

REPORT

Characterization and Volumetrics of Gila Conglomerate and Precambrian Granite Reclamation Cover Materials

Freeport-McMoRan Tyrone Operations

Submitted to:

Mandy Lilla P.O. Box 571 Tyrone, NM 88065

Submitted by:

Golder Associates Inc.

5200 Pasadena Avenue, N.E. Suite C, Albuquerque, New Mexico, USA 87113

+1 505 821-3043

18106417.003.R.Rev0

July 30, 2019

Table of Contents

1.0	INTRO	DDUCTION1
	1.1	Objectives1
	1.2	New Mexico Copper Mine Rule Cover Requirements1
2.0	BAC	(GROUND2
	2.1.1	Gila Conglomerate3
	2.1.2	Precambrian Granite
3.0	METH	IODS4
	3.1	Field Methods4
	3.2	Laboratory Analysis4
	3.2.1	Physical and Chemical Characterization4
	3.2.2	Soil Hydraulic Characterization4
	3.2.2.1	Soil Water Characteristic Curves5
	3.2.2.2	2 Water Holding Capacity Estimation5
4.0	RESU	ILTS5
	4.1	GCRCM – Lube Shop Area and 1 Series Tailing Impoundments5
	4.2	PGRCM – 9A/AX Overburden Stockpile
	4.3	Soil Hydraulic Properties
	4.3.1	GCRCM8
	4.3.2	PGRCM8
	4.4	Water Holding Capacity8
5.0	COVE	R MATERIAL VOLUMETRICS9
6.0	REFE	RENCES10

TABLES

Table 1	Previous Sampling of RCM at Tyrone Mine
Table 2	Test Methods for Soil Physical, Chemical, and Hydraulic Characterization
Table 3	Summary of Field Descriptions of 2019 RCM Samples
Table 4	Physical and Fertility Properties of 2019 RCM Samples
Table 5	Chemical Properties of 2019 RCM Samples

- Table 6
 Particle Size Distribution for Soil Hydraulic RCM Samples
- Table 7
 Soil Hydraulic Properties of Tyrone RCM, Fine-Earth Fraction
- Table 8
 Soil Hydraulic Properties of Tyrone RCM, Whole Soil Fraction
- Table 9
 Estimated Water Holding Capacity of Tyrone RCM
- Table 10Borrow Source Volumetrics for Tyrone Mine

FIGURES

Figure 1	Location of the Tyrone Mine

- Figure 2 2019 RCM Sample Locations
- Figure 3 Location of RCM Samples for Soil Hydraulic Characterization
- Figure 4 Standardized Relationship for Water Holding Capacity and Volumetric Rock Fragment Content for Tyrone RCM
- Figure 5 Cross-Section of 5A Stockpile and Underlying Gila Conglomerate
- Figure 6 Potential RCM Borrow Sources

APPENDICES

- Appendix A Energy Laboratory Reports
- Appendix B Daniel B. Stephens and Associates Laboratory Report
- Appendix C Soil Water Characteristic Curves

1.0 INTRODUCTION

Freeport-McMoRan Tyrone, Inc. (Tyrone) is an open pit copper mine located just off State Highway 90, approximately 10 miles southwest of Silver City in Grant County, New Mexico (Figure 1). Tyrone is permitted as an existing mine (Permit No. GR010RE) with the New Mexico Mining and Minerals Division (MMD) and discharge permit DP-1341 issued by the New Mexico Environment Department (NMED).

Potential reclamation cover materials (RCM) identified at Tyrone include native soils, recent alluvium, residual Gila Conglomerate, and Precambrian Granite overburden from various open pits and stockpiles in the Tyrone area (e.g., Little Rock and 9A/9AX Stockpile). On December 27, 2017, Tyrone received comments on the Updated Closure Closeout Plan (CCP) from the MMD and NMED requesting an update of the 2005 and 2006 borrow material investigations (Golder 2005b and 2006a). Specifically, the MMD requested additional information on the chemical and physical properties of Gila Conglomerate found in the Lube Shop area and an estimate of the volume of Gila Conglomerate available from this area. MMD also requested that Tyrone confirm there is sufficient Gila Conglomerate reclamation cover material (GCRCM) at the Mine/Stockpile Unit because portions of Borrow Source A had been covered by the 9A/9AX overburden stockpiles and Borrow Source E was no longer a practical source of cover material since reclamation of the No. 1 Stockpile was completed in 2009.

Additionally, during a conference call on June 18, 2018, NMED asked whether the RCM meets the water holding capacity (WHC) requirements per the New Mexico Copper Mine Rule (Copper Rule) that was codified October 30, 2012. Tyrone committed to update the previous RCM studies to comply with Copper Rule requirements as part of the Closure/Closeout Plan update. This report provides data to demonstrate the available RCM at Tyrone complies with Copper Rule.

1.1 Objectives

Golder Associated Inc, (Golder) prepared this report on behalf of Tyrone to address the agencies requests for additional information regarding RCM for the Tyrone Mine/Stockpile Unit. The objectives of this report are to:

- Update the 2005 and 2006 Borrow Source Materials reports with additional characterization data including:
 - Test pit and exposure sampling to further characterize the GCRCM in the Lube Shop area and Savanna Stockpile area.
 - Sampling Precambrian Granite reclamation cover materials (PGRCM) currently stockpiled in the 9A/9AX overburden stockpiles.
- Provide an analysis of the WHC for the GCRCM and PGRCM to determine if the covers meet requirements in the Copper Rule (20.6.7.33.F NMAC).
- Recalculate the available volume of RCM to reflect changes in the mine plan and completed reclamation efforts.

1.2 New Mexico Copper Mine Rule Cover Requirements

According to DP-1341, the covers placed on the waste rock and leach ore stockpiles shall consist of a minimum of 36 inches of Gila Conglomerate. The Copper Rule defined performance requirements for the cover materials. According to 20.6.7.33.F of the Copper Rule, the cover must meet the following criteria:

- 1) The cover system shall be constructed of thirty-six inches of earthen materials that are capable of sustaining plant growth without continuous augmentation and have erosion resistant characteristics. Erosion rates shall be equal to or less than stable slopes in the surrounding environment after the vegetation has reached near equilibrium cover levels. Erosion will be estimated using generally acceptable methods.
- 2) Soil cover systems shall be designed to limit net-percolation by having the capacity to store within the fine fraction at least 95 percent of the long-term average winter (December, January, and February) precipitation or at least 35 percent of the long-term average summer (June, July, and August) precipitation, whichever is greater. The water holding capacity of the cover system will be determined by multiplying the thickness of the cover times the incremental water holding capacity of the approved cover materials. Appropriate field or laboratory test results or published estimates of available water capacity shall be provided by the permittee to show that the proposed cover material meets this performance standard.

Based on the Fort Bayard weather record for the period from 1897 to 2010, the average winter precipitation is 2.78 inches and the average summer precipitation is 7.44 inches (WRCC 2016). Thus, the WHC requirements for a 3-foot thick cover based on the long-term winter (2.78 inches X 0.95 = 2.64 inches or 0.88 inches per foot [in/ft]) and summer precipitation (7.44 inches X 0.35 = 2.60 inches or 0.87 in/ft) are essentially equivalent. To evaluate Tyrone's RCM for compliance with the Copper Rule, the threshold WHC was set at 0.88 in/ft.

2.0 BACKGROUND

The Gila Conglomerate and associated soils and Precambrian Granite overburden are the principal cover materials identified for use at the Tyrone Mine. The characteristics and suitability of the RCMs at Tyrone have been previously evaluated in several reports including:

- Closure/Closeout Plan, Tyrone Mine (DBS&A 1997a) including sections pertaining to the Borrow Materials Investigation (BMI) and Soil and Rock Suitability Assessment
- Preliminary Materials Characterization (DBS&A 1997b)
- Supplemental Materials Characterization (DBS&A 1997c)
- Little Rock Mine Cover Design Report and Test Plot Work Plan (Golder 2004)
- Copper Mountain Pit Expansion Leached Cap and Waste Rock Management Plan (PDTI 2005)
- Leached Cap Analysis and Vegetation Summary (Golder 2005a)
- Preliminary Borrow Source Materials Investigation Leach Ore and Waste Rock Stockpiles (Golder 2005b)
- Addendum to Preliminary Borrow Source Materials Investigation Leach Ore and Waste Rock Stockpiles (Golder 2006a)
- As-Built Report Cover, Erosion, and Revegetation Test Plot Study Tyrone Mine Stockpiles. (Golder 2006b)
- United States Natural Resources (USNR) Test Plot Annual Report No. 1 (Golder 2017)

Additional characterization data for the GCRCM are provided in the construction QA reports for the reclaimed tailing dams and stockpile units. Sample locations, characterization data, and laboratory reports associated with the technical reports listed above are included by reference. Consolidated data for GCRCM was included in the Preliminary Borrow Source Materials Investigation report (Golder 2005a).

2.1.1 Gila Conglomerate

The Gila Conglomerate Formation is a mid-Miocene and mid-Pleistocene continental deposit that is widespread in southern New Mexico and Arizona. The composition of the Gila Conglomerate Formation varies locally depending on the source area lithology at the time of stripping and deposition. The Gila Conglomerate in the Mine/Stockpile Unit consists largely of igneous intrusive rocks originating from the ancestral Big Burro Mountains; while the Gila Conglomerate in the Mangas Valley reflects the influence of volcanic and meta-sedimentary rocks from the Little Burro Mountains.

Physically, the fine-earth fraction (i.e., < 2 millimeters [mm]) of the Gila Conglomerate and associated soils is dominantly moderately coarse-textured and mainly represented by loamy sand and sandy loam textures. Fine-, moderately fine- and coarse-textured soils occur locally. In general, the coarse textured soils are more prevalent in and around the Mine/Stockpile Unit, and the finer textured soils tend to occur on the flanks of the Little Burro Mountains east of the tailing impoundments. The soils around Tyrone typically contain about 30 to 50 percent rock fragments (>2 mm diameter) by volume. Saturation percentages for the soils generally range from 18 to 75 percent.

Chemically, the Gila Conglomerate and associated soils have few inherent limitations. The pH of the soils range from about 5.0 to 7.8 and the salinity levels are low (0.2 to 3.8 deciSiemens [dS/m]). These materials are universally nonsodic and have favorable calcium to magnesium ratios. Soluble selenium and boron levels are low. The materials range from noncalcareous to calcareous and contain 0.5 to 9.2 percent CaCO₃ equivalent. The highest levels of CaCO₃ are found in the subsurface of the soils in the Mangas Valley.

2.1.2 Precambrian Granite

The cover material generated from the Little Rock Mine consists primarily of Precambrian Burro Mountain Granite overburden (Golder 2014) that meet the approved Characterization and Material Handling Plan (PDTI 2005). This granite is composed primarily of the mineral's quartz, orthoclase, plagioclase, and biotite that occur as coarse-grained crystals.

Soil testing results of the Precambrian Granite (Golder 2017) indicate that there are no inherent chemical limitations for the growth of native plants. The cover materials are slightly alkaline (pH 7.6 to 7.7) and nonsaline (electrical conductivity [EC] < 2 dS/m) and the organic matter, phosphorous, and nitrate nitrogen concentrations are considered adequate for the target plant species. No sulfide minerals are known to occur in the PGRCM confirmed by ABA data that strongly suggests it will not generate acid and has a moderate potential to neutralize acid. The range in particle size distribution for the fine-earth fractions was relatively narrow with all the samples classified as sandy loams. The rock fragment content ranges from 40 to 60 percent by volume and sizes ranges from gravel to stones. The saturation percentage data was relatively consistent increasing with clay content, suggesting that the samples are mineralogically similar.

The test plot study at the USNR (Golder 2017) is currently evaluating the suitability of PCRCM as reclamation cover. Preliminary results indicate that the USNR test plots are on the right trajectory relative to vegetation success and erosional stability. Final determination that the PGRCM is suitable to meet the revegetation, erosion, and WHC standards for cover materials as required by the Copper Rule, MMD Permit No. GR010RE and DP-1341 is forthcoming, pending the results of further monitoring of the USNR test plots.

Over the past several years, Tyrone has strategically placed PGRCM at several locations around the mine site, including the 9A/9AX overburden stockpiles in preparation for reclamation activities.

3.0 METHODS

3.1 Field Methods

Sampling of Tyrone RCM was conducted on February 28 and March 1, 2019. Sample locations were selected in the field to get a good spatial distribution across the sites. Test pits were excavated using a mini-excavator to maximum depth of approximately eight feet. A Golder soil scientist described the materials according to National Soil Survey Standards (Soil Survey Division Staff 1993), with respect to geological composition, soil texture, and rock fragment volume and size classes (i.e., gravel, cobble and stone). Composite samples were collected from each test pit based on depth intervals visually defined by noticeable changes in material type, texture and/or coloring. Field pH measurements and reaction with a 10 percent solution of hydrochloric acid (HCI) were also used to augment the sample selection process. After describing and sampling the borrow source, all excavations were backfilled with the excavated material and compacted using the excavator bucket. The surfaces were then smoothed to match preexisting land conditions.

For each sample interval, a 5 to 10 kilogram (kg) sample was collected for fine-earth characterization (particles < 2 mm in diameter) and the larger rock fragments (> 75 mm) were removed. Samples were placed directly in gallon-sized plastic bags. The sample identification, collection date, and times were recorded on each bag. Additionally, selected depth intervals representing were sampled for soil hydraulic testing. Samples for soil hydraulic analyses were placed in 5-gallon airtight plastic buckets after removing any rock fragment larger than 75 mm. All samples were recorded on chain of custody forms and shipped to contracted laboratories at ambient temperature.

3.2 Laboratory Analysis

3.2.1 Physical and Chemical Characterization

Soil samples collected for fine earth analysis were air-dried and passed through a 2 mm sieve at the laboratory. The less than 2 mm soil fraction was analyzed for the parameters listed Table 2. The primary references for the analytical techniques include Agricultural Handbook No. 60 (Salinity Laboratory Staff [SLS], 1954) and Methods of Soil Analysis (ASA Monograph No. 9, 1982). Borrow samples were analyzed by Energy Laboratory in Billings, Montana.

3.2.2 Soil Hydraulic Characterization

Seven samples were selected to capture a range of soil textures for soil hydraulic characterization at the Daniel B. Stephens & Associates (DBS&A) Laboratory in Albuquerque, New Mexico. Because the cover materials contained rock fragments, the soil hydraulic analyses were conducted on the fine-earth fraction. The bulk soil samples collected for fine-earth analysis were air-dried and passed through a 2 mm sieve at the laboratory.

Column tests were performed on < 2 mm subsamples packed to a specified target density based on established soil textural relationships (Soil Survey Division Staff, 1993). The target density for the laboratory samples was 1.4 grams per cubic centimeter (g/cm³). Paired suction and water content measurements were made using hanging-column, pressure plate, water activity meter, and relative humidity box methods. The soil samples were subjected to at least 5 suction points ranging from near saturation (≈ 0 cm) to about 850,000 cm. The saturated hydraulic conductivity (K_{sat}) of the fine earth fraction samples was determined by the constant-head method. The soil hydraulic testing methods are listed in Table 2.

3.2.2.1 Soil Water Characteristic Curves

Soil water characteristic curves (SWCCs) were developed using retention data (laboratory water content-pressure $[\theta-\Psi]$ pairs) fit to the van Genuchten model using nonlinear least-squares parameter optimization (van Genuchten et al. 1991). The SWCC's were developed for the fine-earth fraction and for the whole soils after correction of the fine-earth fraction data for rock fragments. In particular, the volumetric water content of the fine-earth fraction at various matric suction values was proportionally reduced in accordance with the volume of rock fragments contained in the whole soil (Bouwer and Rice 1984). The saturated water content (θ_s) was held at the lab measured value while residual water content (θ_r) and van Genuchten α and N parameters were calculated using a nonlinear least-squares parameter optimization procedure for each sample (van Genuchten 1980; van Genuchten et al. 1991).

3.2.2.2 Water Holding Capacity Estimation

The WHC was determined by subtracting the water held at the traditionally defined field capacity from water held at wilting point (National Soil Survey Handbook [NSSH], Section 618.6.D.3). Field capacity was estimated as the water held at 100 centimeters (cm) of suction and wilting point was estimated as the water held at 15,000 cm of suction (USDA 2016) for coarse textured soils. Because the RCM are consistently sandy loams and generally contain between 35 and 65 percent rock fragments, they were considered coarse textured and field capacity was determined at 100 cm suction. Field capacity was assumed to be 330 cm for a single sandy clay loam GCRCM sample. The water content at field capacity and wilting point were determined numerically (rather than graphically) from the soil water characteristic curve function developed for each sample.

4.0 **RESULTS**

The results of the physical, chemical and hydraulic soil testing are summarized in this section. Section 4.1 provides characterization data for GCRCM samples collected in 2019 within the Lube Shop area and south of the 1 Series tailing impoundments. Section 4.2 provides similar data for PGRCM samples collected in 2019 from the 9A/9AX overburden stockpiles. The results of the GCRCM and PGRCM soil hydraulic testing are provided in Section 4.3 for Mine/Stockpile Unit samples collected since 2005. Section 4.4 provides information on the estimated WHC for the RCM and presents a generalized relationship for predicting WHC based on material properties. Table 3 provides abbreviated field descriptions for the samples collected in 2019. Laboratory reports from Energy Laboratory are in Appendix A.

4.1 GCRCM – Lube Shop Area and 1 Series Tailing Impoundments

GCRCM samples were collected from excavated test pits, cut exposures and bermed materials in the vicinity of the Lube Shop and south of the reclaimed 1 Series tailing impoundments. Samples were taken at a total of 8 locations (Figure 2).

The GCRCM are generally moderately-coarse textured (sandy loams) with moderately high volumes of rock fragments (Table 4), though moderately-fine and fine textured argillic horizons were encountered one test pit (GC-1S-2). Organic matter ranged from 0.4 to 3.2 percent and phosphorous and nitrate concentrations are low but considered adequate to support native and adapted plant species.

Table 5 provides chemical characterization data for the RCM samples collected in 2019. All GCRCM materials are nonsaline and ranged from very strongly acid (pH = 4.8) to moderately alkaline (pH = 7.9). Acid-base accounts (ABAs) are positive and both selenium and boron levels were below detection limits for GCRCM.

A pH of 4.8 was also measured for the 2-4' interval at test pit GC-1S-2 just below the 9AX overburden stockpile. Other soil horizons at this location were also naturally acidic (pH 5.1 to 5.5) and total sulfur for these horizons are all extremely low with positive ABAs (Table 5). Slightly acid surface horizons were also found at GC-1S-3 (pH = 5.6) during this investigation and documented in the surface horizons of several native soils formed in Gila Conglomerate by DBS&A (1997a). This suggests that the acidic conditions are likely the result of natural soil forming processes. Both GC-1S-2 and three test pit locations supported native plant species with an estimated 50 percent total canopy cover (Photo A).

Waste rock with a pH of 4.5 and negative ABA were encountered at the surface in test pit GC-LS-2. The test pit was located at the 6A Lookout immediately adjacent to the Savanna Stockpile (Photo B). The interval was approximately 4 to 6 feet thick, distinctly reddish-brown with no reaction to weak acid and a field pH below 5. Suitable GCRCM was visually distinct below 6 feet in the test pit.

4.2 PGRCM – 9A/AX Overburden Stockpile

Three PGRCM bulk samples were collected from 9A/9AX Overburden Stockpiles (Figure 2). These materials are classified as sandy loams with a relatively narrow range in particle size distribution for the fine-earth fractions (Table 4). The rock fragment content ranged from 46 to 55 percent by volume and sizes ranged from gravel to stones. The saturation percentage data was relatively consistent increasing with clay content, suggesting that the samples are mineralogically similar. The materials have low organic matter contents as well as phosphorous and nitrate concentrations similar to the majority of GCRCM samples. ABAs for all the PGRCM tested (Table 5) are well above -5 tons calcium carbonate per kiloton (t CaCO₃/kt), which is considered suitable under MMD's guidelines (MMD 1996). The 9A/9AX materials are nonsaline (EC < 1 dS/m) and moderately alkaline (pH 7.8 to 8.0). Selenium and boron levels were below detection limits (Table 5). The physical and chemical properties of the 9A/9AX RCM are very similar to the materials used to construct the soil covers at the USNR test plots (Golder 2017).

Photo A: Vegetation with high canopy cover adjacent to test pit GC-1S-2 with low pH soil horizons

Photo B: Test pit GC-LS-2 location from below showing reddish waste rock from the Savanna Stockpile overlying GCRCM

4.3 Soil Hydraulic Properties

Since 1999, a total of 30 samples from the Mine/Stockpile Unit have had soil hydraulic characterization completed including 23 samples of Gila Conglomerate and 7 samples of Little Rock Precambrian Granite. Unfortunately, laboratory reports associated with early borrow investigations (DBS&A 1999) were not available to develop SWCCs and estimate WHC. Additionally, soil water retention data of 5A Stockpile samples (Golder 2006a) was deemed incomplete because no θ - Ψ pairs were measured for near the permanent wilting point (15,000 cm) and hygroscopic water (~31,000 cm, i.e., in equilibrium with atmosphere). The lack of information for these critical soil moisture states made WHC estimations for the 5A materials inconsistent with standardized hydraulic relationships for similarly textured soils (Rawls et al. 1982, Carsel and Parrish 1988).

Soil hydraulic testing was conducted for 4 GCRCM and 3 PGRCM samples collected as part of this investigation. Soil hydraulic characterization data for an additional 11 RCM samples were also used in the soil hydraulic analyses. These samples were collected as part of the No. 1 Stockpile and USNR test plot studies (7 GCRCM [Golder 2006b] and 4 PGRCM [Golder 2017] respectively). The locations of soil hydraulic characterization samples are illustrated in Figure 3.

The soil hydraulic laboratory report for the RCM samples collected as part of this study are provided in Appendix B. The SWCCs for the 18 samples used to determine WHC are provided in Appendix C. The SWCC graphs display the curves for the fine-earth fraction and for the whole soil assuming the volumetric rock fragment content based on the field estimations of the materials (Table 6).

4.3.1 GCRCM

The θ_s of the < 2 mm soil fraction for GCRCM ranges between 0.34 and 0.49 cubic centimeters per cubic centimeters ([cm³/cm³] Table 7). Whole soil θ_s ranged from 0.15 to 0.29 cm³/cm³ (Table 8). The variations in saturated water content and other properties are expected given the textural range of the GCRCM (Section 4.1). The other soil hydrologic parameters (θ_r and van Genuchten α and N) compare well with standardized relationships among soil particle size and hydraulic properties of similarly textured soils (Rawls et al. 1982, Carsel and Parrish 1988). The K_{sat} of the < 2 mm samples ranged from 1.2 x 10⁻⁵ to 4.1 x 10⁻² centimeters per second ([cm/s] Table 7), which is within the range expected for sandy clay loams and sandy loams when compared to typical published values (Klute and Dirksen 1986). Whole soil K_{sat} ranged from 7.6 x 10⁻⁶ to 2.4 x 10⁻² cm/s (Table 8).

4.3.2 PGRCM

The θ_s of the < 2 mm soil fraction for PGRCM was consistent among the samples, ranging between 0.46 and 0.49 cm³/cm³ (Table 7). Whole soil θ_s ranged from 0.21 to 0.29 cm³/cm³ (Table 8). The minor variations in saturated water content and other properties are expected given the textural consistency of the PGRCM (Section 4.1). The other soil hydrologic parameters (θ_r and van Genuchten α and N) compare well with standardized relationships among soil particle size and hydraulic properties of similarly textured soils (Rawls et al. 1982, Carsel and Parrish 1988). The K_{sat} of the < 2 mm samples ranged from 1.1 x 10⁻² to 8.9 x 10⁻² cm/s (Table 7), which is the high end of the range expected compared to typical published values for sandy loams (Klute and Dirksen 1986). Whole soil K_{sat} for PGRCM ranged for from 5.3 x 10⁻³ to 2.0 x 10⁻² cm/sec (Table 8).

4.4 Water Holding Capacity

The standard or conventional method for estimating WHC of soils containing rock fragments involves the determination of the WHC of the fine-earth fraction and calculating the proportional reduction in WHC associated

with rock fragments (NRCS 2014). This approach assumes the rock fragments do not hold appreciable water and are diluents in the whole soil matrix.

The estimated WHC of the fine-earth fraction ranged from about 1.55 to 2.46 in/ft for GCRCM and 1.82 to 2.43 for PGRCM (Table 9). The average WHC of the fine-earth fraction was 1.94 and 2.04 in/ft for GCRCM and PGRCM respectively. The WHC on a whole soil basis (corrected for the field rock fragment contents) ranged from about 0.71 to 1.21 in/ft for GCRCM and 0.82 to 1.31 for PGRCM (Table 9) reflecting the reduction of WHC associated with the rock fragments. The average WHC of the whole soil for GCRCM was 1.03 in/ft and 1.05 in/ft for PGRCM, each well above the 0.88 in/ft threshold WHC to comply with the Copper Rule.

Because the WHC of the cover is directly related to the quantity of rock fragments, a generalized relationship was developed using the average WHC of the fine earth fraction corrected for various rock fragment concentrations (Figure 4). The lines are described by the following equation:

Field WHC = (WHC_{FE}) x (1-
$$RF_V$$
)

Where the WHC_{FE} is the fine-earth water holding capacity and RF_V is the volumetric rock fragment content The WHC_{FE} is assumed to be average of the materials tested 1.94 in/ft for the GCRCM and 2.04 in/ft for PGRCM. This relationship will allow determination of the WHC of the cover using soil textural (i.e., rock fragment) data, which is collected as part of the cover quality control process. For example, if the PGRCM in a reclamation area had an average rock fragment content of 45 percent (0.45), the average field WHC would be estimated to be 1.22 in/ft (i.e., 2.04 x 1-0.45). This relationship can to be used as guidance for future design for covers using RCM at Tyrone. Based on the generalized relationships shown in Figure 4, an incremental reduction of rock fragment of approximately 5 percent will yield an increase in WHC of about 0.1 in/ft.

This analysis indicates that the Tyrone RCM will achieve the Copper Rule WHC requirements (≈ 2.6 inches) with the 3-foot thick cover (Section 1.2). A cover meeting this WHC requirement can be achieved with an average rock fragment content less than 55 percent for GCRCM or 57 percent for PGRCM. Based on over 140 samples of Mine/Stockpile Unit, GCRCM either stockpiled or placed as cover has and average volumetric rock fragment content (\pm 90 percent confidence interval [CI]) is about 44 percent (\pm 1.9 percent CI). PGRCM from Little Rock is estimated to have 50 percent (\pm 3.7 percent CI) average volumetric rock. Thus, the RCM at Tyrone are projected to have a WHC that exceeds the 20.6.7.F (2) NMAC requirements.

5.0 COVER MATERIAL VOLUMETRICS

Gila Conglomerate within the 5A stockpile and residual Gila Conglomerate on the east side of the Main Pit (Lube Shop/Savanna stockpile area) are considered the two primary sources of cover material in the 2013 Updated CCP. Substantial volumes of residual Gila Conglomerate also underlie the 5A Stockpile and will become available as mining progresses into the east side of the Main Pit (Figure 5). The use of the pit wall Gila Conglomerate or additional materials from the 5A Stockpile may eliminate the need to excavate borrow near the 9AX Stockpile.

