APPENDIX A

QUALITY ASSURANCE PROJECT PLAN

1.0 QUALITY ASSURANCE PROJECT PLAN (QAPP)

A quality assurance project plan (QAPP) is an integral part of the implementation of the Sampling and Analysis Plan (SAP). It specifies the data quality and quantity requirements needed as well as the procedures that will be used to collect, analyze, and report those data. The goal of SAP/QAPP is to collect representative samples which yield results that meet the projects data quality objectives and needs. The goal of quality assurance (QA) and quality control (QC) is to limit errors and bias in sampling and analysis process through an integrated implementation of management, assessment and control measures, thus facilitating the generation of data that is useful for decision making.

The QAPP can include one or more of the following:

- project management, organization and project personnel responsibilities;
- sampling, analysis, and measurement procedures;
- instrument calibration procedures;
- procedures for recording, reducing, validating, and reporting data;
- procedures for performing quality assurance verification and internal quality control checks;
- preventive maintenance schedules;
- specific routine procedures to evaluate;
- precision, accuracy, and completeness;
- steps for addressing deviations from plans and appropriate corrective actions; and
- information on appropriate staff training.

1.1 Project Management

Project organization, roles and responsibilities, training, record keeping, and documentation are discussed in the subsections that follow.

1.1.1 Project Organization Roles

- Project Manager and Technical Lead,
- Quality Assurance/Quality Control (QA/QC) Manager,
- Hydrogeologist/Hydrogeologist,
- Field Operations Manager,
- Soil Scientist,
- Field Engineer,
- Radiation Safety Officer,
- Health and Safety Coordinator,

• Field Crew

1.1.2 Responsibilities

A generalized description of the roles and responsibilities of the staff supporting the implementation on the Plan is as follows:

Project Manage and Technical Lead – provides project oversight, communicate with clients and regulatory representative/personnel, evaluate employee experience by certifying individuals qualified to work at the site and manage personnel.

QA/QC Manager – provides technical review of report(s) including QA/QC of technical data and verify data usability,

Hydrologist/Hydrogeologist –review surface water data and develop sampling plan, coordinate sampling and field activities, communicate with analytical laboratories, evaluate data usability and quality, analyze and interpret data, prepare report(s),

Soil Scientist – provides site materials characterization oversight (including sample plan development for soil characterization, vegetation densities and inventory, and habitat identification), communicate with analytical laboratories, evaluate data usability, data quality, analyze and interpret data, prepare report(s).

Field Operations Manager and Engineer – direct field activities and field sampling procedures, verify sample handling and field measurement procedures follow the SAP, report on status of field activities.

Health and Safety Coordinator - review, approve and implement Health and Safety Plan,

Radiation Safety Officer- provides oversight of field radiological survey, provide radiation safety and survey equipment training,

Field Sampling Crew – conduct field sampling and measurement activities in accordance with approved SAP and implement proper sampling and sample handling procedures.

1.2 Training Requirements

1.2.1 Health and Safety Training

It is recommended that personnel who work on-site have one or more forms of health and safety training. This may include formal Occupational Safety and Health Administration (OSHA) or Mine Safety and Health Administration training as defined in Title 29 of the Code of Federal Regulations (CFR) Part 1910.120(e) and Title 30 CFR Part 46, respectively. Additional training may include: three (3) days of actual on-site field experience under the supervision of a trained and experienced field supervisor; ten (10) hours OSHA construction worker training and radiation safety training. Field personnel who directly

supervise employees will go over the health and safety program requirements, training requirements, PPE requirements, and appropriate health-hazard monitoring procedures and techniques. Site-specific training covers the following areas:

- Names of personnel and alternates responsible for health and safety at the site;
- Health and safety hazards that may be present on site;
- Selection of the appropriate personal protection levels;
- Correct use of PPE;
- Work practices to minimize risks from hazards;
- Safe use of equipment on site; and
- The contents of the site-specific health and safety plan.

