monday, October 1, 2018 1:57 PM To: Hendricks, Bridgette <<u>Bridgette_Hendricks@golder.com</u>> Cc: Amanda Billingsley <<u>amanda.billingsley@univar.com</u>>; Candy Fitzgerald <<u>candy.fitzgerald@univar.com</u>> Subject: RE: HCL price Hi Bridgette

HCL Totes HYDROCHLORIC ACID 31% 20B 2600.0000 LB TK .3350/# FOB delivered

HCL Bulk HCL 35% 22BE TECH LIQ 1 LB LB BULK .21/# 45,000# Truck Loads FOB Delivered

Thank you for the opportunity to quote on your chemical requirements

Tom Carroll Account Manager Univar Mining 19450 Hwy. 249, 3rd Floor, Houston, TX 77070 **O** 602 272 3272 **M** 602-684-7019 <u>Tom.Carroll@univarusa.com</u>

From: Candy Fitzgerald
Sent: Friday, September 28, 2018 11:25 AM
To: Tom Carroll
Cc: <u>bridgette_hendricks@golder.com</u>; Amanda Billingsley
Subject: FW: HCL price

Good Morning Tom,

Please quote Bridgette for a load of HCL delivering to Silver City New Mexico. She would like pricing on both bulk and totes.

Thanks and have a great day!

2018 Year of the CUSTOMER

Candy Fitzgerald Customer Service Lead Univar Phoenix, AZ. T (602) 455-4032

From: Hendricks, Bridgette [mailto:Bridgette Hendricks@golder.com] Sent: Friday, September 28, 2018 7:12 AM To: Candy Fitzgerald Subject: HCL price

Hi Candy,

I got your name from Alex Nowak at our office. I need a price for HCl delivered to Silver City New Mexico (zip code 88041). We're undecided yet whether we would use totes or bulk HCl at a usage of about 2 totes per week. Can you give me pricing for both totes and bulk delivery for concentrated HCl and also let me know what concentration.

Thanks for your help and let me know if you need additional information. Bridgette

Bridgette Hendricks, MsChE Senior Engineer

44 Union Boulevard, Suite 300, Lakewood, Colorado, USA 80228 **T:** +1 303 980-0540 | **D:** +1 303 980-0540 x20636 | <u>golder.com</u> <u>LinkedIn</u> | <u>Facebook</u> | <u>Twitter</u>

Work Safe, Home Safe

This email transmission is confidential and may contain proprietary information for the exclusive use of the intended recipient. Any use, distribution or copying of this transmission, other than by the intended recipient, is strictly prohibited. If you are not the intended recipient, please notify the sender and delete all copies. Electronic media is susceptible to unauthorized modification, deterioration, and incompatibility. Accordingly, the electronic media version of any work product may not be relied upon.

Golder and the G logo are trademarks of Golder Associates Corporation

Please consider the environment before printing this email.

From:	Minchow, Kristina
To:	Hendricks, Bridgette
Cc:	Elizabeth Travis (Elizabeth Travis@golder.com)
Subject:	FW: Cost Estimation Southwest NM Water Treatment - Freight Estimate
Date:	Monday, June 17, 2019 10:10:00 AM
Attachments:	image003.png image004.png <u>RSImage</u>

Assuming the size of the shipment and the confirmation of prices from October 2018, the new shipping cost adds approximately \$0.15 to the cost per pound. Adjusted costs are listed below and added to the overall spreadsheet.

MF High pH Cleaning		\$	2019 Avista quote - pail price (assume bimonthly
Chemicals (\$/lb)	=	3.53	cleaning during high flows)
MF Low pH Cleaning		\$	2019 Avista quote - pail price (assume bimonthly
Chemicals (\$/lb)	=	3.53	cleaning during high flows)
RO High pH Cleaning		\$	2019 Avista quote - pail price (assume quarterly
Chemicals (\$/lb)	=	7.52	cleaning during high flows)
RO Low pH Cleaning		\$	2019 Avista quote - pail price (assume quarterly
Chemicals (\$/lb)	=	6.44	cleaning during high flows)
		\$	
Biocide (\$/lb)	=	8.15	2019 Avista quote - tote price
		\$	
Antiscalant (\$/lb)	=	3.09	2019 Avista quote - tote price

-Kristina

From: Cheddy Tobias <ctobias@avistatech.com>

Sent: Tuesday, May 28, 2019 4:04 PM

To: Minchow, Kristina <Kristina_Minchow@golder.com>; Stuart Leak <sleak@avistatech.com>

Cc: Rob Goodlett <rgoodlett@avistatech.com>; Hendricks, Bridgette <Bridgette_Hendricks@golder.com>; Travis,

Elizabeth <Elizabeth_Travis@golder.com>; Orders at Avista Technologies <orders@avistatech.com>

Subject: RE: Cost Estimation Southwest NM Water Treatment - Freight Estimate

EXTERNAL EMAIL

Hello Kristina,

Stuart Leak asked that an updated freight estimate be provided.

Freight estimate for 1 tote of Vitec 7000, 24 pails of cleaner and 1 tote of DB20 to ship from our CA warehouse 92069 to NM 88065 is \$898.14 with a 3 business day transit via SAIA Quote#7862049. Please list quote number on applicable PO submitted.

Prepay and add freight quotes are estimates only provided by the carrier based on information available at the time. The actual freight charges reflected on our invoice may be different and will be based on the amount charged to Avista by the carrier.

Let us know if additional is needed.

Thanks and regards,

Cheddy Tobias Inside Sales O. +1 760.744.0536 ext. 124 avistatech.com

The contents of this email and/or its attachments may contain confidential or proprietary information of Avista Technologies, Inc., and are intended solely for the use of the individual to whom it is addressed. Any views or opinions expressed herein are solely those of the author and do not necessarily represent those of Avista. AVISTA is a registered trademark of Avista Technologies, Inc. Information regarding additional trademarks and intellectual property held by the corporation can be found at: https://www.avistatech.com/disclaimer

From: Minchow, Kristina <<u>Kristina_Minchow@golder.com</u>>
Sent: Tuesday, May 28, 2019 9:58 AM
To: Stuart Leak <<u>sleak@avistatech.com</u>>
Cc: Rob Goodlett <<u>rgoodlett@avistatech.com</u>>; Cheddy Tobias <<u>ctobias@avistatech.com</u>>; Hendricks, Bridgette
<<u>Bridgette_Hendricks@golder.com</u>>; Travis, Elizabeth <<u>Elizabeth_Travis@golder.com</u>>
Subject: RE: Cost Estimation Southwest NM Water Treatment

Good Morning Stuart,

We were going to use the costs you provided us (see communication below) in October for an estimate on a similar project, can you tell us if the price of membrane chemicals has changed at all?

The approximate delivery location would be the similar, Silver City, NM 88065.

Thank you very much for your help, Kristina

Kristina Minchow Environmental Process Engineer

44 Union Boulevard, Suite 300, Lakewood, Colorado, USA 80228 T: +1 303 980-0540 | D: +1 303 980-0540 x20552 | golder.com LinkedIn | Facebook | Twitter

Work Safe, Home Safe

This email transmission is confidential and may contain proprietary information for the exclusive use of the intended recipient. Any use, distribution or copying of this transmission, other than by the intended recipient, is strictly prohibited. If you are not the intended recipient, please notify the sender and delete all copies. Electronic media is susceptible to unauthorized modification, deterioration, and incompatibility. Accordingly, the electronic media version of any work product may not be relied upon.

Golder and the G logo are trademarks of Golder Associates Corporation

Please consider the environment before printing this email.

Hello Alex,

Thank you for checking with Avista for budgetary estimates for the upcoming business, please keep in mind that these are estimates and we will need additional information to properly asses the site cost. Another note, Avista's antiscalant is typically injected between 2-3 ppm which can equate to ½ the chemical usage of other manufactures and our cleaners typically mix at a 2% Solution. This will all depend on the feed water and the severity of foulant on the membranes.

Freight estimates to ship product from our CA warehouse 92069 to NM 88036 is as follows via SAIA with a 3 day

transit:

- 1. To ship all of below in one shipment = \$1,077.53
- To ship one tote of Vitec 7000 = \$522.64
 2500 lb tote @ \$2.94 suggested retail.
- To ship one pallet of 24 pails of cleaner = \$276.20
 45lb pails MF high/low cleaner \$3.38 lb. suggested retail
 45lb pail RO low cleaner \$6.29 lb. suggested retail
 45lb pail RO high cleaner \$7.37 lb. suggested retail
- To ship one tote of biocide = \$463.48
 2500 lb tote@ \$8.00 lb. suggested retail

Please let me know if you need any additional information or if there is any other application we are able to offer our support with.

Thank you and have a great day.

Best Regards,

Stuart Leak

Applications and Sales

Avista Technologies, Inc. 140 Bosstick Boulevard San Marcos, California 92069

 Tel.
 +1.760.744.0536

 Cell
 +1.936.245.2482

 Fax.
 +1.760.744.0619

 sleak@avistatech.com

 www.avistatech.com

Creative Chemistry. Smart Solutions.

A trusted expert in membrane system chemistry and global process support.

• REVERSE OSMOSIS • MICRO/ULTRA FILTRATION • MULTIMEDIA FILTRATION

The contents of this email and/or its attachments may contain confidential or proprietary information of Avista Technologies, Inc., and are intended solely for the use of the individual to whom it is addressed. Any views or opinions expressed herein are solely those of the author and do not necessarily represent those of Avista. AVISTA is a registered trademark of Avista Technologies, Inc. Information regarding additional trademarks and intellectual property held by the corporation can be found at: <u>http://www.avistatech.com/disclaimer.htm</u>.

From: Nowak, Alex <<u>Alex_Nowak@golder.com</u>>
Sent: Thursday, October 4, 2018 5:05 PM

To: Stuart Leak <<u>sleak@avistatech.com</u>>; Rob Goodlett <<u>rgoodlett@avistatech.com</u>> Subject: Cost Estimation Southwest NM Water Treatment

Hello!

Thanks again for giving the seminar at Golder last week. I did come across a few items I was hoping you could assist me with or at least point me in the right direction. We are assembling quotes for a water treatment plant (focused on sulfate removal) that will be located near Silver City, NM and were hoping you had an idea of cost per pound+freight estimations for:

1. RO Antiscalant

2. MF/RO cleaning agents

3. Biocide

I don't need time consuming quotes for this, more of a high level budgetary estimate of commonly sold products, but let me know if you do need further detail to provide the information.

Best,

Alex Nowak Water Treatment Operations Engineer

44 Union Boulevard, Suite 300, Lakewood, Colorado, USA 80228 T: +1 303 980-0540 | golder.com LinkedIn | Facebook | Twitter

Work Safe, Home Safe

This email transmission is confidential and may contain proprietary information for the exclusive use of the intended recipient. Any use, distribution or copying of this transmission, other than by the intended recipient, is strictly prohibited. If you are not the intended recipient, please notify the sender and delete all copies. Electronic media is susceptible to unauthorized modification, deterioration, and incompatibility. Accordingly, the electronic media version of any work product may not be relied upon.

Golder and the G logo are trademarks of Golder Associates Corporation

Please consider the environment before printing this email.

HALL ENVIRONMENTAL ANALYSIS LABORATORY			TEL:	Environmental Analysis Laborato 4901 Hawkins N Albuquerque, NM 871 505-345-3975 FAX: 505-345-41 ebsite: www.hallenvironmental.co	QUOT Quote#: Date:	ATION 1480 10/5/2018		
Company:	Golder Associates			Project:	Water	Quality Testin	g	
Contact:	Alex Nowak			TAT:	5 wor	king days		
Address:	44 Union Blvd STE 30	0		QC Level:	LEVE	EL II		
Phone:	Lakewood, CO 80228			Project Manager: Sales Rep: Quote Expires:	Andy 12/31	Freeman		
Fax:				Quote Expires.	12/31	/2019		
Item Desc	cription	Test	Matrix	Remarks	Qty	Unit Price		Total
EPA Metho	d 300.0: Anions	E300	Aqueous	Cl, NO3, F, SO4	1	70.00		70.00
SM2320B:	Alkalinity	SM2320B	Aqueous		1	25.00		25.00
SM2540C N	MOD: Total Dissolved S	M2540C	Aqueous		1	25.00		25.00
EPA Metho	d 200.7: Metals	E200.7	Aqueous	Ca, Mg, Na, K, Al, Cd, Cr, Co, Fe, Mn, Mo, Ni, Ag, V, Zn	1	203.00		203.00
EPA 200.8:	Metals	E200.8	Aqueous	As, Cu, Pb, Se	1	80.00		80.00
							Sub Total:	\$403.00
							Misc:	\$0.00
							Surcharge:	0%

TOTAL: \$403.00

Sincerely,

Julie Bell

Jackie Bolte Administration Phone: 505-345-3975 Email: jnb@hallenvironmental.com

Terms and Conditions:

Hall Environmental Analysis Laboratory (HEAL) will provide all sampling containers, coolers, chains of custody and labels. A standard data deliverables package and QC package will be provided with this report, including lab spikes and lab spike duplicates. NM State tax has not been included in this quotation. Thank you, for the opportunity to bid on this project. Please feel free to call with any questions (505) 345-3975.. Invoices can be paid via Visa, Master Card, American Express, Company Check or Cash.

ATTACHMENT B4

Water Conveyance Materials and Cost Backup Details

Tab 1: Water Management Variables Evaporative Treatmentand Water Conveyance Systems

Description	Variable
RSMeans NM Discount Rate	0.847
Polyethylene Tank Life Expectancy (yr)	50
Steel Tank Life Expectancy (yr)	50
Lined Pond Life Expectancy (yr)	30
Pump Life Expectancy (yr)	20
HDPE Pipeline Life Expectancy (yr)	100
Reclamation Start Year (End of Year 2014)	0
Reclamation Finished (End of Year 2031)	17
Vegetation Established Assume stormwater released	12
Short-Term Evaporative Treatment System Start Year (Beginning of Year 2015)	1
Short-Term Evaporative Treatment System Finish Year (End of Year 2023)	9
Long-Term Evaporative Treatment System Start Year (Beginning of Year 2024)	10
Long-Term Evaporative Treatment System Finish Year (End of Year 2114)	100
TTS Water Treatment System Start Year (Beginning of Year 2029)	15
TTS Water Treatment System Finish Year (End of Year 2114)	100

Tab 2: WATER TREATMENT CONVEYANCE SYSTEM - CAPEX at Start of TTS (Beginning of Year 15 Following Closure) Rev. 1

Pipelines and Pumps	CAPEX and Replacement Schedule

From	То	Length (ft)	Max Flow (gpm)	Replacement Material	Nom. Replacement Pipe Size (in)	e Replacement Exist Pipe Schedule Pipe			CAPEX	Comments	Assumed Age at Start of TTS (Yr 15)	1st Relacement Year	2nd Relacement Year	3rd Relacement Year	4th Relacement Year	5th Relacemer Year
								Low TDS ansd Sulfat	e Sources to TTS		,					
Main Pit	SX/EW PLS Feed Pond	13,800	693	HDPE PE4710	8	11	/es \$15.66	\$216,108	\$0	RS Means bare costs for materials and installation (Line No. 331413350300)	25	90	NA	NA	NA	NA
Pit Interceptor Wells	TTS	14,600	300	HDPE PE4710	6	17	No \$10.93	\$159,578	\$159,578	RS Means bare costs for materials and installation (Line No. 331413350200)	0	NA	NA	NA	NA	NA
Copper Mountain Pit	North Racket Sump	1758	37	HDPE PE4710	2	9	/es \$6.45	\$11,339	\$0	RS Means bare costs for materials and installation, based on a curve fit of individual bare rate costs for pipe sizes provided in RS Means (Line No's. 331413350100 through 331413350900)	25	90	NA	NA	NA	NA
North Racket Sump	SX/EW PLS Feed Pond	13923	37	HDPE PE4710	2	9	/es \$6.45	\$89,803	\$0		25	90	NA	NA	NA	NA
Gettysburg Pit	Gettysburg Highwall Tank	1369	60	HDPE PE4710	2	9	/es \$6.45	\$8,830	\$0	RS Means bare costs for materials and installation, based on a curve fit of individual bare rate costs for pipe sizes provided in RS Means (Line No's. 331413350100 through	25	90	NA	NA	NA	NA
Gettysburg Highwall Tank	EM Booster	2788	60	HDPE PE4710	2	9 `	res \$6.45	\$17,983	\$0	331413350900)	25	90	NA	NA	NA	NA
Savanna Pit	EM Booster	2277	11.2	HDPE PE4710	2	9	/es \$6.45	\$14,687	\$0		25	90	NA	NA	NA	NA
EM Booster	SX/EW PLS Feed Pond	14500	71.2	HDPE PE4710	2	9	/es \$6.45	\$93,525	\$0		25	90	NA	NA	NA	NA
1X1 Pond	No.3 PLS Overflow/No. 3 AST	14765	9.9	HDPE PE4710	2	17	/es \$6.45	\$95,234	\$0		25	90	NA	NA	NA	NA
No. 3 Stockpile New Collection N. 6 Cnyn. 7 No. 3 Stockpile New Collection N. 6		1884	2.71	HDPE PE4710	2	17	/es \$6.45	\$12,152	\$0		25	90	NA	NA	NA	NA
No. 3 Stockpile New Collection N. Cnyn. 10-11	of No.3 PLS Overflow/No. 3 AST	5025	1.86	HDPE PE4710	2	17	/es \$6.45	\$32,411	\$0	RS Means bare costs for materials and installation, based on a curve fit of individual bare rate costs for pipe sizes provided in RS Means (Line No's. 331413350100 through 331413350900)	n <u>25</u>	90	NA	NA	NA	NA
No.3 PLS Overflow/No. 3 AST	SX/EW PLS Feed Pond	6045	14.47	HDPE PE4710	2	9	/es \$6.45	\$38,990	\$0	331413330900)	25	90	NA	NA	NA	NA
Oak Grove Pond	1A AST Overflow Pond	11470	3.3	HDPE PE4710	2	17	res \$6.45	\$73,982	\$0		25	90	NA	NA	NA	NA
Oak Grove/Brick Kiln Pumpback Systems	1A AST Overflow Pond	5295	0.6	HDPE PE4710	2	17	/es \$6.45	\$34,153	\$0	RS Means bare costs for materials and installation, based on a curve fit of individual bare rate costs for pipe sizes provided in RS Means (Line No's. 331413350100 through		90	NA	NA	NA	NA
Future OGW Collection Trench	1A AST Overflow Pond	6744	31	HDPE PE4710	2	17	/es \$6.45	\$43,499	\$43,499	331413350900)	8	NA	NA	NA	NA	NA
Future 1C Stockpile Area Extractio System		2190	50	HDPE PE4710			/es \$6.45	\$14,126	\$14,126		8	NA	NA	NA	NA	NA
1A AST Overflow Pond	1B PLS Overflow Pond	3958	84.9	HDPE PE4710	4	17	/es \$6.70	\$26,519	\$0	RS Means bare costs for materials and installation (Line No. 331413350100)	25	90	NA	NA	NA	NA
1B PLS Overflow Pond	SX/EW PLS Feed Pond	23419	84.9	HDPE PE4710	4	9	/es \$6.77	\$158,547	\$0		25	90	NA	NA	NA	NA
				•	•	Total	Piping:	\$1,141,464	\$217,202							

Created by: Arielle Dobrowolski Checked by: Wade Wang Approved by: JP Wu Revised by: Todd Stein (4/14/2020)

181-06417

Tab 2: WATER TREATMENT CONVEYANCE SYSTEM - CAPEX at Start of TTS (Beginning of Year 15 Following Closure) Rev. 1

Pumps	5

From	То	Quantity	Design Flow Rate (gpm)	Total Head (ft)	Assumed Motor Rating, hp	Material Cost	Total Material	Installation Cost	Total Installed Direct Cost	CAPEX	Comments	Assumed Age at Start of TTS (Yr 15)	1st Relacement Year	2nd Relacement Year	3rd Relacement Year	4th Relacement Year	5th Relacem Year
Main Pit	SX/EW PLS Feed Pond	2	450	1200	75	\$38,960	\$77,920	\$17,913									
									\$95,833	\$95,833		0	35	55	75	95	NA
Pit Interceptor Wells	TTS	4	320	1300	30	\$21,008	\$84,032	\$9,852	\$93,884	\$93,884	-	0	35	55	75	95	NA
Copper Mountain Pit	North Racket Sump	1	50	300	5	\$12,560	\$12,560	\$6,269	\$18,829	\$18,829	-	0	35	55	75	95	NA
North Racket Sump	SX/EW PLS Feed Pond	1	50	550	5	\$12,560	\$12,560	\$6,269	\$18,829	\$18,829	Sump pump estimate based on historical database of actual pump costs on various	0	35	55	75	95	NA
Gettysburg Pit	Gettysburg Highwall Tank	1	100	470	15	\$15,728	\$15,728	\$6,269	\$21,997	\$21,997	Golder projects. Unit hours required to install each pump were taken from Estimator	0	35	55	75	95	NA
Gettysburg Highwall Tank	EM Booster	1	80	560	15	\$15,728	\$15,728	\$6,269	\$21,997	\$21,997	Piping Man-Hour Manual Book, based on pump horse power. \$85/hr was used for	0	35	55	75	95	NA
Savanna Pit	EM Booster	1	15	400	5	\$12,560	\$12,560	\$6,269	\$18,829	\$18,829	labor rate.	0	35	55	75	95	NA
EM Booster	SX/EW PLS Feed Pond	1	80	460	15	\$15,728	\$15,728	\$6,269	\$21,997	\$21,997		0	35	55	75	95	NA
1X1 Pond	No.3 PLS Overflow/No. 3 AST	1	16	75	1	\$7,500	\$7,500	\$6,269	\$13,769	\$0		5	30	50	70	90	NA
o. 3 Stockpile New Collection N. of Cnyn. 7	AST	5	5	200	0.5	\$7,500	\$37,500	\$6,269	\$43,769	\$0		5	30	50	70	90	NA
o. 3 Stockpile New Collection N. of Cnyn. 10-11	No.3 PLS Overflow/No. 3 AST	7	5	230	0.5	\$7,500	\$52,500	\$6,269	\$58,769	\$0		5	30	50	70	90	NA
No.3 PLS Overflow/No. 3 AST	SX/EW PLS Feed Pond	1	50	611	5	\$12,560	\$12,560	\$6,269	\$18,829	\$18,829		0	35	55	75	95	NA
Oak Grove Pond	1A AST Overflow Pond	0	50	NA	NA	\$0	\$0	\$0	\$0	\$0	Gravity System						NA
Oak Grove/Brick Kiln Pumpback Systems	1A AST Overflow Pond	4	5	70	0.5	\$7,500	\$30,000	\$6,269	\$36,269	\$0	Sump pump estimate based on historical database of actual pump costs on various Golder projects. Unit hours required to install each pump were taken from Estimator	5	30	50	70	90	NA
Future OGW Collection Trench	1A AST Overflow Pond	1	45	70	1	\$7,500	\$7,500	\$6,269	\$13,769	\$13,769	Piping Man-Hour Manual Book, based on pump horse power. \$85/hr was used for	8	27	47	67	87	NA
uture 1C Stockpile Area Extraction System	1A AST Overflow Pond	1	62	50	1	\$7,500	\$7,500	\$6,269	\$13,769	\$13,769	labor rate.	8	27	47	67	87	NA
A AST Overflow Pond	1B PLS Overflow Pond	1	100	141	10	\$15,000	\$15,000	\$9,852	\$24,852	\$24,852	1	0	35	55	75	95	NA
B PLS Overflow Pond	SX/EW PLS Feed Pond	1	100	512	15	\$15,728	\$15,728	\$6,269	\$21,997	\$21,997		0	35	55	75	95	NA
							Total										
				~			Pumps:		\$557,992	\$405,414							

ALLOWANCE FOR MINOR MECHANICAL, ELECTRICAL, INSTRUMENTATION, AND UNDEFINED SCOPE (5%): TOTAL DIRECT COST:

TOTAL CONSTRUCTION COST:

Notes:

Pump Life Expectancy – 20 years

HDPE Pipeline Life Expectancy – 100 years

NA - Not applicable

Pump Life Expectancy – 20 years

HDPE Pipeline Life Expectancy – 100 years

NA - Not applicable

Pump estimates derived from averages of previous quotes with similar specifications in Golder pump database.
 Installation cost of pump assumes labor cost of \$85/hr using Flour Estimating manual to calculate number of hours based on pump size. Crane equipment cost of \$146/day is added assuming a 4 man crew.
 Golder assumes any pump motor above 70hp to be a centrifugal pump and any below 70hp a vertical submersible pump.

Created by: Arielle Dobrowolski Checked by: Wade Wang Approved by: JP Wu Revised by: Todd Stein (4/14/2020)

Ş557,992	\$405,414
\$84,973	\$31,131
\$1,784,428	\$653,747
\$1,785,000	\$654,000

181-06417

Tab 3: WATER TREATMENT CONVEYANCE SYSTEM - CAPEX at Start of TTS (Beginning of Year 15 Following Closure) Rev. 1

Reservoirs and Tanks CAPEX and Replacement Schedule

		New/Replacement	New/Replacement	New/Replacement	Assumed Age at Start		1st Relacement	2nd Relacement	3rd Relacement
Reservoir/Tank ID	Current Size (ac)	Size (ac)	Size (sf)	Cost	of TTS (Yr 15)	CAPEX	Year	Year	Year
1X1 Pond	0.75	0.75	32,670	\$ 48,352	25		20	50	80
SX/EW PLS Feed Pond	0.34	0.34	14,810	\$ 21,919	25		20	50	80
New AST for 3A Seepage Water (No. 3 AST)	NA	NA	NA	\$ 32,000	6	\$32,000	9	59	NA
1A AST Overflow Pond	1.0	1.0	43,560	\$ 64,469	25		20	50	80
1B PLS Overflow Pond	1.37	1.37	59,677	\$ 88,322	25		20	50	80
Oak Grove Pond	0.25	0.25	10,890	\$ 16,117	25		20	50	80
1 AST Overflow Pond	0.12	0.12	5,227	\$ 7,736	25		20	50	80
				New/Replacement	Assumed Age at Start		1st Relacement	2nd Relacement	3rd Relacement
Well	Depth (ft)	Number of Wells	Total Footage (ft)	Cost	of TTS (Yr 15)	CAPEX	Year	Year	Year
Pit Interceptor Wells	220	4	880	\$ 59,629	0	\$ 59,629	NA	NA	NA
Total for Complete System:				\$ 338,544		\$ 32,000	Yr 9	-	
Notes:						\$ 59,629	Yr14		
Heavy Duty Plastic Tank Life Expectancy (yr)	50								
Steel Tank Life Expectancy (yr)	50								
Lined Pond Life Expectancy (yr)	30								
Well Drilling and Installation	67.76	\$/FT			preadsheet "20190501_1 0-310519531300(1500 s				g systems HDPE,
80 mil Geomembrane Liner	\$ 1.48 \$/SF 100,000 S.F. or more, 80 mil thick, per S.F.								

Norwesco 20000 Gallon Heavy Duty Vertical Liquid Storage Tank July 2019 online quote (\$24,000 = assumed \$3,000 shipping and \$5,000 installation. Total = \$32,000)

Created by: Todd Stein Date:

Tuuu	Stein
4/14	/2020

Tabl 4: TTS Treated Water DischargeSystem - CAPEX Rev.1

Pipeline

From	То	Length (ft)	Material	Nom. Pipe Size ² (in)	Pipe Schedule	Material and Installation Unit Cost ^{1,2}	Total Installed Direct Cost	Comments
	Tributary Arroyo to Mangas Wash between the 3A Leach Stockpile and the reclaimed 1 Series Tailing Impoundment	2900	HDPE PE4710	14	DR17	\$31.78		RS Means bare costs for materials and installation (Line No. 331413350600) open shop, Las Cruces, 2019 Q2.

