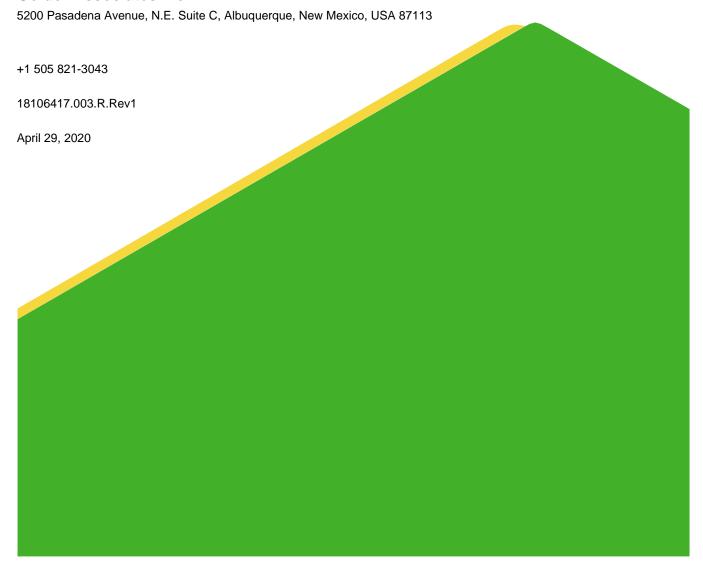


REPORT

Characterization and Volumetrics of Gila Conglomerate and Precambrian Granite Reclamation Cover Materials Freeport-McMoRan Tyrone Operations


Submitted to:

Mandy Lilla

P.O. Box 571 Tyrone, NM 88065

Submitted by:

Golder Associates Inc.

Table of Contents

1.0	INTR	DDUCTION	1
	1.1	Objectives	1
	1.2	New Mexico Copper Mine Rule Cover Requirements	1
2.0	BAC	(GROUND	2
	2.1.1	Gila Conglomerate	3
	2.1.2	Precambrian Granite	3
3.0	METH	IODS	4
	3.1	Field Methods	4
	3.2	Laboratory Analysis	4
	3.2.1	Physical and Chemical Characterization	4
	3.2.2	Soil Hydraulic Characterization	4
	3.2.2.1	Soil Water Characteristic Curves	5
	3.2.2.2	Water Holding Capacity Estimation	5
4.0	RESU	JLTS	5
	4.1	GCRCM – Lubrication Shop Area and South of Reclaimed 1A Tailing Impoundment	5
	4.2	PGRCM – 9A Waste, 9AX Waste Stockpiles	6
	4.3	Soil Hydraulic Properties	8
	4.3.1	GCRCM	8
	4.3.2	PGRCM	8
	4.4	Water Holding Capacity	8
5.0	COVE	ER MATERIAL VOLUMETRICS	9
6.0	REFE	RENCES	10

i

TABLES

lable 1	Previous Sampling of RCM at Tyrone Mine
Table 2	Test Methods for Soil Physical, Chemical, and Hydraulic Characterization
Table 3	Summary of Field Descriptions of 2019 RCM Samples
Table 4	Physical and Fertility Properties of 2019 RCM Samples
Table 5	Chemical Properties of 2019 RCM Samples
Table 6	Particle Size Distribution for Soil Hydraulic RCM Samples
Table 7	Soil Hydraulic Properties of Tyrone RCM, Fine-Earth Fraction
Table 8	Soil Hydraulic Properties of Tyrone RCM, Whole Soil Fraction
Table 9	Estimated Water Holding Capacity of Tyrone RCM
Table 10	Borrow Source Volumetrics for Tyrone Mine

FIGURES

Figure 1	Location of the Tyrone Mine
Figure 2	2019 RCM Sample Locations
Figure 3	Location of RCM Samples for Soil Hydraulic Characterization
Figure 4	Standardized Relationship for Water Holding Capacity and Volumetric Rock Fragment Content for
	Tyrone RCM
Figure 5	Cross-Section of 5A Waste and Underlying Gila Conglomerate
Figure 6	Potential RCM Borrow Sources
Figure 4 Figure 5	Standardized Relationship for Water Holding Capacity and Volumetric Rock Fragment Content for Tyrone RCM Cross-Section of 5A Waste and Underlying Gila Conglomerate

APPENDICES

Appendix A	Energy Laboratory Reports
Appendix B	Daniel B. Stephens and Associates Laboratory Report
Appendix C	Soil Water Characteristic Curves

1.0 INTRODUCTION

Freeport-McMoRan Tyrone, Inc. (Tyrone) is an open pit copper mine located just off State Highway 90, approximately 10 miles southwest of Silver City in Grant County, New Mexico (Figure 1). Tyrone is permitted as an existing mine (Permit No. GR010RE) with the New Mexico Mining and Minerals Division (MMD) and discharge permit DP-1341 issued by the New Mexico Environment Department (NMED).

Potential reclamation cover materials (RCM) identified at Tyrone include native soils, recent alluvium, residual Gila Conglomerate, and Precambrian Granite and Tertiary Quartz Monzonite overburden from various open pits and stockpiles in the Tyrone area (e.g., Little Rock and 9A Waste, 9AX Waste stockpiles). On December 27, 2017, Tyrone received comments on the Updated Closure Closeout Plan (CCP) from the MMD and NMED requesting an update of the 2005 and 2006 borrow material investigations (Golder 2005b and 2006a). Specifically, the MMD requested additional information on the chemical and physical properties of Gila Conglomerate found in the Lubrication Shop area and an estimate of the volume of Gila Conglomerate available from this area. MMD also requested that Tyrone confirm there is sufficient Gila Conglomerate reclamation cover material (GCRCM) at the Mine/Stockpile Unit because portions of Borrow Source A had been covered by the 9A Waste, 9AX Waste stockpiles and Borrow Source E was no longer a practical source of cover material since reclamation of the Reclaimed 1 Leach stockpile was completed in 2009.

Additionally, during a conference call on June 18, 2018, NMED asked whether the RCM meets the water holding capacity (WHC) requirements per the New Mexico Copper Mine Rule (Copper Rule) that was codified October 30, 2012. Tyrone committed to update the previous RCM studies to comply with Copper Rule requirements as part of the Closure/Closeout Plan update. This report provides data to demonstrate the available RCM at Tyrone complies with Copper Rule.

1.1 Objectives

Golder Associated Inc, (Golder) prepared this report on behalf of Tyrone to address the agencies requests for additional information regarding RCM for the Tyrone Mine/Stockpile Unit. The objectives of this report are to:

- Update the 2005 and 2006 Borrow Source Materials reports with additional characterization data including:
 - Test pit and exposure sampling to further characterize the GCRCM in the Lubrication Shop area and Savanna Pit area.
 - Sampling Precambrian Granite reclamation cover materials (PGRCM) currently stockpiled in the 9A
 Waste and 9AX Waste stockpiles.
- Provide an analysis of the WHC for the GCRCM and PGRCM to determine if the covers meet requirements in the Copper Rule (20.6.7.33.F NMAC).
- Recalculate the available volume of RCM to reflect changes in the mine plan and completed reclamation efforts.

1.2 New Mexico Copper Mine Rule Cover Requirements

According to DP-1341, the covers placed on the waste rock and leach ore stockpiles shall consist of a minimum of 36 inches of Gila Conglomerate. The Copper Rule defined performance requirements for the cover materials. According to 20.6.7.33.F of the Copper Rule, the cover must meet the following criteria:

The cover system shall be constructed of thirty-six inches of earthen materials that are capable of sustaining plant growth without continuous augmentation and have erosion resistant characteristics. Erosion rates shall be equal to or less than stable slopes in the surrounding environment after the vegetation has reached near equilibrium cover levels. Erosion will be estimated using generally acceptable methods.

2) Soil cover systems shall be designed to limit net-percolation by having the capacity to store within the fine fraction at least 95 percent of the long-term average winter (December, January, and February) precipitation or at least 35% of the long-term average summer (June, July, and August) precipitation, whichever is greater. The water holding capacity of the cover system will be determined by multiplying the thickness of the cover times the incremental water holding capacity of the approved cover materials. Appropriate field or laboratory test results or published estimates of available water capacity shall be provided by the permittee to show that the proposed cover material meets this performance standard.

Based on the Fort Bayard weather record for the period from 1897 to 2010, the average winter precipitation is 2.78 inches and the average summer precipitation is 7.44 inches (WRCC 2016). Thus, the WHC requirements for a 3-foot thick cover based on the long-term winter (2.78 inches X 0.95 = 2.64 inches or 0.88 inches per foot [in/ft]) and summer precipitation (7.44 inches X 0.35 = 2.60 inches or 0.87 in/ft) are essentially equivalent. To evaluate Tyrone's RCM for compliance with the Copper Rule, the threshold WHC was set at 0.88 in/ft.

2.0 BACKGROUND

The Gila Conglomerate and associated soils and Precambrian Granite overburden are the principal cover materials identified for use at the Tyrone Mine. The characteristics and suitability of the RCMs at Tyrone have been previously evaluated in several reports including:

- Closure/Closeout Plan, Tyrone Mine (DBS&A 1997a) including sections pertaining to the Borrow Materials Investigation (BMI) and Soil and Rock Suitability Assessment
- Preliminary Materials Characterization (DBS&A 1997b)
- Supplemental Materials Characterization (DBS&A 1997c)
- Closure/Closeout Plan for the Little Rock Mine (PDTI 2000)
- Little Rock Mine Cover Design Report and Test Plot Work Plan (Golder 2004)
- Copper Mountain Pit Expansion Leached Cap and Waste Rock Management Plan (PDTI 2005)
- Leached Cap Analysis and Vegetation Summary (Golder 2005a)
- Preliminary Borrow Source Materials Investigation Leach Ore and Waste Rock Stockpiles (Golder 2005b)
- Addendum to Preliminary Borrow Source Materials Investigation Leach Ore and Waste Rock Stockpiles (Golder 2006a)
- As-Built Report Cover, Erosion, and Revegetation Test Plot Study Tyrone Mine Stockpiles. (Golder 2006b)
- United States Natural Resources (USNR) Test Plot Annual Report No. 1 (Golder 2017)

A significant number of RCM samples have been collected in association with these investigations and is summarized in Table 1. Additional characterization data for the GCRCM are provided in the construction QA

reports for the reclaimed tailing impoundments and stockpile units. Sample locations, characterization data, and laboratory reports associated with the technical reports listed above are included by reference. Consolidated data for GCRCM was included in the Preliminary Borrow Source Materials Investigation report (Golder 2005b).

2.1.1 Gila Conglomerate

The Gila Conglomerate Formation is a mid-Miocene and mid-Pleistocene continental deposit that is widespread in southern New Mexico and Arizona. The composition of the Gila Conglomerate Formation varies locally depending on the source area lithology at the time of stripping and deposition. The Gila Conglomerate in the Mine/Stockpile Unit consists largely of igneous intrusive rocks originating from the ancestral Big Burro Mountains; while the Gila Conglomerate in the Mangas Valley reflects the influence of volcanic and meta-sedimentary rocks from the Little Burro Mountains.

Physically, the fine-earth fraction (i.e., < 2 millimeters [mm]) of the Gila Conglomerate and associated soils is dominantly moderately coarse-textured and mainly represented by loamy sand and sandy loam textures. Fine-, moderately fine- and coarse-textured soils occur locally. In general, the coarse textured soils are more prevalent in and around the Mine/Stockpile Unit, and the finer textured soils tend to occur on the flanks of the Little Burro Mountains east of the tailing impoundments. The soils around Tyrone typically contain about 30 to 50 percent rock fragments (>2 mm diameter) by volume. Saturation percentages for the soils generally range from 18 to 75 percent.

Chemically, the Gila Conglomerate and associated soils have few inherent limitations. The pH of the soils range from about 5.0 to 7.8 and the salinity levels are low (0.2 to 3.8 deciSiemens [dS/m]). These materials are universally nonsodic and have favorable calcium to magnesium ratios. Soluble selenium and boron levels are low. The materials range from noncalcareous to calcareous and contain 0.5 to 9.2 percent CaCO₃ equivalent. The highest levels of CaCO₃ are found in the subsurface of the soils in the Mangas Valley.

2.1.2 Precambrian Granite

The cover material generated from the Little Rock Mine consists primarily of Precambrian Burro Mountain Granite overburden (Golder 2014) that meet the approved Characterization and Material Handling Plan (PDTI 2005). This granite is composed primarily of the minerals quartz, orthoclase, plagioclase, and biotite that occur as coarsegrained crystals.

Soil testing results of the Precambrian Granite (Golder 2017) indicate that there are no inherent chemical limitations for the growth of native plants. The cover materials are slightly alkaline (pH 7.6 to 7.7) and nonsaline (electrical conductivity [EC] < 2 dS/m) and the organic matter, phosphorous, and nitrate nitrogen concentrations are considered adequate for the target plant species. No sulfide minerals are known to occur in the PGRCM confirmed by ABA data that strongly suggests it will not generate acid and has a moderate potential to neutralize acid. The range in particle size distribution for the fine-earth fractions was relatively narrow with all the samples classified as sandy loams. The rock fragment content ranges from 40 to 60 percent by volume and sizes ranges from gravel to stones. The saturation percentage data was relatively consistent increasing with clay content, suggesting that the samples are mineralogically similar.

The test plot study at the USNR (Golder 2017) is currently evaluating the suitability of PGRCM as reclamation cover. Preliminary results indicate that the USNR test plots are on the right trajectory relative to vegetation success and erosional stability. Final determination that the PGRCM is suitable to meet the revegetation, erosion,

and WHC standards for cover materials as required by the Copper Rule, MMD Permit No. GR010RE and DP-1341 is forthcoming, pending the results of further monitoring of the USNR test plots.

Over the past several years, Tyrone has strategically placed PGRCM at several locations around the mine site, including the 9A Waste, 9AX Waste stockpiles in preparation for reclamation activities.

3.0 METHODS

3.1 Field Methods

Sampling of Tyrone RCM was conducted on February 28 and March 1, 2019. Sample locations were selected in the field to get a good spatial distribution across the sites. Test pits were excavated using a mini-excavator to maximum depth of approximately 8 feet. A Golder soil scientist described the materials according to National Soil Survey Standards (Soil Survey Division Staff 1993), with respect to geological composition, soil texture, and rock fragment volume and size classes (i.e., gravel, cobble and stone). Composite samples were collected from each test pit based on depth intervals visually defined by noticeable changes in material type, texture and/or coloring. Field pH measurements and reaction with a 10% solution of hydrochloric acid (HCI) were also used to augment the sample selection process. After describing and sampling the borrow source, all excavations were backfilled with the excavated material and compacted using the excavator bucket. The surfaces were then smoothed to match preexisting land conditions.

For each sample interval, a 5 to 10 kilogram (kg) sample was collected for fine-earth characterization (particles < 2 mm in diameter) and the larger rock fragments (> 75 mm) were removed. Samples were placed directly in gallon-sized plastic bags. The sample identification, collection date, and times were recorded on each bag. Additionally, selected depth intervals representing were sampled for soil hydraulic testing. Samples for soil hydraulic analyses were placed in 5-gallon airtight plastic buckets after removing any rock fragment larger than 75 mm. All samples were recorded on chain of custody forms and shipped to contracted laboratories at ambient temperature.

3.2 Laboratory Analysis

3.2.1 Physical and Chemical Characterization

Soil samples collected for fine earth analysis were air-dried and passed through a 2 mm sieve at the laboratory. The less than 2 mm soil fraction was analyzed for the parameters listed Table 2. The primary references for the analytical techniques include Agricultural Handbook No. 60 (Salinity Laboratory Staff [SLS], 1954) and Methods of Soil Analysis (ASA Monograph No. 9, 1982). Borrow samples were analyzed by Energy Laboratory in Billings, Montana.

3.2.2 Soil Hydraulic Characterization

Seven samples were selected to capture a range of soil textures for soil hydraulic characterization at the Daniel B. Stephens & Associates (DBS&A) Laboratory in Albuquerque, New Mexico. Because the cover materials contained rock fragments, the soil hydraulic analyses were conducted on the fine-earth fraction. The bulk soil samples collected for fine-earth analysis were air-dried and passed through a 2 mm sieve at the laboratory.

Column tests were performed on < 2 mm subsamples packed to a specified target density based on established soil textural relationships (Soil Survey Division Staff, 1993). The target density for the laboratory samples was 1.4 grams per cubic centimeter (g/cm³). Paired suction and water content measurements were made using hanging-column, pressure plate, water activity meter, and relative humidity box methods. The soil samples were

subjected to at least 5 suction points ranging from near saturation (≈ 0 cm) to about 850,000 cm. The saturated hydraulic conductivity (K_{sat}) of the fine earth fraction samples was determined by the constant-head method. The soil hydraulic testing methods are listed in Table 2.

3.2.2.1 Soil Water Characteristic Curves

Soil water characteristic curves (SWCCs) were developed using retention data (laboratory water content-pressure $[\theta$ - Ψ] pairs) fit to the van Genuchten model using nonlinear least-squares parameter optimization (van Genuchten et al. 1991). The SWCC's were developed for the fine-earth fraction and for the whole soils after correction of the fine-earth fraction data for rock fragments. In particular, the volumetric water content of the fine-earth fraction at various matric suction values was proportionally reduced in accordance with the volume of rock fragments contained in the whole soil (Bouwer and Rice 1984). The saturated water content (θ _s) was held at the lab measured value while residual water content (θ _r) and van Genuchten α and α parameters were calculated using a nonlinear least-squares parameter optimization procedure for each sample (van Genuchten 1980; van Genuchten et al. 1991).

3.2.2.2 Water Holding Capacity Estimation

The WHC was determined by subtracting the water held at the traditionally defined field capacity from water held at wilting point (National Soil Survey Handbook [NSSH], Section 618.6.D.3). Field capacity was estimated as the water held at 100 centimeters (cm) of suction and wilting point was estimated as the water held at 15,000 cm of suction (USDA 2016) for coarse textured soils. Because the RCM are consistently sandy loams and generally contain between 35 and 65% rock fragments, they were considered coarse textured and field capacity was determined at 100 cm suction. Field capacity was assumed to be 330 cm for a single sandy clay loam GCRCM sample. The water content at field capacity and wilting point were determined numerically (rather than graphically) from the soil water characteristic curve function developed for each sample.

4.0 RESULTS

The results of the physical, chemical and hydraulic soil testing are summarized in this section. Section 4.1 provides characterization data for GCRCM samples collected in 2019 within the Lubrication Shop area and south of the Reclaimed 1A Tailing Impoundment. Section 4.2 provides similar data for PGRCM samples collected in 2019 from the 9A Waste and 9AX Waste stockpiles. The results of the GCRCM and PGRCM soil hydraulic testing are provided in Section 4.3 for Mine/Stockpile Unit samples collected since 2005. Section 4.4 provides information on the estimated WHC for the RCM and presents a generalized relationship for predicting WHC based on material properties. Table 3 provides abbreviated field descriptions for the samples collected in 2019. Laboratory reports from Energy Laboratory are in Appendix A.

4.1 GCRCM – Lubrication Shop Area and South of Reclaimed 1A Tailing Impoundment

GCRCM samples were collected from excavated test pits, cut exposures and bermed materials in the vicinity of the Lubrication Shop and south of the Reclaimed 1A Tailing Impoundment. Samples were taken at a total of 8 locations (Figure 2).

The GCRCM are generally moderately-coarse textured (sandy loams) with moderately high volumes of rock fragments (Table 4), though moderately-fine and fine textured argillic horizons were encountered one test pit (GC-1S-2). Organic matter ranged from 0.4 to 3.2% and phosphorous and nitrate concentrations are low but considered adequate to support native and adapted plant species.

Table 5 provides chemical characterization data for the RCM samples collected in 2019. All GCRCM materials are nonsaline and ranged from very strongly acid (pH = 4.8) to moderately alkaline (pH = 7.9). Acid-base accounts (ABAs) are positive and both selenium and boron levels were below detection limits for GCRCM.

A pH of 4.8 was also measured for the 2-4' interval at test pit GC-1S-2 just below the 9A Waste, 9AX Waste stockpile. Other soil horizons at this location were also naturally acidic (pH 5.1 to 5.5) and total sulfur for these horizons are all extremely low with positive ABAs (Table 5). Slightly acid surface horizons were also found at GC-1S-3 (pH = 5.6) during this investigation.

Numerous native soils with acidic surface and subsoil horizons have been document in the vicinity of the mine as part of previous borrow material investigations and by the US. Department of Agriculture Natural Resource Conservation Service (NRCS). DBS&A (1997a) described three native soils formed in Gila Conglomerate within the mine permit area with surface pH between 5.0 and 5.5. Golder (2005a) found three native soils near the Reclaimed 1 Leach stockpile with acidic surface horizons (pH 5.1 to 5.6). These materials were used for cover in the reclamation of the Reclaimed 1 Leach stockpile. Additionally, the Soil Survey of Grant County (NRCS 1983) provided five reference pedons with acidic horizons (pH 5.4 to 5.9) within about 10 miles from the mine. These soils are found in the Big Burro Mountains and in the mountains between the mine and Cliff, NM and west of the Mangas creek. The empirical evidence suggests that the acidic conditions are relatively common in many native forest and woodland soils regionally and likely the result of soil's parent material and natural soil forming processes. Both GC-1S-2 and -3 test pit locations supported native plant species with an estimated 50% total canopy cover (Photo A).

Waste rock with a pH of 4.5 and negative ABA were encountered at the surface in test pit GC-LS-2. The test pit was located at the 6A Lookout immediately adjacent to the Savanna Pit (Photo B). The interval was approximately 4 to 6 feet thick, distinctly reddish-brown with no reaction to weak acid and a field pH below 5. Suitable GCRCM was visually distinct below 6 feet in the test pit. Further investigation of surface soils around the perimeter of the Savanna Pit found road surfaces and disturbed areas to be acidic with field pHs below 5. It is assumed that these areas were plated with mine rock with the potential to generate acid. As such, approximately 30 acres of GCRCM that underly the disturbed areas near the Lubrication Shop and the Savanna Pit are not considered available as a RCM for closure.

4.2 PGRCM – 9A Waste, 9AX Waste Stockpiles

Three PGRCM bulk samples were collected from the 9A Waste, 9AX Waste stockpiles (Figure 2). These materials are classified as sandy loams with a relatively narrow range in particle size distribution for the fine-earth fractions (Table 4). The rock fragment content ranged from 46 to 55 percent by volume and sizes ranged from gravel to stones. The saturation percentage data was relatively consistent increasing with clay content, suggesting that the samples are mineralogically similar. The materials have low organic matter contents as well as phosphorous and nitrate concentrations similar to the majority of GCRCM samples. ABAs for all the PGRCM tested (Table 5) are well above -5 tons calcium carbonate per kiloton (t CaCO₃/kt), which is considered suitable under MMD's guidelines (MMD 1996). The 9A Waste, 9AX Waste materials are nonsaline (EC < 1 dS/m) and moderately alkaline (pH 7.8 to 8.0). Selenium and boron levels were below detection limits (Table 5). The physical and chemical properties of the 9A Waste, 9AX Waste RCM are very similar to the materials used to construct the soil covers at the USNR test plots (Golder 2017).

Photo A: Vegetation with high canopy cover adjacent to test pit GC-1S-2 with low pH soil horizons

Photo B: Test pit GC-LS-2 location from below showing reddish waste rock from the Savanna Pit overlying GCRCM

4.3 Soil Hydraulic Properties

Since 1999, a total of 30 samples from the Mine/Stockpile Unit have had soil hydraulic characterization completed including 23 samples of Gila Conglomerate and 7 samples of Little Rock Precambrian Granite. Unfortunately, laboratory reports associated with early borrow investigations (DBS&A 1999) were not available to develop SWCCs and estimate WHC. Additionally, soil water retention data of 5A Waste stockpile samples (Golder 2006a) was deemed incomplete because no θ - Ψ pairs were measured for near the permanent wilting point (15,000 cm) and hygroscopic water (~31,000 cm, i.e., in equilibrium with atmosphere). The lack of information for these critical soil moisture states made WHC estimations for the 5A Waste stockpile materials inconsistent with standardized hydraulic relationships for similarly textured soils (Rawls et al. 1982, Carsel and Parrish 1988).

Soil hydraulic testing was conducted for 4 GCRCM and 3 PGRCM samples collected as part of this investigation. Soil hydraulic characterization data for an additional 11 RCM samples were also used in the soil hydraulic analyses. These samples were collected as part of the Reclaimed 1 Leach stockpile and USNR test plot studies (7 GCRCM [Golder 2006b] and 4 PGRCM [Golder 2017] respectively). The locations of soil hydraulic characterization samples are illustrated in Figure 3.

The soil hydraulic laboratory report for the RCM samples collected as part of this study are provided in Appendix B. The SWCCs for the 18 samples used to determine WHC are provided in Appendix C. The SWCC graphs display the curves for the fine-earth fraction and for the whole soil assuming the volumetric rock fragment content based on the field estimations of the materials (Table 6).

4.3.1 GCRCM

The θ_s of the < 2 mm soil fraction for GCRCM ranges between 0.34 and 0.49 cubic centimeters per cubic centimeters ([cm³/cm³] Table 7). Whole soil θ_s ranged from 0.15 to 0.29 cm³/cm³ (Table 8). The variations in saturated water content and other properties are expected given the textural range of the GCRCM (Section 4.1). The other soil hydrologic parameters (θ_r and van Genuchten α and N) compare well with standardized relationships among soil particle size and hydraulic properties of similarly textured soils (Rawls et al. 1982, Carsel and Parrish 1988). The K_{sat} of the < 2 mm samples ranged from 1.2 x 10⁻⁵ to 4.1 x 10⁻² centimeters per second ([cm/s] Table 7), which is within the range expected for sandy clay loams and sandy loams when compared to typical published values (Klute and Dirksen 1986). Whole soil K_{sat} ranged from 7.6 x 10⁻⁶ to 2.4 x 10⁻² cm/s (Table 8).

4.3.2 **PGRCM**

The θ_s of the < 2 mm soil fraction for PGRCM was consistent among the samples, ranging between 0.46 and 0.49 cm³/cm³ (Table 7). Whole soil θ_s ranged from 0.21 to 0.29 cm³/cm³ (Table 8). The minor variations in saturated water content and other properties are expected given the textural consistency of the PGRCM (Section 4.1). The other soil hydrologic parameters (θ_r and van Genuchten α and N) compare well with standardized relationships among soil particle size and hydraulic properties of similarly textured soils (Rawls et al. 1982, Carsel and Parrish 1988). The K_{sat} of the < 2 mm samples ranged from 1.1 x 10^{-2} to 8.9 x 10^{-2} cm/s (Table 7), which is the high end of the range expected compared to typical published values for sandy loams (Klute and Dirksen 1986). Whole soil K_{sat} for PGRCM ranged for from 5.3 x 10^{-3} to 2.0 x 10^{-2} cm/sec (Table 8).

4.4 Water Holding Capacity

The standard or conventional method for estimating WHC of soils containing rock fragments involves the determination of the WHC of the fine-earth fraction and calculating the proportional reduction in WHC associated

with rock fragments (NRCS 2014). This approach assumes the rock fragments do not hold appreciable water and are diluents in the whole soil matrix.

The estimated WHC of the fine-earth fraction ranged from about 1.55 to 2.46 in/ft for GCRCM and 1.82 to 2.43 for PGRCM (Table 9). The average WHC of the fine-earth fraction was 1.94 and 2.04 in/ft for GCRCM and PGRCM respectively. The WHC on a whole soil basis (corrected for the field rock fragment contents) ranged from about 0.71 to 1.21 in/ft for GCRCM and 0.82 to 1.31 for PGRCM (Table 9) reflecting the reduction of WHC associated with the rock fragments. The average WHC of the whole soil for GCRCM was 1.03 in/ft and 1.05 in/ft for PGRCM, each well above the 0.88 in/ft threshold WHC to comply with the Copper Rule.

Because the WHC of the cover is directly related to the quantity of rock fragments, a generalized relationship was developed using the average WHC of the fine earth fraction corrected for various rock fragment concentrations (Figure 4). The lines are described by the following equation:

Field WHC =
$$(WHC_{FE}) \times (1 - RF_{V})$$

Where the WHC_{FE} is the fine-earth water holding capacity and RF $_{\rm V}$ is the volumetric rock fragment content The WHC_{FE} is assumed to be average of the materials tested 1.94 in/ft for the GCRCM and 2.04 in/ft for PGRCM. This relationship will allow determination of the WHC of the cover using soil textural (i.e., rock fragment) data, which is collected as part of the cover quality control process. For example, if the PGRCM in a reclamation area had an average rock fragment content of 45% (0.45), the average field WHC would be estimated to be 1.22 in/ft (i.e., 2.04 x 1-0.45). This relationship can to be used as guidance for future design for covers using RCM at Tyrone. Based on the generalized relationships shown in Figure 4, an incremental reduction of rock fragment of approximately 5% will yield an increase in WHC of about 0.1 in/ft.

This analysis indicates that the Tyrone RCM will achieve the Copper Rule WHC requirements (\approx 2.6 inches) with the 3-foot thick cover (Section 1.2). A cover meeting this WHC requirement can be achieved with an average rock fragment content less than 55% for GCRCM or 57% for PGRCM. Based on over 140 samples of Mine/Stockpile Unit, GCRCM either stockpiled or placed as cover has and average volumetric rock fragment content (\pm 90% confidence interval [CI]) is about 44% (\pm 1.9% CI). PGRCM from Little Rock is estimated to have 50% (\pm 3.7% CI) average volumetric rock. Thus, the RCM at Tyrone are projected to have a WHC that exceeds the 20.6.7.F (2) NMAC requirements.

5.0 COVER MATERIAL VOLUMETRICS

Gila Conglomerate within the 5A Waste stockpile and residual Gila Conglomerate on the east side of the Main Pit (Lubrication Shop/Savanna Pit area) are considered the two primary sources of cover material in the 2013 Updated CCP. Substantial volumes of residual Gila Conglomerate also underlie the 5A Waste stockpile and will become available as mining progresses into the east side of the Main Pit (Figure 5). The use of the pit wall Gila Conglomerate or additional materials from the 5A Waste stockpile may eliminate the need to excavate borrow near the 9A Waste, 9AX Waste stockpiles.

Additional borrow areas include Little Rock Precambrian Granite overburden and residual Gila Conglomerate soils across the Mine/Stockpile Unit that may be excavated from numerous locations on the mine property (Golder 2005b). Tyrone's experience with cover excavation and placement on the Mangas Valley tailing impoundments revealed that flexibility in materials handling is critical to achieving quality control objectives and efficient management of cover soil resources. The exact location and configuration of the borrow areas will ultimately be determined during the final design and construction phases of the reclamation.

There are five GCRCM borrow areas around the Mine/Stockpile Unit identified on Figure 6 that could be used as cover sources. Furthermore, in a letter dated June 25, 2019, Tyrone applied for a permit modification to build the CSG Waste stockpile which is projected to contain approximately 32 million tons of Gila Conglomerate at full build out. In addition to the GCRCM, Tyrone has also stockpiled PGRCM from the Little Rock Mine at the following facilities:

- 9A Waste, 9AX Waste stockpiles approximately 32 million cubic yards (MCY)
- Little Rock Pit approximately 8 MCY

The preliminary results from the PGRCM USNR test plot study indicate that the test plots are on the right trajectory and a final determination that the PGRCM is suitable to meet the revegetation and erosion resistant cover material standards. Tyrone has also constructed large test areas using materials similar to the PGRCM (Copper Mountain Tertiary Quartz Monzonite) in the Reclaimed 7A Waste stockpile area and has learned a great deal about utilizing these types of overburden materials for cover and continues to monitor the various treatments and methods for using it successfully.

The cover requirement for the Mine/Stockpile Unit at Tyrone is approximately 12.6 MCY based on the current permit requirements. More than 23.6 MCY of GCRCM and 32 MCY of PGRCM cover materials have been conservatively identified at Tyrone (Table 10). Thus, the total volume of materials designated for the Mine/Stockpile unit is more than that needed to cover these facilities. The surplus of available RCM will ultimately allow for flexibility in siting borrow areas at Tyrone to account for operational considerations.

6.0 REFERENCES

- Agronomy Society of America (ASA). 1982. Monograph 9: Methods of Soil Analysis. Soil Sci. Soc. Am., Madison, WI.
- ASTM D2216. Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass.
- ASTM D5856. Standard Test Method for Measurement of Hydraulic Conductivity of Porous Material Using a Rigid-Wall, Compaction-Mold Permeameter.
- ASTM D6836. Standard test methods for determination of the soil water characteristic curve for desorption using hanging column, pressure extractor, chilled mirror hygrometer, or centrifuge.
- ASTM D7263. Standard Test Methods for Laboratory Determination of Density (Unit Weight) of Soil Specimens
- ASTM D854. Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer.
- Bouwer, H., and R.C. Rice. 1984. Hydraulic Properties of Stony Vadose Zone. Groundwater 22:696-705.
- Campbell, G. and Gee. 1986. Water Potential: Miscellaneous Methods. Ch. 25, pp. 631-632, in A. Klute (ed.), Methods of Soil Analysis, American Society of Agronomy, Madison, WI.
- Carsel, R. F. and R. S. Parrish. 1988. Developing Joint Probability Distributions of Soil Water Retention Characteristics, Water Resources Research, Vol. 24, No. 5, pgs 755-769.
- Daniel B Stephens & Associates, Inc. (DBS&A). 1997a. Closure/Closeout Plan, Tyrone Mine. Prepared for Phelps Dodge Tyrone Inc., Tyrone, New Mexico.

DBS&A. 1997b. Preliminary Material Characterization, Tyrone Mine Closure/closeout. Prepared for Phelps Dodge Tyrone, Inc., Tyrone New Mexico.

- DBS&A. 1997c. Supplemental Material Characterization, Tyrone Mine. Prepared for Phelps Dodge Tyrone, Inc., Tyrone New Mexico.
- DBS&A. 1999. Cover Design Status Report, Tyrone Mine. Prepared for Phelps Dodge Tyrone, Inc., Tyrone, New Mexico.
- Gee, G.W., and J.W. Bauder. 1986. Particle-size Analysis. In: Methods of Soil Analysis. Part 1-Physical and Mineralogical Methods, 2nd Edition. A. Klute (ed). Agron. 9. Soil Sci. Soc. Am., Madison, WI.
- Golder Associates Inc. (Golder) 2004. Cover Design Report and Test Plot Work Plan, Little Rock Mine. Prepared for Phelps Dodge Tyrone, Inc.
- Golder. 2005a. Leached Cap Analysis and Vegetation Summary- Little Rock Mine and Copper Mountain Pit Expansion Area. Submitted to Phelps Dodge Tyrone Inc. July 28, 2005.
- Golder. 2005b. Preliminary Borrow Source Materials Investigation Leach Ore and Waste Rock Stockpiles, DP-1341 Condition 79. Submitted to Phelps Dodge Tyrone Inc. October 31, 2005.
- Golder. 2006a. Addendum to Preliminary Borrow Source Materials Investigation Leach Ore and Waste Rock Stockpiles, DP-1341 Condition 79. Submitted to Phelps Dodge Tyrone Inc. January 30, 2006.
- Golder. 2006b. As-Built Report Cover, Erosion, and Revegetation Test Plot Study Tyrone Mine Stockpiles. Submitted to Phelps Dodge Tyrone Inc. September 29, 2006.
- Golder. 2014. Updated Closure/Closeout Plan for the Little Rock Mine. Submitted to Freeport-McMoRan Tyrone. June 19, 2014.
- Golder. 2017. United States Natural Resources (USNR) Test Plot Annual Report No. 1, Little Rock and Tyrone Mines. Submitted to Freeport-McMoRan Tyrone. March 8, 2017.
- Karathanasis and Hajek. 1982. Quantitative Evaluation of Water Absorption on Soil Clays. SSSA Journal 46:1324-1325.
- Klute, A., and C. Dirksen. 1986. Hydraulic conductivity and diffusivity: Laboratory methods. In: A. Klute (ed). Methods of Soil Analysis. Part 1-Physical and Mineralogical Methods, 2nd Edition. Soil Sci. Soc. Am., Madison, WI. Agron. 9:687-732.
- Mining and Minerals Division (MMD). 1996. Draft Closeout Plan Guidelines for Existing Mines. Mining Act Reclamation Bureau, Santa Fe, NM. April 30, 1996.
- New Mexico Environment Department (NMED). 2003. Supplemental Discharge Permit for Closure DP 1341, Phelps Dodge Tyrone, Inc., Tyrone Mines Facility.
- Phelps Dodge Tyrone, Inc. (PDTI). 2000. Closure/Closeout Plan for the Little Rock Mine, Grant County, New Mexico.
- PDTI. 2005. Copper Mountain Pit Expansion- Leached Cap Cover and Waste Rock Management Plan. Phelps Dodge Tyrone, Inc. Grant County, New Mexico.

Rawlins, S.L. and G.S. Campbell. 1986. Water Potential: Thermocouple Psychrometry. Chp.24, pp. 597-619, in A. Klute (ed.), Methods of Soil Analysis, Part 1. American Society of Agronomy, Madison, WI.

- Rawls, W.J., D.L. Brakensiek, and K.E. Saxton. 1982. Estimation of soil water properties. Trans. ASAE 25: 1316–1320 & 1328
- Salinity Laboratory Staff (SLS). 1954. Diagnosis and Improvement of Saline and Alkali Soils. Agricultural Handbook No. 60. USDA-Agricultural Research Service. US Government Printing Office, Washington, D.C.
- Sobek, A.A., W.A. Schuller, J.R. Freeman, and R.M. Smith. 1978. Field and Laboratory Methods Applicable to Overburdens and Minesoils. EPA-600/2-78-054.
- Soil Survey Division Staff. 1993. Soil Survey Manual. Handbook No. 18, 2nd ed. USDA-Soil Conservation Service. US Government Printing Office, Washington, D.C.
- USDA Natural Resource Conservation Service (NRCS). 1983. Soil Survey of Grant County: Central and Southern Parts. Available online. October 1983.
- NRCS. 2016. National Soil Survey Handbook. Title 430-VI. Available online. Accessed 3/24/2016.
- van Genuchten, M.Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. SSSAJ 44:892-898.
- van Genuchten, M.Th., F.J. Leij, and S.R. Yates. 1991. The RETC code for quantifying the hydraulic functions of unsaturated soils. Robert S. Kerr Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency. Ada, Oklahoma. EPA/600/2091/065. December 1991.
- Western Regional Climate Center (WRCC). 2016. Climate Summary for Ft. Bayard, New Mexico (NCDC #293265). http://www.wrcc.dri.edu/.

Signature Page

Golder Associates Inc.