Additional borrow areas include Little Rock Precambrian Granite overburden and residual Gila Conglomerate soils across the Mine/Stockpile Unit that may be excavated from numerous locations on the mine property (Golder 2005b). Tyrone's experience with cover excavation and placement on the Mangas Valley tailing impoundments revealed that flexibility in materials handling is critical to achieving quality control objectives and efficient management of cover soil resources. The exact location and configuration of the borrow areas will ultimately be determined during the final design and construction phases of the reclamation.

There are five GCRCM borrow areas around the Mine/Stockpile Unit identified on Figure 6 that could be used as cover sources. Furthermore, in a letter dated June 25, 2019, Tyrone applied for a permit modification to build the CSG Stockpile which is projected to contain approximately 32 million tons of Gila Conglomerate at full build out. In addition to the GCRCM, Tyrone has also stockpile PGRCM from the Little Rock Mine at the following facilities:

- 9A/9AX Overburden Stockpiles approximately 32 million cubic yards (MCY)
- Little Rock Pit approximately 8 MCY

The preliminary results from the PGRCM USNR test plot study indicate that the test plots are on the right trajectory and a final determination that the PGRCM is suitable to meet the revegetation and erosion resistant cover material standards. Tyrone has also constructed large test areas of PGRCM in the 7A stockpile area and has learned a great deal about utilizing it for cover and continues to monitor the various treatments and methods for using it successfully.

The cover requirement for the Mine/Stockpile Unit at Tyrone is approximately 13.3 MCY based on the current permit requirements. More than 21.9 MCY of GCRCM and 32 MCY of PGRCM cover materials have been conservatively identified at Tyrone (Table 10). Thus, the total volume of materials designated for the Mine/Stockpile unit is more than that needed to cover these facilities. The surplus of available RCM will ultimately allow for flexibility in siting borrow areas at Tyrone to account for operational considerations.

6.0 **REFERENCES**

- Agronomy Society of America (ASA). 1982. Monograph 9: Methods of Soil Analysis. Soil Sci. Soc. Am., Madison, WI.
- ASTM D2216. Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass.
- ASTM D5856. Standard Test Method for Measurement of Hydraulic Conductivity of Porous Material Using a Rigid-Wall, Compaction-Mold Permeameter.
- ASTM D6836. Standard test methods for determination of the soil water characteristic curve for desorption using hanging column, pressure extractor, chilled mirror hygrometer, or centrifuge.
- ASTM D7263. Standard Test Methods for Laboratory Determination of Density (Unit Weight) of Soil Specimens
- ASTM D854. Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer.
- Bouwer, H., and R.C. Rice. 1984. Hydraulic Properties of Stony Vadose Zone. Groundwater 22:696-705.
- Campbell, G. and Gee. 1986. Water Potential: Miscellaneous Methods. Ch. 25, pp. 631-632, in A. Klute (ed.), Methods of Soil Analysis, American Society of Agronomy, Madison, WI.
- Carsel, R. F. and R. S. Parrish. 1988. Developing Joint Probability Distributions of Soil Water Retention Characteristics, Water Resources Research, Vol. 24, No. 5, pgs 755-769.
- Daniel B Stephens & Associates, Inc. (DBS&A). 1997a. Closure/Closeout Plan, Tyrone Mine. Prepared for Phelps Dodge Tyrone Inc., Tyrone, New Mexico.

- DBS&A. 1997b. Preliminary Material Characterization, Tyrone Mine Closure/closeout. Prepared for Phelps Dodge Tyrone, Inc., Tyrone New Mexico.
- DBS&A. 1997c. Supplemental Material Characterization, Tyrone Mine. Prepared for Phelps Dodge Tyrone, Inc., Tyrone New Mexico.
- DBS&A. 1999. Cover Design Status Report, Tyrone Mine. Prepared for Phelps Dodge Tyrone, Inc., Tyrone, New Mexico.
- Gee, G.W., and J.W. Bauder. 1986. Particle-size Analysis. In: Methods of Soil Analysis. Part 1-Physical and Mineralogical Methods, 2nd Edition. A. Klute (ed). Agron. 9. Soil Sci. Soc. Am., Madison, WI.
- Golder Associates Inc. (Golder) 2004. Cover Design Report and Test Plot Work Plan, Little Rock Mine. Prepared for Phelps Dodge Tyrone, Inc.
- Golder. 2005a. Leached Cap Analysis and Vegetation Summary- Little Rock Mine and Copper Mountain Pit Expansion Area. Submitted to Phelps Dodge Tyrone Inc. July 28, 2005.
- Golder. 2005b. Preliminary Borrow Source Materials Investigation Leach Ore and Waste Rock Stockpiles, DP-1341 Condition 79. Submitted to Phelps Dodge Tyrone Inc. October 31, 2005.
- Golder. 2006a. Addendum to Preliminary Borrow Source Materials Investigation Leach Ore and Waste Rock Stockpiles, DP-1341 Condition 79. Submitted to Phelps Dodge Tyrone Inc. January 30, 2006.
- Golder. 2006b. As-Built Report Cover, Erosion, and Revegetation Test Plot Study Tyrone Mine Stockpiles. Submitted to Phelps Dodge Tyrone Inc. September 29, 2006.
- Golder. 2014. Updated Closure/Closeout Plan for the Little Rock Mine. Submitted to Freeport-McMoRan Tyrone. June 19, 2014.
- Golder. 2017. United States Natural Resources (USNR) Test Plot Annual Report No. 1, Little Rock and Tyrone Mines. Submitted to Freeport-McMoRan Tyrone. March 8, 2017.
- Karathanasis and Hajek. 1982. Quantitative Evaluation of Water Absorption on Soil Clays. SSSA Journal 46:1324-1325.
- Klute, A., and C. Dirksen. 1986. Hydraulic conductivity and diffusivity: Laboratory methods. In: A. Klute (ed). Methods of Soil Analysis. Part 1-Physical and Mineralogical Methods, 2nd Edition. Soil Sci. Soc. Am., Madison, WI. Agron. 9:687-732.
- Mining and Minerals Division (MMD). 1996. Draft Closeout Plan Guidelines for Existing Mines. Mining Act Reclamation Bureau, Santa Fe, NM. April 30, 1996.
- New Mexico Environment Department (NMED). 2003. Supplemental Discharge Permit for Closure DP 1341, Phelps Dodge Tyrone, Inc., Tyrone Mines Facility.
- Phelps Dodge Tyrone, Inc. (PDTI). 2005. Copper Mountain Pit Expansion- Leached Cap Cover and Waste Rock Management Plan. Phelps Dodge Tyrone, Inc. Grant County, New Mexico.
- Rawlins, S.L. and G.S. Campbell. 1986. Water Potential: Thermocouple Psychrometry. Chp.24, pp. 597-619, in A. Klute (ed.), Methods of Soil Analysis, Part 1. American Society of Agronomy, Madison, WI.

- Rawls, W.J., D.L. Brakensiek, and K.E. Saxton. 1982. Estimation of soil water properties. Trans. ASAE 25: 1316– 1320 & 1328
- Salinity Laboratory Staff (SLS). 1954. Diagnosis and Improvement of Saline and Alkali Soils. Agricultural Handbook No. 60. USDA-Agricultural Research Service. US Government Printing Office, Washington, D.C.
- Sobek, A.A., W.A. Schuller, J.R. Freeman, and R.M. Smith. 1978. Field and Laboratory Methods Applicable to Overburdens and Minesoils. EPA-600/2-78-054.
- Soil Survey Division Staff. 1993. Soil Survey Manual. Handbook No. 18, 2nd ed. USDA-Soil Conservation Service. US Government Printing Office, Washington, D.C.
- USDA Natural Resource Conservation Service (NRCS). 2016. National Soil Survey Handbook. Title 430-VI. Available online. Accessed 3/24/2016.
- van Genuchten, M.Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. SSSAJ 44:892-898.
- van Genuchten, M.Th., F.J. Leij, and S.R. Yates. 1991. The RETC code for quantifying the hydraulic functions of unsaturated soils. Robert S. Kerr Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency. Ada, Oklahoma. EPA/600/2091/065. December 1991.
- Western Regional Climate Center (WRCC). 2016. Climate Summary for Ft. Bayard, New Mexico (NCDC #293265). http://www.wrcc.dri.edu/.

Signature Page

Golder Associates Inc.

Tort Atten

Doug Romig Senior Scientist

Todd Stein Senior Hydrogeolist

DR/TS/mb

Golder and the G logo are trademarks of Golder Associates Corporation

https://golderassociates.sharepoint.com/sites/35255g/proposal project management/500_reporting/510_reports/512_finals/18106417.003.r.rev0/18106417.003.r.rev0/20190730.docx

Tables

Table 1: Previous Sampling of RCM at Tyrone Mine

Report	Characterization			
Keport	Hydraulic	Chemical/Physical		
GCRCM				
Cover Design Status Report (DBS&A 1999)	9	95		
Addendum to Preliminary BMI (Golder 2006a)	3	90		
No 1 Stockpile Test Plots (Golder 2006b)	7	90		
PGRCM				
Preliminary BMI (Golder 2005b)	0	11		
USNR Test Plot Annual Report 1 (Golder 2017)	4	5		

Table 2: Test Methods for Soil Physical, Chemical, and Hydraulic Characterization

Test	Methods
Saturated Paste pH	SLS 1954. Method 2 and 21a
Electrical Conductivity	SLS 1954. Method 3a and 4b
Saturation percentage	SLS 1954, Method 27a
Particle Size Distribution, including very fine sand	ASA 1982, Method 15-5
Rock Fragment (>2mm)	Dry sieve (No. 10)/gravimetric
N as Nitrate	ASA 1982, Method 33-8.1
Phosphorous (Olsen)	ASA 1982, Method 24-5.4
Organic Matter (Carbon)	ASA 1982 Method 29-3.5.2
Hot water extractable Boron	ASA 1982, Method 10-3
Hot water extractable Selenium	ASA 1982, Method 75-4.1
Acid-Base Account (with sulfur forms)	Modified Sobek (1978)
Dry Bulk Density	ASTM D7263
Moisture Content	ASTM D7263; ASTM D2216
Porosity	ASTM D7263: Klute 1986.
Saturated Hydraulic Conductivity, Constant Head (Rigid Wall)	ASTM D5856
Hanging Column	ASTM D6836; Klute, A. 1986.
Pressure Plate	ASTM D6836
Water Potential (Dewpoint Potentiometer)	ASTM D6836; Rawlins and Campbell, 1986
Relative Humidity (Box)	Karathanasis and Hajek, 1982; Campbell and Gee, 1986.
Moisture Retention Characteristics & Calculated Unsaturated Hydraulic Conductivity	ASTM D6836; van Genuchten, 1980; van Genuchten et. al, 1991
Specific Gravity (Fine)	ASTM D854

Table 3: Summary of Field Descriptions of 2019 RCM Samples

Location	Depth	USDA	Clay		Rock Fragm	nents (%vo	I)	Notos
Location	Interval (ft)	Texture ¹	(%)	Gravel	Cobble	Stone	Total	Notes
GCRCM				•			•	
South of 1 Se	eries Tailling Im	poundments						
GC-1S-1	0-3	CoLS	15	40	2	trace	42	Exposure along drainage channel, grussy granite, gravels mostly <3/4"
GC-1S-2	0-2	SCL	20	15	30	2	47	Previously disturbed, surface horizon removed, argillic
	2-4	CL	32	10	35	7	52	horizon with pressure faces
	4-6	SCL	22	20	25	5	50	
GC-1S-3	0-2	SL	15	15	3		18	
	2-4	SL	14	20	13	2	35	Cobbles and stones increase at 40"
	4-6.5	SL	14	20	15	2	37	
GC-1S-4	0-2.5	CoSL	12	45	3		48	Gully sidewall in previous borrow area, lenses of petrocalcic horizons, violent eff, gravels mostly <3/4"
GC-1S-5	bulk	SCL	23	18	20	2	40	Surface materials removed with 9A construction, dark colored A & B horizon mix
Lube Shop			•	-		•	-	
	0-2	CoLS	10	35	1		36	
GC-LS-1	2-4	CoSL	12	35	1		36	Grussy granite, Uniform to 6'
	4-6	CoSL	12	35	5		40	
	0-2	CoSL	17	30	7		37	Field pH <5, reddish brown color, waste rock with
GC-1 S-2	2-4	CoSL	17	30	7		37	possible sulfides, no effervescence
GC-L3-2	4-6	CoSL	14	35	8	trace	43	Mine rock, possibly mixed with sulfides
	6-7	CoSL	14	35	8	trace	43	Grussy granitic Gila
GC-LS-3	0-2	CoSL	12	38	2	trace	40	Road berm near powder magazines, field pH 6.5, no effervescence
PGRCM				•	•			·
PG-9A-1	bulk	CoSL	13	23	18	14	55	Little Rock overburden, 2% boulders
PG-9A-2	bulk	CoSL	12	22	16	8	46	Little Rock overburden from top of pit, 1% boulders
PG-9AX-1	bulk	CoSL	12	25	18	8	51	Little Rock overburden from bottom of pit, trace boulders

Notes:

1) field texture: Co = coarse; LS = loamy sand; SL = sandy loam; SCL = sandy clay loam; CL = clay loam

%vol = percent by volume

Table 4: Physical and Fertility Properties of 2019 RCM Samples

Sample ID	Depth Interval (ft)	USDA Texture ¹	Sand	Silt	Clay	Very Fine Sand	Saturation Percent	Organic Matter	Organic Carbon	Nitrate as N	Ρ
	, í			%	wt			%		mg	/kg
GCRCM											
GC-1S-1	0-3	SL	75	14	11	2	20.6	0.7	0.4	< 1	5
GC-1S-2	0-2	SCL	65	14	21	3	28.5	0.8	0.5	< 1	4
GC-1S-2	2-4	SC	49	10	41	3	56.7	0.9	0.5	< 1	14
GC-1S-2	4-6	SCL	52	18	30	5	40.2	0.6	0.3	< 1	15
GC-1S-3	0-2	SL	60	32	8	1	17.8	1.3	0.8	< 1	2
GC-1S-3	4-6	SL	55	31	14	4	23.8	1	0.6	< 1	4
GC-1S-4	0-2	SL	70	19	11	1	19.2	0.5	0.3	< 1	3
GC-1S-5	bulk	L	45	34	21	7	34.2	3.2	1.8	11	3
GC-LS-1	2-4	SL	77	14	9	1	20.1	0.5	0.3	< 1	2
GC-LS-2	0-2	SL	57	24	19	0	26.2	0.4	0.2	16	2
GC-LS-2	6-7	SL	77	8	15	5	24.6	0.5	0.3	3	6
GC-LS-3	0-2	SL	73	14	13	4	19.5	0.7	0.4	< 1	3
PGRCM											
PG-9A-1	bulk	SL	67	21	12	0	23.6	0.4	0.2	< 1	2
PG-9A-2	bulk	SL	69	21	10	4	21.7	1	0.6	< 1	2
PG-9AX-1	bulk	SL	64	24	12	0	24.5	0.4	0.3	< 1	2

Notes:

1) L = loam; SL = sandy loam; SCL = sandy clay loam

% wt = percent by weight; mg/kg = milligrams per kilogram

Table 5: Chemical Properties of 2019 RCM Samples

		Saturated Paste			Sulfur Forms					Acid/Base		
Sample ID	Depth Interval (ft)	рН	EC	НСІ	HNO ₃	H ₂ O	Residual	Total	Potential	Potential ¹	Selenium	Boron
		s.u.	dS/m			%	<u> </u>		t CaCC	0₃/kt	mg	/kg
GCRCM												
GC-1S-1	0-3	7.9	0.5	<0.01	<0.01	<0.01	0.02	0.02	28	28	<0.1	<0.1
GC-1S-2	0-2	5.5	0.7	<0.01	<0.01	<0.01	0.02	0.03	5	5	<0.1	<0.1
GC-1S-2	2-4	4.8	1.2	<0.01	<0.01	<0.01	0.02	0.03	4	4	<0.1	<0.1
GC-1S-2	4-6	5.1	1.6	<0.01	<0.01	<0.01	0.02	0.04	5	5	<0.1	<0.1
GC-1S-3	0-2	5.6	0.3	<0.01	0.01	<0.01	0.02	0.03	6	6	<0.1	<0.1
GC-1S-3	4-6	7.3	0.7	<0.01	<0.01	<0.01	0.02	0.03	15	15	<0.1	<0.1
GC-1S-4	0-2	7.8	0.3	<0.01	<0.01	<0.01	0.02	0.02	57	57	<0.1	<0.1
GC-1S-5	bulk	6.8	0.9	<0.01	<0.01	<0.01	0.02	0.04	10	10	<0.1	<0.1
GC-LS-1	2-4	5.3	1.7	<0.01	0.01	<0.01	0.02	0.04	11	11	<0.1	<0.1
GC-LS-2	0-2	4.5	1.3	<0.01	0.3	0.11	0.39	0.81	1	-8	<0.1	<0.1
GC-LS-2	6-7	7.6	0.7	<0.01	<0.01	<0.01	0.03	0.04	9	9	<0.1	<0.1
GC-LS-3	0-2	6.5	0.2	<0.01	0.02	<0.01	0.02	0.03	9	8	<0.1	<0.1
PGRCM												
PG-9A-1	bulk	7.9	0.5	<0.01	0.04	<0.01	0.02	0.06	13	12	<0.1	<0.1
PG-9A-2	bulk	8	0.9	< 0.01	0.02	0.01	0.03	0.06	19	18	<0.1	<0.1
PG-9AX-1	bulk	7.8	0.3	<0.01	0.03	< 0.01	0.02	0.05	17	16	<0.1	<0.1

Notes:

1) Acid/Base Potential based on pyritic sulfur (HNO₃ digestion)

dS/m = deciSiemens per meter; s.u. = standard units; t CaCO₃/kt = tons of CaCO₃ per kiloton; mg/kg = milligrams per kilogram

Table 6: Particle Size Distribution for Soil Hydraulic RCM Samples

	USDA	Particle	Rock		
Sample ID	Texture	Sand	Silt	Clay	Fragments ²
	Class ¹		(wt %)		(vol %)
GCRCM					
GC-LS-2 6-7'	SL	77	8	15	43
GC-1S-2 4-6'	SCL	52	18	30	50
GC-1S-3 2-6.5'	SL	58	32	11	36
GC-1S-4 0-2.5'	SL	70	19	11	48
No1-1-1	SL	69	16	15	62
No1-1-2	SL	71	14	15	45
No1-2-1	SL	67	12	21	50
No1-2-2	SL	71	14	15	51
No1-3-1	SL	73	13	14	45
No1-3-2	SL	72	17	11	42
No1-8-LY	SL	70	19	11	49
PGRCM					
PG-9A-1 Bulk	SL	67	21	12	55
PG-9A-2 Bulk	SL	69	21	10	46
PG-9AX-1 Bulk	SL	64	24	12	51
UTPQA-2	SL	73	19	8	55
UTPQA-3	SL	71	21	8	40
LTPQA-4	SL	71	19	10	50
T7ALRLC	SL	73	20	7	45

Notes:

1) SL = sandy loam; SCL = sandy clay loam

2) Volumetric rock content of sample interval

wt % = pecent by weight, vol % = pervent by volume

Table 7: Soil Hydraulic Properties of Tyrone RCM, Fine-Earth Fraction (< 2 mm)

	Saturated	١				
Sample ID	Hydraulic Conductivity	θ _s	θ _r	α	N	Bulk Density
	cm/s	cm ³ /	cm ³	1/cm	Dimensionless	g/cm ³
GCRCM						
GC-LS-2 6-7'	6.20E-03	0.454	0.059	0.0467	1.4118	1.41
GC-1S-2 4-6'	1.20E-05	0.494	0.001	0.0365	1.1777	1.4
GC-1S-3 2-6.5'	4.80E-03	0.466	0.001	0.0608	1.2361	1.4
GC-1S-4 0-2.5'	4.10E-02	0.481	0.049	0.0571	1.6606	1.4
No1-1-1	1.30E-02	0.393	0.001	0.0986	1.2127	1.39
No1-1-2	3.50E-02	0.440	0.001	0.1325	1.2144	1.4
No1-2-1	5.00E-03	0.410	0.001	0.1044	1.2096	1.39
No1-2-2	1.60E-02	0.426	0.001	0.1358	1.2159	1.41
No1-3-1	1.90E-02	0.388	0.001	0.0508	1.2131	1.39
No1-3-2	2.60E-02	0.342	0.000	0.0635	1.2061	1.39
No1-8-LY	2.59E-03	0.404	0.001	0.1234	1.2015	1.41
PGRCM						
PG-9A-2 Bulk	5.20E-02	0.480	0.039	0.0760	1.4686	1.41
PG-9A-1 Bulk	1.10E-02	0.466	0.002	0.0621	1.3049	1.41
PG-9AX-1 Bulk	3.30E-02	0.472	0.039	0.0800	1.4216	1.41
UTPQA-2	8.90E-02	0.462	0.042	0.0576	1.4590	1.4
UTPQA-3	7.00E-02	0.487	0.044	0.0621	1.4734	1.4
LTPQA-4	3.20E-02	0.478	0.044	0.0532	1.4680	1.4
T7ALRLC	2.60E-02	0.489	0.049	0.0656	1.4068	1.4

Notes:

1) recalculated from lab moisture retention data; θ_r = residual water content; θ_s = saturated water content;

 α = fitted parameter (van Genuchten 1980); N = fitted parameter (van Genuchten 1980)

cm/s = centimeters per second; cm³ = cubic centimeters; g/cm³ = grams per cubic centimeter

Table 8: Soil Hydraulic Properties of Tyrone RCM, Whole Soil Fraction

	Saturated	V				
Sample ID	Hydraulic Conductivity ¹	θ _s	θ _r	α	Ν	Rock Fragments
	cm/s	cm³/	cm ³	1/cm	Dimensionless	vol %
GCRCM						
GC-LS-2 6-7'	2.10E-03	0.259	0.034	0.0467	1.4118	43
GC-1S-2 4-6'	7.60E-06	0.247	0.001	0.0363	1.1786	50
GC-1S-3 2-6.5'	3.10E-03	0.298	0.001	0.0605	1.2370	36
GC-1S-4 0-2.5'	2.40E-02	0.250	0.025	0.0571	1.6606	48
No1-1-1	3.30E-03	0.151	0.001	0.0976	1.2148	62
No1-1-2	1.40E-02	0.243	0.001	0.1319	1.2155	45
No1-2-1	1.70E-03	0.205	0.001	0.1037	1.2109	50
No1-2-2	5.40E-03	0.207	0.001	0.1350	1.2173	51
No1-3-1	7.30E-03	0.214	0.001	0.0504	1.2143	45
No1-3-2	1.10E-02	0.200	0.000	0.0635	1.2061	42
No1-8-LY	3.80E-03	0.206	0.001	0.1227	1.2027	49
PGRCM						
PG-9A-1 Bulk	1.50E-02	0.216	0.018	0.0760	1.4686	55
PG-9A-2 Bulk	5.30E-03	0.252	0.001	0.0623	1.3039	46
PG-9AX-1 Bulk	8.20E-03	0.231	0.019	0.0800	1.4216	51
UTPQA-2	1.60E-02	0.208	0.019	0.0576	1.4590	55
UTPQA-3	2.00E-02	0.292	0.027	0.0621	1.4734	40
LTPQA-4	1.00E-02	0.239	0.022	0.0532	1.4680	50
T7ALRLC	7.20E-03	0.269	0.027	0.0656	1.4068	45

Notes:

1) lab reported conductivity based on bulk sample (<3")

2) recalculated from rock-adjusted moisture retention data; θ_r = residual water content; θ_s = saturated water content; α = fitted parameter (van Genuchten 1980); N = fitted parameter (van Genuchten 1980)

cm/s = centimeters per second; cm³ = cubic centimeters, vol % = percent by volume

	Water Holdi	ng Capacity	Rock Fragment	
Sample ID	Fine Earth (< 2mm)	Whole Soil1	Content ²	
	(in	/ft)	(vol %)	
GCRCM				
GC-LS-2 6-7'	2.11	1.21	43	
GC-1S-2 4-6'	1.84	0.95	50	
GC-1S-3 2-6.5'	2.46	1.57	36	
GC-1S-4 0-2.5'	1.55	0.80	48	
No1-1-1	1.86	0.71	62	
No1-1-2	1.97	1.09	45	
No1-2-1	1.92	0.96	50	
No1-2-2	1.90	0.92	51	
No1-3-1	2.08	1.15	45	
No1-3-2	1.76	1.03	42	
No1-8-LY	1.83	0.93	49	
PGRCM				
PG-9A-1 Bulk	1.82	0.82	55	
PG-9A-2 Bulk	2.43	1.31	46	
PG-9AX-1 Bulk	1.87	0.92	51	
UTPQA-2	1.98	0.89	55	
UTPQA-3	1.98	1.19	40	
LTPQA-4	2.09	1.05	50	
T7ALRLC	2.09	1.15	45	

Table 9: Estimated Water Holding Capacity of Tyrone RCM

Notes:

1) Whole soil based on SWCC adjusted for field volumetric rock fragment content

2) Total rock fragments based on sample interval or average for the excavation for the No. 1 Stockpile samples

in/ft = inches of water per foot of soil; vol % = percent by volume

Table 10: Borrow Source Volumetrics for Tyrone Mine

Borrow Area	Location	Area (ac)	Thickness (ft)	Volume (CY)
GCRCM	·			
A	South of 1 Series Tailing Impoundments	152	30	7,350,720
В	Mine Facilities	56	30	2,708,160
С	Mill/Concentrator	4	30	193,440
D	5A Overburden Stockpile	63	50	5,148,400
E	Lube Shop Area	82	50	6,609,200
PCRCM				
E	9A/AX Overburden Stockpiles			32,000,000
			Total	54,009,920