Tank

Locatio	on	Quantity	Total Retention Time (min)	Retention Volume (gal)	Tank height (ft)	Tank Diameter (ft)	Material Cost	Installation Cost	Total Installed Direct Cost	Comments
TTS Water Treatment P	lant	1	0	0	0	0	\$66,867	\$37,016	\$103,883	Carbon Steel Tank estimate based on historical data (Tank material + installation cost = 86,606 in 2013), escalated 3% per year up to the EOY 2018

Articulated Concrete Block (ACB) Energy Dissipation Structure (costs and energy dissipation details from Telesto Earthworks reclamation cost estimate)

Location	Component	Area (sf)	Volume (cf)	Unit Cost ³	Total Installed Direct Cost	Comments
	70T ACB	500		\$10.65	\$5,325	
	Installation	500		\$4.63	\$2,315	
Tributary Arroyo to Mangas Wash between the 3A Stockpile and the reclaimed 1	40T ACB	600		\$7.42	\$4,452	See Telesto's Downdrain Unit Cost Detail Sheet for the 2019 Chino CCP Update Revision for Additional Specifications
Series Tailing Impoundment	Installation	600		\$4.63	\$2,778	
	Cutoff Wall (cast in-place concrete)		14	\$254.97	\$3,570	
Grand Total:	1		1		\$18,440	•
OTAL DIRECT COST:					\$214,4	484

TOTAL CONSTRUCTION COST:

Notes:

1. Pipe material cost based on \$1.3 per lb

2. Piping and energy dissipator structure sized for estimated flows plus a 30% contingency.

3. Quote from Contech ES 2018; Downdrain ACB installation includes fine grade base/subgrade soils (assuming subgrade at + 0.5 ft); equipment is D6 LGP dozer with Power Angle Tilt Blade (PAT) and GPS Blade Control

Created by: Arielle Dobrowolski Checked by: Wade Wang Approved by: JP Wu **Revised:** T. Stein (4/14/2020)

Note: Originally developed for the Chino CCP Update and modified for the TTS

\$214,490

Tab 5: Energy Dissipation Structure Cost Estimate Details

From Telesto Solutions, Inc, Chino CCP Reclamation Cost Estimate

Rough Grade																						
					Sol	Production	Centroid to Centroid			Work											_	
			_	Grade	Weight	Method/Hade	Push	Production		Hour			Transmission						Dater Co		Fuel Cost	Total Excavation
Tack Description Excessite	Equipment Cat DSST CD	Productivity (cg/hr) 1781	Material Factor ⁸	Factor®	(b/cy) 2900	Factor	Distance [®] (R 175	(cy/hr) 1851	Rector ⁸ 0.75	(min/hr) 50	Factor ⁸	Fector ⁴	Factor 1.0	(cy/ft) 1.9	(hrs/fit) 0.000		Cost (S/hr) 2 \$254.44		(S/hr) 1 S2811		5/10	Cost (5/11)
Waste	Cat DEST CD	1781	13	1.6	2900	1.0	175	1851	0.75	50	1.0	1.0	1.0	1.9	0.005					85 0.952188	1 0.086975	\$0.44
																				\$0.6		
Rokh Grade & Place ACB																						
	Area	Cost																				
	(d/ħ)	(5/4)	\$/ h																			
Downdrain ACBs	25	\$7.42	\$280.02																			
installation ⁴	25	54.68	\$548.58																			
		ACB Cost/Tt	\$879.55	1																		
Total 0	Downdrain Cost (5/11)		\$174.38							1	¥.	NAMES.	e la	w	BOWNDAM	1	V.					
										111	\sim	CLARK C	NAMES	100		and the second	SHIFF					
Place ACR										1 to 1	내비	HILL .		31		871F	HHUDA					
		Unit		1						COMPA	CTED CRAME	anut	Thur	11111111	in III	HTT CARON	LOVED SUBSTAD	w.				
Discipater ACRs	Acea (cf)	Cost (5/cf)	side										3 1 1 		11111111							
201 ⁴	820	\$10.45	\$8,408.00																			
installation ⁴	820	\$4.63	\$1,481.60									878/4	AU TYPICAL	DOWNDRA	IN SECTION	1						
ear*	506	\$7.42	\$8,754.52										004		and the set of Public	-						
installation ⁴	506	S4.63 ACB Cost per Dissipater	\$2,342.78 \$10,886.90																			
		And the per consignment	0.00,000.00																			
Install Cutoff Wall	cubic yard	S/cable yard																				
Cutoff Wall (cast in place concrete) Rimeans (2019)	Subic yere	\$ 254.97	\$/dissipater* \$3,569.58																			
Total Di	Assignator Cost (5/each)		\$14,556.48												SILTING	1- 10						
South STS2	(*) 6474	(**)	ł																			
Main LB South LB West	0 9299 0 4498	0 4 0 4									0	CONCRETE		AL CUTTOFF	WALL SEC	non_						
South LB West NW	9299 0 4492 0	4									0	CONCRETE		AL CUTTOFF	WALLSEC	ION						
South LB West NW LH NS	9299 0 4498	4 0 4 0 0 0									0	CONCRETE		AL CUTTOFF	WALL SEC	TION						
South LB West NW LH NS N	9299 0 4498 0 0	4									0	CONCRETE		AL CUTTOFF	WALL SEC	10N						
South LB West NW LH NS	9299 0 4498 0 0 0	4 0 4 0 0 0										CONCRETE		AL CUTTOFF	*	ION						
South 18 West NW LH N XA Santa Hts Upper South	9096 0 4498 0 0 0 0 0 0	4 0 4 0 0 0 0 0 0									0	CONCRETE		AL CUITOF	WALL SEC	ION						
South Lik West NW Lik NS N 2A Santa Rts	\$296 0 4483 0 0 0 0 0 0 0 0 0 0	4 0 4 0 0 0 0 0 0 0 0								000		CONCRETE		AL CUTTOF	*	<u>10N</u>						
South 18 West NW LH NS Santa Ris Lipper South Triangle Aufforr TP2	\$299 0 44992 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 4 0 0 0 0 0 0 0 0 0 0 0 0 0										CONCRETE		AL CUTTOF	*							
South 18 West NW LH NS Sat Santa Na Ubger South Trangle Adflow	9296 0 4482 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 9 9 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										CONCRETE		AL CUITOF			in the second seco					
South 18 West NW LH NS Santa Ris Lipper South Triangle Aufforr TP2	\$299 0 44992 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 4 0 0 0 0 0 0 0 0 0 0 0 0 0										CONCRETE			A		A					
South LB Wetz NW LX NE N South RD Opper South Trangle AllSow TP7 TP-GW & TP-65 DOWND RAIN	9296 0 4482 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 9 9 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1								CONCRETE			÷		25					
South IB West NW LR NS South Rts Upper South Trangle Authow TP TP-GW & TP-65	9298 0 44884 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		l								CONCRETE			÷		25					
South 18 Wetz Wetz Wetz Wetz Wetz Wetz Wetz Wetz	9296 0 4992 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 9 9 9 9 9 9 9 9 9 9 9 9 9	HCIV	-								CONCRETE					-					
South LB Wetz NW LX NE N South RD Opper South Trangle AllSow TP7 TP-GW & TP-65 DOWND RAIN	9298 0 44884 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	HEIV HEIV R														-					
South 18 Wetz Wetz Wetz Wetz Wetz Wetz Wetz Wetz	2266 0 2280 22866 Laft Side Sidepa ⁶ Left Side Sidepa ⁶ Left Side Sidepa ⁶ Left Side Sidepa ⁶	4 4 9 9 9 9 9 9 9 9 9 9 9 9 9	n an	-																		
South LB Wetz NW LX NE N South RD Opper South Trangle AllSow TP7 TP-GW & TP-65 DOWND RAIN	2286 0 4493 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2280 2286 2286 2286 2286 2286	4 9 9 9 9 9 9 9 9 9 9 9 9 9	H IV R R d																			
South LB Wetz NW LX NE N South RD Opper South Trangle AllSow TP7 TP-GW & TP-65 DOWND RAIN	2266 0 2280 22866 Laft Side Sidepa ⁶ Left Side Sidepa ⁶ Left Side Sidepa ⁶ Left Side Sidepa ⁶	4 4 9 9 9 9 9 9 9 9 9 9 9 9 9	n an																			
South LB Wetz NW LX NE N South RD Opper South Trangle AllSow TP7 TP-GW & TP-65 DOWND RAIN	2286 0 4493 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2280 2286 2286 2286 2286 2286	4 9 9 9 9 9 9 9 9 9 9 9 9 9	H IV R R d			Court Wal ¹⁴			1													
South 18 Wet NV LR NV LR NS N South Rts Upper South Trangle Aufflow TP TP TP-SVR TIP-65 DOWNDRAIN Elemensions:	2286 0 4493 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2280 2286 2286 2286 2286 2286	4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0	H:IV ft ft d d Surface Area 2	Surface Area 2	Toral	Cross-Sectional Area	Thickness	Volume]													
South 18 Wet NV LR NV LR NS N South Rts Upper South Trangle Aufflow TP TP TP ONV & TP-65 DOWNDRAIN Demensions: DISSIPATIES	2286 0 4493 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2280 2286 2286 2286 2286 2286	4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0	H:IV ft ft d d Surface Area 2	Area 3		Cross-Sectional Area	Thickness															
South 18 Wet NV LR NV LR NS N South Rts Upper South Trangle Aufflow TP TP TP-SVR TIP-65 DOWNDRAIN Elemensions:	2286 0 4493 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2280 2286 2286 2286 2286 2286	4 0 0 0 0 0 0 0 0 0 0 0 0 0	H:DV tt df df Surface Ame 2 (ef) 200	Area 3 (4) 253 253	(4) 835 835	Cross-Sectional Area (4) 350 350	Thickness (Pi) 1.5	(cy) 34 34														
South 18 Wet NV LR NV LR NS N South Rts Upper South Trangle Aufflow TP TP TP ONV & TP-65 DOWNDRAIN Demensions: DISSIPATIES	2286 0 4493 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2280 2286 2286 2286 2286 2286	4 4 9 9 9 9 9 9 9 9 9 9 9 9 9	H:3V ft ft d surface Area 2 (4) 200 200 200	Area 3 (4) 253 253 253	(4) 825 825 825	Cross-Sectional Area (4) 250 250 250 250	Thickness (N) 1.5 1.5 1.5	(ky) 34 34 34														
South 18 Wet NV LR NV LR NS N South Rts Upper South Trangle Aufflow TP TP TP ONV & TP-65 DOWNDRAIN Demensions: DISSIPATIES	2286 0 4493 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2280 2286 2286 2286 2286 2286	4 0 0 0 0 0 0 0 0 0 0 0 0 0	H:DV tt df df Surface Ame 2 (ef) 200	Area 3 (4) 253 253	(if) 815 815 815 815 815	Cross-Sectional Area (4) 350 350	Thickness (R) 15 15 15 15 15	(cy) 34 34														
South LB Wetz NW LR NS South TR South TR Complex South TR TR-GW & TP-65 TP-6W & TP-65 DOM/NDRAIN Demensions: DISSEPATERS Main Lampbright Rockpile	2286 0 4493 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2280 2286 2286 2286 2286 2286	4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	H:1V R d d Surface Area 2 (A) 200 200 200 200 200 200 200 200 200 20	Area 3 (47) 253 253 253 253 253 253	(41) 815 815 815 825 825 815 815	Cross-Sectional Area (d) 350 250 250 250 250 250 250	Thickness (R) 15 15 15 15 15 15 15	(ky) 34 34 34 34 34 34 34														
South LB Wetz NW LR NS South TR South TR Complex South TR TR-GW & TP-65 TP-6W & TP-65 DOM/NDRAIN Demensions: DISSEPATERS Main Lampbright Rockpale	2286 0 4493 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2280 2286 2286 2286 2286 2286	4 4 9 9 9 9 9 9 9 9 9 9 9 9 9	H:3V ft d d Surface Ame 2 (4) 200 200 200 200 200	Area 2 (4) 253 253 253 253 253 253	(if) 815 815 815 815 815	Cross-Sectional Area (41) 250 250 250 250 250 250	Thickness (R) 15 15 15 15 15	(ky) 34 34 34 34 34 34 34														

Louote from Contech 65 2018; Downdrain ACB installation includes fine grade base/unligrade colis (assuming subgrade at + 0.5 %); equipment is D6 LGP doser with Power Angle TB: Blade [PAT] and GPS Blade Control
 Lota from Guider Takeoffs Spreadules (2018)
 Lota from Take and et of the Process Sammary SOW, Nov 2017 (Releted)
 Subst from Take is and et of the Process Sammary SOW, Nov 2017 (Releted)
 Subst from Take is and et of the Process Sammary SOW, Nov 2017 (Releted)
 Subst from Take is and et of the Process Sammary SOW, Nov 2017 (Releted)
 Subst from Take is and et of the Process Sammary SOW, Nov 2017 (Releted)
 Subst from Take is and et of the Process Sammary SOW.

181-06417

ATTACHMENT B5

Sludge and Salt Disposal Cost Backup Details

 Tab 1:

 Salt and Sludge Disposal Construction Cost Details

Stage	Line No.	Direct / Indirect	Item Name	Neat Qty	Qty UoM	Composite Cost/Unit	Composite Cost \$/UoM	Cost	
	1	2	3	4	5	6	7	8	
Sludge Disposal	Facility								
1000 Sitework					Sludge D	isposal Facility Sub-total:		\$142,305	
	1	Direct	Diversion Ditch	4,758	CY	\$ 1.25	\$/CY	\$5,948	
	2	Direct	Compact Surface (prep below sludge, evap, berm, ditch	1,303,656	SF	\$ 0.17	\$/SF	\$4,101	
	3	Direct	Evap Berm	4,111	CY		\$/CY	\$0	
	4	Direct	Evap Pond						
	4A	Direct	80-mil HDPE Liner	88,800	SF	\$ 1.48	\$/SF	\$131,424	
	4B	Direct	Anchor Trench	176	CY	\$ 4.72	\$/CY	\$832	
Salt Disposal Fac	ility								
3000 Sitework					Salt Dis	sposal Facility : Sub-total:		\$987,991	
	3	Direct	Evap Berm	3,208	CY	\$ 1.25	\$/CY	\$4,010	
	2	Direct	Compact Stockpile Surface (prep below salt, berm)	663,204	SF	\$ 0.17	\$/SF	\$2,086	
	4A	Direct	80-mil HDPE Liner	663,204	SF	\$ 1.48	\$/SF	\$981,542	
	4B	Direct	Anchor Trench	505	CY	\$ 4.72	\$/CY	\$353	
						Total:		\$1,130,296	

Tab 2: Rollup Cost Estimate Details For Sludge Disposal and Salt Disposal Facilities (Construction and Reclamation)

Stage	Line No.	Direct / Indirect	Item Name	Neat Qty	Qty UoM	Composite Cost/Unit	Composite Cost \$/UoM	Cost	
	1	2	3	4	5	6	7	8	
Sludge Disposal I	Facility								
1000 Sitework					Sludge Di	isposal Facility Sub-total:		\$350,503	
Construction	1	Direct	Diversion Ditch	4,758	CY	\$ 1.25	\$/CY	\$5,948	
Construction	2	Direct	Compact Surface (prep below sludge, evap, berm, ditch	1,303,656	SF	\$ 0.17	\$/SF	\$4,101	
Construction	3	Direct	Evap Berm	4,111	CY		\$/CY	\$0	
Reclamation	4	Direct	Cell #1					-	
Reclamation	5	Direct	Cover Pit Sludge Cell #1 (load & haul)	30,250	CY	\$ 1.00	\$/CY	\$39,628	
Reclamation	6	Direct	Cover Pit Sludge Cell #1 (spread)	6.3	AC	\$ 47.65	\$/AC	\$298	
Reclamation	7	Direct	Revegetate Sludge Cell #1	6.3	AC	\$ 823.97	\$/AC	\$5,150	
Reclamation	8	Direct	Maintain Sludge Cell #1 Vegetation	1.5	AC	\$ 823.97	\$/AC	\$1,236	
Reclamation	9	Direct	Cell #2					-	
Reclamation	10	Direct	Cover Pit Sludge Cell #2 (load & haul)	30,250	CY	\$ 1.00	\$/CY	\$39,628	
Reclamation	11	Direct	Cover Pit Sludge Cell #2 (spread)	6.3	AC	\$ 47.65	\$/AC	\$298	
Reclamation	12	Direct	Revegetate Sludge Cell #2	6.3	AC	\$ 823.97	\$/AC	\$5,150	
Reclamation	13	Direct	Maintain Sludge Cell #2 Vegetation	1.5	AC	\$ 823.97	\$/AC	\$1,236	
Reclamation	14	Direct	Cell #3					-	
Reclamation	15	Direct	Cover Pit Sludge Cell #3 (load & haul)	30,250	CY	\$ 1.00	\$/CY	\$39,628	
Reclamation	16	Direct	Cover Pit Sludge Cell #3 (spread)	6.3	AC	\$ 47.65	\$/AC	\$298	
Reclamation	17	Direct	Revegetate Sludge Cell #3	6.3	AC	\$ 823.97	\$/AC	\$5,150	
Reclamation	18	Direct	Maintain Sludge Cell #3 Vegetation	1.5	AC	\$ 823.97	\$/AC	\$1,236	
Reclamation	19	Direct	Cell #4					-	
Reclamation	20	Direct	Cover Pit Sludge Cell #4 (load & haul)	30,250	CY	\$ 1.00	\$/CY	\$39,628	
Reclamation	21	Direct	Cover Pit Sludge Cell #4 (spread)	6.3	AC	\$ 47.65	\$/AC	\$298	
Reclamation	22	Direct	Revegetate Sludge Cell #4	6.3	AC	\$ 823.97	\$/AC	\$5,150	
Reclamation	23	Direct	Maintain Sludge Cell #4 Vegetation	1.5	AC	\$ 823.97	\$/AC	\$1,236	
	24	Direct	Evap Pond					-	
Construction	25	Direct	80-mil HDPE Liner	88,800	SF	\$ 1.48	\$/SF	\$131,424	
Construction	26	Direct	Anchor Trench	176	CY	\$ 4.72	\$/CY	\$832	
Reclamation	27	Direct	Backfill Evap Pond to within 3 FT of Surface Prior to Cover	8,500	CY	\$ 1.00	\$/CY	\$8,494	
Reclamation	28	Direct	Grade Evap Pond Backfill	2.0	AC	\$ 47.65	\$/AC	\$97	
Reclamation	29	Direct	Cover Evap Pond (load & haul)	9,300	CY	\$ 1.00	\$/CY	\$12,183	
Reclamation	30	Direct	Cover Evap Pond (spread)	2.0	AC	\$ 47.65	\$/AC	\$97	
Reclamation	31	Direct	Revegetate Evap Pond	2.0	AC	\$ 823.97	\$/AC	\$1,680	
Reclamation	32	Direct	Maintain Vegetation	0.5	AC	\$ 823.97	\$/AC	\$403	

Cost Source / Remarks
9
\$142,305
Place ditch excavation to build berm
\$46,311
Assume 24% of initial acreage
\$46,311
Assume 24% of initial acreage
\$46,311
Assume 24% of initial acreage
\$46,311
φ 4 0,511
Assume 24% of initial acreage
\$23,786
Assume 24% of initial acreage

Tab 2: Rollup Cost Estimate Details For Sludge Disposal and Salt Disposal Facilities (Construction and Reclamation)

Stage	Line No.	Direct / Indirect	Item Name	Neat Qty	Qty UoM	Composite Cost/Unit	Composite Cost \$/UoM	Cost	
	1	2	3	4	5	6	7	8	
Salt Disposal Fac	ility								
3000 Sitework					Salt Dis	posal Facility : Sub-total:		\$1,102,837	
Construction	33	Direct	Evap Berm	3,208	CY	\$ 1.25	\$/CY	\$4,010	
Construction	34	Direct	Compact Stockpile Surface (prep below salt, berm)	663,204	SF	\$ 0.17	\$/SF	\$2,086	
Construction	35	Direct	80-mil HDPE Liner	663,204	SF	\$ 1.48	\$/SF	\$981,542	
Construction	36	Direct	Anchor Trench	505	CY	\$ 4.72	\$/CY	\$2,384	
Reclamation	37	Direct	Cell #1					-	
Reclamation	38	Direct	Cover Pit Sludge Cell #1 (load & haul)	18,422	CY	\$ 1.00	\$/CY	\$24,133	
Reclamation	39	Direct	Cover Pit Sludge Cell #1 (spread)	3.8	AC	\$ 47.65	\$/AC	\$181	
Reclamation	40	Direct	Revegetate Sludge Cell #1	3.8	AC	\$ 823.97	\$/AC	\$3,136	
Reclamation	41	Direct	Maintain Sludge Cell #1 Vegetation	0.9	AC	\$ 823.97	\$/AC	\$753	
Reclamation	42	Direct	Cell #2					-	
Reclamation	43	Direct	Cover Pit Sludge Cell #2 (load & haul)	18,422	CY	\$ 1.00	\$/CY	\$24,133	
Reclamation	44	Direct	Cover Pit Sludge Cell #2 (spread)	3.8	AC	\$ 47.65	\$/AC	\$181	
Reclamation	45	Direct	Revegetate Sludge Cell #2	3.8	AC	\$ 823.97	\$/AC	\$3,136	
Reclamation	46	Direct	Maintain Sludge Cell #2 Vegetation	0.9	AC	\$ 823.97	\$/AC	\$753	
Reclamation	47	Direct	Cell #3					-	
Reclamation	48	Direct	Cover Pit Sludge Cell #3 (load & haul)	18,422	CY	\$ 1.00	\$/CY	\$24,133	
Reclamation	49	Direct	Cover Pit Sludge Cell #3 (spread)	3.8	AC	\$ 47.65	\$/AC	\$181	
Reclamation	50	Direct	Revegetate Sludge Cell #3	3.8	AC	\$ 823.97	\$/AC	\$3,136	
Reclamation	51	Direct	Maintain Sludge Cell #3 Vegetation	0.9	AC	\$ 823.97	\$/AC	\$753	
Reclamation	52	Direct	Cell #4					-	
Reclamation	53	Direct	Cover Pit Sludge Cell #4 (load & haul)	18,422	CY	\$ 1.00	\$/CY	\$24,133	
Reclamation	54	Direct	Cover Pit Sludge Cell #4 (spread)	3.8	AC	\$ 47.65	\$/AC	\$181	
Reclamation	55	Direct	Revegetate Sludge Cell #4	3.8	AC	\$ 823.97	\$/AC	\$3,136	
Reclamation	56	Direct	Maintain Sludge Cell #4 Vegetation	0.9	AC	\$ 823.97	\$/AC	\$753	

Cost Source / Remarks
9
\$990,022
\$28,204
Assume 24% of initial acreage
\$28,204
Assume 24% of initial acreage
\$28,204
Assume 24% of initial acreage
\$28,204
Assume 24% of initial acreage

Tab 3 Unit Rate Buildups for Sludge Disposal and Salt Disposal Facilites

	Sludge Disposal Facility		Bare Rate	Unit of Measure	Reference	Comment
	Ditch Excavation / Berm F	Placement				
ſ					Second Quarter 2019 RS	
	Excavate	\$	1.	25 \$/CY	Means 312316420250	1000 CY per day, Excavating, bulk bank measure, 1-1/2 C.Y. capacity = 125 C.Y./hr, backhoe, hydr

Cover

•••••				
Load, Haul & Place				
Load/Haul	1.00	\$/LCY	Telesto 5/1/2019	From Telesto 20190501_Tyrone_Stockpile_Tailing_Earthwork_RCE_Unlocked.xlsm RCE cost sprea
Spread	\$ 47.65	\$/acre	Telesto 5/1/2019	From Telesto 20190501_Tyrone_Stockpile_Tailing_Earthwork_RCE_Unlocked.xlsm RCE cost sprea

Revegetation

Revegetate	\$ 823.97 \$/acre	Telesto 5/1/2019	From Telesto 20190501_Tyrone_Stockpile_Tailing_Earthwork_RCE_Unlocked.xlsm RCE cost spre

Surface Prep Evap Pond

	Compaction				
Γ				Second Quarter 2019 RS	
	Compaction	0.14	\$/ECY	Means 312323235060	Compaction, riding, vibrating roller, 2 passes, 12" lifts
	Water Truck	\$0.03	\$/ECY	Telesto 5/1/2019	From Telesto 20190501_Tyrone_Stockpile_Tailing_Earthwork_RCE_Unlocked.xlsm RCE cost sprea
_	Total	\$ 0.17	\$/ECY		

Geomembrane

ſ				Second Quarter 2019 RS	
				Means 310519531100-	
	80 mil	\$ 1.48	\$/SF	310519531300	RSMeans 2019 (1500 sf daily output), Pond and reservoir liners, membrane lining systems

Anchor Trench Fill

Excavate Trench					
Excavate	\$	3.93	\$/BCY	Second Quarter 2019 RS Means 2019312316130060	Excavating, trench or continuous footing, common earth, 1/2 C.Y. excavator, 1' to 4' deep,
Backfill:					
				Second Quarter 2019 RS	
Loader		0.35	\$/LCY	Means 312316430200	Excavating, large volume projects, 200,000 B.C.Y., 8 C.Y. bucket, loader, 110% fill factor, u
Compaction					
Compaction	\$	0.41	\$/ECY	Second Quarter 2019 RS Means 312323237200	Compaction, 2 passes, 21" wide,12" lifts, walk behind, vibrating plate
Water Truck		\$0.03	\$/ECY	Telesto 5/1/2019	From Telesto 20190501_Tyrone_Stockpile_Tailing_Earthwork_RCE_Unlocked.xlsm RCE cost sprea
Т	Fotal \$	4.72	\$/CY		

Geomembrane

			Second Quarter 2019 RS	
			Means 310519531100-	
80 mil	\$ 1.4	8 \$/SF	310519531300	RSMeans 2019 (1500 sf daily output), Pond and reservoir liners, membrane lining systems

Sludge Excavation and Disposal

Load, Haul & Place				
Excavate	0	\$/BCY	RS Means 312316466040	There would nt be any excavation associtaed with the sludge, would be directly loading from a stock
Load	\$ 0.28	\$/LCY	Telesto 5/1/2019	From Telesto 20190501_Tyrone_Stockpile_Tailing_Earthwork_RCE_Unlocked.xlsm RCE cost spre
Round Trip Haul Distan	9900			TTS to sludge disposal facility on top of the 3A Stockpile 4,950'*2 = 9,900'
Haul	0.79	\$/LCY	Telesto 5/1/2019	From Telesto 20190501_Tyrone_Stockpile_Tailing_Earthwork_RCE_Unlocked.xlsm RCE cost spre
			Second Quarter 2019 RS	
Place	1.96	\$/BCY	Means 312316465540	Excavating, bulk, dozer, open site, bank measure, common earth, 460 HP dozer, 150' haul
	\$ 3.03	\$/LCY		

ydraulic, crawler mounted, excluding truck loading

readsheet dated May 1, 2019, EarthSum Tab readsheet dated May 1, 2019, EarthSum Tab

preadsheet dated May 1, 2019, Unit Rates Tab

readsheet dated May 1, 2019, Equipment and EarthSum Tabs

ems HDPE, 100,000 S.F. or more, 80 mil thick, per S.F.

ep, excludes sheeting or dewatering

, unrestricted operation

readsheet dated May 1, 2019, Equipment and EarthSum Tabs

ms HDPE, 100,000 S.F. or more, 80 mil thick, per S.F.

ockpile or from a hopper. preadsheet dated May 1, 2019, Riprap_Gravel_UC Tab

preadsheet dated May 1, 2019, Riprap_Gravel_UC Tab

Tab 3

Unit Rate Buildups for Sludge Disposal and Salt Disposal Facilites

	Salt Disposal Facility		Bare Rate	Unit of Measure	Reference	Comment
	Ditch Excavation / Berm I	Placement				
ſ					Second Quarter 2019 RS	
	Excavate	\$	1.25	\$/CY	Means 312316420250	1000 CY per day, Excavating, bulk bank measure, 1-1/2 C.Y. capacity = 125 C.Y./hr, backhoe, hyd

Surface Prep Evap Pond

	Compaction				
Γ				Second Quarter 2019 RS	
	Compaction	0.14	\$/ECY	Means 312323235060	Compaction, riding, vibrating roller, 2 passes, 12" lifts
	Water Truck	\$0.03	\$/ECY	Telesto 5/1/2019	From Telesto 20190501_Tyrone_Stockpile_Tailing_Earthwork_RCE_Unlocked.xlsm RCE cost spre
-	Total	\$ 0.17	\$/ECY		

Anchor Trench Fill

Excavate Trench					
Excavate	\$	3.93	\$/BCY	Second Quarter 2019 RS Means 2019312316130060	Excavating, trench or continuous footing, common earth, 1/2 C.Y. excavator, 1' to 4' deep,
Backfill:					
				Second Quarter 2019 RS	
Loader		0.35	\$/LCY	Means 312316430200	Excavating, large volume projects, 200,000 B.C.Y., 8 C.Y. bucket, loader, 110% fill factor, u
Compaction					
				Second Quarter 2019 RS	
Compaction	\$	0.41	\$/ECY	Means 312323237200	Compaction, 2 passes, 21" wide,12" lifts, walk behind, vibrating plate
Water Truck		\$0.03	\$/ECY	Telesto 5/1/2019	From Telesto 20190501_Tyrone_Stockpile_Tailing_Earthwork_RCE_Unlocked.xlsm RCE cost sprea
	Total \$	4.72	\$/CY		

Geomembrane

			Second Quarter 2019 RS	
			Means 310519531100-	
80 mil	\$ 1.48	\$/SF	310519531300	RSMeans 2019 (1500 sf daily output), Pond and reservoir liners, membrane lining systems

Salt Excavation and Disposal

Load, Haul & Place				
Excavate	2.60	\$/BCY	Second Quarter 2019 RS Means 312316466040	Excavating, bulk, dozer, open site, bank measure, common earth, 700 HP dozer, 150' haul
Load	\$ 0.28	\$/LCY	Telesto 5/1/2019	From Telesto 20190501_Tyrone_Stockpile_Tailing_Earthwork_RCE_Unlocked.xlsm RCE cost sprea
Round Trip Haul Distan	4350			Average distance between Evap Pond #1 and SDF (1,600') and Evap Pond #2 and SDF (2,750') = 2
Haul	0.79	\$/LCY	Telesto 5/1/2019	From Telesto 20190501_Tyrone_Stockpile_Tailing_Earthwork_RCE_Unlocked.xlsm RCE cost sprea
Place	1.96	\$/BCY	Second Quarter 2019 RS Means 312316465540	Excavating, bulk, dozer, open site, bank measure, common earth, 460 HP dozer, 150' haul
	\$ 5.63	•	-	

Cover

Load, Haul & Place				
Load/Haul	1.00	\$/LCY	Telesto 5/1/2019	From Telesto 20190501_Tyrone_Stockpile_Tailing_Earthwork_RCE_Unlocked.xlsm RCE cost sprea
Spread	\$ 47.65	\$/acre	Telesto 5/1/2019	From Telesto 20190501_Tyrone_Stockpile_Tailing_Earthwork_RCE_Unlocked.xlsm RCE cost sprea

Revegetation				
Revegetate	\$ 823.97 \$	S/acre	Telesto 5/1/2019	From Telesto 20190501_Tyrone_Stockpile_Tailing_Earthwork_RCE_Unlocked.xlsm RCE cost spre

ydraulic, crawler mounted, excluding truck loading

preadsheet dated May 1, 2019, Equipment and EarthSum Tabs

p, excludes sheeting or dewatering

, unrestricted operation

readsheet dated May 1, 2019, Equipment and EarthSum Tabs

ns HDPE, 100,000 S.F. or more, 80 mil thick, per S.F.

readsheet dated May 1, 2019, Riprap_Gravel_UC Tab = 2,175^{**}2 = 4,350' readsheet dated May 1, 2019, Riprap_Gravel_UC Tab

readsheet dated May 1, 2019, EarthSum Tab readsheet dated May 1, 2019, EarthSum Tab

preadsheet dated May 1, 2019, Unit Rates Tab

Tab 4Calculating Quantities for Sludge Disposal and Salt Disposal FacilitiesSludge Disposal Facility Construction

Sludge Disposal Facility Construction			
3D SA of Sludge Top/Slopes	1,089,000	SE	End of life: surface area - top of sludge (25 acres)
3D 3A 01 3ludge 10p/3lopes	1,009,000	SE	Surface prep under SDF, prior to waste dumping
2D SA of Drop Bolow Sludge	1 090 000	eг	
3D SA of Prep Below Sludge	1,089,000		(25 acres)
Perimeter (ft)	4,370		Length around just the SDF
Haul Distance to Stockpile			
Haul Distance	8,000	FT	Haul Distance to 5A Stockpile from TTS
Evap Pond			
Graded SA HDPE (sqft)	88,800	SF	Prep SA before HDPE Liner under evap pond
Anchor trench (ft)	1,190	FT	Perimeter of pond
Anchor trench (ft)	176	CY	Assume 2' x 2' Anchor Trench
Ditch			3 feet deep, 2:1 side slope berm, 2 feet bottom width
X-sect Area (sqft)	29	SF	X-sectional area
Perimeter Length (ft)	4,370	FT	Length around SDF, empty into evap pond
Bottom length (ft)	15	FT	X-sectional top length of berm
Entire surface of ditch (sqft)	67,298		Aerial/overhead surface area of prep
Berm			3 feet high, 2:1 side slope berm
X-sect Area (sqft)	25	SF	X-sectional area
Perimeter Length (ft)	4,370		Length around entire SDF and Evap Pond
Top length (ft)	13	FT	X-sectional top length of berm
Entire surface area of berm (sqft)	58,558		Aerial/overhead surface area of prep

Calculating Quantities for Sludge Disposal and Salt Disposal Facilites

Sludge Disposal Facility Reclamation			
Structural Excavation			
Structural Backfill			
Diversion Ditch	4,758	CY	
Evap Berm	4,111	CY	
Cell #1			
Cover Pit Sludge Cell #1	30,250		
Revegetate Sludge Cell #1	6.3	AC	
Maintain Sludge Cell #1 Vegetation	1.5	AC	Assume 2% failure rate for 12 years
Cell #2			
Cover Pit Sludge Cell #2	30,250		
Revegetate Sludge Cell #2	6.3	AC	
Maintain Sludge Cell #2 Vegetation	1.5	AC	Assume 2% failure rate for 12 years
Cell #3			
Cover Pit Sludge Cell #3	30,250		
Revegetate Sludge Cell #3	6.3	AC	
Maintain Sludge Cell #3 Vegetation	1.5	AC	Assume 2% failure rate for 12 years
Cell #4			
Cover Pit Sludge Cell #4	30,250	CY	
Revegetate Sludge Cell #4	6.3	AC	
Maintain Sludge Cell #4 Vegetation		AC	Assume 2% failure rate for 12 years
Rip Stockpile Surface	1,303,656		
Compact Stockpile Surface	1,303,656	SF	
HDPE Liner	88,800	SF	
Anchor Trench	1,190	FT	
Backfill Evap Pond to within 3 feet of Surface Prior	8 500		
to Cover	8,500	CY	
Cover Evap Pond	9,300		
Revegetate Sludge Evap Pond		AC	
Maintain Sludge Cell #1 Vegetation	0.5	AC	Assume 2% failure rate for 12 years

Tab 4

Calculating Quantities for Sludge Disposal and Salt Disposal Facilites

Salt Disposal Facility Construction			
3D SA of Waste Top/Slopes (sqft)	663,204	SF	End of life: surface area - top of sludge
Perimeter (ft)	3,410	SF	Surface prep under SDF, prior to waste dumping
2D SA of Prep, salt and berm	663,204	SF	SDF only
	15.23	AC	
			Haul Distance to Upper South Stockpile from
Haul Distance	14,840	FT	Evaporation Pond #1
	Berm		3 feet high, 2:1 side slope berm
	-	05	
X-sect Area (sqft)		SF	X-sectional area
Length (ft)	3,410	FT	Length around entire Salt Disposal Facility

Salt Disposal Facility Reclamation			
Structural Excavation			
Structural Backfill			
Diversion Ditch	NA	CY	
Evap Berm	3,208	CY	
Cell #1			
Cover Pit Sludge Cell #1	18,422	CY	
Revegetate Sludge Cell #1	3.8		
Maintain Sludge Cell #1 Vegetation	0.9	AC	Assume 2% failure rate for 12 years
Cell #2			
Cover Pit Sludge Cell #2	18,422	CY	
Revegetate Sludge Cell #2	3.8	AC	
Maintain Sludge Cell #2 Vegetation	0.9	AC	Assume 2% failure rate for 12 years
Cell #3			
Cover Pit Sludge Cell #3	18,422		
Revegetate Sludge Cell #3	3.8	AC	
Maintain Sludge Cell #3 Vegetation	0.9	AC	Assume 2% failure rate for 12 years
Cell #4			
Cover Pit Sludge Cell #4	18,422		
Revegetate Sludge Cell #4	3.8		
Maintain Sludge Cell #4 Vegetation	0.9		Assume 2% failure rate for 12 years
Rip Stockpile Surface	663,204		
Compact Stockpile Surface	663,204	SF	
HDPE Liner for Disposal Facility	663,204		15.23 AC
Anchor Trench	3,410		
Anchor Trench	505	CY	Assume 2' x 2' Anchor Trench
Evap Pond	NA		
Cover Evap Pond	NA		
Revegetate Evap Pond	NA		
Maintain Vegetation	NA		
Maintain Evap Pond Vegetation (5%/yr for 5 yrs)	NA		