Doug Romig Senior Scientist Todd Stein Senior Hydrogeolist

DR/TS/mb/js

Golder and the G logo are trademarks of Golder Associates Corporation

 $https://golderassociates.sharepoint.com/sites/35255g/proposal\ project\ management/500_reporting/510_reports/512_finals/18106417.003.r.rev1/18106417.003.r.rev1.20200429.docx$

Tables

Table 1: Previous Sampling of RCM at Tyrone Mine

Panart	Characterization				
Report	Hydraulic	Chemical/Physical			
GCRCM					
Cover Design Status Report (DBS&A 1999)	9	95			
Addendum to Preliminary BMI (Golder 2006a)	3	90			
No 1 Stockpile Test Plots (Golder 2006b)	7	90			
PGRCM					
Little Rock CCP (PDTI 2000), Leached Cap Analysis (Golder 2005a)	0	13			
USNR Test Plot Annual Report 1 (Golder 2017)	4	5			

Table 2: Test Methods for Soil Physical, Chemical, and Hydraulic Characterization

Test	Methods
Saturated Paste pH	SLS 1954, Method 2 and 21a
Electrical Conductivity	SLS 1954, Method 3a and 4b
Saturation percentage	SLS 1954, Method 27a
Particle Size Distribution, including very fine sand	ASA 1982, Method 15-5
Rock Fragment (>2mm)	Dry sieve (No. 10)/gravimetric
N as Nitrate	ASA 1982, Method 33-8.1
Phosphorous (Olsen)	ASA 1982, Method 24-5.4
Organic Matter (Carbon)	ASA 1982 Method 29-3.5.2
Hot water extractable Boron	ASA 1982, Method 10-3
Hot water extractable Selenium	ASA 1982, Method 75-4.1
Acid-Base Account (with sulfur forms)	Modified Sobek (1978)
Dry Bulk Density	ASTM D7263
Moisture Content	ASTM D7263; ASTM D2216
Porosity	ASTM D7263: Klute 1986.
Saturated Hydraulic Conductivity, Constant Head (Rigid Wall)	ASTM D5856
Hanging Column	ASTM D6836; Klute, A. 1986.
Pressure Plate	ASTM D6836
Water Potential (Dewpoint Potentiometer)	ASTM D6836; Rawlins and Campbell, 1986
Relative Humidity (Box)	Karathanasis and Hajek, 1982; Campbell and Gee, 1986.
Moisture Retention Characteristics & Calculated Unsaturated Hydraulic Conductivity	ASTM D6836; van Genuchten, 1980; van Genuchten et. al, 1991
Specific Gravity (Fine)	ASTM D854

Table 3: Summary of Field Descriptions of 2019 RCM Samples

Location	Depth	USDA	Clay		Rock Fragm	nents (%vo	l)	Notes
Location	Interval	Texture ¹	(%)	Gravel	Cobble	Stone	Total	— Notes
GCRCM		•		•			-	
South of Re	eclaimed 17	4 Tailing Imp	ooundment					
GC-1S-1	0-3	CoLS	15	40	2	trace	42	Exposure along drainage channel, grussy granite, gravels mostly < 3/4"
GC-1S-2	0-2	SCL	20	15	30	2	47	Previously disturbed, surface horizon removed, argillic
	2-4	CL	32	10	35	7	52	horizon with pressure faces
	4-6	SCL	22	20	25	5	50	
GC-1S-3	0-2	SL	15	15	3		18	
	2-4	SL	14	20	13	2	35	Cobbles and stones increase at 40"
	4-6.5	SL	14	20	15	2	37	
GC-1S-4	0-2.5	CoSL	12	45	3		48	Gully sidewall in previous borrow area, lenses of petrocalcic horizons, violent eff, gravels mostly <3/4"
GC-1S-5	bulk	SCL	23	18	20	2	40	Surface materials removed with 9A construction, dark colored A & B horizon mix
Lubrication	Shop Area							
	0-2	CoLS	10	35	1		36	
GC-LS-1	2-4	CoSL	12	35	1		36	Grussy granite, Uniform to 6'
	4-6	CoSL	12	35	5		40	
	0-2	CoSL	17	30	7		37	Field pH <5, reddish brown color, waste rock with possible
GC-LS-2	2-4	CoSL	17	30	7	1	37	sulfides
GC-L3-2	4-6	CoSL	14	35	8	trace	43	Mine rock, possibly mixed with sulfides
	6-7	CoSL	14	35	8	trace	43	Grussy granitic Gila
GC-LS-3	0-2	CoSL	12	38	2	trace	40	Road berm near powder magazines, field pH 6.5, no eff
PGRCM								
PG-9A-1	bulk	CoSL	13	23	18	14	55	Little Rock overburden, 2% boulders
PG-9A-2	bulk	CoSL	12	22	16	8	46	Little Rock overburden from top of pit, 1% boulders
PG-9AX-1	bulk	CoSL	12	25	18	8	51	Little Rock overburden from bottom of pit, trace boulders

Notes:

[%]vol = percent by volume

¹⁾ field texture: Co = coarse; LS = loamy sand; SL = sandy loam; SCL = sandy clay loam; CL = clay loam

Table 4: Physical and Fertility Properties of 2019 RCM Samples

Sample ID	Depth Interval	USDA Texture ¹	Sand	Silt	Clay	Very Fine Sand	Saturation Percent	Organic Matter	Organic Carbon	Nitrate as	Р
	(ft)	TOXICIO		%	wt			%		mg/kg	
GCRCM											
GC-1S-1	0-3	SL	75	14	11	2	20.6	0.7	0.4	< 1	5
GC-1S-2	0-2	SCL	65	14	21	3	28.5	0.8	0.5	< 1	4
GC-1S-2	2-4	SC	49	10	41	3	56.7	0.9	0.5	< 1	14
GC-1S-2	4-6	SCL	52	18	30	5	40.2	0.6	0.3	< 1	15
GC-1S-3	0-2	SL	60	32	8	1	17.8	1.3	0.8	< 1	2
GC-1S-3	4-6	SL	55	31	14	4	23.8	1	0.6	< 1	4
GC-1S-4	0-2	SL	70	19	11	1	19.2	0.5	0.3	< 1	3
GC-1S-5	bulk	L	45	34	21	7	34.2	3.2	1.8	11	3
GC-LS-1	2-4	SL	77	14	9	1	20.1	0.5	0.3	< 1	2
GC-LS-2	0-2	SL	57	24	19	0	26.2	0.4	0.2	16	2
GC-LS-2	6-7	SL	77	8	15	5	24.6	0.5	0.3	3	6
GC-LS-3	0-2	SL	73	14	13	4	19.5	0.7	0.4	< 1	3
PGRCM	•			•					•		
PG-9A-1	bulk	SL	67	21	12	0	23.6	0.4	0.2	< 1	2
PG-9A-2	bulk	SL	69	21	10	4	21.7	1	0.6	< 1	2
PG-9AX-1	bulk	SL	64	24	12	0	24.5	0.4	0.3	< 1	2

Notes:

1) L = loam; SL = sandy loam; SCL = sandy clay loam

% wt = percent by weight; mg/kg = milligrams per kilogram

Table 5: Chemical Properties of 2019 RCM Samples

	Depth	Depth Saturated Paste		Sulfur Forms					Neutralization	Acid/Base	0.1	D
Sample ID	Interval	рН	EC	HCI	HNO ₃	H ₂ O	Residual	Total	Potential	Potential ¹	Selenium	Boron
	(ft)	s.u.	dS/m			%			t CaCO	3/kt	mg/	/kg
GCRCM												
GC-1S-1	0-3	7.9	0.5	<0.01	<0.01	<0.01	0.02	0.02	28	28	<0.1	<0.1
GC-1S-2	0-2	5.5	0.7	<0.01	<0.01	<0.01	0.02	0.03	5	5	<0.1	<0.1
GC-1S-2	2-4	4.8	1.2	<0.01	<0.01	<0.01	0.02	0.03	4	4	<0.1	<0.1
GC-1S-2	4-6	5.1	1.6	<0.01	<0.01	<0.01	0.02	0.04	5	5	<0.1	<0.1
GC-1S-3	0-2	5.6	0.3	<0.01	0.01	<0.01	0.02	0.03	6	6	<0.1	<0.1
GC-1S-3	4-6	7.3	0.7	<0.01	<0.01	<0.01	0.02	0.03	15	15	<0.1	<0.1
GC-1S-4	0-2	7.8	0.3	<0.01	<0.01	<0.01	0.02	0.02	57	57	<0.1	<0.1
GC-1S-5 Bulk		6.8	0.9	<0.01	<0.01	<0.01	0.02	0.04	10	10	<0.1	<0.1
GC-LS-1	2-4	5.3	1.7	<0.01	0.01	<0.01	0.02	0.04	11	11	<0.1	<0.1
GC-LS-2	0-2	4.5	1.3	<0.01	0.3	0.11	0.39	0.81	1	-8	<0.1	<0.1
GC-LS-2	6-7	7.6	0.7	<0.01	<0.01	<0.01	0.03	0.04	9	9	<0.1	<0.1
GC-LS-3	0-2	6.5	0.2	<0.01	0.02	<0.01	0.02	0.03	9	8	<0.1	<0.1
PGRCM												
PG-9A-1	bulk	7.9	0.5	<0.01	0.04	<0.01	0.02	0.06	13	12	<0.1	<0.1
PG-9A-2	bulk	8	0.9	<0.01	0.02	0.01	0.03	0.06	19	18	<0.1	<0.1
PG-9AX-1	bulk	7.8	0.3	<0.01	0.03	<0.01	0.02	0.05	17	16	<0.1	<0.1

Notes:

dS/m = deciSiemens per meter; s.u. = standard units; t CaCO₃/kt = tons of CaCO₃ per kiloton; mg/kg = milligrams per kilogram

¹⁾ Acid/Base Potential based on pyritic sulfur (HNO₃ digestion)

Table 6: Particle Size Distribution for Soil Hydraulic RCM Samples

	USDA	Particle	Particle Size Distribution					
Sample ID	Texture	Sand	Silt	Clay	Fragments ²			
	Class ¹		(wt %)		(vol %)			
GCRCM								
GC-LS-2 6-7'	SL	77	8	15	43			
GC-1S-2 4-6'	SCL	52	18	30	50			
GC-1S-3 2-6.5'	SL	58	32	11	36			
GC-1S-4 0-2.5'	SL	70	19	11	48			
No1-1-1	SL	69	16	15	62			
No1-1-2	SL	71	14	15	45			
No1-2-1	SL	67	12	21	50			
No1-2-2	SL	71	14	15	51			
No1-3-1	SL	73	13	14	45			
No1-3-2	SL	72	17	11	42			
No1-8-LY	SL	70	19	11	49			
PGRCM								
PG-9A-1 Bulk	SL	67	21	12	55			
PG-9A-2 Bulk	SL	69	21	10	46			
PG-9AX-1 Bulk	SL	64	24	12	51			
UTPQA-2	SL	73	19	8	55			
UTPQA-3	SL	71	21	8	40			
LTPQA-4	SL	71	19	10	50			
T7ALRLC	SL	73	20	7	45			

Notes:

¹⁾ SL = sandy loam; SCL = sandy clay loam

²⁾ Volumetric rock content of sample interval

wt % = pecent by weight, vol % = pervent by volume

Table 7: Soil Hydraulic Properties of Tyrone RCM, Fine-Earth Fraction (< 2 mm)

	Saturated	,				
Sample ID	Hydraulic Conductivity	θ_{s}	θ_{r}	α	N	Bulk Density
	cm/s	cm ³	/cm ³	1/cm	Dimensionless	g/cm ³
GCRCM						
GC-LS-2 6-7'	6.20E-03	0.454	0.059	0.0467	1.4118	1.41
GC-1S-2 4-6'	1.20E-05	0.494	0.001	0.0365	1.1777	1.4
GC-1S-3 2-6.5'	4.80E-03	0.466	0.001	0.0608	1.2361	1.4
GC-1S-4 0-2.5'	4.10E-02	0.481	0.049	0.0571	1.6606	1.4
No1-1-1	1.30E-02	0.393	0.001	0.0986	1.2127	1.39
No1-1-2	3.50E-02	0.440	0.001	0.1325	1.2144	1.4
No1-2-1	5.00E-03	0.410	0.001	0.1044	1.2096	1.39
No1-2-2	1.60E-02	0.426	0.001	0.1358	1.2159	1.41
No1-3-1	1.90E-02	0.388	0.001	0.0508	1.2131	1.39
No1-3-2	2.60E-02	0.342	0.000	0.0635	1.2061	1.39
No1-8-LY	2.59E-03	0.404	0.001	0.1234	1.2015	1.41
PGRCM						
PG-9A-2 Bulk	5.20E-02	0.480	0.039	0.0760	1.4686	1.41
PG-9A-1 Bulk	1.10E-02	0.466	0.002	0.0621	1.3049	1.41
PG-9AX-1 Bulk	3.30E-02	0.472	0.039	0.0800	1.4216	1.41
UTPQA-2	8.90E-02	0.462	0.042	0.0576	1.4590	1.4
UTPQA-3	7.00E-02	0.487	0.044	0.0621	1.4734	1.4
LTPQA-4	3.20E-02	0.478	0.044	0.0532	1.4680	1.4
T7ALRLC	2.60E-02	0.489	0.049	0.0656	1.4068	1.4

Notes:

cm/s = centimeters per second; cm³ = cubic centimeters; g/cm³ = grams per cubic centimeter

¹⁾ recalculated from moisture retention data; θ_r = residual water content; θ_s = saturated water content; α = fitted parameter (van Genuchten 1980); N = fitted parameter (van Genuchten 1980)

Table 8: Soil Hydraulic Properties of Tyrone RCM, Whole Soil Fraction

	Saturated	,	cients ²	Rock		
Sample ID	Hydraulic Conductivity ¹	θ_{s}	$\theta_{\rm r}$	α	N	Fragments
	cm/s	cm ³	/cm ³	1/cm	Dimensionless	vol %
GCRCM				-	-	
GC-LS-2 6-7'	2.10E-03	0.259	0.034	0.0467	1.4118	43
GC-1S-2 4-6'	7.60E-06	0.247	0.001	0.0363	1.1786	50
GC-1S-3 2-6.5'	3.10E-03	0.298	0.001	0.0605	1.2370	36
GC-1S-4 0-2.5'	2.40E-02	0.250	0.025	0.0571	1.6606	48
No1-1-1	3.30E-03	0.151	0.001	0.0976	1.2148	62
No1-1-2	1.40E-02	0.243	0.001	0.1319	1.2155	45
No1-2-1	1.70E-03	0.205	0.001	0.1037	1.2109	50
No1-2-2	5.40E-03	0.207	0.001	0.1350	1.2173	51
No1-3-1	7.30E-03	0.214	0.001	0.0504	1.2143	45
No1-3-2	1.10E-02	0.200	0.000	0.0635	1.2061	42
No1-8-LY	3.80E-03	0.206	0.001	0.1227	1.2027	49
PGRCM						
PG-9A-1 Bulk	1.50E-02	0.216	0.018	0.0760	1.4686	55
PG-9A-2 Bulk	5.30E-03	0.252	0.001	0.0623	1.3039	46
PG-9AX-1 Bulk	8.20E-03	0.231	0.019	0.0800	1.4216	51
UTPQA-2	1.60E-02	0.208	0.019	0.0576	1.4590	55
UTPQA-3	2.00E-02	0.292	0.027	0.0621	1.4734	40
LTPQA-4	1.00E-02	0.239	0.022	0.0532	1.4680	50
T7ALRLC	7.20E-03	0.269	0.027	0.0656	1.4068	45

Notes:

cm/s = centimeters per second; cm³ = cubic centimeters, vol % = percent by volume

¹⁾ lab reported conductivity based on bulk sample (<3")

²⁾ recalculated from moisture retention data; θ_r = residual water content; θ_s = saturated water content;

α = fitted parameter (van Genuchten 1980); N = fitted parameter (van Genuchten 1980)

Table 9: Estimated Water Holding Capacity of Tyrone RCM

	Water Holdi	ng Capacity	Dook Frommont	
Sample ID	Fine Earth (< 2mm)	Whole Soil1	Rock Fragment Content ²	
	(in/ft)		(vol %)	
GCRCM				
GC-LS-2 6-7'	2.11	1.21	43	
GC-1S-2 4-6'	1.84	0.95	50	
GC-1S-3 2-6.5'	2.46	1.57	36	
GC-1S-4 0-2.5'	1.55	0.80	48	
No1-1-1	1.86	0.71	62	
No1-1-2	1.97	1.09	45	
No1-2-1	1.92	0.96	50	
No1-2-2	1.90	0.92	51	
No1-3-1	2.08	1.15	45	
No1-3-2	1.76	1.03	42	
No1-8-LY	1.83	0.93	49	
PGRCM				
PG-9A-1 Bulk	1.82	0.82	55	
PG-9A-2 Bulk	2.43	1.31	46	
PG-9AX-1 Bulk	1.87	0.92	51	
UTPQA-2	1.98	0.89	55	
UTPQA-3	1.98	1.19	40	
LTPQA-4	2.09	1.05	50	
T7ALRLC	2.09	1.15	45	

Notes:

in/ft = inches of water per foot of soil; vol % = percent by volume

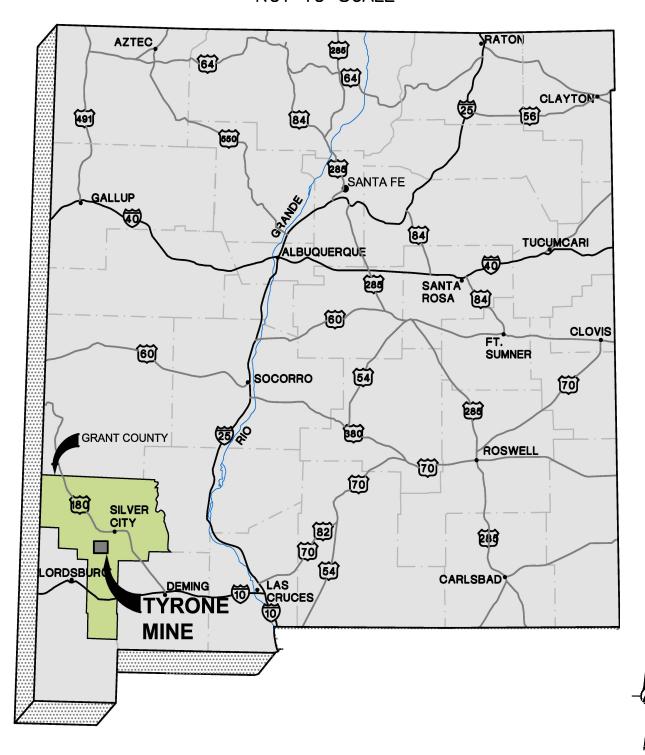
¹⁾ Whole soil based on SWCC adjusted for field rock fragments

²⁾ Total rock fragments based on sample interval or average for the excavation for the No. 1 Stockpile samples

Table 10: Borrow Source Volumetrics for Tyrone Mine

Borrow Area	Location	Area (ac)	Thickness (ft)	Volume (CY)
GCRCM	•			
A	South of Reclaimed 1A Tailing Impoundment	152	30	7,350,720
В	Main Mine Facility Area	56	30	2,708,160
С	Reclaimed Former Mill and Concentrator Area	4	30	193,440
D	5A Waste	63	50	5,148,400
E	Lubrication Shop Area	51	100	8,221,200
PCRCM				
E	9A Waste, 9AX Waste			32,000,000
			Total	55,621,920

Notes:


ac = acres; CY = cubic yards

Figures

STATE OF NEW MEXICO

NOT TO SCALE

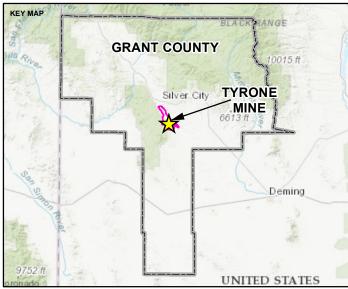
LIENT

FREEPORT MCMORAN TYRONE, INC. GRANT COUNTY, NEW MEXICO

CONSULTANT

YYYY-MM-DD	2019-06-22
DESIGNED	СМ
PREPARED	DW
REVIEWED	DR
APPROVED	DR

PROJECT


CLOSURE CLOSEOUT PLAN
RECLAMATION COVER MATERIALS CHARACTERIZATION

TITLE

LOCATION OF THE TYRONE MINE

		1
CONTROL	REV.	FIGURE

▲ 2019 RCM Sample Locations

→ MMD Permit Boundary

NOTE(S)

1. KEY MAP NOT TO SCALE

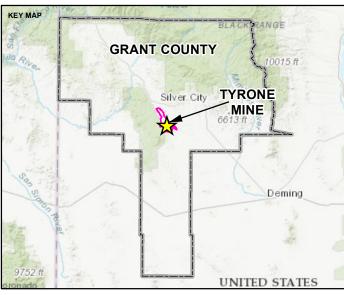
2. SAMPLE LOCATIONS ARE FROM GOLDER FIELD STAFF, FEBRUARY 2019

REFERENCE(S)

1. COORDINATE SYSTEM: NAD 1983, STATE PLANE SYSTEM - NEW MEXICO, WEST (FIPS 3003), U.S. FEET

2. IMAGERY SOURCE: DIGITALGLOBE, MARCH 2016

FREEPORT MCMORAN TYRONE OPERATIONS
GRANT COUNTY, NEW MEXICO


CLOSURE CLOSEOUT PLAN
RECLAMATION COVER MATERIALS (RCM) CHARACTERIZATION

TITLE
2019 RCM SAMPLE LOCATIONS

GOLDER

2019-07-22 YYYY-MM-DD DESIGNED PREPARED REVIEWED APPROVED

181-06417

- Reclaimed 1 Leach Stockpile TP (Golder 2007)
- USNR TP (Golder 2017)
- BMI (Golder 2019)
- MMD Permit Boundary

- NOTE(S)

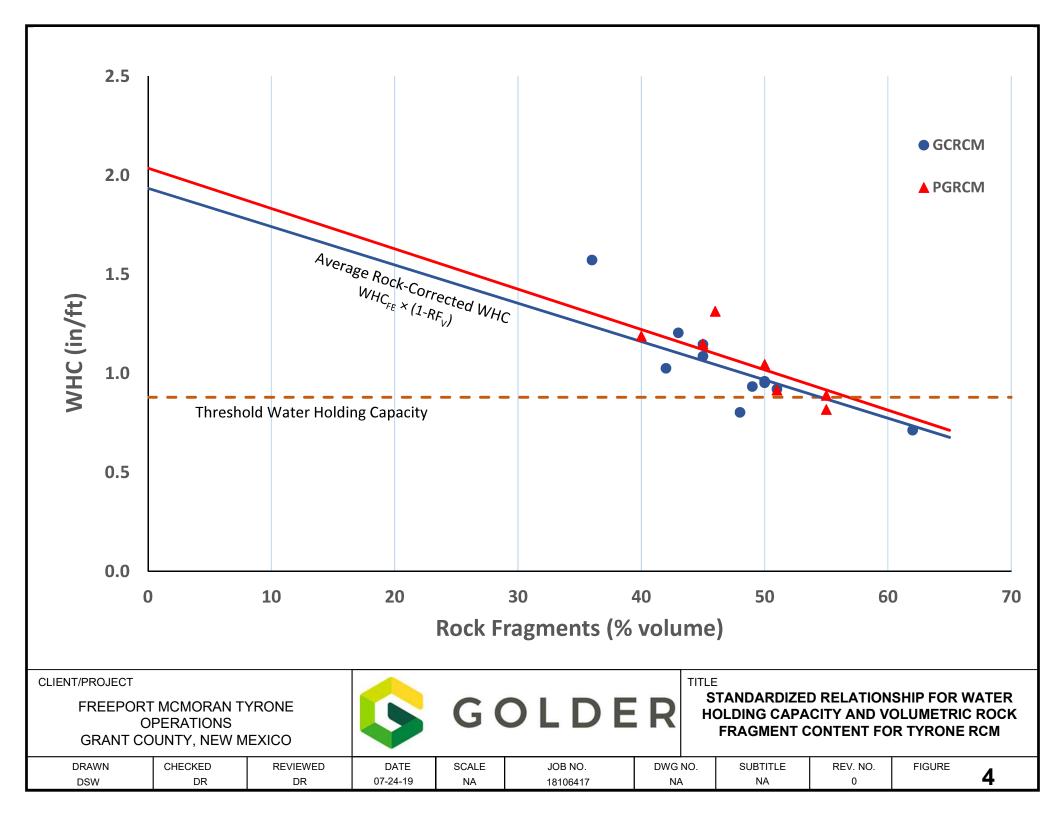
 1. KEY MAP: NOT TO SCALE

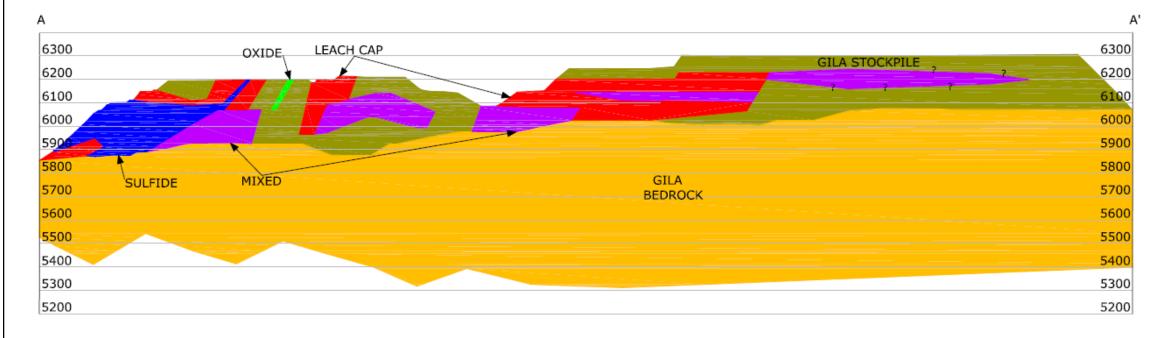
 2. SAMPLE LOCATIONS ARE FROM VARIOUS REPORTS AS SPECIFIED IN THE LEGEND

- REFERENCE(S)

 1. COORDINATE SYSTEM: NAD 1983, STATE PLANE SYSTEM NEW MEXICO, WEST (FIPS 3003), U.S. FEET
- 2. IMAGERY SOURCE: VIVID, APRIL 2018

FREEPORT MCMORAN TYRONE OPERATIONS
GRANT COUNTY, NEW MEXICO


CLOSURE CLOSEOUT PLAN
RECLAMATION COVER MATERIALS (RCM) CHARACTERIZATION


LOCATION OF RCM SAMPLES FOR SOIL CHARACTERIZATION

S GOLDE

YYYY-MM-DD	YYYY-MM-DD	2020-04-27		
	DESIGNED	DSW		
D	PREPARED	DSW		
	REVIEWED	DR		
	APPROVED	DR		

181-06417

LEGEND

GILA BEDROCK

GILA STOCKPILE

SULFIDE

OXIDE

LEACH CAP

(SULFIDE/LEACHED CAP/GILA)

NOTE(S)

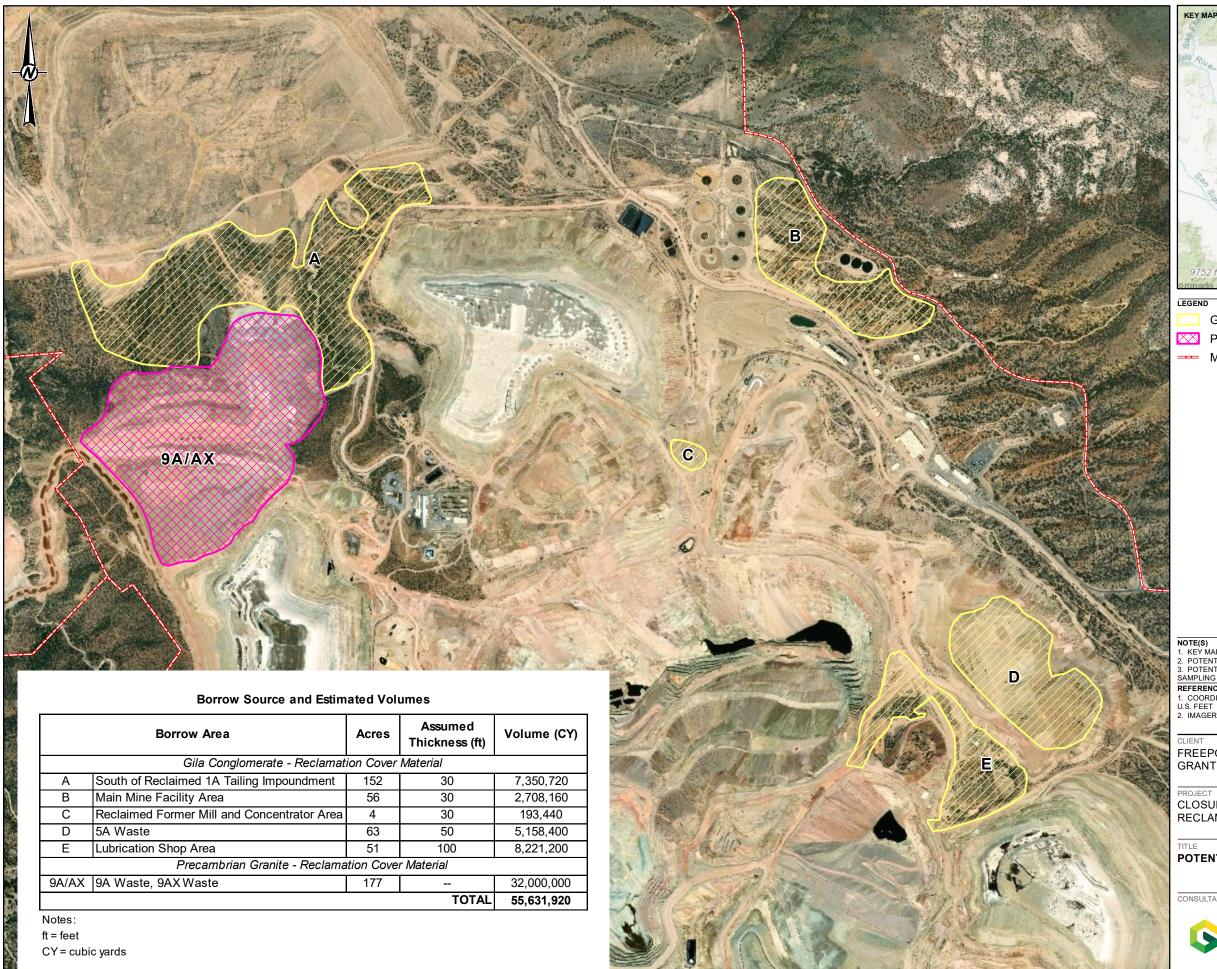
1. CROSS SECTION INSET IS NOT TO SCALE

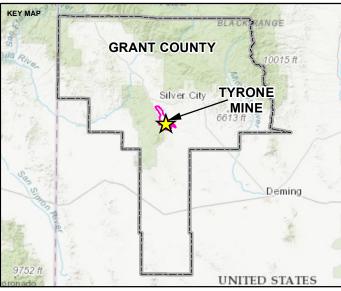
2. CROSS-SECTION PREPARED BY PHELPS DODGE TYRONE GEOLOGY STAFF: R. WAIDLER; PREVIOUSLY PUBLISHED IN PRELIMINARY BORROW SOURCE MATERIALS INVESTIGATIONS, GOLDER (2006A)

REFERENCE(S)

1. AERIAL IMAGERY: VIVID, APRIL 2018 2. COORDINATE SYSTEM: NAD 1983, STATE PLANE: NEW MEXICO, FIPS 3003 (US FEET)

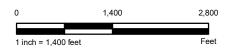
FREEPORT MCMORAN TYRONE OPERATIONS GRANT COUNTY, NEW MEXICO


CLOSURE CLOSEOUT PLAN RECLAMATION COVER MATERIALS (RCM) CHARACTERIZATION


CROSS-SECTION OF 5A WASTE AND UNDERLYING GILA CONGLOMERATE

2020-04-10 YYYY-MM-DD DESIGNED PD/FM PREPARED REVIEWED APPROVED DR

CONTROL REV. 181-06417



Gila Conglomerate - Reclamation Cover Material

Precambrian Granite - Reclamation Cover Material

MMD Permit Boundary

- NOTE(S)

 1. KEY MAP: NOT TO SCALE

 2. POTENTIAL BORROW AREA POLYGONS FOR B, C AND D ARE FROM GOLDER 2005

 3. POTENTIAL BORROW AREAS POLYGONS 9A/AX, A AND E ARE BASED ON 2019 RCM SAMPLING AND GOLDER 2005

- REFERENCE(S)

 1. COORDINATE SYSTEM: NAD 1983, STATE PLANE SYSTEM NEW MEXICO, WEST (FIPS 3003), U.S. FEET
- 2. IMAGERY SOURCE: VIVID, APRIL 2018

FREEPORT MCMORAN TYRONE OPERATIONS GRANT COUNTY, NEW MEXICO

CLOSURE CLOSEOUT PLAN
RECLAMATION COVER MATERIALS (RCM) CHARACTERIZATION

POTENTIAL RCM BORROW SOURCES

GOLDER

YYYY-MM-DD		2020-04-27	
DESIGNED		DSW	
PREPARED		DSW	
REVIEWED		DR	
APPROVED		DR	
	REV.		FIGURE

6

181-06417

APPENDIX A

Energy Laboratory Reports

ANALYTICAL SUMMARY REPORT

March 29, 2019

Golder Associates Inc 5200 Pasadena NE Ste C Albuquerque, NM 87113

Work Order: B19030684

Project Name: 181-06417 Tyrone CCP-BMI

Energy Laboratories Inc Billings MT received the following 6 samples for Golder Associates Inc on 3/11/2019 for analysis.

Lab ID	Client Sample ID	Collect Date Rece	ive Date Matrix	Test
B19030684-001	GC-1S-1 [0-3]feet	03/01/19 0:00 03	/11/19 Soil	Metals, CACL2 Extractable Acid/Base Potential Coarse Fragments Conductivity, Saturated Paste Extract Nitrate as N, KCL Extract Organic Carbon/Matter Walkley- Black pH, Saturated Paste Phosphorus-Olsen CaCl2 Hot Water Soil Extraction ASA25-9 Saturated Paste Extraction ASA Particle Size Analysis / Texture Saturation Percentage Sulfur Forms Very Fine Sand
B19030684-002	GC-1S-2 [0-2]feet	03/01/19 0:00 03	/11/19 Soil	Same As Above
B19030684-003	GC-1S-2 [2-4]feet	03/01/19 0:00 03	/11/19 Soil	Same As Above
B19030684-004	GC-1S-2 [4-6]feet	03/01/19 0:00 03	/11/19 Soil	Same As Above
B19030684-005	GC-1S-3 [0-2]feet	03/01/19 0:00 03	/11/19 Soil	Same As Above
B19030684-006	GC-1S-3 [4-6.5]feet	03/01/19 0:00 03	/11/19 Soil	Same As Above
				-

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

Digitally signed by Keri Conter

Date: 2019.03.29 16:57:36 -06:00

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 • Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

Report Date: 03/29/19 Date Received: 03/11/19

LABORATORY ANALYTICAL REPORT Prepared by Billings, MT Branch

Golder Associates Inc 181-06417 Tyrone CCP-BMI

Client:

Project: Workorde

B19030684
3190
ш
Jer:

		Analysis Coarse Very Fine Frags Sand	Coarse Frags	Very Fine Sand	Sand	Silt	Clay	Texture	pH, sat_ paste	COND	Saturation	Neut Potential	Acid Potential	Acid/Base Potential	S, Total
		Units	%	wt%	%	%	%		n_s	mmhos/cm	%	t/kt	t/kt	t/kt	%
Sample ID	Client Sample ID	Depth	Depth Results Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results
B19030684-001 GC-1S-1	GC-1S-1	0-3	33	2	75	14	11	SL	7.9	0.5	20.6	28	0	27	0.02
B19030684-002	GC-1S-2	0-2	6	ဇ	65	41	21	SCL	5.5	0.7	28.5	2	0	4	0.03
B19030684-003	GC-1S-2	2-4	10	8	49	10	14	SC	4.8	1.2	29.7	4	0	8	0.03
B19030684-004	GC-1S-2	4-6	15	2	52	18	30	SCL	5.1	1.6	40.2	2	0	4	0.04
B19030684-005	GC-1S-3	0-2	21	_	09	32	∞	SL	5.6	0.3	17.8	9	-	2	0.03
B19030684-006	GC-1S-3	4-6.5	17	4	22	31	14	SL	7.3	2.0	23.8	15	0	14	0.03

Report Date: 03/29/19 Date Received: 03/11/19

LABORATORY ANALYTICAL REPORT Prepared by Billings, MT Branch

181-06417 Tyrone CCP-BMI B19030684

Project: Workorder: Client:

Golder Associates Inc

		Analysis	Analysis S, H2O Extr S, HCL Extr		S, HNO3 Extr	S, Residual	Organic Matter	Organic Carbon	Phos, Olsen	Phos, Olsen Nitrate as N B-CACL2 Se-CACL2	B-CACL2	Se-CACL2
		Units	%	%	%	%	%	%	mg/kg	mg/kg	mg/kg	mg/kg
Sample ID	Client Sample ID	Depth	Depth Results	Results	Results	Results	Results	Results	Results	Results	Results	Results
B19030684-001 GC-1S-1	GC-1S-1	0-3	< 0.01	< 0.01	< 0.01	0.02	0.7	0.4	2	^	< 0.1	< 0.1
B19030684-002 GC-1S-2	GC-1S-2	0-2	< 0.01	< 0.01	< 0.01	0.02	8.0	0.5	4	^	< 0.1	< 0.1
B19030684-003 GC-1S-2	GC-1S-2	2-4	< 0.01	< 0.01	< 0.01	0.02	6.0	0.5	41	^ ^	< 0.1	< 0.1
B19030684-004	GC-1S-2	4-6	< 0.01	< 0.01	< 0.01	0.02	9.0	0.3	15	^ ^	< 0.1	< 0.1
B19030684-005	GC-1S-3	0-2	< 0.01	< 0.01	0.01	0.02	1.3	0.8	2	^ ^	< 0.1	< 0.1
B19030684-006	GC-1S-3	4-6.5	< 0.01	< 0.01	< 0.01	0.02	1.0	9.0	4	^ ^	< 0.1	< 0.1

Page 3 of 15

Prepared by Billings, MT Branch

Client:Golder Associates IncReport Date:03/28/19Project:181-06417 Tyrone CCP-BMIWork Order:B19030684

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6010B							Ana	ytical Ru	n: ICP203-B_	_190314A
Lab ID:	QCS	Initi	al Calibration	on Verification	Standard					03/14/	19 09:50
Boron			0.766	mg/L	0.10	96	90	110			
Lab ID:	ICSA	Inte	erference Cl	neck Sample A						03/14/	19 09:54
Boron			0.00209	mg/L	0.10						
Lab ID:	ICSAB	Inte	erference Cl	neck Sample A	ιB					03/14/	19 09:58
Boron			0.949	mg/L	0.10	95	80	120			
Method:	SW6010B									Batch	n: 130969
Lab ID:	MB-130969	Met	thod Blank				Run: ICP20	3-B_190314A		03/14/	19 19:14
Boron			ND	mg/kg	0.06						
Lab ID:	LCS-130969	Lab	oratory Cor	ntrol Sample			Run: ICP20	3-B_190314A		03/14/	19 19:26
Boron			0.396	mg/kg	0.10	110	70	130			
Lab ID:	B19030684-001ADU	P Sar	mple Duplic	ate			Run: ICP20	3-B_190314A		03/14/	19 19:34
Boron			ND	mg/kg	0.10					30	
Lab ID:	B19030684-002AMS	2 Sar	mple Matrix	Spike			Run: ICP20	3-B_190314A		03/14/	19 19:43
Boron			10.1	mg/kg	0.10	101	70	130			

Prepared by Billings, MT Branch

Client:Golder Associates IncReport Date:03/28/19Project:181-06417 Tyrone CCP-BMIWork Order:B19030684

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6020							Analytic	al Run: I	CPMS207-B_	_190314A
Lab ID:	QCS	Initi	ial Calibration	on Verificati	on Standard					03/14/	/19 11:32
Selenium			0.0511	mg/L	0.0010	102	90	110			
Lab ID:	ICSA	Inte	erference Cl	heck Sampl	e A					03/14/	/19 12:01
Selenium			0.000546	mg/L	0.0010						
Lab ID:	ICSAB	Inte	erference Cl	heck Sampl	e AB					03/14/	19 12:05
Selenium			0.0108	mg/L	0.0010	108	80	120			
Method:	SW6020									Batch	h: 130969
Lab ID:	MB-130969	Me	thod Blank				Run: ICPM	S207-B_190314	1A	03/15/	19 07:34
Selenium			-0.0007	mg/kg							
Lab ID:	B19030684-001AMS	Sar	mple Matrix	Spike			Run: ICPM	S207-B_190314	1A	03/15/	/19 07:51
Selenium			0.255	mg/kg	0.10	103	70	130			
Lab ID:	B19030684-001ADUF	P Sar	mple Duplic	ate			Run: ICPM	S207-B_190314	1A	03/15/	/19 08:16
Selenium			-0.00539	mg/kg	0.10					30	
Method:	SW6020							Analytic	al Run: I	CPMS207-B_	_190315A
Lab ID:	ICSA	Inte	erference Cl	heck Sampl	e A					03/15/	/19 12:16
Selenium			0.000517	mg/L	0.0010						
Lab ID:	ICSAB	Inte	erference Cl	heck Sampl	e AB					03/15/	/19 12:20
Selenium			0.0100	mg/L	0.0010	101	80	120			
Lab ID:	QCS	Initi	ial Calibration	on Verificati	on Standard					03/15/	/19 11:51
Selenium			0.0503	mg/L	0.0010	101	90	110			
Method:	SW6020									Batch	h: 130969
Lab ID:	MB-130969	Met	thod Blank				Run: ICPM	S207-B_190315	5A	03/15/	19 12:50
Selenium			0.001	mg/kg	0.0008						
Lab ID:	B19030689-005AMS	Sar	mple Matrix	Spike			Run: ICPM	S207-B_190315	ōΑ	03/15/	/19 14:01
Selenium			0.245	mg/kg	0.10	98	70	130			
Lab ID:	B19030689-005ADUF	P Sar	mple Duplic	ate			Run: ICPM	S207-B_190315	5A	03/15/	/19 14:09
Selenium			ND	mg/kg	0.10					30	

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

Billings, MT **800.735.4489** • Casper, WY **888.235.0515** Gillette, WY **866.686.7175** • Helena, MT **877.472.0711**

QA/QC Summary Report

Prepared by Billings, MT Branch

 Client:
 Golder Associates Inc
 Report Date:
 03/29/19

 Project:
 181-06417 Tyrone CCP-BMI
 Work Order:
 B19030684

Analyte		Result Units	RL	L %REC Low Limit High Limit RPD RPDLimit Qual
Method:	ASA10-3			Batch: 130992
Lab ID: Conductivit	B19030684-001A DUP y, sat. paste	Sample Duplicate 0.500 mmhos/cm	0.10	Run: MISC-SOIL_190315A 03/15/19 15:07 2.0 30
Lab ID: Conductivit	LCS-1903151507 y, sat. paste	Laboratory Control Sample 4.39 mmhos/cm	0.10	Run: MISC-SOIL_190315A 03/15/19 15:07 0 107 70 130
Lab ID: pH, sat. pa	B19030684-001A DUP ste	Sample Duplicate 7.90 s.u.	0.10	Run: MISC-SOIL_190315A 03/15/19 15:07 0.0 10
Lab ID: pH, sat. pa:	LCS-1903151507 ste	Laboratory Control Sample 7.30 s.u.	0.10	Run: MISC-SOIL_190315A 03/15/19 15:07

Prepared by Billings, MT Branch

 Client:
 Golder Associates Inc
 Report Date:
 03/29/19

 Project:
 181-06417 Tyrone CCP-BMI
 Work Order:
 B19030684

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	ASA15-5								Batch:	R317249
Lab ID:	B19030684-001A DUP	Sample Duplic	ate			Run: MISC	S-SOIL_190324A		03/24	/19 13:43
Sand		76.0	%	1.0					30	
Silt		13.0	%	1.0					30	
Clay		11.0	%	1.0					30	
Lab ID:	LCS-1903241343	Laboratory Co	ntrol Sample			Run: MISC	S-SOIL_190324A		03/24	/19 13:43
Sand		26.0	%	1.0	108	70	130			
Silt		52.0	%	1.0	96	70	130			
Clay		22.0	%	1.0	100	70	130			
Lab ID:	B19030684-001A DUP	Sample Duplic	ate			Run: MISC	S-SOIL_190324A		03/24	/19 13:43
Very Fine S	Sand	3	wt%	1				40	50	
Lab ID:	LCS-1903241343	Laboratory Co	ntrol Sample			Run: MISC	S-SOIL_190324A		03/24	/19 13:43
Very Fine S	Sand	7	wt%	1	88	50	150			
Method:	ASA15-5								Batch:	R317322
Lab ID:	B19030684-001A DUP	Sample Duplic	ate			Run: MISC	S-SOIL 190325B		03/24	/19 13:43
Sand		76.0	%	1.0					30	
Silt		13.0	%	1.0					30	
Clay		11.0	%	1.0					30	

Qualifiers:

RL - Analyte reporting limit.