Notes:

ac = acres; CY = cubic yards

Figures

	GILA		
	BEDROCK		
	GILA		
	STOCKPILE		
	SULFIDE		
	00005		
	OXIDE		
	LEACH		
	CAP		
3	MIXED		
	(SULFIDE/LEAC	HED CAP/0	GILA)
	,		,
NOTE(S) 1. CROSS S 2. CROSS-S	ECTION INSET IS NOT TO SCALE	ODGE TYRONE GE	OLOGY STAFE: R. WAIDLEF
NOTE(S) 1. CROSS S 2. CROSS-S PREVIOUSL GOLDER (20	ECTION INSET IS NOT TO SCALE IECTION PREPARED BY PHELPS D Y PUBLISHED IN PRELIMINARY BC 106A)	ODGE TYRONE GE RROW SOURCE MA	OLOGY STAFF: R. WAIDLER ATERIALS INVESTIGATIONS
NOTE(S) 1. CROSS S 2. CROSS-S PREVIOUSLI GOLDER (20 REFERENCI 1. AEPIAL IN	ECTION INSET IS NOT TO SCALE IECTION PREPARED BY PHELPS D Y PUBLISHED IN PRELIMINARY BC 106A) E(S)	ODGE TYRONE GE RROW SOURCE M/	OLOGY STAFF: R. WAIDLEF ATERIALS INVESTIGATIONS
NOTE(S) 1. CROSS S 2. CROSS-S PREVIOUSL GOLDER (20 REFERENCI 1. AERIAL IN 2. COORDIN	ECTION INSET IS NOT TO SCALE ECTION PREPARED BY PHELPS D Y PUBLISHED IN PRELIMINARY BC IOGA) E(S) MAGERY: DIGITALGLOBE, MARCH IATE SYSTEM: NAD 1983, STATE	ODGE TYRONE GE RROW SOURCE M/ 2016 PLANE: NEW MEXIC	OLOGY STAFF: R. WAIDLEF ATERIALS INVESTIGATIONS
NOTE(S) 1. CROSS S 2. CROSS-S 2. CROSS-S GOLDER (20 REFERENCI 1. AERIAL IN 2. COORDIN	ECTION INSET IS NOT TO SCALE IECTION PREPARED BY PHELPS D Y PUBLISHED IN PRELIMINARY BC 106A) 5(5) IAGERY: DIGITALGLOBE, MARCH IATE SYSTEM: NAD 1983, STATE	ODGE TYRONE GE RROW SOURCE M/ 2016 PLANE: NEW MEXIC	OLOGY STAFF: R. WAIDLEF ATERIALS INVESTIGATIONS 20, FIPS 3003 (US FEET)
NOTE(S) 1. CROSS 5 2. CROSS 5 PREVIOUSLI GOLDER (20 REFERENCI 1. AERIAL IN 2. COORDIN CLIENT FREEPC	ECTION INSET IS NOT TO SCALE IECTION PREPARED BY PHELPS D Y PUBLISHED IN PRELIMINARY BC 106A) ES MAGERY: DIGITALGLOBE, MARCH IATE SYSTEM: NAD 1983, STATE INT MCMORAN TYRON	ODGE TYRONE GE RROW SOURCE M/ 2016 PLANE: NEW MEXIC E OPERATIOI	OLOGY STAFF: R. WAIDLEF ATERIALS INVESTIGATIONS 20, FIPS 3003 (US FEET)
NOTE(S) 1. CROSS S 2. CROSS S PREVIOUSL GOLDER (20 REFERENCI 1. AERIAL IN 2. COORDIN CLIENT FREEPC GRANT	ECTION INSET IS NOT TO SCALE IECTION PREPARED BY PHELIPS D Y PUBLISHED IN PRELIMINARY BC 106A) E(S) AAGERY: DIGITALGLOBE, MARCH IATE SYSTEM: NAD 1983, STATE IORT MCMORAN TYRON COUNTY, NEW MEXICO	ODGE TYRONE GE RROW SOURCE M/ 2016 PLANE: NEW MEXIC E OPERATIOI	OLOGY STAFF: R. WAIDLEF ATERIALS INVESTIGATIONS
NOTE(S) 1. CROSS S 2. CROSS S PREVIOUSLI GOLDER (20 REFERENCI 1. AERIAL IN 2. COORDIN CLIENT FREEPC GRANT PROJECT	ECTION INSET IS NOT TO SCALE IECTION PREPARED BY PHELPS D Y PUBLISHED IN PRELIMINARY BC 106A) E(S) AGGERY: DIGITALGLOBE, MARCH IATE SYSTEM: NAD 1983, STATE INT MCMORAN TYRON COUNTY, NEW MEXICO	ODGE TYRONE GE RROW SOURCE M/ 2016 PLANE: NEW MEXIC E OPERATIOI	OLOGY STAFF: R. WAIDLEF ATERIALS INVESTIGATIONS CO, FIPS 3003 (US FEET)
NOTE(S) 1. CROSS S 2. CROSS-S PREVIOUSLI 1. AERIAL IN 2. COORDIN CLIENT FREEPC GRANT PROJECT CLOSUF RECLAM	ECTION INSET IS NOT TO SCALE IECTION PREPARED BY PHELPS D Y PUBLISHED IN PRELIMINARY BC 106A) E(S) AAGERY: DIGITALGLOBE, MARCH IATE SYSTEM: NAD 1983, STATE ORT MCMORAN TYRON COUNTY, NEW MEXICO RE CLOSEOUT PLAN IATION COVER MATER	ODGE TYRONE GE RROW SOURCE M/ 2016 PLANE: NEW MEXIC E OPERATIOI	OLOGY STAFF: R. WAIDLEF ATERIALS INVESTIGATIONS CO, FIPS 3003 (US FEET) NS
NOTE(S) 1. CROSS S 2. CROSS-S 2. CROSS-S GOLDER (20 REFERENCI 1. AERIAL IM 2. COORDIM CLIENT FREEPC GRANT PROJECT CLOSUF RECLAM	ECTION INSET IS NOT TO SCALE IECTION PREPARED BY PHELPS D Y PUBLISHED IN PRELIMINARY BC 106A) E(S) AAGERY: DIGITALGLOBE, MARCH IATE SYSTEM: NAD 1983, STATE ORT MCMORAN TYRON COUNTY, NEW MEXICO RE CLOSEOUT PLAN IATION COVER MATER	ODGE TYRONE GE RROW SOURCE M/ 2016 PLANE: NEW MEXIC E OPERATION	OLOGY STAFF: R. WAIDLEF ATERIALS INVESTIGATIONS CO, FIPS 3003 (US FEET) NS
NOTE(S) 1. CROSS S 2. CROSS S PREVIOUSLI 1. AERIAL IN 2. COORDIN CLIENT FREEPC GRANT PROJECT CLOSUF RECLAM 	ECTION INSET IS NOT TO SCALE ECTION PREPARED BY PHELPS D Y PUBLISHED IN PRELIMINARY BC IOGA) E(S) MAGERY: DIGITALGLOBE, MARCH IATE SYSTEM: NAD 1983, STATE DRT MCMORAN TYRON COUNTY, NEW MEXICO RE CLOSEOUT PLAN IATION COVER MATER SECTION OF 54 STOC	ODGE TYRONE GE RROW SOURCE M/ 2016 PLANE: NEW MEXIC E OPERATIOI ALS (RCM) C	OLOGY STAFF: R. WAIDLER ATERIALS INVESTIGATIONS 20, FIPS 3003 (US FEET) NS CHARACTERIZATIC
NOTE(S) 1. CROSS S 2. CROSS-S 2. CROSS-S GOLDER (20 REFERENCI 1. AERIAL IM 2. COORDIM CLIENT FREEPC GRANT PROJECT CLOSUF RECLAM TITLE CROSS- CONGLO	ECTION INSET IS NOT TO SCALE IECTION PREPARED BY PHELPS D Y PUBLISHED IN PRELIMINARY BC 106A) E(S) AAGERY: DIGITALGLOBE, MARCH IATE SYSTEM: NAD 1983, STATE ORT MCMORAN TYRON COUNTY, NEW MEXICO RE CLOSEOUT PLAN IATION COVER MATER SECTION OF 5A STOCI DMERATE	ODGE TYRONE GE RROW SOURCE M/ 2016 PLANE: NEW MEXIC E OPERATIOI IALS (RCM) C KPILE AND U	OLOGY STAFF: R. WAIDLEF ATERIALS INVESTIGATIONS 20, FIPS 3003 (US FEET) NS CHARACTERIZATIC NDERLYING GILA
NOTE(S) 1. CROSS S 2. CROSS S PREVIOUSLI GOLDER (20 REFERENCI 1. AERIAL IN 2. COORDIN CLIENT FREEPC GRANT PROJECT CLOSUF RECLAM TITLE CROSS- CONSLIL TAN	ECTION INSET IS NOT TO SCALE ECTION PREPARED BY PHELPS D Y PUBLISHED IN PRELIMINARY BC 106A) E(S) MAGERY: DIGITALGLOBE, MARCH IATE SYSTEM: NAD 1983, STATE DRT MCMORAN TYRON COUNTY, NEW MEXICO RE CLOSEOUT PLAN MATION COVER MATER SECTION OF 5A STOCI DMERATE	ODGE TYRONE GE RROW SOURCE M/ 2016 PLANE: NEW MEXIC E OPERATIOI MALS (RCM) C KPILE AND U	OLOGY STAFF: R. WAIDLEF ATERIALS INVESTIGATIONS 20, FIPS 3003 (US FEET) NS CHARACTERIZATIC NDERLYING GILA
NOTE(S) 1. CROSS S 2. CROSS-S PREVIOUSL GOLDER (20 REFERENCI 1. AERIAL IN 2. COORDIN CLIENT FREEPC GRANT PROJECT CLOSUF RECLAN TITLE CROSS- CONSULTAN	ECTION INSET IS NOT TO SCALE IECTION PREPARED BY PHELPS D Y PUBLISHED IN PRELIMINARY BC 106A) E(S) AAGERY: DIGITALGLOBE, MARCH IATE SYSTEM: NAD 1983, STATE ORT MCMORAN TYRON COUNTY, NEW MEXICO RE CLOSEOUT PLAN IATION COVER MATER SECTION OF 5A STOCI DMERATE	ODGE TYRONE GE RROW SOURCE M/ 2016 PLANE: NEW MEXIC E OPERATION IALS (RCM) C KPILE AND U	OLOGY STAFF: R. WAIDLEF ATERIALS INVESTIGATIONS CO, FIPS 3003 (US FEET) NS CHARACTERIZATIC NDERLYING GILA 2019-06-22 PD/FM
NOTE(S) 1. CROSS S 2. CROSS-S 2. CROSS-S GOLDER (20 REFERENCI 1. AERIAL IN 2. COORDIN CLIENT FREEPC GRANT PROJECT CLOSUF RECLAM TITLE CROSS- CONSULTAN CONSULTAN	ECTION INSET IS NOT TO SCALE IECTION PREPARED BY PHELIPS D Y PUBLISHED IN PRELIMINARY BC 106A) 2(5) AAGERY: DIGITALGLOBE, MARCH IATE SYSTEM: NAD 1983, STATE ORT MCMORAN TYRON COUNTY, NEW MEXICCO RE CLOSEOUT PLAN IATION COVER MATER SECTION OF 5A STOCI DMERATE	ODGE TYRONE GE RROW SOURCE M/ 2016 PLANE: NEW MEXIC E OPERATION MALS (RCM) C KPILE AND U VYYY-MM-DD DESIGNED PREPARED	OLOGY STAFF: R. WAIDLEF ATERIALS INVESTIGATIONS CO, FIPS 3003 (US FEET) NS CHARACTERIZATIC NDERLYING GILA 2019-06-22 PD/FM DSW
NOTE(S) 1. CROSS S 2. CROSS-S PREVIOUSL GOLDER (2C REFERENCI 1. AERIAL II 2. COORDIN CLIENT FREEPC GRANT PROJECT CLOSUF RECLAM TITLE CROSS- CONSULTAN CONSULTAN	ECTION INSET IS NOT TO SCALE ECTION PREPARED BY PHELPS D Y PUBLISHED IN PRELIMINARY BC IOGA) E(S) AGGERY: DIGITALGLOBE, MARCH IATE SYSTEM: NAD 1983, STATE DRT MCMORAN TYRON COUNTY, NEW MEXICO RE CLOSEOUT PLAN IATION COVER MATER SECTION OF 5A STOCH DMERATE IT GOLDER	ODGE TYRONE GE RROW SOURCE M/ 2016 PLANE: NEW MEXIC E OPERATION ALLS (RCM) C C CPILE AND U VYYY-MM-DD DESIGNED PREPARED REVIEWED	OLOGY STAFF: R. WAIDLEF ATERIALS INVESTIGATIONS CO, FIPS 3003 (US FEET) NS CONS CONTREMENTIONS C

Borrow Source	and	Estimated	Volumes
----------------------	-----	-----------	---------

9A/AX

Borrow Area		Acres	Assumed Thickness (ft)	Volume (CY)	
Gila Conglomerate - Reclamation Cover Material					
А	South of 1 Series Tailing Imp.	152	30	7,350,720	
В	Mine Facilities	56	30	2,708,160	
С	Mill/Concentrator	4	30	193,440	
D	D 5A Overburden Stockpile		50	5,158,400	
E	E Lube Shop Area		50	6,609,200	
Precambrian Granite - Reclamation Cover Material					
9A/AX	A/AX 9A/AX Overburden Stockpiles			32,000,000	
	54,019,920				

Notes: ft = feet

CY = cubic yards

APPENDIX A

Energy Laboratory Reports

ANALYTICAL SUMMARY REPORT

March 29, 2019

Golder Associates Inc 5200 Pasadena NE Ste C Albuquerque, NM 87113

Work Order: B19030684

Project Name: 181-06417 Tyrone CCP-BMI

Energy Laboratories Inc Billings MT received the following 6 samples for Golder Associates Inc on 3/11/2019 for analysis.

Lab ID	Client Sample ID	Collect Date R	Receive Date	Matrix	Test
B19030684-001	GC-1S-1 [0-3]feet	03/01/19 0:00	03/11/19	Soil	Metals, CACL2 Extractable Acid/Base Potential Coarse Fragments Conductivity, Saturated Paste Extract Nitrate as N, KCL Extract Organic Carbon/Matter Walkley- Black pH, Saturated Paste Phosphorus-Olsen CaCl2 Hot Water Soil Extraction ASA25-9 Saturated Paste Extraction ASA Particle Size Analysis / Texture Saturation Percentage Sulfur Forms Very Fine Sand
B19030684-002	GC-1S-2 [0-2]feet	03/01/19 0:00	03/11/19	Soil	Same As Above
B19030684-003	GC-1S-2 [2-4]feet	03/01/19 0:00	03/11/19	Soil	Same As Above
B19030684-004	GC-1S-2 [4-6]feet	03/01/19 0:00	03/11/19	Soil	Same As Above
B19030684-005	GC-1S-3 [0-2]feet	03/01/19 0:00	03/11/19	Soil	Same As Above
B19030684-006	GC-1S-3 [4-6.5]feet	03/01/19 0:00	03/11/19	Soil	Same As Above

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

Digitally signed by Cent Keri Conter Date: 2019.03.29 16:57:36 -06:00

Trust our People. Trust our Data. www.energylab.com

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 • Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

LABORATORY ANALYTICAL REPORT Prepared by Billings, MT Branch

Client:	Golder Assoc	iates Inc											Repor	rt Date: 03/	29/19
Project:	181-06417 Ty	rone CCP-BI	M										Date Rec	ceived: 03/	11/19
Workorder:	B19030684														
		Analysis	Coarse Frags	Very Fine Sand	Sand	Silt	Clay	Texture	pH, sat_ paste	COND	Saturation	Neut Potential	Acid Potential	Acid/Base Potential	S, Total
		Units	%	wt%	%	%	%		s_u_	mmhos/cm	%	t/kt	t/kt	t/kt	%
Sample ID	Client Sample ID	Depth	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results
B19030684-001	GC-1S-1	0-3	33	2	75	14	11	SL	7.9	0.5	20.6	28	0	27	0.02
B19030684-002	GC-1S-2	0-2	6	с	65	14	21	SCL	5.5	0.7	28.5	2	0	4	0.03
B19030684-003	GC-1S-2	2-4	10	с	49	10	41	SC	4.8	1.2	56.7	4	0	с	0.03
B19030684-004	GC-1S-2	4-6	15	5	52	18	30	SCL	5.1	1.6	40.2	5	0	4	0.04
B19030684-005	GC-1S-3	0-2	21	-	60	32	80	SL	5.6	0.3	17.8	9	-	5	0.03
B19030684-006	GC-1S-3	4-6.5	17	4	55	31	14	SL	7.3	0.7	23.8	15	0	14	0.03

						מובח הא הוווי	111 John 11	מותו					
Client:	Golder Assoc	ciates Inc											Report Date: 03/29/19
Project:	181-06417 T ₎	yrone CCP-	BMI										Date Received: 03/11/19
Workorder:	B19030684												
		Analysis	S, H2O Extr	S, HCL Extr	S, HNO3 Extr	S, Residual	Organic Matter	Organic Carbon	Phos, Olsen	Nitrate as N	B-CACL2	Se-CACL2	
		Units	%	%	%	%	%	%	mg/kg	mg/kg	mg/kg	mg/kg	
Sample ID	Client Sample ID	Depth	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	
B19030684-001	GC-1S-1	0-3	< 0.01	< 0.01	< 0.01	0.02	0.7	0.4	5	۲ ۷	< 0.1	< 0.1	
B19030684-002	GC-1S-2	0-2	< 0.01	< 0.01	< 0.01	0.02	0.8	0.5	4	, L	< 0.1	< 0.1	
B19030684-003	GC-1S-2	2-4	< 0.01	< 0.01	< 0.01	0.02	0.9	0.5	14	, L	< 0.1	< 0.1	
B19030684-004	GC-1S-2	4-6	< 0.01	< 0.01	< 0.01	0.02	0.6	0.3	15	, ,	< 0.1	< 0.1	
B19030684-005	GC-1S-3	0-2	< 0.01	< 0.01	0.01	0.02	1.3	0.8	7	, ,	< 0.1	< 0.1	
B19030684-006	GC-1S-3	4-6.5	< 0.01	< 0.01	< 0.01	0.02	1.0	0.6	4	, v	< 0.1	< 0.1	

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 • Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

LABORATORY ANALYTICAL REPORT Prepared by Billings. MT Branch

ENERGY (ENErgent Laboratories www.energylab.com

Client:	Golder Associates Ir	C						Repo	rt Date:	03/28/19	
Project:	181-06417 Tyrone C	CP-BMI						Work	Order:	B1903068	34
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6010B							Anal	ytical Rui	n: ICP203-B_	_190314A
Lab ID:	QCS	Init	ial Calibrati	on Verification Sta	indard					03/14/	/19 09:50
Boron			0.766	mg/L	0.10	96	90	110			
Lab ID:	ICSA	Inte	erference C	heck Sample A						03/14	/19 09:54
Boron			0.00209	mg/L	0.10						
Lab ID:	ICSAB	Inte	erference C	heck Sample AB						03/14	/19 09:58
Boron			0.949	mg/L	0.10	95	80	120			
Method:	SW6010B									Batc	h: 130969
Lab ID:	MB-130969	Me	thod Blank				Run: ICP20)3-B_190314A		03/14/	/19 19:14
Boron			ND	mg/kg	0.06						
Lab ID:	LCS-130969	Lat	ooratory Co	ntrol Sample			Run: ICP20)3-B_190314A		03/14	/19 19:26
Boron			0.396	mg/kg	0.10	110	70	130			
Lab ID:	B19030684-001ADU	P Sar	mple Duplic	ate			Run: ICP20)3-B_190314A		03/14	/19 19:34
Boron			ND	mg/kg	0.10					30	
Lab ID:	B19030684-002AMS	2 Sar	mple Matrix	Spike			Run: ICP20)3-B_190314A		03/14	/19 19:43
Boron			10.1	mg/kg	0.10	101	70	130			

Client:	Golder Associates In	C						Repo	rt Date	03/28/19	
Project:	181-06417 Tyrone C	CP-BMI						Work	(Order	: B190306	34
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6020							Analytic	al Run: I	CPMS207-B	_190314A
Lab ID:	QCS	Ini	tial Calibrati	ion Verificat	tion Standard					03/14	/19 11:32
Selenium			0.0511	mg/L	0.0010	102	90	110			
Lab ID:	ICSA	Int	erference C	heck Samp	ole A					03/14	/19 12:01
Selenium			0.000546	mg/L	0.0010						
Lab ID:	ICSAB	Int	erference C	heck Samp	le AB					03/14	/19 12:05
Selenium			0.0108	mg/L	0.0010	108	80	120			
Method:	SW6020									Batc	h: 130969
Lab ID:	MB-130969	Me	thod Blank				Run: ICPM	S207-B 190314	A	03/15	/19 07:34
Selenium			-0.0007	mg/kg				_			
Lab ID:	B19030684-001AMS	Sa	mple Matrix	Spike			Run: ICPM	S207-B 190314	A	03/15	/19 07:51
Selenium			0.255	mg/kg	0.10	103	70	130			
Lab ID:	B19030684-001ADU	> Sa	mple Duplic	cate			Run: ICPM	S207-B 190314	A	03/15	/19 08:16
Selenium			-0.00539	mg/kg	0.10			_		30	
Method:	SW6020							Analytic	al Run: I	CPMS207-B	_190315A
Lab ID:	ICSA	Int	erference C	heck Samp	ole A					03/15	/19 12:16
Selenium			0.000517	mg/L	0.0010						
Lab ID:	ICSAB	Int	erference C	heck Samp	ole AB					03/15	/19 12:20
Selenium			0.0100	mg/L	0.0010	101	80	120			
Lab ID:	QCS	Ini	tial Calibrati	ion Verificat	tion Standard					03/15	/19 11:51
Selenium			0.0503	mg/L	0.0010	101	90	110			
Method:	SW6020									Batc	h: 130969
Lab ID:	MB-130969	Me	ethod Blank				Run: ICPM	S207-B_190315	A	03/15	/19 12:50
Selenium			0.001	mg/kg	0.0008						
Lab ID:	B19030689-005AMS	Sa	mple Matrix	Spike			Run: ICPM	S207-B_190315	БA	03/15	/19 14:01
Selenium			0.245	mg/kg	0.10	98	70	130			
Lab ID:	B19030689-005ADU	P Sa	mple Duplic	cate			Run: ICPM	S207-B_190315	A	03/15	/19 14:09
Selenium			ND	mg/kg	0.10					30	

Prepared by Billings, MT Branch

Client: Golder Associates Inc

Project: 181-06417 Tyrone CCP-BMI

Analyte	Result Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit Qual
Method: ASA10-3							Batch: 130992
Lab ID:B19030684-001A DUPConductivity, sat. paste	Sample Duplicate 0.500 mmhos/cm	0.10		Run: MISC	-SOIL_190315A	2.0	03/15/19 15:07 30
Lab ID:LCS-1903151507Conductivity, sat. paste	Laboratory Control Sample 4.39 mmhos/cm	0.10	107	Run: MISC 70	-SOIL_190315A 130		03/15/19 15:07
Lab ID: B19030684-001A DUP pH, sat. paste	Sample Duplicate 7.90 s.u.	0.10		Run: MISC	-SOIL_190315A	0.0	03/15/19 15:07 10
Lab ID: LCS-1903151507 pH, sat. paste	Laboratory Control Sample 7.30 s.u.	0.10	97	Run: MISC 90	-SOIL_190315A 110		03/15/19 15:07

Prepared by Billings, MT Branch

Client: Golder Associates Inc

Project: 181-06417 Tyrone CCP-BMI

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	ASA15-5								Batch	R317249
Lab ID:	B19030684-001A DUP	Sample Dupli	cate			Run: MISC	-SOIL_190324A		03/24	4/19 13:43
Sand		76.0	%	1.0					30	
Silt		13.0	%	1.0					30	
Clay		11.0	%	1.0					30	
Lab ID:	LCS-1903241343	Laboratory Co	ontrol Samp	le		Run: MISC	-SOIL_190324A		03/24	4/19 13:43
Sand		26.0	%	1.0	108	70	130			
Silt		52.0	%	1.0	96	70	130			
Clay		22.0	%	1.0	100	70	130			
Lab ID:	B19030684-001A DUP	Sample Dupli	cate			Run: MISC	-SOIL_190324A		03/24	4/19 13:43
Very Fine	Sand	3	wt%	1				40	50	
Lab ID:	LCS-1903241343	Laboratory Co	ontrol Samp	le		Run: MISC	-SOIL_190324A		03/24	4/19 13:43
Very Fine	Sand	7	wt%	1	88	50	150			
Method:	ASA15-5								Batch:	R317322
Lab ID:	B19030684-001A DUP	Sample Dupli	cate			Run: MISC	-SOIL_190325B		03/24	4/19 13:43
Sand		76.0	%	1.0					30	
Silt		13.0	%	1.0					30	
Clav		11.0	%	1.0					30	

Prepared by Billings, MT Branch

Client: Golder Associates Inc

Project: 181-06417 Tyrone CCP-BMI

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	ASA24-5						Batch:	: OM_3-2	25-2019_10-0)3-27AMA
Lab ID:	LCS	Laboratory Co	ontrol Sample			Run: FIA20)5-B_190325A		03/25	5/19 10:04
Phosphorus	, Olsen	47	mg/kg	1.0	105	70	130			
Lab ID:	MBLK-NaHCO3	Method Blank				Run: FIA20)5-B_190325A		03/25	5/19 10:08
Phosphorus	, Olsen	1	mg/kg	0.1						
Lab ID:	B19030684-001ADUP	Sample Dupli	cate			Run: FIA20)5-B_190325A		03/25	5/19 10:13
Phosphorus	, Olsen	4.7	mg/kg	1.0				5.0	30	
Lab ID:	B19030684-001AMS	Sample Matrix	< Spike			Run: FIA20)5-B_190325A		03/25	5/19 10:15
Phosphorus	, Olsen	17	mg/kg	1.0	116	70	130			

Prepared by Billings, MT Branch

Client: Golder Associates Inc

Project: 181-06417 Tyrone CCP-BMI

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	ASA29-3								Batch:	R316761
Lab ID:	B19030684-001A DUP	Sample Duplic	ate			Run: MISC	-SOIL_190314A		03/14	/19 08:49
Organic Ca	rbon	0.380	%	0.10				5.1	30	
Organic Ma	itter	0.654	%	0.17				5.1	30	
Lab ID:	LCS-1903140849	Laboratory Co	ntrol Sample			Run: MISC	-SOIL_190314A		03/14	/19 08:49
Organic Ca	rbon	3.08	%	0.10	114	70	130			
Organic Ma	itter	5.30	%	0.17	129	70	130			

ANALYTICAL SUMMARY REPORT

April 02, 2019

Golder Associates Inc 5200 Pasadena NE Ste C Albuquerque, NM 87113

Work Order: B19030689

Project Name: 181-06417 Tyrone CCP-BMI

Energy Laboratories Inc Billings MT received the following 9 samples for Golder Associates Inc on 3/11/2019 for analysis.