1.3 Documentation and Records

Documentation is critical for evaluating the success of any environmental data collection activity. The following section discusses the requirements for documenting field activities. Field personnel would use permanently bound field logbooks with sequentially numbered pages to record and document field activities. The logbook would list the contract name and number, the project number, the site name, and the names of subcontractors, the client, and the project manager. At a minimum, the following information would be recorded in the field logbook:

- Names and affiliations of all on-site personnel or visitors;
- Weather conditions during the field activity;
- Summary of daily activities and significant events;
- Sample locations, types, depths, GPS coordinates, and identifiers;
- Notes of conversations with coordinating officials;
- References to other field logbooks or forms that contain specific information;
- Discussions of problems encountered and their resolution;
- Discussions of deviations from the QAPP or other governing documents; and
- Descriptions of all photographs taken.

1.4 Data Acquisition

This section describes the requirements for the following:

- Sampling Design and Data Collection
- Field Activities
- Sample Handling and Custody
- Analytical Methods
- Quality Control Sampling
- Equipment Testing, Inspection, and Maintenance
- Instrument Calibration Procedures
- Inspection and Acceptance Requirements for Supplies and Consumables
- Management of Work Plan Deviations

1.4.1 Sample Design and Data Collection

The sampling design is described in detail in the previous Section entitled "Sampling and Analysis Plan". Global Positioning System (GPS) data will be collected using a Geoexplorer II (Trimble ®) or equivalent and maintained in a database specified for the site. In addition, to logging the data on the GPS unit, GPS coordinates, date, time, and other relevant information (e.g. sample ID, type, etc) will be hand recorded in hard-bound field notebooks or worksheets.

1.4.2 Sampling Method Requirements

Sampling techniques including standard methods, sampling containers and preservation are described in the Section entitled "Sampling and Analysis Plan."

1.4.3 Sample Handling and Custody Requirements

The following subsections describe sample handling procedures, including sample identification, labeling, documentation, Chain of Custody (COC), and shipping.

1.4.3.1 Sample Identification

Each sample collected during site assessment activities will be identified using a unique sample identification (ID) number and cross-referenced to the description of the sample type (water, soil, sediment, waste, etc.), sample collection location and the depth of sample collection in the field notes. The sample ID would be recorded on the COC forms. Field duplicates for aqueous samples would be collected at a frequency of 10 percent for individual sampling events. The duplicate sample would be given an ID similar to the one for the normal sample but with a distinct extension. This way, the sample association would be blind to the laboratory. The association between normal and duplicate sample would be noted in the log book and/or sampling forms.

1.4.3.2 Sample Labels

Labels would be affixed to each sample container. The label would be completed with the following information written in indelible ink:

- Project name and location
- Sample identification number
- Date and time of sample collection
- Preservative used (if any)
- Sample collector's initials
- Analysis required
- And refrigerated (if necessary) by placing on ice in a cooler.

1.4.3.3 Sample Documentation

Documentation during sampling is essential to promote proper sample identification. Field personnel would adhere to the following general guidelines for maintaining field documentation:

- Documentation would be completed in permanent black or blue ink.
- All entries would be legible.
- Errors would be corrected by crossing out the entry with a single line and then dating and initialing the lineout.
- Any serialized documents would be maintained and referenced in the site logbook.
- Unused portions of pages would be crossed out, and each page would be signed and dated.

1.4.3.4 Chain of Custody (COC)

Field personnel would use standard sample custody procedures to maintain and document sample integrity during collection, transportation, storage, and analysis. COC procedures provide an accurate written record that traces the possession of individual samples from the time of collection in the field to the time of acceptance at the laboratory. The COC form would be used to document all samples collected and the analyses requested. Information that the field personnel would record on the COC form includes:

- Project name and number
- Sampling location
- Name and signature of sampler
- Destination of sample (laboratory name)

- Sample ID
- Date and time of collection
- Number and type of containers filled
- Analyses requested
- Preservatives used (if applicable)
- Filtering (if applicable)
- Signatures of individuals involved in custody transfer, including the date and time of transfer
- Airbill number (if applicable) or courier information
- Project contact and phone number

Unused lines on the COC form would be crossed out and field personnel would sign COC forms and the airbill number would be recorded. It is expected that samples would be hand-carried to a local analytical laboratory for analysis. In the eventuality that samples would be shipped by courier or air carrier, the COC form would be placed in a waterproof plastic bag and taped to the inside of the shipping container used to transport the samples. Signed airbills would serve as evidence of custody transfer between field personnel and the courier, and between the courier and the laboratory. Copies of the COC form and the airbill would be retained and filed by field personnel before the containers are shipped.