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Golder Associates Inc Report Date: 03/29/19 Project: 181-06417 Tyrone CCP-BMI Work Order: B19030684

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	ASA24-5						Batch:	: OM_3-2	5-2019_10-0	3-27AMA
Lab ID: Phosphorus	LCS s, Olsen	Laboratory Co 47	ontrol Sample mg/kg	1.0	105	Run: FIA20 70	05-B_190325A 130		03/25	5/19 10:04
Lab ID: Phosphorus	MBLK-NaHCO3 s, Olsen	Method Blank	mg/kg	0.1		Run: FIA20	05-B_190325A		03/25	5/19 10:08
Lab ID: Phosphorus	B19030684-001ADUP s, Olsen	Sample Duplic	cate mg/kg	1.0		Run: FIA20	05-B_190325A	5.0	03/25 30	5/19 10:13
Lab ID: Phosphorus	B19030684-001AMS s, Olsen	Sample Matrix	Spike mg/kg	1.0	116	Run: FIA20 70	05-B_190325A 130		03/25	5/19 10:15

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Golder Associates Inc Report Date: 03/29/19 Project: 181-06417 Tyrone CCP-BMI Work Order: B19030684

Analyte	Result	Units	RL	%REC Lo	ow Limit	High Limit	RPD	RPDLimit	Qual
Method: ASA29-3								Batch:	R316761
Lab ID: B19030684-001A DUP	Sample Duplic	cate		F	Run: MISC	-SOIL_190314A		03/14	/19 08:49
Organic Carbon	0.380	%	0.10				5.1	30	
Organic Matter	0.654	%	0.17				5.1	30	
Lab ID: LCS-1903140849	Laboratory Co	ntrol Sample		F	Run: MISC	-SOIL_190314A		03/14	/19 08:49
Organic Carbon	3.08	%	0.10	114	70	130			
Organic Matter	5.30	%	0.17	129	70	130			

ANALYTICAL SUMMARY REPORT

April 02, 2019

Golder Associates Inc 5200 Pasadena NE Ste C Albuquerque, NM 87113

Work Order: B19030689

181-06417 Tyrone CCP-BMI Project Name:

Energy Laboratories Inc Billings MT received the following 9 samples for Golder Associates Inc on 3/11/2019 for analysis.

0,	9	•	•		•
Lab ID	Client Sample ID	Collect Date Rec	ceive Date	Matrix	Test
B19030689-001	GC-1S-4 [0-2.5]feet	03/01/19 0:00 0	03/11/19	Soil	Metals, CACL2 Extractable Acid/Base Potential Coarse Fragments Conductivity, Saturated Paste Extra Nitrate as N, KCL Extract Organic Carbon/Matter Walkley- Black pH, Saturated Paste Phosphorus-Olsen CaCl2 Hot Water Soil Extraction ASA25-9 Saturated Paste Extraction ASA Particle Size Analysis / Texture Saturation Percentage Sulfur Forms Very Fine Sand
B19030689-002	GC-1S-5 Bulk	03/01/19 0:00 0	3/11/19	Soil	Same As Above
B19030689-003	PG9AX-1 Bulk	03/01/19 0:00 0	3/11/19	Soil	Same As Above
B19030689-004	PG9A-1 Bulk	03/01/19 0:00 0	3/11/19	Soil	Same As Above
B19030689-005	PG9A-2 Bulk	03/01/19 0:00 0	3/11/19	Soil	Same As Above
B19030689-006	GC-LS-1 [2-4]feet	02/28/19 0:00 0	3/11/19	Soil	Same As Above
B19030689-007	GC-LS-2 [0-2]feet	02/28/19 0:00 0	3/11/19	Soil	Same As Above
B19030689-008	GC-LS-2 [6-7]feet	02/28/19 0:00 0	3/11/19	Soil	Same As Above
B19030689-009	GC-LS-3 [0-2]feet	02/28/19 0:00 0	3/11/19	Soil	Same As Above

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Technical Data Reviewer

Report Approved By:

Digitally signed by

Jillian B. Miller

Date: 2019.04.02 12:02:45 -06:00

Date Received: 03/11/19 **Report Date:** 04/02/19

LABORATORY ANALYTICAL REPORT Prepared by Billings, MT Branch

Golder Associates Inc 181-06417 Tyrone CCP-BMI B19030689 Project: Workorder:

Client:

		Analysis	Coarse Frags	Very Fine Sand	Sand	Silt	Clay	Texture	pH, sat_ paste	COND	Saturation	Neut Potential	Acid Potential	Acid/Base Potential	S, Total
		Units	%	wt%	%	%	%		s_u_	mmhos/cm	%	t/kt	t/kt	t/kt	%
Sample ID	Client Sample ID	Depth	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results
B19030689-001 GC-1S-4	GC-1S-4	0-2.5	24	-	70	19	11	SL	7.8	0.3	19.2	22	0	22	0.02
B19030689-002	GC-1S-5 Bulk	0-0	27	7	45	34	21	_	6.8	6.0	34.2	10	_	ω	0.04
B19030689-003	PG9AX-1 Bulk	0-0	37	0	64	24	12	SL	7.8	0.3	24.5	17	2	15	0.05
B19030689-004	PG9A-1 Bulk	0-0	40	0	29	21	12	SL	7.9	0.5	23.6	13	2	1	90.0
B19030689-005	PG9A-2 Bulk	0-0	31	4	69	21	10	SL	8.0	6.0	21.7	19	_	18	90.0
B19030689-006	GC-LS-1	2-4	53	_	77	41	0	SL	5.3	1.7	20.1	1	_	10	0.04
B19030689-007	GC-LS-2	0-2	17	0	22	24	19	SL	4.5	1.3	26.2	_	22	-21	0.81
B19030689-008	GC-LS-2	2-9	44	2	77	80	15	SL	9.7	0.7	24.6	6	_	80	0.04
B19030689-009	GC-LS-3	0-2	27	4	73	41	13	SF	6.5	0.2	19.5	6	_	00	0.03

Page 2 of 15

Date Received: 03/11/19 **Report Date:** 04/02/19

LABORATORY ANALYTICAL REPORT Prepared by Billings, MT Branch

Golder Associates Inc 181-06417 Tyrone CCP-BMI B19030689 Project: Workorder: Client:

		Analysis	S, H20 Extr	Analysis S, H2O Extr S, HCL Extr S,	S, HNO3 Extr	S, Residual	Organic Matter	Organic Carbon	Phos, Olsen	Nitrate as N B-CACL2	B-CACL2	Se-CACL2	
		Units	%	%	%	%	%	%	mg/kg	mg/kg	mg/kg	mg/kg	
Sample ID	Client Sample ID	Depth	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	
B19030689-001 GC-1S-4	GC-1S-4	0-2.5	< 0.01	< 0.01	< 0.01	0.02	0.5	0.3	ဧ	^	< 0.1	< 0.1	
B19030689-002	GC-1S-5 Bulk	0-0	< 0.01	< 0.01	< 0.01	0.02	3.2	1.8	က	1	< 0.1	< 0.1	
B19030689-003	PG9AX-1 Bulk	0-0	< 0.01	< 0.01	0.03	0.02	9.0	0.3	2	^	< 0.1	< 0.1	
B19030689-004	PG9A-1 Bulk	0-0	< 0.01	< 0.01	0.04	0.02	9.0	0.2	2	^ ^	< 0.1	< 0.1	
B19030689-005	PG9A-2 Bulk	0-0	0.01	< 0.01	0.02	0.03	1.0	9.0	2	^ ^	< 0.1	< 0.1	
B19030689-006	GC-LS-1	2-4	< 0.01	< 0.01	0.01	0.02	0.5	0.3	2	^ ^	< 0.1	< 0.1	
B19030689-007	GC-LS-2	0-2	0.11	< 0.01	0:30	0.39	9.0	0.2	2	16	< 0.1	< 0.1	
B19030689-008	GC-LS-2	2-9	< 0.01	< 0.01	< 0.01	0.03	0.5	0.3	9	8	< 0.1	< 0.1	
B19030689-009 GC-LS-3	GC-LS-3	0-5	< 0.01	< 0.01	0.02	0.02	0.7	0.4	m	\ \	< 0.1	< 0.1	

Page 3 of 15

Prepared by Billings, MT Branch

Client:Golder Associates IncReport Date:04/02/19Project:181-06417 Tyrone CCP-BMIWork Order:B19030689

Analyte		Count	Result	Units	R	- %RE	C Low Li	nit l	High Limit	RPD	RPDLimit	Qual
Method:	ASA10-3										Batch	h: 130992
Lab ID:	B19030689-005A DU	P Sam	ple Duplica	ate			Run: M	SC-S	OIL_190315A		03/15/	19 15:07
Conductivi	ity, sat. paste		0.930 n	nmhos/cm	0.10					1.1	30	
Lab ID:	LCS-1903151507	Labo	oratory Con	trol Sample			Run: M	SC-S	OIL_190315A		03/15/	19 15:07
Conductivi	ity, sat. paste		4.39 n	nmhos/cm	0.10	10	7	70	130			
Lab ID:	B19030689-005A DU	P Sam	ple Duplica	ate			Run: M	SC-S	OIL_190315A		03/15/	19 15:07
pH, sat. pa	aste		8.00	s.u.	0.10					0.0	10	
Lab ID:	LCS-1903151507	Labo	oratory Con	trol Sample			Run: M	SC-S	OIL_190315A		03/15/	/19 15:07
pH, sat. pa	aste		7.30	s.u.	0.10	9	7	90	110			

Prepared by Billings, MT Branch

Client:Golder Associates IncReport Date:04/02/19Project:181-06417 Tyrone CCP-BMIWork Order:B19030689

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	ASA15-5									Batch:	R317249
Lab ID:	B19030689-005A DUI	9 3 Sa	ample Duplica	ate			Run: MISC-	SOIL_190324A		03/24	19 13:43
Sand			67.0	%	1.0					30	
Silt			23.0	%	1.0					30	
Clay			10.0	%	1.0					30	
Lab ID:	LCS-1903241343	3 La	boratory Cor	trol Sample			Run: MISC-	SOIL_190324A		03/24	/19 13:43
Sand			26.0	%	1.0	108	70	130			
Silt			52.0	%	1.0	96	70	130			
Clay			22.0	%	1.0	100	70	130			
Lab ID:	B19030689-005A DUI	P Sa	ample Duplica	ate			Run: MISC-	SOIL_190324A		03/24	/19 13:43
Very Fine	Sand		3	wt%	1				29	50	
Lab ID:	LCS-1903241343	La	boratory Cor	trol Sample			Run: MISC-	SOIL_190324A		03/24	/19 13:43
Very Fine	Sand		7	wt%	1	88	50	150			
Method:	ASA15-5									Batch:	R317322
Lab ID:	B19030689-005A DUI	9 3 Sa	ample Duplica	ate			Run: MISC-	SOIL_190325B		03/24	19 13:43
Sand			67.0	%	1.0					30	
Silt			23.0	%	1.0					30	
Clay			10.0	%	1.0					30	

Qualifiers:

Prepared by Billings, MT Branch

Client:Golder Associates IncReport Date:04/02/19Project:181-06417 Tyrone CCP-BMIWork Order:B19030689

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	ASA24-5							Batch:	OM_3-2	25-2019_10-0	3-27AMA
Lab ID:	LCS	Lab	ooratory Cor	ntrol Sample			Run: FIA20	5-B_190325A		03/25/	/19 10:04
Phosphoru	s, Olsen		47	mg/kg	1.0	105	70	130			
Lab ID:	MBLK-NaHCO3	Me	thod Blank				Run: FIA20	5-B_190325A		03/25/	/19 10:08
Phosphoru	s, Olsen		1	mg/kg	0.1						
Lab ID:	B19030684-001AMS	Sar	mple Matrix	Spike			Run: FIA20	5-B_190325A		03/25/	/19 10:15
Phosphoru	s, Olsen		17	mg/kg	1.0	116	70	130			
Lab ID:	B19030689-005ADU	P Sar	mple Duplic	ate			Run: FIA20	5-B_190325A		03/25/	/19 10:37
Phosphoru	s, Olsen		2.0	mg/kg	1.0				5.9	30	
Lab ID:	B19030689-005AMS	Sar	mple Matrix	Spike			Run: FIA20	5-B_190325A		03/25/	/19 10:39
Phosphoru	s, Olsen		14	mg/kg	1.0	111	70	130			

Prepared by Billings, MT Branch

Client:Golder Associates IncReport Date:04/02/19Project:181-06417 Tyrone CCP-BMIWork Order:B19030689

Analyte		Count	Result	Units	RL	%REC L	ow Limit	High Limit	RPD	RPDLimit	Qual
Method:	ASA29-3									Batch:	R316761
Lab ID:	B19030689-005A DU	P 2 Sa	mple Duplica	ate		F	Run: MISC-	SOIL_190314A		03/14/	19 08:49
Organic C	arbon		0.540	%	0.10				7.1	30	
Organic M	latter		0.929	%	0.17				7.1	30	
Lab ID:	LCS-1903140849	2 La	poratory Cor	ntrol Sample		F	Run: MISC-	SOIL_190314A		03/14/	19 08:49
Organic C	arbon		3.08	%	0.10	114	70	130			
Organic M	latter		5.30	%	0.17	129	70	130			

Prepared by Billings, MT Branch

 Client:
 Golder Associates Inc
 Report Date:
 04/02/19

 Project:
 181-06417 Tyrone CCP-BMI
 Work Order:
 B19030689

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	ASA33-8							Batc	h: OM_3	-14-2019_10	-13-46AM
Lab ID:	LCS	Lab	oratory Co	ontrol Sample			Run: FIA20	5-B_190314A		03/14/	/19 10:14
Nitrate as N	N, KCL Extract		10.8	mg/kg	1.0	99	70	130			
Lab ID:	MBLK-KCL	Me	thod Blank				Run: FIA20	5-B_190314A		03/14/	/19 10:16
Nitrate as I	N, KCL Extract		ND	mg/kg	0.1						
Lab ID:	B19030689-004ADU	P Sar	nple Dupli	cate			Run: FIA20	5-B_190314A		03/14/	/19 10:27
Nitrate as I	N, KCL Extract		0.488	mg/kg	1.0					30	
Lab ID:	B19030689-004AMS	Sar	mple Matrix	c Spike			Run: FIA20	5-B_190314A		03/14/	/19 10:27
Nitrate as N	N, KCL Extract		2.77	mg/kg	1.0	44	70	130			S
Lab ID:	B19030611-001ADU	P Sar	nple Dupli	cate			Run: FIA20	5-B_190314A		03/14/	19 10:36
Nitrate as N	N, KCL Extract		8720	mg/kg-dry	290				0.7	30	
Lab ID:	B19030611-001AMS	Sar	nple Matrix	c Spike			Run: FIA20	5-B_190314A		03/14/	19 10:36
Nitrate as N	N, KCL Extract		12300	mg/kg-dry	300	120	70	130			

Prepared by Billings, MT Branch

Client:Golder Associates IncReport Date:04/02/19Project:181-06417 Tyrone CCP-BMIWork Order:B19030689

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: Sobek Modified									Batch:	R317322
Lab ID: B19030689-001A DU	IP 3 Sar	mple Duplica	ate			Run: MISC-	SOIL_190325B		03/25/	19 19:04
Neutralization Potential		56	t/kt	0.10				2.0	50	
Acid Potential		0.64	t/kt	1.0					50	
Acid/Base Potential		55	t/kt					2.0	50	
The acid-base potential was calculate	ed from the n	on-sulfate sulf	fur %							
Lab ID: B19030689-001A DU	JP 5 Sar	mple Duplica	ate			Run: MISC-	SOIL_190325B		03/25/	19 19:04
Sulfur, Total		0.0243	%	0.010				0.4	50	
Sulfur, Hot Water Extractable		0.00395	%	0.010					50	
Sulfur, HCl Extractable		ND	%	0.010					50	
Sulfur, HNO3 Extractable		ND	%	0.010					50	
Sulfur, Residual		0.0219	%	0.010				0.9	50	
Lab ID: LCS-SOLO12091903	32 3 Lab	oratory Con	trol Sample			Run: MISC-	SOIL_190325B		03/25/	19 19:35
Neutralization Potential		120	t/kt	0.10	124	50	150			
Acid Potential		5.9	t/kt	1.0	74	50	150			
Acid/Base Potential		120	t/kt		128	50	150			
The acid-base potential was calculate	ed from the n	on-sulfate sulf	fur %							
Lab ID: LCS-SOLO12091903	32 3 Lab	oratory Con	trol Sample			Run: MISC-	SOIL_190325B		03/25/	19 19:35
Sulfur, Total		0.188	%	0.010	90	50	150			
Sulfur, HNO3 Extractable		0.153	%	0.010	85	50	150			
Sulfur, Residual		0.0370	%	0.010	74	50	150			

Qualifiers:

Prepared by Billings, MT Branch

Client:Golder Associates IncReport Date:04/02/19Project:181-06417 Tyrone CCP-BMIWork Order:B19030689

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6010B							Anal	ytical Rur	: ICP203-B_	_190314A
Lab ID:	QCS	Init	ial Calibration	on Verification S	tandard					03/14/	19 09:50
Boron			0.766	mg/L	0.10	96	90	110			
Lab ID:	ICSA	Inte	erference C	heck Sample A						03/14/	19 09:54
Boron			0.00209	mg/L	0.10						
Lab ID:	ICSAB	Inte	erference C	heck Sample AB	;					03/14/	19 09:58
Boron			0.949	mg/L	0.10	95	80	120			
Method:	SW6010B									Batch	n: 130969
Lab ID:	MB-130969	Me	thod Blank				Run: ICP20	3-B_190314A		03/14/	19 19:14
Boron			ND	mg/kg	0.06						
Lab ID:	LCS-130969	Lab	ooratory Co	ntrol Sample			Run: ICP20	3-B_190314A		03/14/	19 19:26
Boron			0.396	mg/kg	0.10	110	70	130			
Lab ID:	B19030684-001ADU	P Sar	mple Duplic	ate			Run: ICP20	3-B_190314A		03/14/	19 19:34
Boron			ND	mg/kg	0.10					30	
Lab ID:	B19030684-002AMS	2 Sar	mple Matrix	Spike			Run: ICP20	3-B_190314A		03/14/	19 19:43
Boron			10.1	mg/kg	0.10	101	70	130			
Lab ID:	B19030689-005ADU	P Sar	mple Duplic	ate			Run: ICP20	3-B_190314A		03/14/	19 20:32
Boron			ND	mg/kg	0.10					30	
Lab ID:	B19030689-006AMS	2 Sar	mple Matrix	Spike			Run: ICP20	3-B_190314A		03/14/	19 20:40
Boron			10.3	mg/kg	0.10	103	70	130			

Qualifiers:

Prepared by Billings, MT Branch

 Client:
 Golder Associates Inc
 Report Date:
 04/02/19

 Project:
 181-06417 Tyrone CCP-BMI
 Work Order:
 B19030689

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6020							Analytic	al Run: I	CPMS207-B_	_190315A
Lab ID:	ICSA	Inte	erference Cl	neck Sample	Α					03/15/	/19 12:16
Selenium			0.000517	mg/L	0.0010						
Lab ID:	ICSAB	Inte	erference Cl	neck Sample	AB					03/15/	/19 12:20
Selenium			0.0100	mg/L	0.0010	101	80	120			
Lab ID:	QCS	Init	ial Calibration	on Verification	n Standard					03/15/	/19 11:51
Selenium			0.0503	mg/L	0.0010	101	90	110			
Method:	SW6020									Batcl	h: 130969
Lab ID:	MB-130969	Me	thod Blank				Run: ICPMS	S207-B_190315	δA	03/15/	19 12:50
Selenium			0.001	mg/kg	0.0008						
Lab ID:	B19030689-005AMS	Sa	mple Matrix	Spike			Run: ICPM	S207-B_190315	δA	03/15/	/19 14:01
Selenium			0.245	mg/kg	0.10	98	70	130			
Lab ID:	B19030689-005ADU	P Sa	mple Duplic	ate			Run: ICPMS	S207-B_190315	δA	03/15/	/19 14:09
Selenium			ND	mg/kg	0.10					30	

Prepared by Billings, MT Branch

Client:Golder Associates IncReport Date:04/02/19Project:181-06417 Tyrone CCP-BMIWork Order:B19030689

Analyte	Co	ount	Result	Units	F	L %RE	C Low Limit	High L	imit	RPD	RPDLimit	Qual
Method:	USDA27a										Batch:	R316859
Lab ID:	B19030689-005A DUP	Sam	ple Duplica	te			Run: MISC	SOIL_1	90315A		03/15/	19 15:07
Saturation			20.8	%	0.1)				4.2	30	
Lab ID:	LCS-1903151507	Labo	ratory Cont	trol Sample			Run: MISC	SOIL_1	90315A		03/15/	19 15:07
Saturation			34.7	%	0.1) 9	2 70		130			

Work Order Receipt Checklist

Golder Associates Inc

Login completed by: Richard L. Shular

B19030689

Date Received: 3/11/2019

Reviewed by:	BL2000\gmccartney		Re	eceived by: se
Reviewed Date:	3/12/2019		Ca	rrier name: Return-UPS Ground N/C
Shipping container/cooler in	good condition?	Yes 🔽	No 🗌	Not Present
Custody seals intact on all sh	nipping container(s)/cooler(s)?	Yes	No 🗌	Not Present ✓
Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present 🗸
Chain of custody present?		Yes 🗸	No 🗌	
Chain of custody signed whe	en relinquished and received?	Yes 🗸	No 🗌	
Chain of custody agrees with	n sample labels?	Yes 🗸	No 🗌	
Samples in proper container/	/bottle?	Yes 🗸	No 🗌	
Sample containers intact?		Yes 🗸	No 🗌	
Sufficient sample volume for	indicated test?	Yes 🗸	No 🗌	
All samples received within h (Exclude analyses that are or such as pH, DO, Res CI, Su	onsidered field parameters	Yes ✓	No 🗌	
Temp Blank received in all sl	hipping container(s)/cooler(s)?	Yes	No 🗹	Not Applicable
Container/Temp Blank tempe	erature:	°C No Ice		
Water - VOA vials have zero	headspace?	Yes	No 🗌	No VOA vials submitted 🔽
Water - pH acceptable upon	receipt?	Yes	No 🗌	Not Applicable 🗸

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

Contact and Corrective Action Comments:

The temperature of the sample(s) for shipping container 1 was 4.2°C and shipping container 2 was 3.4°C.

Chain of Custody & Analytical Request Record

www.energylab.com

<u>d</u> Page 1

Account Information (Billing information)	rmation)			Repor	t Informatio	n (if different	Report Information (if different than Account Information)	mation)		Comments	ents	
Company/Name Golder Associates, Inc.	s, Inc.			Company/Name	//Name cc:					()		
Contact Doug Romig				Contact	Dustin	Dustin Ward						
Phone (505) 821-3043				Phone								
Mailing Address 5200 Pasadena Ave. NE Suite	ve. NE Suite	C		Mailing Address	ddress							
City, State, Zip Albuquerque, NM 87113-2208	87113-2208			City, State, Zip	e, Zip			:				
Email Doug_Romig@golder.com	lder.com			Email	dustin	dustin_ward@golder.com	der.com					
Receive Invoice ■Hard Copy ■Email	Receive Report	nt □Hard Copy	■Email	Receive	Receive Report	ppy Email						
Purchase Order Quote		Bottle Order		Special Report	Special Report/Formats:	C) EDD/EDT (☐ EDD/EDT (contact laboratory)	□ Other				
Project Information				Matrix Codes	Sapoo		Analysis	Analysis Requested				
Project Name, PWSID, Permit, etc. 181-06417 Tyrone CCP-BMI	6417 Tyrone	CCP-BMI									All turnaround times are standard unless marked as	times are marked as
Sampler Name Doug Romig	Sampler Phone	Sampler Phone (505) 821-3043	43	S is i	Soils/						RUSH	-
Sample Origin State NM	EPA/State Compliance	npliance 🔳 Yes	° N □		Vegetation						MUST be contacted prior to	ted prior to
URANIUM MINING CLIENTS MUST indicate sample type. ☐ Unprocessed Ore ☐ Processed Ore (Ground or Refined) **CALL BEFORE SENDING	sample type.	NDING			Bioassay Other Drinking Water					tached	KUSH sample submittal for charges and scheduling – See Instructions Page	ubmittal for heduling – ins Page
☐ 11(e)2 Byproduct Material (Can ONLY be Submitted to ELI Casper Location)	e Submitted to El	I Casper Locatio	(c							jΑ		
Sample Identification	ء	Collection		Number of	Matrix					•		QI 8)
(Name, Location, Interval, etc.)		Date	Time		Above)					_	TAT LABOVARION	Tabolatoy Use Unit
1 GC-1S-4 0-2.5'		3/1/19		-	S					•	1519059	19078880-001
2 GC-1S-5 BULK		3/1/19		1	S					•		-005
3 PG9AX-1 BULK		3/1/19		1	S					•		487
4 PG9A-1 BULK		3/1/19		-	S					•		700-
5 PG9A-2 BULK		3/1/19		-	S					•		Sap
6 GC-LS-1 2-4'		2/28/19		-	S					•		900-
7 GC-LS-2 0-2'		2/28/19		1	S					•	20,7	L 00
8 GC-LS-2 6-7'		2/28/19		1	S					•		800
9 GC-LS-3 0-2'		2/28/19		1	S					•		8
10 -NA-						-(C	
Custody Relinquished by (print)	Da	Date/Time 72 (9 - 05	et cost				ed by (print)	-DXC	Date/Time	01:6	Signary (2//2
	Da	te/Time	Signatur) er		Receive	Received by Laboratory (print)		Date/Time	_	Signettire	
				11	P. P.	USE ONLY	ŀ			iocal	A Misself of the Control of the Cont)
Shipped By Cooler ID(s)	Custody Seals Y N C B	Intact Y N	Receipt Temp	Temp Blank	Blank On Ice	8 -	Cash Check		- S	Yece	Receipt Number (cashcheck ority)	only)

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

ELI-COC-11/17 v.2

March 5, 2019

Project No. 18106417

Ms. Wynn Pippin Energy Laboratories Inc. 1120 South 27th Street Billings, MT 59107

RE: Lab Analyses for Tyrone CCP Borrow Materials

Dear Ms. Pippin

This letter accompanies two coolers containing a total of 15 soil samples from the Tyrone mine site. Please analyze the samples for the following parameters:

Test	Method
Saturated Paste pH	SLS 1954, Method 2 and 21a
Electrical Conductivity	SLS 1954, Method 3a and 4b
Saturation percentage	SLS 1954, Method 27a
Particle Size Distribution, including very fine sand	ASA 1982, Method 15-5
Rock Fragment (>2mm)	Dry sieve (No. 10)/gravimetric
N as Nitrate	ASA 1982, Method 33-8.1
Phosphorous (Olsen)	ASA 1982, Method 24-5.4
Organic Matter	ASA 1982 Method 29-3.5.2
Hot water extractable Boron	ASA 10-3
Hot water extractable Selenium	ASA Mono. #9, Part 2, Method 75-4.1
Acid-Base Account (with sulfur forms)	Acid-Base Account (with sulfur forms)

Please retain samples until we have an opportunity to review the initial lab data as we may select specific samples for additional analyses. Please call (505.821.3043) or email (dromig@golder.com) if you have any questions.

Sincerely,

GOLDER ASSOCIATES INC.

Douglas Romig, GPSS Senior Soil Scientist

Billings, MT **800.735.4489** • Casper, WY **888.235.0515** Gillette, WY **866.686.7175** • Helena, MT **877.472.0711**

QA/QC Summary Report

Prepared by Billings, MT Branch

 Client:
 Golder Associates Inc
 Report Date:
 03/29/19

 Project:
 181-06417 Tyrone CCP-BMI
 Work Order:
 B19030684

Analyte	Result Units	RL %REC Low Limit High Limit RPD RPDLimit Qual
Method: ASA33-8		Batch: OM_3-14-2019_10-13-46AM
Lab ID: LCS Nitrate as N, KCL Extract	Laboratory Control Sample 10.8 mg/kg	Run: FIA205-B_190314A 03/14/19 10:14 1.0 99 70 130
Lab ID: MBLK-KCL Nitrate as N, KCL Extract	Method Blank ND mg/kg	Run: FIA205-B_190314A 03/14/19 10:16 0.1
Lab ID: B19030611-001ADUP Nitrate as N, KCL Extract	Sample Duplicate 8720 mg/kg-dry	Run: FIA205-B_190314A 03/14/19 10:36 290 0.7 30
Lab ID: B19030611-001AMS Nitrate as N, KCL Extract	Sample Matrix Spike 12300 mg/kg-dry	Run: FIA205-B_190314A 03/14/19 10:36 300 120 70 130

Prepared by Billings, MT Branch

 Client:
 Golder Associates Inc
 Report Date:
 03/29/19

 Project:
 181-06417 Tyrone CCP-BMI
 Work Order:
 B19030684

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: Sobek	Modified								Batch:	R317322
Lab ID: B1903	30684-001A DUP	Sample Duplic	cate			Run: MISC	-SOIL_190325B		03/25	5/19 18:32
Neutralization Poter	ntial	29	t/kt	0.10				2.0	50	
Acid Potential		0.65	t/kt	1.0					50	
Acid/Base Potential	I	28	t/kt					2.2	50	
The acid-base potent	tial was calculated from	the non-sulfate su	lfur %							
Lab ID: B1903	30684-001A DUP	Sample Duplic	cate			Run: MISC	S-SOIL_190325B		03/25	5/19 18:32
Sulfur, Total		0.0173	%	0.010				16	50	
Sulfur, Hot Water E	xtractable	ND	%	0.010					50	
Sulfur, HCI Extracta	able	ND	%	0.010					50	
Sulfur, HNO3 Extra	ctable	ND	%	0.010					50	
Sulfur, Residual		0.0204	%	0.010				1.9	50	
Lab ID: LCS-S	SOLO12091903251	Laboratory Co	ntrol Sample			Run: MISC	S-SOIL_190325B		03/25	5/19 19:35
Neutralization Poter	ntial	120	t/kt	0.10	124	50	150			
Acid Potential		5.9	t/kt	1.0	74	50	150			
Acid/Base Potential	I	120	t/kt		128	50	150			
The acid-base potent	tial was calculated from	the non-sulfate su	lfur %							
Lab ID: LCS-S	SOLO12091903251	Laboratory Co	ntrol Sample			Run: MISC	-SOIL_190325B		03/25	5/19 19:35
Sulfur, Total		0.188	%	0.010	90	50	150			
Sulfur, HNO3 Extra	ctable	0.153	%	0.010	85	50	150			
Sulfur, Residual		0.0370	%	0.010	74	50	150			

Qualifiers:

Prepared by Billings, MT Branch

 Client:
 Golder Associates Inc
 Report Date:
 03/29/19

 Project:
 181-06417 Tyrone CCP-BMI
 Work Order:
 B19030684

Analyte		Result	Units	RL	%REC L	ow Limit	High Limit	RPD	RPDLimit	Qual
Method:	USDA27a								Batch:	R316859
Lab ID: Saturation	B19030684-001A DUP	Sample Duplica 19.6	ate %	0.10	F	Run: MISC	-SOIL_190315A	5.0	03/15 30	5/19 15:07
Lab ID: Saturation	LCS-1903151507	Laboratory Cor 34.7	ntrol Sample %	0.10	92	Run: MISC 70	-SOIL_190315A 130		03/15	5/19 15:07

Work Order Receipt Checklist

Golder Associates Inc

Login completed by: Richard L. Shular

B19030684

Date Received: 3/11/2019

Reviewed by:	BL2000\gmccartney		R	eceived by: se
Reviewed Date:	3/12/2019		Ca	arrier name: Return-UPS Ground
Shipping container/cooler in	good condition?	Yes ✓	No 🗌	Not Present
Custody seals intact on all si	nipping container(s)/cooler(s)?	Yes	No 🗌	Not Present 🗸
Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present 🗸
Chain of custody present?		Yes ✓	No 🗌	
Chain of custody signed who	en relinquished and received?	Yes ✓	No 🗌	
Chain of custody agrees with	n sample labels?	Yes ✓	No 🗌	
Samples in proper container	/bottle?	Yes ✓	No 🗌	
Sample containers intact?		Yes ✓	No 🗌	
Sufficient sample volume for	indicated test?	Yes ✓	No 🗌	
All samples received within h (Exclude analyses that are c such as pH, DO, Res CI, Su	onsidered field parameters	Yes 🗹	No 🗌	
Temp Blank received in all s	hipping container(s)/cooler(s)?	Yes	No ✓	Not Applicable
Container/Temp Blank tempe	erature:	°C No Ice		
Water - VOA vials have zero	headspace?	Yes	No 🗌	No VOA vials submitted
Water - pH acceptable upon	receipt?	Yes	No 🗌	Not Applicable 🔽

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

Contact and Corrective Action Comments:

The temperature of the sample(s) for shipping container 1 was 4.2°C and shipping container 2 was 3.4°C.

Chain of Custody & Analytical Request Record

of 1 Page 1

Account Information (Billing information)	ion)			Repo	rt Information	Report Information (if different than Account Information)	nt Information)		Comments	ıts
Company/Name Golder Associates, Inc.	o i			Compa	Company/Name CC:				:) Cool beans	eans.
Contact Doug Romig				Contact	Dustin Ward	Vard				
Phone (505) 821-3043				Phone						
Mailing Address 5200 Pasadena Ave. NE Suite C	NE Suite (0		Mailing	Mailing Address					
City, State, Zip Albuquerque, NM 87113-2208	13-2208			City, State, Zip	ate, Zip					
Email Doug_Romig@golder.com	.com			Email	dustin_\	dustin_ward@golder.com				
Receive Invoice BHard Copy BEmail Rec	Receive Report	t	/ Email	Receive	Receive Report Hard Copy	y @Email				
Purchase Order Quote		Bottle Order	,	Special F	Special Report/Formats:	EDD/EDT (contact laboratory)	atory) 🗆 Other			
Project Information			!	Matrix	Matrix Codes	Ana	Analysis Requested			
Project Name, PWSID, Permit, etc. 181-06417 Tyrone CCP-BMI	7 Tyrone (CCP-BMI			Air					All turnaround times are standard unless marked as
Sampler Name Doug Romig	mpler Phone	Sampler Phone (505) 821-3043	043	န် ဖွ်	Soils/					RUSH.
Sample Origin State NM EP	EPA/State Compliance	npliance 🔳 Yes	oN 🗆 sa	1	Vegetation		_			Energy Laboratories MUST be contacted prior to
URANIUM MINING CLIENTS MUST indicate sample type. Unprocessed Ore Cround or Refined) **CALL BEFORE SENDING	e type.	DING		0 - O	Bioassay Other Drinking				sched	RUSH sample submittal for charges and scheduling – See Instructions Page
☐ 11(e)2 Byproduct Material (Can ONLY be Submitted to ELI Casper Location)	mitted to EL	l Casper Locati	on)		<u> </u>				ВА	
Sample Identification		Collection	ction	Number of Containers	Matrix (See Codes	1			See TAT	ELI LABID
1 GC-1S-1 0-3'		3/1/19		-	S				•	R10
2 GC-1S-2 0-2'		3/1/19		_	S				•	700-
3 GC-1S-2 2-4'		3/1/19		-	S				•	5∞-
4 GC-1S-2 4-6'		3/1/19		1	S				•	h 00-
5 GC-1S-3 0-2'		3/1/19		-	s				•	S 00-
6 GC-1S-3 4-6.5'		3/1/19		1	S				•	-006
7 -NA-										
80										
6.										
10						9				
Custody Relinquished by (print) Record MUST Dustin S. Ward	Date	Date/Time	Signature 12007	onature		Received by (grint)	ACC DE	100 P	01/0 Angmant	TOWN KIE
be signed	Date	Date/Time	Signature	ture		Received by Laboratory (print) ∖	ory (print)	'Date/Time	<u>gis</u>	Signature
O Shipped By Cooler ID(s) Custod	Custody Seals	Intact	Receipt Temp	I L	ABORATOR Ink On		Payment Type	Amount	Receipt P	Receipt Number (cash/check only)
	 ב	z >). 	<u>></u>	z 	CC Cash	Check	<u> </u>		

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

ELI-COC-11/17 v.2

March 5, 2019

Project No. 18106417

Ms. Wynn Pippin Energy Laboratories Inc. 1120 South 27th Street Billings, MT 59107

RE: Lab Analyses for Tyrone CCP Borrow Materials

Dear Ms. Pippin

This letter accompanies two coolers containing a total of 15 soil samples from the Tyrone mine site. Please analyze the samples for the following parameters:

Test	Method
Saturated Paste pH	SLS 1954, Method 2 and 21a
Electrical Conductivity	SLS 1954, Method 3a and 4b
Saturation percentage	SLS 1954, Method 27a
Particle Size Distribution, including very fine sand	ASA 1982, Method 15-5
Rock Fragment (>2mm)	Dry sieve (No. 10)/gravimetric
N as Nitrate	ASA 1982, Method 33-8.1
Phosphorous (Olsen)	ASA 1982, Method 24-5.4
Organic Matter	ASA 1982 Method 29-3.5.2
Hot water extractable Boron	ASA 10-3
Hot water extractable Selenium	ASA Mono. #9, Part 2, Method 75-4.1
Acid-Base Account (with sulfur forms)	Acid-Base Account (with sulfur forms)

Please retain samples until we have an opportunity to review the initial lab data as we may select specific samples for additional analyses. Please call (505.821.3043) or email (dromig@golder.com) if you have any questions.

