

St. Anthony Mine Closure Plan

APPENDIX F.1

Flow Characterization

BACKGROUND

The St. Anthony mine site has two open pits and several waste rock piles that flank the Meyer Draw, the main tributary of the Arroyo del Valle (a large arroyo running through the center of the project site - see Figure 1). The St. Anthony Mine Closeout Plan proposes to excavate all piles located southwest of Meyer Draw and backfill excavated material into the two pits. The largest pile on the Site (Pile 4) will be regraded to stable slopes and left in place with an imported soil cover to support vegetative growth and protect from surface erosion.

Figure 1: Project Site Existing Conditions (Photo Data: 05/31/2011)

Stantec proposes several surface water control facilities to convey runoff. These facilities are illustrated in the St. Anthony Mine Closeout Plan Design Drawings (design drawings) and are outlined below:

- Grade control structures along the Meyer Draw branch of the arroyo as it passes through the Site as well as bank armoring along the Meyer Draw and East Tributary branches of the arroyo where they run against regraded Pile 4 (see Sheets 10 and 11 of the design drawings).
- Pile 4 Bench Channels and Downdrain (see Sheets 9 of the design drawings).
- Pit 1 Diversion Channel and Pit 2 Diversion Channel (see Sheets 12 and 13 of the design drawings).

The design flows of these surface water conveyance facilities were the surface water runoff event with a 1 percent annual probability of occurrence (1 in 100-year storm). For reference, Stantec also analyzed the 2-year, 5-year and 10-year storm events under the existing conditions.

For hydrologic evaluations, Stantec developed hydrologic models to predict existing condition flows as well as proposed conditions.

Methods

Hydrology Model

The hydrology model used for this evaluation was the United States Army Corps of Engineers (USACE) Hydrologic Engineering Center's – Hydrologic Modeling System (HEC-HMS) version 4.2.1, build 28. HEC-HMS simulates the precipitation-runoff processes of dendritic drainage basins and is applicable to a wide range of geographic conditions and drainage basin sizes.

Watershed Delineations and Model Element Construction

Attachment A shows watershed delineations and the model element construction within HEC-HMS for the hydrologic model of the existing and proposed site conditions. The site is entirely within the U.S. Geological Survey's (USGS) Hydrologic Unit Code (HUC) level 12 Arroyo del Valle Watershed (130202070802). Arroyo del Valle is the receiving waterbody within the watershed area. Drainage through the proposed remedial area has a watershed area of approximately 29.9 square miles, including existing pits.

Watershed drainage basins were delineated using high-resolution survey data collected by Cooper Aerial (2011) where the data was available (near the mine site). Where no high-resolution survey data was available, Stantec used publicly available elevation data from the National Elevation Dataset (NED) collected by the USGS and published in 2013. This data was collected with 1/3 arc-second resolution.

Hyetograph Development

Frequency-Based Storms

Stantec developed the precipitation hyetographs for frequency-based storms using the center-peaking alternative block technique with the depth-duration frequency curves built from the National Oceanic and Atmospheric Association (NOAA) Precipitation Data Frequency Server (PDFS) (Bonnin et al, 2011).

The Precipitation Data Frequency Server (PDFS) provides storm depths for return periods ranging from 1year to 1,000-years and for storm durations of 5 minutes to 60 days. Table 1 shows the PDFS annual maximum series, median confidence interval storm depths used in this analysis for a point located at the Eastern Edge of Pit 1 (Lat: 35.1633° and Long: -107.3030°).

Table 1: Precipitation Data Frequency Server (PDFS) Annual Maximum Series, Median Confidence Interval Storm Depths

Storm				
Duration	100-Year Rainfall	10-Year Rainfall	5-Year Rainfall	2-Year Rainfall
(minutes)	Depth (inches)	Depth (inches)	Depth (inches)	Depth (inches)
5	0.620	0.393	0.325	0.224
10	0.942	0.598	0.494	0.341
15	1.17	0.741	0.612	0.423
30	1.57	0.998	0.825	0.570
60	1.95	1.24	1.02	0.705
120	2.25	1.41	1.16	0.814
180	2.32	1.46	1.21	0.858
360	2.48	1.60	1.35	0.973
720	2.64	1.75	1.48	1.08
1440	2.84	1.89	1.61	1.18

Stantec fit the depth values given in the PDFS to the analytical intensity-duration-frequency (IDF) relationship of the form shown below (Chow et al., 1988):

$$i = \frac{c}{T_d^e + f}$$

Where:

i	=	The design rainfall intensity (mm/hr)
T_d	=	The storm duration of the specific return period (15 minutes to 4320 minutes)
c, e, f	=	Fitting parameters

Table 2 gives the fitting parameters for the IDF curve, and Figure 2 shows the analytical IDF curves with the PDFS depth-duration points.

Fitting	100-Year Storm	10-Year Storm	5-Year Storm	2-Year Storm
Parameter	Value	Value	Value	Value
С	88.8	57.3	47.0	32.2
е	0.982	0.896	0.895	0.890
f	7.77	7.95	7.86	7.82

Table 2: IDF Curve Fitting Parameters

Figure 2: Intensity-Duration-Frequency Curves

Finally, Stantec constructed the cumulative alternating block hyetograph from the analytical IDF curves. Figure 3 shows cumulative hyetographs for the 1 in 100-year return frequency.

Figure 3: Cumulative Rainfall Hyetographs

Raw data represented in Figure 3 is provided in Attachment B.

Rainfall Losses

Depression Storage

Stantec specified a depression storage value of 0.1 inches for all areas excluding the Stockpile 4 regrade area. This value is mid-range of the values recommended for alluvial plains near Albuquerque, New Mexico (Sabol et al., 1982). Stantec assumed no depression storage for the proposed Pile 4 area because the reclaimed pile area is designed to shed water.

Infiltration Losses

Native Terrain Loss Parameters

The hydrologic models used the Green and Ampt (1911) method to simulate losses due to infiltration. The Green and Ampt parameters include the initial volumetric moisture content of the soil, the saturated volumetric moisture content of the soil, an initial suction head value, the saturated hydraulic conductivity of the soil, and the percent impervious area. Stantec applied these parameters as lumped-estimates at the subbasin level. Lumped estimates were calculated based on area-weighted averages of different soil conditions.

Existing condition soil delineations were based on data available from the U.S. Department of Agriculture (USDA) National Resources Conservation Service (NRCS) gridded Soil Survey Geographic (gSSURGO) database for the state of New Mexico. The gSSURGO Database is derived from the official Soil Survey Geographic (SSURGO) Database. SSURGO generally has the most detailed level of soil geographic data developed by the National Cooperative Soil Survey (NCSS) in accordance with NCSS mapping standards

(NRCS, 2019). Stantec used the gSSURGO database to determine watershed-scale Green and Ampt Parameters.

Green and Ampt parameters were adjusted for post-remedy conditions, to reflect construction activities through the remedial action. The extents of the post-remedial work were made equivalent to the planned re-vegetation area, shown by Sheet 15 in the design drawings. This area is approximately equal to the limits of disturbance where soil impacts are most likely.

Post-Remedy Loss Parameters

For simplicity, Stantec assumed Green and Ampt parameters within the remedial action revegetation areas to have material properties equivalent to the borrow west material properties (shown in Table 3). The sampled material properties included fines content, clay content, in-situ volumetric water content, and estimated saturated volumetric water content. Soil water characteristic curves or saturated hydraulic conductivity data were not lab tested. To estimate the saturated hydraulic conductivity of the Borrow West material, Stantec used HYDRUS-1D which is coupled with Rosetta DLL (Dynamically Linked Library), which was independently developed by Marcel Schaap at the U.S. Salinity Laboratory. Rosetta implements pedotransfer functions which predict van Genuchten water retention parameters and the saturated hydraulic conductivity (Šimůnek et al., 2013). The saturated hydraulic conductivity was calculated using the percentage of sand, silt, and clay. Saturated conductivity values were also estimated using the Hazen equation for comparison. Compared to the Hazen estimates, the predicted values from Rosetta had lower conductivities and were selected for infiltration modeling. The final Green and Ampt parameters applied for the revegetated footprint are shown in Table 4. These values replaced the gSSURGO map unit values described in the previous section. Stantec calculated lumped watershed parameters for initial volumetric moisture content, saturated volumetric moisture content, and saturated hydraulic conductivity using the methods described in the previous sections. Suction head was also calculated using the previously described regression, based on the lumped saturated hydraulic conductivity values at the watershed level. Attachment C presents final Green and Ampt parameters for post-remedial modeling.