The laboratory sample custodian would receive all incoming samples, sign the accompanying COC forms, and retain copies of the forms as permanent records. The laboratory sample custodian would record all pertinent information concerning the samples, including the persons delivering the samples, the date and time received, sample condition at the time of receipt (sealed, unsealed, or broken container; temperature; or other relevant remarks), the sample IDs, and any unique laboratory identification numbers for the samples. When the sample transfer process is complete, the custodian is responsible for maintaining internal logbooks, tracking reports, and other records necessary to maintain custody throughout sample preparation and analysis.

The laboratory would provide a secure storage area for all samples. Access to this area would be restricted to authorized personnel. The custodian would ensure that samples requiring special handling, including samples that are heat- or light-sensitive, radioactive, or have other unusual physical characteristics, would be properly stored and maintained prior to analysis.

1.4.3.5 Analytical Methods

Analytical methods for the project are specified in Tables A-1, A-2 and A-3.

1.4.3.6 Quality Control Sampling

The subsections below specify QA/QC protocols for field and laboratory samples. Duplicate samples would be collected during the investigation at a frequency of 10% the total number of samples collected.

1.4.3.7 Instrument/Equipment Testing, Inspection and Maintenance

All equipment used during the site assessment would be properly tested, inspected, maintained, and calibrated. Samples collected during this investigation would be analyzed only by laboratory equipment. The laboratory's QA plan and written operating procedures describing specific testing, inspection, maintenance, and calibration procedures for equipment would be followed. Operation of the GPS unit and subsequent differential data corrections will be performed in accordance with the operator's manual. Daily GPS checks will include battery life, position dilution of precision, known point and data acquisition checks. Daily quality control checks for gamma survey meters will include battery life, high voltage and threshold, background, and known radioactive source checks.

1.4.3.8 Field Instrument Calibration Procedures

All field equipment utilized for this project (ie: water quality meters, soil pH kit, etc.) would be calibrated regularly according to the associated manufacturer's Operation Manuals. Gamma survey meters employed will be calibrated by the manufacturer. The minimum detectable activity (MDA) level will be defined for all gamma survey meters using the calculations suggested in the literature NUREG-1507 and NUREG/CR-5849 Section 5. Additionally, the meters will be tested periodically at the Calibration Pad facility outside of Grants, NM and in accordance with the literature (Leino, et al., 1994; George, et al., 1985).

1.4.3.9 Inspection and Acceptance Requirements for Supplies and Consumables

The field operations manager has the primary responsibility for identifying the types and quantities of supplies and consumables needed to complete the project and is responsible for identifying acceptance criteria for these items.

Supplies and consumables can be received either at the office or at the work site. When supplies are received at an office, the project manager or field personnel would sort them according to vendor, check packing slips against purchase orders, and inspect the condition of all supplies before they are accepted for use on a project. If an item does not meet the acceptance criteria, deficiencies would be noted on the packing slip and purchase order and the item would then be returned to the vendor for replacement or repair.

Procedures for receiving supplies and consumables in the field are similar. When supplies are received, the project manager or field personnel would inspect all items against the acceptance criteria. Any

deficiencies or problems would be noted in the field logbook, and deficient items would be returned for immediate replacement.

With respect to surface water samples, the analytical laboratory would provide certified clean containers for all analyses.

1.4.4 Plan Deviations

Minor deviations, including field instrument malfunction (pH meter, etc.) would be addressed by field crew and the project manager using professional judgment. Any deviation from the SAP would be detailed in the field notebook and included in the final report to the client and regulatory agency representative. Any deviation considered significant would be addressed by the field crew, project manager, the client and the regulatory representative. A consensus on correcting the deviation would be achieved prior to executing any work plan changes. If a situation arises that requires work plan deviation and attempts to contact the client and regulatory representative are unsuccessful and the need for a decision is time critical, the project manager would use professional judgment to adjust work plan specifications as needed.

1.5 Data Validation and Usability

This section describes the procedures that are planned to review and evaluate field and laboratory data. This section also discusses procedures for verifying that the data are sufficient to meet the data quality objectives.