Sincerely,

GOLDER ASSOCIATES INC.

Douglas Romig, SPSS Senior Soil Scientist April 29, 2020 18106417.003.R.Rev1

APPENDIX B

Daniel B. Stephens and Associates
Laboratory Reports

Laboratory Report for Golder Associates

Project: CCP-BMI 181-06417

May 31, 2019

Daniel B. Stephens & Associates, Inc.

4400 Alameda Blvd. NE, Suite C • Albuquerque, New Mexico 87113

Doug Romig Golder Associates, Inc. 5200 Pasadena NE, Suite C Albuquerque, NM 87113 (505) 821-3043

Re: DBS&A Laboratory Report for the Golder Associates, Inc. CCP-BMI 181-06417 Project

Dear Mr. Romig:

Enclosed is the report for the Golder Associates, Inc. CCP-BMI 181-06417 project samples. Please review this report and provide any comments as samples will be held for a maximum of 30 days. After 30 days samples will be returned or disposed of in an appropriate manner.

All testing results were evaluated subjectively for consistency and reasonableness, and the results appear to be reasonably representative of the material tested. However, DBS&A does not assume any responsibility for interpretations or analyses based on the data enclosed, nor can we guarantee that these data are fully representative of the undisturbed materials at the field site. We recommend that careful evaluation of these laboratory results be made for your particular application.

The testing utilized to generate the enclosed report employs methods that are standard for the industry. The results do not constitute a professional opinion by DBS&A, nor can the results affect any professional or expert opinions rendered with respect thereto by DBS&A. You have acknowledged that all the testing undertaken by us, and the report provided, constitutes mere test results using standardized methods, and cannot be used to disqualify DBS&A from rendering any professional or expert opinion, having waived any claim of conflict of interest by DBS&A.

We are pleased to provide this service to Golder Associates, Inc. and look forward to future laboratory testing on other projects. If you have any questions about the enclosed data, please do not hesitate to call.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC. SOIL TESTING & RESEARCH LABORATORY

Joleen Hines

Laboratory Supervising Manager

Enclosure

Summaries

Summary of Tests Performed

				_	aturat																	
		itial S			lydrau						isture				ı	Particl		-	cific	Air		
Laboratory		operti	_		nducti			-		Charac			=	.		Size ⁴			vity ⁵	Perm-	Atterberg	Proctor
Sample Number	G	VM	VD	СН	FH	FW	HC	PP	FP	DPP	RH	EP	WHC	K _{unsat}	DS	WS	Н	F	С	eability	Limits	Compaction
GC-LS-2 6-7'																		Х				
GC-LS-2 6-7' (1.41 g/cc)	Х	Х		Х			Х			Х	Х			Χ								
GC-1S-2 4-6'																		Х				
GC-1S-2 4-6' (1.40 g/cc)	Х	Х			Х		Х	Х		Х	Х			Χ								
GC-1S-3 2-6.5'																		Χ				
GC-1S-3 2-6.5' (1.40 g/cc)	Х	Х		Х			Х			Х	Х			Χ								
GC-1S-4 0-2.5'																		Χ				
GC-1S-4 0-2.5' (1.40 g/cc)	Х	Χ		Х			Х			Х	Х			Х								
PG-9A-2 Bulk																		Х				
PG-9A-2 Bulk (1.41 g/cc)	Х	Χ		Х			Х			Х	Х			Χ								
PG-9A-1 Bulk																		Х				
PG-9A-1 Bulk (1.41 g/cc)	Х	Χ		Х			Х			Х	Х			Χ								
PG-9AX-1 Bulk																		Х				
PG-9AX-1 Bulk (1.41 g/cc)	Х	Х		Х			Х			Х	Х			Χ								

¹ G = Gravimetric Moisture Content, VM = Volume Measurement Method, VD = Volume Displacement Method

² CH = Constant Head Rigid Wall, FH = Falling Head Rigid Wall, FW = Falling Head Rising Tail Flexible Wall

³ HC = Hanging Column, PP = Pressure Plate, FP = Filter Paper, DPP = Dew Point Potentiometer, RH = Relative Humidity Box,

EP = Effective Porosity, WHC = Water Holding Capacity, Kunsat = Calculated Unsaturated Hydraulic Conductivity

⁴ DS = Dry Sieve, WS = Wet Sieve, H = Hydrometer

⁵ F = Fine (<4.75mm), C = Coarse (>4.75mm)

Daniel B. Stephens & Associates, Inc.

Notes

Sample Receipt:

Seven samples, each as loose material in a mostly full 5-gallon bucket sealed with a lid, were hand-delivered on April 5, 2019. All samples were received in good order.

Sample Preparation and Testing Notes:

Each of the samples was subjected to specific gravity testing.

A portion of each of the samples was remolded into a testing ring to target a dry bulk density of 1.40 g/cm³ as specified by the client. Prior to remolding, particles larger than 2mm were removed from the bulk material and the moisture content of each sub-sample was adjusted in order to facilitate compaction. Each of these remolded sub-samples was subjected to initial properties analysis, saturated hydraulic conductivity testing, and the hanging column and pressure chamber portions of the moisture retention testing.

Separate sub-samples were obtained for the dewpoint potentiometer and relative humidity chamber portions of the moisture retention testing.

The actual dry bulk density achieved (in g/cm³) was added to each sub-sample ID.

Oversize correction calculations are presented if the fraction removed was greater than 5% of the bulk sample mass.

Volumetric water contents were adjusted for changes in volume, where applicable. Due to the irregularities formed on the sample surfaces during settling or swelling, volume measurements obtained after the initial reading should be considered estimates.

Summary of Sample Preparation/Volume Changes

	Target f Param		Actua	al Remold	Data		me Change Saturation	_	Volume	Change Po	ost Drying
	Moisture Content	Dry Bulk Density	Moisture Content	Dry Bulk Density	% of Target Density	Dry Bulk Density	% Volume Change	% of Initial Density	Dry Bulk Density	% Volume Change	% of Initial Density
Sample Number	(%, g/g)	(g/cm ³)	(%, g/g)	(g/cm ³)	(%)	(g/cm ³)	(%)	(%)	(g/cm ³)	(%)	(%)
GC-LS-2 6-7' (1.41 g/cc)		1.40	7.9	1.41	100.6%	1.41		100%	1.45	-3.0%	103%
GC-1S-2 4-6' (1.40 g/cc)		1.40	12.1	1.40	100.3%	1.40		100%	1.40		100%
GC-1S-3 2-6.5' (1.40 g/cc)		1.40	6.3	1.40	99.9%	1.40		100%	1.64	-14.6%	117%
GC-1S-4 0-2.5' (1.40 g/cc)		1.40	6.9	1.40	100.1%	1.40		100%	1.53	-8.1%	109%
PG-9A-2 Bulk (1.41 g/cc)		1.40	7.0	1.41	100.4%	1.41		100%	1.70	-17.2%	121%
PG-9A-1 Bulk (1.41 g/cc)		1.40	9.3	1.41	100.5%	1.41		100%	1.45	-3.1%	103%
PG-9AX-1 Bulk (1.41 g/cc)		1.40	8.2	1.41	100.6%	1.41		100%	1.46	-3.3%	103%

¹Target Remold Parameters: Provided by the client: Remold to 1.40 g/cc at the as received moisture content.

Notes:

²Volume Change Post Saturation: Volume change measurements were obtained after saturated hydraulic conductivity testing.

³Volume Change Post Drying Curve: Volume change measurements were obtained throughout hanging column and pressure plate testing. The 'Volume Change Post Drying Curve' values represent the final sample dimensions after the last pressure plate point.

[&]quot;+" indicates sample swelling, "-" indicates sample settling, and "---" indicates no volume change occurred.

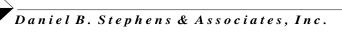
Summary of Initial Moisture Content, Dry Bulk Density Wet Bulk Density and Calculated Porosity

Moisture Content

	As Re	ceived	Rem	olded	Dry Bulk	Wet Bulk	Calculated
Sample Number	Gravimetric (%, g/g)	Volumetric (%, cm³/cm³)	Gravimetric (%, g/g)	Volumetric (%, cm ³ /cm ³)	Density (g/cm ³)	Density (g/cm ³)	Porosity (%)
GC-LS-2 6-7' (1.41 g/cc)	NA	NA	7.9	11.0	1.41	1.52	47.3
GC-1S-2 4-6' (1.40 g/cc)	NA	NA	12.1	16.9	1.40	1.57	48.1
GC-1S-3 2-6.5' (1.40 g/cc)	NA	NA	6.3	8.8	1.40	1.49	47.6
GC-1S-4 0-2.5' (1.40 g/cc)	NA	NA	6.9	9.7	1.40	1.50	47.6
PG-9A-2 Bulk (1.41 g/cc)	NA	NA	7.0	9.9	1.41	1.50	47.4
PG-9A-1 Bulk (1.41 g/cc)	NA	NA	9.3	13.1	1.41	1.54	48.1
PG-9AX-1 Bulk (1.41 g/cc)	NA	NA	8.2	11.6	1.41	1.52	47.5

NA = Not analyzed

^{--- =} This sample was not remolded


Summary of Saturated Hydraulic Conductivity Tests

		Oversize Corrected		
	K_{sat}	K_{sat}	Method of	Analysis
Sample Number	(cm/sec)	(cm/sec)	Constant Head	Falling Head
GC-LS-2 6-7' (1.41 g/cc)	6.2E-03	2.1E-03	X	
GC-1S-2 4-6' (1.40 g/cc)	1.2E-05	7.6E-06		X
GC-1S-3 2-6.5' (1.40 g/cc)	4.8E-03	3.1E-03	Χ	
GC-1S-4 0-2.5' (1.40 g/cc)	4.1E-02	2.4E-02	X	
PG-9A-2 Bulk (1.41 g/cc)	1.1E-02	5.3E-03	X	
PG-9A-1 Bulk (1.41 g/cc)	5.2E-02	1.5E-02	X	
PG-9AX-1 Bulk (1.41 g/cc)	3.3E-02	8.2E-03	Χ	

^{--- =} Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NR = Not requested


NA = Not applicable

Sample Number	Pressure Head (-cm water)	Moisture Content (%, cm ³ /cm ³)
GC-LS-2 6-7' (1.41 g/cc)	0	45.4
GC-LS-2 0-7 (1.41 g/cc)	7	45.4 45.9 ^{‡‡}
	10	45.9 ⁺⁺
	45	45.7 ⁺⁺
	220	29.5 ⁺⁺
	4487	12.2 #
	27841	9.4 #
	280955	5.7 #
	854732	4.9 #
GC-1S-2 4-6' (1.40 g/cc)	0	49.4
, ,	18	49.0
	54	40.5
	125	35.4
	337	31.8
	16113	17.1
	52724	13.3
	296150	9.0
	854732	7.5
GC-1S-3 2-6.5' (1.40 g/cc)	0	46.6
33 13 3 2 3.3 (1.10 g/33)	7	42.6 ^{‡‡}
	10	41.4 #
	45	36.4 #
	220	25.5 ^{‡‡}
	2855	13.6 ^{‡‡}
	24169	8.2 [#]
	255766	4.7 [#]
	854732	3.3 [#]
	55 . i 5 <u>L</u>	0.0

^{‡‡} Volume adjustments are applicable at this matric potential (see data sheet for this sample).

Sample Number	Pressure Head (-cm water)	Moisture Content (%, cm ³ /cm ³)
GC-1S-4 0-2.5' (1.40 g/cc)	0	48.1
30 10 4 0 2.0 (1.40 g/00)	7	46.1 [#]
	10	43.8 #
	45	24.7 ^{‡‡}
	220	13.8 #
	3671	8.4 #
	44667	5.5 ^{‡‡}
	236390	3.9 #
	854732	3.4 #
	854732	3.4 #
PG-9A-2 Bulk (1.41 g/cc)	0	46.6
	7	42.8 ^{‡‡}
	10	40.6 ^{‡‡}
	45	34.6 ^{‡‡}
	220	19.5 ^{‡‡}
	5813	8.3 ^{‡‡}
	40078	4.4 ^{‡‡}
	355706	2.5 ^{‡‡}
	854732	1.9 #
	854732	1.9 #
PG-9A-1 Bulk (1.41 g/cc)	0	48.0
	7	47.4 #
	10	41.4 #
	45	24.0 #
	220	17.7 #
	8872	7.8 #
	63839	5.1 #
	318484	3.2 #
	854732	2.8 #
	854732	2.8 #

^{‡‡} Volume adjustments are applicable at this matric potential (see data sheet for this sample).

Summary of Moisture Characteristics of the Initial Drainage Curve (Continued)

Sample Number	Pressure Head (-cm water)	Moisture Content (%, cm ³ /cm ³)
PG-9AX-1 Bulk (1.41 g/cc)	0	47.2
,	7	46.1
	10	41.1 #
	45	24.8 ^{‡‡}
	220	17.8 ^{‡‡}
	3263	10.3 #
	47931	5.1 ^{‡‡}
	228333	4.3 ^{‡‡}
	854732	2.9 #
	854732	2.9 #

^{‡‡} Volume adjustments are applicable at this matric potential (see data sheet for this sample).

Summary of Calculated Unsaturated Hydraulic Properties

					Oversize	Corrected	
Sample Number	α (cm ⁻¹)	N (dimensionless)	$ heta_{ m r}$ (% vol)	$ heta_{s}$ (% vol)	$ heta_{ m r}$ (% vol)	$ heta_{s}$ (% vol)	
GC-LS-2 6-7' (1.41 g/cc)	0.0623	1.3862	5.69	47.63	2.77	23.55	
GC-1S-2 4-6' (1.40 g/cc)	0.0430	1.1756	0.00	50.46	0.00	39.22	
GC-1S-3 2-6.5' (1.40 g/cc)	0.0470	1.2422	0.00	45.38	0.00	35.41	
GC-1S-4 0-2.5' (1.40 g/cc)	0.0651	1.6073	4.40	49.23	3.12	35.76	
PG-9A-2 Bulk (1.41 g/cc)	0.0495	1.3279	0.62	45.60	0.37	29.32	
PG-9A-1 Bulk (1.41 g/cc)	0.0923	1.4348	3.41	49.67	1.43	21.16	
PG-9AX-1 Bulk (1.41 g/cc)	0.0976	1.3909	3.28	48.72	1.25	18.87	

^{--- =} Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NR = Not requested

NA = Not applicable

Summary of Specific Gravity Tests

	<4.	75 mm Frac	action >4.75 mm Fraction Bulk S		>4.75 mm Fraction		Bulk Sample
	Specific	Particle	% of Bulk	Specific	Particle	% of Bulk	Specific
Sample Number	Gravity	Size	Sample	Gravity	Size	Sample	Gravity ¹
GC-LS-2 6-7	2.67	<4.75 mm	34.0%	NR	>4.75 mm	66.0%	2.67
GC-1S-2 4-6	2.71	<4.75 mm	64.4%	NR	>4.75 mm	35.6%	2.71
GC-1S-3 2-6.5	2.67	<4.75 mm	65.0%	NR	>4.75 mm	35.0%	2.67
GC-1S-4 0-2.5	2.68	<4.75 mm	58.2%	NR	>4.75 mm	41.8%	2.68
PG-9A-2 Bulk	2.68	<4.75 mm	48.6%	NR	>4.75 mm	51.4%	2.68
PG-9A-1 Bulk	2.71	<4.75 mm	27.8%	NR	>4.75 mm	72.2%	2.71
PG-9AX-1 Bulk	2.69	<4.75 mm	24.9%	NR	>4.75 mm	75.1%	2.69

¹Based on the <4.75mm material

NA = Not Applicable since specificed fraction is less than 5% of composite sample mass

NR = Test not Requested

Initial Properties


Summary of Initial Moisture Content, Dry Bulk Density Wet Bulk Density and Calculated Porosity

Moisture Content

	molecule content						
	As Re	ceived	Rem	olded	Dry Bulk	Wet Bulk	Calculated
Sample Number	Gravimetric (%, g/g)	Volumetric (%, cm³/cm³)	Gravimetric (%, g/g)	Volumetric (%, cm ³ /cm ³)	Density (g/cm ³)	Density (g/cm³)	Porosity (%)
GC-LS-2 6-7' (1.41 g/cc)	NA	NA	7.9	11.0	1.41	1.52	47.3
GC-1S-2 4-6' (1.40 g/cc)	NA	NA	12.1	16.9	1.40	1.57	48.1
GC-1S-3 2-6.5' (1.40 g/cc)	NA	NA	6.3	8.8	1.40	1.49	47.6
GC-1S-4 0-2.5' (1.40 g/cc)	NA	NA	6.9	9.7	1.40	1.50	47.6
PG-9A-2 Bulk (1.41 g/cc)	NA	NA	7.0	9.9	1.41	1.50	47.4
PG-9A-1 Bulk (1.41 g/cc)	NA	NA	9.3	13.1	1.41	1.54	48.1
PG-9AX-1 Bulk (1.41 g/cc)	NA	NA	8.2	11.6	1.41	1.52	47.5

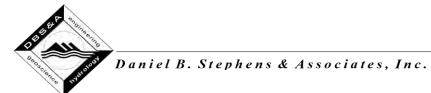
NA = Not analyzed

^{--- =} This sample was not remolded

Job Name: Golder Associates, Inc.

Job Number: DB19.1112.00

Sample Number: GC-LS-2 6-7' (1.41 g/cc)
Project Name: CCP-BMI 181-06417


Depth: 6'-7'

	As Received	Remolded
Test Date:	NA	14-Apr-19
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g): Dry weight of sample (g): Sample volume (cm³): Measured particle density (g/cm³):		473.28 136.97 0.00 0.00 311.83 221.58 2.67
Gravimetric Moisture Content (% g/g):		7.9
Volumetric Moisture Content (% vol):		11.0
Dry bulk density (g/cm³):		1.41
Wet bulk density (g/cm ³):		1.52
Calculated Porosity (% vol):		47.3
Percent Saturation:		23.4
Laboratory analysis by: Data entered by: Checked by:		D. O'Dowd D. O'Dowd J. Hines

Comments:

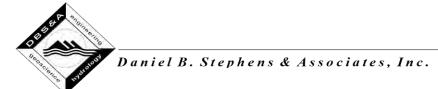
* Weight including tares

NA = Not analyzed

Job Name: Golder Associates, Inc.

Job Number: DB19.1112.00

Sample Number: GC-1S-2 4-6' (1.40 g/cc)
Project Name: CCP-BMI 181-06417


Depth: 4'-6'

	As Received	Remolded
Test Date:	NA	14-Apr-19
Field weight* of sample (g):		482.40
Tare weight, ring (g):		136.14
Tare weight, pan/plate (g):		0.00
Tare weight, other (g):		0.00
Dry weight of sample (g):		309.01
Sample volume (cm³):		220.14
Measured particle density (g/cm ³):		2.71
Gravimetric Moisture Content (% g/g):		12.1
Volumetric Moisture Content (% vol):		16.9
Dry bulk density (g/cm ³):		1.40
Wet bulk density (g/cm ³):		1.57
Calculated Porosity (% vol):		48.1
Percent Saturation:		35.2
Laboratory analysis by: Data entered by: Checked by:		D. O'Dowd D. O'Dowd J. Hines
		*····

Comments:

* Weight including tares

NA = Not analyzed

Job Name: Golder Associates, Inc.

Job Number: DB19.1112.00

Sample Number: GC-1S-3 2-6.5' (1.40 g/cc) Project Name: CCP-BMI 181-06417

Depth: 2'-6.5'

	As Received	Remolded
Test Date:	NA	14-Apr-19
Field weight* of sample (g): Tare weight, ring (g):		462.90 136.40 0.00
Tare weight, pan/plate (g): Tare weight, other (g):		0.00
Dry weight of sample (g):		307.23
Sample volume (cm ³):		219.83
Measured particle density (g/cm ³):		2.67
Gravimetric Moisture Content (% g/g):		6.3
Volumetric Moisture Content (% vol):		8.8
Dry bulk density (g/cm ³):		1.40
Wet bulk density (g/cm ³):		1.49
Calculated Porosity (% vol):		47.6
Percent Saturation:		18.4
Laboratory analysis by: Data entered by: Checked by:		D. O'Dowd D. O'Dowd J. Hines

Comments:

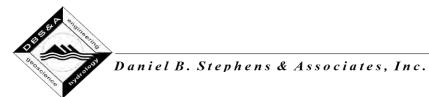
* Weight including tares

NA = Not analyzed

Job Name: Golder Associates, Inc.

Job Number: DB19.1112.00

Sample Number: GC-1S-4 0-2.5' (1.40 g/cc)
Project Name: CCP-BMI 181-06417


Depth: 0'-2.5'

	As Received	Remolded
Test Date:	NA	14-Apr-19
Field weight* of sample (g):		469.20
Tare weight, ring (g):		137.39
Tare weight, pan/plate (g):		0.00
Tare weight, other (g):		0.00
Dry weight of sample (g):		310.43
Sample volume (cm³):		221.54
Measured particle density (g/cm ³):		2.68
Gravimetric Moisture Content (% g/g):		6.9
Volumetric Moisture Content (% vol):		9.7
Dry bulk density (g/cm ³):		1.40
Wet bulk density (g/cm ³):		1.50
Calculated Porosity (% vol):		47.6
Percent Saturation:		20.3
Laboratory analysis by: Data entered by:		D. O'Dowd D. O'Dowd
Checked by:		J. Hines

Comments:

* Weight including tares

NA = Not analyzed

Job Name: Golder Associates, Inc.

Job Number: DB19.1112.00

Sample Number: PG-9A-2 Bulk (1.41 g/cc)
Project Name: CCP-BMI 181-06417

Depth: NA

	As Received	Remolded
Test Date:	NA	14-Apr-19
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g): Dry weight of sample (g): Sample volume (cm³): Measured particle density (g/cm³):		468.80 137.59 0.00 0.00 309.42 220.15 2.67
Gravimetric Moisture Content (% g/g):		7.0
Volumetric Moisture Content (% vol):		9.9
Dry bulk density (g/cm ³):		1.41
Wet bulk density (g/cm ³):		1.50
Calculated Porosity (% vol):		47.4
Percent Saturation:		20.9
Laboratory analysis by: Data entered by: Checked by:		D. O'Dowd D. O'Dowd J. Hines

Comments:

* Weight including tares

NA = Not analyzed

Job Name: Golder Associates, Inc.

Job Number: DB19.1112.00

Sample Number: PG-9A-1 Bulk (1.41 g/cc)
Project Name: CCP-BMI 181-06417

Depth: NA

	As Received	Remolded
Test Date:	NA	14-Apr-19
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g): Dry weight of sample (g): Sample volume (cm³): Measured particle density (g/cm³):		477.80 137.88 0.00 0.00 310.94 221.16 2.71
Gravimetric Moisture Content (% g/g):		9.3
Volumetric Moisture Content (% vol):		13.1
Dry bulk density (g/cm ³):		1.41
Wet bulk density (g/cm ³):		1.54
Calculated Porosity (% vol):		48.1
Percent Saturation:		27.2
Laboratory analysis by: Data entered by: Checked by:		D. O'Dowd D. O'Dowd J. Hines

Comments:

* Weight including tares

NA = Not analyzed

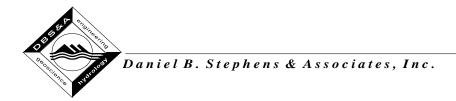
Job Name: Golder Associates, Inc.

Job Number: DB19.1112.00

Sample Number: PG-9AX-1 Bulk (1.41 g/cc)

Project Name: CCP-BMI 181-06417

Depth: NA


	As Received	Remolded
Test Date:	NA	14-Apr-19
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g): Dry weight of sample (g): Sample volume (cm³): Measured particle density (g/cm³):		471.96 137.07 0.00 0.00 309.47 219.83 2.68
Cravimatria Maistura Contant (% a/a):		8.2
Gravimetric Moisture Content (% g/g): Volumetric Moisture Content (% vol):		11.6
Dry bulk density (g/cm ³):		1.41
Wet bulk density (g/cm ³):		1.52
Calculated Porosity (% vol):		47.5
Percent Saturation:		24.3
Laboratory analysis by: Data entered by: Checked by:		D. O'Dowd D. O'Dowd J. Hines

Comments:

* Weight including tares

NA = Not analyzed

Saturated Hydraulic Conductivity

Summary of Saturated Hydraulic Conductivity Tests

	K _{sat}	Oversize Corrected K _{sat}	Method of	Analysis
Sample Number	(cm/sec)	(cm/sec)	Constant Head	Falling Head
GC-LS-2 6-7' (1.41 g/cc)	6.2E-03	2.1E-03	Х	
GC-1S-2 4-6' (1.40 g/cc)	1.2E-05	7.6E-06		X
GC-1S-3 2-6.5' (1.40 g/cc)	4.8E-03	3.1E-03	X	
GC-1S-4 0-2.5' (1.40 g/cc)	4.1E-02	2.4E-02	Х	
PG-9A-2 Bulk (1.41 g/cc)	1.1E-02	5.3E-03	Χ	
PG-9A-1 Bulk (1.41 g/cc)	5.2E-02	1.5E-02	Χ	
PG-9AX-1 Bulk (1.41 g/cc)	3.3E-02	8.2E-03	X	

NR = Not requested

NA = Not applicable

^{--- =} Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Saturated Hydraulic Conductivity Constant Head Method

Job Name: Golder Associates, Inc.

Type of water used: TAP

Job Number: DB19.1112.00 Collection vessel tare (g): 10.99

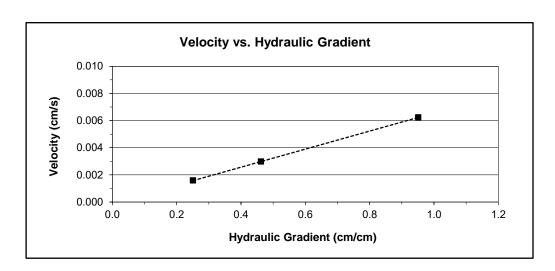
Sample Number: GC-LS-2 6-7' (1.41 g/cc)

Project Name: CCP-BMI 181-06417

Sample length (cm): 7.57

Sample diameter (cm): 6.11

Depth: 6'-7' Sample x-sectional area (cm²): 29.28


Date	Time	Temp (°C)	Head (cm)	Q + Tare (g)	Q (cm³)	Elapsed time (sec)	Ksat (cm/sec)	Ksat @ 20°C (cm/sec)
Test # 1: 17-Apr-19 17-Apr-19	16:24:00 16:26:00	21.5	7.2	32.89	21.9	120	6.6E-03	6.3E-03
Test # 2: 17-Apr-19 17-Apr-19	16:38:00 16:40:00	21.5	3.5	21.42	10.4	120	6.4E-03	6.2E-03
Test # 3: 17-Apr-19 17-Apr-19	17:09:00 17:11:00	21.5	1.9	16.54	5.6	120	6.3E-03	6.1E-03

Average Ksat (cm/sec): 6.2E-03

Oversize Corrected Ksat (cm/sec): 2.1E-03

Comments:

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Job Name: Golder Associates, Inc.

Job Number: DB19.1112.00

Sample Number: GC-LS-2 6-7' (1.41 g/cc)
Project Name: CCP-BMI 181-06417

Depth: 6'-7'

Split (3/4", 3/8", #4): #10

Calculated Porosity of Fines (% vol): 47.3

	Coarse Fraction*	Fines Fraction	Composite
Subsample Mass (g):	14554.51	7506.58	22061.09
Bulk Density (g/cm³):	2.67	1.41	2.04
Volume of Solids (cm ³):	5454.51	2813.20	8267.71
Volume of Voids (cm ³):	0.00	2520.78	2520.78
Total Volume (cm ³):	5454.51	5333.98	10788.49
Volumetric Fraction (%):	50.56	49.44	100.00
Mass Fraction (%):	65.97	34.03	100.00
Ksat (cm/sec):	NM	6.2E-03	2.1E-03

^{* =} Porosity and moisture content of coarse fraction assumed to be zero.

NM = Not measured

^{--- =} Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Daniel B. Stephens & Associates, Inc.

Saturated Hydraulic Conductivity Falling Head Method

Job Name: Golder Associates, Inc.

Type of water used: TAP

Job Number: DB19.1112.00 Backpressure (psi): 0.0

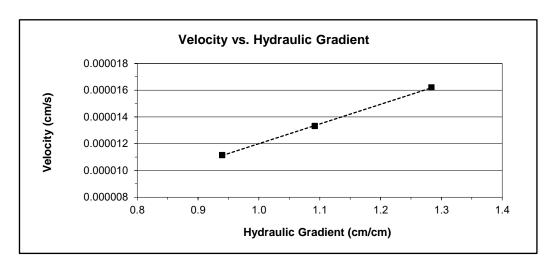
Sample Number: GC-1S-2 4-6' (1.40 g/cc) Offset (cm): 3.8

Project Name: CCP-BMI 181-06417 Sample length (cm): 7.56

Depth: 4'-6'

Sample x-sectional area (cm²): 29.14

Reservoir x-sectional area (cm²): 0.70


Date	Time	Temp (°C)	Reservoir head (cm)	Corrected head (cm)	Elapsed time (sec)	Ksat (cm/sec)	Ksat @ 20°C (cm/sec)
Test # 1:							
19-Apr-19	14:51:30	21.4	14.4	10.6	2671	1.3E-05	1.2E-05
19-Apr-19	15:36:01	21.4	12.6	8.8			
Test # 2:							
19-Apr-19	15:36:01	21.4	12.6	8.8	1985	1.2E-05	1.2E-05
19-Apr-19	16:09:06	21.4	11.5	7.7			
Test # 3:							
19-Apr-19	16:09:06	21.4	11.5	7.7	2589	1.2E-05	1.2E-05
19-Apr-19	16:52:15	21.4	10.3	6.5			

Average Ksat (cm/sec): 1.2E-05

Oversize Corrected Ksat (cm/sec): 7.6E-06

Comments:

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Laboratory analysis by: A. Bland Data entered by: A. Bland Checked by: J. Hines

Job Name: Golder Associates, Inc.

Job Number: DB19.1112.00

Sample Number: GC-1S-2 4-6' (1.40 g/cc) Project Name: CCP-BMI 181-06417

Depth: 4'-6'

Split (3/4", 3/8", #4): #10 Calculated Porosity of Fines (% vol): 48.1

	Coarse Fraction*	Fines Fraction	Composite
Subsample Mass (g):	6291.16	11388.65	17679.81
Bulk Density (g/cm³):	2.71	1.40	1.69
Volume of Solids (cm ³):	2324.80	4208.50	6533.31
Volume of Voids (cm ³):	0.00	3904.87	3904.87
Total Volume (cm ³):	2324.80	8113.37	10438.17
Volumetric Fraction (%):	22.27	77.73	100.00
Mass Fraction (%):	35.58	64.42	100.00
Ksat (cm/sec):	NM	1.2E-05	7.6E-06

^{* =} Porosity and moisture content of coarse fraction assumed to be zero.

NM = Not measured

Laboratory analysis by: A. Bland Data entered by: A. Bland Checked by: J. Hines

^{--- =} Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Daniel B. Stephens & Associates, Inc.

Saturated Hydraulic Conductivity Constant Head Method

Job Name: Golder Associates, Inc.

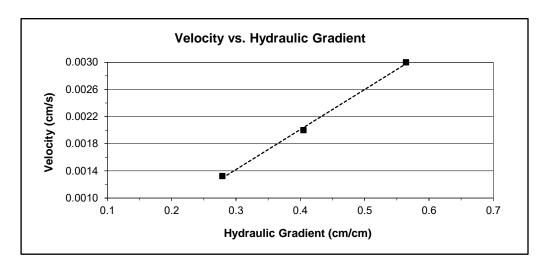
Type of water used: TAP

Job Number: DB19.1112.00 Collection vessel tare (g): 11.02

 Sample Number:
 GC-1S-3 2-6.5' (1.40 g/cc)
 Sample length (cm): 7.53

 Project Name:
 CCP-BMI 181-06417
 Sample diameter (cm): 6.10

Depth: 2'-6.5' Sample x-sectional area (cm²): 29.21


Date	Time	Temp (°C)	Head (cm)	Q + Tare (g)	Q (cm ³)	Elapsed time (sec)	Ksat (cm/sec)	Ksat @ 20°C (cm/sec)
Test # 1: 17-Apr-19 17-Apr-19	16:29:30 16:31:30	21.5	4.25	21.53	10.5	120	5.3E-03	5.1E-03
Test # 2: 17-Apr-19 17-Apr-19	16:44:00 16:46:00	21.5	3.05	18.02	7.0	120	4.9E-03	4.8E-03
Test # 3: 17-Apr-19 17-Apr-19	17:15:00 17:17:00	21.5	2.1	15.65	4.6	120	4.7E-03	4.6E-03

Average Ksat (cm/sec): 4.8E-03

Oversize Corrected Ksat (cm/sec): 3.1E-03

Comments:

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Job Name: Golder Associates, Inc.

Job Number: DB19.1112.00

Sample Number: GC-1S-3 2-6.5' (1.40 g/cc) Project Name: CCP-BMI 181-06417

Depth: 2'-6.5'

Split (3/4", 3/8", #4): #10 Calculated Porosity of Fines (% vol): 47.6

	Coarse Fraction*	Fines Fraction	Composite
Subsample Mass (g):	7929.97	14745.71	22675.68
Bulk Density (g/cm ³):	2.67	1.40	1.68
Volume of Solids (cm ³):	2972.52	5527.37	8499.89
Volume of Voids (cm ³):	0.00	5023.51	5023.51
Total Volume (cm ³):	2972.52	10550.88	13523.40
Volumetric Fraction (%):	21.98	78.02	100.00
Mass Fraction (%):	34.97	65.03	100.00
Ksat (cm/sec):	NM	4.8E-03	3.1E-03

^{* =} Porosity and moisture content of coarse fraction assumed to be zero.

NM = Not measured

^{--- =} Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Saturated Hydraulic Conductivity Constant Head Method

Job Name: Golder Associates, Inc.

Type of water used: TAP

Job Number: DB19.1112.00 Collection vessel tare (g): 29.46

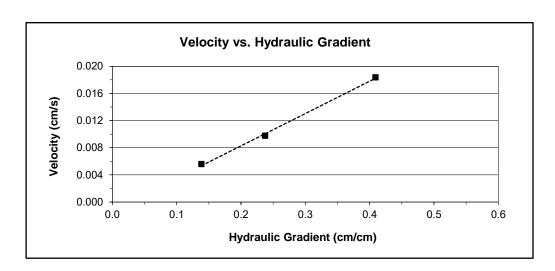
Sample Number: GC-1S-4 0-2.5' (1.40 g/cc)

Project Name: CCP-BMI 181-06417

Sample length (cm): 7.57

Sample diameter (cm): 6.10

Depth: 0'-2.5' Sample x-sectional area (cm²): 29.25


Date	Time	Temp (°C)	Head (cm)	Q + Tare (g)	Q (cm ³)	Elapsed time (sec)	Ksat (cm/sec)	Ksat @ 20°C (cm/sec)
Test # 1: 17-Apr-19 17-Apr-19	16:27:00 16:28:00	21.5	3.1	61.69	32.2	60	4.5E-02	4.3E-02
Test # 2: 17-Apr-19 17-Apr-19	16:41:00 16:43:00	21.5	1.8	63.67	34.2	120	4.1E-02	4.0E-02
Test # 3: 17-Apr-19 17-Apr-19	17:12:00 17:14:00	21.5	1.05	48.98	19.5	120	4.0E-02	3.9E-02

Average Ksat (cm/sec): 4.1E-02

Oversize Corrected Ksat (cm/sec): 2.4E-02

Comments:

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Job Name: Golder Associates, Inc.

Job Number: DB19.1112.00

Sample Number: GC-1S-4 0-2.5' (1.40 g/cc) Project Name: CCP-BMI 181-06417

Depth: 0'-2.5'

Split (3/4", 3/8", #4): #10

Calculated Porosity of Fines (% vol): 47.6

	Coarse Fraction*	Fines Fraction	<u>Composite</u>
Subsample Mass (g):	10756.69	14967.81	25724.50
Bulk Density (g/cm³):	2.68	1.40	1.75
Volume of Solids (cm ³):	4020.90	5595.04	9615.94
Volume of Voids (cm ³):	0.00	5086.63	5086.63
Total Volume (cm ³):	4020.90	10681.67	14702.57
Volumetric Fraction (%):	27.35	72.65	100.00
Mass Fraction (%):	41.81	58.19	100.00
Ksat (cm/sec):	NM	4.1E-02	2.4E-02

^{* =} Porosity and moisture content of coarse fraction assumed to be zero.

NM = Not measured

^{--- =} Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Saturated Hydraulic Conductivity Constant Head Method

Job Name: Golder Associates, Inc.

Type of water used: TAP

Job Number: DB19.1112.00 Collection vessel tare (g): 10.96

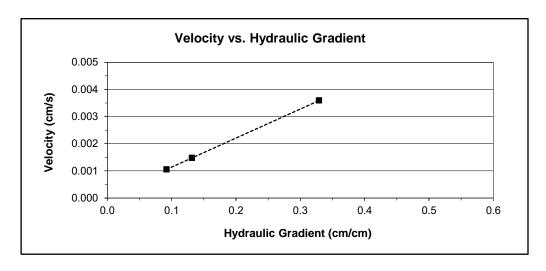
Sample Number: PG-9A-2 Bulk (1.41 g/cc)

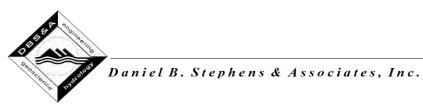
Project Name: CCP-BMI 181-06417

Sample length (cm): 7.60

Sample diameter (cm): 6.08

Depth: NA Sample x-sectional area (cm²): 28.99


Date	Time	Temp (°C)	Head (cm)	Q + Tare (g)	Q (cm³)	Elapsed time (sec)	Ksat (cm/sec)	Ksat @ 20°C (cm/sec)
Test # 1: 17-Apr-19 17-Apr-19	16:29:00 16:31:00	21.5	2.5	23.45	12.5	120	1.1E-02	1.1E-02
Test # 2: 17-Apr-19 17-Apr-19	16:43:30 16:45:30	21.5	1	16.10	5.1	120	1.1E-02	1.1E-02
Test # 3: 17-Apr-19 17-Apr-19	17:14:30 17:16:30	21.5	0.7	14.62	3.7	120	1.1E-02	1.1E-02


Average Ksat (cm/sec): 1.1E-02

Oversize Corrected Ksat (cm/sec): 5.3E-03

Comments:

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Job Name: Golder Associates, Inc.

Job Number: DB19.1112.00

Sample Number: PG-9A-2 Bulk (1.41 g/cc)
Project Name: CCP-BMI 181-06417

Depth: NA

Split (3/4", 3/8", #4): #10 Calculated Porosity of Fines (% vol): 47.4

	Coarse Fraction*	Fines Fraction	Composite
Subsample Mass (g):	12678.51	12004.12	24682.63
Bulk Density (g/cm³):	2.67	1.41	1.86
Volume of Solids (cm ³):	4742.58	4490.31	9232.89
Volume of Voids (cm ³):	0.00	4050.36	4050.36
Total Volume (cm ³):	4742.58	8540.67	13283.25
Volumetric Fraction (%):	35.70	64.30	100.00
Mass Fraction (%):	51.37	48.63	100.00
Ksat (cm/sec):	NM	1.1E-02	5.3E-03

^{* =} Porosity and moisture content of coarse fraction assumed to be zero.