Soil	fines content (%)	clay content (%)	Silt content (%)	Sand content (%)	median d10 (mm)	Sat. hydraulic conductivity, Rosetta estimate (cm/sec)	Sat. hydraulic conductivity, Rosetta estimate (in/hr)	in-situ med. Vol. water content (%)	median estimated vol. saturated water content (%)
Borrow West	55	18	37	45	0.0011	1.29E-04	0.1829	8.9	28

Table 3: Borrow	West Materia	I Properties
-----------------	--------------	--------------

Table 4: Green and Ampt Parameters for Post-Remedial Mine Areas

Initial Content	Saturated Moisture	Suction	Ksat
(-)	Content (-)	Head (in)	(in/hr)
0.090	0.280	6.622	0.1829

Suction Head

Stantec calculated suction head values using a regression between suction head and saturated hydraulic conductivity rates. Figure 4 shows the regression. Stantec obtained the data for this relationship from Rawls et al. (1993). The fitted distribution, using a conductivity in inches per hour and the resulting suction in inches, is:

$$\bar{S}_{S,WS} = 3.729 * \bar{K}_{S,WS}^{-0.338}$$

Where:

Figure 4: Regression of calculated Suction Head Values as a Function of Hydraulic Conductivity

Hydrograph Transform

The hydrologic model uses the synthetic Clark Unit Hydrograph (UH) to transform rainfall excess to a runoff hydrograph at a catchment outlet. The Clark UH requires estimating two parameters: the time of concentration, Tc, and the storage coefficient, R, which represent the time translation and attenuation of a flood wave within a watershed.

Time of Concentration

Tc values were estimated using two different methods: (1) the empirically based Sabol (1993) Tc equation, and (2) the velocity-based method (McCuen et al., 2002). The following sections describe these approaches and Attachment C provides computation worksheets of the values computed for Tc and R values. Stantec used two Tc methods to address the differing catchment types, because no one method is appropriate for all catchment types. The Sabol (1993) time of concentration method is more appropriate for native catchments. The velocity-based time of concentration method (McCuen et al., 2002) is more appropriate for catchments with drainage dominated by engineered channels or where engineered practices have modified runoff slopes.

As presented below, the Sabol Tc method produces a Tc value constant for all storms; the velocity-based method produces a Tc that varies with the peak storm intensity. Also note that Tc is an input to calculate R. Therefore, for the velocity-based method, Tc and R both vary with the design storm intensity. In this evaluation, the Tc and R values associated with the 100-year event were assumed for all modeled storms.

Also note, nominal values equal to 0.5 hours were assumed for Tc and R for the Pit 1 drainage (hydrologic model element Ex-SB5) in the existing and proposed conditions models. This is justified as this drainage is a sink and does not route into other drainages.

Sabol Tc Method

The Sabol (1993) time of concentration, developed specifically for the desert southwest, is calculated as:

$$T_c = 2.4 * A^{0.1} * L^{0.25} * L_{ca}^{0.25} * S^{-0.2}$$

Where:

T_c	=	Time of concentration (hours)
Α	=	Area (square miles)
L	=	Hydraulically most distant length (miles)
L _{ca}	=	Length along the longest flow path from centroid (miles)
S	=	Slope along the longest flow path (ft/mile)

Velocity-Based Method

The velocity-based method computes the Tc as the sum of (1) the sheet flow travel time, (2) shallow concentrated flow travel time, and (3) open channel flow travel time (McCuen et al., 2002):

$$T_c = T_{sf} + T_{sc} + T_{oc}$$

Where:

T_c	=	Time of concentration (hours)
T_{sf}	=	Sheet flow travel time (hours)
T_{sc}	=	Shallow concentrated flow travel time (hours)
T _{oc}	=	Open channel flow travel time (hours)

The following subsections describe methods used to estimate sheet flow, shallow concentrated flow, and open channel flow parameters.

Sheet Flow Travel Time, Tsf

The sheet flow travel time, T_{sf}, was calculated using the expression below (McCuen et al., 2002):

$$T_{sf} = \frac{0.93}{i^{0.4}} \left(\frac{nL}{\sqrt{S_{sf}}}\right)^{0.6} / 60$$

Where:

T_{sf}	=	Sheet flow travel time (hours)
i	=	Rainfall intensity for storm of Tc duration (inches/hour)
п	=	Manning's roughness coefficient
S_{sf}	=	Surface slope along the flow path length (feet/feet)
L_{sf}	=	Flow path length (feet) with a maximum distance of 100 feet or nL/S^0.5
60	=	Conversion from minutes to hours

Stantec estimated values for L_{sf} and S from available site topography. Manning's n values were estimated from roughness coefficients presented by McCuen et al. (2002, Table 2.1) who recommends roughness values of 0.13 which is similar to values prescribed for natural range land in the reference.

The sheet flow calculation uses iterative computations to solve for storm intensity and the sheet flow travel time. Stantec related storm intensities to travel time using the analytical IDF relationships developed for 100-year storm event.

Shallow Concentrated Flow Travel Time, T_{sc}

The shallow concentrated flow travel time, T_{sc} , was calculated as (McCuen et al., 2002):

$$T_{sc} = \frac{L_{sc}}{V_{sc} * 3600}$$

Where:

T_{sc}	=	Time of concentration (hours)
L _{sc}	=	Shallow concentrated flow path length (feet)
Vsc	=	Shallow concentrated flow velocity (feet per second)
3600	=	Conversion from seconds to hours

$$V_{sc} = 33 * k * \sqrt{S_{sc}}$$

Where:

Vsc	=	Shallow concentrated flow velocity (feet per second)
k	=	Velocity-slope relationship constant
S _{sc}	=	Surface slope along the flow path length (feet/feet)

Stantec estimated values for L_{sc} and S from the available site topography and then computed the shallow concentrated flow coefficient, k, using McCuen (2002, Table 2.2). The values selected for hydrologic analysis is 0.457 which is approximated to represent Grassed Waterways.

Open Channel (Concentrated Flow) Travel Time, Toc

The open channel flow travel time, T_{oc}, was calculated as:

$$T_{oc} = \frac{L_{oc}}{V_{oc} * 3600}$$

Where:

T _{oc}	=	Open channel travel time (hours)
Voc	=	Open channel flow velocity (feet per second)
3600	=	Conversion from seconds to hours (seconds/hour)

Open channel flow velocity is calculated using Manning's equation as given below:

$$V_{oc} = \frac{1.486}{n} * Rh^{2/3} * S_{oc}^{0.5}$$

Where:

Voc	=	Open channel flow velocity (feet per second)
п	=	Manning's roughness coefficient
Rh	=	Hydraulic radius of the cross sectional flow area (feet)
S_{oc}	=	Surface slope along the flow path length (feet/feet)

Values for L_{sc} and S were estimated from the available site topography. Manning's roughness coefficient values, n, were determined from (Chow et al., 1988). The values selected for hydrologic analysis is 0.04.

Manning's equation was solved iteratively to find a flow depth (and hydraulic radius) that satisfied the overall T_c . The representative flow used to compute the depth in the equations was 2/3 of the simulated peak flow at catchment outlet (NMDOT, 1995).

Clark Unit Hydrograph Storage Coefficient (R Parameter)

The Clark UH R parameter was computed using the Sabol (1993) equation:

$$R = 0.37 * T_c^{1.11} * L^{0.80} * A^{-0.57}$$

Where:

R	=	Clark UH storage coefficient (hours)
T_c	=	Time of concentration as calculated in Section 5.1 or 5.2 (hours)
L	=	Length of the longest hydraulic flow path (miles)
Α	=	Area (square miles)

Channel Routing

The hydrologic models use the Muskingum-Cunge method to simulate routing through natural and engineered channels between catchment outlet points. The Muskingum-Cunge method couples the Manning formula and the convective-diffusion equation to compute the hydrograph travel time and hydrograph peak attenuation through a channel reach. No additional losses were applied to the channel reaches; therefore, Stantec observed only minor attenuation of the peak flows, indicating that channel reach specifications have a limited impact on the modeled peak flows.