ATTACHMENT C

Water Management and Treatment Cost Estimate Tables

REV 0 July 29, 2019 18106417 Capital and O&M Cost Summary Table Tyrone Mine Closure Closeout Plan

SUMMARY BY SYSTEM

Indirect		Inputs
Capital Cost		30.0%
O&M Cost (commodities, labor routine maint, replacement)		17.5%
Capital Cost Elements		2019 Tyrone CCP Update
Short-Term Evaporative Treatment System (ETS)	\$	1,331,300
Long-Term ETS	\$	1,257,312
Tyrone Water Treatment System (TTS)	\$	7,232,445
Water Collection/Conveyance for TTS	\$	959,861
Sludge Disposal Facility for TTS	\$	142,305
Salt Disposal Facility for ETS	\$	990,022
Subtotal, Capital	\$	11,913,245
Indirect Costs, Capital	\$	3,573,974
Total, Capital	\$	15,487,219
O&M Costs - Commodities (Reagents, Analytical, Power)		
Short-Term ETS	\$	17,063,019
Long-Term ETS	\$	7,559,079
Tyrone Water Treatment System (TTS)	\$	100,303,736
Water Collection/Conveyance for TTS	\$	6,618,316
Sludge Disposal Facility for TTS	\$	-
Salt Disposal Facility for ETS	\$	-
Subtotal, O&M Commodities	\$	131,544,149
Indirect Costs, O&M Commodities	\$	23,020,226
Total, O&M Commodities	\$	154,564,375
O&M Costs - Replacement O&M, Routine Maintenance, Labo	or	
Short-Term ETS	\$	1,336,899
Long-Term ETS	\$	6,351,324
Tyrone Water Treatment System (TTS)	\$	105,570,872
Water Collection/Conveyance for TTS	\$	6,633,702
Sludge Disposal Facility for TTS	\$	5,142,346
Salt Disposal Facility for ETS	\$	7,352,255
Subtotal, Replacement O&M, Routine Maintenance, Labor	\$	132,387,399
Indirect Costs, Replacement O&M, Routine Maintenance, Labor	\$	23,167,795
Total, O&M Labor, Routine Maintenance	\$	155,555,194
Total, O&M	\$	310,119,569
Total, Capital and O&M in Current Costs	\$	325,606,787

REV 0 July 29, 2019 18106417

Project No.:

 Subject:
 Summary Cash Flow in Current Costs

 Project Short Title:
 Tyrone Mine Closure Closeout Plan

	Short-Term ETS Long-Term ETS						TTS		١	Water Conveyance		Sludge Disposal Facility		Salt Disposal Facility		у			Total	otal		
Year	Capital Power	Replacement O&M, Routine Maintenance, Labor	Capital		Replacement O&M, Routine Maintenance, Labor	Capital	Reagents, Analytical, Power	Replacement O&M, Routine Maintenance, Labor	Capital	Power	Replacement O&M, Routine Maintenance, Labor	Capital	Replacement O&M, Routine Maintenance, Labor	Capital	Replacement O&M, Routine Maintenance, Labor	Capital Cost Subtotal	Capital Cost Indirects	O&M Cost Subtotal (Reagents, Analytical, Power)	O&M Subtotal (Reagents, Analytical, Power) Indirects	O&M Subtotal (Replacement O&M, Routine Maintenance, Labor)	O&M Subtotal (Replacement O&M, Routine Maintenance, Labor) Indirects	Total Cost
0	\$	- \$ - 45 \$ 148,544		\$- \$-		\$ -	\$-	\$ -	\$ - \$ -	+	\$ -	<u>\$</u> -	\$ -	\$-	\$ -	\$ 1,331,300	\$ 399,390	\$ -	\$ -	\$ -	\$ -	\$ 1,730,690 \$ 2,408,484
2	\$ - \$ 2,570,3 \$ - \$ 2,741,9		\$ - \$ -	\$ - \$ -		\$	\$ <u>3,224</u> \$3,224	\$ -	\$ -	\$ - \$ -	\$- \$-	\$- \$-	\$- \$-	\$- \$-	\$ - \$-	<u> </u>	<u>\$</u> - \$-	\$ 2,573,569 \$ 2,745,140	\$ 450,375 \$ 480,399	\$ 148,544 \$ 148,544	\$25,995 \$25,995	\$ 3,198,484 \$ 3,400,079
Ŭ	\$ - \$ 2,476,1			\$-	\$ -	\$ - :	\$ 3,224	\$-	\$ -	\$ -	\$ -	\$ -	•	\$ -	\$ -	\$ -	\$-	\$ 2,479,410	\$ 433,897	\$ 148,544	\$ 25,995	\$ 3,087,847
i	<u>\$ - \$ 2,209,8</u> \$ - \$ 1,942,8			\$- \$-		<u>\$</u> -	\$3,224 \$3,224		<u>\$</u> - \$-	<u>\$</u> - \$-	<u>-</u> s -	<u>\$</u> -		\$ - \$-	<u>\$</u> - \$-	<u>\$</u> - \$-	<u>\$-</u> \$-	\$ 2,213,123 \$ 1,946,117	\$ 387,296 \$ 340.571	\$ 148,544 \$ 148,544	\$25,995 \$25,995	\$ 2,774,959 \$ 2,461,227
6	\$ - \$ 1,675,9	68 \$ 148,544		\$-		\$ -	\$ 3,224	\$ -	\$-	\$-	\$-	\$-	\$-	\$-	\$-	\$-	\$-	\$ 1,679,192	\$ 293,859	\$ 148,544	\$ 25,995	\$ 2,147,590
7	\$ <u>-</u> \$1,415,5 \$-\$1,148,5		\$ -	\$- \$-		\$ -	\$3,224 \$3,224		\$- \$-	\$ -	\$ -	\$ - \$ -	\$ -	\$ -	\$ -	\$ - ¢	<u>\$</u> -	\$ 1,418,727 \$ 1,151,801	\$ 248,277 \$ 201,565	\$ 148,544 \$ 148,544	\$ 25,995 \$ 25,995	\$ 1,841,544 \$ 1,527,906
9	\$ - \$ 881,7		\$ 709,540		\$ -	\$ -	\$ 3,224 \$ 3,224		\$ 32,000	\$ -	s - \$ -	3 - \$ -	*	\$ 990,022	3 - \$ -	\$ 1,731,562	\$ 519,469	\$ 884,955	\$ 154,867	\$ 148,544 \$ 148,544	\$ 25,995 \$ 25,995	\$ 3,465,393
10	\$ - \$	- \$ -	\$ -	\$ 502,203		\$ -	\$ 3,224		\$-	\$ -	\$-	\$-	\$-	\$-	\$ 528,543	\$ -	\$-	\$ 505,427	\$ 88,450	\$ 598,338	\$ 104,709	\$ 1,296,924
11	\$-\$ \$-\$	- \$ - - \$ -	\$- \$-	\$ 501,063 \$ 499,926	\$ 69,795 \$ 69,795	\$ - \$ -	\$ <u>3,224</u> \$3,224		\$ - \$-	\$ - \$ -	\$- \$-	<u>\$</u> - \$-	\$- \$-	\$- \$-	\$ 443,884 \$ 360,410	<u>\$</u> - \$-	<u>\$-</u> \$-	\$ 504,287 \$ 503,150	\$ 88,250 \$ 88,051	\$ 513,679 \$ 430,205	\$89,894 \$75,286	\$ 1,196,111 \$ 1,096,692
13	\$ - \$	- \$ -	\$ -	\$ 433,823	\$ 69,795	\$ -	\$ 1,612	\$-	\$ -	\$ -	\$ -	\$ -		\$ -	\$ 265,483	\$ -	\$-	\$ 435,435	\$ 76,201	\$ 335,278	\$ 58,674	\$ 905,588
14	<u>\$</u> - <u>\$</u>	- \$ - - \$ -	\$ 547,772	\$ 425,628 \$ 73,992	\$ 69,795 \$ 69,795	\$ 7,232,445	\$ 1,612 \$ 1,461,543	\$- \$1,430,816	\$ 927,861 \$	\$- \$87,682	\$- \$77,136	\$ 142,305 \$ -	\$- \$75,916	\$- \$-	\$ 187,774 \$ 79,942	\$ 8,850,383 \$ -	\$ 2,655,115 \$ -	\$ 427,240 \$ 1,623,217	\$ 74,767 \$ 284.063	\$ 257,569 \$ 1,733,605	\$ 45,074 \$ 303,381	\$ 12,310,148 \$ 3,944,267
16	\$ - \$	- \$ -	\$-	\$ 73,948	\$ 69,795	\$ -	\$ 1,446,858	\$ 1,430,816	\$ -	\$ 87,152	\$ 77,136	\$ -		\$ -	\$ 79,031	\$ -	\$ -	\$ 1,607,959	\$ 281,393	\$ 1,731,868	\$ 303,077	\$ 3,924,296
17	\$ <u>-</u> \$ \$-\$	- \$ - - \$ -		\$ 73,904 \$ 72,084		\$ -	\$ 1,432,309 \$ 1,417,891	\$ 1,430,816 \$ 1,430,816	\$ - ¢	\$ 86,625 \$ 86,099	\$ 77,136 \$ 77,136	\$ - \$		\$ - ¢	\$ 78,123 \$ 77,216	<u>\$</u> - \$-	\$ - ¢	\$ 1,592,838 \$ 1,576,074	\$ 278,747 \$ 275,813	\$ 1,730,140 \$ 1,728,423	\$ 302,775 \$ 302,474	\$ 3,904,500 \$ 3,882,784
18	\$- <u></u> \$-\$	- \$ -		\$ 72,084 \$ 72,040		\$ -	\$ 1,417,891 \$ 1,403,622	\$ 1,430,816 \$ 1,430,816	\$- \$-	\$ 85,576	\$ 77,136 \$ 77,136	\$ - \$ -		\$- \$-	\$ 76,312	\$ - \$-	• -	\$ 1,576,074 \$ 1,561,238	\$ 275,813 \$ 273,217	\$ 1,728,423 \$ 1,726,717	\$ 302,474 \$ 302,176	\$ 3,882,784 \$ 3,863,348
20	\$ - \$	- \$ -		\$ 70,220		\$ - 3	\$ 1,389,500	\$ 1,430,816	\$ -	\$ 85,056	\$ 77,136	\$-	φ 11,001	\$-	\$ 75,411	\$-	\$-	\$ 1,544,776	\$ 270,336	\$ 1,725,023	\$ 301,879	\$ 3,842,013
21	<u>\$-\$</u> \$-\$	- <u>\$</u> -		\$ 70,176 \$ 69,244		<u> </u>	\$ 1,375,846 \$ 1,363,073	\$ 1,430,816 \$ 1,430,816	\$ - \$ -	\$ 84,551 \$ 84,077	\$ 77,136 \$ 77,136	<u></u> - \$ -		\$- \$-	\$ 74,520 \$ 73.649	<u> </u>	<u>\$-</u> \$-	\$ 1,530,573 \$ 1,516,394	\$ 267,850 \$ 265,369	\$ 1,723,364 \$ 1,721,775	\$ 301,589 \$ 301,311	\$ 3,823,376 \$ 3,804,848
23	\$ - \$	- \$ -		\$ 68,312	\$ 69,795	\$ - 3	\$ 1,351,077	\$ 1,430,816	\$ -	\$ 83,632	\$ 77,136	\$ -	\$ 69,703	\$ -	\$ 72,796	\$ -	\$-	\$ 1,503,020	\$ 263,029	\$ 1,720,246	\$ 301,043	\$ 3,787,338
24 25	\$-\$ \$-\$	- <u>\$</u> -		\$ 68,268 \$ 67,336		\$ -	\$ 1,339,787 \$ 1,329,089	\$ 1,430,816 \$ 1,309,432	\$- \$-	\$ 83,213 \$ 82,815	\$ 77,136 \$ 77,136	<u>\$</u> - \$-	\$ 69,067 \$ 68,464	\$- \$-	\$ 71,959 \$ 71,134	<u>\$</u> - \$-	<u>\$-</u>	\$ 1,491,268 \$ 1,479,240	\$ 260,972 \$ 258,867	\$ 1,718,773 \$ 1,595,961	\$ 300,785 \$ 279,293	\$ 3,771,798 \$ 3,613,362
	\$ - \$	- \$ -		\$ 66,404		\$ -	\$ 1,318,926	\$ 1,309,432	\$ -	\$ 82,438	\$ 77,136	\$ -		\$-	\$ 70,322	\$ -	\$-	\$ 1,467,768	\$ 256,859	\$ 1,594,576	\$ 279,051	\$ 3,598,254
27	Ψ Ψ	- \$ -		\$ 66,360		\$ -	\$ 1,309,260	\$ 1,309,432	\$-	\$ 82,080	\$ 77,136	\$-		\$-	÷ ••,•=·	\$-	\$-	\$ 1,457,700	\$ 255,097	\$ 1,593,229	\$ 278,815	\$ 3,584,841
28	<u>\$-\$</u> \$-\$	- \$ - - \$ -		\$ 65,428 \$ 64,496	\$ 69,795 \$ 69,795	\$ - \$ -	\$ 1,300,056 \$ 1,291,280	\$ 1,309,432 \$ 1,309,432	\$ - \$ -	\$ 81,739 \$ 81,415	\$ 77,136 \$ 77,136	<u></u> -	\$ 66,825 \$ 66,328	\$- \$-	\$ 68,731 \$ 67,950	<u>\$</u> - \$-	<u>\$-</u> \$-	\$ 1,447,223 \$ 1,437,190	\$ 253,264 \$ 251,508	\$ 1,591,918 \$ 1,590,641	\$ 278,586 \$ 278,362	\$ 3,570,991 \$ 3,557,702
30		- \$ -		\$ 63,563	\$ 69,795	\$ -	\$ 1,282,906	\$ 1,309,432	\$ -	\$ 81,106	\$ 77,136	\$ -	\$ 65,855	\$ -	\$ 67,178	\$ -	\$-	\$ 1,427,576	\$ 249,826	\$ 1,589,395	\$ 278,144	\$ 3,544,941
31	\$-\$ \$-\$	- <u>\$</u> -		\$ 63,520 \$ 62,588	\$ 69,795 \$ 69,795	\$ - \$ -	\$ 1,274,893 \$ 1,267,210	\$ 1,309,432 \$ 1,309,432	\$ - \$ -	\$ 80,811 \$ 80,528	\$ 77,136 \$ 77,136	\$- \$-		\$- \$-	\$ 66,413 \$ 65,657	<u>\$</u> - \$-	<u>\$</u> - \$-	\$ 1,419,223 \$ 1.410.326	\$ 248,364 \$ 246,807	\$ 1,588,177 \$ 1,586,985	\$ 277,931 \$ 277,722	\$ 3,533,696 \$ 3,521,841
33	\$ - \$	- \$ -		\$ 62,588		\$ -	\$ 1,248,149	\$ 1,309,432	\$-	\$ 80,258	\$ 77,136	\$-		\$-		\$-	\$-	\$ 1,390,994	\$ 243,424	\$ 1,586,414	\$ 277,622	\$ 3,498,455
34	\$ <u>-</u> \$ \$-\$	- \$ -	Ŧ	\$ 62,588 \$ 62.588	\$ 69,795 \$ 69,795	\$ -	\$ 1,241,052 \$ 1,224,222	\$ 1,309,432 \$ 1,309,432	\$- \$-	\$ 79,997 \$ 79,748	\$ 77,136 \$ 77,136	\$ - \$ -	÷,	\$- \$-	\$ 65,356 \$ 65,215	\$ -	<u>\$</u> -	\$ 1,383,637 \$ 1,376,557	\$ 242,137 \$ 240,898	\$ 1,585,865 \$ 1,585,336	\$ 277,526 \$ 277,434	\$ 3,489,165 \$ 3,480,225
36	3 - 3 \$ - \$	- \$ -	,	\$ 62,588 \$ 61,699		\$ - :	\$ 1,234,222 \$ 1,227,632	\$ 1,309,432 \$ 1,309,432	\$ -	\$ 79,748 \$ 79,507	\$ 77,136	5 - \$-		\$ - \$ -	\$ 65,215 \$ 65,079	3 - \$-	3 - \$-	\$ 1,368,838	\$ 239,547	\$ 1,584,826	\$ 277,344	\$ 3,470,555
37	\$ - \$	- \$ -	\$-	\$ 61,699	• • • • • • •	\$ -	\$ 1,221,263	\$ 1,309,432	\$-	\$ 79,275	\$ 77,136	\$ -	+	\$-	\$ 64,948	\$ -	\$-	\$ 1,362,238	\$ 238,392	\$ 1,584,333	\$ 277,258	\$ 3,462,220
38	\$-\$ \$-\$	- <u>\$</u> -	\$ - \$-	\$ 61,699 \$ 61,699	\$ 69,795 \$ 69,795	\$ -	\$ 1,215,106 \$ 1,209,144	\$ 1,309,432 \$ 1,309,432	<u>\$</u> - \$-	\$ 79,052 \$ 78,836	\$ 77,136 \$ 77,136	<u>\$</u> - \$-	÷ •=;•:=	\$- \$-	\$ 64,822 \$ 64,700	<u> </u>	<u>\$-</u> \$-	\$ 1,355,857 \$ 1,349,679	\$ 237,275 \$ 236,194	\$ 1,583,856 \$ 1,583,395	\$ 277,175 \$ 277,094	\$ 3,454,163 \$ 3,446,362
40	\$ - \$	- \$ -		\$ 60,811	\$ 69,795	\$ -	\$ 1,203,369	\$ 1,309,432	\$-	\$ 78,627	\$ 77,136	\$-	\$ 62,004	\$-	\$ 64,582	\$-	\$-	\$ 1,342,806	\$ 234,991	\$ 1,582,948	\$ 277,016	\$ 3,437,762
41	\$-\$ \$\$	- \$ - - \$ -		\$ 60,811 \$ 60,811		\$	\$ 1,197,770 \$ 1,192,340	\$ 1,309,432 \$ 1,188,048	\$ - \$ -	\$ 78,425 \$ 78,229	\$ 77,136 \$ 77,136	<u>\$</u> - \$-	+ .,	\$- \$-	\$ 64,467 \$ 64,357	<u>\$</u> -	<u>\$</u> -	\$ 1,337,005 \$ 1,331,380	\$ 233,976 \$ 232,991	\$ 1,582,515 \$ 1,460,711	\$ 276,940 \$ 255,624	\$ 3,430,437 \$ 3,280,707
43	\$ - \$	- \$ -		\$ 60,811	\$ 69,795	\$ -	\$ 1,187,070	\$ 1,188,048	\$ -	\$ 78,040	\$ 77,136	\$ -		\$-	\$ 64,250	\$ -	\$- \$-	\$ 1,325,921	\$ 232,036	\$ 1,460,304	\$ 255,553	\$ 3,273,815
44	\$ - \$	- \$ -	\$-	\$ 60,811		\$ -	\$ 1,181,955	\$ 1,188,048	\$-	¥ /	\$ 77,136	\$-	• • • • • •	\$-	÷ • •,• • •	\$-	\$-	\$ 1,320,623	\$ 231,109	\$ 1,459,909	\$ 255,484	\$ 3,267,124
45	<u>ֆ - ֆ</u> Տ - Տ	- \$ - - \$ -	\$ - \$ -	\$ 60,811 \$ 59,922	\$ 69,795 \$ 69,795	\$ - \$ -	\$ 1,176,986 \$ 1,172,153	\$ 1,188,048 \$ 1,188,048	\$- \$-	\$ 77,679 \$ 77,507	\$ 77,136 \$ 77,136	<u>\$</u> - \$-	+	\$- \$-	\$ 64,046 \$ 63,948	<u>\$</u> - \$-	<u>\$</u> - \$-	\$ 1,315,476 \$ 1,309,582	\$ 230,208 \$ 229,177	\$ 1,459,525 \$ 1,459,151	\$255,417 \$255,351	\$ 3,260,626 \$ 3,253,261
47	\$ - \$	- \$ -		\$ 59,922	\$ 69,795	\$ -	\$ 1,167,455	\$ 1,188,048	\$-	\$ 77,340	\$ 77,136	\$ -	\$ 59,956	\$-	+	\$-	\$-	\$ 1,304,717	\$ 228,325	\$ 1,458,789	\$ 255,288	\$ 3,247,119
48	\$-\$ \$-\$	- <u>\$</u> -		\$ 59,922 \$ 59,922		ծ - Տ -	\$ 1,162,873 \$ 1,158,410	\$ 1,188,048 \$ 1,188,048	\$- \$-	\$ 77,177 \$ 77,019	\$ 77,136 \$ 77,136	\$- \$-		\$- \$-	\$ 63,761 \$ 63,672	<u> </u>	<u>ծ</u> - Տ-	\$ 1,299,972 \$ 1,295,352	\$ 227,495 \$ 226,687	\$ 1,458,435 \$ 1,458,090	\$ 255,226 \$ 255,166	\$ 3,241,128 \$ 3,235,294
50	\$ - \$	- \$ -		\$ 59,922	\$ 69,795	\$ -	\$ 1,152,588	\$ 1,188,048	\$-	\$ 76,798	\$ 77,136	\$-	\$ 59,111	\$-	\$ 63,548	\$ -	\$-	\$ 1,289,309	\$ 225,629	\$ 1,457,638	\$ 255,087	\$ 3,227,663
51	\$-\$ \$\$	- <u>\$</u> -	\$- \$-	\$ 59,034 \$ 59,034	\$ 69,795 \$ 69,795	<u>\$</u> -	\$ 1,146,385 \$ 1,142,954	\$ 1,188,048 \$ 1,188,048	\$ - \$ -	\$ 76,382 \$ 76,241	\$ 77,136 \$ 77,136	\$ - \$ -	\$ 58,825 \$ 58,635	<u>\$</u> - \$-	\$ 63,317 \$ 63,239	<u>\$</u> - \$-	<u>\$</u> -	\$ 1,281,802 \$ 1,278,229	\$ 224,315 \$ 223,690	\$ 1,457,121 \$ 1.456.853	\$254,996 \$254,949	\$ 3,218,234 \$ 3,213,721
53	\$ - \$	- \$ -	\$	\$ 59,034	\$ 69,795	\$ -	\$ 1,139,609	\$ 1,188,048	\$ -	\$ 76,103	\$ 77,136 \$ 77,136	\$ <u>-</u>	\$ 58,449	\$ -	\$ 63,163	\$ -	\$ <u>-</u>	\$ 1,274,746	\$ 223,090 \$ 223,081	\$ 1,456,591	\$ 254,949 \$ 254,903	\$ 3,209,321
54		- \$ -		\$ 59,034			+ .,,		\$ -	\$ 75,969 \$ 75,830	\$ 77,136 \$ 77,136	\$ -				\$ -	\$ -	\$ 1,271,354 \$ 1,268,047		\$ 1,456,336		\$ 3,205,036
55 56		- \$ - - \$ -		\$ 59,034 \$ 59,034		\$ - 1 \$ - 1			\$- \$-		\$ 77,136 \$ 77,136	\$- \$-	• • • • • • • • •			\$ - \$ -	<u>\$-</u> \$-	\$ 1,268,047 \$ 1,264,822		\$ 1,456,088 \$ 1,455,846		\$ 3,200,859 \$ 3,196,785
57	\$-\$	- \$ -	\$-	\$ 59,034	\$ 69,795	\$ - :	\$ 1,127,059	\$ 1,188,048	\$ -	\$ 75,587	\$ 77,136	\$ -	\$ 57,754	\$ -	\$ 62,877	\$ -	\$-	\$ 1,261,680	\$ 220,794	\$ 1,455,610	\$ 254,732	\$ 3,192,815
58 59	<u>\$</u> -\$ \$-\$	- \$ - - \$ -		\$ 58,145 \$ 58,145		\$ - \$ -			\$ - \$ -		\$ 77,136 \$ 77,136	<u>\$</u> - \$-		\$- \$-	\$ 62,810 \$ 62,745	<u>\$</u> - \$-	<u>\$-</u> \$-	\$ 1,257,724 \$ 1,254,730		\$ 1,455,379 \$ 1,455,155		\$ 3,187,896 \$ 3,184,114
60	\$-\$	- \$ -	\$ -	\$ 58,145	\$ 69,795	\$ -	\$ 1,118,436	\$ 1,188,048	\$ -	\$ 75,233	\$ 77,136	\$ -	\$ 57,276	\$-	\$ 62,681	\$ -	\$ <u>-</u>	\$ 1,251,815	\$ 219,068	\$ 1,454,936	\$ 254,614	\$ 3,180,432
61 62		- \$ - - \$ -		\$ 58,145 \$ 58,145					\$- \$-		\$ 77,136 \$ 77,136	\$- \$-				\$ - \$ -	\$ - ¢	\$ 1,248,961 \$ 1,246,177		\$ 1,454,721 \$ 1,454,512		\$ 3,176,826 \$ 3,173,310
63	\$-\$	- \$ -		\$ 58,145 \$ 58,145					\$- \$-			<u>\$</u> - \$-			\$ 62,558 \$ 62,499	\$ -	<u>\$</u> - \$-	\$ 1,246,177 \$ 1,243,458		\$ 1,454,512 \$ 1,454,308		\$ 3,173,310 \$ 3,169,875
64	\$ - \$	- \$ -		\$ 58,145	\$ 69,795	\$ - :	\$ 1,107,850	\$ 1,188,048	\$ -		\$ 77,136	\$ -	\$ 56,689	\$-	\$ 62,441	\$ -		\$ 1,240,796	\$ 217,139	\$ 1,454,108	\$ 254,469	\$ 3,166,512
65 66		- <u>\$</u> -		\$ 58,145 \$ 58,145		\$ - \$ -			\$- \$-		\$ 77,136 \$ 77,136	\$- \$-				<u>\$</u> - \$-	<u>\$-</u> \$-	\$ 1,238,199 \$ 1,235,662		\$ 1,453,913 \$ 1,453,723		\$ 3,163,232 \$ 3,160,028
67	\$-\$	- \$ -	\$ -	\$ 57,257	\$ 69,795	\$-	\$ 1,100,532	\$ 1,188,048	\$-	\$ 74,501	\$ 77,136	\$-	\$ 56,282	\$ -	\$ 62,276	\$ -	1	\$ 1,232,290	\$ 215,651	\$ 1,453,536	\$ 254,369	\$ 3,155,846
68 69	\$ - \$ \$ - \$	- <u>\$</u> - - \$-		\$ 57,257 \$ 57,257		\$ -	\$ 1,098,190 \$ 1,095,905		\$- \$-	\$ 74,405 \$ 74,312	\$ 77,136 \$ 77,136	\$- \$-				\$ - \$ -	Ŧ	\$ 1,229,853 \$ 1,227,475		\$ 1,453,354 \$ 1,453,175		\$ 3,152,767 \$ 3,149,763
03	Ψ	Ψ	Ψ	+ 01,207	- 00,700	Ψ -	φ 1,030,300	ψ 1,100,040	Ψ -	ψ 14,312	ψ 11,130	Ψ -	ψ 50,025	Ψ	ψ 02,171	Ψ	Ψ -	ψ 1,221,413	Ψ 214,000	ψ 1,400,170	φ 204,000	Ψ 3,1 1 3,103

direct Capital Cost O&M Cost (power, reagent O&M Cost (replacement Oa maintenance)

	Inputs
	30.0%
nts, analytical)	17.5%
D&M, labor, routine	17.5%

Project No.:

REV 0 July 29, 2019 18106417

 Subject:
 Summary Cash Flow in Current Costs

 Project Short Title:
 Tyrone Mine Closure Closeout Plan

Image: Proper in the section of the section		Short-Term ETS Long-Term ETS						TTS Water Conv					ice	Sludge Dis	posal Facility	Salt Disp	osal Facility				Total			
Yest Cupit Power Labor Cupit Party Labor Cupit Party							O&M, Routine			O&M, Routine			O&M, Routine		O&M, Routine		O&M, Routine			Subtotal (Reagents,	(Reagents,	(Replacement O&M, Routine	(Replacement O&M, Routine	
10 10 <th< th=""><th>Veer</th><th>A 1 1</th><th></th><th></th><th>A 1 1</th><th></th><th>,</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>,</th><th></th></th<>	Veer	A 1 1			A 1 1		,																,	
T S	rear	Capital	Power	Labor	Capital			Capital			^			Capital		^		Subtotal	Indirects					
2 3 5 5 67.27 5 67.27 5 77.38 5 77.38 5 77.38 5 6.023 3 5 5 1.200301 5 1.402.002 5 2.4101 5 1.441.20 5 1.441	70 3		۰ د					- <u>-</u>		· , · · , · ·	Ŷ			- -	+	•	ϕ $\phi = 0.000$	- с	<u>- c</u>	· / · /		• ,,		+ +,,
1 1 5 5 5 5 7.4 5 5 7.3 8 5 7.3 8 5 7.3 8 7.3 8 5 5 5 1.214.44 6 7.422.381 7.422.491 7.432.381 7.438 8 5.52.31 6 6.1880 8 8 7.1442.381 7.422.491 8 7.437.31 8 5.52.31 6 6 8 7.1442.381 7.422.491 8 7.422.491 8 7.437.31 8 5.52.31 6 6 8 7.1442.391 7.4442.391 7.4442.391 7.4442.391 7.4442.391 7.44413 8 7.438 8 5.442 8 6.107.591 8 8 8 8 8 8	71 0		ф -	φ -	φ -			- -			¥			Ψ.		Ψ	÷ •=,•··	ф -	φ - ¢ -					
PA S	72		- ¢	φ - \$	- с			φ - Φ -			•			φ		*	+	•	ф -					
1 1 5 5 5 5 5 5 1 2 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 1 3 3 3 3 5 5 5 1	74		φ - \$	φ - \$	\$ -						.			1		Ψ	+	Ψ.	3 - \$ -	↓ · · ,= · ♥ , · ♥ ·				
16 1 5 1 5 5 1 5 5 1 6 5 7 7 8 5 7 7 8 5 7 7 8 5 7 7 8 5 7 7 8 5 7 7 8 5 7 7 8 5 7 7 8 5 7 7 8 5 7 7 8 5 7 7 8 5 7 7 8 5 6	75		\$ -	\$ -	\$ -			*	+ .,,	÷ .,,	Ŧ			1		*	÷	•	\$ -	+ .,=,	÷ =:=;•••			
17 S	76	-	\$ -	\$-	\$-			\$ -	+ .,	+ .,,	+			\$ -		*	+	\$-	\$ -					
1 5 - 5 - 5 77,257 5 09,796 5 5 77,156 5 5 5 6 77,156 5 5 5 77,156 5 5 5 6 77,156 5 5 6 6 5 5 77,156 5 5 6 6 77,156 5 5 6 6 77,156 5 5 6 6 77,156 5 5 6 77,156 5 5 6 77,156 5 5 6 77,156 5 5 6 77,156 5 5 6 77,156 5 5 6 77,156 5 5 6 77,156 5 5 6 77,156 5 5 6 77,156 5 5 6 6 6 5 5 7 <th< td=""><td>77</td><td>-</td><td>\$ -</td><td>\$-</td><td>\$-</td><td></td><td></td><td>\$ -</td><td>· /·· /· ·</td><td>· , · · , · ·</td><td>Ť.</td><td></td><td></td><td>\$ -</td><td></td><td>\$-</td><td>÷</td><td>\$-</td><td>\$ -</td><td></td><td></td><td></td><td></td><td></td></th<>	77	-	\$ -	\$-	\$-			\$ -	· /·· /· ·	· , · · , · ·	Ť.			\$ -		\$-	÷	\$-	\$ -					
1 1 5 - 5 - 5 7.737 5 67.707 5 - 5 1.77.108 5 - 5 67.700 5 - 5 1.77.108 5 - 5 67.700 5 - 5 1.471.615 5 5 1.471.615 5 5 1.471.615 5 5 1.471.615 5 5 1.471.615 5 5 1.471.615 5 5 1.471.615 5 5 1.471.615 5 5 1.471.615 5 1.471.615 5 5 1.471.615 5 5 1.471.615 5 5 1.471.615 5 5 1.471.615 5 1.471.615 5 1.471.615 5 5 1.471.615 5 5 1.471.615 5 1.471.615 5 1.471.615 5 1.471.615 5 1.471.615 5 1.471.615 5 1.471.615 5 1.471.615 5 1.471.615 5 1.471.615 5 1.471.615 5 1.471.615 5 1.471.615 5	78	-	\$ -	\$ -	\$ -			\$ -			\$ -			\$ -		\$ -		\$ -	\$ -					
18 18 18 18 18 1072 916 1	79	-	\$ -	\$ -	\$ -			\$ -	\$ 1.076.331	\$ 1,188,048	\$ -			\$ -	\$ 54.925	\$ -	\$ 61,750	\$-	\$ -	\$ 1,207,140	\$ 211,249	\$ 1.451.654	\$ 254.039	\$ 3,124,082
120 1	80 3	-	\$ -	\$ -	\$ -	\$ 57,257	\$ 69,795	\$ -	\$ 1,074,615	\$ 1,188,048	\$ -	\$ 73,488	\$ 77,136	\$ -	\$ 54,827	\$ -	\$ 61,715	\$ -	\$ -	\$ 1,205,360	\$ 210,938	\$ 1,451,521	\$ 254,016	\$ 3,121,835
B3 · S · S · S · S · S · S · S · S · S · S · S · S	81 \$	-	\$ -	\$ -	\$ -	\$ 56,369	\$ 69,795	\$ -	\$ 1,072,916	\$ 1,188,048	\$ -	\$ 73,426	\$ 77,136	\$ -	\$ 54,731	\$ -	\$ 61,680	\$ -	\$ -	\$ 1,202,711	\$ 210,474	\$ 1,451,389	\$ 253,993	\$ 3,118,568
B S	82 3	-	\$-	\$-	\$-	\$ 56,369	\$ 69,795	\$ -	\$ 1,071,242	\$ 1,188,048	\$ -	\$ 73,364	\$ 77,136	\$ -	\$ 54,635	\$ -	\$ 61,646	\$ -	\$ -	\$ 1,200,975	\$ 210,171	\$ 1,451,260	\$ 253,970	\$ 3,116,376
BS S S S S S 7.186 S 7.186 S S 5.439 S S 6.1547 S S S 20.228 S 1.450.841 S 25.3863 S 1.19.937 S 20.228 S 1.450.841 S 2.53.85 S 1.10.917 S 1.85.917 S 1.19.937 S 2.02.28 S 1.450.841 S 2.53.85 S 1.07.941 B6 S S S S S S 7.136 S S 5.4180 S S 61.641 S S 1.19.086 S 2.08.70 S 1.450.841 S S 7.17.16 S S 5.4180 S S 61.442 S S 1.19.086 S 2.08.702 S 1.19.081 S 2.08.702 S 1.06.702 S 2.03.702 S 7.136 S S 5.4180 S S 6.1421 S S S 1.18.047 S 2.03.702 S 7.136	83 3	-	\$-	\$-	\$-	\$ 56,369	\$ 69,795	\$ -	\$ 1,069,597	\$ 1,188,048	\$-	\$ 73,304	\$ 77,136	\$-	\$ 54,542	\$ -	\$ 61,612	\$-	\$ -	\$ 1,199,269	\$ 209,872	\$ 1,451,133	\$ 253,948	\$ 3,114,222
86 \$ \$ \$ \$ \$ \$ 7,136 \$ <td>84 \$</td> <td>-</td> <td>\$-</td> <td>\$-</td> <td>\$-</td> <td>\$ 56,369</td> <td>\$ 69,795</td> <td>\$ -</td> <td>\$ 1,067,982</td> <td>\$ 1,188,048</td> <td>\$ -</td> <td>\$ 73,245</td> <td>\$ 77,136</td> <td>\$-</td> <td>\$ 54,450</td> <td>\$-</td> <td>\$ 61,579</td> <td>\$-</td> <td>\$ -</td> <td>\$ 1,197,595</td> <td>\$ 209,579</td> <td>\$ 1,451,008</td> <td>\$ 253,926</td> <td>\$ 3,112,108</td>	84 \$	-	\$-	\$-	\$-	\$ 56,369	\$ 69,795	\$ -	\$ 1,067,982	\$ 1,188,048	\$ -	\$ 73,245	\$ 77,136	\$-	\$ 54,450	\$-	\$ 61,579	\$-	\$ -	\$ 1,197,595	\$ 209,579	\$ 1,451,008	\$ 253,926	\$ 3,112,108
87 \$	85	-	\$-	\$-	\$-	\$ 56,369	\$ 69,795	\$ -	\$ 1,066,382	\$ 1,188,048	\$ -	\$ 73,186	\$ 77,136	\$-	\$ 54,359	\$-	\$ 61,547	\$-	\$ -	\$ 1,195,937	\$ 209,289	\$ 1,450,884	\$ 253,905	\$ 3,110,015
88 • \$	86 \$	-	\$-	\$-	\$-	\$ 56,369	\$ 69,795	\$-	\$ 1,064,797	\$ 1,188,048	\$-	\$ 73,129	\$ 77,136	\$-	\$ 54,269	\$-	\$ 61,514	\$-	\$-	\$ 1,194,295	\$ 209,002	\$ 1,450,762	\$ 253,883	\$ 3,107,941
89 \$	87 3	-	\$-	\$-	\$-	\$ 56,369		\$-	\$ 1,063,245	\$ 1,188,048	\$-			\$-		\$-		\$-	\$-	\$ 1,192,686				\$ 3,105,909
90 \$	88 3	-	\$-	\$-	\$-	\$ 56,369	\$ 69,795	\$-	\$ 1,061,712	\$ 1,188,048	\$-			\$-	\$ 54,093	\$-	\$ 61,452	\$-	\$-	\$ 1,191,098		\$ 1,450,523	\$ 253,842	\$ 3,103,905
91 \$	89 3	-	\$-	\$-	\$-			\$-	\$ 1,060,204	\$ 1,188,048	\$-			\$-		\$-		\$-	\$-	\$ 1,189,535				\$ 3,101,931
92 5 - 5 - 5 5 77,136 5 - 5 53,756 5 - 5 1,84,986 5 207,373 5 1,328,633 5 23,562 5	90	-	\$-	\$-	\$-	\$ 56,369		\$-		\$ 1,188,048	\$-			\$-		\$-		\$-	\$ -	\$ 1,187,994				\$ 3,099,985
93 \$	91 3	-	\$-	\$-	\$-	+		\$-	\$ 1,057,251	\$ 1,188,048	\$-	\$ 72,856	\$ 77,136	\$-	\$ 53,838	\$-	\$ 61,362	\$-	\$-	\$ 1,186,476	\$ 207,633	\$ 1,450,179	\$ 253,781	\$ 3,098,069
94 \$	92	-	\$-	\$-	\$-	*	· · · · · ·	\$-	+ .,,	+ .,,	\$-			φ		\$-		\$-	\$-					
95 - 5	93 3	-	\$ -	\$-	\$-		4 •• ,• •	\$ -	+ /···/··	\$ 1,066,664	\$ -			\$ -	• • • • • •	\$-	• • • • • •	\$ -	\$ -					
96 \$	04	-	\$-	\$-	\$-	+,	+	\$ -		+ .,,	\$ -			\$ -		\$-		\$ -	\$ -					
97 \$	95 \$	-	\$-	\$-	\$-	\$ 56,369		\$-	\$ 1,051,617	\$ 1,066,664	\$-			\$-	• • • • • •	\$-	• • • • •	\$-	\$-	* <u>, , -</u>			+ - /	
98 - \$ - \$ 56,369 \$ 69,795 \$ 1,047,577 1,066,664 \$ > \$ 53,284 \$ \$ 61,169 \$ \$ \$ 1,176,460 \$ 205,880 \$ 1,329,048 \$ 232,408 \$ 2,942,796 99 \$ - \$ - \$ 53,284 \$ - \$ 61,169 \$ - \$ 1,329,048 \$ 232,408 \$ 2,942,796 \$ 99 \$ - \$ 53,284 \$ - \$ 61,169 \$ - \$ 1,329,048 \$ 232,408 \$ 2,942,796 \$ \$ 1,942,9108 \$ 2,942,796 \$ \$ 1,917,400 \$ 205,880 \$ 1,329,048 \$ 2,942,796 \$ \$ 1,917,400 \$ 205,808 \$ 1,329,048 \$ 2,941,083 \$ \$ \$ \$ \$ \$ \$ 5 \$ 61,118 \$ \$ \$ \$ 1,327,9	96	-	\$-	\$-	\$-			\$ -			\$ -			\$ -		\$ -		\$-	\$ -					
99 \$	0.	-	\$-	\$-	\$-			\$ -	¥ //	+ //	Ŧ			\$ -		Ψ	÷ •.,	\$ -	\$ -	* <i>, , , , , , , , , ,</i>				
100 \$ - \$ - \$ 56,369 \$ 69,795 \$ - \$ 1,044,978 \$ 1,066,664 \$ - \$ 72,423 \$ 77,136 \$ - \$ 53,135 \$ - \$ 61,118 \$ - \$ - \$ 1,173,770 \$ 205,410 \$ 1,327,847 \$ 232,373 \$ 2,339,400	98	-	\$-	\$-	\$-	*	· · · · · ·	\$ -	÷ .,•,•	+ .,,	\$ -			\$ -		\$ -	+	\$ -	\$ -					
	99 3	-	\$-	\$-	\$-		÷	\$ -	· /· ·/ ··	* /···/··	\$ -			\$ -	• • • • • • •	\$ -	· · / ·	\$ -	\$ -	* , -,				
Total \$ 1,331,300 \$ 17,063,019 \$ 1,336,899 \$ 1,257,312 \$ 7,559,079 \$ 6,351,324 \$ 7,232,445 \$ 100,303,736 \$ 105,570,872 \$ 959,861 \$ 6,618,316 \$ 6,633,702 \$ 142,305 \$ 5,142,346 \$ 990,022 \$ 7,352,255 \$ 11,913,245 \$ 3,573,974 \$ 131,544,149 \$ 23,020,226 \$ 132,387,399 \$ 23,167,795 \$ 325,606,787 \$		-	\$-	\$-	\$-		÷,	\$ -	÷ .,• .,• .	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	φ		· • / · · ·	+			÷ • • • •	\$ -	\$ -	\$ 1,173,770	· · · · · · · · · · · · · · · · · · ·	· /- /-	+	, ,,
	Total \$	1,331,300	\$ 17,063,019	\$ 1,336,899	\$ 1,257,312	\$ 7,559,079	\$ 6,351,324	\$ 7,232,445	\$ 100,303,736	\$ 105,570,872	\$ 959,861	\$ 6,618,316	\$ 6,633,702	\$ 142,305	\$ 5,142,346	\$ 990,022	\$ 7,352,255	\$ 11,913,245	\$ 3,573,974	\$ 131,544,149	\$ 23,020,226	\$ 132,387,399	\$ 23,167,795	\$ 325,606,787

Notes:

Indirect Capital Cost O&M Cost (power, reagents O&M Cost (replacement O& maintenance)

	Inputs
	30.0%
nts, analytical)	17.5%
D&M, labor, routine	17.5%

REV 0 July 29, 2019 18106417 Short Term ETS Direct Cost Cash Flow by Year in Current Cost Dollars Tyrone Mine Closure Closeout Plan InputsNew Cost\$ 1,331,300Replacement O&M Percentage0.0%Routine Maintenance Percentage1.5%Avg (\$/kWh) Year 1 through 14\$ 0.045Avg (\$/kWh) Year 15 through 100\$ 0.045

Voor						Avg (\$/k	Avg (\$/kWh) Year 15 through 100			
Year Following Closure	Year	Capital	Replacement O&M ¹	Routine Maintenance ¹	O&M Labor	Annual Power Usage (kWh)	Electricity Annual Cost	Total Annu Co		
0	2014	\$ 1,331,300	\$-	\$-	\$-	0	\$-	\$ 1,331,30		
1	2015	\$-	\$-	\$ 19,970	\$ 128,575	57,509,400		\$ 2,718,89		
2	2016	\$ -	\$ -	\$ 19,970	\$ 128,575	61,348,144		\$ 2,890,46		
3	2017	\$-	\$ -		\$ 128,575	55,402,667		\$ 2,624,73		
4 5	2018 2019	\$ - \$ -	\$- \$-	\$ 19,970 \$ 19,970	\$ 128,575 \$ 128,575	49,444,698 43,470,665		\$ 2,358,44 \$ 2,091,43		
6	2019	\$ -		\$ 19,970 \$ 19,970	\$ 128,575	37,498,418		\$ 2,091,43 \$ 1,824,51		
7	2020	\$ -	\$-	\$ 19,970	\$ 128,575	31,670,736		\$ 1,564,04		
8	2022	\$-	\$-	\$ 19,970	\$ 128,575	25,698,488		\$ 1,297,12		
9	2023	\$-	\$-	\$ 19,970	\$ 128,575	19,728,025	\$ 881,731	\$ 1,030,27		
10	2024	\$-	\$-	\$-	\$-	0	¥	\$-		
11	2025	\$-	\$-	\$-	\$-	0	Ŧ	\$-		
12	2026	\$-	\$-	\$-	\$-	0	Ŧ	\$-		
13	2027	\$-	\$-	\$-	\$-	0	+	\$ -		
14	2028	\$ -	\$-	\$ -	\$-	0	Ŧ	\$-		
15 16	2029 2030	\$ - \$ -	\$- \$-	\$- \$-	\$ - \$ -	0	Ŧ	\$ - \$ -		
10	2030	<u>\$</u> - \$-	\$- \$-	\$- \$-	\$- \$-	0		<u>\$</u> - \$-		
17	2031	\$ -	\$ -	\$ - \$ -	\$ - \$ -	0		\$ -		
19	2032	\$ -	\$-	\$-	\$ -	0		\$-		
20	2034	\$-	\$-	\$-	\$-	0		\$-		
21	2035	\$ -	\$ -	\$ -	\$ -	0		\$ -		
22	2036	\$ -	\$-	\$ -	\$-	0		\$ -		
23	2037	\$-	\$-	\$-	\$-	0	\$-	\$-		
24	2038	\$-	\$-	\$-	\$-	0	Ŧ	\$-		
25	2039	\$-	\$-	\$-	\$-	0		\$-		
26	2040	\$ -	\$ -	\$ -	\$-	0	,	\$ -		
27	2041	\$-	\$-	\$-	\$-	0	Ŧ	\$ -		
28	2042	\$ -	\$ -	\$ -	\$-	0	+	<u>\$</u> -		
29 30	2043 2044	\$ - \$ -	\$- \$-	\$- \$-	\$ - \$ -	0	Ŧ	\$ - \$ -		
30	2044	\$ -	5 -	\$ - \$ -	\$ -	0		\$ -		
32	2045	\$ -	\$-	\$ -	\$-	0	¢	\$ -		
33	2040	\$ -	\$-	\$-	\$-	0		\$-		
34	2048	\$-	\$-	\$ -	\$-	0		\$-		
35	2049	\$ -	\$ -	\$-	\$ -	0		\$ -		
36	2050	\$ -	\$ -	\$-	\$-	0	\$-	\$ -		
37	2051	\$-	\$-	\$-	\$-	0	\$-	\$-		
38	2052	\$-	\$-	\$-	\$-	0	\$-	\$-		
39	2053	\$-	\$-	\$-	\$-	0	Ŧ	\$-		
40	2054	\$ -	\$ -	\$ -	\$ -	0		\$ -		
41	2055	\$ -	\$ -	\$-	\$-	0	7	\$ -		
42	2056	\$ -	\$ -	\$ -	\$ -	0	Ŧ	<u>\$</u> -		
43	2057 2058	\$ - \$ -	\$- \$-	\$- \$-	\$ - \$ -	0	•	<u>\$</u> - \$-		
44	2058	\$ -	\$ -	\$ -	\$ - \$ -	0		\$ -		
46	2055	\$ -	\$ -	\$-	\$-	0		\$-		
47	2061	\$-	\$-	\$-	\$-	0	•	\$-		
48	2062	\$ -	\$ -	\$ -	\$ -	0		\$ -		
49	2063	\$ -	\$ -	\$-	\$-	0	\$-	\$ -		
50	2064	\$-	\$-	\$-	\$-	0	\$-	\$-		
51	2065	\$ -	\$ -	\$ -	\$ -	0	Ŧ	\$ -		
52	2066	\$-	\$-	\$-	\$-	0	Ŧ	\$ -		
53	2067	<u>\$</u> -	\$ -	\$-	\$-	0	Ŧ	\$ -		
54	2068	\$ -	\$ -	\$ -	\$ -	0	Ŧ	\$ -		
55 56	2069	\$ - ¢	\$ - ¢	\$ -	\$ -	0	Ŧ	\$ - ¢		
56	2070 2071	\$ - \$ -	\$- \$-	\$- \$-	\$- \$-	0	•	<u>\$</u> - \$-		
57	2071	\$ - \$ -	5 -	\$ -		0		<u> </u>		
59	2072	3 - \$ -	\$ -	\$ -	\$ -	0		• -		
60	2073	\$-	\$-	\$-	\$-	0		\$-		
61	2075	\$-	\$-	\$-	\$-	0		\$-		
62	2076	\$ -	\$-	\$ -	\$-	0		\$-		
63	2077	\$-	\$-	\$-	\$-	0	\$-	\$-		
64	2078	\$-	\$-	\$-	\$-	0	\$-	\$-		
65	2079	\$ -	\$ -	\$ -	\$-	0	Ŧ	\$ -		
66	2080	\$-	\$-	\$-	\$ -	0		\$ -		
67	2081	\$-	\$-	\$-	\$ -	0	Ŧ	\$ -		
68	2082	\$ -	\$ -	\$ -	\$ -	0		<u>\$</u> -		
69 70	2083	\$- ¢	\$ - ¢	\$- ¢	\$ -	0	Ŧ	\$- ¢		
70 71	2084 2085	\$ - \$ -	\$- \$-	\$- \$-	\$ - \$ -	0		\$ - \$ -		
71	2085	\$ - \$ -	\$ - \$ -	\$ - \$ -	\$- \$-	0		<u>\$</u> -		
72	2086	\$ -	\$ -	\$ - \$ -	\$ -	0		\$ -		
	2007	Ψ	Ψ -	Ψ	Ψ -	L 0	Ψ	Ψ -		

REV 0 July 29, 2019 18106417 Short Term ETS Direct Cost Cash Flow by Year in Current Cost Dollars Tyrone Mine Closure Closeout Plan InputsNew Cost\$1,331,300Replacement O&M Percentage0.0%Routine Maintenance Percentage1.5%Avg (\$/kWh) Year 1 through 14\$Avg (\$/kWh) Year 15 through 100\$0.045

Year											
Following				Replace	nent	Routine			Annual Power	Electricity Annual	Total Annual
Closure	Year	Capital		O&M ¹		Maintenance ¹	0&1	M Labor	Usage (kWh)	Cost	Cost
74	2088	\$	-	\$	-	\$-	\$	-	0	\$-	\$ -
75	2089	\$	-	\$	-	\$-	\$	-	0	\$-	\$ -
76	2090	\$	-	\$	-	\$-	\$	-	0	\$-	\$ -
77	2091	\$	-	\$	-	\$-	\$	-	0	\$-	\$ -
78	2092	\$	-	\$	-	\$-	\$	-	0	\$-	\$ -
79	2093	\$	-	\$	-	\$-	\$	-	0	\$-	\$ -
80	2094	\$	-	\$	-	\$-	\$	-	0	\$-	\$ -
81	2095	\$	-	\$	-	\$-	\$	-	0	\$-	\$ -
82	2096	\$	-	\$	-	\$-	\$	-	0	\$-	\$ -
83	2097	\$	-	\$	-	\$-	\$	-	0	\$-	\$ -
84	2098	\$	-	\$	-	\$-	\$	-	0	\$-	\$ -
85	2099	\$	-	\$	-	\$-	\$	-	0	\$-	\$ -
86	2100	\$	-	\$	-	\$-	\$	-	0	\$-	\$ -
87	2101	\$	-	\$	-	\$-	\$	-	0	\$-	\$ -
88	2102	\$	-	\$	-	\$-	\$	-	0	\$-	\$ -
89	2103	\$	-	\$	-	\$-	\$	-	0	\$-	\$ -
90	2104	\$	-	\$	-	\$-	\$	-	0	\$-	\$ -
91	2105	\$	-	\$	-	\$-	\$	-	0	\$-	\$ -
92	2106	\$	-	\$	-	\$-	\$	-	0	\$-	\$ -
93	2107	\$	-	\$	-	\$-	\$	-	0	\$-	\$ -
94	2108	\$	-	\$	-	\$-	\$	-	0	\$-	\$ -
95	2109	\$	-	\$	-	\$-	\$	-	0	\$-	\$ -
96	2110	\$	-	\$	-	\$-	\$	-	0	\$-	\$ -
97	2111	\$	-	\$	-	\$-	\$	-	0	\$-	\$ -
98	2112	\$	-	\$	-	\$-	\$	-	0	\$-	\$ -
99	2113	\$	-	\$	-	\$-	\$	-	0	\$-	\$ -
100	2114	\$	-	\$	-	\$-	\$	-	0	\$-	\$ -
То	tal	\$ 1,3	31,300	\$	-	\$ 179,726	5 \$	1,157,174	381,771,240	\$ 17,063,019	\$ 19,731,218
lataa											

Notes:

¹ Replacement O&M allowance for the Short-Term ETS is estimated at zero given this is a short-term system and capital replacement is not expected. Routine maintenance is estimated at a percentage of the initial direct capital cost (New Cost in Column H Row 4).

Cost estimate backup details are included in Attachment B to the Tyrone Water Treatment Cost Basis Document.

Costs do not include indirect costs

REV 0 July 29, 2019 18106417 Labor Cost Estimate - ETS and Salt Disposal Facility Operations Tyrone Mine Closure Closeout Plan

Short-Term ETS

Day shift - 1.5 operator (7 day/wk s	hift	coverage) ¹
Operators		1.5 FTE
Operator Rate ²	\$	18.60 /hr
Operator Hours (1 FTE)		2087 hr/yr
Operator Total Cost	\$	58,227
Overtime for operators		15%
Total overtime hours for operators		470 hr/yr
Operator Overtime Total Cost	\$	13,101
Supervisor		0.5 FTE
Supervisor Rate ³	\$	31.10 /hr
Supervisor Hours (1 FTE)		2,087 hr/yr
Supervisor Total Cost	\$	32,453
Benefits fringe rate per hour ⁴	\$	5.94 /hr
Total eligible hours per year		4,174 hrs/yr
Benefits Cost	\$	24,794
Total Operator Labor Cost	\$	128,575

Notes:

¹ Operator numbers are estimated from Golder's experience with operating similar plants.

² Wages from 2019 New Mexico Type "A" Street, Highway, Utility & Light Engineering Prevailing Wages. Operator Group I.

https://www.dws.state.nm.us/Portals/0/DM/LaborRelations/Prevailing_Wage_Poster_A_2019_final.pdf

³ Wages from 2019 New Mexico Type "A" Street, Highway, Utility & Light Engineering Prevailing Wages. Operator Group X.

https://www.dws.state.nm.us/Portals/0/DM/LaborRelations/Prevailing_Wage_Poster_A_2019_final.pdf

⁴ Wages from 2019 New Mexico Type "A" Street, Highway, Utility & Light Engineering Prevailing Wages. Operator Group I-X.

https://www.dws.state.nm.us/Portals/0/DM/LaborRelations/Prevailing_Wage_Poster_A_2019_final.pdf

Costs do not include indirect costs

													Total Pumps an	d Pipeline Costs if New	\$ 712,270
Date:		REV 0 July 29, 2	2019										•	al Sprayer Costs if New	
Project No.:		18106417												l Reservoir Cost if New	
Subject:		Long Term ETS	Direct C	Cost Cash Flow by	y Year in Current Cost	Dollars								Replacement O&M	
Project Sho		Tyrone Mine Clo											Routine I	Maintenance Percentage	1.5%
-		-											Avg (\$/I	(Wh) Year 1 through 14	\$ 0.045
													Avg (\$/kW	h) Year 15 through 100	\$ 0.045
												Pumping	Mechanical Spray		
Year			Dum	no and Dinalina	Sprovoro	Tank and Basenveir		nps and Pipeline	Sprovero Deutine	Tank and Reservoirs		System Annual			
Following	Vaar	Conital		ps and Pipeline		Tank and Reservoirs			Sprayers Routine	Routine		Power Usage		Electricity Annual	Total Annual Cost
Closure	Year 2015	Capital \$ -	s	acement O&M ¹	Replacement O&M ¹ \$	Replacement O&M ¹ \$	s s	ntenance ²	Maintenance ²	Maintenance ² \$ -	O&M Labor ³ \$	(kWh)	(kWh) 0 0	cost c	Total Annual Cost
2	2015	\$- \$-	э \$		\$ -	\$ -	φ \$	-	φ -	\$- \$-	\$		0 0		\$ - \$ -
3	2010	\$- \$-	э \$		\$ -	\$ -	φ \$	-	÷ €	\$- \$-	\$		0 0		۰ د
4	2017	\$ -	φ \$		\$ -	\$ -	φ \$	-	φ - ¢ -	\$ -	\$-		0 0		\$ -
5	2018	\$- \$-	э \$		\$ -	\$ -	φ \$	-	\$ - \$ -	\$- \$-	\$		0 0		\$ \$
6	2019	\$ -	φ \$	-	\$ -	\$ -	φ ¢	-	φ -	\$- \$-	\$		0 0		\$ -
7	2020	\$ -	φ \$	-	\$ -	\$ -	φ \$	-	φ -	\$- \$-	\$		0 0		\$ \$
8	2021	\$ -	\$		\$ -	\$ -	ψ ¢	-	\$ -	\$ -	\$ -		0 0		\$ -
9	2022	ہ - \$ 709,540	Ψ		\$ - \$	\$ -	φ \$		\$	\$- \$-	⇒ - \$		0		\$
10	2023	\$ 709,540 \$ -	γ \$	12,821	\$ 4,086	Ŧ	Ψ	10,684	\$ 3,405	Ŧ	Included in Total Operating Cost	1,437,896		\$ 502,203	\$
10	2024	\$ -	\$	12,821	\$ 4,086			10,684			Included in Total Operating Cost			\$ 501,063	
12	2025	\$ -	\$	12,821	\$ 4,086			10,684			Included in Total Operating Cost			\$ 499,926	
12	2020	\$ -	\$	12,821	\$ 4,086			10,684			Included in Total Operating Cost				
14	2027	↓ \$ 547,772	Ψ	12,821	\$ 4,086			10,684	\$ 3,405		Included in Total Operating Cost			\$ 425,628	
15	2020	\$ -	. Ψ \$	12,821	\$ 4,086			10,684			Included in Total Operating Cost				
16	2020	\$ -	\$	12,821	\$ 4,086			10,684			Included in Total Operating Cost		, ,		
10	2000	\$-	\$	12,821	\$ 4,086			10,684			Included in Total Operating Cost				\$ 143,699
18	2032	\$-	\$	12,821	\$ 4,086			10,684			Included in Total Operating Cost				
19	2033	\$ -	\$	12,821	\$ 4,086			10,684			Included in Total Operating Cost				
20	2034	\$ -	\$	12,821	\$ 4,086			10,684			Included in Total Operating Cost				
21	2035	\$ -	\$	12,821	\$ 4,086			10,684	\$ 3,405		Included in Total Operating Cost				
22	2036	\$ -	\$	12,821	\$ 4,086			10,684			Included in Total Operating Cost				
23	2037	\$ -	\$	12,821	\$ 4,086			10,684			Included in Total Operating Cost				
24	2038	\$ -	\$	12,821	\$ 4,086			10,684			Included in Total Operating Cost				
25	2039	\$ -	\$	12,821	\$ 4,086			10,684			Included in Total Operating Cost				
26	2040	\$ -	\$	12,821	\$ 4,086		_	10,684	\$ 3,405		Included in Total Operating Cost				
27	2041	\$ -	\$	12,821	\$ 4,086	\$ 21,163	3 \$	10,684	\$ 3,405	\$ 17,636	Included in Total Operating Cost			\$ 66,360	\$ 136,155
28		\$ -	\$	12,821				10,684			Included in Total Operating Cost				
29	2043	\$ -	\$	12,821				10,684			Included in Total Operating Cost				
30	2044	\$-	\$	12,821				10,684			Included in Total Operating Cost				
31	2045	\$-	\$	12,821	\$ 4,086			10,684			Included in Total Operating Cost				
32	2046	\$-	\$	12,821	\$ 4,086	\$ 21,163	3 \$	10,684	\$ 3,405	\$ 17,636	Included in Total Operating Cost	47,995	5 1,332,596	\$ 62,588	\$ 132,382
33	2047	\$-	\$	12,821	\$ 4,086	\$ 21,163	3 \$	10,684	\$ 3,405	\$ 17,636	Included in Total Operating Cost	47,995	5 1,332,596	\$ 62,588	\$ 132,382
34	2048	\$-	\$	12,821	\$ 4,086	\$ 21,163	3 \$	10,684	\$ 3,405	\$ 17,636	Included in Total Operating Cost	47,995	5 1,332,596	\$ 62,588	\$ 132,382
35	2049	\$-	\$	12,821	\$ 4,086	\$ 21,163	3 \$	10,684	\$ 3,405	\$ 17,636	Included in Total Operating Cost	47,995	5 1,332,596	\$ 62,588	\$ 132,382
36	2050	\$-	\$	12,821	\$ 4,086	\$ 21,163	3 \$	10,684	\$ 3,405	\$ 17,636	Included in Total Operating Cost	47,995	5 1,312,999	\$ 61,699	\$ 131,494
37	2051	\$-	\$	12,821				10,684			Included in Total Operating Cost	47,995	5 1,312,999	\$ 61,699	\$ 131,494
38	2052	\$-	\$	12,821				10,684			Included in Total Operating Cost				
39	2053	\$-	\$	12,821				10,684			Included in Total Operating Cost				
40	2054	\$-	\$	12,821				10,684			Included in Total Operating Cost				
41	2055	\$ -	\$	12,821			_	10,684			Included in Total Operating Cost				\$ 130,605
42	2056	\$ -	\$	12,821			_	10,684			Included in Total Operating Cost				
43	2057	\$-	\$	12,821				10,684			Included in Total Operating Cost				\$ 130,605
44	2058	\$ -	\$	12,821	\$ 4,086	\$ 21,163	3 \$	10,684	\$ 3,405	\$ 17,636	Included in Total Operating Cost	47,995	5 1,293,402	\$ 60,811	\$ 130,605