NM = Not measured

^{--- =} Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Saturated Hydraulic Conductivity Constant Head Method

Job Name: Golder Associates, Inc.

Type of water used: TAP

Job Number: DB19.1112.00

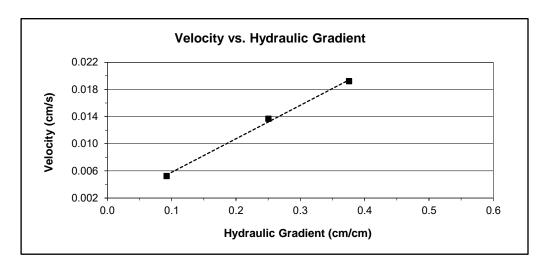
Collection vessel tare (g): 51.06

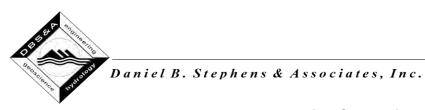
Sample Number: PG-9A-1 Bulk (1.41 g/cc)

Project Name: CCP-BMI 181-06417

Sample diameter (cm): 6.10

Depth: NA Sample x-sectional area (cm²): 29.18


Date	Time	Temp (°C)	Head (cm)	Q + Tare (g)	Q (cm ³)	Elapsed time (sec)	Ksat (cm/sec)	Ksat @ 20°C (cm/sec)
Test # 1: 17-Apr-19 17-Apr-19	16:23:30 16:25:30	21.5	2.85	118.26	67.2	120	5.1E-02	4.9E-02
Test # 2: 17-Apr-19 17-Apr-19	16:37:30 16:39:30	21.5	1.9	98.86	47.8	120	5.4E-02	5.3E-02
Test # 3: 17-Apr-19 17-Apr-19	17:08:30 17:10:30	21.5	0.7	69.32	18.3	120	5.6E-02	5.5E-02


Average Ksat (cm/sec): 5.2E-02

Oversize Corrected Ksat (cm/sec): 1.5E-02

Comments:

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Job Name: Golder Associates, Inc.

Job Number: DB19.1112.00

Sample Number: PG-9A-1 Bulk (1.41 g/cc)
Project Name: CCP-BMI 181-06417

Depth: NA

Split (3/4", 3/8", #4): #10 Calculated Porosity of Fines (% vol): 48.1

	Coarse Fraction*	Fines Fraction	<u>Composite</u>
Subsample Mass (g):	18031.67	6946.72	24978.39
Bulk Density (g/cm³):	2.71	1.41	2.15
Volume of Solids (cm ³):	6657.48	2564.80	9222.29
Volume of Voids (cm ³):	0.00	2376.14	2376.14
Total Volume (cm ³):	6657.48	4940.94	11598.43
Volumetric Fraction (%):	57.40	42.60	100.00
Mass Fraction (%):	72.19	27.81	100.00
Ksat (cm/sec):	NM	5.2E-02	1.5E-02

^{* =} Porosity and moisture content of coarse fraction assumed to be zero.

NM = Not measured

^{--- =} Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Saturated Hydraulic Conductivity Constant Head Method

Job Name: Golder Associates, Inc.

Type of water used: TAP

Job Number: DB19.1112.00 Collection vessel tare (g): 29.08

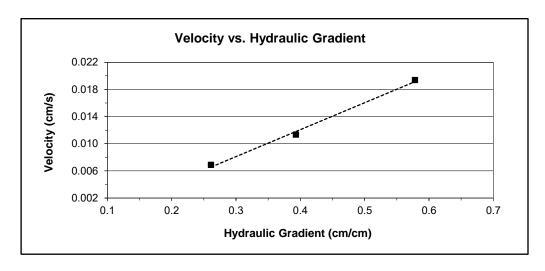
Sample Number: PG-9AX-1 Bulk (1.41 g/cc)

Project Name: CCP-BMI 181-06417

Sample length (cm): 7.57

Sample diameter (cm): 6.08

Depth: NA Sample x-sectional area (cm²): 29.04


Date	Time	Temp (°C)	Head (cm)	Q + Tare (g)	Q (cm³)	Elapsed time (sec)	Ksat (cm/sec)	Ksat @ 20°C (cm/sec)
Test # 1: 17-Apr-19 17-Apr-19	15:58:30 15:59:30	21.5	4	62.83	33.8	60	3.7E-02	3.5E-02
Test # 2: 17-Apr-19 17-Apr-19	16:40:30 16:42:30	21.5	2.6	68.53	39.5	120	3.3E-02	3.2E-02
Test # 3: 17-Apr-19 17-Apr-19	17:11:30 17:13:30	21.5	1.6	53.01	23.9	120	3.2E-02	3.1E-02

Average Ksat (cm/sec): 3.3E-02

Oversize Corrected Ksat (cm/sec): 8.2E-03

Comments:

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Job Name: Golder Associates, Inc.

Job Number: DB19.1112.00

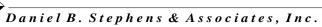
Sample Number: PG-9AX-1 Bulk (1.41 g/cc)

Project Name: CCP-BMI 181-06417

Depth: NA

Split (3/4", 3/8", #4): #10

Calculated Porosity of Fines (% vol): 47.5

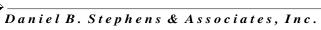

	Coarse Fraction*	Fines Fraction	<u>Composite</u>
Subsample Mass (g):	17580.25	5830.02	23410.27
Bulk Density (g/cm ³):	2.68	1.41	2.19
Volume of Solids (cm ³):	6551.37	2172.59	8723.95
Volume of Voids (cm ³):	0.00	1968.65	1968.65
Total Volume (cm³):	6551.37	4141.24	10692.60
Volumetric Fraction (%):	61.27	38.73	100.00
Mass Fraction (%):	75.10	24.90	100.00
Ksat (cm/sec):	NM	3.3E-02	8.2E-03

^{* =} Porosity and moisture content of coarse fraction assumed to be zero.

NM = Not measured

^{--- =} Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Moisture Retention Characteristics



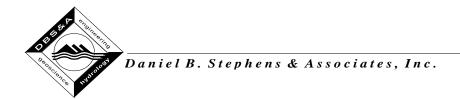
Summary of Moisture Characteristics of the Initial Drainage Curve

Sample Number	Pressure Head (-cm water)	Moisture Content (%, cm ³ /cm ³)
	•	
GC-LS-2 6-7' (1.41 g/cc)	0	45.4
	7	45.9 ^{‡‡}
	10	45.7 #
	45	29.5 #
	220	21.0 #
	4487	12.2 #
	27841	9.4 #
	280955	5.7 ^{‡‡}
	854732	4.9 #
GC-1S-2 4-6' (1.40 g/cc)	0	49.4
,	18	49.0
	54	40.5
	125	35.4
	337	31.8
	16113	17.1
	52724	13.3
	296150	9.0
	854732	7.5
GC-1S-3 2-6.5' (1.40 g/cc)	0	46.6
GC-13-3 2-0.3 (1.40 g/cc)	7	40.0 42.6 ^{‡‡}
	10	42.0 **
	45	36.4 [#]
	220	25.5 [#]
	2855	13.6 #
	24169	8.2 #
	255766	4.7 #
	854732	3.3 #

^{‡‡} Volume adjustments are applicable at this matric potential (see data sheet for this sample).

Summary of Moisture Characteristics of the Initial Drainage Curve (Continued)

Sample Number	Pressure Head (-cm water)	Moisture Content (%, cm ³ /cm ³)
GC-1S-4 0-2.5' (1.40 g/cc)	0	48.1
(g)	7	46.1 #
	10	43.8 ^{‡‡}
	45	24.7 #
	220	13.8 ^{‡‡}
	3671	8.4 #
	44667	5.5 ^{‡‡}
	236390	3.9 #
	854732	3.4 #
	854732	3.4 #
PG-9A-2 Bulk (1.41 g/cc)	0	46.6
	7	42.8 #
	10	40.6 ^{‡‡}
	45	34.6 #
	220	19.5 ^{‡‡}
	5813	8.3 #
	40078	4.4 **
	355706	2.5 ^{‡‡}
	854732	1.9 #
	854732	1.9 #
PG-9A-1 Bulk (1.41 g/cc)	0	48.0
	7	47.4 #
	10	41.4 #
	45	24.0 ^{‡‡}
	220	17.7 #
	8872	7.8 #
	63839	5.1 ^{‡‡}
	318484	3.2 #
	854732	2.8 #
	854732	2.8 #


^{‡‡} Volume adjustments are applicable at this matric potential (see data sheet for this sample).

Summary of Moisture Characteristics of the Initial Drainage Curve (Continued)

Sample Number	Pressure Head (-cm water)	Moisture Content (%, cm ³ /cm ³)
PG-9AX-1 Bulk (1.41 g/cc)	0	47.2
, ,	7	46.1
	10	41.1 #
	45	24.8 ^{‡‡}
	220	17.8 ^{‡‡}
	3263	10.3 #
	47931	5.1 ^{‡‡}
	228333	4.3 ^{‡‡}
	854732	2.9 ^{‡‡}
	854732	2.9 #

^{‡‡} Volume adjustments are applicable at this matric potential (see data sheet for this sample).

Summary of Calculated Unsaturated Hydraulic Properties

					Oversize	Corrected	
Sample Number	α (cm ⁻¹)	N (dimensionless)	$ heta_{ m r}$ (% vol)	$ heta_{s}$ (% vol)	$ heta_{ m r}$ (% vol)	$ heta_{s}$ (% vol)	
GC-LS-2 6-7' (1.41 g/cc)	0.0623	1.3862	5.69	47.63	2.77	23.55	
GC-1S-2 4-6' (1.40 g/cc)	0.0430	1.1756	0.00	50.46	0.00	39.22	
GC-1S-3 2-6.5' (1.40 g/cc)	0.0470	1.2422	0.00	45.38	0.00	35.41	
GC-1S-4 0-2.5' (1.40 g/cc)	0.0651	1.6073	4.40	49.23	3.12	35.76	
PG-9A-2 Bulk (1.41 g/cc)	0.0495	1.3279	0.62	45.60	0.37	29.32	
PG-9A-1 Bulk (1.41 g/cc)	0.0923	1.4348	3.41	49.67	1.43	21.16	
PG-9AX-1 Bulk (1.41 g/cc)	0.0976	1.3909	3.28	48.72	1.25	18.87	

^{--- =} Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NR = Not requested

NA = Not applicable

Moisture Retention Data Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name: Golder Associates, Inc.

Dry wt. of sample (g): 311.83

Job Number: DB19.1112.00

Tare wt., ring (g): 136.97

Sample Number: GC-LS-2 6-7' (1.41 g/cc) Project Name: CCP-BMI 181-06417

Tare wt., screen & clamp (g): 27.58 Initial sample volume (cm³): 221.58

Initial dry bulk density (g/cm3): 1.41

Depth: 6'-7'

Measured particle density (g/cm3): 2.67

Initial calculated total porosity (%): 47.26

			Weight*	Matric Potential	Moisture Content †	
_	Date	Time	(g)	(-cm water)	(% vol)	
Hanging column:	18-Apr-19	8:00	577.00	0	45.41	
	25-Apr-19	13:50	577.35	7.0	45.94	‡‡
	2-May-19	7:45	574.57	10.0	45.68	‡‡
	9-May-19	8:30	539.77	45.0	29.49	‡‡
	16-May-19	10:45	521.42	220.0	20.95	‡‡

Volume Adjusted Data 1

					Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Hanging column:	0.0				
	7.0	219.76	-0.82%	1.42	46.82
	10.0	214.96	-2.99%	1.45	45.64
	45.0	214.96	-2.99%	1.45	45.64
	220.0	214.96	-2.99%	1.45	45.64

Comments:

Technician Notes:

Laboratory analysis by: D. O'Dowd/A. Bland

Data entered by: C. Krous Checked by: J. Hines

¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.

² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

^{*} Weight including tares

[†] Assumed density of water is 1.0 g/cm³

^{##} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: GC-LS-2 6-7' (1.41 g/cc)

Initial sample bulk density (g/cm³): 1.41

Fraction of test sample used (<2.00mm fraction) (%): 100.00

Dry weight* of dew point potentiometer sample (g): 172.35

Tare weight, jar (g): 114.84

			Weight*	Water Potential	Moisture Content [†]	
_	Date	Time	(g)	(-cm water)	(% vol)	_
Dew point potentiometer:	23-May-19	10:45	177.20	4487	12.24	‡‡
	20-May-19	10:39	176.07	27841	9.39	‡‡
	14-May-19	11:46	174.62	280955	5.73	_‡‡

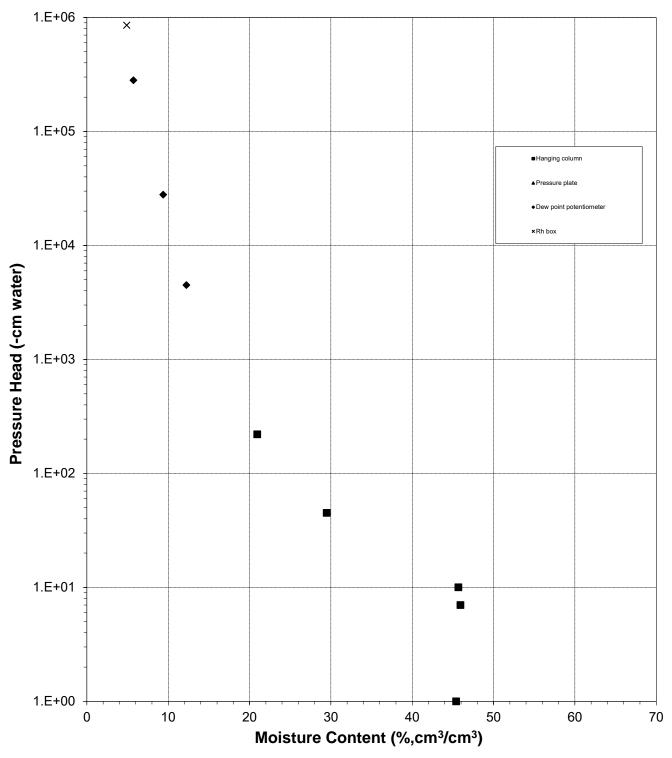
	Volume Adjusted Data 1					
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
Dew point potentiometer:	4487	214.96	-2.99%	1.45	45.64	
	27841	214.96	-2.99%	1.45	45.64	
	280955	214.96	-2.99%	1.45	45.64	

Dry weight* of relative humidity box sample (g): 73.22

Tare weight (g): 41.74

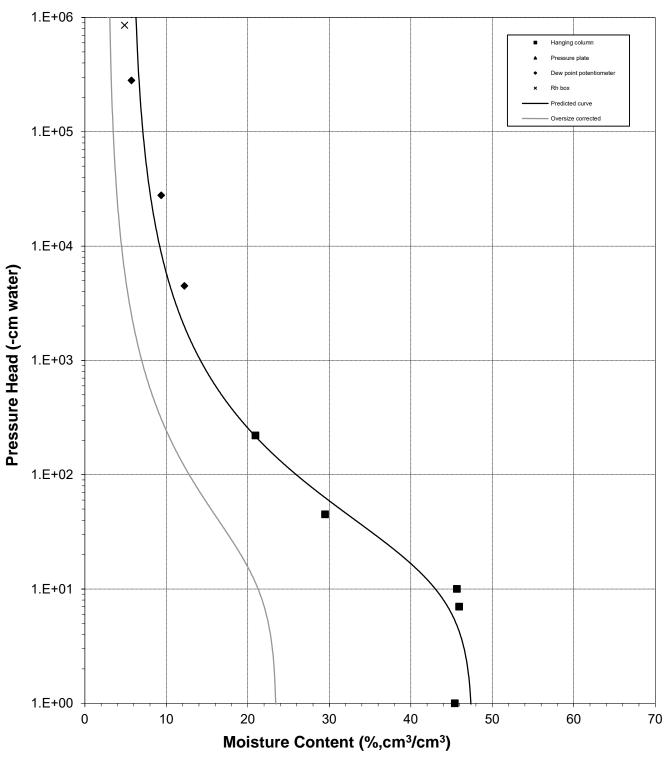
	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)	
Relative humidity box:	16-May-19	17:00	74.28	854732	4.89	‡‡
			Volume Adjust	ted Data ¹		
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	_
Relative humidity box:	854732	214.96	-2.99%	1.45	45.64	_

Comments:

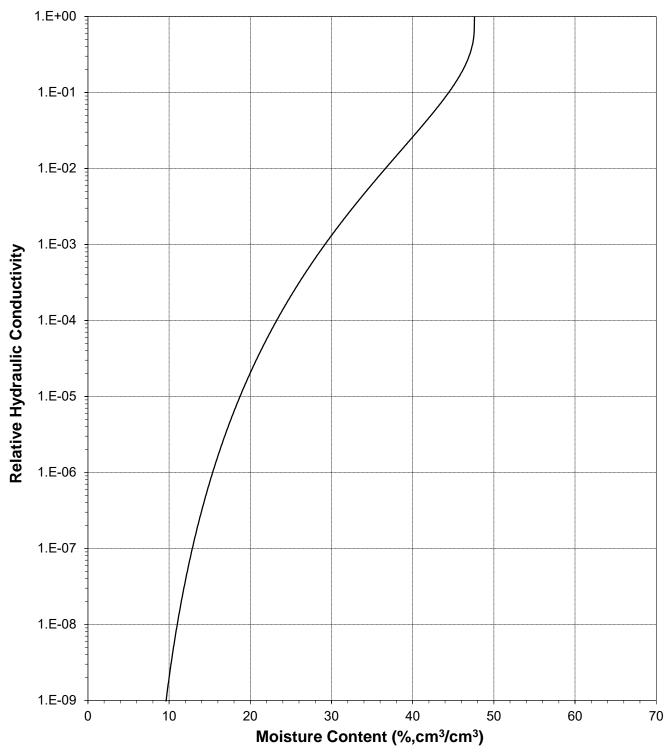

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares
- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Laboratory analysis by: L. Thurgood/C. Krous

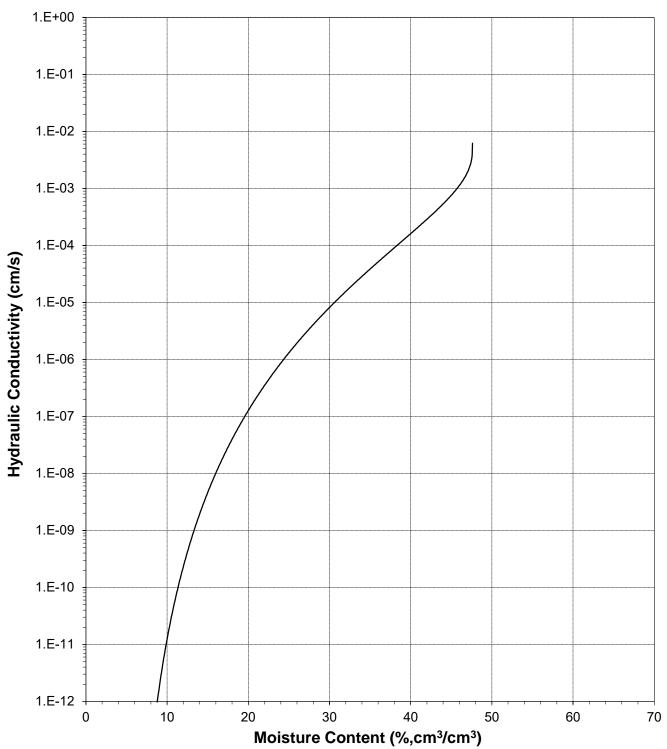
Data entered by: C. Krous Checked by: J. Hines



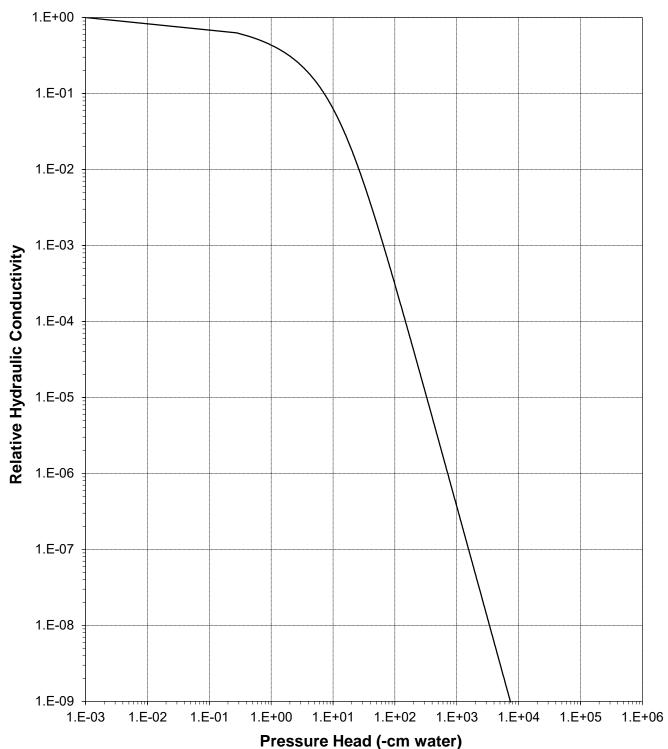
Water Retention Data Points



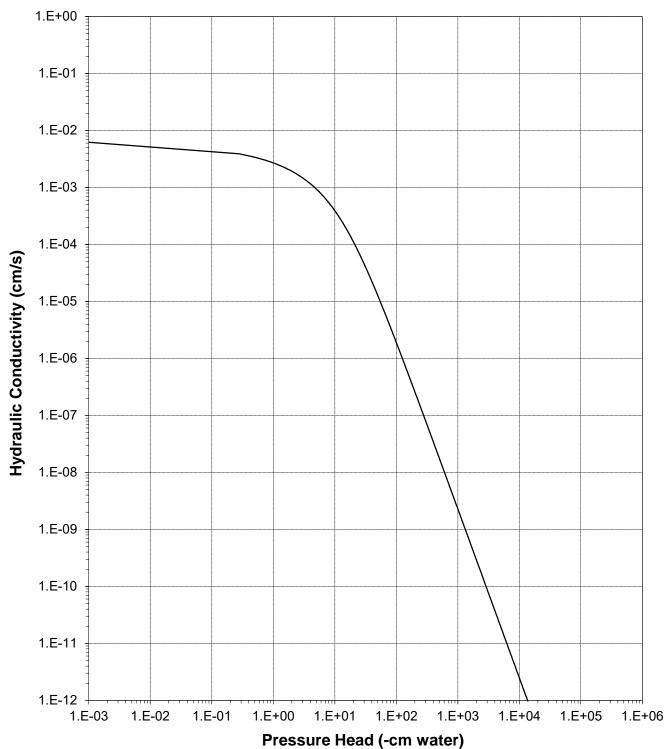
Predicted Calibration Curve and Data Points



Plot of Relative Hydraulic Conductivity vs Moisture Content



Plot of Hydraulic Conductivity vs Moisture Content



Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Oversize Correction Data Sheet

Job Name: Golder Associates, Inc.

Job Number: DB19.1112.00

Sample Number: GC-LS-2 6-7' (1.41 g/cc)
Project Name: CCP-BMI 181-06417

Depth: 6'-7'

Split (3/4", 3/8", #4): #10

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	14554.51	7506.58	22061.09
Mass Fraction (%):	65.97	34.03	100.00
Initial Sample θ_i			
Bulk Density (g/cm³):	2.67	1.41	2.04
Calculated Porosity (% vol):	0.00	47.26	23.37
Volume of Solids (cm ³):	5454.51	2813.20	8267.71
Volume of Voids (cm ³):	0.00	2520.78	2520.78
Total Volume (cm ³):	5454.51	5333.98	10788.49
Volumetric Fraction (%):	50.56	49.44	100.00
Initial Moisture Content (% vol):	0.00	11.05	5.46
Saturated Sample θ_s			
Bulk Density (g/cm ³):	2.67	1.41	2.04
Calculated Porosity (% vol):	0.00	47.26	23.37
Volume of Solids (cm ³):	5454.51	2813.20	8267.71
Volume of Voids (cm ³):	0.00	2520.78	2520.78
Total Volume (cm³):	5454.51	5333.98	10788.49
Volumetric Fraction (%):	50.56	49.44	100.00
Saturated Moisture Content (% vol):	0.00	47.63	23.55
Residual Sample θ_r			
Bulk Density (g/cm³):	2.67	1.45	2.08
Calculated Porosity (% vol):	0.00	45.64	22.22
Volume of Solids (cm ³):	5454.51	2813.20	8267.71
Volume of Voids (cm ³):	0.00	2361.47	2361.47
Total Volume (cm³):	5454.51	5174.67	10629.19
Volumetric Fraction (%):	51.32	48.68	100.00
Residual Moisture Content (% vol):	0.00	5.69	2.77
Ksat (cm/sec):	NM	6.2E-03	2.1E-03

^{* =} Porosity and moisture content of coarse fraction assumed to be zero.

NM = Not measured

^{** =} Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

Moisture Retention Data Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name: Golder Associates, Inc.

Dry wt. of sample (g): 309.01

Job Number: DB19.1112.00

Tare wt., ring (g): 136.14

Sample Number: GC-1S-2 4-6' (1.40 g/cc) Project Name: CCP-BMI 181-06417

Tare wt., screen & clamp (g): 27.73

Initial sample volume (cm³): 220.14

Depth: 4'-6'

Initial dry bulk density (g/cm3): 1.40 Measured particle density (g/cm3): 2.71

Initial calculated total porosity (%): 48.13

	Date	Time	Weight* (g)	Matric Potential (-cm water)	Moisture Content [†] (% vol)
Hanging column:	23-Apr-19	13:00	581.73	0	49.45
	30-Apr-19	15:55	580.73	18.0	48.99
	7-May-19	14:45	562.01	54.0	40.49
	14-May-19	15:15	550.82	125.0	35.40
Pressure plate:	23-Mav-19	10:30	542.99	337	31.85

Volume Adjusted Data 1

					Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Hanging column:	0.0				
	18.0				
	54.0				
	125.0				
Pressure plate:	337				

Comments:

Technician Notes:

Laboratory analysis by: D. O'Dowd/A. Bland Data entered by: A. Albay-Yenney Checked by: J. Hines

¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.

² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

^{*} Weight including tares

[†] Assumed density of water is 1.0 g/cm³

^{##} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: GC-1S-2 4-6' (1.40 g/cc)

Initial sample bulk density (g/cm³): 1.40

Fraction of test sample used (<2.00mm fraction) (%): 100.00

Dry weight* of dew point potentiometer sample (g): 172.23

Tare weight, jar (q): 114.72

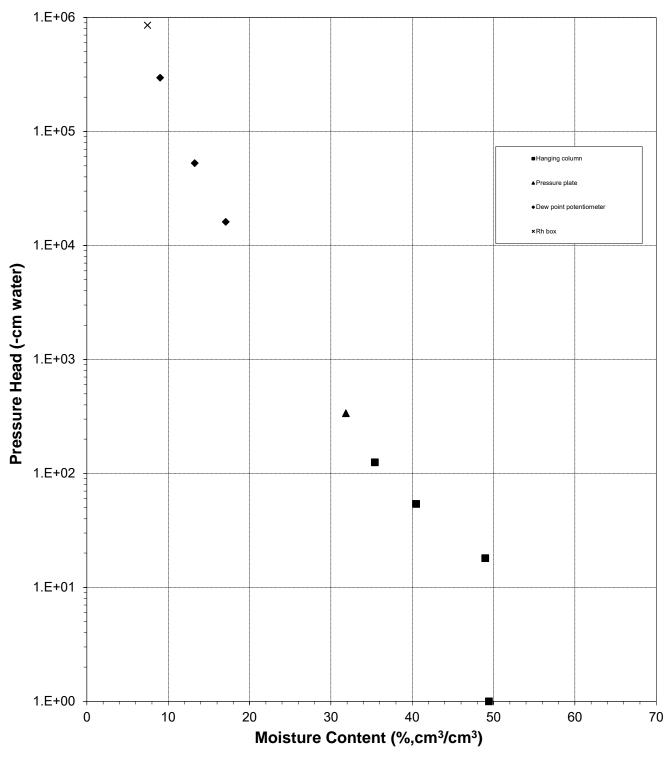
			Weight*	Water Potential	Moisture Content [†]
_	Date	Time	(g)	(-cm water)	(% vol)
Dew point potentiometer:	28-May-19	10:51	179.23	16113	17.09
	22-May-19	11:06	177.67	52724	13.27
_	17-May-19	14:40	175.93	296150	9.02

	Volume Adjusted Data 1				
	Water Potential	Adjusted Volume	% Volume Change ²	Adjusted Density	Adjusted Calc. Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Dew point potentiometer:	16113				
	52724				
	296150				

Dry weight* of relative humidity box sample (g): 65.18

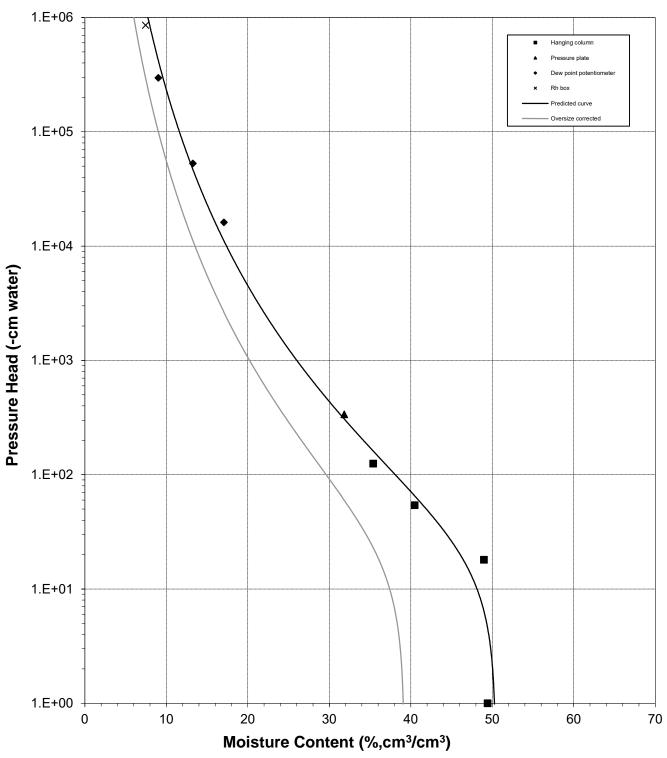
Tare weight (g): 38.02

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)
Relative humidity box:	16-May-19	17:00	66.62	854732	7.45
			Volume Adjust	ed Data ¹	
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Relative humidity box:	854732				

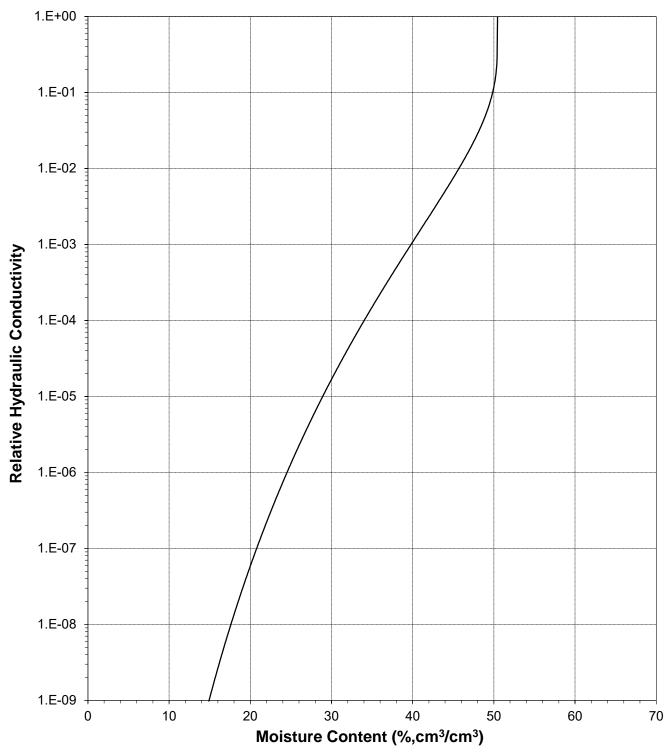

Comments:

- 1 Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares
- † Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

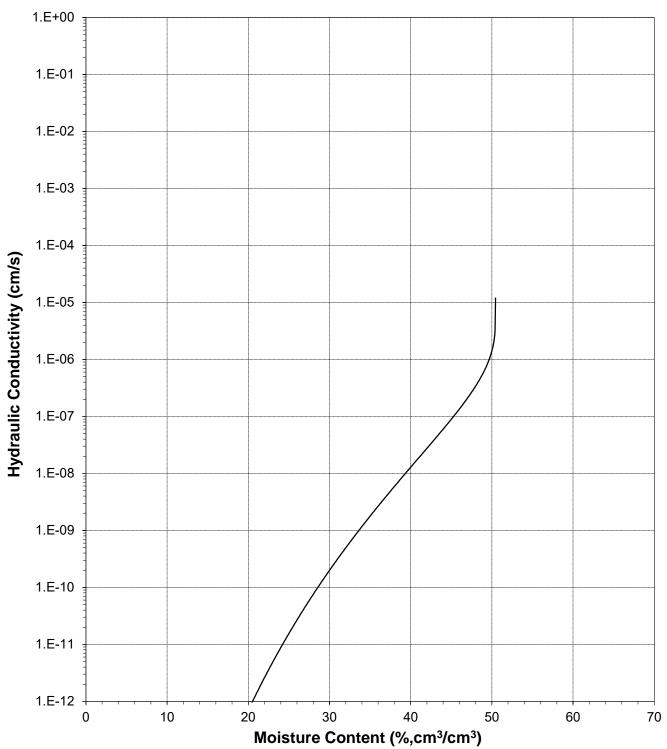
Laboratory analysis by: L. Thurgood/C. Krous Data entered by: A. Albay-Yenney Checked by: J. Hines



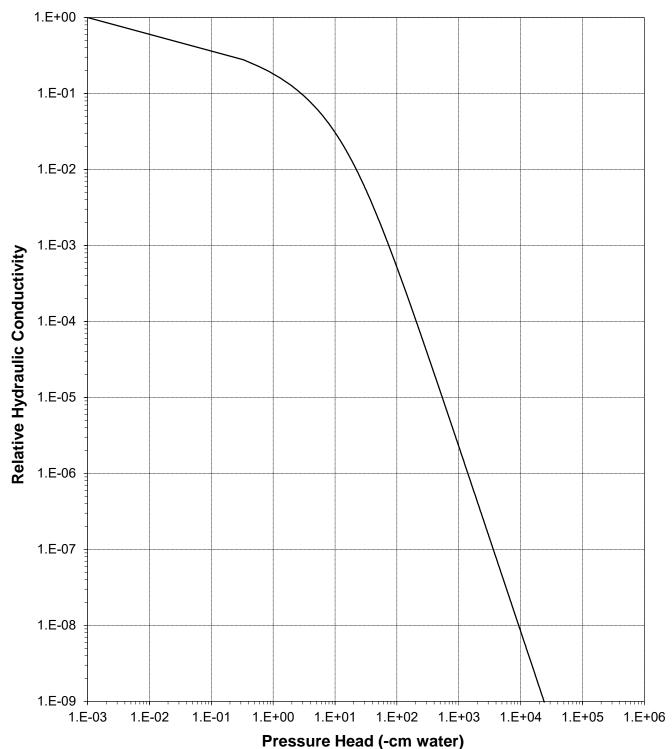
Water Retention Data Points



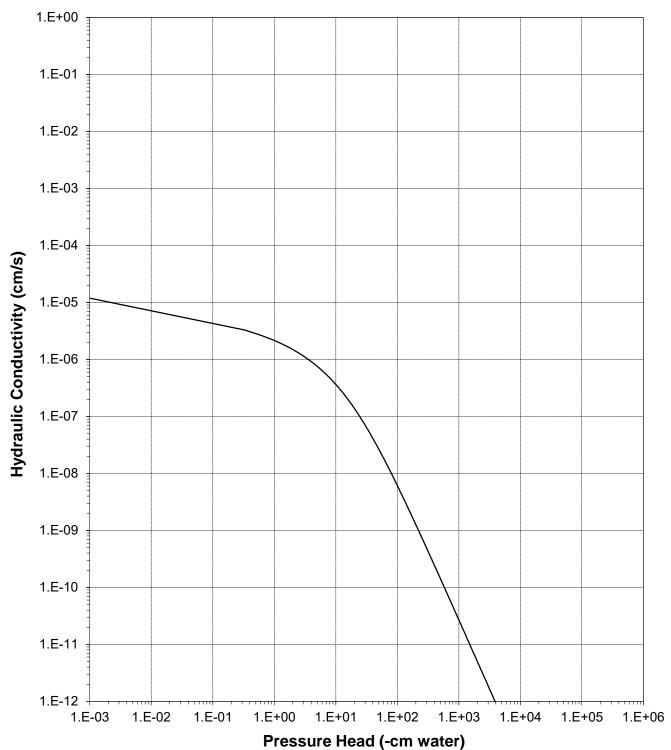
Predicted Calibration Curve and Data Points



Plot of Relative Hydraulic Conductivity vs Moisture Content



Plot of Hydraulic Conductivity vs Moisture Content



Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Oversize Correction Data Sheet

Job Name: Golder Associates, Inc.

Job Number: DB19.1112.00

Sample Number: GC-1S-2 4-6' (1.40 g/cc)
Project Name: CCP-BMI 181-06417

Depth: 4'-6'

Split (3/4", 3/8", #4): #10

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	6291.16	11388.65	17679.81
Mass Fraction (%):	35.58	64.42	100.00
Initial Sample $ heta_i$			
Bulk Density (g/cm³):	2.71	1.40	1.69
Calculated Porosity (% vol):	0.00	48.13	37.41
Volume of Solids (cm ³):	2324.80	4208.50	6533.31
Volume of Voids (cm ³):	0.00	3904.87	3904.87
Total Volume (cm ³):	2324.80	8113.37	10438.17
Volumetric Fraction (%):	22.27	77.73	100.00
Initial Moisture Content (% vol):	0.00	16.92	13.15
Saturated Sample θ_s			
Bulk Density (g/cm³):	2.71	1.40	1.69
Calculated Porosity (% vol):	0.00	48.13	37.41
Volume of Solids (cm ³):	2324.80	4208.50	6533.31
Volume of Voids (cm ³):	0.00	3904.87	3904.87
Total Volume (cm³):	2324.80	8113.37	10438.17
Volumetric Fraction (%):	22.27	77.73	100.00
Saturated Moisture Content (% vol):	0.00	50.46	39.22
Residual Sample θ_r			
Bulk Density (g/cm³):	2.71	1.40	1.69
Calculated Porosity (% vol):	0.00	48.13	37.41
Volume of Solids (cm ³):	2324.80	4208.50	6533.31
Volume of Voids (cm ³):	0.00	3904.87	3904.87
Total Volume (cm³):	2324.80	8113.37	10438.17
Volumetric Fraction (%):	22.27	77.73	100.00
Residual Moisture Content (% vol):	0.00	0.00	0.00
Ksat (cm/sec):	NM	1.2E-05	7.6E-06

^{* =} Porosity and moisture content of coarse fraction assumed to be zero.

NM = Not measured

^{** =} Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

Moisture Retention Data Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name: Golder Associates, Inc.