For simplicity, channel dimensions were approximated as triangular shaped channel with 2:1 side slopes. These channel dimensions are simplified versions of the actual channel geometry (which have limited impact on the estimated peak flow values). A roughness of 0.04 was assigned to all channels.

Results

The simulated peak flows, and total runoff volumes for all model elements outlined in the watershed maps shown in Attachment A are provided in Attachment D.

Check with Regional Data

For an independent check of the computed runoff values, Stantec evaluated runoff estimates of the large (approximately 26.6mi²) upstream basin (Ex_SB-1) using the USGS regression equations (Waltemeyer, 2008). The St. Anthony site is in USGS Flood Region 6. The manual provides regionally regressed estimates of peak discharge in a watershed computed as a function of the drainage basin area. The regression equation predicts a peak 100-year discharge for Ex_SB-1 to be 4460 cfs which is within 10 percent of the value predicted by the hydrologic model (4067 cfs).

References

- Bonnin, G.M., D. Martin, B. Lin, T. Parzybok, M. Yekta, and D. Riley, 2011. Precipitation-Frequency Atlas of the United States. NOAA Atlas 14, Volume 1, Version 5.0: Semiarid Southwest (Arizona, Southeast California, Nevada, New Mexico, Utah). Accessed online: http://www.nws.noaa.gov/oh/hdsc/PF_documents/Atlas14_Volume1.pdf
- Chow, V.T., D.R. Maidment, and L. W. Mays, 1988. Applied Hydrology.

Cooper Aerial, 2011. Project site aerial survey taken by Cooper Aerial Surveys in 2011.

- Green, W.H. and G. Ampt, 1911. Studies of soil physics, part I the flow of air and water through soils. J. Ag. Sci. 4:1-24.
- McCuen, R.H., P. A. Johnson, and R.M. Ragan, 2002. <u>Highway Hydrology: Hydraulic Design Series</u> <u>Number 2, Second Edition</u>. Federal Highway Administration. Report No. FHWA-NHI-02-001, HDS-2. Accessed online February 2016 at: https://www.fhwa.dot.gov/engineering/hydraulics/library_arc.cfm?pub_number=2&id=6
- New Mexico Department of Transportation (NMDOT), 1995. Drainage Manual, Volume 1, Hydrology. Prepared by C.S. Philips, C.M. Easterling, R.J. Heggen, and J.D. Schall.
- NRCS, 2019. Description of Gridded Soil Survey Geographic (gSSURGO) Database. Online at https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcs142p2_053628
- Rawls, W.J., Ahuja, L.R., Brakensiek, D.L. and Shirmohammadi, A., 1993. Infiltration and Soil Water Movement. In: Maidment, D.R., Ed., Handbook of Hydrology, 1993, McGraw-Hill, New York, NY, USA, 5.1-5.51.
- Sabol, G.V., T.J. Ward, and A.D. Seiger, 1982. Phase II Rainfall Infiltration of Selected Soils in the Albuquerque Drainage Area. Accessed online February 2016 at: http://www.fcd.maricopa.gov/pub/library.aspx
- Sabol. G.V., 1993. Arizona Department of Transportation Highway Drainage Design Manual Final Report.
- Šimůnek J., A. M. Šejna, H. Saito, M. Sakai and M.T. Van Genuchten. 2013. The HYDRUS-1D Software Package for Simulating the Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media, Version 4.17, HYDRUS Software Series 3. (June): 343.
- Waltemeyer, S.D., 2008. Analysis of the Magnitude and Frequency of Peak Discharge and Maximum Observed Peak Discharge in New Mexico and Surrounding Areas. U.S. Geological Survey. Scientific Investigations Report 2008-5119.

ATTACHMENT A

Watershed Delineation Maps, HEC-HMS Element Construction, Watershed Area Tables

Image: constrained of the set of the s	5694 5694 5694 5695 56865 56865 56865 56865 56865 56865 56865 5692 5694 5694 5694 5694 5694 5694 5694 5694 5694 5694 5694 5694 5694 5694 5694 5694 5694 5694 5695 5695 5695 5695 5695 5696 5695 5696 5695 5696		Ex-SB1
Legend Basin Outlets HUC12 Soils 56865 56870 56902 57298 Arroyo del Valle Mapunit 56866 56871 56903 57299 Existing Sub-basins 56858 56867 56872 56909 57300	Star	ntec	General Electric St. Anthony Mine Closeout Plan
56863 56868 56873 56948	DATE: 1/28/2019	ECT NO: 233001076	Attachment A Watershed Delineation Map Existing Conditions

	56866 EX-SB5 B_P1-01 66655 SB_P1-02	0 0	58 56348 56348 56358 EX-S 568 568 03 56867	56948 56948 65 56948 56947 56865 56865 56865 56865 56867	
Legend Arroyo del Valle Design Sub-basins	HUC12 Soils 56865 Mapunit 56866	56870 56902 57298 56871 56903 57299	St	tantec	General Electric St. Anthony Mine Closeout Plan
Design Flow Paths Basin Outlets Post Remedial Mine Areas	56858 56867 56863 56868	56872 56909 57300 56873 56948	DATE: 1/28/2019	PROJECT NO: 233001076	Attachment A Watershed Delineation Map Proposed Conditions

HEC-HMS Basin Model Schematic – Proposed Conditions

HEC-HMS Basin Model Schematic – Existing Conditions

Existing Conditions										
Subbasin	Area (mi ²)									
Ex-SB1	26.626									
Ex-SB2	0.491									
Ex-SB3	1.876									
Ex-SB4	0.335									
Ex-SB5	0.571									

Proposed	Conditions
Subbasin	Area (mi ²)
Ex-SB1	26.618
Ex-SB2	0.311
Ex-SB3	1.898
SB_P1-02	0.202
SB_P1-01	0.084
SB_P1-03	0.054
SB_P1-04	0.022
SB_P2-01	0.094
SB_P2-02	0.047
SB_P2-03	0.010
SB_P2-05	0.086
SB_P2-04	0.010
SB_P2-06	0.007
SB_SP4-05	0.056
SB_SP4-02	0.029
SB_SP4-04	0.018
SB_SP4-03	0.009
SB_SP4-01	0.064
Ex-SB4	0.319
Ex-SB5	0.248