1.5.1 Data Review, Validation and Verification Requirements

For this project, 100 percent of the laboratory results will be reviewed. No validation will be performed outside of those performed by the certified analytical laboratory. Data will be reviewed for holding times, handling and preservation procedures, chain of custody, acceptance within control limits, and to ensure data meet method control limits for project goals.

1.5.2 Data Evaluation and Usability

Laboratory personnel would verify analytical data at the time of analysis and reporting and through subsequent reviews of the raw data for any non-conformances to the requirements of the analytical method. Laboratory personnel would make a systematic effort to identify any outliers or errors before they report the data. Outliers that result from errors found during data verification would be identified and corrected; outliers that cannot be attributed to errors in analysis, transcription, or calculation would be clearly identified in the case narrative section of the analytical data package.

All laboratory and previously collected data would be reviewed to ensure usability. The data evaluation strategy would determine if the analytical results are within the QC limits set for the project and data usability would be assessed. Specifically, sample analytical methods, handling requirements, holding times, duplicate results, and QC control limits would be reviewed.

1.5.3 Data Management

Field data would be recorded in logbooks and/or field forms and scanned copies would be included in the appendices of the Baseline Data Report. Analytical data would be received in electronic form and would be summarized, tabulated, analyzed, and provided in the body of the report. The original laboratory data would also be provided in the appendices. As appropriate, some data would be presented graphically. Environmental data collection will undergo an appropriate level of assessment and audit activities. Any problems encountered during an assessment of field investigation or laboratory activities would require appropriate corrective action to ensure that the problems are resolved.

1.6 Reporting

Quarterly progress reports will be prepared summarizing the results of the field investigation activities and monitoring results for the duration of the field investigation. The outcome of this investigation would be documented in a final baseline data report. This report would include a description of all field operations, any deviations from the original SAP, a review of previously collected data and data limitations, all raw and processed analytical data collected during this investigation, as well as graphical representations of all spatial data. The report would also include other related supporting information and recommendations for subsequent data collection if data gaps are identified upon completion of the current investigation.

TABLE A-1	
ANALYTICAL METHODS FOR RADIONUCLIDE CHEMISTRY OF SOILS AND SEE	DIMENT

Radionuclide Analyte	Analytical Method Hot Digest*	Detection Limit
Uranium, total-238	EPA 6020, ICP-MS	0.01 mg kg ⁻¹
Radium 226	EPA 903.1	0.5 pCi g ⁻¹
Radium 228	EPA 9320	3.0 pCi g ⁻¹
Thorium, total-232	EPA 6020, ICP-MS	0.1 mg kg ⁻¹
Gross alpha/beta	EPA 9310	4.0 pCi g⁻¹

* Extraction = US EPA Method 3050B (hot acid digestion for soils, wastes and sediments).

TABLE A-2
ANALYTICAL METHODS FOR CHEMICAL AND PHYSICAL CHARACTERIZATION OF SOILS,
SEDIMENTS AND OTHER MATERIALS

Analysis	Source-Method
Saturated Paste pH	SLS, 1954 - Method 2 and 21a
Electrical Conductivity	SLS, 1954 - Method 3a and 4b
Saturation percentage	SLS, 1954 - Method 27a
CaCO ₃ equivalent percent (lime)	SLS, 1954- Method 23c
Particle Size Distribution	Gee and Bauder (1986)
Rock Fragments	Dry sieve/gravimetric
Total Sulfur and Sulfur Forms, ABA	Sobek et al., 1978
Neutralization Potential	Sobek et al., 1978
SPLP extracted metals (As, Ba, Cu, Co, Mn, Se, U)	EPA Method 1312.
Selenium (hot water soluble)	Agron. 9 - Method 80/3.2.1
Boron (hot water soluble)	Agron. 9 -Method 75-4