Lab ID	Client Sample ID	Collect Date F	Receive Date	Matrix	Test
B19030689-001	GC-1S-4 [0-2.5]feet	03/01/19 0:00	03/11/19	Soil	Metals, CACL2 Extractable Acid/Base Potential Coarse Fragments Conductivity, Saturated Paste Extract Nitrate as N, KCL Extract Organic Carbon/Matter Walkley- Black pH, Saturated Paste Phosphorus-Olsen CaCl2 Hot Water Soil Extraction ASA25-9 Saturated Paste Extraction ASA Particle Size Analysis / Texture Saturation Percentage Sulfur Forms Very Fine Sand
B19030689-002	GC-1S-5 Bulk	03/01/19 0:00	03/11/19	Soil	Same As Above
B19030689-003	PG9AX-1 Bulk	03/01/19 0:00	03/11/19	Soil	Same As Above
B19030689-004	PG9A-1 Bulk	03/01/19 0:00	03/11/19	Soil	Same As Above
B19030689-005	PG9A-2 Bulk	03/01/19 0:00	03/11/19	Soil	Same As Above
B19030689-006	GC-LS-1 [2-4]feet	02/28/19 0:00	03/11/19	Soil	Same As Above
B19030689-007	GC-LS-2 [0-2]feet	02/28/19 0:00	03/11/19	Soil	Same As Above
B19030689-008	GC-LS-2 [6-7]feet	02/28/19 0:00	03/11/19	Soil	Same As Above
B19030689-009	GC-LS-3 [0-2]feet	02/28/19 0:00	03/11/19	Soil	Same As Above

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

Technical Data Reviewer

Digitally signed by Jillian B. Miller Date: 2019.04.02 12:02:45 -06:00

Golder Associates Inc 181-06417 Tyrone CCP-BMI

Client: Project:

LABORATORY ANALYTICAL REPORT Prepared by Billings, MT Branch

Report Date: 04/02/19 Date Received: 03/11/19

Workorder:	B19030689														
		Analysis	Coarse Frags	Very Fine Sand	Sand	Silt	Clay	Texture	pH, sat_ paste	COND	Saturation	Neut Potential	Acid Potential	Acid/Base Potential	S, Total
		Units	%	wt%	%	%	%		s_u_	mmhos/cm	%	t/kt	t/kt	t/kt	%
Sample ID	Client Sample ID	Depth	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results
B19030689-001	GC-1S-4	0-2.5	24	4	70	19	11	SL	7.8	0.3	19.2	57	0	57	0.02
B19030689-002	GC-1S-5 Bulk	0-0	27	7	45	34	21	_	6.8	0.9	34.2	10	-	80	0.04
B19030689-003	PG9AX-1 Bulk	0-0	37	0	64	24	12	SL	7.8	0.3	24.5	17	2	15	0.05
B19030689-004	PG9A-1 Bulk	0-0	40	0	67	21	12	SL	7.9	0.5	23.6	13	2	11	0.06
B19030689-005	PG9A-2 Bulk	0-0	31	4	69	21	10	SL	8.0	0.9	21.7	19	-	18	0.06
B19030689-006	GC-LS-1	2-4	53	-	77	14	б	SL	5.3	1.7	20.1	11	-	10	0.04
B19030689-007	GC-LS-2	0-2	17	0	57	24	19	SL	4.5	1.3	26.2	-	22	-21	0.81
B19030689-008	GC-LS-2	6-7	44	5	77	80	15	SL	7.6	0.7	24.6	6	-	80	0.04
B19030689-009	GC-LS-3	0-2	27	4	73	14	13	SL	6.5	0.2	19.5	6	-	80	0.03

Client:	Golder Associ	iates Inc											Report Date: 04/02	2/19
Project:	181-06417 Ty	rone CCP-E	3MI										Date Received: 03/11	/19
Workorder:	B19030689													
		Analysis	S, H2O Extr	S, HCL Extr	S, HNO3 Extr	S, Residual	Organic Matter	Organic Carbon	Phos, Olsen	Nitrate as N	B-CACL2	Se-CACL2		
		Units	%	%	%	%	%	%	mg/kg	mg/kg	mg/kg	mg/kg		
Sample ID	Client Sample ID	Depth	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results		
B19030689-001	GC-1S-4	0-2.5	< 0.01	< 0.01	< 0.01	0.02	0.5	0.3	ю	۲ ۲	< 0.1	< 0.1		
B19030689-002	GC-1S-5 Bulk	0-0	< 0.01	< 0.01	< 0.01	0.02	3.2	1.8	ю	11	< 0.1	< 0.1		
B19030689-003	PG9AX-1 Bulk	0-0	< 0.01	< 0.01	0.03	0.02	0.4	0.3	2	, L	< 0.1	< 0.1		
B19030689-004	PG9A-1 Bulk	0-0	< 0.01	< 0.01	0.04	0.02	0.4	0.2	2	, L	< 0.1	< 0.1		
B19030689-005	PG9A-2 Bulk	0-0	0.01	< 0.01	0.02	0.03	1.0	0.6	2	, L	< 0.1	< 0.1		
B19030689-006	GC-LS-1	2-4	< 0.01	< 0.01	0.01	0.02	0.5	0.3	2	, L	< 0.1	< 0.1		
B19030689-007	GC-LS-2	0-2	0.11	< 0.01	0:30	0.39	0.4	0.2	2	16	< 0.1	< 0.1		
B19030689-008	GC-LS-2	6-7	< 0.01	< 0.01	< 0.01	0.03	0.5	0.3	9	e	< 0.1	< 0.1		
B19030689-009	GC-LS-3	0-2	< 0.01	< 0.01	0.02	0.02	0.7	0.4	e	, L	< 0.1	< 0.1		

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 • Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

LABORATORY ANALYTICAL REPORT Prepared by Billings, MT Branch

Trust our People. Trust our Data. www.energylab.com

ERGY (E)

Client:	Golder Associates In	с						Report	t Date:	04/02/19	
Project:	181-06417 Tyrone C	CP-BMI						Work	Order	: B1903068	39
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	ASA10-3									Batc	h: 130992
Lab ID:	B19030689-005A DU	P Sar	mple Duplic	ate			Run: MISC-	-SOIL_190315A		03/15/	/19 15:07
Conductiv	ivity, sat. paste		0.930 r	mmhos/cm	0.10				1.1	30	
Lab ID:	LCS-1903151507	Lab	oratory Cor	ntrol Sample			Run: MISC-	-SOIL_190315A		03/15/	19 15:07
Conductiv	ivity, sat. paste		4.39 r	mmhos/cm	0.10	107	70	130			
Lab ID:	B19030689-005A DU	P Sar	mple Duplic	ate			Run: MISC-	-SOIL_190315A		03/15/	/19 15:07
pH, sat. p	paste		8.00	s.u.	0.10				0.0	10	
Lab ID:	LCS-1903151507	Lab	oratory Co	ntrol Sample			Run: MISC-	-SOIL_190315A		03/15/	/19 15:07
pH, sat. p	paste		7.30	s.u.	0.10	97	90	110			

Client:	Golder Associates In	C						Repor	t Date:	: 04/02/19	
Project:	181-06417 Tyrone C	CP-BMI						Work	Order	: B1903068	39
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	ASA15-5									Batch:	R317249
Lab ID:	B19030689-005A DU	P 3 Sa	mple Duplic	ate			Run: MISC-	-SOIL_190324A		03/24/	/19 13:43
Sand			67.0	%	1.0					30	
Silt			23.0	%	1.0					30	
Clay			10.0	%	1.0					30	
Lab ID:	LCS-1903241343	3 Lat	oratory Cor	ntrol Sample			Run: MISC	-SOIL_190324A		03/24/	/19 13:43
Sand			26.0	%	1.0	108	70	130			
Silt			52.0	%	1.0	96	70	130			
Clay			22.0	%	1.0	100	70	130			
Lab ID:	B19030689-005A DU	P Sa	mple Duplic	ate			Run: MISC-	-SOIL_190324A		03/24/	/19 13:43
Very Fine	e Sand		3	wt%	1				29	50	
Lab ID:	LCS-1903241343	Lat	oratory Cor	ntrol Sample			Run: MISC	-SOIL_190324A		03/24/	/19 13:43
Very Fine	e Sand		7	wt%	1	88	50	150			
Method:	ASA15-5									Batch:	R317322
Lab ID:	B19030689-005A DU	P 3 Sa	mple Duplic	ate			Run: MISC-	-SOIL_190325B		03/24/	/19 13:43
Sand			67.0	%	1.0					30	
Silt			23.0	%	1.0					30	
Clay			10.0	%	1.0					30	

Prepared by Billings, MT Branch

Client:	Golder Associates Inc
---------	-----------------------

Project: 181-06417 Tyrone CCP-BMI

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	ASA24-5							Batch	n: OM_3-2	25-2019_10-0)3-27AMA
Lab ID:	LCS	La	boratory Co	ntrol Sample	e		Run: FIA20	5-B_190325A		03/25/	/19 10:04
Phosphore	us, Olsen		47	mg/kg	1.0	105	70	130			
Lab ID:	MBLK-NaHCO3	Me	thod Blank				Run: FIA20	5-B_190325A		03/25/	/19 10:08
Phosphore	us, Olsen		1	mg/kg	0.1						
Lab ID:	B19030684-001AMS	Sa	mple Matrix	Spike			Run: FIA20	5-B_190325A		03/25/	/19 10:15
Phosphore	us, Olsen		17	mg/kg	1.0	116	70	130			
Lab ID:	B19030689-005ADU	P Sa	mple Duplic	ate			Run: FIA20	5-B_190325A		03/25/	/19 10:37
Phosphore	us, Olsen		2.0	mg/kg	1.0				5.9	30	
Lab ID:	B19030689-005AMS	Sa	mple Matrix	Spike			Run: FIA20	5-B_190325A		03/25/	/19 10:39
Phosphore	us, Olsen		14	mg/kg	1.0	111	70	130			

Client:	Golder Associates In	с						Report	Date:	04/02/19	
Project:	181-06417 Tyrone C	CP-BMI						Work	Order:	B1903068	39
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	ASA29-3									Batch:	R316761
Lab ID:	B19030689-005A DU	P 2 Sa	ample Duplica	ate			Run: MISC-	-SOIL_190314A		03/14/	19 08:49
Organic C	Carbon		0.540	%	0.10				7.1	30	
Organic N	latter		0.929	%	0.17				7.1	30	
Lab ID:	LCS-1903140849	2 La	boratory Cor	ntrol Sample			Run: MISC-	-SOIL_190314A		03/14/	19 08:49
Organic C	Carbon		3.08	%	0.10	114	70	130			
Organic N	<i>l</i> atter		5.30	%	0.17	129	70	130			

Prepared by Billings, MT Branch

Client:	Golder Associates In	с					Repo	ort Date:	04/02/19	
Project:	181-06417 Tyrone C	CP-BMI					Wor	k Order:	B1903068	39
Analyte		Count Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	ASA33-8						Bate	ch: OM_3-	·14-2019_10-	-13-46AM
Lab ID:	LCS	Laboratory Co	ontrol Sample			Run: FIA20	5-B_190314A		03/14/	19 10:14
Nitrate as	N, KCL Extract	10.8	mg/kg	1.0	99	70	130			
Lab ID:	MBLK-KCL	Method Blank				Run: FIA20	5-B_190314A		03/14/	19 10:16
Nitrate as	N, KCL Extract	ND	mg/kg	0.1						
Lab ID:	B19030689-004ADUF	Sample Dupli	cate			Run: FIA20	5-B_190314A		03/14/	19 10:27
Nitrate as	N, KCL Extract	0.488	mg/kg	1.0					30	
Lab ID:	B19030689-004AMS	Sample Matrix	< Spike			Run: FIA20	5-B_190314A		03/14/	19 10:27
Nitrate as	N, KCL Extract	2.77	mg/kg	1.0	44	70	130			S
Lab ID:	B19030611-001ADUF	Sample Dupli	cate			Run: FIA20	5-B_190314A		03/14/	19 10:36
Nitrate as	N, KCL Extract	8720	mg/kg-dry	290				0.7	30	
Lab ID:	B19030611-001AMS	Sample Matrix	<pre>Spike</pre>			Run: FIA20	5-B_190314A		03/14/	19 10:36
Nitrate as	N, KCL Extract	12300	mg/kg-dry	300	120	70	130			

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

Client:	Golder Associates In	С						Repo	rt Date:	04/02/19	
Project:	181-06417 Tyrone C	CP-BMI						Work	Order	B1903068	39
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method	Sobek Modified									Batch:	R317322
Lab ID:	B19030689-001A DU	P 3 Sa	mple Duplic	ate			Run: MISC-	-SOIL_190325B		03/25/	/19 19:04
Neutraliz	ation Potential		56	t/kt	0.10				2.0	50	
Acid Pot	ential		0.64	t/kt	1.0					50	
Acid/Bas	se Potential		55	t/kt					2.0	50	
The acid	I-base potential was calculate	d from the	non-sulfate su	lfur %							
Lab ID:	B19030689-001A DU	P 5 Sa	mple Duplic	ate			Run: MISC-	-SOIL_190325B		03/25/	/19 19:04
Sulfur, T	otal		0.0243	%	0.010				0.4	50	
Sulfur, H	lot Water Extractable		0.00395	%	0.010					50	
Sulfur, H	ICI Extractable		ND	%	0.010					50	
Sulfur, H	INO3 Extractable		ND	%	0.010					50	
Sulfur, R	lesidual		0.0219	%	0.010				0.9	50	
Lab ID:	LCS-SOLO12091903	2 3 La	boratory Co	ntrol Sample			Run: MISC-	-SOIL_190325B		03/25/	/19 19:35
Neutraliz	ation Potential		120	t/kt	0.10	124	50	150			
Acid Pot	ential		5.9	t/kt	1.0	74	50	150			
Acid/Bas	se Potential		120	t/kt		128	50	150			
The acid	l-base potential was calculate	d from the	non-sulfate su	lfur %							
Lab ID:	LCS-SOLO12091903	2 3 La	boratory Co	ntrol Sample			Run: MISC	-SOIL_190325B		03/25/	/19 19:35
Sulfur, T	otal		0.188	%	0.010	90	50	150			
Sulfur, H	INO3 Extractable		0.153	%	0.010	85	50	150			
Sulfur, R	lesidual		0.0370	%	0.010	74	50	150			

Client:	Golder Associates Ir	nc						Repo	ort Date:	04/02/19	
Project:	181-06417 Tyrone C	CP-BMI						Worl	k Order:	B190306	89
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6010B							Anal	lytical Ru	n: ICP203-B	_190314A
Lab ID:	QCS	Initi	al Calibrati	on Verification St	andard					03/14	/19 09:50
Boron			0.766	mg/L	0.10	96	90	110			
Lab ID:	ICSA	Inte	erference C	heck Sample A						03/14	/19 09:54
Boron			0.00209	mg/L	0.10						
Lab ID:	ICSAB	Inte	erference C	heck Sample AB						03/14	/19 09:58
Boron			0.949	mg/L	0.10	95	80	120			
Method:	SW6010B									Batc	h: 130969
Lab ID:	MB-130969	Met	hod Blank				Run: ICP20	03-B_190314A		03/14	/19 19:14
Boron			ND	mg/kg	0.06						
Lab ID:	LCS-130969	Lab	oratory Co	ntrol Sample			Run: ICP20)3-B_190314A		03/14	/19 19:26
Boron			0.396	mg/kg	0.10	110	70	130			
Lab ID:	B19030684-001ADU	P Sar	nple Duplic	cate			Run: ICP20)3-B_190314A		03/14	/19 19:34
Boron			ND	mg/kg	0.10					30	
Lab ID:	B19030684-002AMS	2 Sar	nple Matrix	Spike			Run: ICP20)3-B_190314A		03/14	/19 19:43
Boron			10.1	mg/kg	0.10	101	70	130			
Lab ID:	B19030689-005ADU	P Sar	nple Duplic	cate			Run: ICP20)3-B_190314A		03/14	/19 20:32
Boron			ND	mg/kg	0.10					30	
Lab ID:	B19030689-006AMS	2 Sar	nple Matrix	Spike			Run: ICP20)3-B_190314A		03/14	/19 20:40
Boron			10.3	mg/kg	0.10	103	70	130			

Client:	Golder Associates In	C						Repo	ort Date:	: 04/02/19	
Project:	181-06417 Tyrone C	CP-BMI						Worl	k Order:	: B1903068	89
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6020							Analytic	al Run: I	CPMS207-B	_190315A
Lab ID:	ICSA	Inte	rference C	heck Sample A						03/15/	/19 12:16
Selenium		(0.000517	mg/L	0.0010						
Lab ID:	ICSAB	Inte	rference C	heck Sample AB						03/15/	/19 12:20
Selenium			0.0100	mg/L	0.0010	101	80	120			
Lab ID:	QCS	Initia	al Calibrati	on Verification St	andard					03/15/	/19 11:51
Selenium			0.0503	mg/L	0.0010	101	90	110			
Method:	SW6020									Batc	h: 130969
Lab ID:	MB-130969	Met	hod Blank				Run: ICPM	S207-B_190315	5A	03/15/	/19 12:50
Selenium			0.001	mg/kg	0.0008						
Lab ID:	B19030689-005AMS	San	nple Matrix	Spike			Run: ICPM	S207-B_190315	5A	03/15/	/19 14:01
Selenium			0.245	mg/kg	0.10	98	70	130			
Lab ID:	B19030689-005ADU	> San	nple Duplic	ate			Run: ICPM	S207-B_190315	5A	03/15/	/19 14:09
Selenium			ND	mg/kg	0.10					30	

Client:	Golder Associates Inc							Report	Date:	04/02/19	
Project:	181-06417 Tyrone CC	P-BMI						Work	Order:	B1903068	39
Analyte	(Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	USDA27a									Batch:	R316859
Lab ID:	B19030689-005A DUP	San	nple Duplica	ate			Run: MISC-	-SOIL_190315A		03/15/	/19 15:07
Saturation	I		20.8	%	0.10				4.2	30	
Lab ID:	LCS-1903151507	Lab	oratory Con	trol Sample	9		Run: MISC-	-SOIL_190315A		03/15/	/19 15:07
Saturation	I		34.7	%	0.10	92	70	130			

Work Order Receipt Checklist

Golder Associates Inc

B19030689

Login completed by:	Richard L. Shular		Date	Received: 3/11/2019
Reviewed by:	BL2000\gmccartney		Re	eceived by: se
Reviewed Date:	3/12/2019		Ca	rrier name: Return-UPS Ground N/C
Shipping container/cooler in	good condition?	Yes 🗸	No 🗌	Not Present
Custody seals intact on all sl	hipping container(s)/cooler(s)?	Yes	No 🗌	Not Present
Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present
Chain of custody present?		Yes 🗹	No 🗌	
Chain of custody signed whe	en relinquished and received?	Yes 🗹	No 🗌	
Chain of custody agrees with	n sample labels?	Yes 🗹	No 🗌	
Samples in proper container,	/bottle?	Yes 🗹	No 🗌	
Sample containers intact?		Yes 🗹	No 🗌	
Sufficient sample volume for	indicated test?	Yes 🗹	No 🗌	
All samples received within h (Exclude analyses that are c such as pH, DO, Res CI, Su	nolding time? onsidered field parameters Ifite, Ferrous Iron, etc.)	Yes 🗹	No 🗌	
Temp Blank received in all sl	hipping container(s)/cooler(s)?	Yes	No 🗸	Not Applicable
Container/Temp Blank tempe	erature:	°C No Ice		
Water - VOA vials have zero	headspace?	Yes	No 🗌	No VOA vials submitted
Water - pH acceptable upon	receipt?	Yes	No 🗌	Not Applicable

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

Contact and Corrective Action Comments:

The temperature of the sample(s) for shipping container 1 was 4.2°C and shipping container 2 was 3.4°C.

	······································
RGY	
ES	

Chain of Custody & Analytical Request Record

Trust our People. Trust o	ur Data.				M	w.energyla	<u>b.com</u>			<u>a</u>	age <u>1</u> of <u>1</u>
Account Informatic	on (Billing I	information)			Report Int	formation (#	different than Accou	unt Information)	បី	mments	
Company/Name Golder	r Associat	tes, Inc.			Company/Nam	le CC:			(;		
Contact Doug	Romig				Contact	Dustin Wa	ard				
Phone (505) {	821-3043				Phone						
Mailing Address 5200 F	Dasadena	Ave. NE Suite	C		Mailing Addres	ŝ		r I I	Ē		
City, State, Zip Albuqu	uerque, N	IM 87113-2208			City, State, Zip				1		
Email Doug_	Romig@	golder.com			Email	dustin_wa	Ird@golder.com				
Receive Invoice EHard Co	apy DEme	ail Receive Repo	ort ⊟Hard Copy	Emai	Receive Repor	त ⊟Hard Copy	E mail				
Purchase Order	Quote		Bottle Order		Special Report/Fi		DD/EDT (contact labo	ratory) 🛛 Other			
Project Information					Matrix Codes		Ana	Ilysis Requested			
Project Name, PWSID, Perr	nit, etc. 181	-06417 Tyrone	CCP-BMI	Γ	A - Air						Il turnaround times are adard unless marked as
Sampler Name Doug Romig		Sampler Phone	i (505) 821-30	143	V- Water S - Soils/						RUSH.
Sample Origin State NM		EPA/State Cor	mpliance 🔳 Ye	s DNo	V - Vegetation					MU	Energy Laboratories ST be contacted prior to
URANIUM MINING CLIENTS Unprocessed Ore Processed Ore (Ground o 11(e)2 Byproduct Material	MUST indici rr Refined) * I (Can ONL)	ate sample type. *CALL BEFORE SE Y be Submitted to EL	:NDING LI Casper Locatic	(u(B - Bioassa; O - Other DW - Drinking DW - Water 	~				berlost)A 5 € a,	SH sample submittal for arges and scheduling – See Instructions Page
Sample Ic (Name, Local	dentificat tion, Interval, c	tion etc.)	Colle	ction Time	Number of Mati Containers (See Co	rix xdes e)				99S TAT ₩	ELI LAB ID Laboratory Use Only
1 GC-1S-4 0-2.5'			3/1/19		1 S					•	100-6830506
2 GC-1S-5 BULK			3/1/19		1 S					•	200-
3 PG9AX-1 BULK			3/1/19		1 S					•	ζæ ζ
4 PG9A-1 BULK			3/1/19		1 S					•	500-
5 PG9A-2 BULK			3/1/19		1 S					•	S/9-
6 GC-LS-1 2-4'			2/28/19		1 S					•	900-
7 GC-LS-2 0-2'			2/28/19		1 S					•	L.00
8 GC-LS-2 6-7'			2/28/19		1 S					•	800-
9 GC-LS-3 0-2'			2/28/19		1 S					•	600-
10 -NA-							-6				
Custody Relinquished Record MUST Dustin S	d by (print) . Ward	5 Ba	ate/Time 019-03-05	Signat	h		Received by (print)	Edra :	2/11/19 9%	O Bigman	1. M. Erlber
be signed Relinquished	I by (print)	Da	ate/T ime	Signat	ure		Received by Laborat	tory (print)	ate/Time	Signettir	
					LAB	ORATORY USE	ONLY)
Shipped By Cool	ler ID(s)	Custody Seals Y N C B	Intact Y N	Receipt Tem	o Temp Blank Y N	N ICE ≺ O	CC Cash	ment Type Check	Amount \$	Receipt Numt	Jer (cash/check only)
1	-		-		_	_					

Page 14 of 15

ELI-COC-11/17 v.2

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested. This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

March 5, 2019

Project No. 18106417

Ms. Wynn Pippin Energy Laboratories Inc. 1120 South 27th Street Billings, MT 59107

RE: Lab Analyses for Tyrone CCP Borrow Materials

Dear Ms. Pippin

This letter accompanies two coolers containing a total of 15 soil samples from the Tyrone mine site. Please analyze the samples for the following parameters:

Test	Method
Saturated Paste pH	SLS 1954, Method 2 and 21a
Electrical Conductivity	SLS 1954, Method 3a and 4b
Saturation percentage	SLS 1954, Method 27a
Particle Size Distribution, including very fine sand	ASA 1982, Method 15-5
Rock Fragment (>2mm)	Dry sieve (No. 10)/gravimetric
N as Nitrate	ASA 1982, Method 33-8.1
Phosphorous (Olsen)	ASA 1982, Method 24-5.4
Organic Matter	ASA 1982 Method 29-3.5.2
Hot water extractable Boron	ASA 10-3
Hot water extractable Selenium	ASA Mono. #9, Part 2, Method 75-4.1
Acid-Base Account (with sulfur forms)	Acid-Base Account (with sulfur forms)

Please retain samples until we have an opportunity to review the initial lab data as we may select specific samples for additional analyses. Please call (505.821.3043) or email (dromig@golder.com) if you have any questions.

Sincerely,

GOLDER ASSOCIATES INC.

Douglas Romig, CPSS

Senior Soil Scientist

T:

Prepared by Billings, MT Branch

Client: Golder Associates Inc

Project: 181-06417 Tyrone CCP-BMI

Analyte	Result Units	RL	%REC Low Limit High Limit RPD RPDLimit Qual
Method: ASA33-8			Batch: OM_3-14-2019_10-13-46AM
Lab ID: LCS	Laboratory Control Sample		Run: FIA205-B_190314A 03/14/19 10:14
Nitrate as N, KCL Extract	10.8 mg/kg	1.0	99 70 130
Lab ID: MBLK-KCL	Method Blank		Run: FIA205-B_190314A 03/14/19 10:16
Nitrate as N, KCL Extract	ND mg/kg	0.1	
Lab ID: B19030611-001ADUP	Sample Duplicate		Run: FIA205-B_190314A 03/14/19 10:36
Nitrate as N, KCL Extract	8720 mg/kg-dry	290	0.7 30
Lab ID: B19030611-001AMS	Sample Matrix Spike		Run: FIA205-B_190314A 03/14/19 10:36
Nitrate as N, KCL Extract	12300 mg/kg-dry	300	120 70 130

Prepared by Billings, MT Branch

Client: Golder Associates Inc

Project: 181-06417 Tyrone CCP-BMI

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	Sobek Modified								Batch:	R317322
Lab ID:	B19030684-001A DUP	Sample Duplic	cate			Run: MISC	-SOIL_190325B		03/25	/19 18:32
Neutralizati	ion Potential	29	t/kt	0.10				2.0	50	
Acid Poten	tial	0.65	t/kt	1.0					50	
Acid/Base	Potential	28	t/kt					2.2	50	
The acid-ba	ase potential was calculated from	the non-sulfate su	lfur %							
Lab ID:	B19030684-001A DUP	Sample Duplic	cate			Run: MISC	-SOIL_190325B		03/25	/19 18:32
Sulfur, Tota	al	0.0173	%	0.010				16	50	
Sulfur, Hot	Water Extractable	ND	%	0.010					50	
Sulfur, HCI	Extractable	ND	%	0.010					50	
Sulfur, HN	D3 Extractable	ND	%	0.010					50	
Sulfur, Res	idual	0.0204	%	0.010				1.9	50	
Lab ID:	LCS-SOLO12091903251	Laboratory Co	ontrol Sample			Run: MISC	-SOIL_190325B		03/25	/19 19:35
Neutralizati	ion Potential	120	t/kt	0.10	124	50	150			
Acid Poten	tial	5.9	t/kt	1.0	74	50	150			
Acid/Base	Potential	120	t/kt		128	50	150			
The acid-ba	ase potential was calculated from	the non-sulfate su	lfur %							
Lab ID:	LCS-SOLO12091903251	Laboratory Co	ntrol Sample			Run: MISC	-SOIL_190325B		03/25	/19 19:35
Sulfur, Tota	al	0.188	%	0.010	90	50	150			
Sulfur, HN	D3 Extractable	0.153	%	0.010	85	50	150			
Sulfur, Res	idual	0.0370	%	0.010	74	50	150			

Prepared by Billings, MT Branch

Client: Golder Associates Inc

Project: 181-06417 Tyrone CCP-BMI

Analyte		Result Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit Qual
Method:	USDA27a							Batch: R316859
Lab ID: Saturation	B19030684-001A DUP	Sample Duplicate 19.6 %	0.10		Run: MISC	-SOIL_190315A	5.0	03/15/19 15:07 30
Lab ID: Saturation	LCS-1903151507	Laboratory Control Sample 34.7 %	0.10	92	Run: MISC 70	-SOIL_190315A 130		03/15/19 15:07

Work Order Receipt Checklist

Golder Associates Inc

B19030684

Login completed by:	Richard L. Shular	Date Received: 3/11/2019									
Reviewed by:	BL2000\gmccartney		Red	ceived by: se							
Reviewed Date:	3/12/2019		Car	rier name: Return-UPS Ground							
Shipping container/cooler in	good condition?	Yes 🖌	No 🗌	Not Present							
Custody seals intact on all sl	hipping container(s)/cooler(s)?	Yes	No 🗌	Not Present √							
Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present √							
Chain of custody present?		Yes 🗹	No 🗌								
Chain of custody signed whe	en relinquished and received?	Yes 🗹	No 🗌								
Chain of custody agrees with	n sample labels?	Yes 🗹	No 🗌								
Samples in proper container	/bottle?	Yes 🗹	No 🗌								
Sample containers intact?		Yes 🗹	No 🗌								
Sufficient sample volume for	indicated test?	Yes 🗹	No 🗌								
All samples received within h (Exclude analyses that are c such as pH, DO, Res CI, Su	nolding time? onsidered field parameters Ifite, Ferrous Iron, etc.)	Yes 🗸	No 🗌								
Temp Blank received in all sl	hipping container(s)/cooler(s)?	Yes	No 🗹	Not Applicable							
Container/Temp Blank tempe	erature:	°C No Ice									
Water - VOA vials have zero	headspace?	Yes	No 🗌	No VOA vials submitted							
Water - pH acceptable upon	receipt?	Yes	No 🗌	Not Applicable							

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

Contact and Corrective Action Comments:

The temperature of the sample(s) for shipping container 1 was 4.2°C and shipping container 2 was 3.4°C.