Dry wt. of sample (g): 307.23

Job Number: DB19.1112.00

Tare wt., ring (g): 136.40

Sample Number: GC-1S-3 2-6.5' (1.40 g/cc) Project Name: CCP-BMI 181-06417

Tare wt., screen & clamp (g): 27.57 Initial sample volume (cm³): 219.83

Initial dry bulk density (g/cm3): 1.40

Depth: 2'-6.5'

Measured particle density (g/cm3): 2.67 Initial calculated total porosity (%): 47.61

	Date	Time	Weight* (g)	Matric Potential (-cm water)	Moisture Content [†] (% vol)	
Hanging column:	18-Apr-19	8:00	573.54	0	46.55	
	25-Apr-19	13:50	552.00	7.0	42.63	##
	2-May-19	7:45	548.96	10.0	41.43	##
	9-May-19	8:30	539.59	45.0	36.44	‡‡
	16-May-19	10:45	519.06	220.0	25.50	‡‡

Volume Adjusted Data 1

					Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Hanging column:	0.0				
	7.0	189.54	-13.78%	1.62	39.24
	10.0	187.70	-14.61%	1.64	38.65
	45.0	187.70	-14.61%	1.64	38.65
	220.0	187.70	-14.61%	1.64	38.65

Comments:

Technician Notes:

Laboratory analysis by: D. O'Dowd/A. Bland

Data entered by: C. Krous Checked by: J. Hines

¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.

² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

^{*} Weight including tares

[†] Assumed density of water is 1.0 g/cm³

^{##} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: GC-1S-3 2-6.5' (1.40 g/cc)

Initial sample bulk density (g/cm³): 1.40

Fraction of test sample used (<2.00mm fraction) (%): 100.00

Dry weight* of dew point potentiometer sample (g): 175.08

Tare weight, jar (g): 114.59

			Weight*	Water Potential	Moisture Content [†]	
	Date	Time	(g)	(-cm water)	(% vol)	
Dew point potentiometer:	24-May-19	10:11	180.12	2855	13.63	‡‡
	20-May-19	10:14	178.12	24169	8.23	‡‡
	14-May-19	12:10	176.83	255766	4.75	_ ‡‡

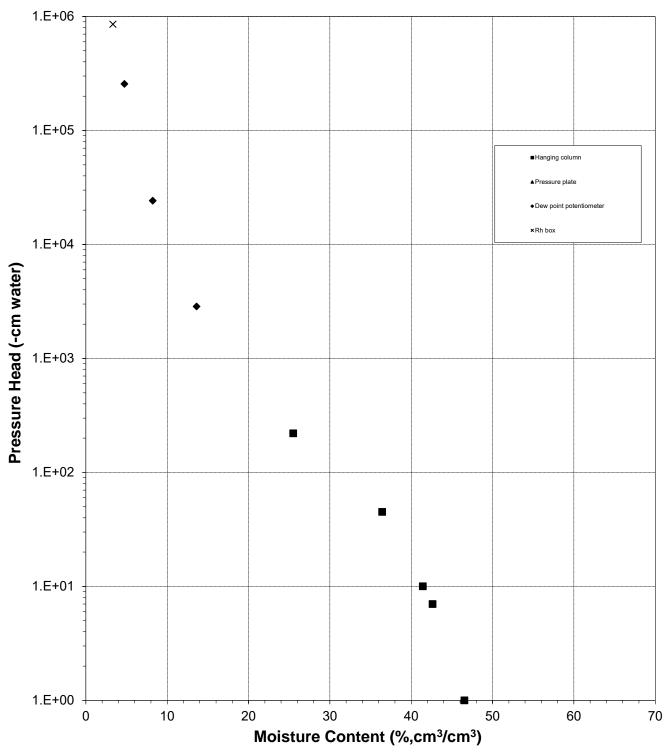
	Volume Adjusted Data ¹						
	Water	Adjusted	% Volume	Adjusted	Adjusted		
	Potential	Volume	Change ²	Density	Calc. Porosity		
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)		
Dew point potentiometer:	2855	187.70	-14.61%	1.64	38.65		
	24169	187.70	-14.61%	1.64	38.65		
_	255766	187.70	-14.61%	1.64	38.65		

Dry weight* of relative humidity box sample (g): 82.26

Tare weight (g): 40.97

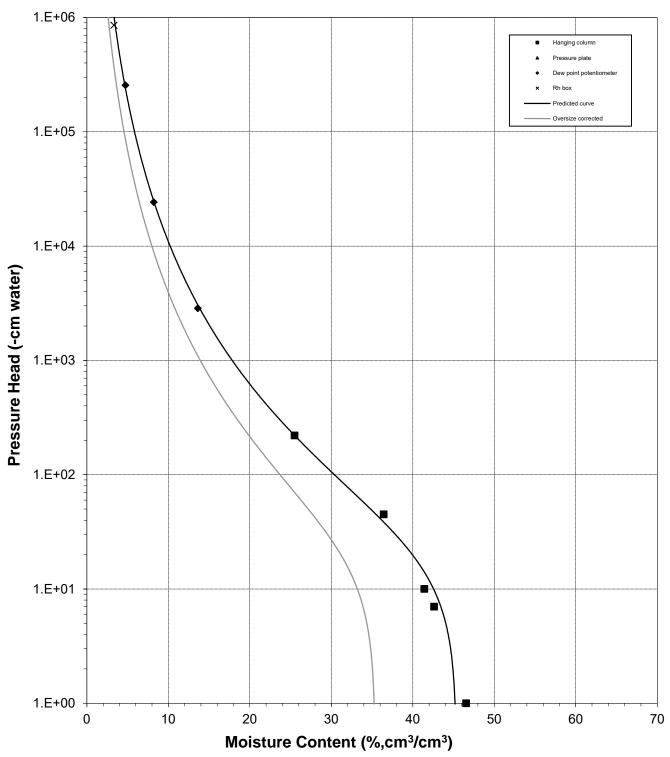
	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)	
Relative humidity box:	16-May-19	17:00	83.10	854732	3.33	_ ‡‡
			Volume Adjust	ed Data ¹		
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	_
Relative humidity box:	854732	187.70	-14.61%	1.64	38.65	_

Comments:

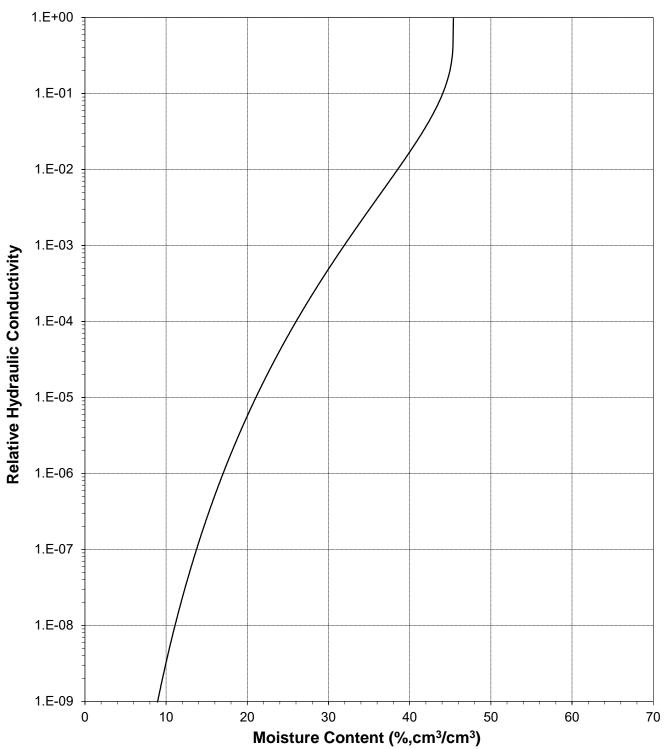

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares
- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Laboratory analysis by: L. Thurgood/C. Krous

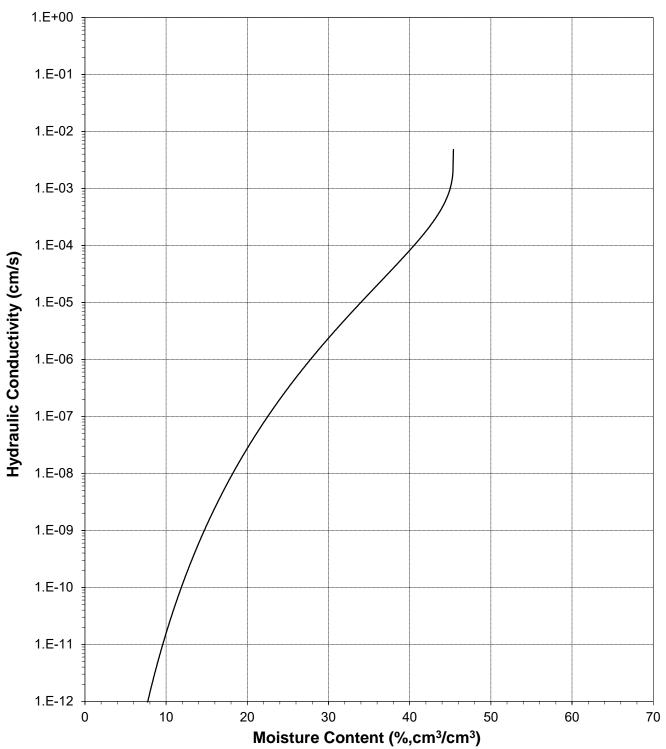
Data entered by: C. Krous Checked by: J. Hines



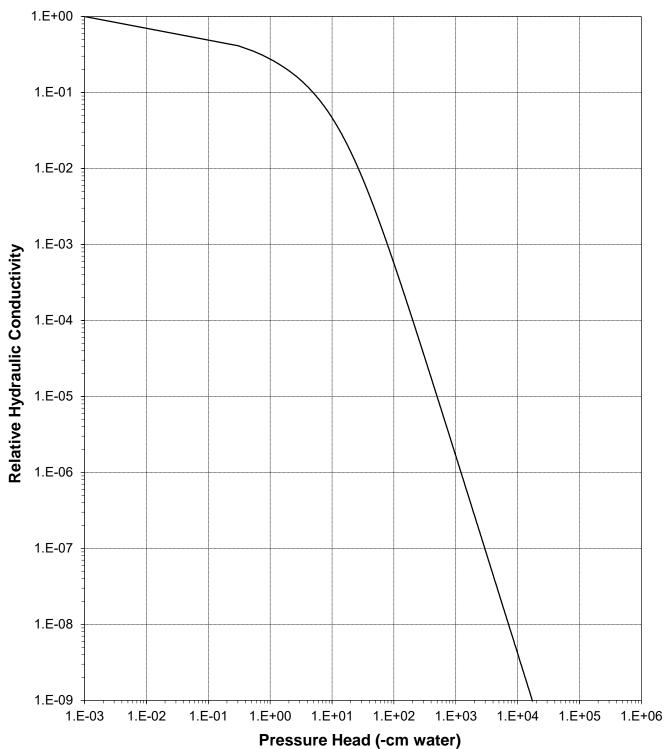
Water Retention Data Points



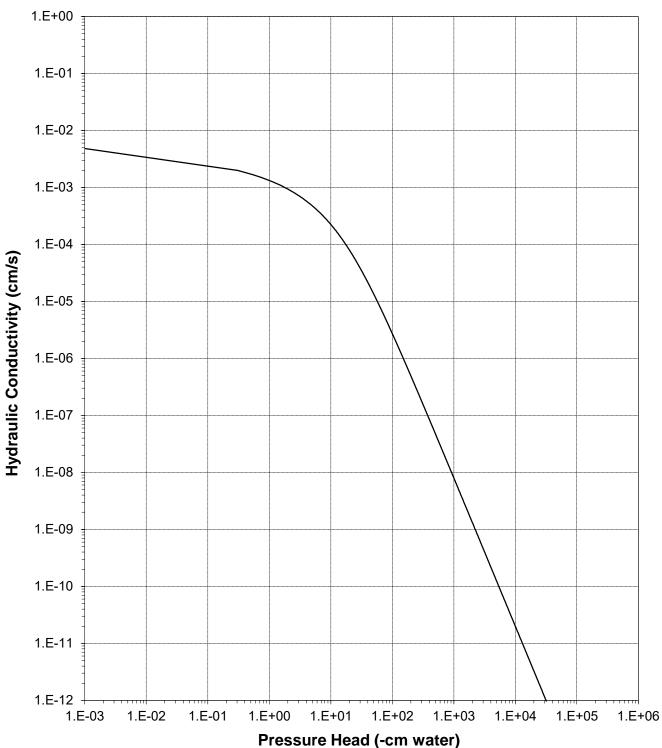
Predicted Calibration Curve and Data Points



Plot of Relative Hydraulic Conductivity vs Moisture Content



Plot of Hydraulic Conductivity vs Moisture Content



Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Oversize Correction Data Sheet

Job Name: Golder Associates, Inc.

Job Number: DB19.1112.00

Sample Number: GC-1S-3 2-6.5' (1.40 g/cc)
Project Name: CCP-BMI 181-06417

Depth: 2'-6.5'

Split (3/4", 3/8", #4): #10

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	7929.97	14745.71	22675.68
Mass Fraction (%):	34.97	65.03	100.00
Initial Sample θ_1			
Bulk Density (g/cm ³):	2.67	1.40	1.68
Calculated Porosity (% vol):	0.00	47.61	37.15
Volume of Solids (cm ³):	2972.52	5527.37	8499.89
Volume of Voids (cm ³):	0.00	5023.51	5023.51
Total Volume (cm³):	2972.52	10550.88	13523.40
Volumetric Fraction (%):	21.98	78.02	100.00
Initial Moisture Content (% vol):	0.00	8.77	6.84
Saturated Sample θ_s			
Bulk Density (g/cm ³):	2.67	1.40	1.68
Calculated Porosity (% vol):	0.00	47.61	37.15
Volume of Solids (cm ³):	2972.52	5527.37	8499.89
Volume of Voids (cm ³):	0.00	5023.51	5023.51
Total Volume (cm³):	2972.52	10550.88	13523.40
Volumetric Fraction (%):	21.98	78.02	100.00
Saturated Moisture Content (% vol):	0.00	45.38	35.41
Residual Sample θ_r			
Bulk Density (g/cm³):	2.67	1.64	1.89
Calculated Porosity (% vol):	0.00	38.65	29.06
Volume of Solids (cm ³):	2972.52	5527.37	8499.89
Volume of Voids (cm ³):	0.00	3481.60	3481.60
Total Volume (cm³):	2972.52	9008.97	11981.49
Volumetric Fraction (%):	24.81	75.19	100.00
Residual Moisture Content (% vol):	0.00	0.00	0.00
Ksat (cm/sec):	NM	4.8E-03	3.1E-03

^{* =} Porosity and moisture content of coarse fraction assumed to be zero.

NM = Not measured

^{** =} Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

Moisture Retention Data Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name: Golder Associates, Inc.

Dry wt. of sample (g): 310.43

Job Number: DB19.1112.00

Tare wt., ring (g): 137.39

Sample Number: GC-1S-4 0-2.5' (1.40 g/cc) Project Name: CCP-BMI 181-06417

Tare wt., screen & clamp (g): 24.18 Initial sample volume (cm³): 221.54

Initial dry bulk density (g/cm3): 1.40

Depth: 0'-2.5'

Measured particle density (g/cm3): 2.68

Initial calculated total porosity (%): 47.62

	Date	Time	Weight* (g)	Matric Potential (-cm water)	Moisture Content [†] (% vol)	
Hanging column:	18-Apr-19	8:00	578.55	0	48.10	
	25-Apr-19	13:50	568.21	7.0	46.15	##
	2-May-19	7:45	561.20	10.0	43.84	##
	9-May-19	8:30	522.34	45.0	24.74	##
	16-May-19	10:45	500.03	220.0	13.77	‡‡

Volume Adjusted Data 1

					Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Hanging column:	0.0				
	7.0	208.49	-5.89%	1.49	44.34
	10.0	203.49	-8.15%	1.53	42.97
	45.0	203.49	-8.15%	1.53	42.97
	220.0	203.49	-8.15%	1.53	42.97

Comments:

Technician Notes:

Laboratory analysis by: D. O'Dowd/A. Bland

Data entered by: C. Krous Checked by: J. Hines

¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.

² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

^{*} Weight including tares

[†] Assumed density of water is 1.0 g/cm³

^{##} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: GC-1S-4 0-2.5' (1.40 g/cc)

Initial sample bulk density (g/cm³): 1.40

Fraction of test sample used (<2.00mm fraction) (%): 100.00

Dry weight* of dew point potentiometer sample (g): 172.18

Tare weight, jar (g): 114.63

			Weight*	Water Potential	Moisture Content [†]	
_	Date	Time	(g)	(-cm water)	(% vol)	_
Dew point potentiometer:	24-May-19	10:24	175.34	3671	8.38	‡‡
	17-May-19	13:20	174.24	44667	5.46	‡‡
	13-May-19	11:41	173.65	236390	3.91	_‡‡

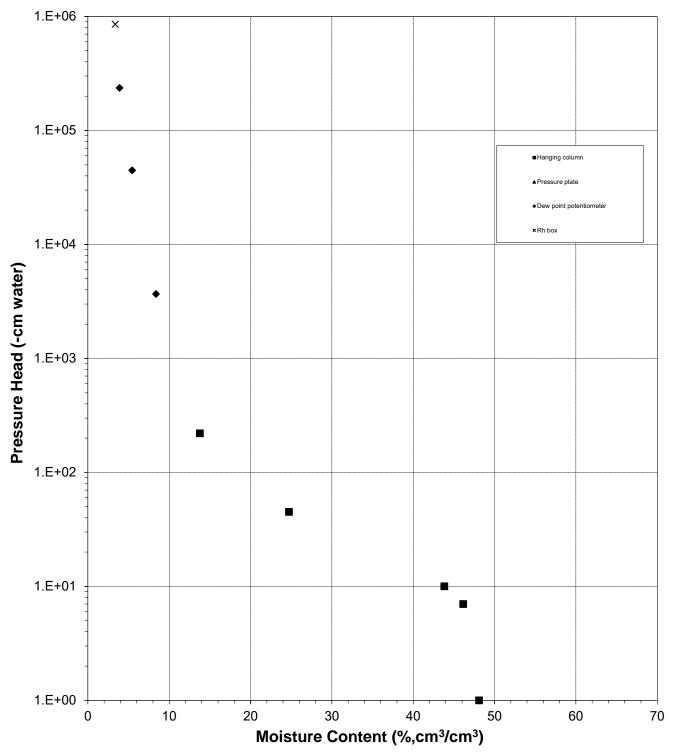
	<u>Volume Adjusted Data ¹</u>						
	Water	Adjusted	% Volume	Adjusted	Adjusted		
	Potential	Volume	Change ²	Density	Calc. Porosity		
_	(-cm water)	(cm³)	(%)	(g/cm ³)	(%)		
Dew point potentiometer:	3671	203.49	-8.15%	1.53	42.97		
	44667	203.49	-8.15%	1.53	42.97		
_	236390	203.49	-8.15%	1.53	42.97		

Dry weight* of relative humidity box sample (g): 75.99

Tare weight (g): 40.00

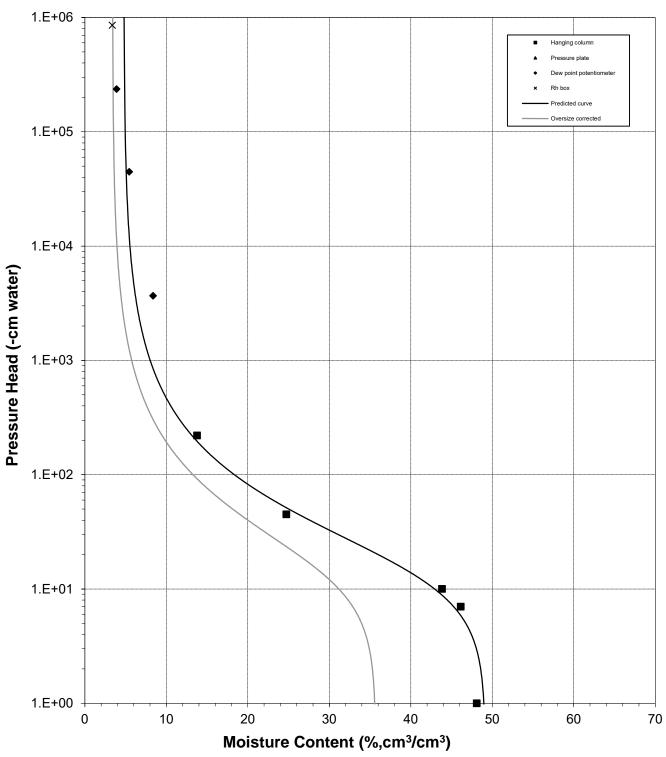
	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)	
Relative humidity box:	16-May-19	17:00	76.79	854732	3.37	‡‡
			Volume Adjust	ted Data ¹		
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	_
Relative humidity box:	854732	203.49	-8.15%	1.53	42.97	_

Comments:

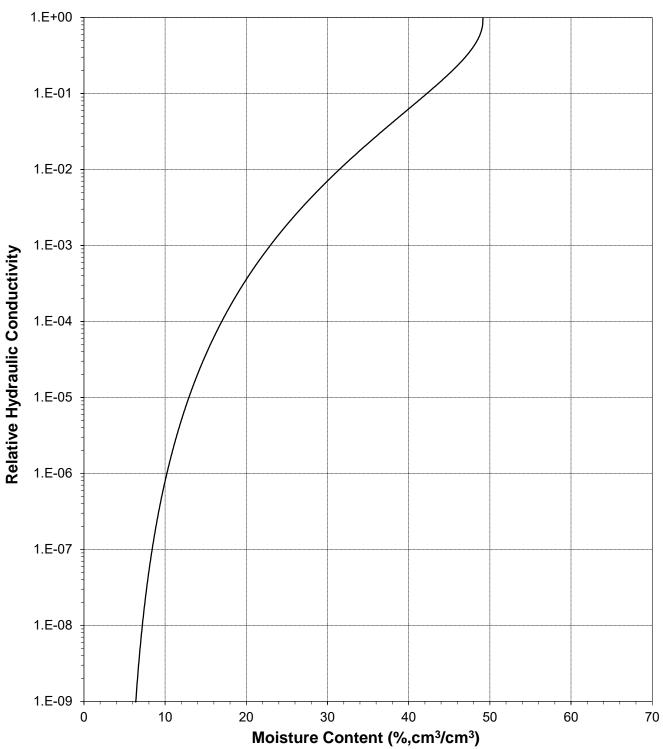

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares
- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Laboratory analysis by: L. Thurgood/C. Krous

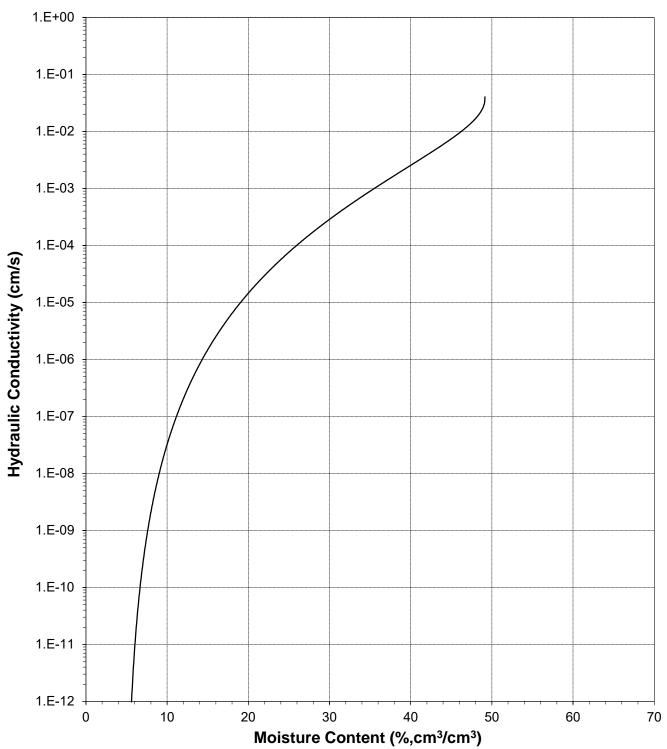
Data entered by: C. Krous Checked by: J. Hines



Water Retention Data Points

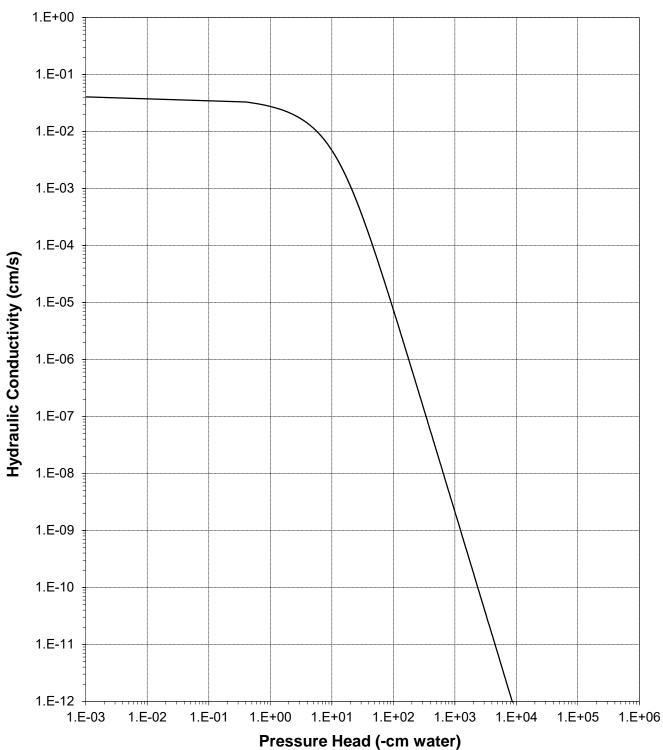


Predicted Calibration Curve and Data Points



Plot of Relative Hydraulic Conductivity vs Moisture Content

Plot of Hydraulic Conductivity vs Moisture Content



Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Oversize Correction Data Sheet

Job Name: Golder Associates, Inc.

Job Number: DB19.1112.00

Sample Number: GC-1S-4 0-2.5' (1.40 g/cc)
Project Name: CCP-BMI 181-06417

Depth: 0'-2.5'

Split (3/4", 3/8", #4): #10

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	10756.69	14967.81	25724.50
Mass Fraction (%):	41.81	58.19	100.00
Initial Sample θ_i			
Bulk Density (g/cm ³):	2.68	1.40	1.75
Calculated Porosity (% vol):	0.00	47.62	34.60
Volume of Solids (cm ³):	4020.90	5595.04	9615.94
Volume of Voids (cm ³):	0.00	5086.63	5086.63
Total Volume (cm³):	4020.90	10681.67	14702.57
Volumetric Fraction (%):	27.35	72.65	100.00
Initial Moisture Content (% vol):	0.00	9.65	7.01
Saturated Sample θ_s			
Bulk Density (g/cm ³):	2.68	1.40	1.75
Calculated Porosity (% vol):	0.00	47.62	34.60
Volume of Solids (cm ³):	4020.90	5595.04	9615.94
Volume of Voids (cm ³):	0.00	5086.63	5086.63
Total Volume (cm³):	4020.90	10681.67	14702.57
Volumetric Fraction (%):	27.35	72.65	100.00
Saturated Moisture Content (% vol):	0.00	49.16	35.71
Residual Sample θ_r			
Bulk Density (g/cm ³):	2.68	1.53	1.86
Calculated Porosity (% vol):	0.00	42.97	30.48
Volume of Solids (cm ³):	4020.90	5595.04	9615.94
Volume of Voids (cm ³):	0.00	4216.36	4216.36
Total Volume (cm³):	4020.90	9811.40	13832.30
Volumetric Fraction (%):	29.07	70.93	100.00
Residual Moisture Content (% vol):	0.00	4.78	3.39
Ksat (cm/sec):	NM	4.1E-02	2.4E-02

^{* =} Porosity and moisture content of coarse fraction assumed to be zero.

NM = Not measured

Laboratory analysis by: D. O'Dowd/A. Bland
Data entered by: C. Krous
Checked by: J. Hines

^{** =} Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

Moisture Retention Data Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name: Golder Associates, Inc.

Dry wt. of sample (g): 309.42

Job Number: DB19.1112.00

Tare wt., ring (g): 137.59

Sample Number: PG-9A-2 Bulk (1.41 g/cc) Project Name: CCP-BMI 181-06417

Tare wt., screen & clamp (g): 25.69 Initial sample volume (cm³): 220.15

Initial dry bulk density (g/cm3): 1.41

Depth: NA

Measured particle density (g/cm3): 2.67

Initial calculated total porosity (%): 47.42

	Date	Time	Weight* (g)	Matric Potential (-cm water)	Moisture Content [†] (% vol)	
Hanging column:	18-Apr-19	8:00	575.29	0	46.60	
	25-Apr-19	13:50	550.75	7.0	42.81	‡‡
	2-May-19	7:45	546.64	10.0	40.56	‡‡
	9-May-19	8:30	535.86	45.0	34.64	‡‡
	16-May-19	10:45	508.30	220.0	19.53	‡‡

Volume Adjusted Data 1

					Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Hanging column:	0.0				
	7.0	182.32	-17.18%	1.70	36.52
	10.0	182.32	-17.18%	1.70	36.52
	45.0	182.32	-17.18%	1.70	36.52
	220.0	182.32	-17.18%	1.70	36.52

Comments:

Technician Notes:

Laboratory analysis by: D. O'Dowd/A. Bland

Data entered by: C. Krous Checked by: J. Hines

¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.

² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

^{*} Weight including tares

[†] Assumed density of water is 1.0 g/cm³

^{##} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: PG-9A-2 Bulk (1.41 g/cc)

Initial sample bulk density (g/cm³): 1.41

Fraction of test sample used (<2.00mm fraction) (%): 100.00

Dry weight* of dew point potentiometer sample (g): 176.92

Tare weight, jar (g): 117.42

			Weight*	Water Potential	Moisture Content [†]	
	Date	Time	(g)	(-cm water)	(% vol)	_
Dew point potentiometer:	23-May-19	10:18	179.84	5813	8.32	‡‡
	16-May-19	16:15	178.46	40078	4.39	‡‡
	9-May-19	15:03	177.78	355706	2.45	_‡‡

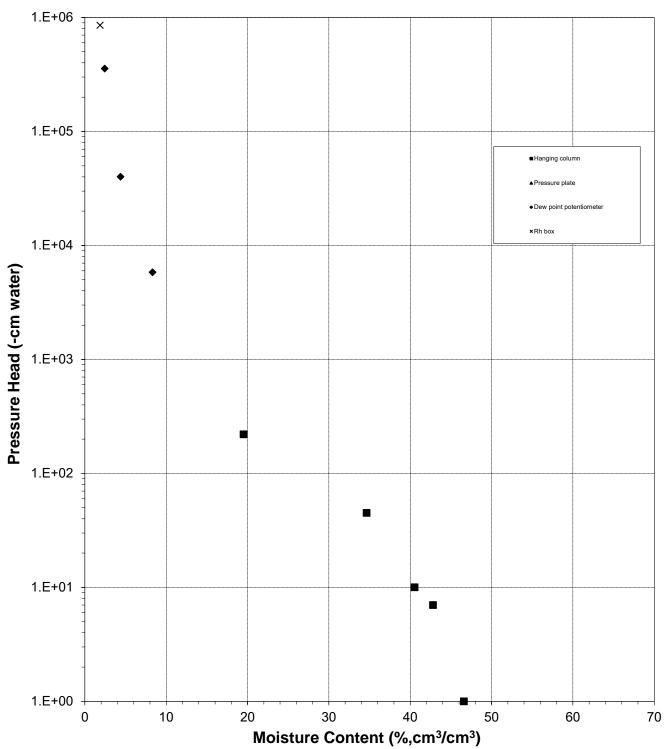
	<u>Volume Adjusted Data ¹</u>						
	Water	Adjusted	% Volume	Adjusted	Adjusted		
	Potential	Volume	Change ²	Density	Calc. Porosity		
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)		
Dew point potentiometer:	5813	182.32	-17.18%	1.70	36.52		
	40078	182.32	-17.18%	1.70	36.52		
_	355706	182.32	-17.18%	1.70	36.52		

Dry weight* of relative humidity box sample (g): 70.85

Tare weight (g): 39.93

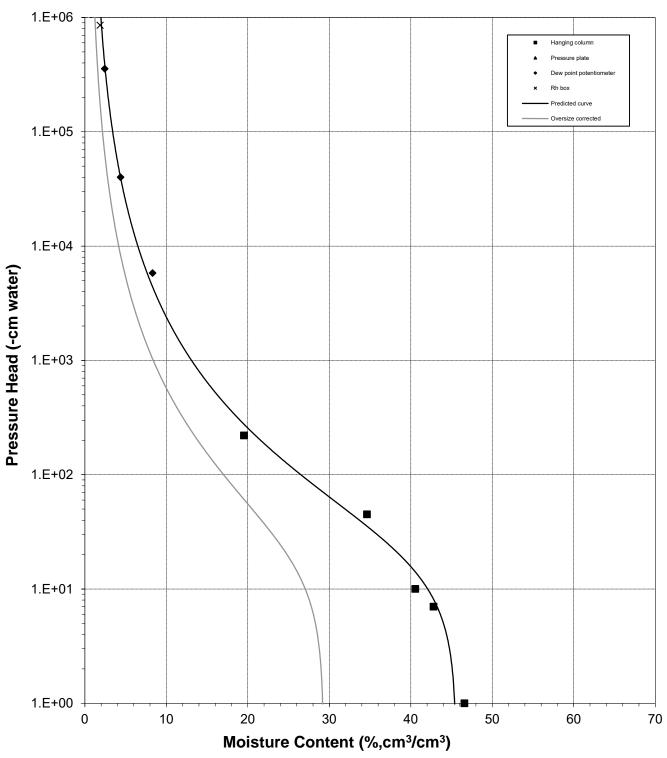
	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)	
Relative humidity box:	16-May-19	17:00	71.19	854732	1.88	‡‡
			Volume Adjust	ted Data ¹		
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	_
Relative humidity box:	854732	182.32	-17.18%	1.70	36.52	_

Comments:

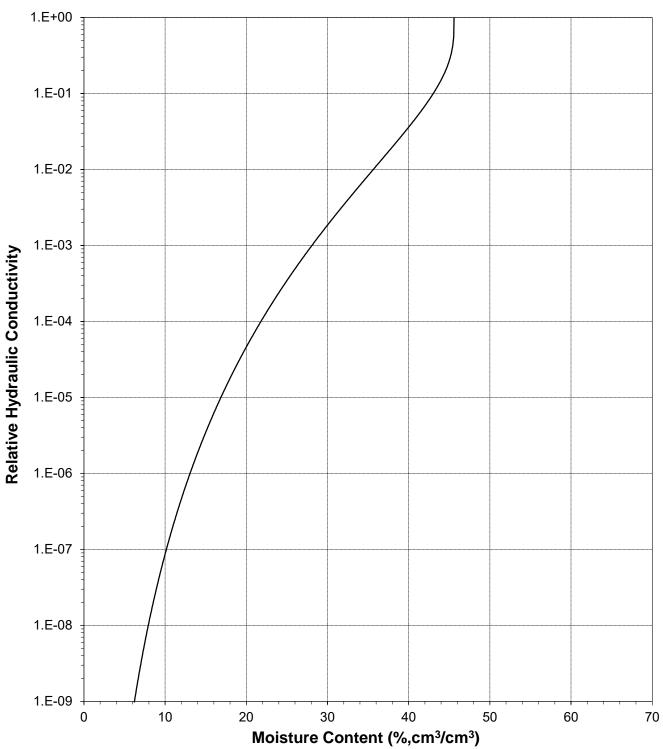

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares
- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Laboratory analysis by: L. Thurgood/C. Krous

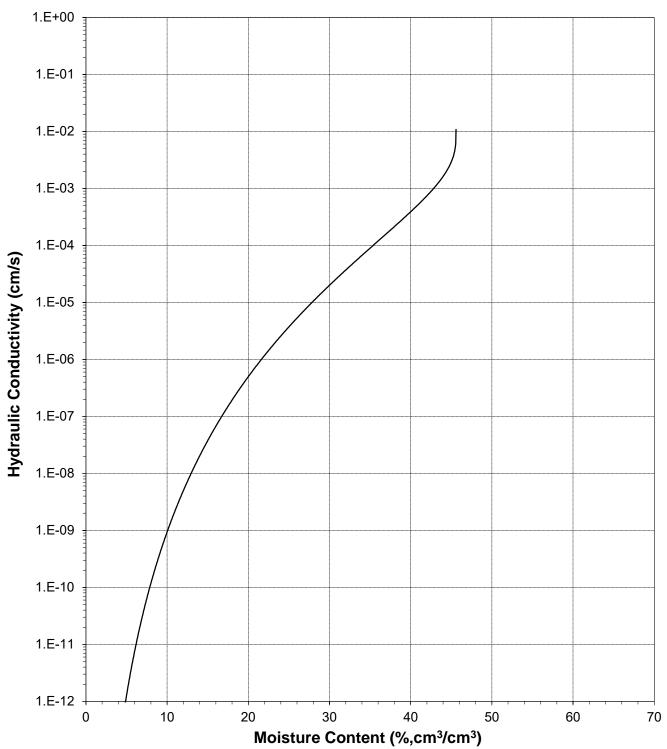
Data entered by: C. Krous Checked by: J. Hines



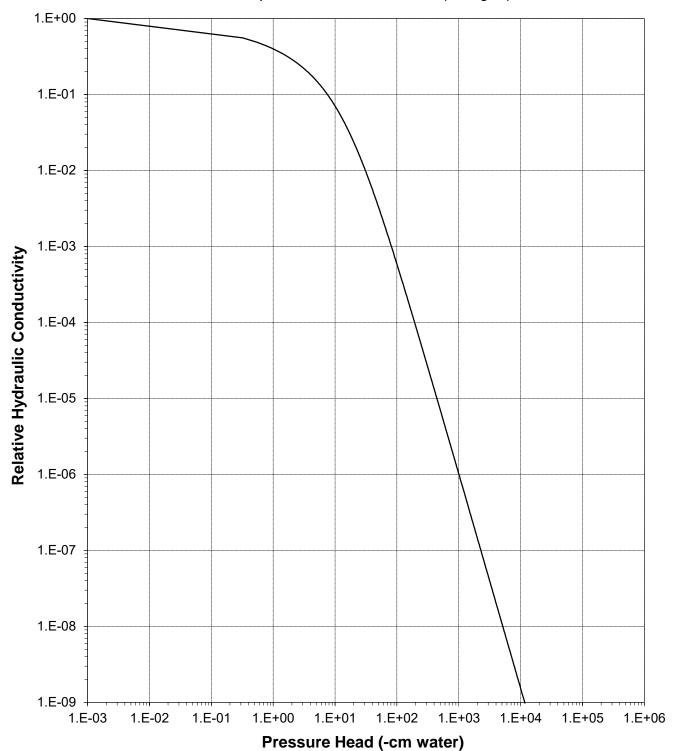
Water Retention Data Points



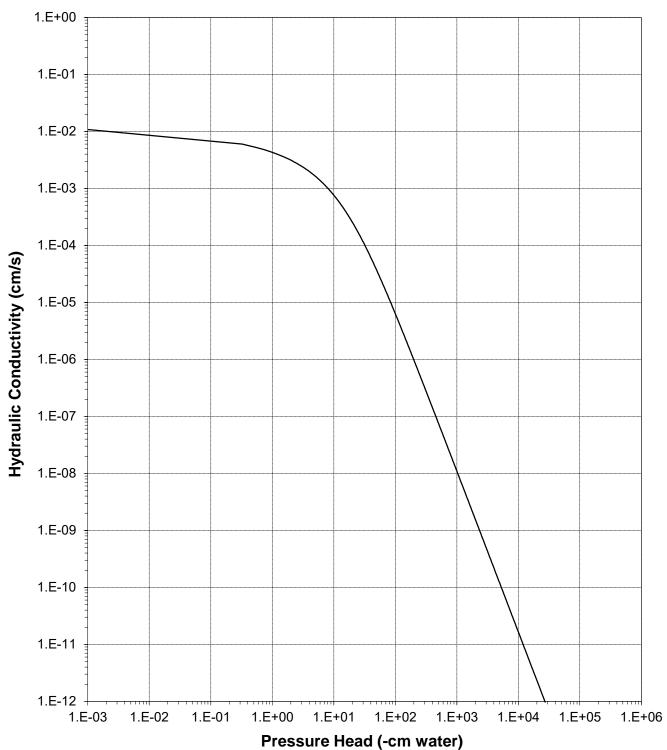
Predicted Calibration Curve and Data Points



Plot of Relative Hydraulic Conductivity vs Moisture Content



Plot of Hydraulic Conductivity vs Moisture Content



Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Oversize Correction Data Sheet

Job Name: Golder Associates, Inc.