ATTACHMENT B

Storm Hyetograph Tables

	Cumulative	Rainfall De	pth (inches)			Cumulativ	e Raintall De	pth (inches)			Cumulative	e Rainfall Dep	pth (inches)	
Time (min)	2-Year	5-Year	10-Year	100-Year	Time (mi	n) 2-Year	5-Year	10-Year	100-Year	Time (min)	2-Year	5-Year	10-Year	100-Year
0	0	0	0	0	485	0.078	0.081	0.069	0.026	965	1,101	1.533	1.826	2.818
5	0	0	0	0	490	0.08	0.083	0.071	0.03	970	1 102	1 535	1 829	2 822
10	0.001	0	0	0	405	0.001	0.005	0.071	0.034	075	1.102	1.555	1.025	2.022
10	0.001	0	0	0	495	0.081	0.085	0.074	0.034	975	1.104	1.537	1.831	2.826
15	0.001	0	0	0	500	0.083	0.087	0.076	0.038	980	1.105	1.539	1.833	2.829
20	0.002	0	0	0	505	0.084	0.089	0.079	0.043	985	1.106	1.541	1.835	2.833
25	0.002	0	0	0	510	0.086	0.091	0.082	0.047	990	1.108	1.542	1.837	2.836
30	0.003	0	0	0	515	0.088	0.094	0.084	0.052	995	1.109	1.544	1.84	2.84
35	0.004	0	0	0	520	0.089	0.096	0.087	0.056	1000	1.11	1.546	1.842	2.84
40	0.004	0	0	0	525	0.091	0.099	0.09	0.061	1005	1 1 1 1	1 548	1 844	2 84
46	0.005	0	0	0	520	0.002	0.101	0.002	0.066	1005	1 112	1.510	1 946	2.01
4J	0.005	0	0	0	530	0.093	0.101	0.093	0.000	1010	1.113	1.549	1.840	2.04
50	0.005	0	0	0	535	0.095	0.104	0.096	0.071	1015	1.114	1.551	1.848	2.84
55	0.006	0	0	0	540	0.097	0.106	0.1	0.076	1020	1.115	1.553	1.85	2.84
60	0.006	0	0	0	545	0.099	0.109	0.103	0.082	1025	1.116	1.554	1.852	2.84
65	0.007	0	0	0	550	0.101	0.112	0.106	0.087	1030	1.117	1.556	1.853	2.84
70	0.007	0	0	0	555	0.103	0.115	0.11	0.093	1035	1.118	1.557	1.855	2.84
75	0.008	0	0	0	560	0.105	0.118	0.113	0.099	1040	1 12	1 559	1 857	2.84
90	0.000	0	0	0	500	0.109	0.110	0.115	0.055	1040	1.12	1.555	1.057	2.04
80	0.008	0	0	0	565	0.108	0.121	0.117	0.105	1045	1.121	1.56	1.859	2.84
85	0.009	0	0	0	570	0.11	0.124	0.121	0.111	1050	1.122	1.562	1.861	2.84
90	0.009	0	0	0	575	0.112	0.127	0.125	0.118	1055	1.123	1.563	1.862	2.84
95	0.01	0	0	0	580	0.115	0.131	0.129	0.125	1060	1.124	1.565	1.864	2.84
100	0.011	0	0	0	585	0.117	0.134	0.134	0.132	1065	1.125	1.566	1.866	2.84
105	0.011	0	0	0	590	0.12	0.138	0.138	0.139	1070	1,126	1.567	1.867	2.84
110	0.012	0	0	0	505	0.122	0.142	0.142	0.147	1075	1 1 2 7	1 560	1 960	2.84
110	0.012	0	0	0	535	0.123	0.142	0.143	0.147	1073	1.127	1.503	1.803	2.84
115	0.012	0	0	0	600	0.126	0.146	0.148	0.155	1080	1.128	1.57	1.87	2.84
120	0.013	0	0	0	605	0.129	0.151	0.153	0.163	1085	1.129	1.571	1.872	2.84
125	0.013	0	0	0	610	0.132	0.155	0.158	0.172	1090	1.13	1.573	1.874	2.84
130	0.014	0	0	0	615	0.136	0.16	0.164	0.181	1095	1.131	1.574	1.875	2.84
135	0.015	0	0	0	620	0.139	0.165	0.17	0.191	1100	1.132	1.575	1.877	2.84
140	0.015	0	0	0	625	0 143	0.17	0.176	0.201	1105	1,133	1,576	1,878	2.84
1/5	0.015	0	0	°,	620	0.143	0.176	0.100	0.212	1110	1 1 2 2	1 570	1 00	2.04
143	0.010	0	0	0	650	0.147	0.1/0	0.103	0.212	1110	1 4 2 4	1.570	1.00	2.04
150	0.016	U	0	U	635	0.152	U.182	0.19	0.223	1115	1.134	1.5/9	1.881	2.84
155	0.017	0	0	0	640	0.156	0.188	0.198	0.236	1120	1.135	1.58	1.883	2.84
160	0.018	0	0	0	645	0.161	0.195	0.206	0.249	1125	1.136	1.581	1.884	2.84
165	0.018	0	0	0	650	0.166	0.202	0.215	0.263	1130	1.137	1.582	1.885	2.84
170	0.019	0	0	0	655	0.172	0.21	0.225	0.279	1135	1.138	1.583	1.887	2.84
175	0.02	0.001	0	0	033	0.178	0 210	0.235	0.296	11/0	1 1 20	1 5 8 5	1 888	2.84
1/5	0.02	0.001	0	0	000	0.170	0.215	0.235	0.230	1140	1.155	1.505	1.000	2.04
180	0.02	0.002	0	0	665	0.185	0.228	0.247	0.315	1145	1.139	1.586	1.889	2.84
185	0.021	0.003	0	0	670	0.193	0.239	0.26	0.335	1150	1.14	1.587	1.891	2.84
190	0.022	0.004	0	0	675	0.202	0.251	0.274	0.358	1155	1.141	1.588	1.891	2.84
195	0.022	0.004	0	0	680	0.211	0.265	0.291	0.385	1160	1.142	1.589	1.891	2.84
200	0.023	0.005	0	0	685	0.223	0.28	0.31	0.415	1165	1.143	1.59	1.891	2.84
205	0.024	0.006	0	0	690	0.236	0.299	0 332	0.451	1170	1 143	1 591	1 891	2 84
205	0.024	0.007	0	0	605	0.250	0.233	0.352	0.191	1175	1.113	1.551	1 901	2.01
210	0.024	0.007	0	0	700	0.232	0.321	0.333	0.434	11/3	1.144	1.592	1.891	2.84
215	0.025	0.008	0	0	700	0.272	0.349	0.393	0.548	1180	1.145	1.593	1.891	2.84
220	0.026	0.009	0	0	705	0.298	0.386	0.438	0.619	1185	1.146	1.594	1.891	2.84
225	0.026	0.01	0	0	710	0.334	0.439	0.501	0.719	1190	1.146	1.595	1.891	2.84
230	0.027	0.011	0	0	715	0.393	0.522	0.603	0.879	1195	1.147	1.596	1.891	2.84
235	0.028	0.012	0	0	720	0.514	0.697	0.815	1.212	1200	1.148	1.597	1.891	2.84
240	0.028	0.013	0	0	725	0.737	1 021	1 206	1.83	1205	1 1/19	1 598	1 801	2.84
240	0.020	0.013	0	0	725	0.737	1.021	1.200	2.05	1205	1.140	1.550	1.001	2.04
245	0.029	0.014	0	0	730	0.817	1.130	1.340	2.05	1210	1.149	1.599	1.891	2.64
250	0.03	0.015	0	0	735	0.862	1.201	1.425	2.174	1215	1.15	1.6	1.891	2.84
255	0.031	0.016	0	0	740	0.893	1.244	1.477	2.257	1220	1.151	1.601	1.891	2.84
260	0.031	0.017	0	0	745	0.916	1.276	1.516	2.319	1225	1.151	1.602	1.891	2.84
265	0.032	0.018	0	0	750	0.933	1.301	1.546	2.367	1230	1.152	1.603	1.891	2.84
270	0.033	0.019	0	0	755	0.948	1.321	1.571	2.406	1235	1,153	1.604	1.891	2.84
275	0.034	0.02	0	0	760	0.96	1 338	1 592	2 / 30	1240	1 154	1 605	1 801	2.84
275	0.034	0.02	0	0	700	0.50	1.550	1.552	2.455	1240	1.154	1.005	1.001	2.04
280	0.034	0.021	0	0	765	0.97	1.353	1.609	2.467	1245	1.154	1.606	1.891	2.84
285	0.035	0.022	0	0	770	0.98	1.366	1.625	2.492	1250	1.155	1.607	1.891	2.84
290	0.036	0.023	0	0	775	0.988	1.377	1.638	2.513	1255	1.156	1.608	1.891	2.84
295	0.037	0.024	0.001	0	780	0.995	1.387	1.651	2.533	1260	1.156	1.609	1.891	2.84
300	0.038	0.026	0.003	0	785	1.002	1.396	1.662	2.551	1265	1.157	1.609	1.891	2.84
305	0.039	0.027	0.004	0	790	1.008	1.405	1.672	2.567	1270	1.157	1.61	1.891	2.84
310	0.030	0.027	0.005	0	705	1.000	1.103	1.672	2.507	1275	1.157	1.01	1.001	2.01
310	0.039	0.020	0.005	0	192	1.015	1.412	1.001	2.302	12/3	1.100	1.01	1.091	2.04
315	0.04	0.029	0.007	U	800	1.018	1.42	1.69	2.596	1280	1.159	1.61	1.891	2.84
320	0.041	0.03	0.008	0	805	1.023	1.426	1.697	2.609	1285	1.159	1.61	1.891	2.84
325	0.042	0.031	0.01	0	810	1.027	1.432	1.705	2.621	1290	1.16	1.61	1.891	2.84
330	0.043	0.033	0.011	0	815	1.032	1.438	1.712	2.632	1295	1.161	1.61	1.891	2.84
335	0.044	0.034	0.013	0	820	1.035	1.443	1.718	2.642	1300	1.161	1.61	1.891	2.84
340	0.045	0.035	0.014	0	825	1.039	1.449	1.725	2.652	1305	1.162	1.61	1.891	2.84
345	0.046	0.036	0,016	0	830	1.043	1,453	1.73	2.662	1310	1,162	1,61	1,891	2,84
350	0.047	0.030	0.017	0	000	1 046	1 /150	1 736	2 671	1210	1 162	1.61	1 801	2.01
330	0.047	0.030	0.01/	0	000	1.040	1.400	1.730	2.071	1010	1.103	1.01	1.071	2.04
355	0.047	0.039	0.019	U	840	1.049	1.462	1./41	2.6/9	1320	1.164	1.61	1.891	2.84
360	0.048	0.04	0.02	0	845	1.052	1.467	1.746	2.688	1325	1.164	1.61	1.891	2.84
365	0.049	0.041	0.022	0	850	1.055	1.471	1.751	2.695	1330	1.165	1.61	1.891	2.84
370	0.05	0.043	0.023	0	855	1.058	1.474	1.756	2.703	1335	1.165	1.61	1.891	2.84
375	0.051	0.044	0.025	0	860	1.061	1.478	1.76	2.71	1340	1.166	1.61	1.891	2.84
380	0.052	0.046	0.027	0	865	1.063	1.487	1.764	2.717	1345	1.166	1.61	1.891	2.84
395	0.052	0.047	0.020	č	070	1 066	1 /00	1 769	2 724	1250	1 167	1 61	1 201	2.07
200	0.055	0.047	0.020	0	870	1.000	1.400	1.700	2.724	1550	1.107	1.01	1.091	2.04
390	0.054	0.048	0.03	U	875	1.068	1.488	1.772	2.73	1355	1.168	1.61	1.891	2.84
395	0.056	0.05	0.032	0	880	1.07	1.491	1.776	2.736	1360	1.168	1.61	1.891	2.84
400	0.057	0.051	0.034	0	885	1.073	1.495	1.78	2.742	1365	1.169	1.61	1.891	2.84
405	0.058	0.053	0.035	0	890	1.075	1.497	1.783	2.748	1370	1.169	1.61	1.891	2.84
410	0.059	0.054	0.037	0	895	1.077	1.5	1.787	2.754	1375	1.17	1.61	1.891	2.84
415	0.06	0.056	0.030	0	900	1 070	1 503	1 70	2 750	1380	1 17	1.61	1 801	2.84
420	0.001	0.050	0.035	0	500	1.073	1.505	1 702	2.7.35	1300	1 1 7 1	1.01	1 001	2.04
420	0.061	0.057	0.041	U	905	1.081	1.506	1.793	2.704	1385	1.1/1	1.01	1.891	2.84
425	0.062	0.059	0.043	0	910	1.083	1.508	1.797	2.769	1390	1.171	1.61	1.891	2.84
430	0.063	0.061	0.045	0	915	1.085	1.511	1.8	2.774	1395	1.172	1.61	1.891	2.84
435	0.065	0.062	0.047	0	920	1.086	1.513	1.803	2.779	1400	1.172	1.61	1.891	2.84
440	0.066	0.064	0.049	0	925	1.088	1.516	1.806	2.784	1405	1.173	1.61	1.891	2.84
445	0.067	0.066	0.051	0	930	1.09	1.518	1.808	2.789	1410	1.173	1.61	1.891	2.84
450	0.007	0.067	0.053	Č	550	1.00	1.510	1.000	2.703	1410	1 174	1.01	1 901	2.04
450	0.068	0.067	0.053	U	935	1.092	1.52	1.811	2.793	1415	1.1/4	1.61	1.891	2.84
455	0.07	0.069	0.055	0.003	940	1.093	1.523	1.814	2.798	1420	1.174	1.61	1.891	2.84
460	0.071	0.071	0.057	0.007	945	1.095	1.525	1.816	2.802	1425	1.175	1.61	1.891	2.84
465	0.072	0.073	0.059	0.011	950	1.096	1.527	1.819	2.806	1430	1.176	1.61	1.891	2.84
470	0.074	0.075	0.062	0.014	955	1.098	1.529	1.821	2.81	1435	1.176	1.61	1.891	2.84
475	0.075	0 077	0.064	0.018	960	1 000	1 5 2 1	1 824	2 814	1440	1 176	1.61	1 801	2.84
400	0.077	0.070	0.000	0.022										