TABLE A-3
ANALYTICAL METHODS FOR CHEMICAL ANALYSES OF WATER SAMPLES

Analyte	Standard Methods	Detection Limits (mg/L)
Alkalinity	EPA 310	10.0
Aluminum	EPA 200.8	0.1
Antimony	EPA 200.8	0.003
Arsenic	EPA 200.8	0.005
Barium	EPA 200.8	0.1
Boron	EPA 200.7	0.1
Cadmium	EPA 200.7	0.001
Calcium	I-3485	1.0
Chloride	EPA 300	1.0
Chromium	EPA 200.8	0.01
Cobalt	EPA 200.8	0.01
Copper	EPA 200.8	0.01
Cyanide	ASTM D2036	0.005
Fluoride	EPA 300.0	0.1
Gross Alpha	EPA 900.0	1.0 pCi/L
Gross Beta	EPA	2.0 piC/L
Iron	EPA 6010	0.03
Lead	EPA 200.8	0.002
Magnesium	EPA 6010C	1.0
Manganese	EPA 200.8	0.01
Mercury	EPA 200.8	0.0001
Molybdenum	EPA 200.8	0.005
Nickel	EPA 200.8	0.01
Nitrate, as N	EPA 300.0	0.05
Nitrite, as N	EPA 300.0	0.05
Nitrate+Nitrite	EPA 300.0	0.01

Analyte	Standard Methods	Detection Limits (mg/L)	
Potassium	I-3631	1.0	
Radium-226 + 228	EPA 904.0	1.0 pCi/L	
Radon-222	ASTM D5072-92	100.0 pCi/L	
Selenium	EPA 200.8	0.005	
Silicon	EPA 6010C	0.1	
Sodium	EPA 6010C	1.0	
Sulfate	EPA 300	1.0	
TDS	EPA 160.1	10.0	
Uranium	EPA 200.8	0.0003	
Vanadium	EPA 200.8	0.1	
Zinc	EPA 6010C	0.01	
Ph	EPA 150.1	0.1	

APPENDIX B

SIPHON SURFACE WATER SAMPLER

Home | Online Resources | UB Catalog | Campus Libraries | About UB Libraries | Forms | Search | Heip

Return to Graphic Version

USGS

science for a changing world

Comparison of Water-Quality Samples Collected by Siphon Samplers and Automatic Samplers in Wisconsin

Introduction

In small streams, flow and water-quality concentrations often change quickly in response to meteorological events. Hydrologists, field technicians, or locally hired stream observers involved in water-data collection are often unable to reach streams quickly enough to observe or measure these rapid changes. Therefore, in hydrologic studies designed to describe changes in water quality. a combination of manual and automated sampling methods have commonly been usedmanual methods when flow is relatively stable and automated methods when flow is rapidly changing. Automated sampling, which makes use of equipment programmed to collect samples in response to changes in stage and flow of a stream, has been shown to he an effective method of sampling to describe the rapid changes in water quality (Graczyk and others, 1993). Because of the high cost of automated sampling, however, especially for studies examining a large number of sites, alternative methods have been considered for collecting samples during rapidly changing stream conditions. One such method employs the siphon sampler (fig. 1), also referred to as the "single-stage sampler." Siphon samplers are inexpensive to build (about \$25-\$50 per sampler), operate, and maintain, so they are cost effective to use at a large number of sites. Their ability to collect samples representing the average quality of water passing though the entire cross section of a stream, however, has not been fully demonstrated for many types of stream sites.

The Inter-Agency Committee on Water Resources, Subcommittee on Sedimentation

(ICWR-SS) developed and tested siphon samplers under laboratory conditions and concluded that siphon samplers are able to collect a sample representative of near-surface water quality during rising stages. ICWR-SS (1961) developed several models of samplers to collect representative samples for distinct ranges of stream velocity, water-surface surge, water temperature, and sediment size. The study concluded that siphon samplers are useful when sediment concentrations near the water surface are of value and sampling by other, possibly more accurate methods is not practical or feasible. Edwards and Glysson (1988) outlined some of the limitations of siphon samplers. The primary limitation was that, because samples are collected near the water surface at one point in the stream, adjustments may be needed to describe the vertical and horizontal distributions in water quality, especially if the stream transports large sand-size particles. This is also a limitation for automatic samplers because automatic samplers collect a sample at a fixed horizontal and vertical location in the stream cross section.