Inputs

Date: Project No.: Subject:		REV 0 Jul 18106417 Long Tern	y 29, 20		y Year in Current Cost D	Dollars						Total S	ipeline Costs if New prayer Costs if New eservoir Cost if New Replacement O&M	\$ 227,010
Project Sho	ort Title:	Tyrone Mi	ne Clos	ure Closeout Plan	-							Routine Mair	ntenance Percentage	1.5%
												Avg (\$/kWh	n) Year 1 through 14	\$ 0.045
	-				-		-						Year 15 through 100	\$ 0.045
Year Following				Pumps and Pipeline	Spravers	Tank and Reservoirs	Pumps and Pipeline Routine	Sprayers Routine	Tank and Reservoirs Routine		Pumping System Annual Power Usage		ectricity Annual	
Closure	Year	Capital		Replacement O&M ¹	Replacement O&M ¹	Replacement O&M ¹	Maintenance ²	Maintenance ²	Maintenance ²	O&M Labor ³	(kWh)	(kWh) Co		Total Annual Cost
45	2059	\$	-	\$ 12,821	\$ 4,086					Included in Total Operating Cost	47,995		60,811	
46	2060	\$	-	\$ 12,821	\$ 4,086	\$ 21,163		\$ 3,405		Included in Total Operating Cost	47,995		59,922	\$ 129,717
47	2061	\$	-	\$ 12,821	\$ 4,086	\$ 21,163				Included in Total Operating Cost	47,995		59,922	\$ 129,717
48	2062	\$	-	\$ 12,821	\$ 4,086	\$ 21,163		\$ 3,405		Included in Total Operating Cost	47,995		59,922	\$ 129,717
49	2063	\$	-	\$ 12,821	\$ 4,086					Included in Total Operating Cost	47,995		59,922	\$ 129,717
50	2064	\$	-	\$ 12,821	\$ 4,086	\$ 21,163		\$ 3,405		Included in Total Operating Cost	47,995		59,922	\$ 129,717
51	2065	\$	-	\$ 12,821	\$ 4,086					Included in Total Operating Cost	47,995		59,034	\$ 128,829
52	2066	\$	-	\$ 12,821	\$ 4,086	\$ 21,163		\$ 3,405		Included in Total Operating Cost	47,995		59,034	\$ 128,829
53	2067	\$	-	\$ 12,821	\$ 4,086	\$ 21,163	\$ 10,684	\$ 3,405	\$ 17,636	Included in Total Operating Cost	47,995	1,254,208 \$	59,034	\$ 128,829
54	2068	\$	-	\$ 12,821	\$ 4,086	\$ 21,163	\$ 10,684	\$ 3,405	\$ 17,636	Included in Total Operating Cost	47,995	1,254,208 \$	59,034	\$ 128,829
55	2069	\$	-	\$ 12,821	\$ 4,086	\$ 21,163	\$ 10,684	\$ 3,405	\$ 17,636	Included in Total Operating Cost	47,995	1,254,208 \$	59,034	\$ 128,829
56	2070	\$	-	\$ 12,821	\$ 4,086	\$ 21,163	\$ 10,684	\$ 3,405	\$ 17,636	Included in Total Operating Cost	47,995	1,254,208 \$	59,034	\$ 128,829
57	2071	\$	-	\$ 12,821	\$ 4,086	\$ 21,163	\$ 10,684	\$ 3,405	\$ 17,636	Included in Total Operating Cost	47,995	1,254,208 \$	59,034	\$ 128,829
58	2072	\$	-	\$ 12,821	\$ 4,086	\$ 21,163	\$ 10,684	\$ 3,405	\$ 17,636	Included in Total Operating Cost	47,995	1,234,611 \$	58,145	\$ 127,940
59	2073	\$	-	\$ 12,821	\$ 4,086	\$ 21,163	\$ 10,684	\$ 3,405	\$ 17,636	Included in Total Operating Cost	47,995	1,234,611 \$	58,145	\$ 127,940
60	2074	\$	-	\$ 12,821	\$ 4,086	\$ 21,163	\$ 10,684	\$ 3,405	\$ 17,636	Included in Total Operating Cost	47,995	1,234,611 \$	58,145	\$ 127,940
61	2075	\$	-	\$ 12,821	\$ 4,086	\$ 21,163	\$ 10,684	\$ 3,405	\$ 17,636	Included in Total Operating Cost	47,995	1,234,611 \$	58,145	\$ 127,940
62	2076	\$	-	\$ 12,821	\$ 4,086	\$ 21,163	\$ 10,684	\$ 3,405	\$ 17,636	Included in Total Operating Cost	47,995	1,234,611 \$	58,145	\$ 127,940
63	2077	\$	-	\$ 12,821	\$ 4,086	\$ 21,163	\$ 10,684	\$ 3,405	\$ 17,636	Included in Total Operating Cost	47,995	1,234,611 \$	58,145	\$ 127,940
64	2078	\$	-	\$ 12,821	\$ 4,086	\$ 21,163	\$ 10,684	\$ 3,405	\$ 17,636	Included in Total Operating Cost	47,995	1,234,611 \$	58,145	\$ 127,940
65	2079	\$	-	\$ 12,821	\$ 4,086	\$ 21,163	\$ 10,684	\$ 3,405	\$ 17,636	Included in Total Operating Cost	47,995	1,234,611 \$	58,145	\$ 127,940
66	2080	\$	-	\$ 12,821	\$ 4,086	\$ 21,163	\$ 10,684	\$ 3,405	\$ 17,636	Included in Total Operating Cost	47,995		58,145	\$ 127,940
67	2081	\$	-	\$ 12,821	\$ 4,086	\$ 21,163		\$ 3,405	\$ 17,636	Included in Total Operating Cost	47,995		57,257	\$ 127,052
68	2082	\$	-	\$ 12,821	\$ 4,086	\$ 21,163				Included in Total Operating Cost	47,995		57,257	
69	2083	\$	-	\$ 12,821	\$ 4,086					Included in Total Operating Cost	47,995		57,257	\$ 127,052
70	2084	\$	-	\$ 12,821	\$ 4,086	\$ 21,163		\$ 3,405		Included in Total Operating Cost	47,995	1,215,014 \$	57,257	\$ 127,052
71	2085	\$	-	\$ 12,821	\$ 4,086					Included in Total Operating Cost	47,995	, ,	57,257	
72	2086	\$	-	\$ 12,821	\$ 4,086					Included in Total Operating Cost	47,995		57,257	
73	2087	\$	-	\$ 12,821	\$ 4,086					Included in Total Operating Cost	47,995		57,257	
74	2088	\$	-	\$ 12,821	\$ 4,086					Included in Total Operating Cost	47,995		57,257	
75	2089	\$	-	\$ 12,821	\$ 4,086					Included in Total Operating Cost	47,995		57,257	
76	2090	\$	-	\$ 12,821	\$ 4,086					Included in Total Operating Cost	47,995		57,257	
77	2091	\$	-	\$ 12,821	\$ 4,086					Included in Total Operating Cost	47,995		57,257	
78	2092	\$ ¢	-	\$ 12,821	\$ 4,086					Included in Total Operating Cost	47,995		57,257	
79	2093	۵ ۲	-	\$ 12,821	\$ 4,086					Included in Total Operating Cost	47,995		57,257	
80	2094	۵ ۲	-	\$ 12,821	\$ 4,086					Included in Total Operating Cost	47,995		57,257	
81	2095	¢	-	\$ 12,821 \$ 12,821	\$ 4,086 \$ 4,086					Included in Total Operating Cost	47,995		56,369	
82	2096	¢	-	\$ 12,821 \$ 12,821	\$ 4,086					Included in Total Operating Cost	47,995		56,369	
83	2097	\$ ¢	-	\$ 12,821 \$ 12,821	\$ 4,086 \$ 4,086					Included in Total Operating Cost Included in Total Operating Cost	47,995 47,995		56,369 56,369	
84	2098	ф Ф	-	\$ 12,821 \$ 12,821						Included in Total Operating Cost	47,995		56,369 56,369	
85	2099	ф Ф	-	\$ 12,821 \$ 12,821	\$ 4,086 \$ 4,086					Included in Total Operating Cost	47,995		56,369 56,369	
86 87	2100	ф Ф	-	\$ 12,821 \$ 12,821						Included in Total Operating Cost	47,995		56,369 56,369	
87 88	2101	\$ ¢	-		\$ 4,086 \$ 4,086					Included in Total Operating Cost				
00	2102	\$	-	\$ 12,821	\$ 4,086	\$ 21,163	\$ 10,684	\$ 3,405	\$ 17,636	moluueu in Total Operating Cost	47,995	1,195,417 \$	56,369	\$ 126,163

Inputs

	GOI	LD	ER											Inputs
												Total Pumps a	nd Pipeline Costs if New	\$ 712,270
Date:			0 July 29, 20)19								Το	otal Sprayer Costs if New	\$ 227,010
Project No.:		18106										Total Tank ar	nd Reservoir Cost if New	, , ,
Subject:				Direct Cost Cash Flow by	y Year in Current Cost D	Dollars							Replacement O&M	1.8%
Project Sho	rt Title:	Tyron	e Mine Clos	ure Closeout Plan									e Maintenance Percentage	1.5%
												• •	/kWh) Year 1 through 14	
											Pumping	Avg (\$/k Mechanical Spray	Wh) Year 15 through 100	\$ 0.045
Year							Pumps and Pipeline		Tank and Reservoirs			System Annual		
Following				Pumps and Pipeline	Sprayers	Tank and Reservoirs		Sprayers Routine	Routine		Power Usage	Power Usage	Electricity Annual	
Closure	Year	Capit	al	Replacement O&M ¹	Replacement O&M ¹	Replacement O&M ¹	Maintenance ²	Maintenance ²	Maintenance ²	O&M Labor ³	(kWh)	(kWh)	Cost	Total Annual Cost
89	2103	\$	-	\$ 12,821		\$ 21,163	\$ 10,684	\$ 3,405	\$ 17,636	Included in Total Operating Cost	47,995	5 1,195,417	\$ 56,369	
90	2104	\$	-	\$ 12,821	\$ 4,086	\$ 21,163	\$ 10,684	\$ 3,405	\$ 17,636	Included in Total Operating Cost	47,995	5 1,195,417	\$ 56,369	\$ 126,163
91	2105	\$	-	\$ 12,821		\$ 21,163			\$ 17,636	Included in Total Operating Cost	47,995	5 1,195,417		
92	2106	\$	-	\$ 12,821						Included in Total Operating Cost	47,995			
93	2107	\$	-	\$ 12,821		\$ 21,163			\$ 17,636	Included in Total Operating Cost	47,995	5 1,195,417		
94	2108	\$	-	\$ 12,821					\$ 17,636	Included in Total Operating Cost	47,995	5 1,195,417		
95	2109	\$	-	\$ 12,821						Included in Total Operating Cost	47,995			
96	2110	\$	-	\$ 12,821							47,995			
97	2111	\$	-	\$ 12,821						Included in Total Operating Cost	47,995			
98	2112	\$	-	\$ 12,821						Included in Total Operating Cost	47,995			
99	2113	\$	-	\$ 12,821		\$ 21,163				Included in Total Operating Cost	47,995			
100	2114	\$	-	\$ 12,821		\$ 21,163				Included in Total Operating Cost	47,995			
То	tal	\$	1,257,312	\$ 1,166,698	\$ 371,842	\$ 1,925,818	\$ 972,249	\$ 309,869	\$ 1,604,848	\$-	11,123,637	7 156,364,431	\$ 7,559,079	\$ 15,167,715

Notes:

¹ Replacement O&M costs are estimated at 1.8% of the total capital cost for the complete long-term ETS (pumps, pipelines, tanks, reservoirs, and sprayers). A higher percentage of capital cost is estimated given that existing pumps, pipelines, tanks and reservoirs will be utilized initially up until their associated life expectancies are met and will require replacement sooner than if new equipment was utilized initially. The spray systems from the short-ter ETS will be utilized through Year 19. In Year 20, 4 new spray evaporation units will be purchased. A higher percentage capital cost is estimated to ensure conservatism and to align with existing existing pumps, pipelines, tanks and reservoirs O&M Replacement estimates.

² Routine maintenance is estimated at 1.5% of the total capital cost for the complete long-term ETS (pumps, pipelines, tanks, reservoirs, and sprayers). Routine maintenance includes materials needed for preventative maintenance such as mechanical seals, lubricant, valve sleeves, fuses, etc.

³ O&M Labor for the ETS is included in the TTS Labor.

Cost estimate backup details are included in Attachment B to the Tyrone Water Treatment Cost Basis Document. Costs do not include indirect costs

Year

2015

2016

2017

2018

2019

2020

2021

2022

Capital

\$

\$

\$

\$

\$

\$

\$

\$

Year

Following

1

2

3

4

5

6

7

8

Closure

REV 0 July 29, 2019 18106417 Salt Disposal Direct Cost Cash Flow by Year in Current Cost Dollars Tyrone Mine Closere Closeout Plan

-

-

-

-

-

-

-

-

Replacement

O&M¹

\$

\$

\$

\$

\$

\$

\$

\$

-

-

-

-

-

-

-

-

			Replacement O&M	0.25%
			Salt Removal (\$/CY)	\$ 5.633
١	by Year in Current Cost Dollars			
I				
			Annual Salt Production/	
	Routine Maintenance ²	O&M Labor ²	Removal (cy/yr)	Total Operating Cost ³
	\$ -	\$ -		\$ -
	\$ -	\$ -	0	\$-
	\$ -	\$ -	0	\$-
	\$ -	\$ -	0	\$-
	\$ -	\$ -	0	\$ -
	\$-	\$-	0	\$-
	\$-	\$-	0	\$-
	\$-	\$-	0	\$-
	\$	\$-	0	\$ 990,022
	Included in Total Operating Cost	Included in Total Operating Cost	93,396	\$ 528,543
	Included in Total Operating Cost	Included in Total Operating Cost	78,366	\$ 443,884
	Included in Total Operating Cost	Included in Total Operating Cost	63,546	\$ 360,410
	Included in Total Operating Cost	Included in Total Operating Cost	46,693	\$ 265,483
	Included in Total Operating Cost	Included in Total Operating Cost	32,897	\$ 187,774
	Included in Total Operating Cost	Included in Total Operating Cost	13,753	\$ 79,942

9	2022	\$	990,022	\$	-	\$ -	÷ -	0	\$	990,022
10	2024	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	93,396		528,543
11	2025	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	78,366		443,884
12	2026	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	63,546		360,410
13	2027	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	46,693		265,483
14	2028	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	32,897		187,774
15	2029	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	13,753		79,942
16	2020	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	13,591		79,031
17	2031	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	13,430		78,123
18	2032	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	13,269		77,216
19	2033	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	13,109		76,312
20	2034	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	12,949		75,411
20	2035	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	12,791		74,520
21	2035	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	12,636		73,649
23	2030	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	12,484		72,796
23	2037	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	12,336		72,790
24	2038	э \$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	12,330		,
			-							71,134
26	2040	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	12,045		70,322
27	2041	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	11,903		69,521
28	2042	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	11,763		68,731
29	2043	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	11,624		67,950
30	2044	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	11,487		67,178
31	2045	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	11,351		66,413
32	2046	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	11,217		65,657
33	2047	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	11,190		65,503
34	2048	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	11,164		65,356
35	2049	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	11,139		65,215
36	2050	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	11,114		65,079
37	2051	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	11,091		64,948
38	2052	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	11,069		64,822
39	2053	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	11,047		64,700
40	2054	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	11,026		64,582
41	2055	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	11,006		64,467
42	2056	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	10,986		64,357
43	2057	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	10,967		64,250
44	2058	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	10,949		64,146
45	2059	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	10,931		64,046
46	2060	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	10,914	\$	63,948
47	2061	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	10,897	\$	63,854
48	2062	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	10,880	\$	63,761
49	2063	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	10,865	\$	63,672
50	2064	\$	-	\$ 2,	475	Included in Total Operating Cost	Included in Total Operating Cost	10,843	\$	63,548
51	2065	\$	-	\$ 2,	475	Included in Total Operating Cost	Included in Total Operating Cost	10,802	\$	63,317
52	2066	\$	-	\$ 2,	475	Included in Total Operating Cost	Included in Total Operating Cost	10,788	\$	63,239
53	2067	\$	-	\$ 2,	475	Included in Total Operating Cost	Included in Total Operating Cost	10,774		63,163
54	2068	\$	-	\$ 2,	475	Included in Total Operating Cost	Included in Total Operating Cost	10,761	\$	63,089
55	2069	\$	-	\$ 2,	475	Included in Total Operating Cost	Included in Total Operating Cost	10,748	\$	63,016
56	2070	\$	-	\$ 2,	475	Included in Total Operating Cost	Included in Total Operating Cost	10,736	\$	62,946
57	2071	\$	-	\$ 2,	475	Included in Total Operating Cost	Included in Total Operating Cost	10,723	\$	62,877
58	2072	\$	-	\$ 2,	475	Included in Total Operating Cost	Included in Total Operating Cost	10,712	\$	62,810
59	2073	\$	-	\$ 2,	475	Included in Total Operating Cost	Included in Total Operating Cost	10,700	\$	62,745
60	2074	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	10,689		62,681
61	2075	\$	-	\$ 2,	475	Included in Total Operating Cost	Included in Total Operating Cost	10,678	\$	62,619
62	2076	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	10,667		62,558
63	2077	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	10,656		62,499
64	2078	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	10,646		62,441
65	2079	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	10,636		62,385
66	2080	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	10,626		62,329
67	2081	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	10,617		62,276
68	2082	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	10,607		62,223
69	2083	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	10,598		62,171
70	2003	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	10,589		62,121
70	2085	Ψ \$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	10,580		62,071
71	2085	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	10,572		62,023
73	2080	\$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	10,563		61,976
73	2087	ֆ \$	-		475	Included in Total Operating Cost	Included in Total Operating Cost	10,556		61,936
/4	2000	Ψ	-	Ψ Ζ,	-TIJ			10,000	Ψ	01,930

Inputs

New Cost \$ ment O&M 990,022 0.25%

Date:REV 0 July 29, 2019Project No.:18106417Subject:Salt Disposal Direct Cost Cash Flow by Year in Current Cost DollarsProject Short Title:Tyrone Mine Closure Closeout Plan

New Cost	\$
Replacement O&M	
Salt Removal (\$/CY)	\$

Inputs

990.022

0.25%

5.633

nnual Salt 'eai ollowing Replacement Production/ Capital O&M Routine Maintenance O&M Labor² Removal (cy/yr) Total Operating Cost Closure 2,475 Included in Total Operating Cost Included in Total Operating Cost 2089 \$ \$ 10,550 \$ 61,898 75 Included in Total Operating Cost Included in Total Operating Cost 76 2090 \$ \$ 2,475 10,543 \$ 61,860 77 2091 \$ \$ 2,475 Included in Total Operating Cost Included in Total Operating Cost 10,536 \$ 61,822 Included in Total Operating Cost 78 2092 \$ \$ 2,475 Included in Total Operating Cost 10,530 \$ 61,786 79 2093 \$ \$ 2,475 Included in Total Operating Cost Included in Total Operating Cost 10,523 \$ 61,750 80 Included in Total Operating Cost Included in Total Operating Cost 10,517 2094 \$ -\$ 2,475 \$ 61,715 81 \$ Included in Total Operating Cost Included in Total Operating Cost 10,511 61,680 2095 \$ -2,475 \$ Included in Total Operating Cost Included in Total Operating Cost 82 2096 \$ \$ 2,475 10,505 61,646 -\$ Included in Total Operating Cost Included in Total Operating Cost 10,499 83 2097 \$ \$ 2,475 \$ 61,612 -Included in Total Operating Cost 84 _ \$ 2,475 Included in Total Operating Cost 10,493 61,579 2098 \$ \$ Included in Total Operating Cost 85 2099 \$ _ \$ 2,475 Included in Total Operating Cost 10,487 \$ 61,547 Included in Total Operating Cost Included in Total Operating Cost 2100 86 \$ \$ 2,475 10,482 \$ 61,514 Included in Total Operating Cost Included in Total Operating Cost 87 2101 _ 10,476 61,483 \$ \$ 2,475 \$ 2102 Included in Total Operating Cost Included in Total Operating Cost 10,470 61,452 88 \$ \$ 2,475 \$ 89 2103 \$ \$ 2,475 Included in Total Operating Cost Included in Total Operating Cost 10,465 61,421 -\$ Included in Total Operating Cost 90 2104 \$ -\$ 2,475 Included in Total Operating Cost 10,460 61,391 \$ Included in Total Operating Cost 91 2105 \$ \$ 2,475 Included in Total Operating Cost 10,454 \$ 61,362 Included in Total Operating Cost 92 2106 \$ \$ 2,475 Included in Total Operating Cost 10,449 \$ 61,333 Included in Total Operating Cost Included in Total Operating Cost 10,444 \$ 93 2107 \$ \$ 2,475 61,305 Included in Total Operating Cost Included in Total Operating Cost 94 2108 \$ \$ 2,475 10,439 \$ 61,277 2109 95 2,475 Included in Total Operating Cost Included in Total Operating Cost 10,434 \$ \$ \$ 61,249 96 \$ 2,475 Included in Total Operating Cost Included in Total Operating Cost 10,430 61,222 2110 \$ -\$ 97 2111 \$ -\$ 2,475 Included in Total Operating Cost Included in Total Operating Cost 10,425 \$ 61,195 98 2112 \$ \$ 2,475 Included in Total Operating Cost Included in Total Operating Cost 10,420 61,169 -\$ 99 2113 \$ \$ 2,475 Included in Total Operating Cost Included in Total Operating Cost 10,416 61,143 -\$ 100 2114 \$ \$ 2,475 Included in Total Operating Cost Included in Total Operating Cost 10,411 \$ 61,118 -990,022 225,230 1.265.297 8,342,27 Total

Notes:

¹ Replacement O&M is estimated only at 0.25% of the total capital cost since the capital cost of the facility is high since it is a lined facility. Costs associated with closure of each of the four individual cells comprising the salt disposal facility (approximately 316,324 cubic yards per cell). Closure includes grading, three foot of earthen cover, and revegetation. Initial capital cost for construction of salt disposal facility (by RS Means) shown in Year 9.

² Routine Maintenance and O&M Labor is included in the Total Operating Cost calculation.

³ Costs based on 2019 RS Means estimate of \$5.63 per/cy for excavation, loading, hauling, and placing of salts at the salt disposal facility.

Cost estimate backup details are included in Attachment B to the Tyrone Water Treatment Cost Basis Document.

Costs do not include indirect costs

Date:REV 0 July 29, 2019Project No.:18106417Subject:Water Conveyance Direct CProject Short Title:Tyrone Mine Closure Closed

Water Conveyance Direct Cost Cash Flow by Year in Current Cost Dollars Tyrone Mine Closure Closeout Plan

	Inputs	6	
Total Pump and Pipeline Costs if	New \$	5	1,895,030
Total Tank and Reservoir Cost if	New \$	5	442,427
Replacement O&M Percer	ntage		1.8%
Routine Maintenance Percer	ntage		1.5%
Avg (\$/kWh) Year 1 throug	gh 14 💲	5	0.045
Avg (\$/kWh) Year 15 through	n 100 💲	5	0.045
Pumping System			

	ear ollowing				Pum	ps and Pipeline		Pumps and Pipeline Routine		anks and Reservoir outine		Pumping System Annual Power	O&M Electrical	Tot	al Annual
		Year	Сар	oital ¹			Replacement O&M ²	Maintenance ³		aintenance ³	O&M Labor ⁴	Usage (kWh)	Annual Cost	101	Cost
	1	2019	\$	-	\$	-	\$ -	\$-	\$		N/A	0	Ŧ	\$	-
	2	2020	\$	-	\$	-	\$ -	\$ -	\$		N/A	0	+	\$	-
	3	2021	\$	-	\$	-	\$-	\$-	9		N/A	0	+	\$	-
	4 5	2022 2023	\$ \$	-	\$ \$	-	\$ - \$ -	\$- \$-	9		N/A N/A	0	\$- \$-	\$ \$	-
	6	2023	э \$	-	э \$	-	\$ -	\$- \$-	4		N/A N/A	0		э \$	-
	7	2025	\$	-	\$	-	\$-	\$-	9		N/A	0		\$	-
	8	2026	\$	-	\$	-	\$ -	\$ -	\$	δ -	N/A	0	\$ -	\$	-
	9 ⁵	2027	\$	32,000	\$	-	\$-	\$-	9	\$ -	N/A	0	\$-	\$	32,000
	10 ⁵	2028	\$	-	\$	-	\$ -	\$ -	\$		N/A	0	+	\$	-
	11 ⁵	2029	\$	-	\$	-	\$ -	\$-	\$		N/A	0	+	\$	-
	12 ⁵ 13 ⁵	2030 2031	\$ \$	-	\$ \$	-	\$- \$-	\$- \$-	9		N/A N/A	0	+	\$ \$	-
_	14 ⁵	2031	\$	927,861	\$	-	\$ -	\$-	4		N/A	0		φ \$	927,861
	15	2033	\$	-	\$	34,111	\$ 7,964	\$ 28,425	\$		Inc. in TTS Labor	1,934,140	· ·	\$	164,818
	16	2034	\$	-	\$	34,111	\$ 7,964	\$ 28,425	-		Inc. in TTS Labor	1,922,454		\$	164,288
	17	2035	\$	-	\$	34,111	\$ 7,964	\$ 28,425			Inc. in TTS Labor	1,910,816	\$ 86,625	\$	163,761
_	18	2036	\$	-	\$	34,111	\$ 7,964	\$ 28,425			Inc. in TTS Labor	1,899,220		\$	163,235
	19	2037	\$	-	\$	34,111	\$ 7,964	\$ 28,425	_		Inc. in TTS Labor	1,887,687		\$	162,712
_	20 21	2038 2039	\$ \$	-	\$ \$	34,111 34,111	\$ 7,964 \$ 7,964	\$ 28,425 \$ 28,425	_		Inc. in TTS Labor Inc. in TTS Labor	1,876,212 1,865,065		\$ \$	162,192 161,687
_	21	2039	э \$	-	э \$	34,111	\$ 7,964 \$ 7,964	\$ 28,425 \$ 28,425	-		Inc. in TTS Labor	1,854,615	\$ 84,077	э \$	161,213
	23	2040	\$	-	\$	34,111	\$ 7,964	\$ 28,425	-	,	Inc. in TTS Labor	1,844,795		\$	160,768
	24	2042	\$	-	\$	34,111	\$ 7,964	\$ 28,425			Inc. in TTS Labor	1,835,550		\$	160,349
	25	2043	\$	-	\$	34,111	\$ 7,964	\$ 28,425	\$	6,636	Inc. in TTS Labor	1,826,789	\$ 82,815	\$	159,952
	26	2044	\$	-	\$	34,111	\$ 7,964	\$ 28,425			Inc. in TTS Labor	1,818,473	\$ 82,438	\$	159,575
	27	2045	\$	-	\$	34,111	\$ 7,964	\$ 28,425		- 1	Inc. in TTS Labor	1,810,569		\$	159,216
_	28 29	2046 2047	\$ \$	-	\$ \$	34,111 34,111	\$ 7,964 \$ 7,964	\$ 28,425 \$ 28,425	-		Inc. in TTS Labor Inc. in TTS Labor	1,803,054 1,795,898		\$ \$	158,876 158,551
	30	2047	\$	-	φ \$	34,111	\$ 7,964	\$ 28,425		,	Inc. in TTS Labor	1,789,083		φ \$	158,242
	31	2049	\$	-	\$	34,111	\$ 7,964	\$ 28,425	-		Inc. in TTS Labor	1,782,570		\$	157,947
	32	2050	\$	-	\$	34,111	\$ 7,964	\$ 28,425	_	6,636	Inc. in TTS Labor	1,776,336		\$	157,664
	33	2051	\$	-	\$	34,111	\$ 7,964	\$ 28,425	-		Inc. in TTS Labor	1,770,365	\$ 80,258	\$	157,394
	34	2052	\$	-	\$	34,111	\$ 7,964	\$ 28,425			Inc. in TTS Labor	1,764,628		\$	157,134
	35	2053	\$	-	\$	34,111	\$ 7,964	\$ 28,425		,	Inc. in TTS Labor	1,759,119		\$	156,884
_	36 37	2054 2055	\$ \$	-	\$ \$	34,111 34,111	\$ 7,964 \$ 7,964	\$ 28,425 \$ 28,425	_		Inc. in TTS Labor Inc. in TTS Labor	1,753,817 1,748,702	. ,	\$ \$	156,643 156,412
	38	2055	\$	-	φ \$	34,111	\$ 7,964	\$ 28,425 \$	_		Inc. in TTS Labor	1,743,769		φ \$	156,188
	39	2057	\$	-	\$	34,111	\$ 7,964	\$ 28,425		,	Inc. in TTS Labor	1,739,002		\$	155,972
	40	2058	\$	-	\$	34,111	\$ 7,964	\$ 28,425	\$	6,636	Inc. in TTS Labor	1,734,394	\$ 78,627	\$	155,763
	41	2059	\$	-	\$	34,111		\$ 28,425			Inc. in TTS Labor	1,729,938		\$	155,561
_	42	2060	\$	-	\$	34,111		\$ 28,425			Inc. in TTS Labor	1,725,628		\$	155,366
	43	2061	\$	-	\$	34,111					Inc. in TTS Labor	1,721,453		\$	155,176
_	44 45	2062 2063	\$ \$	-	\$ \$	34,111 34,111		\$ 28,425 \$ 28,425			Inc. in TTS Labor Inc. in TTS Labor	1,717,409 1,713,490		\$ \$	154,993 154,815
	46	2063	\$	-	\$	34,111		\$ 28,425			Inc. in TTS Labor	1,709,685		\$	154,643
	47	2065	\$	-	\$	34,111		\$ 28,425			Inc. in TTS Labor	1,705,999		\$	154,476
	48	2066	\$	-	\$	34,111	\$ 7,964	\$ 28,425			Inc. in TTS Labor	1,702,409		\$	154,313
	49	2067	\$	-	\$	34,111		\$ 28,425	_		Inc. in TTS Labor	1,698,923		\$	154,155
	50	2068	\$	-	\$	34,111		\$ 28,425			Inc. in TTS Labor	1,694,059		\$	153,934
\vdash	51	2069	\$ ¢	-	\$ ¢	34,111		\$ 28,425 \$ 28,425			Inc. in TTS Labor	1,684,881		\$	153,518
\vdash	52 53	2070 2071	\$ \$	-	\$ \$	34,111 34,111	\$ 7,964 \$ 7,964	\$ 28,425 \$ 28,425			Inc. in TTS Labor Inc. in TTS Labor	1,681,763 1,678,726		\$ \$	153,377 153,239
\vdash	53 54	2071	э \$	-	э \$	34,111		\$ 28,425 \$ 28,425	_		Inc. in TTS Labor	1,675,771		ֆ \$	153,239
	55	2072	\$	-	\$	34,111		\$ 28,425	_		Inc. in TTS Labor	1,672,889		\$	152,975
	56	2074	\$	-	\$	34,111		\$ 28,425			Inc. in TTS Labor	1,670,080		\$	152,847
	57	2075	\$	-	\$	34,111		\$ 28,425	\$	6,636	Inc. in TTS Labor	1,667,345	\$ 75,587	\$	152,723
	58	2076	\$	-	\$	34,111		\$ 28,425	_		Inc. in TTS Labor	1,664,673		\$	152,602
	59	2077	\$	-	\$	34,111		\$ 28,425 \$ 28,425			Inc. in TTS Labor	1,662,072		\$	152,484
\vdash	60 61	2078 2079	\$ \$	-	\$ \$	34,111 34,111		\$ 28,425 \$ 28,425			Inc. in TTS Labor Inc. in TTS Labor	1,659,540 1,657,057		\$ \$	152,369 152,257
\vdash	62	2079	э \$	-	э \$	34,111		\$ 28,425 \$ 28,425			Inc. in TTS Labor	1,654,643		ֆ \$	152,257
	63	2000	\$	-	\$	34,111		\$ 28,425			Inc. in TTS Labor	1,652,286		\$	152,041
	64	2082	\$	-	\$	34,111		\$ 28,425			Inc. in TTS Labor	1,649,975		\$	151,936
	65	2083	\$	-	\$	34,111	\$ 7,964	\$ 28,425	\$	6,636	Inc. in TTS Labor	1,647,727	\$ 74,698	\$	151,834
	66	2084	\$	-	\$	34,111		\$ 28,425	_		Inc. in TTS Labor	1,645,531		\$	151,734
	67	2085	\$	-	\$	34,111					Inc. in TTS Labor	1,643,382			151,637
\vdash	68 69	2086	\$ ¢	-	\$ ¢	34,111		\$ 28,425 \$ 28,425			Inc. in TTS Labor Inc. in TTS Labor	1,641,275 1,639,221		\$ ¢	151,541
\vdash	69 70	2087 2088	\$ \$	-	\$ \$	34,111 34,111					Inc. in TTS Labor	1,639,221		\$ \$	151,448 151,357
		2000	Ψ	-	Ψ	54,111	+ 1,004	+ 20,423	Ψ	. 0,000		1,00,1210	Ψ 17, <u>∠</u> ∠Ι	¥	101,007

70	2088	\$ -	\$ 34,111	\$ 7,964	\$ 28,425	\$ 6,636	Inc. in TTS Labor	1,637,215	\$ 74,221	\$ 151,357
71	2089	\$ -	\$ 34,111	\$ 7,964	\$ 28,425	\$ 6,636	Inc. in TTS Labor	1,635,253	\$ 74,132	\$ 151,268
72	2090	\$ -	\$ 34,111	\$ 7,964	\$ 28,425	\$ 6,636	Inc. in TTS Labor	1,633,331	\$ 74,045	\$ 151,181
73	2091	\$ -	\$ 34,111	\$ 7,964	\$ 28,425	\$ 6,636	Inc. in TTS Labor	1,631,452	\$ 73,960	\$ 151,096
74	2092	\$ -	\$ 34,111	\$ 7,964	\$ 28,425	\$ 6,636	Inc. in TTS Labor	1,629,868	\$ 73,888	\$ 151,024

Inputs

 Project No.:
 18106417

 Subject:
 Water Conveyance Direct Cost Cash Flow by Year in Current Cost Dollars

 Project Short Title:
 Tyrone Mine Closure Closeout Plan

Total Pump and Pipeline Costs if New Total Tank and Reservoir Cost if New	1,895,030 442,427
Replacement O&M Percentage	1.8%
Routine Maintenance Percentage	1.5%
Avg (\$/kWh) Year 1 through 14	\$ 0.045

Avg (\$/kWh) Year 15 through 100 \$ 0.045 **Pumps and Pipeline** Tanks and Reservoi Year Pumping System ollowing Pumps and Pipeline Tanks and Reservoir Routine Routine Annual Power **O&M Electrical Total Annual** Capital¹ Replacement O&M² O&M Labor⁴ Annual Cost Replacement O&M² Maintenance Maintenance Jsage (kWh) Cost Closure Inc. in TTS Labor 2093 34,111 \$ 7,964 \$ 28,425 6,636 1,628,324 \$ 73,818 150,954 \$ \$ \$ \$ 75 76 2094 \$ \$ 34,111 \$ 7,964 \$ 28,425 \$ 6,636 Inc. in TTS Labor 1,626,807 73,750 150,886 \$ \$ 77 2095 \$ \$ 34,111 \$ 7,964 \$ 28,425 \$ 6,636 Inc. in TTS Labor 1,625,326 \$ 73,682 150,818 \$ Inc. in TTS Labor 78 2096 \$ \$ 34,111 \$ 7,964 \$ 28,425 \$ 6,636 1,623,873 \$ 73,616 \$ 150,753 79 7,964 \$ 28,425 Inc. in TTS Labor 1.622.447 \$ 150,688 2097 \$ 34,111 \$ 6,636 73,552 \$ \$ \$ 1,621,047 \$ 80 2098 \$ \$ 34,111 \$ 7,964 \$ 28,425 \$ 6,636 Inc. in TTS Labor 73,488 \$ 150,624 81 2099 \$ \$ 34,111 \$ 7,964 \$ 28,425 \$ 6,636 Inc. in TTS Labor 1,619,665 \$ 73,426 150,562 \$ 82 2100 \$ \$ 34,111 \$ 7,964 \$ 28,425 \$ 6,636 Inc. in TTS Labor 1,618,304 \$ 73,364 \$ 150,500 -Inc. in TTS Labor 83 2101 \$ 34,111 \$ 7,964 \$ 28,425 6,636 1,616,973 \$ 73,304 150,440 \$ \$ \$ 34,111 \$ 1,615,670 \$ 84 2102 \$ -\$ 7,964 \$ 28,425 \$ 6,636 Inc. in TTS Labor 73,245 \$ 150,381 Inc. in TTS Labor 85 2103 \$ \$ 34,111 \$ 7,964 \$ 28,425 \$ 1,614,382 \$ 73,186 150,322 -6,636 \$ 86 2104 \$ -\$ 34,111 \$ 7,964 \$ 28,425 \$ 6,636 Inc. in TTS Labor 1,613,112 \$ 73,129 \$ 150,265 7,964 \$ 87 2105 \$ \$ 34,111 \$ 28,425 \$ 6,636 Inc. in TTS Labor 1,611,871 \$ 73,072 \$ 150,208 34,111 \$ 88 2106 \$ -\$ 7,964 \$ 28,425 \$ 6,636 Inc. in TTS Labor 1,610,645 \$ 73,017 \$ 150,153 Inc. in TTS Labor 1,609,444 \$ 89 2107 \$ \$ 34,111 \$ 7,964 \$ 28,425 \$ 6,636 72,962 150,098 -\$ Inc. in TTS Labor 150,045 90 2108 \$ -\$ 34,111 \$ 7,964 \$ 28,425 \$ 6,636 1,608,262 \$ 72,909 \$ 91 2109 34,111 \$ 7,964 \$ 28,425 6,636 Inc. in TTS Labor 1,607,103 \$ 72,856 149,992 \$ \$ \$ \$ 34,111 \$ 28,425 Inc. in TTS Labor 1,605,972 \$ 92 2110 \$ -\$ 7,964 \$ \$ 6,636 72,805 \$ 149,941 28,425 \$ 1,604,862 \$ 93 2111 \$ 34,111 \$ 7,964 \$ Inc. in TTS Labor 72,755 \$ 149,891 -\$ 6,636 34,111 \$ 149,841 94 2112 28.425 \$ 6.636 Inc. in TTS Labor 72.705 \$ 7.964 \$ 1,603,762 \$ -\$ \$ 95 2113 34,111 \$ 7,964 \$ 28,425 Inc. in TTS Labor 1,602,687 \$ 72,656 149,792 \$ \$ \$ 6,636 \$ Inc. in TTS Labor 96 2114 \$ \$ 34,111 \$ 7,964 \$ 28,425 \$ 6,636 1,601,626 \$ 72,608 149,744 \$ 97 2115 \$ 34,111 \$ 7,964 \$ Inc. in TTS Labor 149,697 \$ -28,425 \$ 6,636 1,600,582 \$ 72,561 \$ Inc. in TTS Labor 7.964 \$ 28,425 98 2116 -6.636 1,599,553 \$ 72,514 149,650 \$ \$ 34,111 \$ \$ \$ 99 2117 34,111 \$ 7,964 \$ 28,425 Inc. in TTS Labor 1,598,544 \$ 72,468 149,604 \$ \$ \$ 6,636 \$ 34.111 \$ 100 2118 \$ 7,964 \$ 28,425 \$ 6.636 Inc. in TTS Labor 1,597,552 \$ 72,423 \$ 149,559 \$ 444,589 959,861 2,933,506 \$ 84,877 570,731 45,990,464 6.618.316 14,211,879

Notes:

¹ Capital pipeline costs include discharge pipeline from TTS to tributary arroyo to Mangas Wash, energy dissipation structure, and a tank.