Chain of Custody & Analytical Request Record

						ימומאימי	0.0011				
Account In	formation (Billing it	nformation)			Report Info	Imation (#	different than Account Info	ormation)		Comme	ents
Company/Name	Golder Associat	es, Inc.			Company/Name	:20				:) Cool	beans.
Contact	Doug Romig				Contact	Dustin Wa	rd				
Phone	(505) 821-3043				Phone						
Mailing Address	5200 Pasadena	Ave. NE Suite	С		Mailing Address						
City, State, Zip	Albuquerque, NI	M 87113-2208			City, State, Zip						
Email	Doug_Romig@c	golder.com			Emait	dustin_wa	rd@golder.com				
Receive Invoice	EHard Copy Emai	I Receive Repo	rt ⊡Hard Copy	/ ©Email	Receive Report	□Hard Copy	e Email				
Purchase Order	Quote		Bottle Order		Special Report/For	nats: I NELAC	DD/EDT (contact laboratory)	□ Other			
Project Infe	ormation				Matrix Codes		Analysis	: Requeste	0		
Project Name, P	WSID, Permit, etc. 181-	06417 Tyrone	CCP-BMI		A - Air						All turnaround times are standard unless marked as
Sampler Name D	oug Romig	Sampler Phone	(505) 821-3(043	N- Water S - Soils/						RUSH.
Sample Origin S	tate NM	EPA/State Cor	npliance 🔳 Ye	ss D No	V - Vegetation						Energy Laboratories MUST be contacted prior to
	G CLIENTS MUST Indica	te sample type.			B - Bioassay 0 - Other					pəų	RUSH sample submittal for charges and scheduling –
Processed Or 11(e)2 Byproc	e (Ground or Refined) ** luct Material (Can ONLY	CALL BEFORE SE be Submitted to Et	NDING J Casper Locati	on)	DW - Dinking Water					Attacl	See Instructions Page
	Sample Identificati	ion	Colle	ction	mber of Matrix					/ əəç	
1 GC-1S-1	(Name, Location, Interval, e	(c)	Date 3/1/19	Time	Above)	,				<u>-</u> ; •	AT LABORATORY USE ONL
2 GC-1S-2	0-2'		3/1/19	-	- -					•	240~
3 GC-1S-2	2-4'		3/1/19		۲ د					•	- - - - - - - - - - - - - - - - - - -
4 GC-1S-2	4-6'		3/1/19		1 S					•	
5 GC-1S-3	0-2'		3/1/19		1 S					•	S 00-
6 GC-1S-3	4-6.5'		3/1/19		1 S					•	-006
7 -NA-											
8											
6											
10							- C				
Custody Record MUST	Relinquished by (print) Dustin S. Ward	Da	te/Time	1200 Signature		A	Received by RITIL	Jaq.	211115	olic	MIM RICH
be signed	Relinquished by (print)	Dat	te/Time	Signature			Received by Laboratory (pr		.Date/Time	7	ignature'
					LABOI	RATORY USE	ONLY				
Shipped By	Cooler ID(s)	Custody Seals Y N C B	Intact Y N	Receipt Temp °C	Temp Blank Y N	N ∧ aolice	CC Cash Chec	ype X	Amount \$	Receip	t Number (cash/check only)
	In certain circums	tances, samples This	submitted to E serves as noti	inergy Laboratice of this poss	ories, Inc. may ibility. All subco	be subcontra ontracted data	cted to other certified la	aboratories in on your anal	order to compl ytical report.	ete the anal	ysis requested. ELI-COC-11/17 v.2

Page 14 of 15

March 5, 2019

Project No. 18106417

Ms. Wynn Pippin Energy Laboratories Inc. 1120 South 27th Street Billings, MT 59107

RE: Lab Analyses for Tyrone CCP Borrow Materials

Dear Ms. Pippin

This letter accompanies two coolers containing a total of 15 soil samples from the Tyrone mine site. Please analyze the samples for the following parameters:

Test	Method
Saturated Paste pH	SLS 1954, Method 2 and 21a
Electrical Conductivity	SLS 1954, Method 3a and 4b
Saturation percentage	SLS 1954, Method 27a
Particle Size Distribution, including very fine sand	ASA 1982, Method 15-5
Rock Fragment (>2mm)	Dry sieve (No. 10)/gravimetric
N as Nitrate	ASA 1982, Method 33-8.1
Phosphorous (Olsen)	ASA 1982, Method 24-5.4
Organic Matter	ASA 1982 Method 29-3.5.2
Hot water extractable Boron	ASA 10-3
Hot water extractable Selenium	ASA Mono. #9, Part 2, Method 75-4.1
Acid-Base Account (with sulfur forms)	Acid-Base Account (with sulfur forms)

Please retain samples until we have an opportunity to review the initial lab data as we may select specific samples for additional analyses. Please call (505.821.3043) or email (dromig@golder.com) if you have any questions.

Sincerely,

GOLDER ASSOCIATES INC.

Douglas Romig, GPSS

Senior Soil Scientist

T;

APPENDIX B

Daniel B. Stephens and Associates Laboratory Report

Laboratory Report for Golder Associates

Project: CCP-BMI 181-06417

May 31, 2019

Daniel B. Stephens & Associates, Inc.

4400 Alameda Blvd. NE, Suite C • Albuquerque, New Mexico 87113

May 31, 2019

Doug Romig Golder Associates, Inc. 5200 Pasadena NE, Suite C Albuquerque, NM 87113 (505) 821-3043

Re: DBS&A Laboratory Report for the Golder Associates, Inc. CCP-BMI 181-06417 Project

Dear Mr. Romig:

Enclosed is the report for the Golder Associates, Inc. CCP-BMI 181-06417 project samples. Please review this report and provide any comments as samples will be held for a maximum of 30 days. After 30 days samples will be returned or disposed of in an appropriate manner.

All testing results were evaluated subjectively for consistency and reasonableness, and the results appear to be reasonably representative of the material tested. However, DBS&A does not assume any responsibility for interpretations or analyses based on the data enclosed, nor can we guarantee that these data are fully representative of the undisturbed materials at the field site. We recommend that careful evaluation of these laboratory results be made for your particular application.

The testing utilized to generate the enclosed report employs methods that are standard for the industry. The results do not constitute a professional opinion by DBS&A, nor can the results affect any professional or expert opinions rendered with respect thereto by DBS&A. You have acknowledged that all the testing undertaken by us, and the report provided, constitutes mere test results using standardized methods, and cannot be used to disqualify DBS&A from rendering any professional or expert opinion, having waived any claim of conflict of interest by DBS&A.

We are pleased to provide this service to Golder Associates, Inc. and look forward to future laboratory testing on other projects. If you have any questions about the enclosed data, please do not hesitate to call.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC. SOIL TESTING & RESEARCH LABORATORY

John

Joleen Hines Laboratory Supervising Manager

Enclosure

Daniel B. Stephens & Associates, Inc. Soil Testing & Research Laboratory 4400 Alameda Blvd. NE, Suite C Albuquerque, NM 87113

Summaries

Daniel B. Stephens & Associates, Inc.

Summary of Tests Performed

Laboratory (In	iitial S	oil	S H	aturato Iydrau	ed lic				Mo	isture	ion ³			F	Particl	е	Spe	ecific	Air	Attorborg	Droctor
Sample Number	G	VM	VD	CH	FH	FW	НС	PP	FP	DPP	RH	EP	WHC	K _{unsat}	DS	WS	н	F	C	eability	Limits	Compaction
GC-LS-2 6-7'																		Х				
GC-LS-2 6-7' (1.41 g/cc)	х	х		х			х			х	х			х								
GC-1S-2 4-6'																		Х				
GC-1S-2 4-6' (1.40 g/cc)	х	х			х		х	х		х	х			х								
GC-1S-3 2-6.5'																		Х				
GC-1S-3 2-6.5' (1.40 g/cc)	Х	х		х			х			Х	Х			Х								
GC-1S-4 0-2.5'																		Х				
GC-1S-4 0-2.5' (1.40 g/cc)	Х	х		х			х			Х	Х			Х								
PG-9A-2 Bulk																		Х				
PG-9A-2 Bulk (1.41 g/cc)	х	х		х			х			Х	х			Х								
PG-9A-1 Bulk																		Х				
PG-9A-1 Bulk (1.41 g/cc)	Х	х		х			х			Х	Х			Х								
PG-9AX-1 Bulk																		Х				
PG-9AX-1 Bulk (1.41 g/cc)	Х	х		Х			х			Х	Х			Х								

¹ G = Gravimetric Moisture Content, VM = Volume Measurement Method, VD = Volume Displacement Method

² CH = Constant Head Rigid Wall, FH = Falling Head Rigid Wall, FW = Falling Head Rising Tail Flexible Wall

³ HC = Hanging Column, PP = Pressure Plate, FP = Filter Paper, DPP = Dew Point Potentiometer, RH = Relative Humidity Box,

EP = Effective Porosity, WHC = Water Holding Capacity, Kunsat = Calculated Unsaturated Hydraulic Conductivity

⁴ DS = Dry Sieve, WS = Wet Sieve, H = Hydrometer

⁵ F = Fine (<4.75mm), C = Coarse (>4.75mm)

Daniel B. Stephens & Associates, Inc.

Notes

Sample Receipt:

Seven samples, each as loose material in a mostly full 5-gallon bucket sealed with a lid, were hand-delivered on April 5, 2019. All samples were received in good order.

Sample Preparation and Testing Notes:

Each of the samples was subjected to specific gravity testing.

A portion of each of the samples was remolded into a testing ring to target a dry bulk density of 1.40 g/cm³ as specified by the client. Prior to remolding, particles larger than 2mm were removed from the bulk material and the moisture content of each sub-sample was adjusted in order to facilitate compaction. Each of these remolded sub-samples was subjected to initial properties analysis, saturated hydraulic conductivity testing, and the hanging column and pressure chamber portions of the moisture retention testing.

Separate sub-samples were obtained for the dewpoint potentiometer and relative humidity chamber portions of the moisture retention testing.

The actual dry bulk density achieved (in g/cm³) was added to each sub-sample ID.

Oversize correction calculations are presented if the fraction removed was greater than 5% of the bulk sample mass.

Volumetric water contents were adjusted for changes in volume, where applicable. Due to the irregularities formed on the sample surfaces during settling or swelling, volume measurements obtained after the initial reading should be considered estimates.

Daniel B. Stephens & Associates, Inc.

Summary of Sample Preparation/Volume Changes

	Target F	Remold	Actus	Domold	Data	Volur	ne Change	e Post	Volume Change Post Drying			
	Moisture Content	Dry Bulk Density	Moisture Content	Dry Bulk Density	% of Target Density	Dry Bulk Density	% Volume Change	% of Initial Density	Dry Bulk Density	% Volume Change	% of Initial Density	
Sample Number	(%, g/g)	(g/cm [°])	(%, g/g)	(g/cm [°])	(%)	(g/cm˘)	(%)	(%)	(g/cm°)	(%)	(%)	
GC-LS-2 6-7' (1.41 g/cc)		1.40	7.9	1.41	100.6%	1.41		100%	1.45	-3.0%	103%	
GC-1S-2 4-6' (1.40 g/cc)		1.40	12.1	1.40	100.3%	1.40		100%	1.40		100%	
GC-1S-3 2-6.5' (1.40 g/cc)		1.40	6.3	1.40	99.9%	1.40		100%	1.64	-14.6%	117%	
GC-1S-4 0-2.5' (1.40 g/cc)		1.40	6.9	1.40	100.1%	1.40		100%	1.53	-8.1%	109%	
PG-9A-2 Bulk (1.41 g/cc)		1.40	7.0	1.41	100.4%	1.41		100%	1.70	-17.2%	121%	
PG-9A-1 Bulk (1.41 g/cc)		1.40	9.3	1.41	100.5%	1.41		100%	1.45	-3.1%	103%	
PG-9AX-1 Bulk (1.41 g/cc)		1.40	8.2	1.41	100.6%	1.41		100%	1.46	-3.3%	103%	

¹Target Remold Parameters: Provided by the client: Remold to 1.40 g/cc at the as received moisture content.

²Volume Change Post Saturation: Volume change measurements were obtained after saturated hydraulic conductivity testing.

³Volume Change Post Drying Curve: Volume change measurements were obtained throughout hanging column and pressure plate testing. The 'Volume Change Post Drying Curve' values represent the final sample dimensions after the last pressure plate point.

Notes:

"+" indicates sample swelling, "-" indicates sample settling, and "---" indicates no volume change occurred.

	Moisture Content						
	As Re	As Received Remolded		olded	Dry Bulk	Wet Bulk	Calculated
Sample Number	Gravimetric (%, g/g)	Volumetric (%, cm ³ /cm ³)	Gravimetric (%, g/g)	Volumetric (%, cm ³ /cm ³)	Density (g/cm ³)	Density (g/cm ³)	Porosity (%)
GC-LS-2 6-7' (1.41 g/cc)	NA	NA	7.9	11.0	1.41	1.52	47.3
GC-1S-2 4-6' (1.40 g/cc)	NA	NA	12.1	16.9	1.40	1.57	48.1
GC-1S-3 2-6.5' (1.40 g/cc)	NA	NA	6.3	8.8	1.40	1.49	47.6
GC-1S-4 0-2.5' (1.40 g/cc)	NA	NA	6.9	9.7	1.40	1.50	47.6
PG-9A-2 Bulk (1.41 g/cc)	NA	NA	7.0	9.9	1.41	1.50	47.4
PG-9A-1 Bulk (1.41 g/cc)	NA	NA	9.3	13.1	1.41	1.54	48.1
PG-9AX-1 Bulk (1.41 g/cc)	NA	NA	8.2	11.6	1.41	1.52	47.5

Summary of Initial Moisture Content, Dry Bulk Density Wet Bulk Density and Calculated Porosity

NA = Not analyzed

Summary of Saturated Hydraulic Conductivity Tests

		Oversize Corrected		
	K _{sat}	K _{sat}	Method of	Analysis
Sample Number	(cm/sec)	(cm/sec)	Constant Head	Falling Head
GC-LS-2 6-7' (1.41 g/cc)	6.2E-03	2.1E-03	х	
GC-1S-2 4-6' (1.40 g/cc)	1.2E-05	7.6E-06		Х
GC-1S-3 2-6.5' (1.40 g/cc)	4.8E-03	3.1E-03	Х	
GC-1S-4 0-2.5' (1.40 g/cc)	4.1E-02	2.4E-02	Х	
PG-9A-2 Bulk (1.41 g/cc)	1.1E-02	5.3E-03	Х	
PG-9A-1 Bulk (1.41 g/cc)	5.2E-02	1.5E-02	Х	
PG-9AX-1 Bulk (1.41 g/cc)	3.3E-02	8.2E-03	Х	

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NR = Not requested

NA = Not applicable

	Pressure Head	Moisture Content
Sample Number	(-cm water)	(%, cm ³ /cm ³)
GC-LS-2 6-7' (1.41 g/cc)	0	45.4
	7	45.9 **
	10	45.7 **
	45	29.5 **
	220	21.0 **
	4487	12.2 #
	27841	9.4 **
	280955	5.7 **
	854732	4.9 ^{‡‡}
GC-1S-2 4-6' (1.40 g/cc)	0	49.4
	18	49.0
	54	40.5
	125	35.4
	337	31.8
	16113	17.1
	52724	13.3
	296150	9.0
	854732	7.5
GC-1S-3 2-6.5' (1.40 g/cc)	0	46.6
ζ, ζ, γ,	7	42.6 #
	10	41.4 **
	45	36.4 **
	220	25.5 ^{‡‡}
	2855	13.6 **
	24169	8.2 **
	255766	4.7 **
	854732	3.3 #

Summary of Moisture Characteristics of the Initial Drainage Curve

^{‡‡} Volume adjustments are applicable at this matric potential (see data sheet for this sample).

	Pressure Head	Moisture Content
Sample Number	(-cm water)	(%, cm ³ /cm ³)
GC-1S-4 0-2.5' (1.40 a/cc)	0	48.1
	7	46.1 **
	10	43.8 #
	45	24.7 #
	220	13.8 #
	3671	8.4 **
	44667	5.5 ^{‡‡}
	236390	3.9 **
	854732	3.4 **
	854732	3.4 #
PG-9A-2 Bulk (1.41 g/cc)	0	46.6
	7	42.8 #
	10	40.6 #
	45	34.6 #
	220	19.5 #
	5813	8.3 #
	40078	4.4 ^{‡‡}
	355706	2.5 #
	854732	1.9 **
	854732	1.9 #
PG-9A-1 Bulk (1.41 g/cc)	0	48.0
	7	47.4 ‡‡
	10	41.4 **
	45	24.0 **
	220	17.7 **
	8872	7.8 **
	63839	5.1 ^{‡‡}
	318484	3.2 **
	854732	2.8 **
	854732	2.8 #

Summary of Moisture Characteristics of the Initial Drainage Curve (Continued)

. . . .

^{‡‡} Volume adjustments are applicable at this matric potential (see data sheet for this sample).

Sample Number	Pressure Head (-cm water)	Moisture Content (%, cm ³ /cm ³)
PG-9AX-1 Bulk (1.41 g/cc)	0	47.2
/	7	46.1
	10	41.1 ^{‡‡}
	45	24.8 ^{‡‡}
	220	17.8 ^{‡‡}
	3263	10.3 ^{‡‡}
	47931	5.1 ^{‡‡}

228333

854732

854732

4.3 ^{‡‡} 2.9 ^{‡‡}

2.9 #

Summary of Moisture Characteristics of the Initial Drainage Curve (Continued)

^{‡‡} Volume adjustments are applicable at this matric potential (see data sheet for this sample).

Summary of Calculated Unsaturated Hydraulic Properties

					Oversize	Corrected	_
	α	Ν	θ_{r}	θ_{s}	θ_{r}	θ_{s}	-
Sample Number	(cm⁻¹)	(dimensionless)	(% vol)	(% vol)	(% vol)	(% vol)	_
GC-LS-2 6-7' (1.41 g/cc)	0.0623	1.3862	5.69	47.63	2.77	23.55	
GC-1S-2 4-6' (1.40 g/cc)	0.0430	1.1756	0.00	50.46	0.00	39.22	
GC-1S-3 2-6.5' (1.40 g/cc)	0.0470	1.2422	0.00	45.38	0.00	35.41	
GC-1S-4 0-2.5' (1.40 g/cc)	0.0651	1.6073	4.40	49.23	3.12	35.76	
PG-9A-2 Bulk (1.41 g/cc)	0.0495	1.3279	0.62	45.60	0.37	29.32	
PG-9A-1 Bulk (1.41 g/cc)	0.0923	1.4348	3.41	49.67	1.43	21.16	
PG-9AX-1 Bulk (1.41 g/cc)	0.0976	1.3909	3.28	48.72	1.25	18.87	

^{--- =} Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NR = Not requested

NA = Not applicable

Summary of Specific Gravity Tests

	<4.	75 mm Frac	ction	>4	.75 mm Frac	ction	Bulk Sample
	Specific	Particle	% of Bulk	Specific	Particle	% of Bulk	Specific
Sample Number	Gravity	Size	Sample	Gravity	Size	Sample	Gravity ¹
GC-LS-2 6-7	2.67	<4.75 mm	34.0%	NR	>4.75 mm	66.0%	2.67
GC-1S-2 4-6	2.71	<4.75 mm	64.4%	NR	>4.75 mm	35.6%	2.71
GC-1S-3 2-6.5	2.67	<4.75 mm	65.0%	NR	>4.75 mm	35.0%	2.67
GC-1S-4 0-2.5	2.68	<4.75 mm	58.2%	NR	>4.75 mm	41.8%	2.68
PG-9A-2 Bulk	2.68	<4.75 mm	48.6%	NR	>4.75 mm	51.4%	2.68
PG-9A-1 Bulk	2.71	<4.75 mm	27.8%	NR	>4.75 mm	72.2%	2.71
PG-9AX-1 Bulk	2.69	<4.75 mm	24.9%	NR	>4.75 mm	75.1%	2.69

¹Based on the <4.75mm material

NA = Not Applicable since specificed fraction is less than 5% of composite sample mass

NR = Test not Requested

Initial Properties

	Moisture Content						
	As Re	As Received Remolded		olded	Dry Bulk	Wet Bulk	Calculated
Sample Number	Gravimetric (%, g/g)	Volumetric (%, cm ³ /cm ³)	Gravimetric (%, g/g)	Volumetric (%, cm ³ /cm ³)	Density (g/cm ³)	Density (g/cm ³)	Porosity (%)
GC-LS-2 6-7' (1.41 g/cc)	NA	NA	7.9	11.0	1.41	1.52	47.3
GC-1S-2 4-6' (1.40 g/cc)	NA	NA	12.1	16.9	1.40	1.57	48.1
GC-1S-3 2-6.5' (1.40 g/cc)	NA	NA	6.3	8.8	1.40	1.49	47.6
GC-1S-4 0-2.5' (1.40 g/cc)	NA	NA	6.9	9.7	1.40	1.50	47.6
PG-9A-2 Bulk (1.41 g/cc)	NA	NA	7.0	9.9	1.41	1.50	47.4
PG-9A-1 Bulk (1.41 g/cc)	NA	NA	9.3	13.1	1.41	1.54	48.1
PG-9AX-1 Bulk (1.41 g/cc)	NA	NA	8.2	11.6	1.41	1.52	47.5

Summary of Initial Moisture Content, Dry Bulk Density Wet Bulk Density and Calculated Porosity

NA = Not analyzed

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Name: Job Number: Sample Number: Project Name: Depth:	Golder Associates, Inc. DB19.1112.00 GC-LS-2 6-7' (1.41 g/cc) CCP-BMI 181-06417 6'-7'		
	As Received	Remolded	
Test Date:	NA	14-Apr-19	
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g): Dry weight of sample (g): Sample volume (cm ³): Measured particle density (g/cm ³):		473.28 136.97 0.00 0.00 311.83 221.58 2.67	
Gravimetric Moisture Content (% d/a):		7 9	
Volumetric Moisture Content (% vol):		11.0	
Dry bulk density (g/cm ³):		1.41	
Wet bulk density (g/cm ³):		1.52	
Calculated Porosity (% vol):		47.3	
Percent Saturation:		23.4	
Laboratory analysis by: Data entered by: Checked by:	C C J	9. O'Dowd 9. O'Dowd . Hines	

Comments:

* Weight including tares

NA = Not analyzed

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Name: Job Number: Sample Number: Project Name: Depth:	Golder Associates, Inc. DB19.1112.00 GC-1S-2 4-6' (1.40 g/cc) CCP-BMI 181-06417 4'-6'		
	As Received	Remolded	
Test Date:	NA	14-Apr-19	
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g): Dry weight of sample (g): Sample volume (cm ³): Measured particle density (g/cm ³):		482.40 136.14 0.00 0.00 309.01 220.14 2.71	
Gravimetric Moisture Content (% g/g): Volumetric Moisture Content (% vol): Dry bulk density (g/cm ³): Wet bulk density (g/cm ³): Calculated Porosity (% vol): Percent Saturation:		12.1 16.9 1.40 1.57 48.1 35.2	
Laboratory analysis by: Data entered by: Checked by:	D D J.	. O'Dowd . O'Dowd Hines	

Comments:

* Weight including tares

NA = Not analyzed

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Name: Job Number: Sample Number: Project Name: Depth:	Golder Associates, Inc. DB19.1112.00 GC-1S-3 2-6.5' (1.40 g/cc) CCP-BMI 181-06417 2'-6.5'		
	As Received	<u>Remolded</u>	
Test Date:	NA	14-Apr-19	
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g): Dry weight of sample (g): Sample volume (cm ³): Measured particle density (g/cm ³):		462.90 136.40 0.00 0.00 307.23 219.83 2.67	
Gravimetric Moisture Content (% g/g):		6.3	
Volumetric Moisture Content (% vol):		8.8	
Dry bulk density (g/cm ³):		1.40	
Wet bulk density (g/cm ³):		1.49	
Calculated Porosity (% vol):		47.6	
Percent Saturation:		18.4	
Laboratory analysis by: Data entered by: Checked by:	C C J). O'Dowd). O'Dowd . Hines	

Comments:

* Weight including tares

NA = Not analyzed

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Name: Job Number: Sample Number: Project Name: Depth:	Golder Associates, Inc. DB19.1112.00 GC-1S-4 0-2.5' (1.40 g/cc) CCP-BMI 181-06417 0'-2.5'		
	As Received	<u>Remolded</u>	
Test Date:	NA	14-Apr-19	
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g): Dry weight of sample (g): Sample volume (cm ³): Measured particle density (g/cm ³):		469.20 137.39 0.00 0.00 310.43 221.54 2.68	
Gravimetric Moisture Content (% g/g):		6.9	
Volumetric Moisture Content (% vol):		9.7	
Dry bulk density (g/cm ³):		1.40	
Wet bulk density (g/cm ³):		1.50	
Calculated Porosity (% vol):		47.6	
Percent Saturation:		20.3	
Laboratory analysis by: Data entered by: Checked by:		D. O'Dowd D. O'Dowd J. Hines	

Comments:

* Weight including tares

NA = Not analyzed

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Name: Job Number: Sample Number: Project Name: Depth:	Golder Associates, Inc. DB19.1112.00 PG-9A-2 Bulk (1.41 g/cc) CCP-BMI 181-06417 NA		
Test Date:	<u>As Received</u> NA	<u>Remolded</u> 14-Apr-19	
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g): Dry weight of sample (g): Sample volume (cm ³): Measured particle density (g/cm ³):		468.80 137.59 0.00 0.00 309.42 220.15 2.67	
Gravimetric Moisture Content (% g/g): Volumetric Moisture Content (% vol): Dry bulk density (g/cm ³): Wet bulk density (g/cm ³): Calculated Porosity (% vol): Percent Saturation: Laboratory analysis by: Data entered by: Checked by:		7.0 9.9 1.41 1.50 47.4 20.9 D. O'Dowd D. O'Dowd J. Hines	

Comments:

* Weight including tares

NA = Not analyzed

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Name: Job Number: Sample Number: Project Name: Depth:	Golder Associates, Inc. DB19.1112.00 PG-9A-1 Bulk (1.41 g/cc) CCP-BMI 181-06417 NA		
Test Date:	<u>As Received</u> NA	<u>Remolded</u> 14-Apr-19	
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g): Dry weight of sample (g): Sample volume (cm ³): Measured particle density (g/cm ³):		477.80 137.88 0.00 0.00 310.94 221.16 2.71	
Gravimetric Moisture Content (% g/g): Volumetric Moisture Content (% vol): Dry bulk density (g/cm ³): Wet bulk density (g/cm ³): Calculated Porosity (% vol): Percent Saturation: Laboratory analysis by: Data entered by: Checked by:		9.3 13.1 1.41 1.54 48.1 27.2 D. O'Dowd D. O'Dowd J. Hines	

Comments:

* Weight including tares

NA = Not analyzed

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Name: Job Number: Sample Number: Project Name: Depth:	Golder Associates, Inc. DB19.1112.00 PG-9AX-1 Bulk (1.41 g/cc) CCP-BMI 181-06417 NA		
	As Received	<u>Remolded</u>	
Test Date:	NA	14-Apr-19	
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g):		471.96 137.07 0.00 0.00	
Dry weight of sample (g): Sample volume (cm³): Measured particle density (g/cm³):		309.47 219.83 2.68	
Gravimetric Moisture Content (% g/g):		8.2	
Volumetric Moisture Content (% vol):		11.6	
Dry bulk density (g/cm ³):		1.41	
Wet bulk density (g/cm ³):		1.52	
Calculated Porosity (% vol):		47.5	
Percent Saturation:		24.3	
Laboratory analysis by: Data entered by: Checked by:		D. O'Dowd D. O'Dowd J. Hines	

Comments:

* Weight including tares

NA = Not analyzed

Saturated Hydraulic Conductivity

Summary of Saturated Hydraulic Conductivity Tests

	K _{sat}	Oversize Corrected K _{sat}	Method of	Analysis
Sample Number	(cm/sec)	(cm/sec)	Constant Head	Falling Head
GC-LS-2 6-7' (1.41 g/cc)	6.2E-03	2.1E-03	х	
GC-1S-2 4-6' (1.40 g/cc)	1.2E-05	7.6E-06		Х
GC-1S-3 2-6.5' (1.40 g/cc)	4.8E-03	3.1E-03	Х	
GC-1S-4 0-2.5' (1.40 g/cc)	4.1E-02	2.4E-02	Х	
PG-9A-2 Bulk (1.41 g/cc)	1.1E-02	5.3E-03	Х	
PG-9A-1 Bulk (1.41 g/cc)	5.2E-02	1.5E-02	х	
PG-9AX-1 Bulk (1.41 g/cc)	3.3E-02	8.2E-03	х	

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NR = Not requested

NA = Not applicable

Saturated Hydraulic Conductivity Constant Head Method

Job Name: Golder Associates, Inc. Job Number: DB19.1112.00 Sample Number: GC-LS-2 6-7' (1.41 g/cc) Project Name: CCP-BMI 181-06417 Depth: 6'-7' Type of water used: TAP

Collection vessel tare (g): 10.99

Sample length (cm): 7.57

Sample diameter (cm): 6.11

Sample x-sectional area (cm²): 29.28

		Temp	Head	Q + Tare	Q	Elapsed	Ksat	Ksat @ 20°C
Date	Time	(°C)	(cm)	(g)	(cmš)	time (sec)	(cm/sec)	(cm/sec)
Test # 1: 17-Apr-19 17-Apr-19	16:24:00 16:26:00	21.5	7.2	32.89	21.9	120	6.6E-03	6.3E-03
Test # 2: 17-Apr-19 17-Apr-19	16:38:00 16:40:00	21.5	3.5	21.42	10.4	120	6.4E-03	6.2E-03
Test # 3: 17-Apr-19 17-Apr-19	17:09:00 17:11:00	21.5	1.9	16.54	5.6	120	6.3E-03	6.1E-03

Average Ksat (cm/sec): 6.2E-03

Oversize Corrected Ksat (cm/sec): 2.1E-03

Comments:

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Oversize Correction Data Sheet

Job Name:	Golder Associates, Inc.
Job Number:	DB19.1112.00
Sample Number:	GC-LS-2 6-7' (1.41 g/cc)
Project Name:	CCP-BMI 181-06417
Depth:	6'-7'

Split (3/4", 3/8", #4): #10 Calculated Porosity of Fines (% vol): 47.3

	Coarse Fraction*	Fines Fraction	<u>Composite</u>
Subsample Mass (g):	14554.51	7506.58	22061.09
Bulk Density (g/cm ³):	2.67	1.41	2.04
Volume of Solids (cm ³):	5454.51	2813.20	8267.71
Volume of Voids (cm ³):	0.00	2520.78	2520.78
<i>Total Volume</i> (cm ³):	5454.51	5333.98	10788.49
Volumetric Fraction (%):	50.56	49.44	100.00
Mass Fraction (%):	65.97	34.03	100.00
Ksat (cm/sec):	NM	6.2E-03	2.1E-03

* = Porosity and moisture content of coarse fraction assumed to be zero.

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NM = Not measured

Saturated Hydraulic Conductivity Falling Head Method

Job Name: Golder Associates, Inc. Job Number: DB19.1112.00 Sample Number: GC-1S-2 4-6' (1.40 g/cc) Project Name: CCP-BMI 181-06417 Depth: 4'-6' Type of water used: TAP

Backpressure (psi): 0.0

Offset (cm): 3.8

Sample length (cm): 7.56

Sample x-sectional area (cm²): 29.14

Reservoir x-sectional area (cm²): 0.70

Date	Time	Temp (°C)	Reservoir head (cm)	Corrected head (cm)	Elapsed time (sec)	Ksat (cm/sec)	Ksat @ 20°C (cm/sec)
Test # 1:							
19-Apr-19	14:51:30	21.4	14.4	10.6	2671	1.3E-05	1.2E-05
19-Apr-19	15:36:01	21.4	12.6	8.8			
Test # 2:							
19-Apr-19	15:36:01	21.4	12.6	8.8	1985	1.2E-05	1.2E-05
19-Apr-19	16:09:06	21.4	11.5	7.7			
Test # 3:							
19-Apr-19	16:09:06	21.4	11.5	7.7	2589	1.2E-05	1.2E-05
19-Apr-19	16:52:15	21.4	10.3	6.5			

Average Ksat (cm/sec): 1.2E-05

Oversize Corrected Ksat (cm/sec): 7.6E-06

Comments:

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Laboratory analysis by: A. Bland Data entered by: A. Bland Checked by: J. Hines

Oversize Correction Data Sheet

Job Name:	Golder Associates, Inc.
Job Number:	DB19.1112.00
Sample Number:	GC-1S-2 4-6' (1.40 g/cc)
Project Name:	CCP-BMI 181-06417
Depth:	4'-6'

Split (3/4", 3/8", #4): #10 Calculated Porosity of Fines (% vol): 48.1

	Coarse Fraction*	Fines Fraction	<u>Composite</u>
Subsample Mass (g):	6291.16	11388.65	17679.81
Bulk Density (g/cm ³):	2.71	1.40	1.69
Volume of Solids (cm ³):	2324.80	4208.50	6533.31
Volume of Voids (cm ³):	0.00	3904.87	3904.87
<i>Total Volume</i> (cm ³):	2324.80	8113.37	10438.17
Volumetric Fraction (%):	22.27	77.73	100.00
Mass Fraction (%):	35.58	64.42	100.00
Ksat (cm/sec):	NM	1.2E-05	7.6E-06

* = Porosity and moisture content of coarse fraction assumed to be zero.

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NM = Not measured

Laboratory analysis by: A. Bland Data entered by: A. Bland Checked by: J. Hines

Saturated Hydraulic Conductivity Constant Head Method

Job Name: Golder Associates, Inc. Job Number: DB19.1112.00 Sample Number: GC-1S-3 2-6.5' (1.40 g/cc) Project Name: CCP-BMI 181-06417 Depth: 2'-6.5' Type of water used: TAP

Collection vessel tare (g): 11.02

Sample length (cm): 7.53

Sample diameter (cm): 6.10

Sample x-sectional area (cm²): 29.21

		Temp	Head	Q + Tare	Q	Elapsed	Ksat	Ksat @ 20°C
Date	Time	(°C)	(cm)	(g)	(cm ³)	time (sec)	(cm/sec)	(cm/sec)
Test # 1:								
17-Apr-19	16:29:30	21.5	4.25	21.53	10.5	120	5.3E-03	5.1E-03
17-Apr-19	16:31:30							
Test # 2: 17-Apr-19	16:44:00	21.5	3.05	18.02	7.0	120	4.9E-03	4.8E-03
17-Apr-19	16:46:00							
Test # 3: 17-Apr-19 17-Apr-19	17:15:00 17:17:00	21.5	2.1	15.65	4.6	120	4.7E-03	4.6E-03
	17.17.00							

Average Ksat (cm/sec): 4.8E-03

Oversize Corrected Ksat (cm/sec): 3.1E-03

Comments:

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Oversize Correction Data Sheet

Job Name:	Golder Associates, Inc.
Job Number:	DB19.1112.00
Sample Number:	GC-1S-3 2-6.5' (1.40 g/cc)
Project Name:	CCP-BMI 181-06417
Depth:	2'-6.5'

Split (3/4", 3/8", #4): #10 Calculated Porosity of Fines (% vol): 47.6

	Coarse Fraction*	Fines Fraction	<u>Composite</u>
Subsample Mass (g):	7929.97	14745.71	22675.68
Bulk Density (g/cm ³):	2.67	1.40	1.68
Volume of Solids (cm ³):	2972.52	5527.37	8499.89
Volume of Voids (cm ³):	0.00	5023.51	5023.51
<i>Total Volume</i> (cm ³):	2972.52	10550.88	13523.40
Volumetric Fraction (%):	21.98	78.02	100.00
Mass Fraction (%):	34.97	65.03	100.00
Ksat (cm/sec):	NM	4.8E-03	3.1E-03

* = Porosity and moisture content of coarse fraction assumed to be zero.

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NM = Not measured

Saturated Hydraulic Conductivity Constant Head Method

Job Name: Golder Associates, Inc. Job Number: DB19.1112.00 Sample Number: GC-1S-4 0-2.5' (1.40 g/cc) Project Name: CCP-BMI 181-06417 Depth: 0'-2.5' Type of water used: TAP

Collection vessel tare (g): 29.46

Sample length (cm): 7.57

Sample diameter (cm): 6.10

Sample x-sectional area (cm²): 29.25

		Temp	Head	Q + Tare	Q	Elapsed	Ksat	Ksat @ 20°C
Date	Time	(°C)	(cm)	(g)	(cm ³)	time (sec)	(cm/sec)	(cm/sec)
Test # 1: 17-Apr-19 17-Apr-19	16:27:00 16:28:00	21.5	3.1	61.69	32.2	60	4.5E-02	4.3E-02
Test # 2: 17-Apr-19 17-Apr-19	16:41:00 16:43:00	21.5	1.8	63.67	34.2	120	4.1E-02	4.0E-02
Test # 3: 17-Apr-19 17-Apr-19	17:12:00 17:14:00	21.5	1.05	48.98	19.5	120	4.0E-02	3.9E-02

Average Ksat (cm/sec): 4.1E-02

Oversize Corrected Ksat (cm/sec): 2.4E-02

Comments:

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Oversize Correction Data Sheet

Job Name:	Golder Associates, Inc.
Job Number:	DB19.1112.00
Sample Number:	GC-1S-4 0-2.5' (1.40 g/cc)
Project Name:	CCP-BMI 181-06417
Depth:	0'-2.5'

Split (3/4", 3/8", #4): #10 Calculated Porosity of Fines (% vol): 47.6

	Coarse Fraction*	Fines Fraction	<u>Composite</u>
Subsample Mass (g):	10756.69	14967.81	25724.50
Bulk Density (g/cm ³):	2.68	1.40	1.75
Volume of Solids (cm ³):	4020.90	5595.04	9615.94
Volume of Voids (cm ³):	0.00	5086.63	5086.63
<i>Total Volume</i> (cm ³):	4020.90	10681.67	14702.57
Volumetric Fraction (%):	27.35	72.65	100.00
Mass Fraction (%):	41.81	58.19	100.00
Ksat (cm/sec):	NM	4.1E-02	2.4E-02

* = Porosity and moisture content of coarse fraction assumed to be zero.

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NM = Not measured

Saturated Hydraulic Conductivity Constant Head Method

Job Name: Golder Associates, Inc. Job Number: DB19.1112.00 Sample Number: PG-9A-2 Bulk (1.41 g/cc) Project Name: CCP-BMI 181-06417 Depth: NA Type of water used: TAP

Collection vessel tare (g): 10.96

Sample length (cm): 7.60

Sample diameter (cm): 6.08

Sample x-sectional area (cm²): 28.99

		Temp	Head	Q + Tare	Q	Elapsed	Ksat	Ksat @ 20°C
Date	Time	(°C)	(cm)	(g)	(cm ³)	time (sec)	(cm/sec)	(cm/sec)
Test # 1: 17-Apr-19 17-Apr-19	16:29:00 16:31:00	21.5	2.5	23.45	12.5	120	1.1E-02	1.1E-02
Test # 2: 17-Apr-19 17-Apr-19	16:43:30 16:45:30	21.5	1	16.10	5.1	120	1.1E-02	1.1E-02
Test # 3: 17-Apr-19 17-Apr-19	17:14:30 17:16:30	21.5	0.7	14.62	3.7	120	1.1E-02	1.1E-02

Average Ksat (cm/sec): 1.1E-02

Oversize Corrected Ksat (cm/sec): 5.3E-03

Comments:

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Oversize Correction Data Sheet

Job Name:	Golder Associates, Inc.
Job Number:	DB19.1112.00
Sample Number:	PG-9A-2 Bulk (1.41 g/cc)
Project Name:	CCP-BMI 181-06417
Depth:	NA

Split (3/4", 3/8", #4):	#10
Calculated Porosity of Fines (% vol):	47.4

	Coarse Fraction*	Fines Fraction	<u>Composite</u>
Subsample Mass (g):	12678.51	12004.12	24682.63
Bulk Density (g/cm ³):	2.67	1.41	1.86
Volume of Solids (cm ³):	4742.58	4490.31	9232.89
<i>Volume of Voids</i> (cm ³):	0.00	4050.36	4050.36
<i>Total Volume</i> (cm ³):	4742.58	8540.67	13283.25
Volumetric Fraction (%):	35.70	64.30	100.00
Mass Fraction (%):	51.37	48.63	100.00
Ksat (cm/sec):	NM	1.1E-02	5.3E-03

* = Porosity and moisture content of coarse fraction assumed to be zero.

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NM = Not measured

Saturated Hydraulic Conductivity Constant Head Method

Job Name: Golder Associates, Inc. Job Number: DB19.1112.00 Sample Number: PG-9A-1 Bulk (1.41 g/cc) Project Name: CCP-BMI 181-06417 Depth: NA Type of water used: TAP

Collection vessel tare (g): 51.06

Sample length (cm): 7.58

Sample diameter (cm): 6.10

Sample x-sectional area (cm²): 29.18

		Temp	Head	Q + Tare	Q	Elapsed	Ksat	Ksat @ 20°C
Date	Time	(°C)	(cm)	(g)	(cm ³)	time (sec)	(cm/sec)	(cm/sec)
Test # 1: 17-Apr-19 17-Apr-19	16:23:30 16:25:30	21.5	2.85	118.26	67.2	120	5.1E-02	4.9E-02
Test # 2: 17-Apr-19 17-Apr-19	16:37:30 16:39:30	21.5	1.9	98.86	47.8	120	5.4E-02	5.3E-02
Test # 3: 17-Apr-19 17-Apr-19	17:08:30 17:10:30	21.5	0.7	69.32	18.3	120	5.6E-02	5.5E-02

Average Ksat (cm/sec): 5.2E-02

Oversize Corrected Ksat (cm/sec): 1.5E-02

Comments:

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Oversize Correction Data Sheet

Job Name:	Golder Associates, Inc.
Job Number:	DB19.1112.00
Sample Number:	PG-9A-1 Bulk (1.41 g/cc)
Project Name:	CCP-BMI 181-06417
Depth:	NA

Split (3/4", 3/8", #4):	#10
Calculated Porosity of Fines (% vol):	48.1

	Coarse Fraction*	Fines Fraction	<u>Composite</u>
Subsample Mass (g):	18031.67	6946.72	24978.39
Bulk Density (g/cm ³):	2.71	1.41	2.15
Volume of Solids (cm ³):	6657.48	2564.80	9222.29
Volume of Voids (cm ³):	0.00	2376.14	2376.14
<i>Total Volume</i> (cm ³):	6657.48	4940.94	11598.43
Volumetric Fraction (%):	57.40	42.60	100.00
Mass Fraction (%):	72.19	27.81	100.00
Ksat (cm/sec):	NM	5.2E-02	1.5E-02

* = Porosity and moisture content of coarse fraction assumed to be zero.

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NM = Not measured

Saturated Hydraulic Conductivity Constant Head Method

Job Name: Golder Associates, Inc. Job Number: DB19.1112.00 Sample Number: PG-9AX-1 Bulk (1.41 g/cc) Project Name: CCP-BMI 181-06417 Depth: NA Type of water used: TAP

Collection vessel tare (g): 29.08

Sample length (cm): 7.57

Sample diameter (cm): 6.08

Sample x-sectional area (cm²): 29.04

		Temp	Head	Q + Tare	Q	Elapsed	Ksat	Ksat @ 20°C
Date	Time	(°C)	(cm)	(g)	(cm ³)	time (sec)	(cm/sec)	(cm/sec)
Test # 1: 17-Apr-19 17-Apr-19	15:58:30 15:59:30	21.5	4	62.83	33.8	60	3.7E-02	3.5E-02
Test # 2: 17-Apr-19 17-Apr-19	16:40:30 16:42:30	21.5	2.6	68.53	39.5	120	3.3E-02	3.2E-02
Test # 3: 17-Apr-19 17-Apr-19	17:11:30 17:13:30	21.5	1.6	53.01	23.9	120	3.2E-02	3.1E-02

Average Ksat (cm/sec): 3.3E-02

Oversize Corrected Ksat (cm/sec): 8.2E-03

Comments:

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Oversize Correction Data Sheet

Job Name:	Golder Associates, Inc.
Job Number:	DB19.1112.00
Sample Number:	PG-9AX-1 Bulk (1.41 g/cc)
Project Name:	CCP-BMI 181-06417
Depth:	NA

Split (3/4", 3/8", #4):	#10
Calculated Porosity of Fines (% vol):	47.5

	Coarse Fraction*	Fines Fraction	<u>Composite</u>
Subsample Mass (g):	17580.25	5830.02	23410.27
Bulk Density (g/cm ³):	2.68	1.41	2.19
Volume of Solids (cm ³):	6551.37	2172.59	8723.95
<i>Volume of Voids</i> (cm ³):	0.00	1968.65	1968.65
<i>Total Volume</i> (cm ³):	6551.37	4141.24	10692.60
Volumetric Fraction (%):	61.27	38.73	100.00
Mass Fraction (%):	75.10	24.90	100.00
Ksat (cm/sec):	NM	3.3E-02	8.2E-03

* = Porosity and moisture content of coarse fraction assumed to be zero.

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NM = Not measured

Moisture Retention Characteristics

	Pressure Head	Moisture Content
Sample Number	(-cm water)	(%, cm ³ /cm ³)
GC-LS-2 6-7' (1.41 g/cc)	0	45.4
	7	45.9 **
	10	45.7 **
	45	29.5 **
	220	21.0 **
	4487	12.2 #
	27841	9.4 **
	280955	5.7 ^{‡‡}
	854732	4.9 ^{‡‡}
GC-1S-2 4-6' (1.40 g/cc)	0	49.4
(3)	18	49.0
	54	40.5
	125	35.4
	337	31.8
	16113	17.1
	52724	13.3
	296150	9.0
	854732	7.5
GC-1S-3 2-6.5' (1.40 g/cc)	0	46.6
	7	42.6 **
	10	41.4 **
	45	36.4 **
	220	25.5 ^{‡‡}
	2855	13.6 #
	24169	8.2 **
	255766	4.7 **
	854732	3.3 ^{‡‡}

Summary of Moisture Characteristics of the Initial Drainage Curve

^{‡‡} Volume adjustments are applicable at this matric potential (see data sheet for this sample).

	Pressure Head	Moisture Content
Sample Number	(-cm water)	(%, cm ³ /cm ³)
GC-1S-4 0-2.5' (1.40 a/cc)	0	48.1
	7	46.1 **
	10	43.8 #
	45	24.7 #
	220	13.8 #
	3671	8.4 **
	44667	5.5 ^{‡‡}
	236390	3.9 **
	854732	3.4 **
	854732	3.4 **
PG-9A-2 Bulk (1.41 g/cc)	0	46.6
	7	42.8 #
	10	40.6 #
	45	34.6 #
	220	19.5 #
	5813	8.3 #
	40078	4.4 ^{‡‡}
	355706	2.5 #
	854732	1.9 **
	854732	1.9 #
PG-9A-1 Bulk (1.41 g/cc)	0	48.0
	7	47.4 ‡‡
	10	41.4 **
	45	24.0 **
	220	17.7 **
	8872	7.8 **
	63839	5.1 ^{‡‡}
	318484	3.2 **
	854732	2.8 **
	854732	2.8 #

Summary of Moisture Characteristics of the Initial Drainage Curve (Continued)

. . . .

^{‡‡} Volume adjustments are applicable at this matric potential (see data sheet for this sample).

.	Pressure Head	Moisture Content
Sample Number	(-cm water)	(%, cm³/cm³)
PG-9AX-1 Bulk (1.41 g/cc)	0	47.2
	7	46.1
	10	41.1 ^{‡‡}
	45	24.8 ^{‡‡}
	220	17.8 #

3263

47931

228333

854732

854732

10.3 #

5.1 ^{‡‡}

4.3 ^{‡‡} 2.9 ^{‡‡}

2.9 🖽

Summary of Moisture Characteristics of the Initial Drainage Curve (Continued)

^{‡‡} Volume adjustments are applicable at this matric potential (see data sheet for this sample).
Summary of Calculated Unsaturated Hydraulic Properties

					Oversize	Corrected	_
	α	Ν	θ_{r}	θ_{s}	θ_{r}	θ_{s}	-
Sample Number	(cm⁻¹)	(dimensionless)	(% vol)	(% vol)	(% vol)	(% vol)	_
GC-LS-2 6-7' (1.41 g/cc)	0.0623	1.3862	5.69	47.63	2.77	23.55	
GC-1S-2 4-6' (1.40 g/cc)	0.0430	1.1756	0.00	50.46	0.00	39.22	
GC-1S-3 2-6.5' (1.40 g/cc)	0.0470	1.2422	0.00	45.38	0.00	35.41	
GC-1S-4 0-2.5' (1.40 g/cc)	0.0651	1.6073	4.40	49.23	3.12	35.76	
PG-9A-2 Bulk (1.41 g/cc)	0.0495	1.3279	0.62	45.60	0.37	29.32	
PG-9A-1 Bulk (1.41 g/cc)	0.0923	1.4348	3.41	49.67	1.43	21.16	
PG-9AX-1 Bulk (1.41 g/cc)	0.0976	1.3909	3.28	48.72	1.25	18.87	

^{--- =} Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NR = Not requested

NA = Not applicable

Moisture Retention Data

Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name: Golder Associates, Inc. Job Number: DB19.1112.00 Sample Number: GC-LS-2 6-7' (1.41 g/cc) Project Name: CCP-BMI 181-06417 Depth: 6'-7' Dry wt. of sample (g): 311.83 Tare wt., ring (g): 136.97 Tare wt., screen & clamp (g): 27.58 Initial sample volume (cm³): 221.58 Initial dry bulk density (g/cm³): 1.41 Measured particle density (g/cm³): 2.67 Initial calculated total porosity (%): 47.26

				Matric	Moisture	
			Weight*	Potential	Content [†]	
_	Date	Time	(g)	(-cm water)	(% vol)	_
Hanging column:	18-Apr-19	8:00	577.00	0	45.41	_
00	25-Apr-19	13:50	577.35	7.0	45.94	‡ ‡
	2-May-19	7:45	574.57	10.0	45.68	‡ ‡
	9-May-19	8:30	539.77	45.0	29.49	‡ ‡
	16-May-19	10:45	521.42	220.0	20.95	‡ ‡

Volume Adjusted Data¹

	Matria	Adjusted	% Volumo	Adjusted	Adjusted	
	watric	Aujusteu		Aujusteu	Calculated	
	Potential	Volume	Change ²	Density	Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
Hanging column:	0.0					
	7.0	219.76	-0.82%	1.42	46.82	
	10.0	214.96	-2.99%	1.45	45.64	
	45.0	214.96	-2.99%	1.45	45.64	
	220.0	214.96	-2.99%	1.45	45.64	

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Assumed density of water is 1.0 g/cm³

^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Laboratory analysis by: D. O'Dowd/A. Bland Data entered by: C. Krous Checked by: J. Hines

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: GC-LS-2 6-7' (1.41 g/cc)

Initial sample bulk density (g/cm³): 1.41 Fraction of test sample used (<2.00mm fraction) (%): 100.00

Dry weight* of dew point potentiometer sample (g): 172.35

Tare weight, jar (g): 114.84

			Weight*	Water Potential	Moisture Content [†]	
	Date	Time	(g)	(-cm water)	(% vol)	
Dew point potentiometer:	23-May-19	10:45	177.20	4487	12.24	‡ ‡
	20-May-19	10:39	176.07	27841	9.39	‡ ‡
-	14-May-19	11:46	174.62	280955	5.73	_ ^{‡‡}

	Volume Adjusted Data ¹				
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Dew point potentiometer:	4487	214.96	-2.99%	1.45	45.64
	27841	214.96	-2.99%	1.45	45.64
	280955	214.96	-2.99%	1.45	45.64

Dry weight* of relative humidity box sample (g): 73.22 Tare weight (g): 41.74

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)	
Relative humidity box:	16-May-19	17:00	74.28	854732	4.89	
			Volume Adjust	<u>djusted Data ¹</u>		
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	_
Relative humidity box:	854732	214.96	-2.99%	1.45	45.64	-

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Laboratory analysis by: L. Thurgood/C. Krous Data entered by: C. Krous Checked by: J. Hines

Water Retention Data Points

Predicted Calibration Curve and Data Points

Plot of Relative Hydraulic Conductivity vs Moisture Content

Plot of Hydraulic Conductivity vs Moisture Content

Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Oversize Correction Data Sheet

Job Name:	Golder Associates, Inc.
Job Number:	DB19.1112.00
Sample Number:	GC-LS-2 6-7' (1.41 g/cc)
Project Name:	CCP-BMI 181-06417
Depth:	6'-7'

Split (3/4", 3/8", #4): #10

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	14554.51	7506.58	22061.09
Mass Fraction (%):	65.97	34.03	100.00
Initial Sample θ_i			
Bulk Density (g/cm ³):	2.67	1.41	2.04
Calculated Porosity (% vol):	0.00	47.26	23.37
Volume of Solids (cm ³):	5454.51	2813.20	8267.71
Volume of Voids (cm ³):	0.00	2520.78	2520.78
<i>Total Volume</i> (cm ³):	5454.51	5333.98	10788.49
Volumetric Fraction (%):	50.56	49.44	100.00
Initial Moisture Content (% vol):	0.00	11.05	5.46
Saturated Sample θ_s			
Bulk Density (g/cm ³):	2.67	1.41	2.04
Calculated Porosity (% vol):	0.00	47.26	23.37
<i>Volume of Solids</i> (cm ³):	5454.51	2813.20	8267.71
Volume of Voids (cm ³):	0.00	2520.78	2520.78
<i>Total Volume</i> (cm ³):	5454.51	5333.98	10788.49
Volumetric Fraction (%):	50.56	49.44	100.00
Saturated Moisture Content (% vol):	0.00	47.63	23.55
Residual Sample θ_r			
Bulk Density (g/cm ³):	2.67	1.45	2.08
Calculated Porosity (% vol):	0.00	45.64	22.22
Volume of Solids (cm ³):	5454.51	2813.20	8267.71
<i>Volume of Voids</i> (cm ³):	0.00	2361.47	2361.47
<i>Total Volume</i> (cm ³):	5454.51	5174.67	10629.19
Volumetric Fraction (%):	51.32	48.68	100.00
Residual Moisture Content (% vol):	0.00	5.69	2.77
<i>Ksat</i> (cm/sec):	NM	6.2E-03	2.1E-03

* = Porosity and moisture content of coarse fraction assumed to be zero.

** = Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

NM = Not measured

Laboratory analysis by: D. O'Dowd/A. Bland Data entered by: C. Krous Checked by: J. Hines

Moisture Retention Data

Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name: Golder Associates, Inc. Job Number: DB19.1112.00 Sample Number: GC-1S-2 4-6' (1.40 g/cc) Project Name: CCP-BMI 181-06417 Depth: 4'-6'

Dry wt. of sample (g):	309.01
<i>Tare wt., ring</i> (g):	136.14
Tare wt., screen & clamp (g):	27.73
<i>Initial sample volume</i> (cm ³):	220.14
Initial dry bulk density (g/cm³):	1.40
Measured particle density (g/cm ³):	2.71

Initial calculated total porosity (%): 48.13

				Matric	Moisture
			Weight*	Potential	Content [†]
	Date	Time	(g)	(-cm water)	(% vol)
Hanging column:	23-Apr-19	13:00	581.73	0	49.45
	30-Apr-19	15:55	580.73	18.0	48.99
	7-May-19	14:45	562.01	54.0	40.49
	14-May-19	15:15	550.82	125.0	35.40
Pressure plate:	23-May-19	10:30	542.99	337	31.85

	Matric Potential (-cm water)	Adjusted Volume (cm ³)	% Volume Change ² (%)	Adjusted Density (g/cm ³)	Adjusted Calculated Porosity (%)
Hanging column:	0.0				
	18.0				
	54.0				
	125.0				
Pressure plate:	337				

Volume Adjusted Data¹

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Assumed density of water is 1.0 g/cm³

^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Laboratory analysis by: D. O'Dowd/A. Bland Data entered by: A. Albay-Yenney Checked by: J. Hines

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: GC-1S-2 4-6' (1.40 g/cc)

Initial sample bulk density (g/cm³): 1.40 Fraction of test sample used (<2.00mm fraction) (%): 100.00

Dry weight* of dew point potentiometer sample (g): 172.23

Tare weight, jar (g): 114.72

			Weight*	Water Potential	Moisture Content [†]
	Date	Time	(g)	(-cm water)	(% vol)
Dew point potentiometer:	28-May-19	10:51	179.23	16113	17.09
	22-May-19	11:06	177.67	52724	13.27
-	17-May-19	14:40	175.93	296150	9.02

	Volume Adjusted Data ¹				
	Water Potential (-cm water)	Adjusted Volume (cm ³)	% Volume Change ² (%)	Adjusted Density (g/cm ³)	Adjusted Calc. Porosity (%)
Dew point potentiometer:	16113				
	52724				
	296150				

Dry weight* of relative humidity box sample (g): 65.18 Tare weight (g): 38.02

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)
Relative humidity box:	16-May-19	17:00	66.62	854732	7.45
			Volume Adjust	ed Data ¹	
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Relative humidity box:	854732				

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Laboratory analysis by: L. Thurgood/C. Krous Data entered by: A. Albay-Yenney Checked by: J. Hines

Water Retention Data Points

Predicted Calibration Curve and Data Points

Dani

Daniel B. Stephens & Associates, Inc.

Plot of Relative Hydraulic Conductivity vs Moisture Content

Plot of Hydraulic Conductivity vs Moisture Content

Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Oversize Correction Data Sheet

Job Name:	Golder Associates, Inc.
Job Number:	DB19.1112.00
Sample Number:	GC-1S-2 4-6' (1.40 g/cc)
Project Name:	CCP-BMI 181-06417
Depth:	4'-6'

Split (3/4", 3/8", #4): #10

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	6291.16	11388.65	17679.81
Mass Fraction (%):	35.58	64.42	100.00
Initial Sample θ_i			
Bulk Density (g/cm ³):	2.71	1.40	1.69
Calculated Porosity (% vol):	0.00	48.13	37.41
<i>Volume of Solids</i> (cm ³):	2324.80	4208.50	6533.31
Volume of Voids (cm ³):	0.00	3904.87	3904.87
<i>Total Volume</i> (cm ³):	2324.80	8113.37	10438.17
Volumetric Fraction (%):	22.27	77.73	100.00
Initial Moisture Content (% vol):	0.00	16.92	13.15
Saturated Sample θ_s			
Bulk Density (g/cm ³):	2.71	1.40	1.69
Calculated Porosity (% vol):	0.00	48.13	37.41
Volume of Solids (cm ³):	2324.80	4208.50	6533.31
<i>Volume of Voids</i> (cm ³):	0.00	3904.87	3904.87
<i>Total Volume</i> (cm ³):	2324.80	8113.37	10438.17
Volumetric Fraction (%):	22.27	77.73	100.00
Saturated Moisture Content (% vol):	0.00	50.46	39.22
Residual Sample θ_r			
Bulk Density (g/cm ³):	2.71	1.40	1.69
Calculated Porosity (% vol):	0.00	48.13	37.41
<i>Volume of Solids</i> (cm ³):	2324.80	4208.50	6533.31
<i>Volume of Voids</i> (cm ³):	0.00	3904.87	3904.87
<i>Total Volume</i> (cm ³):	2324.80	8113.37	10438.17
Volumetric Fraction (%):	22.27	77.73	100.00
Residual Moisture Content (% vol):	0.00	0.00	0.00
<i>Ksat</i> (cm/sec):	NM	1.2E-05	7.6E-06

* = Porosity and moisture content of coarse fraction assumed to be zero.

** = Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

NM = Not measured

Laboratory analysis by: D. O'Dowd/A. Bland Data entered by: A. Albay-Yenney Checked by: J. Hines

Moisture Retention Data

Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name: Golder Associates, Inc. Job Number: DB19.1112.00 Sample Number: GC-1S-3 2-6.5' (1.40 g/cc) Project Name: CCP-BMI 181-06417 Depth: 2'-6.5'

Dry wt. of sample (g):	307.23
<i>Tare wt., ring</i> (g):	136.40
Tare wt., screen & clamp (g):	27.57
<i>Initial sample volume</i> (cm ³):	219.83
Initial dry bulk density (g/cm³):	1.40
<i>Measured particle density</i> (g/cm ³):	2.67
Initial calculated total porosity (%):	47.61

				Matric	Moisture	
			Weight*	Potential	Content [†]	
	Date	Time	(g)	(-cm water)	(% vol)	
Hanging column:	18-Apr-19	8:00	573.54	0	46.55	_
	25-Apr-19	13:50	552.00	7.0	42.63	‡ ‡
	2-May-19	7:45	548.96	10.0	41.43	‡ ‡
	9-May-19	8:30	539.59	45.0	36.44	‡ ‡
	16-May-19	10:45	519.06	220.0	25.50	‡ ‡

Volume Adjusted Data¹

					Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Hanging column:	0.0				
	7.0	189.54	-13.78%	1.62	39.24
	10.0	187.70	-14.61%	1.64	38.65
	45.0	187.70	-14.61%	1.64	38.65
	220.0	187.70	-14.61%	1.64	38.65

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

⁺ Assumed density of water is 1.0 g/cm³

^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Laboratory analysis by: D. O'Dowd/A. Bland Data entered by: C. Krous Checked by: J. Hines

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: GC-1S-3 2-6.5' (1.40 g/cc)

Initial sample bulk density (g/cm³): 1.40

Fraction of test sample used (<2.00mm fraction) (%): 100.00

Dry weight* of dew point potentiometer sample (g): 175.08

Tare weight, jar (g): 114.59

			Weight*	Water Potential	Moisture Content [†]	
	Date	Time	(g)	(-cm water)	(% vol)	
Dew point potentiometer:	24-May-19	10:11	180.12	2855	13.63	‡ ‡
	20-May-19	10:14	178.12	24169	8.23	‡ ‡
_	14-May-19	12:10	176.83	255766	4.75	_ ^{‡‡}

	Volume Adjusted Data ¹				
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Dew point potentiometer:	2855	187.70	-14.61%	1.64	38.65
	24169	187.70	-14.61%	1.64	38.65
	255766	187.70	-14.61%	1.64	38.65

Dry weight* of relative humidity box sample (g): 82.26 Tare weight (g): 40.97

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)	_
Relative humidity box:	16-May-19	17:00	83.10	854732	3.33	
			Volume Adjust	ed Data ¹		
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	_
Relative humidity box:	854732	187.70	-14.61%	1.64	38.65	-

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares
- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Laboratory analysis by: L. Thurgood/C. Krous Data entered by: C. Krous Checked by: J. Hines

Water Retention Data Points

Predicted Calibration Curve and Data Points

Plot of Relative Hydraulic Conductivity vs Moisture Content

Plot of Hydraulic Conductivity vs Moisture Content

Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Oversize Correction Data Sheet

Job Name:	Golder Associates, Inc.
Job Number:	DB19.1112.00
Sample Number:	GC-1S-3 2-6.5' (1.40 g/cc)
Project Name:	CCP-BMI 181-06417
Depth:	2'-6.5'

Split (3/4", 3/8", #4): #10

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	7929.97	14745.71	22675.68
Mass Fraction (%):	34.97	65.03	100.00
Initial Sample θ_i			
Bulk Density (g/cm ³):	2.67	1.40	1.68
Calculated Porosity (% vol):	0.00	47.61	37.15
Volume of Solids (cm ³):	2972.52	5527.37	8499.89
Volume of Voids (cm ³):	0.00	5023.51	5023.51
<i>Total Volume</i> (cm ³):	2972.52	10550.88	13523.40
Volumetric Fraction (%):	21.98	78.02	100.00
Initial Moisture Content (% vol):	0.00	8.77	6.84
Saturated Sample θ_s			
Bulk Density (g/cm ³):	2.67	1.40	1.68
Calculated Porosity (% vol):	0.00	47.61	37.15
Volume of Solids (cm ³):	2972.52	5527.37	8499.89
<i>Volume of Voids</i> (cm ³):	0.00	5023.51	5023.51
<i>Total Volume</i> (cm ³):	2972.52	10550.88	13523.40
Volumetric Fraction (%):	21.98	78.02	100.00
Saturated Moisture Content (% vol):	0.00	45.38	35.41
Residual Sample θ_r			
Bulk Density (g/cm ³):	2.67	1.64	1.89
Calculated Porosity (% vol):	0.00	38.65	29.06
Volume of Solids (cm ³):	2972.52	5527.37	8499.89
<i>Volume of Voids</i> (cm ³):	0.00	3481.60	3481.60
<i>Total Volume</i> (cm ³):	2972.52	9008.97	11981.49
Volumetric Fraction (%):	24.81	75.19	100.00
Residual Moisture Content (% vol):	0.00	0.00	0.00
<i>Ksat</i> (cm/sec):	NM	4.8E-03	3.1E-03

* = Porosity and moisture content of coarse fraction assumed to be zero.

** = Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

NM = Not measured

Laboratory analysis by: D. O'Dowd/A. Bland Data entered by: C. Krous Checked by: J. Hines

Moisture Retention Data

Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name: Golder Associates, Inc. Job Number: DB19.1112.00 Sample Number: GC-1S-4 0-2.5' (1.40 g/cc) Project Name: CCP-BMI 181-06417 Depth: 0'-2.5' Dry wt. of sample (g): 310.43 Tare wt., ring (g): 137.39 Tare wt., screen & clamp (g): 24.18 Initial sample volume (cm³): 221.54 Initial dry bulk density (g/cm³): 1.40 Measured particle density (g/cm³): 2.68 Initial calculated total porosity (%): 47.62

. .

	Date	Time	Weight* (g)	Matric Potential (-cm water)	Moisture Content [†] (% vol)	
Hanging column: [–]	18-Apr-19	8:00	578.55	0	48.10	
	25-Apr-19	13:50	568.21	7.0	46.15	‡ ‡
	2-May-19	7:45	561.20	10.0	43.84	‡ ‡
	9-May-19	8:30	522.34	45.0	24.74	‡ ‡
	16-May-19	10:45	500.03	220.0	13.77	‡ ‡

Volume	Δd	iusted	Data ¹
volume	лu	Jusieu	Dala

	Matric Potential (-cm water)	Adjusted Volume (cm ³)	% Volume Change ² (%)	Adjusted Density (g/cm ³)	Adjusted Calculated Porosity (%)
Hanging column:	0.0 7.0 10.0 45.0 220.0	 208.49 203.49 203.49 203.49 203.49	 -5.89% -8.15% -8.15% -8.15%	 1.49 1.53 1.53 1.53 1.53	44.34 42.97 42.97 42.97 42.97

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Assumed density of water is 1.0 g/cm³

^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Laboratory analysis by: D. O'Dowd/A. Bland Data entered by: C. Krous Checked by: J. Hines

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: GC-1S-4 0-2.5' (1.40 g/cc)

Initial sample bulk density (g/cm³): 1.40

Fraction of test sample used (<2.00mm fraction) (%): 100.00

Dry weight* of dew point potentiometer sample (g): 172.18

Tare weight, jar (g): 114.63

			Weight*	Water Potential	Moisture Content [†]	
	Date	Time	(g)	(-cm water)	(% vol)	
Dew point potentiometer:	24-May-19	10:24	175.34	3671	8.38	‡ ‡
	17-May-19	13:20	174.24	44667	5.46	‡ ‡
	13-May-19	11:41	173.65	236390	3.91	_ ^{‡‡}

	Volume Adjusted Data						
	Water	Adjusted	% Volume	Adjusted	Adjusted		
	Potential	Volume	Change ²	Density	Calc. Porosity		
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)		
Dew point potentiometer:	3671	203.49	-8.15%	1.53	42.97		
	44667	203.49	-8.15%	1.53	42.97		
	236390	203.49	-8.15%	1.53	42.97		

Dry weight* of relative humidity box sample (g): 75.99 Tare weight (g): 40.00

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)	_
Relative humidity box:	16-May-19	17:00	76.79	854732	3.37	
	Volume Adjusted Data ¹					
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	_
Relative humidity box:	854732	203.49	-8.15%	1.53	42.97	_

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares
- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Laboratory analysis by: L. Thurgood/C. Krous Data entered by: C. Krous Checked by: J. Hines

Water Retention Data Points

Predicted Calibration Curve and Data Points

Plot of Relative Hydraulic Conductivity vs Moisture Content

Plot of Hydraulic Conductivity vs Moisture Content

Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Oversize Correction Data Sheet

Job Name:	Golder Associates, Inc.
Job Number:	DB19.1112.00
Sample Number:	GC-1S-4 0-2.5' (1.40 g/cc)
Project Name:	CCP-BMI 181-06417
Depth:	0'-2.5'

Split (3/4", 3/8", #4): #10

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	10756.69	14967.81	25724.50
Mass Fraction (%):	41.81	58.19	100.00
Initial Sample θ_i			
Bulk Density (g/cm ³):	2.68	1.40	1.75
Calculated Porosity (% vol):	0.00	47.62	34.60
Volume of Solids (cm ³):	4020.90	5595.04	9615.94
Volume of Voids (cm ³):	0.00	5086.63	5086.63
<i>Total Volume</i> (cm ³):	4020.90	10681.67	14702.57
Volumetric Fraction (%):	27.35	72.65	100.00
Initial Moisture Content (% vol):	0.00	9.65	7.01
Saturated Sample θ_s			
Bulk Density (g/cm ³):	2.68	1.40	1.75
Calculated Porosity (% vol):	0.00	47.62	34.60
<i>Volume of Solids</i> (cm ³):	4020.90	5595.04	9615.94
<i>Volume of Voids</i> (cm ³):	0.00	5086.63	5086.63
<i>Total Volume</i> (cm ³):	4020.90	10681.67	14702.57
Volumetric Fraction (%):	27.35	72.65	100.00
Saturated Moisture Content (% vol):	0.00	49.16	35.71
Residual Sample θ_r			
Bulk Density (g/cm ³):	2.68	1.53	1.86
Calculated Porosity (% vol):	0.00	42.97	30.48
Volume of Solids (cm ³):	4020.90	5595.04	9615.94
<i>Volume of Voids</i> (cm ³):	0.00	4216.36	4216.36
<i>Total Volume</i> (cm ³):	4020.90	9811.40	13832.30
Volumetric Fraction (%):	29.07	70.93	100.00
Residual Moisture Content (% vol):	0.00	4.78	3.39
<i>Ksat</i> (cm/sec):	NM	4.1E-02	2.4E-02

* = Porosity and moisture content of coarse fraction assumed to be zero.

** = Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

NM = Not measured

Laboratory analysis by: D. O'Dowd/A. Bland Data entered by: C. Krous Checked by: J. Hines

Moisture Retention Data

Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name: Golder Associates, Inc. Job Number: DB19.1112.00 Sample Number: PG-9A-2 Bulk (1.41 g/cc) Project Name: CCP-BMI 181-06417 Depth: NA Dry wt. of sample (g): 309.42 Tare wt., ring (g): 137.59 Tare wt., screen & clamp (g): 25.69 Initial sample volume (cm³): 220.15 Initial dry bulk density (g/cm³): 1.41 Measured particle density (g/cm³): 2.67 Initial calculated total porosity (%): 47.42

				Matric	Moisture	
			Weight*	Potential	Content [†]	
_	Date	Time	(g)	(-cm water)	(% vol)	
Hanging column:	18-Apr-19	8:00	575.29	0	46.60	
•••	25-Apr-19	13:50	550.75	7.0	42.81	‡ ‡
	2-May-19	7:45	546.64	10.0	40.56	‡ ‡
	9-May-19	8:30	535.86	45.0	34.64	‡ ‡
	16-May-19	10:45	508.30	220.0	19.53	‡ ‡

Volume Adjusted Data¹

	Matric Potential (-cm water)	Adjusted Volume (cm ³)	% Volume Change ² (%)	Adjusted Density (g/cm ³)	Adjusted Calculated Porosity (%)
Hanging column:	0.0				36.52
	7.0	182.32	-17.18%	1.70	36.52
	10.0	182.32	-17.18%	1.70	36.52
	45.0	182.32	-17.18%	1.70	36.52
	220.0	182.32	-17.18%	1.70	36.52

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Assumed density of water is 1.0 g/cm³

^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Laboratory analysis by: D. O'Dowd/A. Bland Data entered by: C. Krous Checked by: J. Hines

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: PG-9A-2 Bulk (1.41 g/cc)

Initial sample bulk density (g/cm³): 1.41

Fraction of test sample used (<2.00mm fraction) (%): 100.00

Dry weight* of dew point potentiometer sample (g): 176.92

Tare weight, jar (g): 117.42

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)	
Dew point potentiometer:	23-May-19	10:18	179.84	5813	8.32	+ ‡
	16-May-19	16:15	178.46	40078	4.39	‡ ‡
-	9-May-19	15:03	177.78	355706	2.45	

	Volume Adjusted Data				
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Dew point potentiometer:	5813	182.32	-17.18%	1.70	36.52
	40078	182.32	-17.18%	1.70	36.52
	355706	182.32	-17.18%	1.70	36.52

Dry weight* of relative humidity box sample (g): 70.85 Tare weight (g): 39.93

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)	
Relative humidity box:	16-May-19	17:00	71.19	854732	1.88	
	Volume Adjusted Data ¹					
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
Relative humidity box:	854732	182.32	-17.18%	1.70	36.52	-

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares
- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Laboratory analysis by: L. Thurgood/C. Krous Data entered by: C. Krous Checked by: J. Hines

Water Retention Data Points

Predicted Calibration Curve and Data Points

1.E+00 1.E-01 1.E-02 1.E-03 **Relative Hydraulic Conductivity** 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09

30

Moisture Content (%,cm³/cm³)

40

50

60

20

10

0

Plot of Relative Hydraulic Conductivity vs Moisture Content

Sample Number: PG-9A-2 Bulk (1.41 g/cc)

70

Plot of Hydraulic Conductivity vs Moisture Content

Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Oversize Correction Data Sheet

Job Name:	Golder Associates, Inc.
Job Number:	DB19.1112.00
Sample Number:	PG-9A-2 Bulk (1.41 g/cc)
Project Name:	CCP-BMI 181-06417
Depth:	NA

Split (3/4", 3/8", #4): #10

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	12678.51	12004.12	24682.63
Mass Fraction (%):	51.37	48.63	100.00
Initial Sample θ_i			
Bulk Density (g/cm ³):	2.67	1.41	1.86
Calculated Porosity (% vol):	0.00	47.42	30.49
Volume of Solids (cm ³):	4742.58	4490.31	9232.89
Volume of Voids (cm ³):	0.00	4050.36	4050.36
<i>Total Volume</i> (cm ³):	4742.58	8540.67	13283.25
Volumetric Fraction (%):	35.70	64.30	100.00
Initial Moisture Content (% vol):	0.00	9.90	6.36
Saturated Sample θ_s			
Bulk Density (g/cm ³):	2.67	1.41	1.86
Calculated Porosity (% vol):	0.00	47.42	30.49
Volume of Solids (cm ³):	4742.58	4490.31	9232.89
<i>Volume of Voids</i> (cm ³):	0.00	4050.36	4050.36
<i>Total Volume</i> (cm ³):	4742.58	8540.67	13283.25
Volumetric Fraction (%):	35.70	64.30	100.00
Saturated Moisture Content (% vol):	0.00	45.58	29.31
Residual Sample θ_r			
Bulk Density (g/cm ³):	2.67	1.70	2.09
Calculated Porosity (% vol):	0.00	36.52	21.86
Volume of Solids (cm ³):	4742.58	4490.31	9232.89
Volume of Voids (cm ³):	0.00	2582.87	2582.87
<i>Total Volume</i> (cm ³):	4742.58	7073.19	11815.76
Volumetric Fraction (%):	40.14	59.86	100.00
Residual Moisture Content (% vol):	0.00	0.71	0.42
<i>Ksat</i> (cm/sec):	NM	1.1E-02	5.3E-03

* = Porosity and moisture content of coarse fraction assumed to be zero.

** = Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

NM = Not measured

Laboratory analysis by: D. O'Dowd/A. Bland Data entered by: C. Krous Checked by: J. Hines

Moisture Retention Data

Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name: Golder Associates, Inc. Job Number: DB19.1112.00 Sample Number: PG-9A-1 Bulk (1.41 g/cc) Project Name: CCP-BMI 181-06417 Depth: NA

Dry wt. of sample (g):	310.94
<i>Tare wt., ring</i> (g):	137.88
Tare wt., screen & clamp (g):	25.25
<i>Initial sample volume</i> (cm ³):	221.16
Initial dry bulk density (g/cm³):	1.41
<i>Measured particle density</i> (g/cm ³):	2.71
Initial calculated total porosity (%):	48.09

. ..

. . . .

				Matric	Moisture	
			Weight*	Potential	Content [†]	
_	Date	Time	(g)	(-cm water)	(% vol)	
Hanging column:	18-Apr-19	8:00	580.22	0	48.00	_
	25-Apr-19	13:50	577.66	7.0	47.43	‡ ‡
	2-May-19	7:45	562.69	10.0	41.37	‡ ‡
	9-May-19	8:30	525.48	45.0	24.00	‡ ‡
	16-May-19	10:45	512.08	220.0	17.74	‡ ‡

Volume Adjusted Data¹

	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Hanging column:	0.0 7.0 10.0 45.0 220.0	 218.42 214.22 214.22 214.22 214.22	 -1.24% -3.14% -3.14% -3.14%	 1.42 1.45 1.45 1.45 1.45	 47.44 46.41 46.41 46.41

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Assumed density of water is 1.0 g/cm³

⁺⁺ Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Laboratory analysis by: D. O'Dowd/A. Bland Data entered by: C. Krous Checked by: J. Hines

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: PG-9A-1 Bulk (1.41 g/cc)

Initial sample bulk density (g/cm³): 1.41

Fraction of test sample used (<2.00mm fraction) (%): 100.00

Dry weight* of dew point potentiometer sample (g): 170.69

Tare weight, jar (g): 113.37

			Weight*	Water Potential	Moisture Content [†]	
	Date	Time	(g)	(-cm water)	(% vol)	
Dew point potentiometer:	20-May-19	10:26	173.77	8872	7.80	‡ ‡
	15-May-19	11:48	172.72	63839	5.13	‡ ‡
<u> </u>	10-May-19	12:46	171.97	318484	3.24	_ ^{‡‡}

	Volume Adjusted Data ¹					
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
Dew point potentiometer:	8872	214.22	-3.14%	1.45	46.41	
	63839	214.22	-3.14%	1.45	46.41	
	318484	214.22	-3.14%	1.45	46.41	

Dry weight* of relative humidity box sample (g): 82.60 Tare weight (g): 47.61

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)	
Relative humidity box:	16-May-19	17:00	83.28	854732	2.81	
	Volume Adjusted Data ¹					
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	_
Relative humidity box:	854732	214.22	-3.14%	1.45	46.41	_

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares
- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Laboratory analysis by: L. Thurgood/C. Krous Data entered by: C. Krous Checked by: J. Hines

Water Retention Data Points

Predicted Calibration Curve and Data Points

Plot of Relative Hydraulic Conductivity vs Moisture Content

Plot of Hydraulic Conductivity vs Moisture Content

Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Oversize Correction Data Sheet

Job Name:	Golder Associates, Inc.
Job Number:	DB19.1112.00
Sample Number:	PG-9A-1 Bulk (1.41 g/cc)
Project Name:	CCP-BMI 181-06417
Depth:	NA

Split (3/4", 3/8", #4): #10

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	18031.67	6946.72	24978.39
Mass Fraction (%):	72.19	27.81	100.00
Initial Sample θ_i			
Bulk Density (g/cm ³):	2.71	1.41	2.15
Calculated Porosity (% vol):	0.00	48.09	20.49
Volume of Solids (cm ³):	6657.48	2564.80	9222.29
Volume of Voids (cm ³):	0.00	2376.14	2376.14
<i>Total Volume</i> (cm ³):	6657.48	4940.94	11598.43
Volumetric Fraction (%):	57.40	42.60	100.00
Initial Moisture Content (% vol):	0.00	13.10	5.58
Saturated Sample θ_s			
Bulk Density (g/cm ³):	2.71	1.41	2.15
Calculated Porosity (% vol):	0.00	48.09	20.49
Volume of Solids (cm ³):	6657.48	2564.80	9222.29
<i>Volume of Voids</i> (cm ³):	0.00	2376.14	2376.14
<i>Total Volume</i> (cm ³):	6657.48	4940.94	11598.43
Volumetric Fraction (%):	57.40	42.60	100.00
Saturated Moisture Content (% vol):	0.00	49.64	21.15
Residual Sample θ_r			
Bulk Density (g/cm ³):	2.71	1.45	2.18
Calculated Porosity (% vol):	0.00	46.41	19.41
Volume of Solids (cm ³):	6657.48	2564.80	9222.29
Volume of Voids (cm ³):	0.00	2221.00	2221.00
<i>Total Volume</i> (cm ³):	6657.48	4785.80	11443.29
Volumetric Fraction (%):	58.18	41.82	100.00
Residual Moisture Content (% vol):	0.00	3.80	1.59
<i>Ksat</i> (cm/sec):	NM	5.2E-02	1.5E-02

* = Porosity and moisture content of coarse fraction assumed to be zero.

** = Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

NM = Not measured

Laboratory analysis by: D. O'Dowd/A. Bland Data entered by: C. Krous Checked by: J. Hines

Moisture Retention Data

Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name: Golder Associates, Inc. Job Number: DB19.1112.00 Sample Number: PG-9AX-1 Bulk (1.41 g/cc) Project Name: CCP-BMI 181-06417 Depth: NA

Dry wt. of sample (g):	309.47
<i>Tare wt., ring</i> (g):	137.07
Tare wt., screen & clamp (g):	27.48
<i>Initial sample volume</i> (cm ³):	219.83
Initial dry bulk density (g/cm³):	1.41
<i>Measured particle density</i> (g/cm ³):	2.68
Initial calculated total porosity (%):	47.54

. .

				Matric	Moisture	
			Weight*	Potential	Content [†]	
	Date	Time	(g)	(-cm water)	(% vol)	
Hanging column:	18-Apr-19	8:00	577.83	0	47.22	
	25-Apr-19	13:50	575.25	7.0	46.05	
	2-May-19	7:45	561.42	10.0	41.11	‡ ‡
	9-May-19	8:30	526.67	45.0	24.77	‡ ‡
	16-May-19	10:45	511.85	220.0	17.79	‡ ‡

Volume	Adiusted	I Data ¹
volume	, lajaoloc	Dulu

	Matric Potential	Adjusted Volume	% Volume Change ²	Adjusted Density	Adjusted Calculated Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Hanging column:	0.0				
	7.0				
	10.0	212.59	-3.29%	1.46	45.75
	45.0	212.59	-3.29%	1.46	45.75
	220.0	212.59	-3.29%	1.46	45.75

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Assumed density of water is 1.0 g/cm³

^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Laboratory analysis by: D. O'Dowd/A. Bland Data entered by: C. Krous Checked by: J. Hines

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: PG-9AX-1 Bulk (1.41 g/cc)

Initial sample bulk density (g/cm³): 1.41

Fraction of test sample used (<2.00mm fraction) (%): 100.00

Dry weight* of dew point potentiometer sample (g): 169.89

Tare weight, jar (g): 114.82

			Weight*	Water Potential	Moisture Content [†]	
	Date	Time	(g)	(-cm water)	(% vol)	
Dew point potentiometer:	23-May-19	10:20	173.80	3263	10.34	‡ ‡
	15-May-19	11:31	171.82	47931	5.10	‡ ‡
-	10-May-19	12:14	171.53	228333	4.33	_ ^{‡‡}

	Volume Adjusted Data ¹					
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
Dew point potentiometer:	3263	212.59	-3.29%	1.46	45.75	
	47931	212.59	-3.29%	1.46	45.75	
	228333	212.59	-3.29%	1.46	45.75	

Dry weight* of relative humidity box sample (g): 29.77 Tare weight (g): 6.49

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)	
Relative humidity box:	16-May-19	17:00	30.23	854732	2.88	
	Volume Adjusted Data ¹					
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
Relative humidity box:	854732	212.59	-3.29%	1.46	45.75	-

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares
- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Laboratory analysis by: L. Thurgood/C. Krous Data entered by: C. Krous Checked by: J. Hines

Water Retention Data Points

Predicted Calibration Curve and Data Points

Plot of Relative Hydraulic Conductivity vs Moisture Content

Plot of Hydraulic Conductivity vs Moisture Content

Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Oversize Correction Data Sheet

Job Name:	Golder Associates, Inc.
Job Number:	DB19.1112.00
Sample Number:	PG-9AX-1 Bulk (1.41 g/cc)
Project Name:	CCP-BMI 181-06417
Depth:	NA

Split (3/4", 3/8", #4): #10

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	17580.25	5830.02	23410.27
Mass Fraction (%):	75.10	24.90	100.00
Initial Sample θ_i			
Bulk Density (g/cm ³):	2.68	1.41	2.19
Calculated Porosity (% vol):	0.00	47.54	18.41
Volume of Solids (cm ³):	6551.37	2172.59	8723.95
Volume of Voids (cm ³):	0.00	1968.65	1968.65
<i>Total Volume</i> (cm ³):	6551.37	4141.24	10692.60
Volumetric Fraction (%):	61.27	38.73	100.00
Initial Moisture Content (% vol):	0.00	11.56	4.48
Saturated Sample θ_s			
Bulk Density (g/cm ³):	2.68	1.41	2.19
Calculated Porosity (% vol):	0.00	47.54	18.41
Volume of Solids (cm ³):	6551.37	2172.59	8723.95
<i>Volume of Voids</i> (cm ³):	0.00	1968.65	1968.65
<i>Total Volume</i> (cm ³):	6551.37	4141.24	10692.60
Volumetric Fraction (%):	61.27	38.73	100.00
Saturated Moisture Content (% vol):	0.00	48.69	18.86
Residual Sample θ_r			
Bulk Density (g/cm ³):	2.68	1.46	2.22
Calculated Porosity (% vol):	0.00	45.75	17.36
<i>Volume of Solids</i> (cm ³):	6551.37	2172.59	8723.95
Volume of Voids (cm ³):	0.00	1832.41	1832.41
<i>Total Volume</i> (cm ³):	6551.37	4005.00	10556.37
Volumetric Fraction (%):	62.06	37.94	100.00
Residual Moisture Content (% vol):	0.00	3.77	1.43
<i>Ksat</i> (cm/sec):	NM	3.3E-02	8.2E-03

* = Porosity and moisture content of coarse fraction assumed to be zero.

** = Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

NM = Not measured

Laboratory analysis by: D. O'Dowd/A. Bland Data entered by: C. Krous Checked by: J. Hines

Specific Gravity

Summary of Specific Gravity Tests

	<4.	75 mm Frac	ction	>4	.75 mm Frac	Bulk Sample	
	Specific	Particle	% of Bulk	Specific	Particle	% of Bulk	Specific
Sample Number	Gravity	Size	Sample	Gravity	Size	Sample	Gravity ¹
GC-LS-2 6-7	2.67	<4.75 mm	34.0%	NR	>4.75 mm	66.0%	2.67
GC-1S-2 4-6	2.71	<4.75 mm	64.4%	NR	>4.75 mm	35.6%	2.71
GC-1S-3 2-6.5	2.67	<4.75 mm	65.0%	NR	>4.75 mm	35.0%	2.67
GC-1S-4 0-2.5	2.68	<4.75 mm	58.2%	NR	>4.75 mm	41.8%	2.68
PG-9A-2 Bulk	2.68	<4.75 mm	48.6%	NR	>4.75 mm	51.4%	2.68
PG-9A-1 Bulk	2.71	<4.75 mm	27.8%	NR	>4.75 mm	72.2%	2.71
PG-9AX-1 Bulk	2.69	<4.75 mm	24.9%	NR	>4.75 mm	75.1%	2.69

¹Based on the <4.75mm material

NA = Not Applicable since specificed fraction is less than 5% of composite sample mass

NR = Test not Requested

Data for Specific Gravity of Sample: GC-LS-2 6-7'

Golder Associates, Inc.
DB19.1112.00
GC-LS-2 6-7'
CCP-BMI 181-06417
6'-7'

ASTM D854 (<2.00mm Fraction)

Test Date:	17-May-19	
Percent of Test Sample (% g/g):	34.0	
Percent of Bulk Sample (% g/g):	34.0	
	Trial 1	Trial 2
Weight of pycnometer filled w/air (g):	92.39	90.30
Weight of pycnometer filled w/soil (g):	143.26	140.66
Weight of pycnometer filled w/soil & water (g):	373.46	371.09
Weight of pycnometer filled w/water (g):	341.60	339.57
Specific Gravity (g/g):	2.68	2.67
Observed temperature (°C):	22.70	22.70
Density of water at observed temperature (g/cm ³):	0.9976	0.9976
Correction factor, K:	0.9994	0.9994
Specific Gravity at 20°C (g/g):	2.67	2.67
Average Specific Gravity (g/g):	2.67	
Average Particle Density (g/cm ³):	2.67	

ASTM C127 (>2.00mm) Fraction

Test Date:	NR	Test not Requested
Percent of Test Sample (% g/g):	66.0	
Percent of Bulk Sample (% g/g):	66.0	
Tare Weight (g):		
Saturated Surface Dry (SSD) mass in Air & Tare (g):		
Saturated Apparent mass in Water & Tare (g):		
Oven Dry (OD) mass in Air & Tare (g):		
SSD Specific Gravity (g/g):		
Apparent Specific Gravity (g/g):		
OD Specific Gravity (g/g):		
Percent Absorption (%):		
Observed Temperature (°C):		
Density of water at observed temperature (q/m^3) :		
Correction Factor, K:		
Specific Gravity (Apparent) Corrected to 20° C:		
Bartiala Denaity (Apparent), Corrected to 20° C.		
Panicie Density (Apparent), Corrected to 20°C (g/cm ⁻).		
Specific Gravity (Apparent) of Sample*:	2.67	* Based on <4.75mm Fraction
Particle Density (Apparent) of Sample (g/cm ³)*:	2.67	

Data for Specific Gravity of Sample: GC-1S-2 4-6'

Golder Associates, Inc.
DB19.1112.00
GC-1S-2 4-6'
CCP-BMI 181-06417
4'-6'

ASTM D854 (<2.00mm Fraction)

Test Date:	17-May-19	
Percent of Test Sample (% g/g):	64.4	
Percent of Bulk Sample (% g/g):	64.4	
	Trial 1	Trial 2
Weight of pycnometer filled w/air (g):	93.03	102.79
Weight of pycnometer filled w/soil (g):	144.62	152.85
Weight of pycnometer filled w/soil & water (g):	374.75	383.60
Weight of pycnometer filled w/water (g):	342.13	352.05
Specific Gravity (g/g):	2.72	2.70
Observed temperature (°C):	22.10	22.10
Density of water at observed temperature (g/cm ³):	0.9978	0.9978
Correction factor, K:	0.9995	0.9995
Specific Gravity at 20°C (g/g):	2.72	2.70
Average Specific Gravity (g/g):	2.71	
Average Particle Density (g/cm ³):	2.71	

ASTM C127 (>2.00mm) Fraction

Test Date:	NR	Test not Requested
Percent of Test Sample (% g/g):	35.6	
Percent of Bulk Sample (% g/g):	35.6	
Tare Weight (g):		
Saturated Surface Dry (SSD) mass in Air & Tare (g):		
Saturated Apparent mass in Water & Tare (g):		
Oven Dry (OD) mass in Air & Tare (g):		
SSD Specific Gravity (g/g):		
Apparent Specific Gravity (g/g):		
OD Specific Gravity (g/g):		
Percent Absorption (%):		
Observed Temperature (°C):		
Density of water at observed temperature (q/m^3) :		
Correction Factor, K:		
Specific Gravity (Apparent), Corrected to 20° C:		
Particle Density (Apparent), Corrected to 20° C (g/cm ³):		_
Spacific Gravity (Apparent) of Sample*:	2 71	* Doood on <4 75mm Fraction
Derticle Density (Apparent) of Semple (r/org ³)*:	2.71	Based on <4.75mm Fraction
Particle Density (Apparent) of Sample (grcm) [*] .	2.71	

Data for Specific Gravity of Sample: GC-1S-3 2-6.5'

Job Name:	Golder Associates, Inc.
Job Number:	DB19.1112.00
Sample Number:	GC-1S-3 2-6.5'
Project Name:	CCP-BMI 181-06417
Depth:	2'-6.5'

ASTM D854 (<2.00mm Fraction)

Test Date:	17-May-19	
Percent of Test Sample (% g/g):	65.0	
Percent of Bulk Sample (% g/g):	65.0	
	Trial 1	Trial 2
Weight of pycnometer filled w/air (g):	94.27	89.66
Weight of pycnometer filled w/soil (g):	144.40	139.72
Weight of pycnometer filled w/soil & water (g):	374.74	370.38
Weight of pycnometer filled w/water (g):	343.43	338.97
Specific Gravity (g/g):	2.66	2.68
Observed temperature (°C):	22.70	22.70
Density of water at observed temperature (g/cm ³):	0.9976	0.9976
Correction factor, K:	0.9994	0.9994
Specific Gravity at 20°C (g/g):	2.66	2.68
Average Specific Gravity (g/g):	2.67	
Average Particle Density (g/cm ³):	2.67	

ASTM C127 (>2.00mm) Fraction

Test Date:	NR	Test not Requested
Percent of Test Sample (% g/g):	35.0	
Percent of Bulk Sample (% g/g):	35.0	
Tare Weight (g):		
Saturated Surface Dry (SSD) mass in Air & Tare (g):		
Saturated Apparent mass in Water & Tare (g):		
Oven Dry (OD) mass in Air & Tare (g):		
SSD Specific Gravity (g/g):		
Apparent Specific Gravity (g/g):		
OD Specific Gravity (g/g):		
Percent Absorption (%):		
Observed Temperature (°C):		
Density of water at observed temperature (g/m ³):		
Correction Factor, K:		
Specific Gravity (Apparent), Corrected to 20° C:		
Particle Density (Apparent), Corrected to 20° C (g/cm ³):		
Specific Gravity (Apparent) of Sample*	2 67	* Rased on <4 75mm Fraction
Particle Density (Apparent) of Sample (alom ³)*:	2.07	Dased on <+. / on in / racion
	2.07	

Data for Specific Gravity of Sample: GC-1S-4 0-2.5'

Golder Associates, Inc.
DB19.1112.00
GC-1S-4 0-2.5'
CCP-BMI 181-06417
0'-2.5'

ASTM D854 (<2.00mm Fraction)

Test Date:	17-May-19	
Percent of Test Sample (% g/g):	58.2	
Percent of Bulk Sample (% g/g):	58.2	
	Trial 1	Trial 2
Weight of pycnometer filled w/air (g):	95.79	93.97
Weight of pycnometer filled w/soil (g):	146.23	145.66
Weight of pycnometer filled w/soil & water (g):	376.57	375.57
Weight of pycnometer filled w/water (g):	344.92	343.18
Specific Gravity (g/g):	2.68	2.68
Observed temperature (°C):	22.70	22.70
Density of water at observed temperature (g/cm ³):	0.9976	0.9976
Correction factor, K:	0.9994	0.9994
Specific Gravity at 20°C (g/g):	2.68	2.68
Average Specific Gravity (g/g):	2.68	
Average Particle Density (g/cm ³):	2.68	

ASTM C127 (>2.00mm) Fraction

Test Date:	NR	Test not Requested
Percent of Test Sample (% g/g):	41.8	
Percent of Bulk Sample (% g/g):	41.8	
Tare Weight (g):		
Saturated Surface Dry (SSD) mass in Air & Tare (g):		
Saturated Apparent mass in Water & Tare (g):		
Oven Dry (OD) mass in Air & Tare (g):		
SSD Specific Gravity (g/g):		
Apparent Specific Gravity (g/g):		
OD Specific Gravity (g/g):		
Percent Absorption (%):		
Observed Temperature (°C):		
Density of water at observed temperature (g/m ³):		
Correction Factor, K:		
Specific Gravity (Apparent), Corrected to 20° C:		
Particle Density (Apparent), Corrected to 20° C (g/cm°):		
Specific Gravity (Apparent) of Sample*:	2 68	* Based on <1 75mm Fraction
Bartiala Donaity (Apparent) of Sample (alom ³)*:	2.00	Based on <4.75mm raction
Fanicie Density (Apparent) of Sample (grom).	2.00	

Data for Specific Gravity of Sample: PG-9A-2 Bulk

Job Name:	Golder Associates, Inc.
Job Number:	DB19.1112.00
Sample Number:	PG-9A-2 Bulk
Project Name:	CCP-BMI 181-06417
Depth:	NA

ASTM D854 (<2.00mm Fraction)

Test Date:	17-May-19	
Percent of Test Sample (% g/g):	48.6	
Percent of Bulk Sample (% g/g):	48.6	
	Trial 1	Trial 2
Weight of pycnometer filled w/air (g):	89.00	91.18
Weight of pycnometer filled w/soil (g):	142.67	141.22
Weight of pycnometer filled w/soil & water (g):	371.95	371.91
Weight of pycnometer filled w/water (g):	338.32	340.54
Specific Gravity (g/g):	2.68	2.68
Observed temperature (°C):	22.10	22.70
Density of water at observed temperature (g/cm ³):	0.9978	0.9976
Correction factor, K:	0.9995	0.9994
Specific Gravity at 20°C (g/g):	2.68	2.68
Average Specific Gravity (g/g):	2.68	
Average Particle Density (g/cm ³):	2.67	

ASTM C127 (>2.00mm) Fraction

Test Date:	NR	Test not Requested
Percent of Test Sample (% g/g):	51.4	
Percent of Bulk Sample (% g/g):	51.4	
Tare Weight (g):		
Saturated Surface Dry (SSD) mass in Air & Tare (g):		
Saturated Apparent mass in Water & Tare (g):		
Oven Dry (OD) mass in Air & Tare (g):		
SSD Specific Gravity (a/a):		
Apparent Specific Gravity (g/g):		
OD Specific Gravity (g/g):		
Percent Absorption (%):		
Observed Temperature (°C):		
Density of water at observed temperature (q/m^3)		
Correction Factor K		
Specific Gravity (Apparent), Corrected to 20° C:		
<i>Particle Density (Apparent), Corrected to</i> 20° C (g/cm ³):		_
Crossific Crewity (Apperent) of Complex.	0.00	***
Specific Gravity (Apparent) of Sample":	2.68	* Based on <4.75mm Fraction
Particle Density (Apparent) of Sample (g/cm°)*:	2.67	

Data for Specific Gravity of Sample: PG-9A-1 Bulk

Golder Associates, Inc.
DB19.1112.00
PG-9A-1 Bulk
CCP-BMI 181-06417
NA

ASTM D854 (<2.00mm Fraction)

Test Date:	17-May-19	
Percent of Test Sample (% g/g):	27.8	
Percent of Bulk Sample (% g/g):	27.8	
	Trial 1	Trial 2
Weight of pycnometer filled w/air (g):	94.22	100.49
Weight of pycnometer filled w/soil (g):	144.30	151.12
Weight of pycnometer filled w/soil & water (g):	374.97	381.70
Weight of pycnometer filled w/water (g):	343.40	349.66
Specific Gravity (g/g):	2.71	2.72
Observed temperature (°C):	22.70	22.10
Density of water at observed temperature (g/cm ³):	0.9976	0.9978
Correction factor, K:	0.9994	0.9995
Specific Gravity at 20°C (g/g):	2.70	2.72
Average Specific Gravity (g/g):	2.71	
Average Particle Density (g/cm ³):	2.71	

ASTM C127 (>2.00mm) Fraction

Test Date:	NR	Test not Requested
Percent of Test Sample (% g/g):	72.2	
Percent of Bulk Sample (% g/g):	72.2	
Tare Weight (g):		
Saturated Surface Dry (SSD) mass in Air & Tare (g):		
Saturated Apparent mass in Water & Tare (g):		
Oven Dry (OD) mass in Air & Tare (g):		
SSD Specific Gravity (g/g);		
Apparent Specific Gravity (g/g):		
OD Specific Gravity (g/g):		
Percent Absorption (%):		
Observed Temperature (°C):		
Density of water at observed temperature (q/m^3) :		
Correction Factor, K:		
On a sifile Orac its (As a supert) Ocare stad to 200 Oc		
Specific Gravity (Apparent), Corrected to 20° C:		
Particle Density (Apparent), Corrected to 20° C (g/cm°):		_
Specific Gravity (Apparent) of Sample*:	2 71	* Based on <4 75mm Fraction
Particle Density (Apparent) of Sample (a/cm3)*:	2.71	Dased on <4.15mm Taction
r annoie Density (Apparent) of Sample (grown).	2.11	

Daniel B. Stephens & Associates, Inc.

Data for Specific Gravity of Sample: PG-9AX-1 Bulk

Job Name:	Golder Associates, Inc.
Job Number:	DB19.1112.00
Sample Number:	PG-9AX-1 Bulk
Project Name:	CCP-BMI 181-06417
Depth:	NA

ASTM D854 (<2.00mm Fraction)

Test Date:	17-May-19	
Percent of Test Sample (% g/g):	24.9	
Percent of Bulk Sample (% g/g):	24.9	
	Trial 1	Trial 2
Weight of pycnometer filled w/air (g):	89.54	91.50
Weight of pycnometer filled w/soil (g):	139.69	124.69
Weight of pycnometer filled w/soil & water (g):	370.46	361.55
Weight of pycnometer filled w/water (g):	338.83	340.76
Specific Gravity (g/g):	2.71	2.68
Observed temperature (°C):	22.70	20.60
Density of water at observed temperature (g/cm ³):	0.9976	0.9981
Correction factor, K:	0.9994	0.9999
Specific Gravity at 20°C (g/g):	2.71	2.68
Average Specific Gravity (g/g):	2.69	
Average Particle Density (g/cm ³):	2.69	

ASTM C127 (>2.00mm) Fraction

Test Date:	NR	Test not Requested
Percent of Test Sample (% g/g):	75.1	
Percent of Bulk Sample (% g/g):	75.1	
Tare Weight (g):		
Saturated Surface Dry (SSD) mass in Air & Tare (g):		
Saturated Apparent mass in Water & Tare (g):		
Oven Dry (OD) mass in Air & Tare (g):		
SSD Specific Gravity (g/g):		
Apparent Specific Gravity (g/g):		
OD Specific Gravity (g/g):		
Percent Absorption (%):		
Observed Temperature (°C):		
Density of water at observed temperature (g/m ³):		
Correction Factor, K:		
Specific Gravity (Apparent), Corrected to 20° C:		
Particle Density (Apparent), Corrected to 20° C (g/cm°):		
Specific Gravity (Apparent) of Sample*	2 69	* Based on <4 75mm Fraction
Particle Density (Apparent) of Sample (alcm ³)*:	2.60	
and bensity (Apparent) of Sample (growt).	2.03	

Laboratory analysis by: A. Baldridge Data entered by: A. Baldridge Checked by: J. Hines

Laboratory Tests and Methods

Daniel B. Stephens & Associates, Inc.

Tests and Methods

Dry Bulk Density:	ASTM D7263
Moisture Content:	ASTM D7263, ASTM D2216
Calculated Porosity:	ASTM D7263
Saturated Hydraulic Conductivity Falling or Constant Head: (Rigid Wall)	: ASTM D5856
Hanging Column Method:	ASTM D6836 (modified apparatus)
Pressure Plate Method:	ASTM D6836
Water Potential (Dewpoint Potentiometer) Method:	ASTM D6836
Relative Humidity (Box) Method:	Campbell, G. and G. Gee. 1986. Water Potential: Miscellaneous Methods. Chp. 25, pp. 631-632, in A. Klute (ed.), Methods of Soil Analysis. Part 1. American Society of Agronomy, Madison, WI; Karathanasis & Hajek. 1982. Quantitative Evaluation of Water Adsorption on Soil Clays. SSA Journal 46:1321-1325
Moisture Retention Characteristics & Calculated Unsaturated Hydraulic Conductivity:	ASTM D6836; van Genuchten, M.T. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. SSSAJ 44:892-898; van Genuchten, M.T., F.J. Leij, and S.R. Yates. 1991. The RETC code for quantifying the hydraulic functions of unsaturated soils. Robert S. Kerr Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Ada, Oklahoma. EPA/600/2091/065. December 1991
Specific Gravity Fine:	ASTM D854
Coarse Fraction (Gravel) Correction (calc):	ASTM D4718; Bouwer, H. and Rice, R.C. 1984. Hydraulic Properties of Stony Vadose Zones. Groundwater Vol. 22, No. 6

APPENDIX C

Soil Water Characteristic Curves

GC-LS-2 6-7'

1000000 Fine Earth VG Model - <2mm 100000 **Rock Corrected** ٥ VG Model - Rock Corrected 10000 1000 Matric Potential [-cm] 100 10 1 0.1 0.01 0.001 0.000 0.300 0.100 0.200 0.500 0.400 Volumetric Water Content [cm3/cm3]

GC-1S-3 2-6.5'

No1-1-1

No1-1-2

No1-2-1

No1-2-2

No1-3-1

Soil Water Characteristic Curve

No1-3-2

ら GOLDER

PG-9A-1 Bulk

1000000 Fine Earth VG Model - <2mm 100000 **Rock Corrected** ٥ VG Model - Rock Corrected 10000 1000 100 Matric Potential [-cm] 10 1 0.1 0.01 0.001 0.000 0.100 0.200 0.300 0.400 0.500 Volumetric Water Content [cm3/cm3]

PG-9A-2 Bulk

UTPQA-2

Soil Water Characteristic Curve

UTPQA-3

1000000 Fine Earth VG Model - <2mm 100000 **Rock Corrected** ٥ l P VG Model - Rock Corrected 10000 **1**¢ 1000 100 Matric Potential [-cm] 10 1 0.1 0.01 0.001 0.000 0.100 0.200 0.300 0.400 0.500 0.600 Volumetric Water Content [cm3/cm3]

T7ALRLC

golder.com