The U.S. Geological Survey (USGS) and Wisconsin Department of Natural Resources (WDNR) are currently monitoring the water quality of several streams with a combination of manual and automated sampling methods. Future studies are aimed at describing changes in water quality at many sites; therefore, siphon samplers are being considered as a means to augment manual sampling and minimize sampling costs. Siphon samplers have had limited use in Wisconsin but have not been thoroughly tested to determine their ability to collect representative samples in Wisconsin streams. This fact sheet describes how successfully siphon samplers can be used to collect representative samples at selected stream sites in Wisconsin. Concentrations of suspended sediment, total phosphorus, and ammonia nitrogen in samples collected by siphon samplers in three streams in southwestern Wisconsin are compared with those collected with the more thoroughly investigated stage-change-activated automated samplers (Krug and Goddard, 1986).

Figure 2. Typical stream-site installation of siphon samplers.

Siphon-Sampler Design and Operation

The design of the siphon sampler used in this study is similar to that described by the ICWR-SS (1961) and by Edwards and Glysson (1988) and shown in figure 1. The operation of a siphon sampler during an event with increased stage and flow is simple. As the stream stage rises to the elevation of the intake level A (fig. 1), water enters the 1/4-inch-diameter plastic tube. As the stream continues to rise, water continues to move up the intake tube until the stream and the water in the tube reach level B. When the water levels rise past level B, a siphon is created and the sample bottle starts to fill. The sample bottle fills rapidly because the flow rate is driven by the hydraulic head, which is approximately the height difference between the stream stage (level B) and the

discharge end of the intake tube (level C). As the water level in the sample bottle reaches the bottom end of the exhaust port (level C), filling is substantially completed; however, a small amount of additional water, equal to the water volume in the exhaust tube between levels C and D, enters the bottle after the water level rises past level C. After the stream stage reaches level D, an airlock is established in the loop of the exhaust tube, which precludes further filling of the bottle. Changes in the water level after this point do not significantly affect the contents in the bottle. After the event, the bottles are collected and the contents analyzed. Siphon samplers are unrefrigerated; therefore, analytical results may have to be qualified for certain constituents that are unstable at temperatures above about 40 Celsius. Several samplers can be installed at different levels at each site to collect samples throughout the anticipated range in water levels (fig. 2).

Table 1. Comparison of water-quality data from siphon samplers with those from automated (ISCO) samplers. [Statistics are based on 47paired samples for total phosphorus and ammonia nitrogen and 41 paired samples for suspended sediment]

Concentration, in milligrams per liter				Dimension in concentration (Siphon – ISCO), in milligrams per liter (and percent)				0),		
Constituent and method	Misimum	Maximum	Standard deviation	Меан	Median	Maximum negative difference	Maximum positive difference	Standard deviation	Mean difference	Median difference
Tetal phosphorus			in a sin tang.	ana yan Y					27 - 1	
Siphon sampler ISCO sampler	0.10 0.13	4.16	0.73	0.60 0.65	0.41 0.41	-2.16	1.08	0.43	-0.05	-0.03
Ainmonia nitrogen										1-r /03
Siphon sampler ISCO sampler	0.02 0.05	4.15 3.25	0.67 0.69	0.39 0.46	0.22 8.22	-2.09	1.49	0.43	-0.07 (.7%)	-0.02
Suspended sediment									<i>1</i> -1 mb	1-0 101
Siphon sempler ISCO sampler	12 29	995 512	193 120	155 141	75 95	- 29 1	617	133	14 (-41%)	5 (4%)

Sampling Sites

Siphon samplers were installed at three sites near USGS offices in Middleton, Wis.: North Fork of Pheasant Branch Creek (North Fork) and Pheasant Branch Creek at Highway 12 (Pheasant Branch), which are perennial streams; and South Fork of Pheasant Branch Creek (South Fork), an ephemeral stream. A USGS streamflow-gaging station was operational at each site, along with an automated water-quality sampler (ISCO) programmed to collect samples during runoff events. The drainage area above the North Fork site, 9.8 mi² (square miles), is primarily agricultural, whereas the drainage area above the South Fork site (5.7 mi²) is predominantly urban. The drainage area above Pheasant Branch (18.3 mi²), which is downstream from both the North and South Forks, encom-passes

Figure 3. Concentrations of suspended sediment and chemical constituents in samples collected by the siphon sampler and ISCO sampler.

both agriculture and urban development. Historical data from samples collected at Pheasant Branch indicate that most suspendedsediment particles were silt- and clay-sized (particles<0.062 millimeters).