- -

ATTACHMENT C Clark Unit Hydrograph Parameter Calculation and Routing Tables

				Time of Conentration										
ID	Tc (HRS)	R (HRS)	Method	Area (mi2)	L (mi)	Lca (mi)	El_Max (ft)	El_Min (ft)	S (ft/mi)	Tc (hours)	R (hours)			
Ex-SB1	4.09	2.53	Sabol (Desert/Mountain)	26.6	16.2	7.9	8550	6024	156	4.1	2.5			
Ex-SB3	1.31	0.75	Sabol (Desert/Mountain)	1.9	2.6	1.4	6305	5960	134	1.3	0.7			
Ex-SB4	0.66	0.52	Sabol (Desert/Mountain)	0.3	1.3	0.7	6345	5951.9	312	0.7	0.5			

Existing and Proposed Conditions - Clark UH Parameters, Tc and R by Sabol (1993)

Proposed Conditions - Clark UH Parameters, Tc and R by FHWA

1/100-Year Storm Assumed

ObjectID	Tc (HRS)	R (HRS)
SB_P1-01	0.324	0.217
SB_P1-02	0.283	0.168
SB_P1-03	0.278	0.254
SB_P1-04	0.143	0.195
SB_P2-01	0.309	0.631
SB_P2-02	0.192	0.141
SB_P2-03	0.420	0.483
SB_P2-04	0.182	0.136
SB_P2-05	0.246	0.457
SB_P2-06	0.103	0.065
SB_SP4-01	0.632	1.031
SB_SP4-02	0.362	0.497
SB_SP4-03	0.254	0.304
SB_SP4-04	0.342	0.554
SB_SP4-05	0.616	1.020
CD Ev2	0 606	0 695