² Replacement O&M costs are estimated at 1.8% of the total capital cost for the complete water conveyance system. A higher percentage of capital cost is estimated given that existing pumps, pipelines, tanks and reservoirs will be utilized initially up until their associated life expectancies are met and will require replacement sooner than if new equipment was utilized initially.

³ Routine maintenance is estimated at 1.5% of the total capital cost for the complete water conveyance system. Routine maintenance includes materials needed for preventative maintenance such as mechanical seals, lubricant, valve sleeves, fuses, etc.

⁴Labor for water conveyance is included in labor for the TTS. TTS Labor is provided on the TTS Cash Flow sheet.

⁵ The No. 3 PLS Overflow Pond will be closed at the end of Year 9 and a new 20,000 gallon plastic above ground storage tank will be installed in its place to collect low TDS and sulfate concentration waters from the 3A stockpile seepage collection and interceptor systems. There is no replacement O&M or routine maintenance applied to Years 10 through 14.

Cost estimate backup details are included in Attachment B to the Tyrone Water Treatment Cost Basis Document.

Costs do not include indirect costs

REV 0 July 29, 2019 18106417 STS Direct Cost Cash Flow by Year in Current Cost Dollars Tyrone Mine Closure Closeout Plan

In	puts	
New Cost	\$	7,232,445
acement O&M Percentage		1.5%

1.5%

Replac Routine Maintenance Percentage Avg (\$/kWh) Year 1 through 14 \$ Avg (\$/kWh) Year 15 through 100 \$

0.045 0.045

						Reag	ents		Avg (\$/KWII) Tea	ar 15 through 100	\$ 0.045
Year	Capital	Labor	Replacement O&M	Routine Maintenance	Lime (CaO)	Flocculent	Acid (35% HCI)	Membrane Chemicals	Analytical	Devuer	Total Annual Cost
1 \$			\$ -	\$ -	\$ -	\$ -	\$ -		Analytical \$ 3,224	Power -	\$ 3,224
2 \$			\$ -	\$ -	\$ -	\$ -	\$ -		\$ 3,224		\$ 3,224 \$ 2,224
3 \$		\$- \$-	<u>\$</u> - \$-	\$ - \$ -	<u>\$</u> - \$-	\$- \$-	\$- \$-		\$ 3,224 \$ \$ 3,224 \$		\$ 3,224 \$ 3,224
5 \$		\$ -	\$ -	\$ -	\$ -	\$-	\$ -	\$ -	\$ 3,224		\$ 3,224
6 \$ 7 \$		\$- \$-	\$ - \$ -	\$ - \$ -	\$- \$-	\$- \$-	\$- \$-	\$- \$-	\$ 3,224 \$ \$ 3,224 \$		\$ 3,224 \$ 3,224
8 \$		\$ -	\$ -	\$ -	\$ -	\$-	\$-	\$ -	\$ 3,224 \$; -	\$ 3,224
9 \$ 10 \$		\$- \$-	\$ - \$ -	\$ - \$ -	\$- \$-	\$- \$-	\$- \$-		\$ 3,224 \$ \$ 3,224 \$		\$ 3,224 \$ 3,224
11 \$	-	\$ -	\$-	\$ -	\$ -	\$-	\$ -	\$ -	\$ 3,224 \$; -	\$ 3,224
12 \$ 13 \$		\$- \$-	<u>\$</u> - \$-	\$ - \$ -	\$- \$-	\$- \$-	\$- \$-	\$ - \$-	\$ 3,224 \$ \$ 1,612 \$		\$ 3,224 \$ 1,612
14 \$		\$ -	\$ -	\$ -	÷ -	\$ -	\$ -	\$ -	\$ 1,612 \$		\$ 7,234,057
15 \$ 16 \$		1 1 - 1		\$ 108,487 \$ 108,487	\$ 1,055,002 \$ 1,043,183		\$ 4,783 \$ 4,733		\$ 30,628 \$ \$ 30,628 \$,	\$ 2,892,360 \$ 2,877,675
17 \$		+ .,=,	, , .		\$ 1,043,183		\$ 4,683		\$ 30,628		\$ 2,863,125
18 \$, , , , , , , , , , , , , , , , , , , ,	, , .	\$ 108,487	, ,- ,	\$ 185,118 • 100,715			\$ 30,628 \$		
19 \$ 20 \$		\$ 1,213,843 \$ 1,213,843			\$ 1,008,414 \$ 997,068			\$ 107,076 \$ 106,265			
21 \$		\$ 1,213,843	\$ 108,487	\$ 108,487	\$ 986,096	\$ 180,978	\$ 4,489	\$ 105,481	\$ 30,628 \$	68,174	\$ 2,806,662
22 \$ 23 \$			\$ 108,487 \$ 108,487	\$ 108,487 \$ 108,487	\$ 975,823 \$ 966,167	\$ 179,724 \$ 178,551	\$ 4,445 \$ 4,404		\$ 30,628 \$ \$ 30,628 \$		\$ 2,793,890 \$ 2,781,893
24 \$	-	\$ 1,213,843	\$ 108,487	\$ 108,487	\$ 957,072	\$ 177,451	\$ 4,366	\$ 103,426	\$ 30,628 \$	66,845	\$ 2,770,604
25 \$ 26 \$		1 1 1 1 1 1		\$ 108,487 \$ 108,487	\$ 948,447 \$ 940,248		\$ 4,329 \$ 4,295	\$ 102,820 \$ 102,246	\$ 30,628 \$ \$ 30,628 \$		\$ 2,638,521 \$ 2,628,358
27 \$, ,,		\$ 108,487 \$ 108,487	\$ 932,443		\$ 4,262	\$ 101,702		65,731	\$ 2,618,692
28 \$		\$ 1,092,459 \$ 1.092,459			\$ 925,008 \$ 917,913		\$ 4,231 \$ 4,202	\$ 101,185 \$ 100,694			
29 \$ 30 \$		+ .1===1.==		\$ 108,487 \$ 108,487	\$ 917,913 \$ 911,139		\$ 4,202 \$ 4,174		\$ 30,628 \$ \$ 30,628 \$		
31 \$	-	\$ 1,092,459	\$ 108,487	\$ 108,487	\$ 904,651	\$ 171,197	\$ 4,147	\$ 99,781	\$ 30,628 \$	64,489	\$ 2,584,325
32 \$ 33 \$			\$ 108,487 \$ 108,487		\$ 898,428 \$ 892,450		\$ 4,122 \$ 4,097	1	\$ 30,628 \$ \$ 18,941 \$. , ,
34 \$	-	\$ 1,092,459	\$ 108,487	\$ 108,487	\$ 886,695	\$ 169,093	\$ 4,074	\$ 98,554	\$ 18,941 \$	63,696	\$ 2,550,484
35 \$ 36 \$		\$ 1,092,459 \$ 1,092,459	,, .	\$ 108,487 \$ 108,487			\$ 4,051 \$ 4,029	\$ 98,178 \$ 97,816			
37 \$	-	\$ 1,092,459	\$ 108,487	\$ 108,487	\$ 870,627	\$ 167,227	\$ 4,008	\$ 97,467	\$ 18,941 \$	62,993	\$ 2,530,695
38 \$ 39 \$			\$ 108,487 \$ 108,487	\$ 108,487 \$ 108,487	\$ 865,622 \$ 860,774	\$ 166,649 \$ 166,090	\$ 3,988 \$ 3,969	. ,	\$ 18,941 \$ \$ 18,941 \$		\$ 2,524,538 \$ 2,518,576
40 \$		\$ 1,092,459					\$ 3,950	\$ 96,490			
41 \$ 42 \$		1 1 1 1 1 1		\$ 108,487 \$ 108,487	\$ 851,518 \$ 847,096		\$ 3,932 \$ 3,914	1,	\$ 18,941 \$ \$ 18,941 \$		\$ 2,507,202 \$ 2,380,387
43 \$				\$ 108,487 \$ 108,487	\$ 842,802		\$ 3,897	. ,	\$ 18,941 \$		\$ 2,375,118
44 \$. ,	,, .	\$ 108,487 \$ 108,487		. ,	\$ 3,880	. ,	\$ 18,941 \$,	, ,- ,
45 \$ 46 \$		\$ 971,074 \$ 971,074	. ,	\$ 108,487 \$ 108,487	\$ 834,578 \$ 830,634		\$ 3,864 \$ 3,849		\$ 18,941 \$ \$ 18,941 \$,	
47 \$		\$ 971,074	\$ 108,487	\$ 108,487	\$ 826,798	\$ 162,223	\$ 3,834	\$ 94,550	\$ 18,941 \$	61,109	\$ 2,355,503
48 \$ 49 \$		\$ 971,074 \$ 971,074		\$ 108,487 \$ 108,487	\$ 823,055 \$ 819,409		\$ 3,819 \$ 3,805	\$ 94,305 \$ 94,067		,	\$ 2,350,920 \$ 2,346,458
50 \$	-	\$ 971,074	\$ 108,487	\$ 108,487	\$ 814,713	\$ 160,829	\$ 3,785	\$ 93,738	\$ 18,941 \$	60,583	\$ 2,340,636
51 \$ 52 \$		\$ 971,074 \$ 971,074									
53 \$	-	\$ 971,074	\$ 108,487	\$ 108,487	\$ 805,249	\$ 159,066	\$ 3,723	\$ 92,710	\$ 18,941 \$	5 59,919	\$ 2,327,657
54 \$ 55 \$		\$ 971,074 \$ 971,074									
56 \$		\$ 971,074	\$ 108,487	\$ 108,487	\$ 797,697	\$ 158,074	\$ 3,689	\$ 92,132	\$ 18,941 \$	5 59,545	\$ 2,318,125
57 \$ 58 \$		\$ 971,074 \$ 971,074									
59 \$		\$ 971,074 \$ 971,074									
60 \$		\$ 971,074 • 071,074									
61 \$ 62 \$		\$ 971,074 \$ 971,074									
63 \$	-	\$ 971,074	\$ 108,487	\$ 108,487	\$ 782,100	\$ 156,032	\$ 3,617	\$ 90,942	\$ 18,941 \$	5 58,776	\$ 2,298,456
64 \$ 65 \$		\$ 971,074 \$ 971,074					\$ 3,608 \$ 3,599	\$ 90,787 \$ 90,637			
66 \$	-	\$ 971,074	\$ 108,487	\$ 108,487	\$ 776,156	\$ 155,257	\$ 3,590	\$ 90,490	\$ 18,941 \$	5 58,484	\$ 2,290,966
67 \$ 68 \$		\$ 971,074 \$ 971,074						\$ 90,346 \$ 90,205			
69 \$	-	\$ 971,074	\$ 108,487	\$ 108,487	\$ 770,588	\$ 154,532	\$ 3,565	\$ 90,068	\$ 18,941 \$	5 58,212	\$ 2,283,953
70 \$ 71 \$		\$ 971,074 \$ 971,074									
72 \$	-	\$ 971,074	\$ 108,487	\$ 108,487	\$ 765,369	\$ 153,855	\$ 3,541	\$ 89,673	\$ 18,941 \$	5 57,957	\$ 2,277,384
73 \$		\$ 971,074	\$ 108,487	\$ 108,487	\$ 763,705	\$ 153,640	\$ 3,534	\$ 89,548	\$ 18,941 \$	5 57,876	\$ 2,275,291
74 \$ 75 \$		\$ 971,074 \$ 971,074						\$ 89,340	\$ 18,941 \$		
76 \$	-	\$ 971,074	\$ 108,487	\$ 108,487	\$ 759,164	\$ 153,109	\$ 3,515	\$ 89,238	\$ 18,941 \$	5 57,675	\$ 2,269,690
77 \$ 78 \$		\$ 971,074 \$ 971,074									
79 \$	-	\$ 971,074	\$ 108,487	\$ 108,487	\$ 754,850	\$ 152,609	\$ 3,498	\$ 88,947	\$ 18,941 \$	5 57,487	\$ 2,264,379
80 \$ 81 \$		\$ 971,074 \$ 971,074						\$ 88,853 \$ 88,760			
82 \$	-	\$ 971,074	\$ 108,487	\$ 108,487	\$ 750,713	\$ 152,131	\$ 3,481	\$ 88,668	\$ 18,941 \$	5 57,307	\$ 2,259,290
83 \$		\$ 971,074 \$ 971,074							\$ 18,941 \$	5 57,249	\$ 2,257,644
84 \$ 85 \$		\$ 971,074	\$ 108,487	\$ 108,487	\$ 746,757	\$ 151,678	\$ 3,465	\$ 88,404	\$ 18,941 \$	5 57,136	\$ 2,254,430
86 \$	-	\$ 971,074	\$ 108,487	\$ 108,487	\$ 745,466	\$ 151,531	\$ 3,460	\$ 88,318	\$ 18,941 \$	5 57,081	\$ 2,252,845
87 \$ 88 \$		\$ 971,074 \$ 971,074									
89 \$	-	\$ 971,074	\$ 108,487	\$ 108,487	\$ 741,720	\$ 151,106	\$ 3,445	\$ 88,071	\$ 18,941 \$	5 56,921	\$ 2,248,251
90 \$ 91 \$		\$ 971,074 \$ 971,074						\$ 87,991 \$ 87,912	\$ 18,941 \$ \$ 18,941 \$		
92 \$	-	\$ 849,690	\$ 108,487			. ,	\$ 3,431	\$ 87,835	\$ 18,941 \$	56,769	\$ 2,122,476
93 \$		\$ 849,690	\$ 108,487	\$ 108,487	\$ 736,977	\$ 150,573		\$ 87,760	\$ 18,941 \$	56,720	
94 \$ 95 \$		\$ 849,690 \$ 849,690									
96 \$	-	\$ 849,690	\$ 108,487	\$ 108,487	\$ 733,585	\$ 150,195	\$ 3,413	\$ 87,540	\$ 18,941 \$	56,578	\$ 2,116,914
97 \$ 98 \$		\$ 849,690 \$ 849,690						. ,			
99 \$	-	\$ 849,690	\$ 108,487	\$ 108,487	\$ 730,320	\$ 149,834	\$ 3,401	\$ 87,329	\$ 18,941 \$	5 56,442	\$ 2,112,930
100 \$ Total \$		\$ 849,690 \$ 86,911,164			,	\$ 149,718 \$ 13,875,586		\$ 87,262 \$ 8,087,267		,	\$ 2,111,641 \$ 213,107,053
i Jiai 🔰	1,232,443	ψ 00,311,104	ψ <i>3,323,</i> 034	ψ <i>3,323,</i> 034	φ (0,300,113	ψ 13,073,300	ψ J21,041	φ 0,007,207	ψ 1,001,204	, 3,220,003	Ψ 213,107,003

Date:REV 0 July 29, 2019Project No.:18106417Subject:Sludge Disposal DireProject Short Title:Tyrone Mine Closure

18106417 Sludge Disposal Direct Cost Cash Flow by Year in Current Cost Dollars Tyrone Mine Closure Closeout Plan

Inp	uts
New Cost	\$
Replacement O&M	
Sludge disposal (\$/cy)	\$

142,305 1.5% 3.03

Year							Annual Sludge	
Following	N	Construct.			D and i at a second s	0011 1 1 2 2	Production/ Removal	
Closure	Year 2019	Capital \$-	_	Replacement O&M ¹ \$	Routine Maintenance ² \$-	O&M Labor ² \$-	(cy/yr) 0	Total Operating Cost
1	2019	\$ -		• -	\$	\$	0	Ŧ
3	2020	\$-		\$-	\$ -	\$ -	0	\$ -
4	2022	\$-		\$ -	\$ -	\$ -	0	\$ -
5	2023	\$-		\$-	\$ -	\$ -	0	\$-
6	2024	\$ -		\$ -	\$ -	\$ -	0	\$ -
7	2025	\$-		\$ -	\$		0	\$ -
8	2026 2027	\$ - \$ -		\$ <u>-</u> \$-	<u>\$</u> - \$-	\$- \$-	0	\$ - \$ -
10	2027	\$ -		\$ -	\$	⇒ \$	0	\$ -
11	2029	\$-		\$-	\$ -	\$ -	0	\$-
12	2030	\$-		\$-	\$ -		0	\$-
13	2031	\$-		\$ -	\$-	\$ -	0	\$-
14	2032	\$ 142,3)5	\$-	\$-	\$ -	0	\$ 142,305
15	2033	\$-		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	24,329	\$ 75,916
16	2034	\$-		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	24,056	
17	2035	\$ -		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	23,786	
18	2036	\$-		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	23,519	
19	2037	\$-		\$ 2,135 \$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	23,254	
20 21	2038 2039	\$ - \$ -	_	\$ 2,135 \$ 2,135	Included in Total Operating Cost Included in Total Operating Cost	Included in Total Operating Cost Included in Total Operating Cost	22,993 22,740	
21	2039	\$ -		\$ 2,135 \$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	22,740	\$ 70,378
22	2040	\$ -		\$ 2,135 \$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	22,303	
24	2042	\$-		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	22,070	
25	2043	\$ -		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	21,871	\$ 68,464
26	2044	\$-		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	21,682	\$ 67,890
27	2045	\$-		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	21,502	\$ 67,345
28	2046	\$-		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	21,331	\$ 66,825
29	2047	\$-		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	21,167	\$ 66,328
30	2048	\$-		\$ 2,135 \$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	21,011	\$ 65,855
31	2049	\$ - \$ -		\$ 2,135 \$ 2,135	Included in Total Operating Cost Included in Total Operating Cost	Included in Total Operating Cost Included in Total Operating Cost	20,862 20,718	\$ 65,401 \$ 64,966
32 33	2050 2051	\$ - \$ -		\$ 2,135 \$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	20,718	
33	2051	\$ -	_	\$ 2,135 \$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	20,380	
35	2052	\$-		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	20,320	
36	2054	\$-		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	20,196	
37	2055	\$ -		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	20,077	
38	2056	\$-		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	19,962	\$ 62,672
39	2057	\$-		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	19,850	\$ 62,333
40	2058	\$-		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	19,741	\$ 62,004
41	2059	\$-		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	19,636	
42	2060	\$-		\$ 2,135 \$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	19,534	
43	2061 2062	\$ - \$ -		\$ 2,135 \$ 2,135	Included in Total Operating Cost Included in Total Operating Cost	Included in Total Operating Cost Included in Total Operating Cost	19,435 19,339	
44	2062	\$ - \$ -	_	\$ 2,135 \$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	19,339	
46	2003	\$ -	_	\$ 2,135 \$	Included in Total Operating Cost	Included in Total Operating Cost	19,155	
47	2065	\$-		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	19,066	
48	2066	\$ -		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	18,980	
49	2067	\$ -		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	18,896	
50	2068	\$-		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	18,788	\$ 59,111
51	2069	\$-		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	18,693	
52	2070	\$-		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	18,630	
53	2071	\$ -	_	\$ 2,135 \$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	18,569	
54	2072	\$ - \$		\$ 2,135 \$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	18,510	
55 56	2073 2074	\$ - \$ -		\$ 2,135 \$ 2,135	Included in Total Operating Cost Included in Total Operating Cost	Included in Total Operating Cost Included in Total Operating Cost	18,452 18,395	
50	2074	\$ - \$ -		\$ 2,135 \$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	18,395	
58	2076	\$ -		\$ 2,135 \$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	18,286	
59	2077	\$-		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	18,234	
60	2078	\$ -		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	18,182	
61	2079	\$ -		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	18,132	
62	2080	\$-		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	18,083	
63	2081	\$ -		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	18,035	
64	2082	\$-		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	17,989	
65	2083	\$-		\$ 2,135 \$ 0.105	Included in Total Operating Cost	Included in Total Operating Cost	17,943	
66 67	2084	\$ - ¢		\$ 2,135 \$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	17,898	
67 68	2085 2086	\$ - \$ -	_	\$ 2,135 \$ 2,135	Included in Total Operating Cost Included in Total Operating Cost	Included in Total Operating Cost Included in Total Operating Cost	17,855 17,812	
69	2086	\$ -		\$ 2,135 \$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	17,812	
70	2088	\$ -		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	17,729	
70	2089	\$-		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	17,689	
72	2090	\$-	_	\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	17,650	\$ 55,660
73	2091	\$-		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	17,611	
74	2092	\$-		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	17,576	
75	2093	\$-		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	17,541	
76	2094	\$-		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	17,507	
77	2095	\$-		\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	17,473	
78	2096	\$ -		\$ 2,135 \$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	17,440	
79 80	2097	\$ - \$		\$ 2,135 \$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost		
80 81	2098 2099	\$ - \$ -		\$ 2,135 \$ 2,135	Included in Total Operating Cost Included in Total Operating Cost	Included in Total Operating Cost Included in Total Operating Cost	17,375 17,343	
01	2099	ψ -		ψ 2,135		moluded in Total Operating Cost	17,343	ψ 54,/31

Project No.:

Following

Subject:

REV 0 July 29, 2019 18106417 Sludge Disposal Direct Cost Cash Flow by **Project Short Title:** Tyrone Mine Closure Closeout Plan

		Replacement O&M		1.5%
y Year in Current Cost Dollars		Sludge disposal (\$/cy)	\$	3.03
outine Maintenance ²		Annual Sludge Production/ Removal (cy/yr)	Total Operating C	ost
ncluded in Total Operating Cost	Included in Total Operating Cost	17,312	\$ 54,	635

Closure	Year	Capita	al	Replacement O&M ¹	Routine Maintenance ²	O&M Labor ²	(cy/yr)	Total Operating Cost
82	2100	\$	-	\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	17,312	\$ 54,635
83	2101	\$	-	\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	17,281	\$ 54,542
84	2102	\$	-	\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	17,250	\$ 54,450
85	2103	\$	-	\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	17,220	\$ 54,359
86	2104	\$	-	\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	17,191	\$ 54,269
87	2105	\$	-	\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	17,161	\$ 54,180
88	2106	\$	-	\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	17,133	\$ 54,093
89	2107	\$	-	\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	17,104	\$ 54,007
90	2108	\$	-	\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	17,076	\$ 53,922
91	2109	\$	-	\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	17,049	\$ 53,838
92	2110	\$	-	\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	17,022	\$ 53,756
93	2111	\$	-	\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	16,995	\$ 53,675
94	2112	\$	-	\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	16,968	\$ 53,595
95	2113	\$	-	\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	16,942	\$ 53,516
96	2114	\$	-	\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	16,917	\$ 53,438
97	2115	\$	-	\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	16,891	\$ 53,361
98	2116	\$	-	\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	16,866	\$ 53,284
99	2117	\$	-	\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	16,841	\$ 53,209
100	2118	\$	-	\$ 2,135	Included in Total Operating Cost	Included in Total Operating Cost	16,817	\$ 53,135
To	tal	\$ 1	142,305	\$ 183,573	\$ -	\$ -	1,635,108	\$ 5,284,651
Notes:								

Notes

¹ Capital replacement is estimated at 1.5% of the total capital cost and includes estimated costs associated with closure of each of the four individual cells comprising the sludge disposal facility (approximately 408,777 cubic yards per cell). Closure includes grading, three foot of earthen cover, and revegetation costs. Initial capital cost for construction of sludge disposal facility (by RS Means) shown in Year 14.

² Routine Maintenance and Operation and Maintanance Labor is included in the Total Operating Cost calculation. Costs based on 2019 RS Means estimate of \$3.03 per/cy for loading, hauling, and placing of sludge at the sludge disposal facility.

Cost estimate backup details are included in Attachment B to the Tyrone Water Treatment Cost Basis Document. Costs do not include indirect costs

Inputs

New Cost \$

142,305

Date: Project No.: Subject: Project Short Title: REV 0 July 29, 2019 18106417 STS Capital Cost Estimate Details Tyrone Mine Closure Closeout Plan

Item	Description		Qty	UOM	Unit \$	Ext	ended
	E	quipment Cost					
	1,600 gpm, UF is 2 50% ur	nits and RO is 3 33%					
Membrane System, UF and RO systems	^a units for flexibility		1	each	\$ 1,345,7	00 \$	1,345,700
	Four 32,000 gallon tanks for	or flexibility, appx 120					
	min reaction time, baffles,	ladder, platform, mixer					
Reaction Tank	mount and mixer		4	each	\$ 129,0		516,000
Floc Tank	^a 7,000 gallon tank and mixe		1	each	\$ 26,0	00 \$	26,000
	2 tanks at 450 gal, with inte mount and mixer, legs for						
Sludge Densification Tank	^a reaction tank	gravity overnow to	2	each	\$ 88,4	00 \$	176,800
Ŭ	80' diameter, with feedwell	. bridge. ladder.				<u> </u>	
Thickener/Clarifier	^a platform	,,	1	each	\$ 377,2	200 \$	377,200
Sludge Pump	^a 29 gpm		2	each	\$ 15,0	000 \$	30,000
Underflow Pump	^a 3 Recycles 152 gpm		2	each	\$ 20,0		40,000
Polymer system	^a 10 mg/L - 0.97 gph		1	each	\$ 18,5		18,525
Lime Silo and Slaker System	^a 36,780 lb/day - 39 gpm, 10		1	each	\$ 985,0		985,000
pH control system (acid addition)	^a 6.65 mg/L - 1.07 gph, 0.35		2	each		53 \$	14,106
Effluent Neutralization Tank	^a 32,000 gallon tank with mix	xer	1	each	\$ 129,0		129,000
Sludge Holding Tank Filter Press System	^a 13,000 gal ^a 3 - 100 ft3 including platfor	m and convovor	3	each	\$ 33,0 \$ 352,6		33,000
Filtrate Tank	^a 3,000 gal		3	each each	\$ 352,6		10,000
Filtrate Pump	^a 9 gpm		2	each	\$ 6,7		13,400
Process Water Tank	^a 3,000 gal		1	each	\$ 10,0		10,000
Process Water Return Pump	^a 27.97 gpm		2	each	\$ 5,3		10,792
Air Compressor	^b For diaphragm pumps, incl	ludes air receiver	2	each	\$ 15,0		30,000
Electrical Equipment	b		1	ls	\$ 100,0		100,000
Valves and Piping	b		1	ls	\$ 156,0		156,000
Instrumentation	b		1	ls	\$ 50,0		50,000
Control System	b		1	ls	\$ 50,0	000 \$	50,000
Freight	b		1	ls	\$ 100,0		100,000
Total Direct Equipment	1					\$	5,279,524
Equipment Placement		stallation Cost	1	ls	\$ 50.0	00 \$	50,000
	Materials/equipment ^c Crew size	6 men	ľ	15	φ 50,0	00 φ	50,000
	^c Duration	35 days					
	Labor subtotal (Group II La		1,680	hrs	\$23	3.84 \$	40,051
Tank Erection (Clarifier Tank)	Materials/equipment	,	1	ls	\$ 75,0		75,000
	^c Crew size	8 men					
		28 days					
Process Mechanical	Ironworker Materials/equipment		1,792	hrs Is	\$48	3.66 \$ 000 \$	87,199 30,000
	^c Crew size	6 men	1	15	φ 30,0	00 φ	30,000
	^c Duration	32 days					
	Labor subtotal (Plumber/Pi		1,536	hrs	\$45	5.45 \$	69,811
Process Electrical	Materials/equipment	• /	1	ls	\$ 200,0		200,000
	^c Crew size	4 men					
		45 days					
Process Controls	Labor subtotal [Electrician	(Lineman/Tech)]	1,440	hrs Is		1.05 \$ 100 \$	77,838 5,000
	Materials/equipment ^c Crew size	4 men		15	φ 5,0	φ φ	5,000
	^c Duration	20 days		1			
	Labor subtotal [Electrician		640	hrs	\$54	.05 \$	34,595
Per Diem (Facility Electrical, Plumber)	^c Per Day		252	days	\$50	0.00 \$	12,600
Structural Steel	b		1	ls	\$50,	000 \$	50,000
Total Installation Cost						\$	732,093
Site Work	b D x nod oros	Facility Cost 20,800 ft ²	0.5		¢400.000	•	17 750
Site Work Foundations	 ^b 2 x pad area ^b Pad area 	20,800 ft ²	0.5	acre	\$100,000	\$	47,750
	Total concrete	10,400 1	486	су	\$600	\$	291,615
Building Envelope	^b Building area	5,000 ft ²	5,000	ft ²	\$100	\$	500,000
Building Electrical	^b Materials/equipment		1	ls	\$40,000	\$	40,000
	^c Crew size	4 men		1			
	^c Duration	15 days		1			
Electrical Lineman (outside)	Labor subtotal		480	hrs		5.13 \$	26,462
Building Plumbing	b	1	ls Is	\$75,000	\$	75,000	
Building HVAC	d				\$115,000		115,000
Freight (building)	b				\$25,000	\$	25,000
Commissioning Total Facility Cost			1	ls	\$100,000	\$ \$	100,000 1,220,828
	Το	otal Capital Cost				Ψ	1,220,020
Total Direct Cost						\$	7,232,445
Notes:							