Job Number: DB19.1112.00

Sample Number: PG-9A-2 Bulk (1.41 g/cc)
Project Name: CCP-BMI 181-06417

Depth: NA

Split (3/4", 3/8", #4): #10

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	12678.51	12004.12	24682.63
Mass Fraction (%):	51.37	48.63	100.00
Initial Sample $ heta_{ ext{i}}$			
Bulk Density (g/cm³):	2.67	1.41	1.86
Calculated Porosity (% vol):	0.00	47.42	30.49
Volume of Solids (cm ³):	4742.58	4490.31	9232.89
Volume of Voids (cm ³):	0.00	4050.36	4050.36
Total Volume (cm ³):	4742.58	8540.67	13283.25
Volumetric Fraction (%):	35.70	64.30	100.00
Initial Moisture Content (% vol):	0.00	9.90	6.36
Saturated Sample θ_s			
Bulk Density (g/cm ³):	2.67	1.41	1.86
Calculated Porosity (% vol):	0.00	47.42	30.49
Volume of Solids (cm ³):	4742.58	4490.31	9232.89
Volume of Voids (cm ³):	0.00	4050.36	4050.36
Total Volume (cm³):	4742.58	8540.67	13283.25
Volumetric Fraction (%):	35.70	64.30	100.00
Saturated Moisture Content (% vol):	0.00	45.58	29.31
Residual Sample θ_r			
Bulk Density (g/cm ³):	2.67	1.70	2.09
Calculated Porosity (% vol):	0.00	36.52	21.86
Volume of Solids (cm ³):	4742.58	4490.31	9232.89
Volume of Voids (cm ³):	0.00	2582.87	2582.87
Total Volume (cm³):	4742.58	7073.19	11815.76
Volumetric Fraction (%):	40.14	59.86	100.00
Residual Moisture Content (% vol):	0.00	0.71	0.42
Ksat (cm/sec):	NM	1.1E-02	5.3E-03

^{* =} Porosity and moisture content of coarse fraction assumed to be zero.

NM = Not measured

^{** =} Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

Moisture Retention Data Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name: Golder Associates, Inc.

Dry wt. of sample (g): 310.94

Job Number: DB19.1112.00

Tare wt., ring (g): 137.88

Sample Number: PG-9A-1 Bulk (1.41 g/cc)
Project Name: CCP-BMI 181-06417

Tare wt., screen & clamp (g): 25.25 Initial sample volume (cm³): 221.16

Donth: NA

Initial dry bulk density (g/cm³): 1.41

Depth: NA

Measured particle density (g/cm³): 2.71 Initial calculated total porosity (%): 48.09

	Date	Time	Weight* (g)	Matric Potential (-cm water)	Moisture Content [†] (% vol)	
Hanging column:	18-Apr-19	8:00	580.22	0	48.00	
	25-Apr-19	13:50	577.66	7.0	47.43	‡‡
	2-May-19	7:45	562.69	10.0	41.37	‡‡
	9-May-19	8:30	525.48	45.0	24.00	‡‡
	16-May-19	10:45	512.08	220.0	17.74	‡‡

Volume Adjusted Data 1

					Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Hanging column:	0.0				
	7.0	218.42	-1.24%	1.42	47.44
	10.0	214.22	-3.14%	1.45	46.41
	45.0	214.22	-3.14%	1.45	46.41
	220.0	214.22	-3.14%	1.45	46.41

Comments:

Technician Notes:

Laboratory analysis by: D. O'Dowd/A. Bland

Data entered by: C. Krous Checked by: J. Hines

Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.

² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

^{*} Weight including tares

[†] Assumed density of water is 1.0 g/cm³

^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: PG-9A-1 Bulk (1.41 g/cc)

Initial sample bulk density (g/cm³): 1.41

Fraction of test sample used (<2.00mm fraction) (%): 100.00

Dry weight* of dew point potentiometer sample (g): 170.69

Tare weight, jar (g): 113.37

			Weight*	Water Potential	Moisture Content [†]	
	Date	Time	(g)	(-cm water)	(% vol)	
Dew point potentiometer:	20-May-19	10:26	173.77	8872	7.80	‡‡
	15-May-19	11:48	172.72	63839	5.13	‡‡
	10-May-19	12:46	171.97	318484	3.24	_ ‡‡

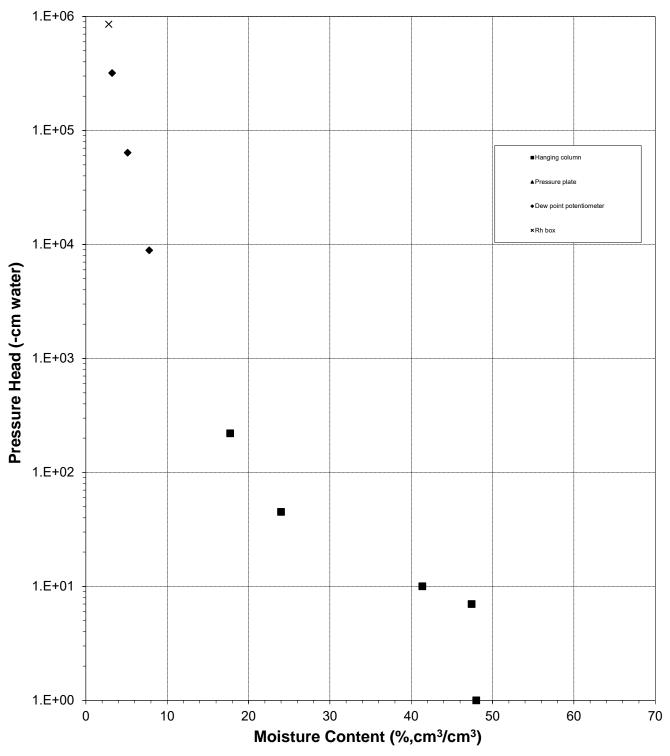
	Volume Adjusted Data ¹						
	Water	Adjusted	% Volume	Adjusted	Adjusted		
	Potential	Volume	Change ²	Density	Calc. Porosity		
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)		
Dew point potentiometer:	8872	214.22	-3.14%	1.45	46.41		
	63839	214.22	-3.14%	1.45	46.41		
	318484	214.22	-3.14%	1.45	46.41		

Dry weight* of relative humidity box sample (g): 82.60

Tare weight (g): 47.61

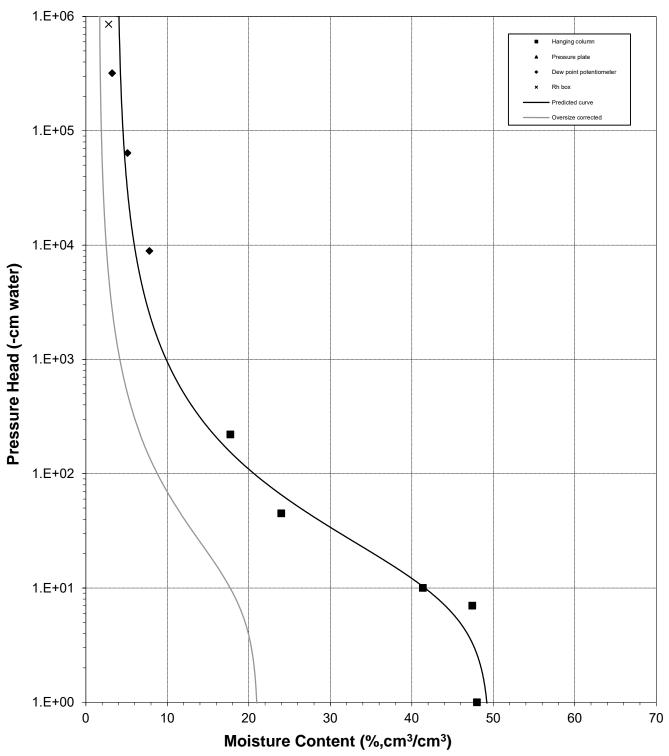
Dalatina humiditu han	Date	Time	Weight*	Water Potential (-cm water)	Moisture Content [†] (% vol)	
Relative humidity box:	16-May-19	17:00	83.28	854732	2.81	-++
			Volume Adjust	ed Data ¹		
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
Relative humidity box:	854732	214.22	-3.14%	1.45	46.41	_

Comments:

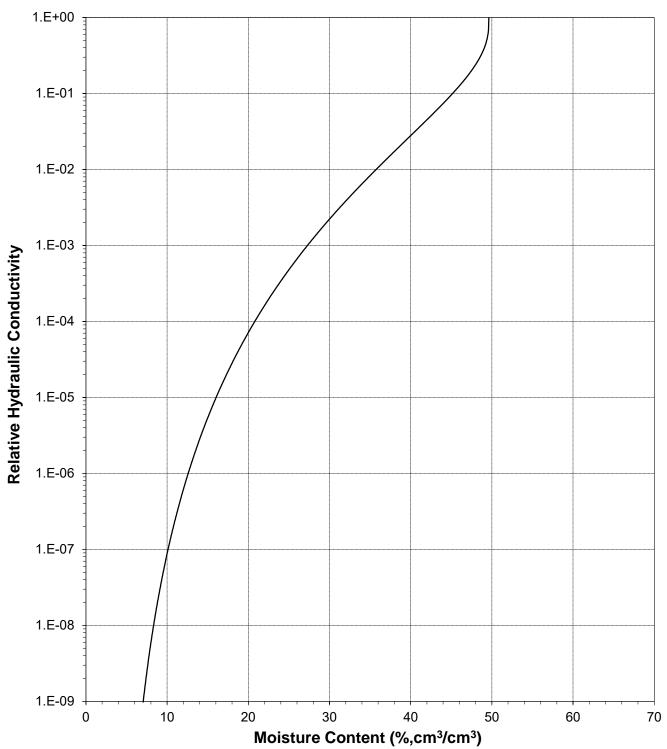

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares
- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Laboratory analysis by: L. Thurgood/C. Krous

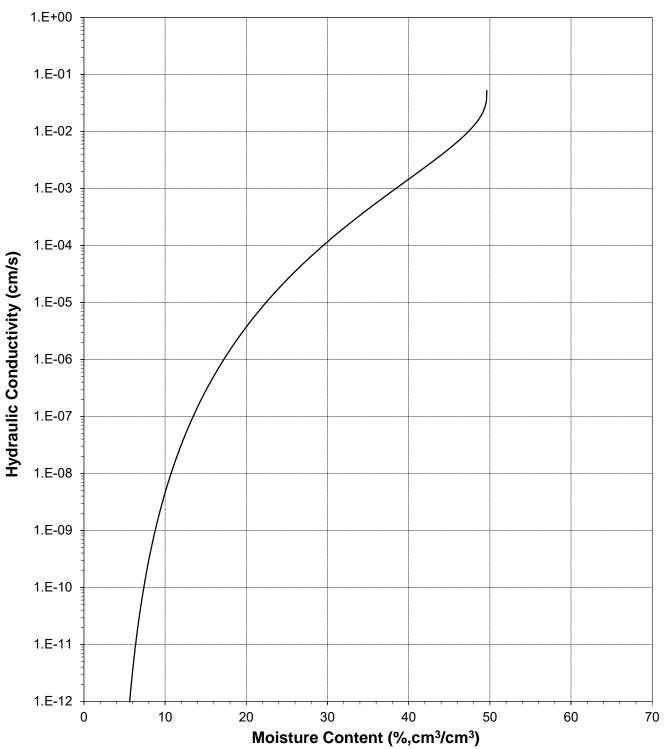
Data entered by: C. Krous Checked by: J. Hines



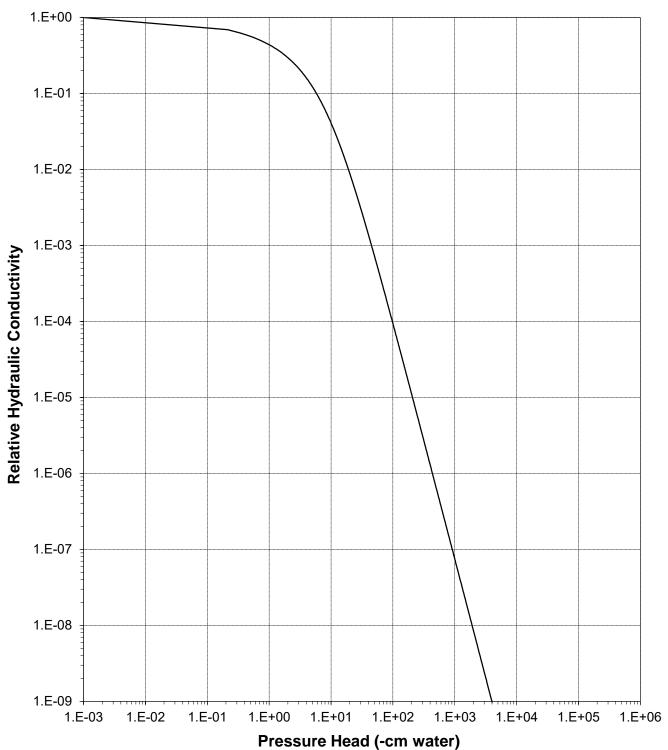
Water Retention Data Points



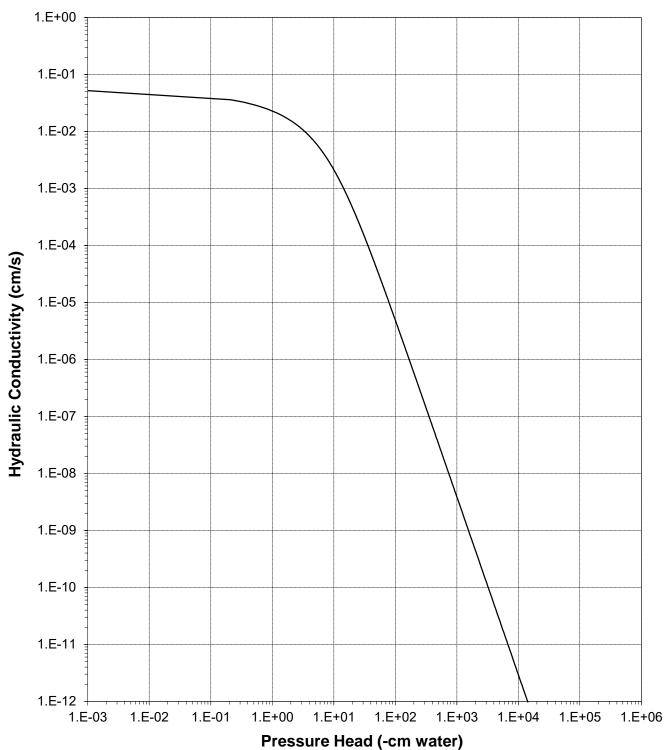
Predicted Calibration Curve and Data Points



Plot of Relative Hydraulic Conductivity vs Moisture Content



Plot of Hydraulic Conductivity vs Moisture Content



Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Oversize Correction Data Sheet

Job Name: Golder Associates, Inc.

Job Number: DB19.1112.00

Sample Number: PG-9A-1 Bulk (1.41 g/cc)

Project Name: CCP-BMI 181-06417

Depth: NA

Split (3/4", 3/8", #4): #10

	Coarse Fraction*	Fines Fraction**	Composite
Subsample Mass (g):	18031.67	6946.72	24978.39
Mass Fraction (%):	72.19	27.81	100.00
Initial Sample θ_i			
Bulk Density (g/cm ³):	2.71	1.41	2.15
Calculated Porosity (% vol):	0.00	48.09	20.49
Volume of Solids (cm ³):	6657.48	2564.80	9222.29
Volume of Voids (cm ³):	0.00	2376.14	2376.14
Total Volume (cm³):	6657.48	4940.94	11598.43
Volumetric Fraction (%):	57.40	42.60	100.00
Initial Moisture Content (% vol):	0.00	13.10	5.58
Saturated Sample θ_s			
Bulk Density (g/cm ³):	2.71	1.41	2.15
Calculated Porosity (% vol):	0.00	48.09	20.49
Volume of Solids (cm ³):	6657.48	2564.80	9222.29
Volume of Voids (cm ³):	0.00	2376.14	2376.14
Total Volume (cm³):	6657.48	4940.94	11598.43
Volumetric Fraction (%):	57.40	42.60	100.00
Saturated Moisture Content (% vol):	0.00	49.64	21.15
Residual Sample θ_r			
Bulk Density (g/cm ³):	2.71	1.45	2.18
Calculated Porosity (% vol):	0.00	46.41	19.41
Volume of Solids (cm ³):	6657.48	2564.80	9222.29
Volume of Voids (cm ³):	0.00	2221.00	2221.00
Total Volume (cm ³):	6657.48	4785.80	11443.29
Volumetric Fraction (%):	58.18	41.82	100.00
Residual Moisture Content (% vol):	0.00	3.80	1.59
Ksat (cm/sec):	NM	5.2E-02	1.5E-02

^{* =} Porosity and moisture content of coarse fraction assumed to be zero.

NM = Not measured

^{** =} Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

Moisture Retention Data Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name: Golder Associates, Inc.

Dry wt. of sample (g): 309.47

Job Number: DB19.1112.00

Tare wt., ring (g): 137.07

Sample Number: PG-9AX-1 Bulk (1.41 g/cc) Project Name: CCP-BMI 181-06417

Tare wt., screen & clamp (g): 27.48 Initial sample volume (cm³): 219.83

Initial dry bulk density (g/cm3): 1.41

Depth: NA

Measured particle density (g/cm3): 2.68

Initial calculated total porosity (%): 47.54

	Date	Time	Weight* (g)	Matric Potential (-cm water)	Moisture Content [†] (% vol)	
Hanging column:	18-Apr-19	8:00	577.83	0	47.22	
	25-Apr-19	13:50	575.25	7.0	46.05	
	2-May-19	7:45	561.42	10.0	41.11	‡‡
	9-May-19	8:30	526.67	45.0	24.77	‡‡
	16-May-19	10:45	511.85	220.0	17.79	‡‡

Volume Adjusted Data 1

					Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Hanging column:	0.0				
	7.0				
	10.0	212.59	-3.29%	1.46	45.75
	45.0	212.59	-3.29%	1.46	45.75
	220.0	212.59	-3.29%	1.46	45.75

Comments:

Technician Notes:

Laboratory analysis by: D. O'Dowd/A. Bland

Data entered by: C. Krous Checked by: J. Hines

¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.

² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

^{*} Weight including tares

[†] Assumed density of water is 1.0 g/cm³

^{##} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: PG-9AX-1 Bulk (1.41 g/cc)

Initial sample bulk density (g/cm³): 1.41

Fraction of test sample used (<2.00mm fraction) (%): 100.00

Dry weight* of dew point potentiometer sample (g): 169.89

Tare weight, jar (g): 114.82

			Weight*	Water Potential	Moisture Content [†]	
	Date	Time	(g)	(-cm water)	(% vol)	_
Dew point potentiometer:	23-May-19	10:20	173.80	3263	10.34	‡‡
	15-May-19	11:31	171.82	47931	5.10	‡‡
_	10-May-19	12:14	171.53	228333	4.33	_ ‡‡

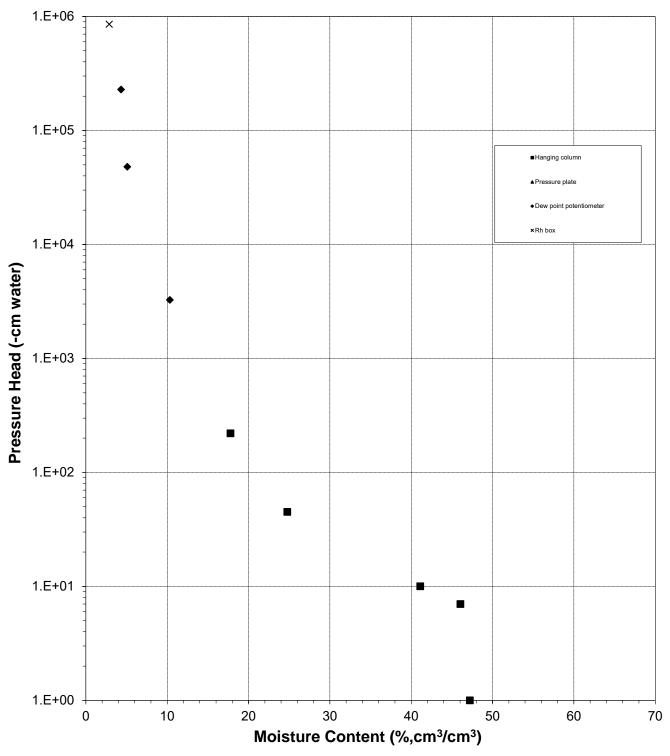
			Volume Adjusted	d Data ¹	
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Dew point potentiometer:	3263	212.59	-3.29%	1.46	45.75
	47931	212.59	-3.29%	1.46	45.75
_	228333	212.59	-3.29%	1.46	45.75

Dry weight* of relative humidity box sample (g): 29.77

Tare weight (g): 6.49

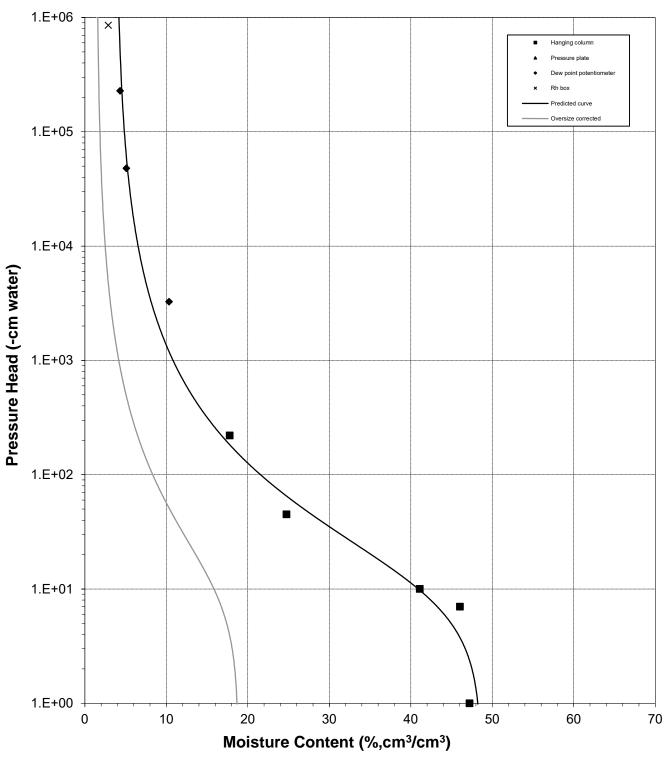
	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)	_
Relative humidity box:	16-May-19	17:00	30.23	854732	2.88	‡‡
			Volume Adjust	ted Data ¹		
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
Relative humidity box:	854732	212.59	-3.29%	1.46	45.75	_

Comments:

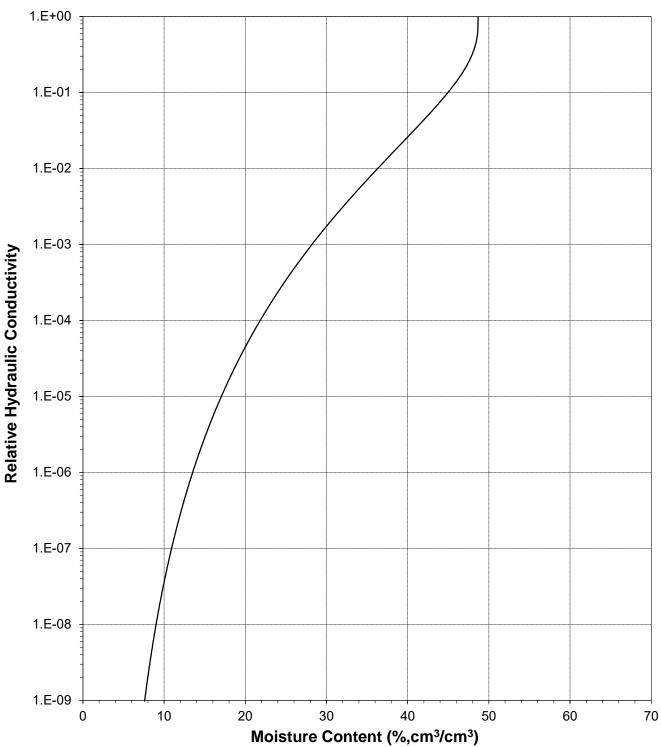

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares
- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Laboratory analysis by: L. Thurgood/C. Krous

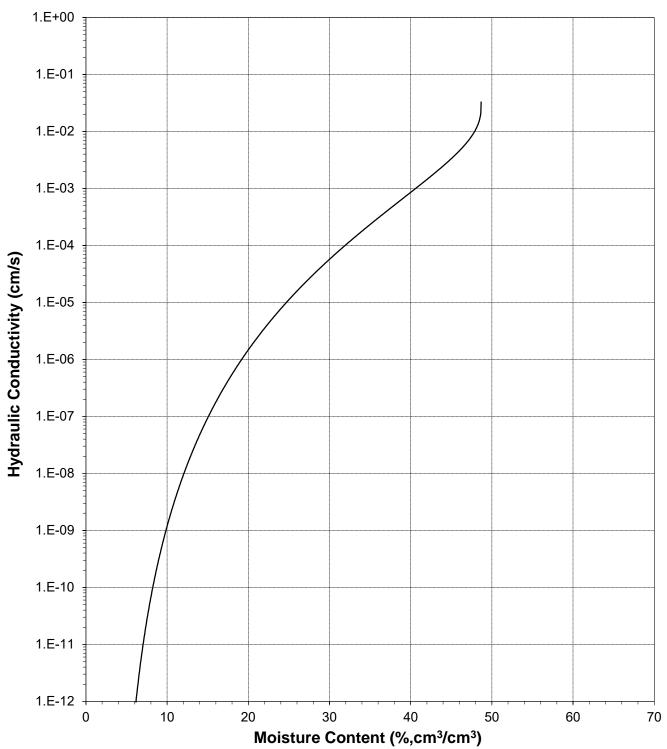
Data entered by: C. Krous Checked by: J. Hines



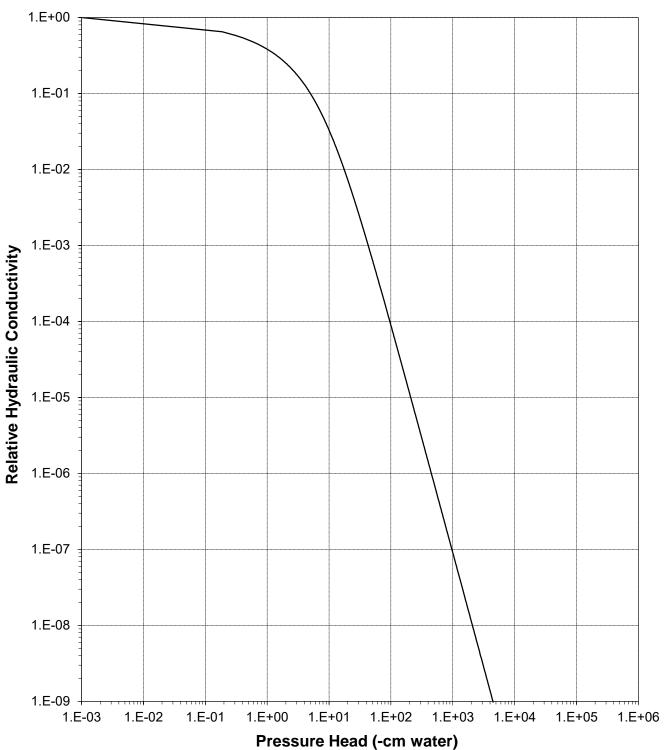
Water Retention Data Points



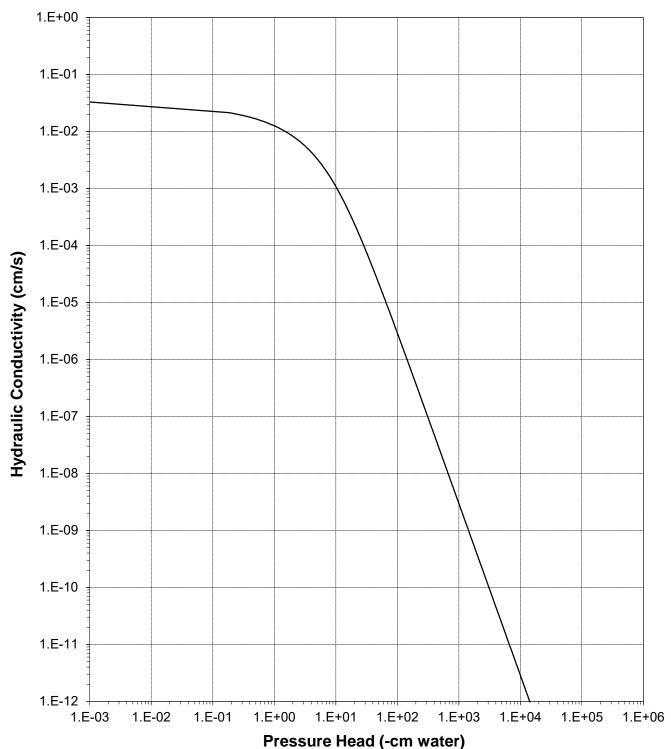
Predicted Calibration Curve and Data Points



Plot of Relative Hydraulic Conductivity vs Moisture Content



Plot of Hydraulic Conductivity vs Moisture Content



Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Oversize Correction Data Sheet

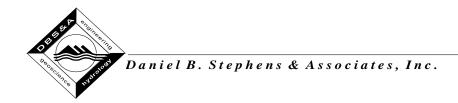
Job Name: Golder Associates, Inc.

Job Number: DB19.1112.00

Sample Number: PG-9AX-1 Bulk (1.41 g/cc)
Project Name: CCP-BMI 181-06417

Depth: NA

Split (3/4", 3/8", #4): #10


	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	17580.25	5830.02	23410.27
Mass Fraction (%):	75.10	24.90	100.00
Initial Sample A			
Initial Sample θ _i			
Bulk Density (g/cm ³):	2.68	1.41	2.19
Calculated Porosity (% vol):	0.00	47.54	18.41
Volume of Solids (cm ³):	6551.37	2172.59	8723.95
Volume of Voids (cm ³):	0.00	1968.65	1968.65
Total Volume (cm³):	6551.37	4141.24	10692.60
Volumetric Fraction (%):	61.27	38.73	100.00
Initial Moisture Content (% vol):	0.00	11.56	4.48
Saturated Sample θ_s			
Bulk Density (g/cm ³):	2.68	1.41	2.19
Calculated Porosity (% vol):	0.00	47.54	18.41
Volume of Solids (cm ³):	6551.37	2172.59	8723.95
Volume of Voids (cm ³):	0.00	1968.65	1968.65
Total Volume (cm ³):	6551.37	4141.24	10692.60
Volumetric Fraction (%):	61.27	38.73	100.00
Saturated Moisture Content (% vol):	0.00	48.69	18.86
Residual Sample θ_r			
Bulk Density (g/cm ³):	2.68	1.46	2.22
Calculated Porosity (% vol):	0.00	45.75	17.36
Volume of Solids (cm ³):	6551.37	2172.59	8723.95
Volume of Voids (cm ³):	0.00	1832.41	1832.41
Total Volume (cm ³):	6551.37	4005.00	10556.37
Volumetric Fraction (%):	62.06	37.94	100.00
Residual Moisture Content (% vol):	0.00	3.77	1.43
Ksat (cm/sec):	NM	3.3E-02	8.2E-03

^{* =} Porosity and moisture content of coarse fraction assumed to be zero.

NM = Not measured

^{** =} Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

Specific Gravity

Summary of Specific Gravity Tests

	<4.	75 mm Frac	ction	>4.75 mm Fraction		ction	Bulk Sample	
	Specific	Particle	% of Bulk	Specific	Particle	% of Bulk	Specific	
Sample Number	Gravity	Size	Sample	Gravity	Size	Sample	Gravity ¹	
GC-LS-2 6-7	2.67	<4.75 mm	34.0%	NR	>4.75 mm	66.0%	2.67	
GC-1S-2 4-6	2.71	<4.75 mm	64.4%	NR	>4.75 mm	35.6%	2.71	
GC-1S-3 2-6.5	2.67	<4.75 mm	65.0%	NR	>4.75 mm	35.0%	2.67	
GC-1S-4 0-2.5	2.68	<4.75 mm	58.2%	NR	>4.75 mm	41.8%	2.68	
PG-9A-2 Bulk	2.68	<4.75 mm	48.6%	NR	>4.75 mm	51.4%	2.68	
PG-9A-1 Bulk	2.71	<4.75 mm	27.8%	NR	>4.75 mm	72.2%	2.71	
PG-9AX-1 Bulk	2.69	<4.75 mm	24.9%	NR	>4.75 mm	75.1%	2.69	

¹Based on the <4.75mm material

NA = Not Applicable since specificed fraction is less than 5% of composite sample mass

NR = Test not Requested

Data for Specific Gravity of Sample: GC-LS-2 6-7'

Job Name: Golder Associates, Inc.

Job Number: DB19.1112.00 Sample Number: GC-LS-2 6-7'

Project Name: CCP-BMI 181-06417

Depth: 6'-7'

ASTM D854 (<2.00mm Fraction)

ASTM D854 (<2.00IIIII Fraction)		
Test Date:	17-May-19	
Percent of Test Sample (% g/g):	34.0	
Percent of Bulk Sample (% g/g):	34.0	
	Trial 1	Trial 2
Weight of pycnometer filled w/air (g):	92.39	90.30
Weight of pycnometer filled w/soil (g):	143.26	140.66
Weight of pycnometer filled w/soil & water (g):	373.46	371.09
Weight of pycnometer filled w/water (g):	341.60	339.57
Specific Gravity (g/g):	2.68	2.67
Observed temperature (°C):	22.70	22.70
Density of water at observed temperature (g/cm ³):	0.9976	0.9976
Correction factor, K:	0.9994	0.9994
Specific Gravity at 20°C (g/g):	2.67	2.67
Average Specific Gravity (g/g):	2.67	
Average Particle Density (g/cm ³):	2.67	

ASTM C127 (>2.00mm) Fraction

7.0 1 iii 0 121 (* 2.00 iiiii) 1 1 au ii 0 ii		
Test Date:	NR	Test not Requested
Percent of Test Sample (% g/g):	66.0	
Percent of Bulk Sample (% g/g):	66.0	
Tare Weight (g):		
Saturated Surface Dry (SSD) mass in Air & Tare (g):		
Saturated Apparent mass in Water & Tare (g):		
Oven Dry (OD) mass in Air & Tare (g):		
SSD Specific Gravity (g/g):		
Apparent Specific Gravity (g/g):		
OD Specific Gravity (g/g):		
Percent Absorption (%):		
Observed Temperature (°C):		
Density of water at observed temperature (g/m ³):		
Correction Factor, K:		
Specific Gravity (Apparent), Corrected to 20° C:		
Particle Density (Apparent), Corrected to 20° C (g/cm ³):		

Specific Gravity (Apparent) of Sample*: 2.67 * Based on <4.75mm Fraction

Particle Density (Apparent) of Sample (g/cm³)*: 2.67

Data for Specific Gravity of Sample: GC-1S-2 4-6'

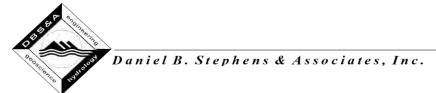
Job Name: Golder Associates, Inc.

Job Number: DB19.1112.00 Sample Number: GC-1S-2 4-6'

Project Name: CCP-BMI 181-06417

Depth: 4'-6'

ASTM D854 (<2.00mm Fraction)


ACTIN 2004 (<2.00mm r raction)		
Test Date:	17-May-19	
Percent of Test Sample (% g/g):	64.4	
Percent of Bulk Sample (% g/g):	64.4	
	Trial 1	Trial 2
Weight of pycnometer filled w/air (g):	93.03	102.79
Weight of pycnometer filled w/soil (g):	144.62	152.85
Weight of pycnometer filled w/soil & water (g):	374.75	383.60
Weight of pycnometer filled w/water (g):	342.13	352.05
Specific Gravity (g/g):	2.72	2.70
Observed temperature (°C):	22.10	22.10
Density of water at observed temperature (g/cm ³):	0.9978	0.9978
Correction factor, K:	0.9995	0.9995
Specific Gravity at 20°C (g/g):	2.72	2.70
Average Specific Gravity (g/g):	2.71	
Average Particle Density (g/cm³):	2.71	

ASTM C127 (>2.00mm) Fraction

Test not Requested
rest not nequested
_

Specific Gravity (Apparent) of Sample*: 2.71 * Based on <4.75mm Fraction

Particle Density (Apparent) of Sample (g/cm³)*: 2.71

Data for Specific Gravity of Sample: GC-1S-3 2-6.5'

Job Name: Golder Associates, Inc. Job Number: DB19.1112.00 Sample Number: GC-1S-3 2-6.5' Project Name: CCP-BMI 181-06417

Depth: 2'-6.5'

ASTM D854 (<2.00mm Fraction)


ASTIVI D854 (<2.00IIIIII Fraction)		
Test Date:	17-May-19	
Percent of Test Sample (% g/g):	65.0	
Percent of Bulk Sample (% g/g):	65.0	
	Trial 1	Trial 2
Weight of pycnometer filled w/air (g):	94.27	89.66
Weight of pycnometer filled w/soil (g):	144.40	139.72
Weight of pycnometer filled w/soil & water (g):	374.74	370.38
Weight of pycnometer filled w/water (g):	343.43	338.97
Specific Gravity (g/g):	2.66	2.68
Observed temperature (°C):	22.70	22.70
Density of water at observed temperature (g/cm ³):	0.9976	0.9976
Correction factor, K:	0.9994	0.9994
Specific Gravity at 20°C (g/g):	2.66	2.68
Average Specific Gravity (g/g):	2.67	
Average Particle Density (g/cm ³):	2.67	

ASTM C127 (>2.00mm) Fraction

Toot not Doguested
Test not Requested

Specific Gravity (Apparent) of Sample*: 2.67 * Based on <4.75mm Fraction

Particle Density (Apparent) of Sample (g/cm³)*: 2.67

Data for Specific Gravity of Sample: GC-1S-4 0-2.5'

Job Name: Golder Associates, Inc. Job Number: DB19.1112.00 Sample Number: GC-1S-4 0-2.5' Project Name: CCP-BMI 181-06417

Depth: 0'-2.5'

ASTM D854 (<2.00mm Fraction)

ASTM D854 (<2.00mm Fraction)		
Test Date:	17-May-19	
Percent of Test Sample (% g/g):	58.2	
Percent of Bulk Sample (% g/g):	58.2	
	Trial 1	Trial 2
Weight of pycnometer filled w/air (g):	95.79	93.97
Weight of pycnometer filled w/soil (g):	146.23	145.66
Weight of pycnometer filled w/soil & water (g):	376.57	375.57
Weight of pycnometer filled w/water (g):	344.92	343.18
Specific Gravity (g/g):	2.68	2.68
Observed temperature (°C):	22.70	22.70
Density of water at observed temperature (g/cm ³):	0.9976	0.9976
Correction factor, K:	0.9994	0.9994
Specific Gravity at 20°C (g/g):	2.68	2.68
Average Specific Gravity (g/g):	2.68	
Average Particle Density (g/cm ³):	2.68	

ASTM C127 (>2.00mm) Fraction

ACTIN CTET (>2.00mm) Tradition		
Test Date:	NR	Test not Requested
Percent of Test Sample (% g/g):	41.8	
Percent of Bulk Sample (% g/g):	41.8	
Tare Weight (g):		
Saturated Surface Dry (SSD) mass in Air & Tare (g):		
Saturated Apparent mass in Water & Tare (g):		
Oven Dry (OD) mass in Air & Tare (g):		
SSD Specific Gravity (g/g):		
Apparent Specific Gravity (g/g):		
OD Specific Gravity (g/g):		
Percent Absorption (%):		
Observed Temperature (°C):		
Density of water at observed temperature (g/m ³):		
Correction Factor, K:		
Specific Gravity (Apparent), Corrected to 20° C:		
Particle Density (Apparent), Corrected to 20° C (g/cm ³):		

Specific Gravity (Apparent) of Sample*: 2.68 * Based on <4.75mm Fraction

Particle Density (Apparent) of Sample (g/cm³)*: 2.68

Data for Specific Gravity of Sample: PG-9A-2 Bulk

Job Name: Golder Associates, Inc.