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							Max Sheet								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			High		SF Roughness		Flow Length	Guess Intensity	Select Design	Avg. Effective	New Intensity			Tt_6*n)	SF Tt
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ObjectID	SF Length (ft)	Elevation (ft)	Low Elevation (ft)	Factor "n"	SF Slope (ft/ft)	(ft)	(in/hr)	Storm	Rainfall Depth (in)	(in/hr)	Iterate to 0	Intensity (ft/s)	(s)	(min)
SB_P102 62 64267 64267 64264 0.30 0.00 48.85 44 1007 24tr 1.24 4.4 0.02 10E-04 674 11.2 SB_P103 125 640.0 0.30 0.02 97.30 4.5 1007 24tr 1.23 4.4 0.02 10E-04 673 11.2 SB_P204 136 661.8 6125.0 0.30 0.58 588.14 6.1 1007 24tr 1.23 4.4 0.02 10E-04 673 11.2 SB_P201 1360 645.8 641.73 0.30 0.32 129.80 4.2 1007 24tr 1.28 4.2 0.03 128.4 4.0 0.03 128.4 4.0 0.03 128.4 4.2 0.03 128.4 4.2 1.23 4.4 0.03 1.46.4 128 4.2 0.03 9.76.5 6.74 11.2 SB_P202 112 645.0 6403.3 0.03 0.02 10.15 3.5 10.07	SB_P1-01	120	6399.9	6398.1	0.130	0.02	95.25	4.1	100yr 24hr	1	4.1	0.04	9.5E-05	690	11.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SB_P1-02	62	6426.7	6426.4	0.130	0.00	48.85	4.4	100yr 24hr	1.24	4.4	0.02	1.0E-04	674	11.2
SB P104 63 616.18 617.50 0.30 0.58 588.14 6.1 1007 24hr 0.87 6.1 0.01 1.4E-04 134 2.2 SB P201 160 661.8 641.73 0.30 0.30 129.0 4.2 1007 24hr 1.29 4.2 0.30 97.65 67.4 11.2 SB P202 112 645.0 643.0 0.30 0.02 102.79 5.4 1007 24hr 1.28 4.2 0.03 97.65 67.4 11.2 SB P203 75 666.1 6603.3 0.30 0.01 90.15 3.5 1007 24hr 1.46 3.5 0.05 13.65 57.7 9.6 SB P204 69 6663.3 6657.8 0.30 0.04 145.45 6.6 1007 24hr 1.46 4.8 1007 24hr 1.46 4.7 1.58 3.8 1.60 57.7 9.6 SB P205 661 667.9 0.10 0.16 4.8 1007	SB_P1-03	125	6402.0	6400.0	0.130	0.02	97.30	4.5	100yr 24hr	1.23	4.4	0.08	1.0E-04	673	11.2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SB_P1-04	63	6161.8	6125.0	0.130	0.58	588.14	6.1	100yr 24hr	0.87	6.1	0.01	1.4E-04	134	2.2
SB P2Q3 112 61450 61430 0.30 0.02 102.79 54 1007 eVar 1.08 5.3 0.06 1.8E-04 567 9.4 SB P2Q3 75 606.13 606.03 0.30 0.01 90.15 3.5 1007 eVar 1.46 3.5 0.06 1.8E-04 567 9.4 57 96.6 3.5 0.03 0.01 90.15 3.5 1007 eVar 1.46 3.5 0.03 81.605 573 9.6 573 9.6 58 2.02 568 6.02 0.03 0.04 145.45 56 1007 eVar 1.46 4.5 0.03 1.6 4.24 7.1 1.86.0 4.24 7.1 5.9 0.60 1.6 4.24 7.1 5.9 0.01 1.66.0 4.24 7.1 5.9 0.01 1.66.0 4.27 7.1 5.9 0.01 1.66.0 4.24 7.1 5.9 4.01 1.66.0 4.27 3.8 5.6 2.7	SB_P2-01	160	6451.8	6447.3	0.130	0.03	129.80	4.2	100yr 24hr	1.29	4.2	0.03	9.7E-05	674	11.2
58 P2-03 75 666.13 6600.3 0.130 0.01 90.15 3.5 1000 relative 1.46 3.5 0.03 8.1E-05 5.7 9.6 58 P2-04 669 6603 6677.8 0.130 0.04 145.45 5.6 1000 relative 1.00 5.5 0.12 1.3E-04 338 5.6 58 P2-05 6.3 6692.5 6291.4 0.130 0.02 101.64 4.8 1000 relative 1.16 4.7 0.08 1.1E-04 424 7.1 58 P2-06 66 663.9 665.0 0.130 0.08 215.6 6.9 1000 relative 0.71 6.9 -0.01 1.6E-04 2.25 3.8 58 54.01 308 615.00 605.0 0.130 0.08 255.66 2.7 1000 relative 1.68 3.8 0.00 8.8E-05 5.4 9.6 58 59.40-0 31.66 62.94 0.30 <	SB_P2-02	112	6145.0	6143.0	0.130	0.02	102.79	5.4	100yr 24hr	1.03	5.3	0.06	1.3E-04	567	9.4
58.P2-04 69 6060.3 6067.8 0.30 0.04 145.45 5.6 1007 eVar 1.00 5.5 0.12 1.8E-04 338 5.6 58.P2-05 63 6525 6221.4 0.130 0.02 10.64 4.8 1007 eVar 1.16 4.7 0.08 11.E-04 424 7.1 58.P2-05 660 6663.9 6069.0 0.130 0.08 215.64 6.9 1007 eVar 1.16 4.7 0.08 11.E-04 424 7.1 58.P2-01 0.80 615.0 607.0 0.130 0.88 22.05 2.7 1.88 4.8 0.08 618.05 6688 11.5 58.P4-01 0.30 615.0 0.130 0.02 108.7 3.8 1007 eVar 1.88 3.8 0.00 8.8-65 5.7 9.6 58.P4-01 0.107 6115 0.130 0.02 108.7 4.6 1007 eVar 1.18 3.8 0.00 8.8-65	SB_P2-03	75	6061.3	6060.3	0.130	0.01	90.15	3.5	100yr 24hr	1.46	3.5	0.03	8.1E-05	573	9.6
SB P2-05 63 6529.5 6291.4 0.130 0.02 101.64 4.8 1000-24hr 1.16 4.7 0.08 11E-04 424 7.1 SB P2-05 6.0 6063.9 6695.0 0.130 0.08 2125.4 6.9 1000-24hr 0.71 6.9 -0.01 1.6E-04 225 3.8 SB 594-01 308 61500 6095.0 0.130 0.18 325.66 2.7 1007-24hr 1.68 2.7 0.04 6.8E-05 6.688 11.5 SB 594-01 302 615.0 615.0 0.130 0.02 108.79 4.8 1007-24hr 1.88 3.8 0.00 8.8E-05 57.4 9.6 SB 594-03 109 621.6 615.0 0.30 0.02 108.79 4.6 1007-24hr 1.18 3.8 0.00 8.8E-05 57.4 9.6 SB 594-03 122 615.0 0.130 0.02 108.79 4.6 1007-24hr 1.18 <	SB_P2-04	69	6060.3	6057.8	0.130	0.04	145.45	5.6	100yr 24hr	1.00	5.5	0.12	1.3E-04	338	5.6
SB P2-06 60 6063.9 6059.0 0.130 0.08 2195.4 6.9 1007 eVar 0.71 6.9 -0.01 1.6E-04 225 3.8 SB 94-01 308 615.00 605.00 0.130 0.18 325.66 2.7 1007 eVar 1.88 2.7 0.04 6.3E-05 6.88 11.5 SB 94-02 302 615.0 615.0 0.130 0.20 342.87 3.8 1007 eVar 1.88 2.7 0.04 6.3E-05 6.88 11.5 SB 94-02 302 613.6 613.00 0.20 342.87 3.8 1007 eVar 1.88 3.8 0.00 8.8E-05 5.4 9.6 SB 94-02 0.39 623.16 623.94 0.130 0.20 3.82 1007 eVar 1.18 4.6 -0.05 1.1E-04 5.7 9.6 SB 94-03 621.6 6190.0 0.130 0.20 348.21 4.0 1007 eVar 1.34 3.9 0.07	SB_P2-05	63	6292.5	6291.4	0.130	0.02	101.64	4.8	100yr 24hr	1.16	4.7	0.08	1.1E-04	424	7.1
SB_SP4-01 308 61500 6005.0 0.130 0.18 325.06 2.7 100yr 24hr 1.68 2.7 0.04 6.3E-05 6688 11.5 SB_SP4-02 302 6215.0 6155.0 0.130 0.20 342.87 3.8 100yr 24hr 1.38 3.8 0.00 8.8E-05 574 9.6 SB_SP4-02 109 6213.6 6129.4 0.130 0.02 108.79 4.6 100yr 24hr 1.38 3.8 0.00 8.8E-05 574 9.6 SB_SP4-03 122 6215.0 6190.0 0.130 0.02 108.79 4.6 100yr 24hr 1.34 3.9 0.07 9.3E-05 324 5.4 SB_SP4-04 122 6215.0 6190.0 0.30 0.20 348.21 4.0 100yr 24hr 1.34 3.9 0.07 9.3E-05 324 5.4 SB_SP4-04 122 6215.0 6190.0 0.30 0.20 344.01 2.7 2.7	SB_P2-06	60	6063.9	6059.0	0.130	0.08	219.54	6.9	100yr 24hr	0.71	6.9	-0.01	1.6E-04	225	3.8
SB_54-02 302 6215.0 615.0 0.30 0.00 342.87 3.8 1000 relative 1.38 3.8 0.00 8.88-65 574 9.6 SB_54-0.1 109 631.6 622.94 0.130 0.021 108/79 4.6 1000 relative 1.18 3.8 0.00 8.88-65 574 9.6 SB_54-0.1 1091 631.6 622.94 0.130 0.021 108/79 4.6 1000 relative 1.18 4.6 -0.05 11.16-04 575 9.6 58 59.40 1.22 6215.0 6190.0 0.130 0.00 348.21 4.0 1000 relative 1.18 4.6 -0.05 11.16-04 575 9.6 32.4 5.4 SPA-04 1.22 6215.0 6190.0 0.130 0.00 348.21 4.0 1000 relative 1.34 3.9 0.07 9.34.65 32.4 5.4 SPA-04 1.92 5.92 5.92 5.92 5.92 5.92 <td>SB_SP4-01</td> <td>308</td> <td>6150.0</td> <td>6095.0</td> <td>0.130</td> <td>0.18</td> <td>325.06</td> <td>2.7</td> <td>100yr 24hr</td> <td>1.68</td> <td>2.7</td> <td>0.04</td> <td>6.3E-05</td> <td>688</td> <td>11.5</td>	SB_SP4-01	308	6150.0	6095.0	0.130	0.18	325.06	2.7	100yr 24hr	1.68	2.7	0.04	6.3E-05	688	11.5
SB_SP4-03 109 6231.6 6229.4 0.130 0.02 108.79 4.6 100/r 24tr 1.18 4.6 -0.05 1.1E-04 575 9.6 SB_SP4-03 122 6215.0 6190.0 0.30 0.20 348.21 4.0 100/r 24tr 1.18 3.9 0.07 9.8-65 324 5.4 Description 0.07 0.02 0.02 348.21 0.0 1.00/r 24tr 1.34 3.9 0.07 9.8-65 324 5.4	SB_SP4-02	302	6215.0	6155.0	0.130	0.20	342.87	3.8	100yr 24hr	1.38	3.8	0.00	8.8E-05	574	9.6
SB_SP404 122 6215.0 6190.0 0.130 0.20 348.21 4.0 100yr JMr 1.34 3.9 0.07 9.8:65 32.4 5.3 5.4 <th< td=""><td>SB_SP4-03</td><td>109</td><td>6231.6</td><td>6229.4</td><td>0.130</td><td>0.02</td><td>108.79</td><td>4.6</td><td>100yr 24hr</td><td>1.18</td><td>4.6</td><td>-0.05</td><td>1.1E-04</td><td>575</td><td>9.6</td></th<>	SB_SP4-03	109	6231.6	6229.4	0.130	0.02	108.79	4.6	100yr 24hr	1.18	4.6	-0.05	1.1E-04	575	9.6
CD CD4.05 200 2105 0.00 2105 0.00 2105 0.00 2105 0.00 114	SB_SP4-04	122	6215.0	6190.0	0.130	0.20	348.21	4.0	100yr 24hr	1.34	3.9	0.07	9.3E-05	324	5.4
58_5P4-05 525 6200.0 6135.0 0.130 0.20 544.01 2.7 100yr 24nr 1.67 2.7 -0.01 6.3E-05 687 11.4	SB_SP4-05	325	6200.0	6135.0	0.130	0.20	344.01	2.7	100yr 24hr	1.67	2.7	-0.01	6.3E-05	687	11.4
SB_EX2 245 6102.0 6090.7 0.130 0.06 188.42 2.5 100yr 24hr 1.73 2.5 0.01 5.8E-05 858 14.3	SB_Ex2	245	6102.0	6090.7	0.130	0.06	188.42	2.5	100yr 24hr	1.73	2.5	0.01	5.8E-05	858	14.3