Notes:

a = Cost based on quote from vendor.

b = Cost based on experience with detailed design and construction of similar treatment systems.

c = Hours based on experience with detailed design and construction of similar treatment systems, labor rates based on 2019 New Mexico rates. Per diem based on 2019 New Mexico Subsisistence, Zone and Incentive Pay Rates (per diem applies Plumber/Pipefitter and Electrical Lineman (outside) only. d = Lump sum costs for freight have been included for the major process equipment and the building. Freight on materials is not included. Costs do not include indirect costs

REV 0 July 29, 2019 18106417 STS Equipment List Tyrone Mine Closure Closeout Plan

Equipment Name	Description	Power, hp	Footprint	Quantity	Cost	Manufacturer/Vendor/ Quote Tab Number	U	nit Cost	Notes
Membrane System, UF and RO systems	1,600 gpm, UF is 2 50% units and RO is 3 33% units for flexibility	250	784	1	\$ 1,345,700	WesTech Quote 2019 (<i>Tab 1)</i>	\$	1,345,700	
Reaction Tank	Four 32,000 gallon tanks for flexibility, appx 120 min reaction time, baffles, ladder, platform, mixer mount and mixer	NA	1257	4	\$ 516,000	WesTech Quote 2019 <i>(Tab 1)</i>	\$	129,000	Quote is for 1 - 32,000 gallon tanks, need 4 for total reaction time of 120 min
Floc Tank	7,000 gallon tank and mixer	2	79	1	\$ 26,000	Tank Equipment 2019 (Tab 2)	\$	26,000	
Sludge Densification Tank	2 tanks at 450 gal, with internal baffles, mixer mount and mixer, legs for gravity overflow to reaction tank	1	57	2	\$ 176,800	WesTech Quote 2019 (Tab 1)	\$	88,400	
Thickener/Clarifier	80' diameter, with feedwell, bridge, ladder, platform	2	5542	1	\$	WesTech Quote 2019 (Tab 1)	\$	377,200	
Sludge Pump	29 gpm	1.5	16	2	\$ 30,000	Denver Industrial Pumps 2019 (Tab 3)	\$	15,000	
Jnderflow Pump	3 Recycles 152 gpm	3	16	2	\$ 40,000	Denver Industrial Pumps 2019 (Tab 3)	\$	20,000	
Polymer system	10 mg/L - 0.97 gph	0.3	16	1	\$ 18,525	Velodyne 2019 Quote (Tab 4)	\$	18,525	
ime Silo and Slaker System	36,780 lb/day - 39 gpm, 10% slurry	10	113	1	\$ 985,000	Louisville Dryer Company Quote 2019 (Tab 5)	\$	985,000	
oH control system (acid addition)	6.65 mg/L - 1.07 gph, 0.35 concentration	0.3	12	2	\$ 14,106	Denver Industrial Pumps 2019 (Tab 6)	\$	7,053	
Effluent Neutralization Tank	32,000 gallon tank with mixer	7.5	154	1	\$ 129,000	WesTech Quote 2019 <i>(Tab 1)</i>	\$	129,000	
Sludge Holding Tank	13,000 gal	NA	113	1	\$ 33,000	Tank Equipment 2019 (Tab 2)	\$	33,000	
Filter Press System	3 - 100 ft3 including platform and conveyor	15	476	3	\$ 1,058,001	WesTech Quote 2019 (Tab 1)	\$	352,667	Need 3 for max, 2 for avg conditions
Filtrate Tank	3,000 gal	NA	50	1	\$ 10,000	Tank Equipment 2019 <i>(Tab 2)</i>	\$	10,000	
Filtrate Pump	9 gpm	0.5	16	2	\$,	Denver Industrial Pumps 2019 (Tab 3)	\$	6,700	
Process Water Tank	3,000 gal	NA	50	1	\$ 10,000	Tank Equipment 2019 (Tab 2)	\$	10,000	
Process Water Return Pump	27.97 gpm	1	16	2	\$ 10,792	Denver Industrial Pumps 2019 (Tab 3)	\$	5,396	
Air Compressor	For diaphragm pumps, includes air receiver	15	16	2	\$ 30,000	Estimation based on previous experience	\$	15,000	
Electrical Equipment		NA	NA	1	\$ 100,000	Estimation based on previous experience	\$	300,000	
/alves and Piping		NA	NA	1	\$ 156,000	Estimation based on previous experience	\$	160,000	
nstrumentation		NA	NA	1	\$ 50,000	Estimation based on previous experience	\$	75,000	
Control System		5	NA	1	\$ 50,000	Estimation based on previous experience	\$	200,000	
Freight		NA	NA	1	\$ 100,000	Estimation based on previous experience	\$	100,000	
Fotal Process Equip		400	3,240	1	\$ 5,279,524				

TTS Total

298.28 8782.159 Total area including the thickner which is located outside of the TTS building.

Assume building load allowance is covered under safety factor of max hp listed for equipment

NOTE - Quotes are available in referenced lettered tabs (Column F) in a separate PDF.

 Date:
 REV 0

 Project No.:
 18106

 Subject:
 Yearly

 Project Short Title:
 Tyron

REV 0 July 29, 2019 18106417 Yearly Summary for TTS Tyrone Mine Closure Closeout Plan

	TTS Flow Balance	TTS Sulfate Concentration Balance	TTS Sludge	TTS Power Calculations
MA HDS Feed (Brine +Intercepto Recycle, MA,	RO Membrane Sludge HDS to RO (HDS -Bypass)	MA + Effluent Effluent (Perm Interceptor HDS Feed Sulfate Brine Effluent	Sludge Sludge Dry Final Sludge Final Sludge (Anionic Dry Solids (for @ 50% @ 50% Lime (CaO) Lime (CaO) Polymer)	Microsoft MF High pH MF Low pH RO High pH RO Low pH Polymer) Acid (35% HCl) Acid (35% HCl) Cleaning Cleaning Cleaning Membrane
r Flow to Year MA Flow, HDS, gpm Sludge Recycle), gpm 15 1189 889 1285	Recycle, HDS to RO, Bypass, Feed Flow, Permeate gpm gpm gpm gpm gpm gpm	gpm Flow, gpm mg/L mg/L mg/L mg/L mg/L	Solids, calculation), Moisture, Moisture, Consumption, Consumption, Consumption Ib/day Ib/day Ib/day Ib/day cy/year Ib/day to/year Ib/day 164 89,993 114,508 179,965 24.329 22.581 4.121 15	n, Consumption, Consumption, Consumption, Antiscalant, Biocide, Chem, Chem, Chem, Chem, Power HDS Power Total Power ton/year Ib/day ton/year Ib/year Ib/year Ib/year Ib/year Ib/year (kwh/yr) (kwh/yar) 54 54 28.18 62.4 11.4 12.176 4.059 4228 705 705 705 1.220.596 353.167 1.573.765
16 1180 880 1275 17 1171 871 1266	95 918 357 918 94 911 354 911	716 202 1073 2,800 2,778 1,600 7,273 5 711 201 1065 2,789 2,768 1,600 7,273 5	46 88,975 113,476 177,949 24,056 22,328 4,075 15 46 87,976 112,453 175,953 23,786 22,078 4,029 15	53 27.97 61.7 11.3 12,083 4,028 4196 4196 699 699 1,211,336 350,488 1,561,824
18 1163 863 1256 19 1154 854 1247 20 1145 845 1237	94 904 352 904 93 898 349 898		46 86,009 110,438 172,018 23,254 21,584 3,939 15	52 27.76 61.1 11.2 11.991 3.997 4164 4164 694 694 1,202,145 347,829 1,549,975 51 27.55 60.5 11.0 11,900 3,967 4133 4133 689 689 1,193,022 345,189 1,538,211 50 27.34 59.8 10.9 11,810 3,937 4101 684 684 1,183,976 342,572 1,526,547 49 27.13 59.2 10.8 11,721 3,907 4070 678 678 1,175,007 339,977 1,514,984
20 1145 845 1.237 21 1137 837 1228 22 1129 829 1220	91 884 344 884 6	690 195 1034 2,745 2,727 1,600 7,273 5	46 85,041 109,446 170,083 22,993 21,341 3.895 14 46 84,106 108,486 168,211 22,740 21,107 3,852 14 46 83,229 107,586 166,459 22,503 20,887 3,812 14	
23 1122 822 1212 24 1115 815 1204	90 872 339 872 6 89 867 337 867 6	680 192 1020 2,725 2,708 1,600 7,273 5 676 191 1013 2,716 2,700 1,600 7,273 5	46 82,406 106,739 164,812 22,280 20,680 3,774 14 46 81,630 105,940 163,260 22,070 20,485 3,739 14	46 26.57 57.5 10.5 11.478 3.826 3986 3986 664 664 1.150.699 332.944 1.483.643 45 26.41 57.0 10.4 11.408 3.803 3982 3982 660 660 11.43.609 330.929 1.474.501
25 1109 809 1197 26 1103 803 1190 27 1097 797 1184	88 857 333 857 6	669 189 1002 2,697 2,683 1,600 7,273	46 80,894 105,181 161,789 21,871 20,301 3,705 14 46 80,195 104,458 160,390 21,682 20,125 3,673 14 46 79,530 103,770 159,059 21,562 19,958 3,642 14	
27 1097 797 1184 28 1092 792 1178 29 1086 786 1172	87 848 330 848 6	662 187 991 2,680 2,667 1,600 7,273 5	46 78,395 103,770 159,059 21,302 19,398 3,642 14 46 78,895 103,112 157,791 21,331 19,799 3,613 14 46 78,290 102,484 156,580 21,167 19,647 3,586 14	42 <u>25.83</u> <u>55.2</u> <u>10.1</u> <u>11,160</u> <u>3,720</u> <u>3876</u> <u>3876</u> <u>646</u> <u>646</u> <u>1,118,834</u> <u>323,724</u> <u>1,442,558</u>
30 1081 781 1167 31 1077 777 1162	86 840 327 840 6 85 836 325 836 6	655 185 982 2,664 2,652 1,600 7,273 5 652 184 978 2,656 2,645 1,600 7,273 5	46 77,712 101,884 155,425 21,011 19,502 3,559 14 46 77,159 101,308 154,318 20,862 19,363 3,534 14	40 25.59 54.5 9.9 11.055 3.665 3839 3839 640 640 1.108.235 320.657 1.428.892 40 25.48 54.1 9.9 11.006 3.669 3822 3822 637 637 1.103.303 319.230 1.422.533
32 1072 772 1157 33 1068 768 1152 34 1064 764 1147	84 829 323 829 6	647 182 970 2,642 2,631 1,600 7,273	46 76,628 100,755 153,257 20,718 19,230 3,509 13 46 76,618 100,222 152,237 20,580 19,102 3,486 13 46 75,628 99,709 151,255 20,447 18,979 3,464 13	38 <u>25.26</u> <u>53.5</u> <u>9.8</u> <u>10,913</u> <u>3,638</u> <u>3790</u> <u>3790</u> <u>632</u> <u>632</u> <u>1,094,075</u> <u>316,560</u> <u>1,410,635</u>
35 1060 760 1147 35 1060 760 1143 36 1056 756 1139	83 823 320 823 6	642 181 962 2,628 2,618 1,600 7,273 5	46 75,155 99,214 150,310 20,320 18,860 3,442 13 46 74,698 98,735 149,397 20,196 18,746 3,421 13	37 25.07 52.9 9.6 10,829 3,610 3761 627 627 1,085,582 314,103 1,399,685 37 24.97 52.6 9.6 10,789 3,596 3747 3747 624 624 1,081,578 312,944 1,394,521
37 1052 752 1135 38 1049 749 1131	83 817 318 817 6 82 814 317 814 6	635 179 952 2,608 2,600 1,600 7,273 5	46 74,257 98,272 148,514 20,077 18,635 3,401 13 46 73,830 97,823 147,660 19,962 18,528 3,381 13	36 24.88 52.3 9.5 10,750 3.583 3733 3733 622 622 1,077,716 311,827 1,389,543 36 24.80 52.0 9.5 10,713 3.571 3720 3720 620 620 1,073,992 310,749 1,384,741
39 1045 745 1127 40 1042 742 1123 41 1039 739 1120	81 809 315 809 6	631 178 945 2,595 2,588 1,600 7,273 5	46 73,417 97,387 146,833 19,850 18,424 3,362 13 46 73,016 96,965 146,032 19,741 18,324 3,344 13 46 72,016 96,965 146,032 19,741 18,324 3,344 13 46 72,627 96,554 145,254 19,636 18,226 3,326 13	35 24.64 51.5 9.4 10,643 3,548 3666 3696 616 616 1,066,915 308,702 1,375,617
42 1036 736 1116	81 804 313 804 6	627 177 940 2,583 2,577 1,600 7,273	46 72,250 96,155 144,500 19,534 18,131 3,309 13	34 24.48 51.1 9.3 10,576 3,525 3673 3673 612 612 1,060,294 306,786 1,367,080
44 1030 730 1110	80 799 311 799 6	623 176 934 2,572 2,566 1,600 7,273 5	46 71,528 95,389 143,056 19,339 17,950 3,276 13	33 24.34 50.6 9.2 10,515 3,505 3651 3651 609 609 1,054,088 304,990 1,359,078
45 1027 727 1107 46 1024 724 1104 47 1022 722 1101	79 795 309 795 6	620 175 929 2,560 2,556 1,600 7,273	46 70,846 94,663 141,692 19,155 17,779 3,245 13	33 24.20 50.2 9.2 10,456 3,485 3631 3631 605 605 1,048,256 303,303 1,351,555
47 1022 722 1101 48 1019 719 1098 49 1017 717 1095	79 791 307 791 6	617 174 924 2,550 2,546 1,600 7,273 5	46 70,519 94,314 141,038 19,066 17,697 3,230 13 46 70,200 93,973 140,399 18,960 17,617 3,215 13 46 69,889 93,641 139,777 18,896 17,539 3,201 13	32 24.08 49.8 9.1 10,402 3,467 3612 3612 602 602 1,042,759 301,712 1,344,471
50 1013 713 1095 51 1006 706 1084	78 786 306 786 6	613 173 919 2,538 2,536 1,600 7,273 5	46 69,889 93,641 139,777 18,896 17,539 3,201 13 46 69,488 93,218 138,976 18,788 17,438 3,182 13 46 69,139 92,858 138,277 18,693 17,351 3,166 13	31 23.93 49.4 9.0 10,339 3,446 3590 3590 598 598 1,036,484 299,897 1,336,381
52 1006 706 1084 52 1004 704 1082 53 1002 702 1079	78 779 303 779 6	608 171 910 2,540 2,537 1,600 7,273	40 09,139 32,636 136,277 10,093 17,331 3,100 13 46 68,907 92,618 137,814 18,630 17,292 3,156 13 46 68,681 92,383 137,362 18,569 17,236 3,146 13	30 23.72 48.7 8.9 10.248 3.416 3559 3559 593 593 1.027.371 297.260 1.324.631
53 1002 702 1079 54 1000 700 1077 55 998 698 1075	77 776 302 776 6	605 171 906 2,534 2,531 1,600 7,273 5	40 06,051 92,053 137,362 18,569 17,235 3,146 13 46 68,461 92,154 136,922 18,510 17,180 3,135 12 46 68,461 92,154 136,922 18,510 17,180 3,135 12 46 68,246 91,931 136,492 18,452 17,127 3,126 12	29 23.62 48.4 8.8 10,204 3,401 3544 3544 591 591 1,022,937 295,977 1,318,913
56 996 696 1073 57 994 694 1071	77 772 300 772 6	602 170 903 2,528 2,526 1,600 7,273 §	40 60,240 51,551 130,922 10,452 17,121 51,121 12 46 68,037 91,713 136,074 18,395 17,074 3,116 12 46 67,833 91,500 135,665 18,340 17,023 3,107 12	29 23.52 48.1 8.8 10,162 3,387 3529 3529 588 588 1,018,728 294,759 1,313,487
58 992 692 1068 59 990 690 1068	77 769 299 769 6	600 169 899 2,522 2,521 1,600 7,273 5	40 67,633 91,200 135,067 16,340 17,025 5,107 12 46 67,633 91,292 135,267 18,286 16,973 3,098 12 46 67,439 91,089 134,878 18,234 16,924 3,089 12	28 23.43 47.8 8.7 10,122 3,374 3515 3515 586 586 1,014,732 293,603 1,308,335
60 988 688 1064 61 986 686 1063	76 766 298 766	500 100 200 200 100 1210 598 169 896 2,517 2,516 1,600 7,273 5	Horizon 104,000 104,000 104,000 124 46 67,250 90,891 134,499 18,182 16,876 3,080 12 46 67,064 90,697 134,128 18,132 16,830 3,071 12	28 23.34 47.6 8.7 10,084 3,361 3502 3502 584 584 1,010,934 292,504 1,303,438
62 985 685 1061 63 983 683 1059	76 764 297 764	596 168 893 2,512 2,511 1,600 7,273 5	66 66,83 90,508 133,766 18,083 16,785 3,063 12 46 66,6706 90,322 133,413 18,035 16,740 3,055 12	27 <u>23.26</u> <u>47.3</u> <u>8.6</u> <u>10,048</u> <u>3,349</u> <u>3489</u> <u>582</u> <u>582</u> <u>1,007,314</u> <u>291,457</u> <u>1,298,771</u>
64 981 681 1057 65 980 680 1055	76 761 296 761	594 167 890 2,507 2,507 1,600 7,273 5	46 66,533 90,141 133,067 17,989 16,697 3,047 12 46 66,535 89,964 132,729 17,943 16,654 3,039 12	27 23.18 47.1 8.6 10,014 3,338 3477 3477 580 580 1,003,864 290,458 1,294,322
66 978 678 1054 67 977 677 1054	75 759 295 759 5	592 167 887 2,502 2,502 1,600 7,273	66 66,200 89,790 132,399 17,898 16,613 3,032 12 46 66,038 89,620 132,076 17,855 16,572 3,024 12	27 23.10 46.8 8.5 9.981 3.327 3466 3466 578 578 1,000,576 289,507 1.290,083
68 975 675 1050 69 974 674 1049	75 756 294 756	590 166 884 2,498 2,498 1,600 7,273 5	46 65,879 89,453 131,759 17,812 16,533 3,017 12 46 65,725 89,290 131,449 17,770 16,494 3,010 12	26 23.03 46.6 8.5 9,949 3,316 3455 3455 576 997,427 288,596 1,286,023
70 972 672 1047 71 971 671 1046	75 754 293 754 5	588 166 881 2,493 2,494 1,600 7,273 5	46 65,573 89,130 131,146 17,729 16,456 3,003 12 46 65,425 88,973 130,850 17,689 16,419 2,996 12	26 22.96 46.4 8.5 9,919 3,306 3445 3445 574 574 994,420 287,726 1,282,146
72 969 669 1044 73 968 668 1043	75 752 292 752 5	586 165 879 2,489 2,490 1,600 7,273 5	46 65,279 88,819 130,559 17,650 16,382 2,990 12 46 65,138 88,669 130,275 17,611 16,346 2,983 12	25 22.90 46.2 8.4 9,891 3,297 3435 3435 572 572 991,544 286,894 1,278,438
74 967 667 1041 75 966 666 1040		585 165 876 2,485 2,486 1,600 7,273 5	46 65,006 88,529 130,012 17,576 16,313 2,977 12 46 64,877 88,392 129,754 17,541 16,281 2,971 12	25 <u>22.84</u> 46.0 <u>8.4</u> <u>9,865</u> <u>3,288</u> <u>3426</u> <u>3426</u> <u>571</u> <u>571</u> <u>988,991</u> <u>286,155</u> <u>1,275,145</u>
76 965 665 1039 77 964 664 1038	74 748 291 748 5	583 165 874 2,480 2,482 1,600 7,273 5	46 64,750 88,257 129,500 17,507 16,249 2,965 12 46 64,626 88,124 129,251 17,473 16,218 2,960 12	25 22.78 45.9 8.4 9,843 3,281 3418 3418 570 570 986,734 285,502 1,272,237
78 963 663 1037 79 962 662 1036	74 746 290 746 9 74 746 290 746 9	582 164 872 2,476 2,478 1,600 7,273 5 582 164 872 2,474 2,476 1,600 7,273 5	46 64,503 87,993 129,006 17,440 16,187 2,954 12 46 64,382 87,864 128,765 17,407 16,157 2,949 12	25 22.73 45.7 8.3 9.821 3.274 3411 3411 568 568 984,564 284,874 1,269,432 24 22.71 45.6 8.3 9,811 3,270 3407 3407 568 568 983,508 284,569 1,268,077
80 961 661 1035 81 960 660 1033	74 745 290 745 5 74 744 289 744 5	580 164 870 2,470 2,472 1,600 7,273 5	46 64,263 87,737 128,527 17,375 16,127 2,943 12 46 64,146 87,611 128,291 17,343 16,097 2,938 12	24 22.66 45.5 8.3 9,790 3,263 3400 3400 567 567 981,443 283,971 1,265,414
82 959 659 1032 83 958 658 1031	73 743 289 743 5	579 163 868 2,466 2,468 1,600 7,273 5	46 64,029 87,487 128,059 17,312 16,068 2,932 12 46 63,915 87,364 127,831 17,281 16,040 2,927 12	24 <u>22.62</u> <u>45.3</u> <u>8.3</u> <u>9,770</u> <u>3,257</u> <u>3393</u> <u>3393</u> <u>565</u> <u>565</u> <u>979,442</u> <u>283,392</u> <u>1,262,834</u>
84 957 657 1030 85 956 656 1029	73 741 288 741	578 163 866 2,462 2,464 1,600 7,273 5	46 63,803 87,244 127,606 17,250 16,012 2,922 12 46 63,692 87,124 127,384 17,220 15,984 2,917 12	24 22.57 45.2 8.3 9.751 3.250 3386 3386 564 564 977.513 282,834 1.260,347
86 955 655 1028 87 954 654 1027	73 740 288 740 5	577 163 865 2,460 2,462 1,600 7,273 5 577 163 865 2,458 2,461 1,600 7,273 5	46 63,582 87,006 127,164 17,191 15,956 2,912 12 46 63,474 86,890 126,948 17,161 15,929 2,907 12	24 22.55 45.1 8.2 9.741 3.247 3383 3383 564 564 976,563 282,559 1,259,122 23 22.53 45.1 8.2 9.732 3.244 3380 3380 563 563 975,635 282,290 1,257,925
88 953 653 1026 89 953 653 1025	73 738 287 738 5	576 162 863 2,454 2,457 1,600 7,273 5	46 63,367 86,775 126,735 17,133 15,902 2,902 12 46 63,262 86,662 126,525 17,104 15,876 2,897 12	23 22.49 44.9 8.2 9,714 3,238 3373 3373 562 562 973,823 281,766 1,255,590
90 952 652 1024 91 951 651 1024	73 737 287 737 5	575 162 861 2,450 2,453 1,600 7,273 5	46 63,159 86,550 126,318 17,076 15,850 2,893 12 46 63,057 86,440 126,114 17,049 15,824 2,888 12	23 22.45 44.8 8.2 9,696 3,232 3367 3367 561 561 972,072 281,260 1,253,331
92 950 650 1023 93 949 649 1022	72 736 286 736	574 162 860 2,446 2,450 1,600 7,273 5	46 62,957 86,332 125,913 17,022 15,799 2,883 12 46 62,858 86,225 125,716 16,995 15,774 2,879 12	23 22.41 44.7 8.2 9,680 3,227 3362 3362 560 560 970,387 280,772 1,251,155
94 949 649 1021 95 948 648 1020	72 734 286 734	573 162 858 2,442 2,446 1,600 7,273 5	46 62,760 86,119 125,520 16,968 15,750 2,874 12 46 62,664 86,014 125,328 16,942 15,726 2,870 12	23 22.37 44.6 8.1 9.663 3.221 3366 3365 559 968,753 280,299 1.249,053
96 947 647 1019 97 946 646 1018	72 733 285 733 5	572 161 857 2,439 2,443 1,600 7,273 5	46 62,569 85,911 125,137 16,917 15,702 2,866 12 46 62,475 85,809 124,949 16,891 15,678 2,861 12	22 22.33 44.5 8.1 9,648 3,216 3350 3350 558 558 967,165 279,840 1,247,005
98 946 646 1018 99 945 645 1017 100 944 644 1016	72 732 285 732	571 161 856 2.435 2.440 1.600 7.273	46 62,282 85,708 124,763 16,866 15,655 2,657 12 46 62,290 85,608 124,580 16,841 15,632 2,853 12 46 62,290 85,608 124,400 16,841 15,632 2,853 12 46 62,200 85,510 124,400 16,817 15,609 2,849 12	22 22.30 44.4 8.1 9,632 3,211 3345 558 558 965,627 279,395 1,245,021
100 944 644 1016 Average 1,016 716 1,095 Max 1,189 889 1,285	72 732 284 732 8 79 788 307 788 0 96 925 360 925 7	615 173 921 2,556 2,552 1,600 7,273 5	46 70,322 94,088 140,643 19,013 17,647 3,221 13	22 22.28 44.3 8.1 9.625 3.208 3342 3542 557 567 964.879 279.178 1.244.058 324 557 557 964.879 279.178 1.244.058 324 50 9 10.372 3.457 3.602 3.602 600 600 1.039.806 300.858 1.340.663 54 28 62 11 12.176 4.059 4.228 4.228 705 705 1.220.956 353.167 1.573.765

28% Membrane Bypass Assuming 1600 mg/L SO4 in HDS Effluent, 20 mg/L SO4 in Perm 78% RO Recovery 4.55 Brine Concentration Factor 300 Interceptor Flow (gpm)

Max 1,169 2003 Annual Total 49,490,202,806 Notes: Xets: Values for HDS sludge, lime, etc. directly from Updated Chino Mixing v3 1 Oleach TS REV07192016 (003).xlsx Max flow used for sizing capital equipment; annual flows used for OPEX Values for HDS sludge, lime, etc. directly from Updated Chino Mixing v3 1 Oleach TS REV07192016 (003).xlsx Flow values directly from Copy of Combined Flow and Water Quality to Treatment_04082019.xbx Others values were extrapolated and/or calculated

 114,508
 179,955
 24,329
 22,581
 4,121

 2,953,425,928
 12,095,322
 1,635,108
 1,517,675
 276,976

Date:REV 0 July 29, 2019Project No.:18106417Subject:Analytical CostsProject Short Title:Tyrone Mine Closure Closeout Plan

Year		ceptor System			Pit Location		Plant Performance	Number of total	Cost per	Total Cost
	Quarterly	Semiannual	Annual	Quarterly	Semiannual	Annual	Monthly	Samples	sample	Estimation
1	2	0	0	C	0)	0	0 8	\$ 403	\$ 3,224
2		0	0	C	C)	0	0 8	\$ 403	\$ 3,224
3	2	0	0	C	0)	0	0 8	\$ 403	\$ 3,224
4	2	0	0	C	0)	0	0 8	\$ 403	\$ 3,224
5	2	0	0	C	0)	0	0 8	\$ 403	\$ 3,224
6		0	0	C	0)	0	0 8	\$ 403	\$ 3,224
7	2	0	0	C	0)	0	0 8	\$ 403	\$ 3,224
8		0	0	C	0)	0	0 8	\$ 403	\$ 3,224
9		0	0	C	0)	0	0 8	\$ 403	\$ 3,224
10		0	0	0)	0	0 8	\$ 403	\$ 3,224
11	2	0	0	0)	0	0 8	\$ 403	\$ 3,224
12	2	0	0	0			0	0 8	\$ 403	\$ 3,224
13		2	0	0			0	0 4	\$ 403	\$ 1,612
10	0	2		0			0	0 4	\$ 403	\$ 1,612
15	5	2		4			0	3 76	\$ 403	\$ 30,628
15	5	2		4				3 76	\$ 403	\$ 30,628
10	5	2		4				3 76	\$ 403 \$ 403	\$ 30,628
17	5			4						
18		2		4				3 76 3 76		. ,
20	5	2		4		/		3 76	\$ 403 \$ 403	\$ 30,628
21	5	2		4)		3 76	\$ 403	\$ 30,628
22	5	2		4)		3 76	\$ 403	\$ 30,628
23	5	2		4)		3 76	\$ 403	\$ 30,628
24	5	2		4)		3 76	\$ 403	\$ 30,628
25	5	2		4)		3 76	\$ 403	\$ 30,628
26		2		4)		3 76	\$ 403	\$ 30,628
27	5	2		4)		3 76	\$ 403	\$ 30,628
28	5	2		4)		3 76	\$ 403	\$ 30,628
29	5	2		4	. C)		3 76	\$ 403	\$ 30,628
30	5	2	0	4	. C)	0	3 76	\$ 403	\$ 30,628
31	5	2	0	4	. C)	0	3 76	\$ 403	\$ 30,628
32	5	2	0	4	. ())	0	3 76	\$ 403	\$ 30,628
33	0	0	7	C	C)	4	3 47	\$ 403	\$ 18,941
34	0	0	7	C	0) .	4	3 47	\$ 403	\$ 18,94
35	0	0	7	C	0)	4	3 47	\$ 403	\$ 18,941
36	0	0	7	C	0)	4	3 47	\$ 403	\$ 18,941
37	0	0	7	C	0)	4	3 47	\$ 403	\$ 18,941
38	0	0	7	C	0			3 47	\$ 403	\$ 18,941
39	0	0	7		0			3 47	\$ 403	\$ 18,941
40	0	0	7					3 47	\$ 403	\$ 18,941
41	0	0	7					3 47	\$ 403	\$ 18,941
42	0	0	7					3 47	\$ 403	\$ 18,94 ²
43	0	0	7					3 47	\$ 403	\$ 18,941
44	0	0	7					3 47	\$ 403	\$ 18,94 ²
45		0	7					3 47	\$ 403	\$ 18,94 ²
40		0	7					3 47	\$ 403	\$ 18,94 [°]
40	0	0	7					3 47	\$ 403	\$ 18,94 [°]
47	0	0	7					3 47	\$ 403 \$ 403	\$ 18,94 \$ 18,94
40	0	0	7					3 47 3 47		
49 50	0	0	7					3 47 3 47		
50 51		0								\$ 18,94
		0	7					3 47	\$ 403 \$ 403	\$ 18,94 ²
52		0	7					3 47	\$ 403	\$ 18,941
53	0	0	7		0			3 47	\$ 403	\$ 18,94 [°]
54	0	0	7		C			3 47	\$ 403	\$ 18,94
55		0	7		C			3 47	\$ 403	\$ 18,94
56	0	0	7		C			3 47	\$ 403	\$ 18,947
57	0	0	7		0			3 47	\$ 403	\$ 18,941
58		0	7		C		4	3 47	\$ 403	\$ 18,941
59 60		0	7		C			3 47	\$ 403	\$ 18,941
		0	7	0	(4	3 47	\$ 403	\$ 18,94 [°]

Date:REV 0 July 29, 2019Project No.:18106417Subject:Analytical CostsProject Short Title:Tyrone Mine Closure Closeout Plan

	Seep/Inter	rceptor Syster	m and NPDES				Plant	Number		
Year		Collection Po	ints		Pit Location		Performance	of total	Cost per	Total Cost
	Quarterly	Semiannual	Annual	Quarterly	Semiannual	Annual	Monthly	Samples	sample	Estimation
61	0) (7	0	(4			\$ 403	\$ 18,94
62	0) (7	0	(4	4 3		\$ 403	\$ 18,94
63	0) (7	0	(4			\$ 403	\$ 18,94
64	0) (7	0	(4	-		\$ 403	\$ 18,94
65	0	(7	0	(4			\$ 403	\$ 18,94
66	0	(7	0	(4	-		\$ 403	\$ 18,94
67	0	(7	0	(4			\$ 403	\$ 18,94
68	0	(7	0	() 4			\$ 403	\$ 18,94
69	0	(7	0	() 4			\$ 403	\$ 18,94
70	0	(7	0	() 4			\$ 403	\$ 18,94
71	0	(7	0	() 4			\$ 403	\$ 18,94
72	0	(7	0	() 4			\$ 403	\$ 18,94
73	0	(7	0	() 4			\$ 403	\$ 18,94
74	0	(7	0	() 4			\$ 403	\$ 18,9
75	0	(7	0	() 4	-		\$ 403	\$ 18,9
76	0	(7	0	() 4			\$ 403	\$ 18,9
77	0) (7	0	() 4	-		\$ 403	\$ 18,9
78	0	(7	0	() 4			\$ 403	\$ 18,9
79	0	(7	0	() 4			\$ 403	\$ 18,9
80	0	(7	0	() 4			\$ 403	\$ 18,9
81	0	(7	0	() 4			\$ 403	\$ 18,9
82	0	(7	0	() 4	-		\$ 403	\$ 18,9
83	0	(7	0	() 4			\$ 403	\$ 18,9
84	0	(7	0	(4	-		\$ 403	\$ 18,9
85	0	(7	0	(4			\$ 403	\$ 18,9
86	0	(7	0	() 4			\$ 403	\$ 18,9
87	0	(7	0	() 4			\$ 403	\$ 18,9
88	0	(7	0	() 4			\$ 403	\$ 18,9
89	0	(7	0	() 4			\$ 403	\$ 18,9
90	0	(7	0	() 4			\$ 403	\$ 18,9
91	0	(7	0	() 4			\$ 403	\$ 18,9
92	0) (7	0	() 4	-		\$ 403	\$ 18,9
93	0	(7	0	() 4			\$ 403	\$ 18,9
94	0	(7	0	() 4			\$ 403	\$ 18,9
95	0	(7	0	() 4	-		\$ 403	\$ 18,9
96	0	(7	0	() 4			\$ 403	\$ 18,9
97	0	(7	0	() 4			\$ 403	\$ 18,9
98	0	(7	0	() 4			\$ 403	\$ 18,9
99	0	(7		() 4			\$ 403	\$ 18,9
100	0	(7	0	(4	4 3	47	\$ 403	\$ 18,9

Notes:

Costs do not include indirect costs

The frequency of sampling and analysis associated with the water management and treatment system is as follows:

Sampling is not required as part of the O&M of the short-term ETS. The only sampling required during the short-term ETS operational period is associated with the NPDES compliance points (two associated with NPDES Permit NMR05GB76).