Job Number: DB19.1112.00 Sample Number: PG-9A-2 Bulk

Project Name: CCP-BMI 181-06417

Depth: NA

ASTM D854 (<2.00mm Fraction)

ASTW D854 (<2:0011111 Fraction)		
Test Date:	17-May-19	
Percent of Test Sample (% g/g):	48.6	
Percent of Bulk Sample (% g/g):	48.6	
	Trial 1	Trial 2
Weight of pycnometer filled w/air (g):	89.00	91.18
Weight of pycnometer filled w/soil (g):	142.67	141.22
Weight of pycnometer filled w/soil & water (g):	371.95	371.91
Weight of pycnometer filled w/water (g):	338.32	340.54
Specific Gravity (g/g):	2.68	2.68
Observed temperature (°C):	22.10	22.70
Density of water at observed temperature (g/cm ³):	0.9978	0.9976
Correction factor, K:	0.9995	0.9994
Specific Gravity at 20°C (g/g):	2.68	2.68
Average Specific Gravity (g/g):	2.68	
Average Particle Density (g/cm³):	2.67	

ASTM C127 (>2.00mm) Fraction

NR	Test Date:
51.4	Percent of Test Sample (% g/g):
51.4	Percent of Bulk Sample (% g/g):
	Tare Weight (g):
	Saturated Surface Dry (SSD) mass in Air & Tare (g):
	Saturated Apparent mass in Water & Tare (g):
	Oven Dry (OD) mass in Air & Tare (g):
	SSD Specific Gravity (g/g):
	Apparent Specific Gravity (g/g):
	OD Specific Gravity (g/g):
	Percent Absorption (%):
	Observed Temperature (°C):
	Density of water at observed temperature (g/m ³):
	Correction Factor, K:
	Specific Gravity (Apparent), Corrected to 20° C:
	Particle Density (Apparent), Corrected to 20° C (g/cm ³):
	51.4

Specific Gravity (Apparent) of Sample*: 2.68 * Based on <4.75mm Fraction

Particle Density (Apparent) of Sample (g/cm³)*: 2.67

Data for Specific Gravity of Sample: PG-9A-1 Bulk

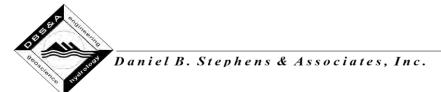
Job Name: Golder Associates, Inc.

Job Number: DB19.1112.00 Sample Number: PG-9A-1 Bulk

Project Name: CCP-BMI 181-06417

Depth: NA

ASTM D854 (<2.00mm Fraction)


ASTW D854 (<2.00IIIII Fraction)		
Test Date:	17-May-19	
Percent of Test Sample (% g/g):	27.8	
Percent of Bulk Sample (% g/g):	27.8	
	Trial 1	Trial 2
Weight of pycnometer filled w/air (g):	94.22	100.49
Weight of pycnometer filled w/soil (g):	144.30	151.12
Weight of pycnometer filled w/soil & water (g):	374.97	381.70
Weight of pycnometer filled w/water (g):	343.40	349.66
Specific Gravity (g/g):	2.71	2.72
Observed temperature (°C):	22.70	22.10
Density of water at observed temperature (g/cm ³):	0.9976	0.9978
Correction factor, K:	0.9994	0.9995
Specific Gravity at 20°C (g/g):	2.70	2.72
Average Specific Gravity (g/g):	2.71	
Average Particle Density (g/cm ³):	2.71	

ASTM C127 (>2.00mm) Fraction

ACTIN CTET (PERCONNIII) I TUOLICII		
Test Date:	NR	Test not Requested
Percent of Test Sample (% g/g):	72.2	
Percent of Bulk Sample (% g/g):	72.2	
Tare Weight (g):		
Saturated Surface Dry (SSD) mass in Air & Tare (g):		
Saturated Apparent mass in Water & Tare (g):		
Oven Dry (OD) mass in Air & Tare (g):		
SSD Specific Gravity (g/g):		
Apparent Specific Gravity (g/g):		
OD Specific Gravity (g/g):		
Percent Absorption (%):		
Observed Temperature (°C):		
Density of water at observed temperature (g/m ³):		
Correction Factor, K:		
Specific Gravity (Apparent), Corrected to 20° C:		
Particle Density (Apparent), Corrected to 20° C (g/cm ³):		<u></u>

Specific Gravity (Apparent) of Sample*: 2.71 * Based on <4.75mm Fraction

Particle Density (Apparent) of Sample (g/cm³)*: 2.71

Data for Specific Gravity of Sample: PG-9AX-1 Bulk

Job Name: Golder Associates, Inc. Job Number: DB19.1112.00 Sample Number: PG-9AX-1 Bulk

Project Name: CCP-BMI 181-06417

Depth: NA

ASTM D854 (<2.00mm Fraction)

ASTW D854 (<2.0011111 Traction)		
Test Date:	17-May-19	
Percent of Test Sample (% g/g):	24.9	
Percent of Bulk Sample (% g/g):	24.9	
	Trial 1	Trial 2
Weight of pycnometer filled w/air (g):	89.54	91.50
Weight of pycnometer filled w/soil (g):	139.69	124.69
Weight of pycnometer filled w/soil & water (g):	370.46	361.55
Weight of pycnometer filled w/water (g):	338.83	340.76
Specific Gravity (g/g):	2.71	2.68
Observed temperature (°C):	22.70	20.60
Density of water at observed temperature (g/cm ³):	0.9976	0.9981
Correction factor, K:	0.9994	0.9999
Specific Gravity at 20°C (g/g):	2.71	2.68
Average Specific Gravity (g/g):	2.69	
Average Particle Density (g/cm ³):	2.69	

ASTM C127 (>2.00mm) Fraction

ACTIN CTET (>2.00mm) Tradition		
Test Date:	NR	Test not Requested
Percent of Test Sample (% g/g):	75.1	
Percent of Bulk Sample (% g/g):	75.1	
Tare Weight (g):		
Saturated Surface Dry (SSD) mass in Air & Tare (g):		
Saturated Apparent mass in Water & Tare (g):		
Oven Dry (OD) mass in Air & Tare (g):		
SSD Specific Gravity (g/g):		
Apparent Specific Gravity (g/g):		
OD Specific Gravity (g/g):		
Percent Absorption (%):		
Observed Temperature (°C):		
Density of water at observed temperature (g/m ³):		
Correction Factor, K:		
Specific Gravity (Apparent), Corrected to 20° C:		
Particle Density (Apparent), Corrected to 20° C (g/cm ³):		

Specific Gravity (Apparent) of Sample*: 2.69 * Based on <4.75mm Fraction

Particle Density (Apparent) of Sample (g/cm³)*: 2.69

Laboratory analysis by: A. Baldridge
Data entered by: A. Baldridge
Checked by: J. Hines

Laboratory Tests and Methods

Daniel B. Stephens & Associates, Inc.

Tests and Methods

Dry Bulk Density: ASTM D7263

Moisture Content: ASTM D7263, ASTM D2216

Calculated Porosity: ASTM D7263

Saturated Hydraulic Conductivity:

Falling or Constant Head: ASTM D5856

(Rigid Wall)

Hanging Column Method: ASTM D6836 (modified apparatus)

Pressure Plate Method: ASTM D6836

Water Potential (Dewpoint

Potentiometer) Method:

ASTM D6836

Relative Humidity (Box)

Method:

Campbell, G. and G. Gee. 1986. Water Potential: Miscellaneous Methods. Chp. 25, pp.

631-632, in A. Klute (ed.), Methods of Soil Analysis. Part 1. American Society of

Agronomy, Madison, WI; Karathanasis & Hajek. 1982. Quantitative Evaluation of Water

Adsorption on Soil Clays. SSA Journal 46:1321-1325

Moisture Retention Characteristics & Calculated Unsaturated Hydraulic Conductivity: ASTM D6836; van Genuchten, M.T. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. SSSAJ 44:892-898; van Genuchten, M.T., F.J. Leij, and S.R. Yates. 1991. The RETC code for quantifying the hydraulic functions of unsaturated soils. Robert S. Kerr Environmental Research Laboratory, Office of Research

and Development, U.S. Environmental Protection Agency, Ada, Oklahoma.

EPA/600/2091/065. December 1991

Specific Gravity Fine: ASTM D854

Coarse Fraction (Gravel)

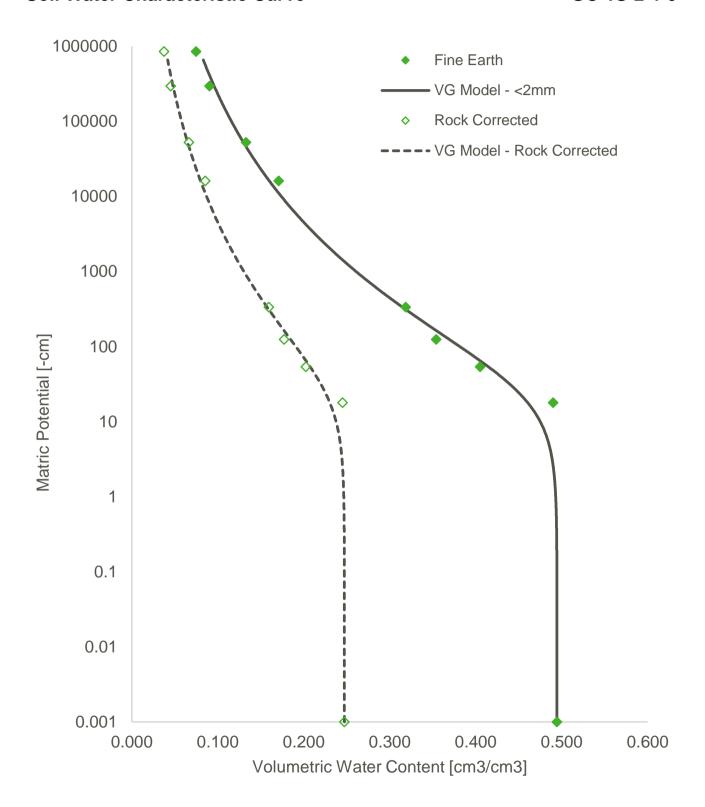
Correction (calc):

ASTM D4718; Bouwer, H. and Rice, R.C. 1984. Hydraulic Properties of Stony Vadose

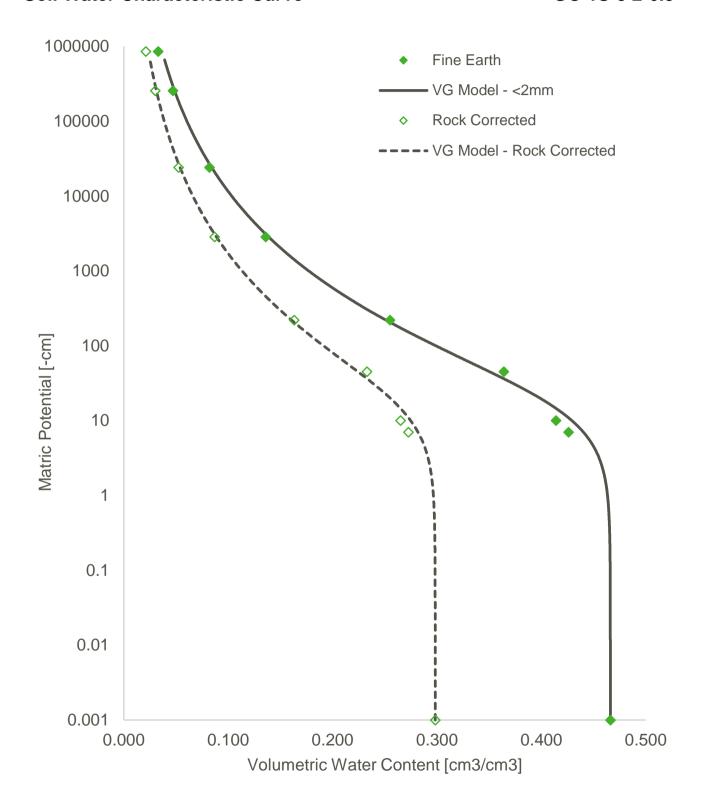
Zones. Groundwater Vol. 22, No. 6

April 29, 2020 18106417.003.R.Rev1

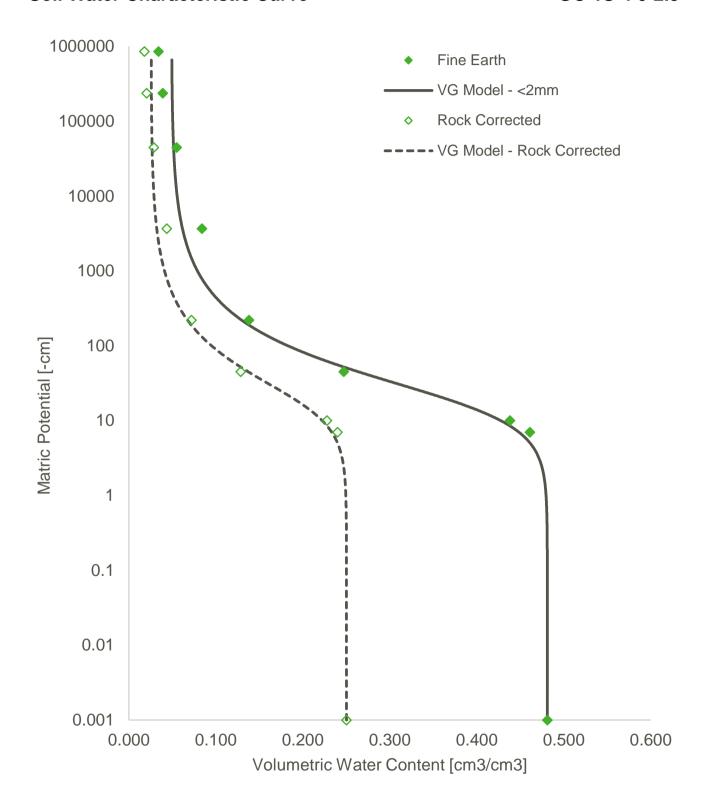
APPENDIX C


Soil Water Characteristic Curves

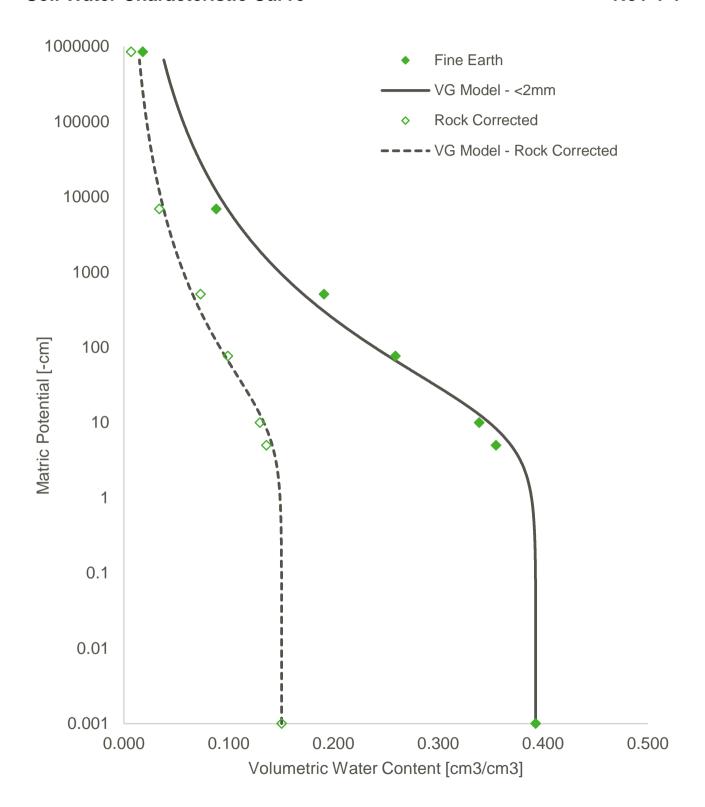
GC-LS-2 6-7'



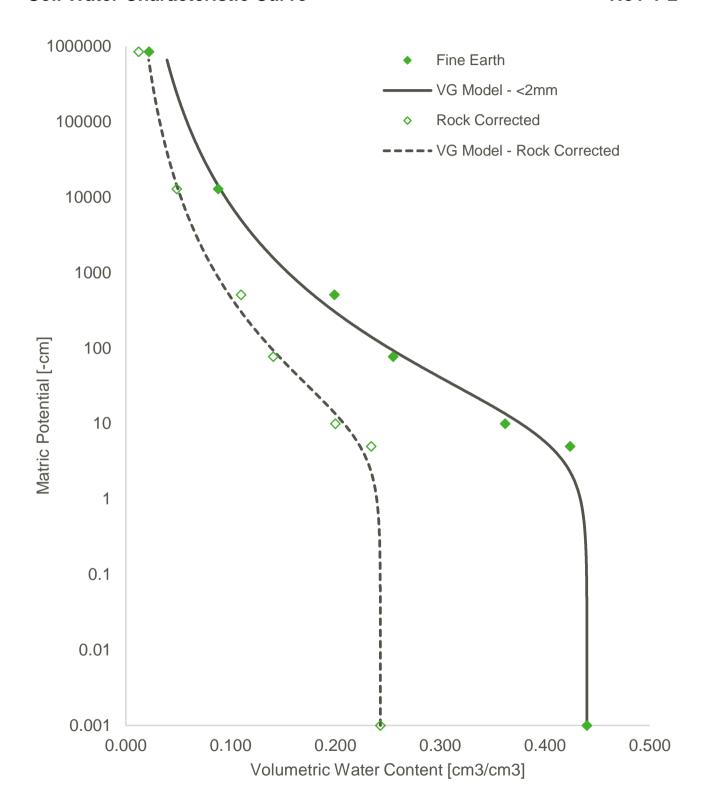
GC-1S-2 4-6'



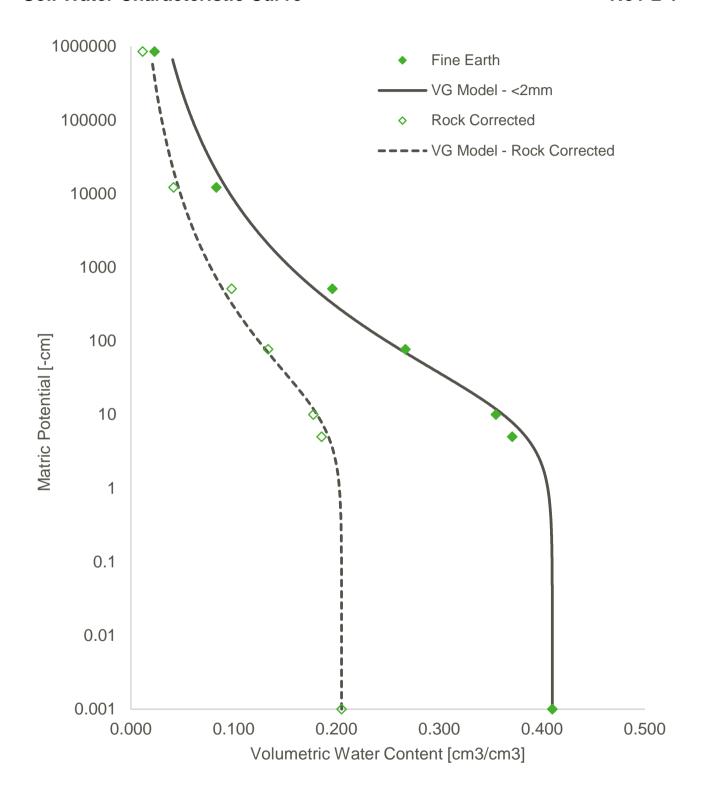
GC-1S-3 2-6.5'



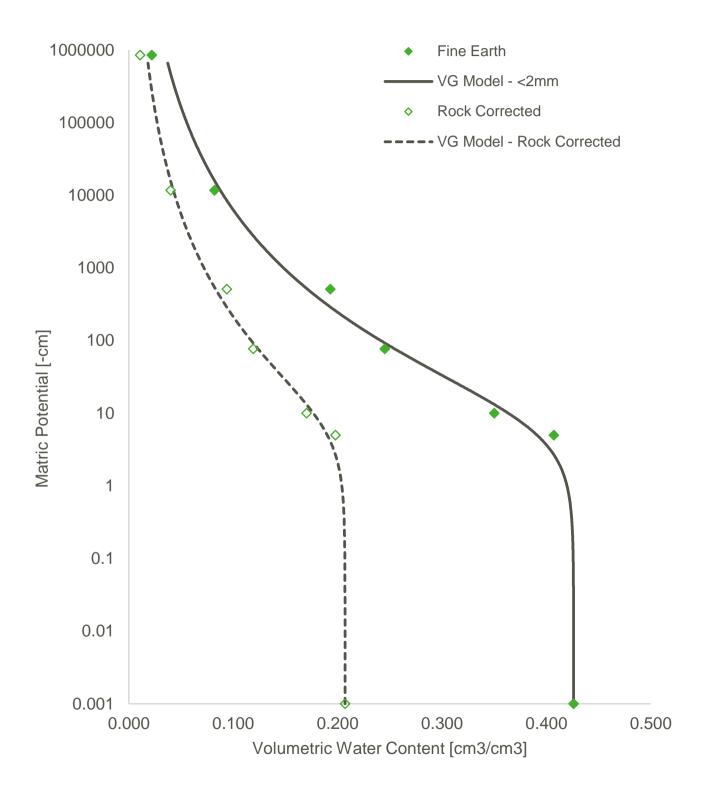
GC-1S-4 0-2.5'



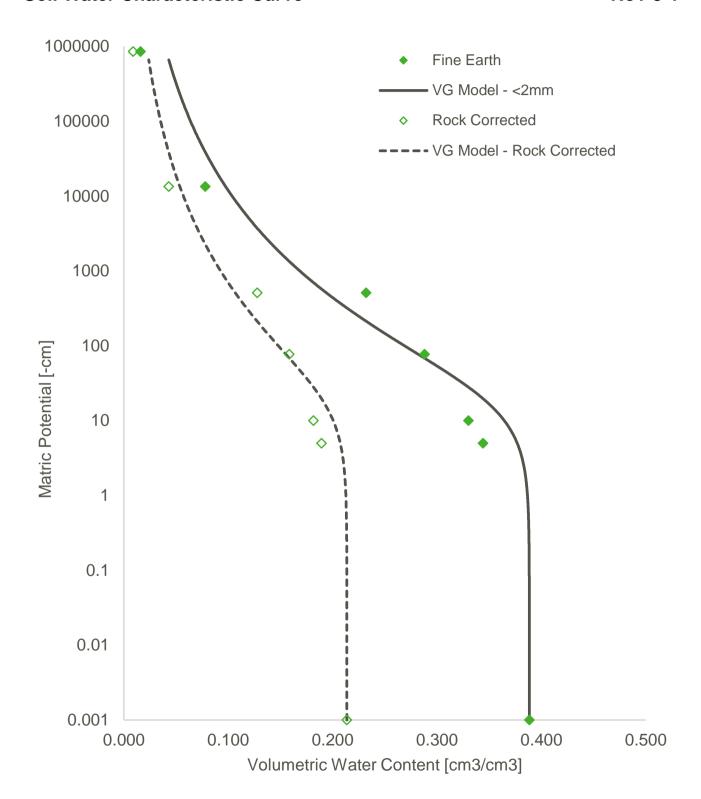
No1-1-1



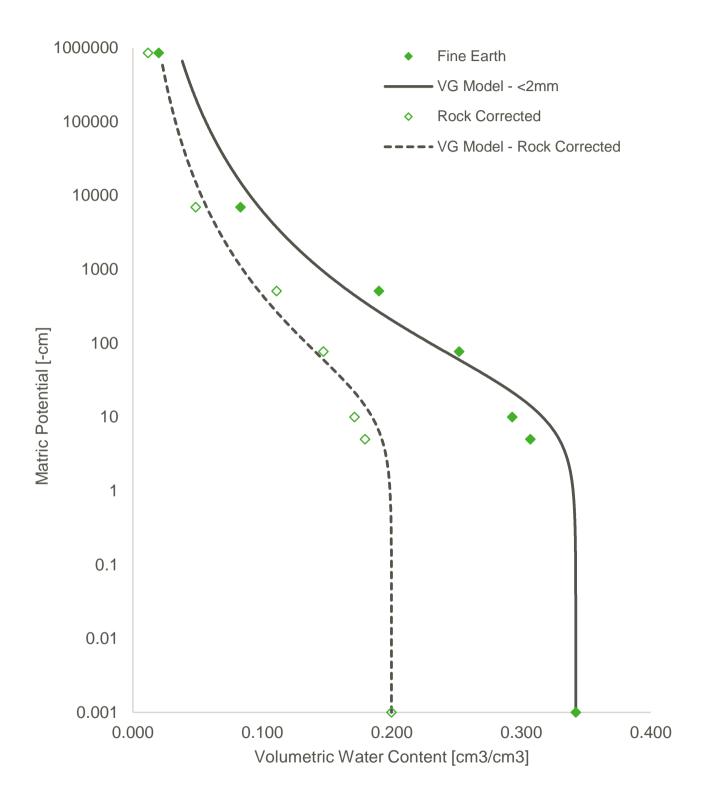
No1-1-2



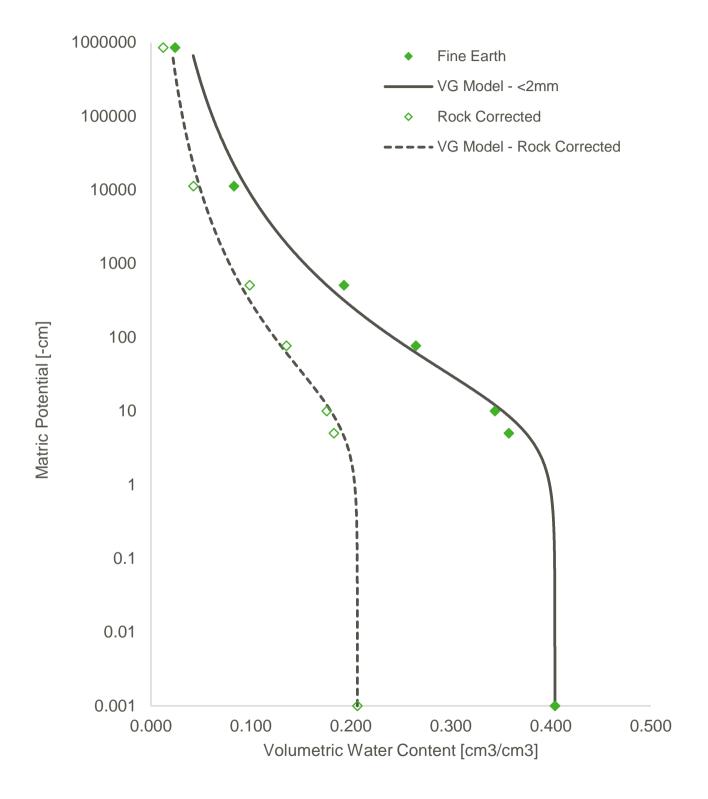
No1-2-1



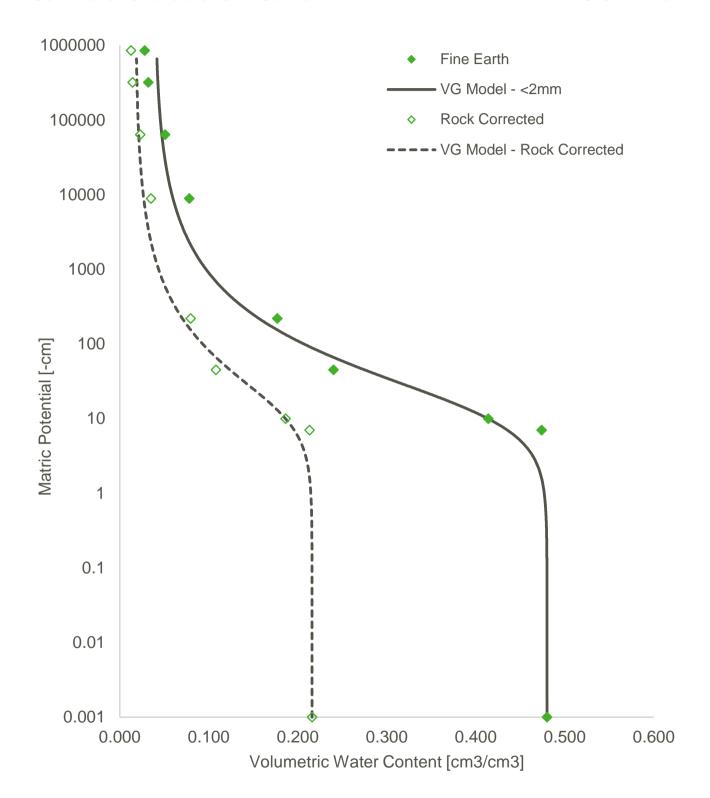
No1-2-2



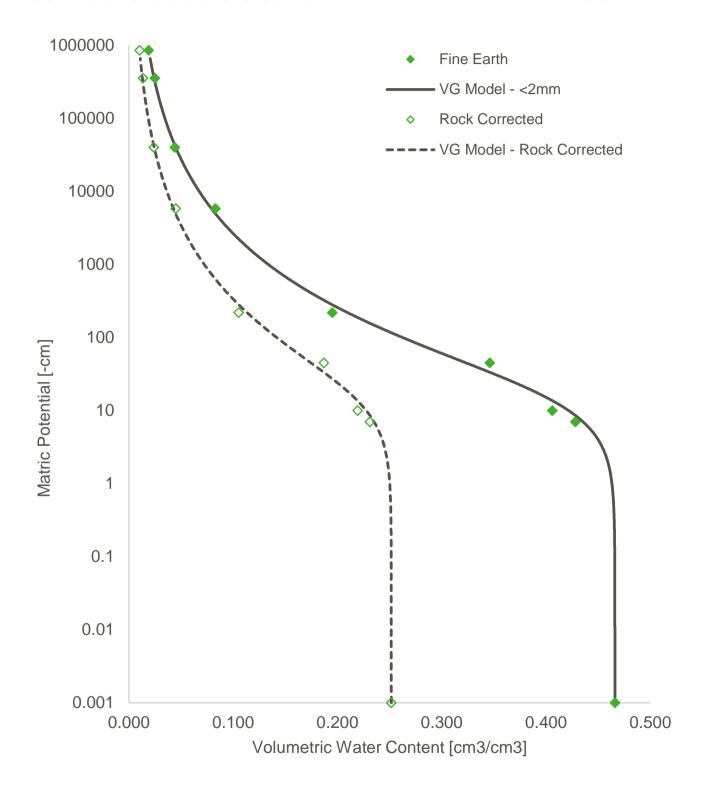
No1-3-1



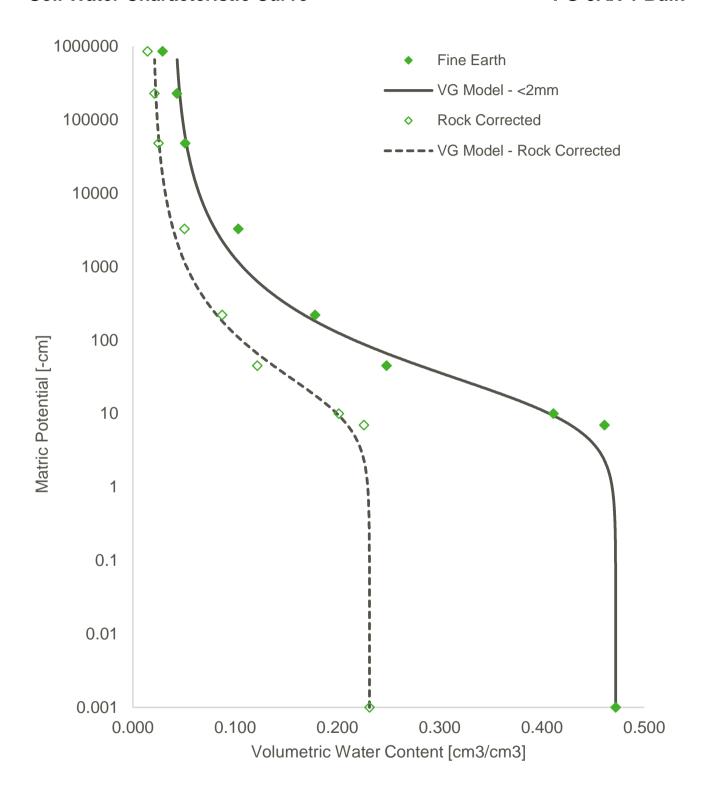
No1-3-2



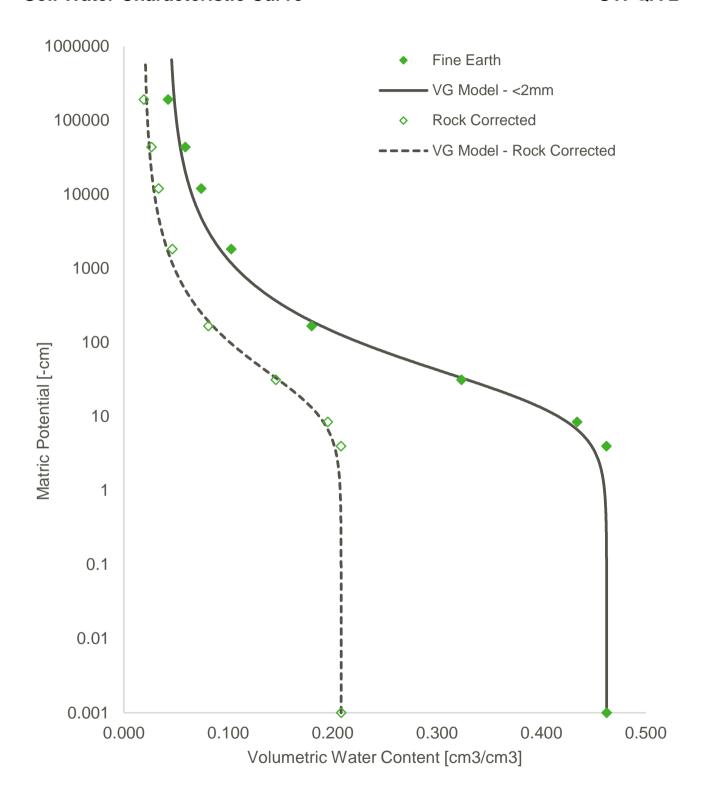
No1-8-LY



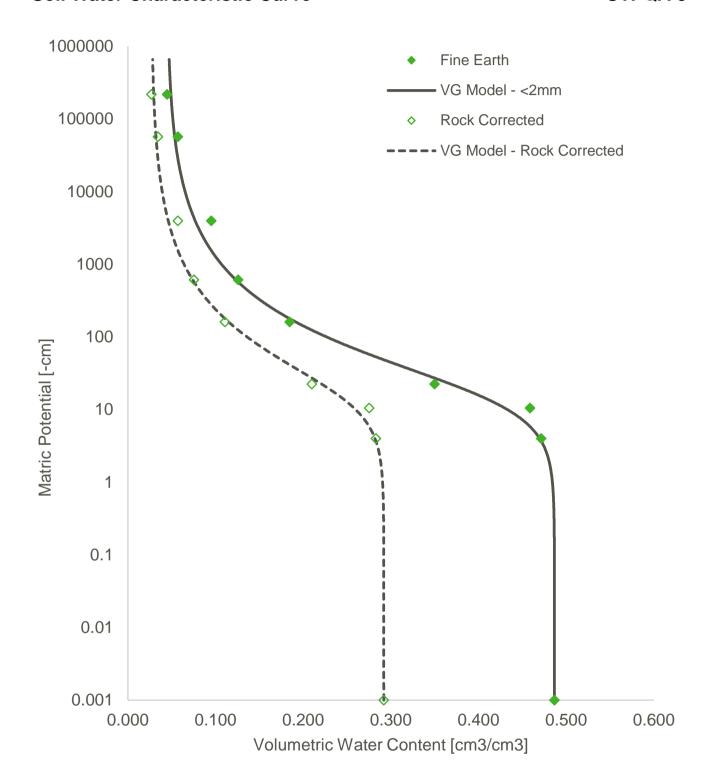
PG-9A-1 Bulk



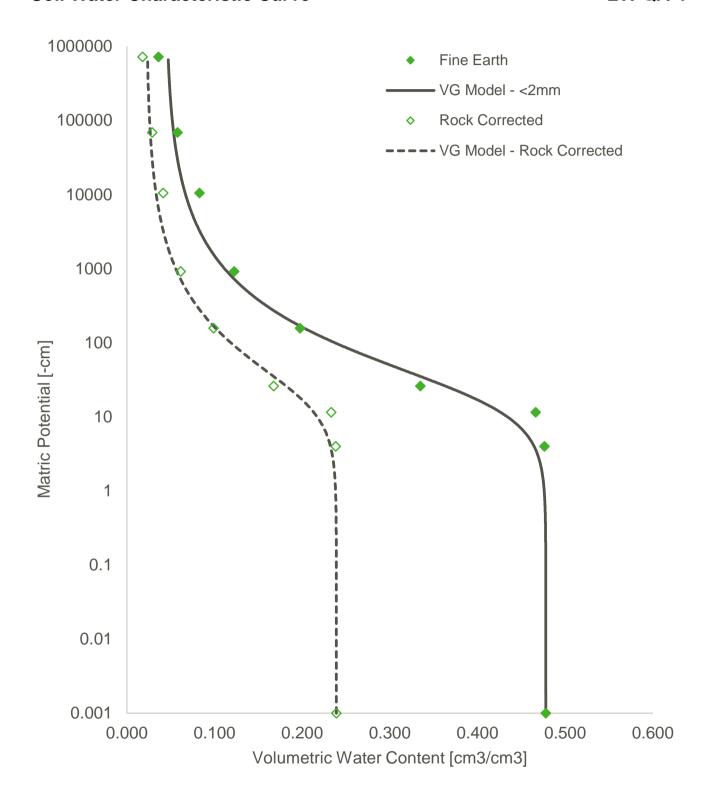
PG-9A-2 Bulk



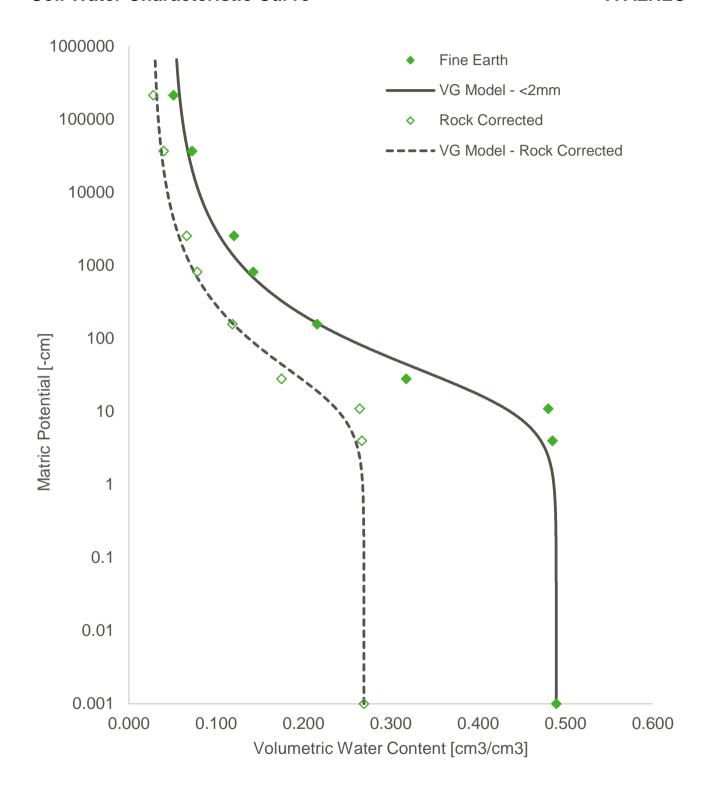
PG-9AX-1 Bulk



UTPQA-2



UTPQA-3



LTPQA-4

T7ALRLC

golder.com