		High					Tt	Tt if V=1.0 ft/s	
ObjectID	SCF Length (ft)	Elevation (ft)	Low Elevation (ft)	k value	SCF Slope (ft/ft)	Velocity (ft/s)	(min)	(min)	Tt (min)
SB_P1-01	837.9	6398.1	6370.0	0.457	0.033	2.76	5.06	13.97	5.06
SB_P1-02	491.0	6426.4	6326.0	0.457	0.204	6.82	1.20	8.18	1.20
SB_P1-03	1035.0	6400.0	6082.0	0.457	0.31	8.36	2.06	17.25	2.06
SB_P1-04	316.9	6125.0	6098.0	0.457	0.09	4.40	1.20	5.28	1.20
SB_P2-01	804.0	6447.3	6280.0	0.457	0.21	6.88	1.95	13.40	1.95
SB_P2-02	356.3	6143.0	6060.0	0.457	0.23	7.28	0.82	5.94	0.82
SB_P2-03	1012.8	6060.3	6045.6	0.457	0.01	1.82	9.30	16.88	9.30
SB_P2-04	245.0	6057.8	6040.0	0.457	0.07	4.06	1.00	4.08	1.00
SB_P2-05	996.4	6291.4	6110.0	0.457	0.18	6.43	2.58	16.61	2.58
SB_P2-06	421.9	6059.0	6007.0	0.457	0.12	5.29	1.33	7.03	1.33
SB_SP4-01	0.0	6095.0	6095.0	0.457	#DIV/0!	0.00	0.00	0.00	0.00
SB_SP4-02	0.0	6155.0	6155.0	0.457	#DIV/0!	0.00	0.00	0.00	0.00
SB_SP4-03	721.2	6229.4	6215.0	0.457	0.02	2.13	5.64	12.02	5.64
SB_SP4-04	0.0	6190.0	6190.0	0.457	#DIV/0!	0.00	0.00	0.00	0.00
SB_SP4-05	0.0	6135.0	6135.0	0.457	#DIV/0!	0.00	0.00	0.00	0.00
SB_Ex2	965.1	6090.7	6032.8	0.457	0.06	3.69	4.35	16.09	4.35

											Channel					
				Channel		Guess Flow	Channel Bottom				Hydraulic	Calculated				
		High		Roughness		Depth	Width "B"			Flow Area "A"	Radius "Rh"	Discharge	Modeled	Modeled Discharge		Tt
ObjectID	CF Length (ft)	Elevation (ft)	Low Elevation (ft)	Factor "n"	Channel Slope (ft/ft)	(ft)	(ft)	xH:1V-1	xH:1V-2	(ft2)	(ft)	(cfs)	Discharge	(cfs)	Iterate to 0	(min)
SB_P1-01	2011.8	6370.0	6081.0	0.04	0.144	1.02	5.00	2.0	2.0	7.16	0.75	83.24	83.2	83.20	0.04	2.9
SB_P1-02	3115.5	6326.0	6078.0	0.04	0.080	1.71	5.00	2.0	2.0	14.34	1.14	163.61	245.5	163.67	-0.06	4.6
SB_P1-03	1315.5	6082.0	6021.0	0.04	0.046	0.98	5.00	2.0	2.0	6.78	0.72	43.71	65.9	43.93	-0.23	3.4
SB_P1-04	1855.8	6098.0	5990.0	0.04	0.058	0.70	5.00	2.0	2.0	4.44	0.55	26.64	39.8	26.53	0.11	5.2
SB_P2-01	2367.9	6280.0	6071.0	0.04	0.088	0.69	5.00	2.0	2.0	4.43	0.55	32.65	48.3	32.20	0.45	5.4
SB_P2-02	522.9	6060.0	6039.0	0.04	0.040	1.24	5.00	2.0	2.0	9.25	0.88	63.10	94.7	63.13	-0.03	1.3
SB_P2-03	470.0	6045.6	6039.0	0.04	0.014	0.16	5.00	2.0	2.0	0.85	0.15	1.05	1.5	1.00	0.05	6.3
SB_P2-04	706.0	6040.0	6014.0	0.04	0.037	0.27	5.00	2.0	2.0	1.50	0.24	4.13	6.0	4.00	0.13	4.3
SB_P2-05	1989.6	6110.0	6014.0	0.04	0.048	0.95	5.00	2.0	2.0	6.51	0.71	42.12	62.9	41.93	0.18	5.1
SB_P2-06	401.4	6007.0	5961.0	0.04	0.115	0.39	5.00	2.0	2.0	2.25	0.33	13.65	20.6	13.73	-0.08	1.1
SB_SP4-01	4760.6	6095.0	5995.0	0.04	0.021	0.84	0.00	20.0	5.0	8.72	0.42	26.13	39.1	26.07	0.00	26.5
SB_SP4-02	2141.2	6155.0	6105.0	0.04	0.023	0.75	0.00	20.0	5.0	7.03	0.37	20.69	30.7	20.47	0.05	12.1
SB_SP4-03	0.0	6215.0	6105.0	0.04	#DIV/0!	0.00	0.00	20.0	5.0	0.00	#DIV/0!	#DIV/0!	12.9	8.60	#DIV/0!	0.0
SB_SP4-04	2296.0	6190.0	6140.0	0.04	0.022	0.63	0.00	20.0	5.0	4.96	0.31	12.55	18.4	12.27	0.08	15.1
SB_SP4-05	4414.0	6135.0	6045.0	0.04	0.020	0.81	0.00	20.0	5.0	8.10	0.40	23.35	34.8	23.20	0.02	25.5
SB_Ex2	7000.0	6032.8	5955.0	0.04	0.011	3.09	0.00	3.0	3.0	28.64	1.47	144.75	214.4	142.93	3.29	23.1