The high TDS and sulfate water sources will not need to be sampled as part of the O&M for the long-term ETS.

TTS performance monitoring including (2) influent and (1) effluent discharge from water treatment plant: monthly beginning in Year 15 and continuing though Year 100.

NPDES compliance points: quarterly from Year 1 through Year 12, semiannual from Year 13 through Year 32, and annual thereafter (through Year 100). Collection points for the low TDS and sulfate non-process water streams to the TTS (1X1 Pond, 1A PLS Tank, 1B PLS Tank, Oak Grove Pond, and New No. 3 AST): quarterly from Year 15 through Year 32 (transition period between uncovered and covered flows), and annual thereafter (through Year 100).

Discharge from groundwater interceptor system (4 interceptor wells): quarterly from Year 15 through Year 32 (transition period between uncovered and covered flows), and annual thereafter (through Year 100). The groundwater interceptor system will be sampled at the point that all 4 wells are combined into one pipeline. Pits (4 sample points-Main Pit, Gettysburg Pit, Copper Mountain Pit, Savanna Pit): quarterly from Year 15 through Year 32 (transition period between uncovered and covered flows), and annual thereafter (through Year 100).

Date: REV 0 July 29, 2019 Project No.: 18106417 Subject: **TTS O&M Cost Inputs Project Short Title:** Tyrone Mine Closure Closeout Plan **Reagent Inputs** Lime (CaO) (\$/ton) = \$ 256.00 2019 Lhoist Cost (Freight Estimated) = \$ 3.36 2019 NALCO Water Flocculent (\$/lb) Hydrochloric Acid - 35% (\$/lb) = \$ 0.21 2019 Univar Mining - HCI (35%) from bulk delivery (tote price \$0.335/lb) = \$ 3.53 2019 Avista quote - pail price (assume bimonthly cleaning during high flows) MF High pH Cleaning Chemicals (\$/lb) MF Low pH Cleaning Chemicals (\$/lb) = \$ 3.53 2019 Avista guote - pail price (assume bimonthly cleaning during high flows) RO High pH Cleaning Chemicals (\$/lb) = \$ 7.52 2019 Avista quote - pail price (assume quarterly cleaning during high flows) RO Low pH Cleaning Chemicals (\$/lb) 6.44 2019 Avista quote - pail price (assume quarterly cleaning during high flows) = \$ = \$ 8.15 2019 Avista quote - tote price Biocide (\$/lb) Antiscalant (\$/lb) = \$ 3.09 2019 Avista guote - tote price **Electricity Input** Electricity (\$/kwh) 0.045 PNM Method of Calculation (Avg (\$/kWh) Years 1 through 14) using 2019 PNM Rate Schedule = \$ = \$ 0.045 PNM Method of Calculation (Avg (\$/kWh) Years 15 through 100) using 2019 PNM Rate Schedule Analytical Input Analytical Cost (\$/sample) = \$ 403.00 2019 Hall Environmental Analysis Laboratory (price unchanged from 2018, guote changed to be valid through 2019) Labor Inputs NOTE - Type A schedule used for operating labor and Type H schedule used for construction labor = \$ 18.60 2019 NM Type "A" Street, Highway, Utility & Light Engineering Prevailing Wages. Operator Group I.⁽¹⁾ Operator Base Rate Supervisor Rate = \$ 31.10 2019 NM Type "A" Street, Highway, Utility & Light Engineering Prevailing Wages. Operator Group X.⁽¹⁾ 19.83 2019 NM Type "A" Street, Highway, Utility & Light Engineering Prevailing Wages, Operator Group V.⁽¹⁾ Maintenance Technician Rate \$ = 5.94 2019 NM Type "A" Street, Highway, Utility & Light Engineering Prevailing Wages, Applies to operator groups I. X. V Operator Fringe Rate = \$ under Type A.⁽¹⁾ Laborer (Group II) = \$ 23.84 2019 NM Department of Labor Type H (Heavy Engineering) 2019 labor rates. Rates include base hourly wage, fringe benefit, and apprenticeship contribution rates.⁽²⁾ 45.45 2019 NM Department of Labor Type H (Heavy Engineering) 2019 labor rates. Rates include base hourly wage, fringe Plumber/Pipefitter = \$ benefit, and apprenticeship contribution rates.⁽²⁾ 55.13 2019 NM Department of Labor Type H (Heavy Engineering) 2019 labor rates. Rates include base hourly wage, fringe Electrician (Lineman/Tech Outside) = \$ benefit, and apprenticeship contribution rates.⁽²⁾ Electrician (Wireman/Tech Inside) = \$ 54.05 2019 NM Department of Labor Type H (Heavy Engineering) 2019 labor rates. Rates include base hourly wage, fringe benefit, and apprenticeship contribution rates. Includes 26% increase for work outside Zone 1.⁽²⁾ Ironworker = \$ 48.66 2019 NM Department of Labor Type H (Heavy Engineering) 2019 labor rates. Rates include base hourly wage, fringe benefit, apprenticeship contribution rates, and subsistence rate.⁽²⁾

\$	GOLDER	
----	--------	--

Date: Project No.: Subject: Project Short Title:	REV 0 July 29, 18106417 TTS O&M Cost Tyrone Mine C	
Maintenance Replacement O&M Routine Maintenance	= =	1.5% of Direct Capital Cost 1.5% of Direct Capital Cost
Per Diem Subsistence, Zone and Incentive	= \$	 50.00 per day for Plumber/Pipefitter, Electrical Lineman/Tech (outside). 2019 NM Department of Labor Type H (Heavy Engineering), 2019 Subsistence, Zone, and Incentive Pay Rates 2019 Subsistence, Zone and Incentive Pay Rates, per diem only required for Electrician (Outside classification) and Plumber/Pipefitters for the construction labor classes used for TTS construction. Operating labor is assumed to be local

⁽¹⁾ - https://www.dws.state.nm.us/Portals/0/DM/LaborRelations/Prevailing_Wage_Poster_A_2019_final.pdf
 ⁽²⁾ - https://www.dws.state.nm.us/Portals/0/DM/LaborRelations/Prevailing_Wage_Poster_H_2019_final.pdf

Date:	REV 0 July 29, 2019
Project No.:	18106417
Subject:	Example Calculations
Project Short Title:	Tyrone Mine Closure Closeou

Flow and Sulfate Inputs

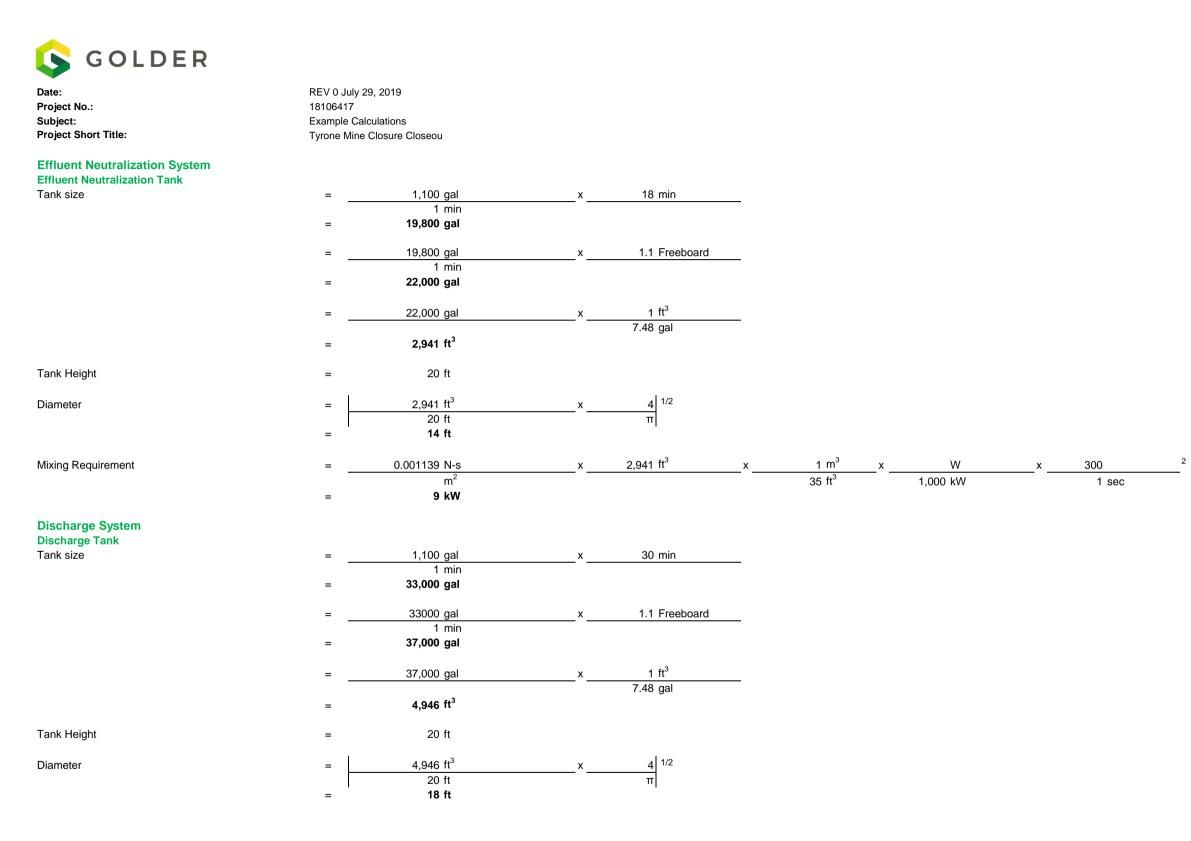
Max Year	=	6
Membrane Max Flow rate	=	1,300 gpm
Membrane Avg Flow rate	=	800 gpm
HDS Equipment Max Flow rate	=	1,600 gpm
HDS Equipment Avg Flow rate	=	1,100 gpm
HDS Sulfate Max	=	2,788 mg/L
HDS Sulfate Avg	=	2,552 mg/L
Sludge Recycle Avg Flow rate	=	79 gpm
Sludge Max (50% Solids)	=	179,965 lb/day
Sludge Avg (50% Solids)	=	140,643 lb/day
Effluent Neutralization Max (if necessary)	=	1,100 gpm
Effluent Neutralization Avg Flow rate(if necessary)	=	1,000 gpm

Equipment sizing based on maximum flows, operating costs based on average flows.

Van Riper Study (2002) Inputs

Lime Consumption Factor	=	0.5249 mg/L CaO/mg/L SO4	5,270 mg/L CaO needed to treat high me
Sulfuric Acid Consumption Factor	=	0.000028 lb/gal	0.028 pounds per 1,000 gallons (50 mg a
Sludge Factor	=	2.0916 mg/L Sludge/mg/L SO4	21,000 mg/L Sludge for 10,040 mg/L SO4
Van Riper treatability study results used to detemine lime usad	ae and sludae	production according to the factors listed a	above and the sulfate concentration.

netals AMD water with sulfate concentration of 10,040 mg/L ng acid per liter of water treated) SO4

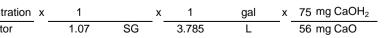

/an Riper treatability study results used to detemine lime usage and sludge pro according t

HDS Chemical Precipitation

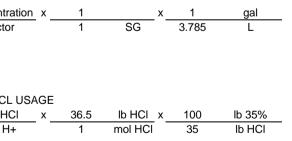
Reaction Tank										
Tank size	=	1,600 gal	x	24 min						
Need 4 reaction tanks - to provide minimum of 90		1 min								
min retention time at max flow and minimum of 120 min retention time at avg flow	=	38,400 gal								
	=	38400 gal	х	1.1 Freeboard						
		1 min								
	=	43,000 gal	each t	ank, total of 4 tanks for a	approximately 9	0 min reaction tim	e			
	=	43,000 gal	X	1 ft ³						
				7.48 gal						
	=	5,748 ft ³								
Tank Height	=	20 ft								
Diameter	=	5,748 ft ³	х	4 1/2						
		20 ft		π						
	=	20 ft		·						
Mixing Requirement	=	0.001139 N-s	х	5,748 ft ³	х	1 m ³	х	W	х	300
		m²				35 ft ³		1,000 kW		1 sec
	=	17 kW						,		

Date: Project No.:	REV 0 July 2 18106417	29, 2019									
Subject:	Example Ca	lculations									
Project Short Title:		e Closure Closeou									
Floc Tank Tank size	=	1,600 gal	х	3.5 min							
		1 min	^								
	=	5,600 gal									
	=	5,600 gal	x	1.1 Freeboard							
		1 min	^^	1.1 1 loobould							
	=	7,000 gal									
	=	7,000 gal	x	1 ft ³							
		1,000 gai	^	7.48 gal							
	=	936 ft ³									
Tank Height	=	12 ft									
Diameter	=	936 ft ³	х	4 1/2							
		12 ft		π							
	=	10 ft									
Mixing Requirement	=	0.001139 N-s	х	936 ft ³	x	1 m ³	x	W	х	300	2
		m²				35 ft ³	1	,000 kW		1 sec	
	=	3 kW									
Clarifier											
Tank size (based on Clarification)	=	1,600 gal	x	1 ft ²							
Use conservative loading rate of 0.3 gpm/ft ²		1 min		0.3 gpm							
considering sludge is primarily calcium sulfate and	=	5,424 ft ²									
iron hydroxide and densified. Diameter (based on Clarification)	=	5,424 ft ²	х	4 1/2							
		0,424 1	^ ~	π							
	=	84 ft		•							
Depth (based on Clarification)	=	15 ft									
Overflow											
Solids underflow	=	405,511 lb	x	1 kg	x	1 day	x	1 m ³	x	264 gal	
		day		2.2 lb		1,440 min	1	,190 kg		1 m ³	
	=	29 gpm									
Solids recycle (max) (assumption)	=	3 Recycles	x	179,965 lb d	x	25% solids	_x	1 gal 8.34 lb	X	1.19 SG	x

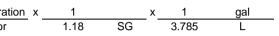
x <u>1 day</u> 1,440 min

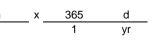


Date:	REV 0 July 2	9, 2019						
Project No.:	18106417							
Subject: Project Short Title:	Example Cal Tyrone Mine	culations Closure Closeou						
Solids Management								
Sludge Storage Tank								
Sludge Production	=	21,000 mg Sludge	x 1 L					
per Hazen Research, Inc., May 3, 2002		1 L	10,040 mg SO ₄					
Van Riper Factor (Sulfate x Factor = sludge)	=	2.0916 mg/L						
nfluent Concentration	=	2,788 mg SO ₄	x 2.0916 mg/L Sludge					
		1 L	1 mg/L SO₄					
	=	5,832 mg/L						
nfluent Dry Solids	=	5,832 mg	x 1,448 gal	х	3.785 L	x	1,440 min x	1 lb
,		1 L	1 min		1 gal		1 d	454,000 mg
	=	101,378 lb/day						
nfluent Wet Cake	=	-	x <u>1 Wet Cake</u>					
		1 day 202,756 lb/day	50% Dry Solids					
nfluent Wet Solids	=		x <u>1 Wet Solids</u>					
(Clarifier Underflow)		1 day 405,511 lb/day	25% Wet Cake					
Water Content	=	405,511 lb	- 202,756 lb					
(filtrate from dewatering)		1 day	1 day					
		202,756 lb/day						
	=	202,756 lb	x1 kg	x	1 m ³	x	1 day x	264 gal
		1 day	2.2 lb		1,000 kg		1,440 min	1 m ³
		17 gpm						
/olume of Cake - Max	=	202,756 lb	x 1 ft ³	х	365 days			
		1 day	100 lb		1 yr			
		740,058 ft ³ /yr						
Filter Press Size - Max	=	740,058 ft ³	x 1 yr	x	1 days	x	1 cycle	
		1 yr	365 days		6 cycle		3 filter presses online	2 shifts, 3 presses
		100 ft ³ /cycle/filter press						
/olume of Cake - Average	=	140,643 lb	x 1 ft ³	x	365 days			
-		1 day	100 lb		1 yr			
		513,348 ft ³ /yr						
ilter Press Size - Avg	=	513,348 ft ³	x 1 yr	x	1 days	x	1 cycle	1 shift 3 presses
5		1 yr	365 days		3 cycle		3 filter presses online	· · · · · · · · · · · · · · · · · · ·
		200 ft ³ /cycle/filter press						


3 presses

6 op


Date: Project No.: Subject: Project Short Title:	REV 0 July 29, 2019 18106417 Example Calculations Tyrone Mine Closure Closeou								
Sludge storage tank	= 29 gal	x270 min	x 1.1 Freeboard						
	1 min = 9,000 gal								
	=9,000 gal	x1 ft ³							
	= 1,203 ft ³	7.48 gal							
Tank Height	= 12 ft								
Diameter	= 1,203 ft ³	x4 ^{1/2}							
	12 ft = 12 ft	π							
Filtrate Tank Filtrate	= 9 gpm								
Tank size	= <u>9 gal</u>	x 240 min							
	1 min = 3,000 gal								
	=3,000 gal	x1 ft ³							
	= 401 ft ³	7.48 gal							
Tank Height	= 10 ft								
Diameter	= 401 ft ³	X 4 1/2							
	= 10 ft = 8 ft	π							
Chemical Addition Systems Lime Chemical Addition System									
Lime Consumption	=5,270 mg CaO	_x1L							
per Hazen Research, Inc., May 3, 2002	1 L = 0.5249 mg/L CaO / mg/L SO₄	10,040 mg SO ₄							
Lime, CaO	= 2,788 mg SO ₄	x 0.5249 mg/L CaO							
	1 L = 1,464 mg/L CaO	1 mg/L SO ₄	_						
Lime Consumption	= 1,464 mg CaO	x3.785 L		x 1,448	gal	x 1,440	min		
	1 L = 25,441 lb CaO/day	1 gal	454,000 mg	1	min	1	day		
Volume, 10% Ca(OH) ₂ slurry	= 25,441 lb	x 1 kg	x 1 L	x 1	day	x 1	Concentration	: 1	
From FMI's Calcs	1 day = 27 gpm	2.2 lb	1 kg	1440	min	10%	Factor	1.07	SG



ら GOLDER															
Date: Project No.: Subject: Project Short Title:	REV 0 July 18106417 Example C Tyrone Mir														
Lime Consumption, as CaO	=	25,441 1 0.01	lb CaO day Ib CaO/gal	x_	1 1,440	day min	x	1 1,600	min gal	_					
Chemical Usage, as CaO	=	25,441 1 4,643	lbs CaO day ton CaO/yr	X_	365 1	day yr	x	1 2,000	ton Ibs	_					
Densification Tank (lime slurry + recycled sludge)	=	179 gpn	n												
Tank size	=	179 gal 1 min 900 gal 900 gal		×		5 min 1 ft ³ 8 gal									
	=	120 ft ³			7.40	o gai									
Tank Height	=	6 ft													
Diameter	= -	120 ft ³ 6 ft 6 ft		x_		4 1/2 T									
Flocculent Chemical Addition System Mass Estimated from experience (typically moderately anionic polymer)	=	10 1 0.13	mg L Ib/min	x_	3.785 1	L gal	x	1,600	gal min	_ × _	1 453,600	lb mg			
Usage	=	0.13 1 44	lb min lb/yr-gpm	×_	1,600	gpm	x	1440 1	min d	_ × _	365 1	d yr			
Volume	=	0.13 1 0.97	lb min gph	x_	1 2.2	kg Ib	x	1 1	L kg	_ × _	60 1	min hr	x	1 100%	Concentratic Factor
HCI Acid Chemical Addition															
NOTE: 2018 UPDATE INCLUDES USING HCL INS	STEAD OF SU =	1	lb 93% H2SO4	SION FA	93	lb H2SO4		1	nol H2SC)∠ x	2	mols H+		1	mol HCI
factor lb SO4(93%)/gal to lb HCl (35%)/gal		1 1.98	gal lb 35%HCL/gal		100	lb 93%		98	lb H2SO4	4	1	mol H2SO4		1	mol H+
HCI (35%) Acid Consumption Used Van Riper Consulting, 2002 for H2SO4 then converted to 35% HCI		0.028 1,000 0.0001	lbs H2SO4 (93%) gal Ibs/gal	×_	1.98 1	lbs HCI (35% lbs H2SO4 (93									
Mass	=	0.0001 1 6.65	lbs gal mg/L	x_	453,600 1	mg Ib	x	1 3.785	gal L	_					

Date:	REV 0 Jul											
Project No.:	18106417											
Subject:		Calculations										
Project Short Title:	Tyrone Mi	ne Closure Close	ou									
Usage	=	6.65	mg x	c 1,100	gal	х	3.785	L	x 1	lb		
-		1	L	1	min		1	gal	453,600	mg		
		0.0610	lb/min									
Volume	=	0.06	lb ×		kg	x	1		x 60	min	x1	Concentrati
	—	1	min	2.2	lb		1	kg	1	hr	35%	Factor
	=	1.07	gph									
Chemical Usage	=	0.0001	lbs x	. 1,100	gal	x	1,440	min	x <u> </u>	day		
		1	gal	1	min		1	day	1	yr		
	=	32,053	lbs/yr									
MF Cleaning Chemicals												
High pH Cleaner Mass	=	2	3	x <u>12</u>	month	_ x	6		x 45	lb		
Estimated from experience		1	month	1	yr			cleaning		pail		
and advice from Avista	=	5,940	lb/yr									
High pH Cleaner Usage Rate	= _	5,940	Ib MF Cleaning Chem x									
		1	year	1,300	gpm							
	=	4.57	lb/yr-gpm									
Low pH Cleaner Mass	=	2	cleanings x	x <u>12</u>	month	_ x	6	pail	x 45	lb		
Estimated from experience	—	1	month	1	yr			cleaning		pail		
and advice from Avista	=	5,940	lb/yr									
Low pH Cleaner Usage Rate	=	5,940	Ib MF Cleaning Chem x	(
		1	year	1,300	gpm	_						
	=	4.57	lb/yr-gpm									
RO Cleaning Chemicals												
High pH Cleaner Mass	=	1	cleanings x		month	_ x	6		x 45	lb		
Estimated from experience		3	month	1	yr			cleaning		pail		
and avista advice	=	990	lb/yr									
High pH Cleaner Usage Rate	= _	990	Ib MF Cleaning Chem x									
		1	year	1,300	gpm							
	=	0.762	lb/yr-gpm									
Low pH Cleaner Mass	=	1	cleanings x	x 12	month	x	6	pail	x 45	lb		
Estimated from experience	_	3	month	1	yr			cleaning		pail	_	
	=	990	lb/yr									
Low pH Cleaner Usage Rate	=	990	Ib MF Cleaning Chem	(
		1	year	1,300	gpm	_						
		0.762	lb/yr-gpm									
Antiscalant												
Mass	=	3	mg x	3.785	L	x	1,300	gal	x 1	lb	x 1,440	min
Estimated from experience	_	1	L	1	gal			min	453,600	mg		d
	=	17,105	lb/yr									

<u> G</u> OLDER	
Date: Project No.: Subject: Project Short Title:	REV 0 July 29, 2019 18106417 Example Calculations Tyrone Mine Closure Closeou
Usage	Ib MF Cleaning Chem x 1 year 1,300 gpm = 13.16 Ib/yr-gpm 1,300 gpm
Biocide Mass Estimated from experience	= <u>1 mg x 3.785 L x 1,300 gal x 1 lb x 1,440 min</u> <u>1 L 1 gal min 453,600 mg d</u> = 5,702 lb/yr
Usage	= <u>5,702</u> <u>lb</u> x <u>1</u> yr <u>1,300</u> gpm = 4.39 lb/yr-gpm
Process Water (Does not include slaking water) Water required	= Polymer make-down = 0.97 gal
Water required	min min = 28.0 gpm
Tank size	$= \frac{28.0 \text{ gal}}{1 \text{ min}} \times \frac{75 \text{ min}}{1 \text{ min}}$ = 3,000 gal $= \frac{3,000 \text{ gal}}{1 \text{ min}} \times \frac{1 \text{ ft}^3}{1 \text{ ft}^3}$
Tank Height	$= 401 \text{ ft}^{3}$ $= 10 \text{ ft}$
Diameter	$= \frac{401 \text{ ft}^3}{10 \text{ ft}} \times \frac{4}{\pi} ^{1/2}$ = 8 ft
Power Consumption Membrane System Plus 5% for building load	= <u>263 hp</u> x <u>0.746 kw</u> x <u>24 hr</u> x <u>365 day</u> = 1,714,737 kw-hr/year = <u>1,714,737 kw-hr</u> x
	year 1,300 gpm 1,319 kw-hr/gpm-yr
HDS System Plus 5% for building load	= <u>67 hp</u> <u>x 0.746 kw</u> <u>x 24 hr</u> <u>x 365 day</u> = 439,659 kw-hr/year
	= <u>439,659 kw-hr</u> x year 1,600 gpm 275 kw-hr/gpm-yr

х	365	d
-	1	yr

Date: Project No.: Subject: Project Short Title: REV 0 July 29, 2019 18106417 Labor Cost Estimate - TTS and SDF Operations Tyrone Mine Closure Closeout Plan

Year 15 Solids							
Day shift - 1 supervisor, 2 maintenance - 40 h	rs a week						
(also used for ETS, SDF, Salt Disposal Facilit	y)						
Operators at 6 Per shift as follows - 2 filter pre	ess, 1 lime silo, 1						
membrane, 1 HDS, 1 pumps/pipelines (conve							
and ETS. 2 shifts each 8 hr days, 7 days wee		Note that the sludge falls by 10% from year 15					
that work full-time 8 hr shifts 5 days per week		10% deduction is taken on the total labor cost	•				
one on evenings). Assumes 2 crews on week		decreases another 10% so another 10% decrease in annual labor cost is					
time hours to cover the 2 8-hour shifts per day	y on weekends.	included at year 43 and again at year 92.					
Operators ²	16.8	Operators	16.8				
Operator Rate ²	\$ 18.60 /hr	Operator Rate	\$ 18.60 /hr				
Reg Operator Hours ²	2,087 hr/op	Operator Hours	2,087 hr/op				
Operator Total Cost	\$ 652,146	Operator Total Cost	\$ 652,146				
Supervisors	1	Supervisors	1				
Supervisor Rate ³	\$ 31.10 /hr	Supervisor Rate	\$ 31.10 /hr				
Supervisor Hours (5 day/wk)	2,087 hr/op	Supervisor Hours	2,087 hr/op				
Supervisor Total Cost	\$ 64,906	Operator Total Cost	\$ 64,906				
Maintenance Techs	2	Maintenance Techs	2				
Maintenance Tech Rates ⁴	\$ 19.83 /hr	Maintenance Tech Rates	\$ 19.83 /hr				
Maintenance Tech Hours (5 day/wk)	2,080 hr/op	Maintenance Tech Hours	2,080 hr/op				
Maintenance Tech Total Cost	\$ 82,493	Maintenance Tech Total Cost	\$ 82,493				
Sub-Total Labor Cost	\$ 799,544	Sub-Total Labor Cost	\$ 799,544				
Overtime for supervisor ⁵	10%	Overtime for supervisor ⁵	10%				
Overtime hours for supervisor	209	Overtime hours for supervisor	209				
Supervisor Overtime Total Cost	\$ 9,736	Supervisor Overtime Total Cost	\$ 9,736				
Overtime for maintenance ⁵	10%	Overtime for maintenance ⁵	10%				
Overtime hours for maintenance	416	Overtime hours for maintenance	416				
Maintenance Overtime Total Cost	\$ 12,374	Maintenance Overtime Total Cost	\$ 12,374				
Overtime for operators ⁵	15%	Overtime for operators ⁵	15%				
Overtime hours for operators ⁵	5,259	Overtime hours for operators ⁵	5,259				
Operator Overtime Total Cost	\$ 146,733	Operator Overtime Total Cost	\$ 146,733				
Overtime Cost	\$ 168,843	Overtime Cost	\$ 168,843				
Benefits fringe rate per hour ⁶	\$ 5.94 /hr	Benefits fringe rate per hour ⁶	\$ 5.94 /hr				
Number of employees	19.8 ops	Number of employees	19.8 ops				
Hours per year	2,087 hrs/op	Hours per year	2,087 hrs/op				
Benefits Cost	\$ 245,456	Benefits Cost	\$ 245,456				
Benefits Cost	\$ 245,456	Benefits Cost	\$ 245,456				
Total Labor Cost	\$ 1,213,843	Total Labor Cost	\$ 1,213,843				
Sludge (lb/day)	179,965	Sludge (lb/day)	140,643				
Labor Cost/lb sludge (\$/d)	\$ 7	Labor Cost/lb sludge (\$/d)	\$ 9				

Notes:

¹ Operator numbers are estimated from Golder's experience with operating similar plants.

² Number of operators reflects covering 16 hours per day and 7 days per week with 2 shifts of 6 operators working 8 hours per day (day shift and evening shift) and 2 shifts of 6 operators working part-time on the weekends for 16 hours total (8 hours per day times two days) and covering the day shift and evening shift. This results in an equivalent number of full-time operators of 16.8 to cover 16 hours per day and 7 days per week. Rate per operators is from 2019 NM Type "A" Street, Highway, Utility & Light Engineering Prevailing Wages. Operator Group I. Hours per operator is regular hours to cover 6 operator positions for 16 hours per day (12 operators per day) 7 days per week (56 hrs/week x 7 days/week per operator position). It is assumed that a shift of 40 hour per week operators and a shift of weekend 16 hour per week operators can be hired to staff the plant for a 8 hour per day shift and an 8 hour swing shift per day. This staffing plan assumes part-time operators are available. https://www.dws.state.nm.us/Portals/0/DM/LaborRelations/Prevailing_Wage_Poster_A_2019_final.pdf

³ Rate per operator is from 2019 NM Type "A" Street, Highway, Utility & Light Engineering Prevailing Wages. Operator Group X. https://www.dws.state.nm.us/Portals/0/DM/LaborRelations/Prevailing_Wage_Poster_A_2019_final.pdf.

⁴ 2019 NM Type "A" Street, Highway, Utility & Light Engineering Prevailing Wages. Operator Group V.

https://www.dws.state.nm.us/Portals/0/DM/LaborRelations/Prevailing_Wage_Poster_A_2019_final.pdf

⁵Overtime for supervisor/maintenance at 10% of regular time hours is for call-outs when off-shift (nights and weekends). Overtime for operators includes average of 15% for nightime callouts (midnight to 8 am), unexpected projects, covering sick time, holiday work, etc). Overtime rate for operators assumes "worst-case" situation and that the part-time weekend operators are not available to cover and the full-time operators must cover at the Overtime rate.

⁶ 2019 NM Type "A" Street, Highway, Utility & Light Engineering Prevailing Wages. All Operator groups. https://www.dws.state.nm.us/Portals/0/DM/LaborRelations/Prevailing_Wage_Poster_A_2019_final.pdf

golder.com