					Channel Confficient 707	
					Storage Coefficient "R"	
ObjectID	Tc (min)	Tc (hrs)	A	L(mi)	(hrs)	R/Tc
SB_P1-01	19.45	0.32	0.13	0.56	0.22	0.67
SB_P1-02	16.99	0.28	0.21	0.69	0.17	0.59
SB_P1-03	16.68	0.28	0.06	0.47	0.25	0.91
SB_P1-04	8.59	0.14	0.02	0.42	0.20	1.36
SB_P2-01	18.54	0.31	0.02	0.63	0.63	2.04
SB_P2-02	11.54	0.19	0.02	0.19	0.14	0.74
SB_P2-03	25.19	0.42	0.02	0.30	0.48	1.15
SB_P2-04	10.90	0.18	0.02	0.19	0.14	0.75
SB_P2-05	14.77	0.25	0.02	0.58	0.46	1.86
SB_P2-06	6.18	0.10	0.02	0.17	0.06	0.63
SB_SP4-01	37.93	0.63	0.06	0.96	1.03	1.63
SB_SP4-02	21.70	0.36	0.03	0.46	0.50	1.38
SB_SP4-03	15.22	0.25	0.01	0.16	0.30	1.20
SB_SP4-04	20.52	0.34	0.02	0.46	0.55	1.62
SB_SP4-05	36.97	0.62	0.06	0.90	1.02	1.66
SB Ex2	41.74	0.70	0.31	1.55	0.68	0.98

ObjectID Ex-SB2	Tc (HRS) 0.743	R (HRS) 0.664			1/100-Year Storm Ass	umed										
ObjectID	SE Length (ft)	High Elevation (ft)	Low Elevation	SF Roughness Factor "n"	SE Slane (ft/ft)	Max Sheet Flow Length (ft)	Guess Intensity (in/hr)	Select Design	Avg. Effective Rainfall Depth (in)	New Intensity (in/hr)	Iterate to 0	Intensity (ft/s)	Tt_(/*Tt) (5)	SF Tt (min)		
Ex-SB2	141	6248.8	6244.1	0.100	0.03	182.01	6.6	100yr 24hr	5	6.6	0.00	1.5E-04	427	7.1]	
ObjectID Ex-SB2	SCF Length (ft) 1400.9	High Elevation (ft) 6244.1	Low Elevation (ft) 6178.6	k value 0.305	SCF Slope (ft/ft) 0.047	Velocity (ft/s) 2.18	Tt (min) 10.73	Tt if V=1.0 ft/s (min) 23.35	Tt (min) 10.73							
ObjectID	CF Length (ft)	High Elevation (ft)	Low Elevation (ft)	Channel Roughness Factor "n"	Channel Slope (ft/ft)	Guess Flow Depth (ft)	Channel Bottom Width "B" (ft)	xH:1V-1	xH:1V-2	Flow Area "A" (ft2)	Channel Hydraulic Radius "Rh" (ft)	Calculated Discharge (cfs)	Modeled Discharge	Modeled Discharge (cfs)	iterate to 0	Tt (min)
Ex-SB2	8426.5	6178.6	5960.0	0.04	0.026	1.84	0.00	2.0	2.0	6.77	0.82	35.55	35.5	35.49	0.06	26.7
ObjectID Ex-SB2	Tc (min) 44.58	Tc (hrs) 0.74	A 0.49	L(mi)	Storage Caefficient "R" (hrs) 0.66	R/Tc 0.89]		<u> </u>	*				*		

Existing Conditions - Clark UH Parameters, Tc and R by FHWA

Muskingum-Cunge Flow Routing

Reach	High Elevation (ft)	Low Elevation (ft)	Length (ft)	Slope (ft/ft)	Manning's n Shape	Side Slope
EX-R1 (Arroyo del Valle)	6024	5960	7410	0.00864	0.04 Triangle	2
EX-R2 (Arroyo del Valle)	5960	5951.9	1492	0.00543	0.04 Triangle	2

ATTACHMENT D

HEC-HMS Model Results

HEC-HMS Model Results

Existing Conditions									
	1/100-Yea	ar Event	1/10-Yea	ar Event	1/5-Year	Event	1/2-Year Event		
			Peak						
	Peak	Volume (ac-	Discharge	Volume (ac-	Peak Discharge	Volume (ac-	Peak Discharge	Volume (ac-	
Hydrologic Element	Discharge (cfs)	ft)	(cfs)	ft)	(cfs)	ft)	(cfs)	ft)	
Ex-SB1	4067	1627	1820	728	1206	482	412	165	
Ex-J-SB1	4067	1627	1819	728	1206	483	412	165	
Ex-R1 (Arroyo del Valle)	4065	1629	1822	735	1206	483	412	165	
Ex-SB2	32	3	1821	739	1205	484	412	165	
Ex-J-SB2	4065	1631	12	1	0	0	0	0	
Ex-SB3	364	45	1819	728	1206	483	412	165	
Ex-J-SB3	4082	1677	1821	735	1205	483	412	165	
Ex-R2 (Arroyo del Valle)	4081	1677	1820	728	1206	482	412	165	
Ex-SB4	155	12	0	0	0	0	0	0	
Ex-Outlet	4081	1688	55	7	0	0	0	0	
Ex-SB5	157	10	45	3	18	1	0	0	
Ex-Pit1	157	10	12	1	0	0	0	0	

Proposed Conditions							
	1/100-Year Event						
	Peak	Volume					
Hydrologic Element	Discharge (cfs)	(ac-ft)					
Ex-J-SB1	4080	1632					
Ex-J-SB2	4081	1654					
Ex-J-SB3	4105	1743					
Ex-Outlet	4102	1755					
Ex-Pit1	172	12					
Ex-R1 (Arroyo del Valle)	4077	1634					
Ex-R2 (Arroyo del Valle)	4102	1743					
Ex-SB1	4080	1632					
Ex-SB2	214	20					
Ex-SB3	409	51					
Ex-SB4	154	12					
Ex-SB5	172	12					
J-P1_Div-01	83	3					
J-P1_Div-02	321	11					
J-P1_Div-03	424	15					
J-P2_Ch-01	136	7					
J-P2_Ch-02	203	10					
J-P2_Ch-03	214	11					
J-P2_Div-01	48	3					
J-P2_Div-02	135	6					
J-SP4_DD1	13	1					
J-SP4_DD2	31	2					
J-SP4_DD3	61	4					
J-SP4_DD4	87	8					
J-SP4_DD5	122	13					
SB_P1-01	83	3					
SB_P1-02	246	8					
SB_P1-03	66	3					
SB_P1-04	40	2					
SB_P2-01	48	3					
SB_P2-02	95	3					
SB_P2-03	2	0					
SB_P2-04	6	0					
SB_P2-05	63	4					
SB_P2-06	21	1					
SB_SP4-01	39	5					
SB_SP4-02	31	2					
SB_SP4-03	13	1					
SB_SP4-04	18	1					
SB_SP4-05	35	4					