At each site, siphon samplers were installed at three distinct elevations to sample different stages and times during an episode of increasing streamflow (fig. 2). The samplers were placed so that the first sample would be collected when the water stage rose approximately 0.2 feet. The second sample would be collected approximately 0.3-0.5 feet above where the first sample was collected, and the third sample would be collected 0.4-0.6 feet above where the second was collected. A fence post was driven into the stream bottom, and each siphon sampler was attached to the post by a large hose clamp. The intake nozzles of the samplers were oriented perpendicular to the direction of streamflow to minimize the likelihood of the nozzles being clogged with sediment or debris. The automated ISCO samplers at each site were programmed to collect discrete samples at the stages and times similar to those for the siphon samplers.

Samples were removed from both the automated refrigerated samplers and siphon samplers as soon as possible after each runoff event and preserved by either chilling (for suspended-sediment analyses) or chilling and acidifying (for total phosphorus and ammonia nitrogen analyses). After sample removal, each sampler was cleaned by flushing the intakes with streamwater and distilled water. Suspendedsediment analyses were done by the USGS sediment laboratory in Iowa City, Iowa, and total phosphorus and ammonia nitrogen analyses were done by the Wisconsin State Laboratory of Hygiene in Madison, Wis. All samples were analyzed by use of standard methods (American Public Health Association, 1995; Guy, 1969).

Water-Quality Comparison

Pairs of samples (IS CO and siphon) were collected from the three sites over a range of flows and water-quality conditions and were aggregated into one data set for the statistical

analyses. Forty-seven pairs of samples were analyzed for total phosphorus and ammonia nitrogen

and 41 pairs for suspended sediment. As is evident from table 1, constituent concentrations in the paired samples were similar, but the ranges in values were slightly smaller in the samples collected with the ISCO samplers than in those collected with the siphon samplers.

No systematic biases are evident in the distribution of data points about the 1:1 line (the line of equal concentrations) in the graphs shown in figure 3. The mean concentrations of the total phosphorus and ammonia nitrogen in the 47 sample pairs were within 0.07 mg/L (milligrams per liter) of each other, although the mean percentage difference for total phosphorus was almost 23 percent. The mean concentrations of suspended sediment were within 14 mg/L of each other, with a mean percentage difference of 41 percent. Differences between medians were even smaller. The median total phosphorus and ammonia nitrogen concentrations were identical, with the median percentage difference about 8 percent. The median difference in suspended-sediment concentrations was 5 mg/L and the median percentage difference was 4 percent.

A nonparametric Wilcoxon signed-rank test (Conover, 1980) applied to the data indicated no statistically significant differences in the constituent concentrations between the samples collected by the two types of samplers. The null hypotheses of the tests performed were that there were no differences between the constituent concentrations using either sampler. At the 5-percent significance level (P < 0.05), there were no statistically significant differences found in concentrations between the sampling methods for any of the constituents. Therefore the null hypotheses were not rejected.

In general, the constituent concentrations of samples collected with automated samplers (ISCO) have been shown to be similar to those of manually collected, cross-section-ally integrated waterquality samples (Krug and Goddard, 1986). Therefore, the similarity found in the means and medians for each of the three water-quality constituents indicates that siphon samplers also collect representative water samples over the range of sampled flow conditions for the type of streams examined. It follows that samples collected with siphon samplers typically should have about the same accuracy (bias) as automated samplers; however, individual measurements may be less precise (as seen in the variance around the 1:1 lines in fig. 3). Part of the scatter around the 1:1 line of equal concentrations may have resulted from the pair of samples not being collected exactly at the same time and, therefore, may have been samples of water of different concentrations. Additional work is needed to determine if this variability between data sets is caused by sampler performance or by slight differences in sample-collection timing.

* Use of trade names in this report is for identification purposes only and does not constitute endorsement by the US Geological Survey.

Conclusions

Siphon samplers are low-cost alternatives to automatic samplers that have been traditionally used to collect representative water-quality samples. Siphon samplers can be used to augment manual sampling of "flashy" streams and remote streams by collecting samples during rapidly increasing stream stage-a generally impractical condition to be sampled adequately with a manual sampling program. Siphon samplers would also be a cost-effective alternative to automatic samplers if samples need to be collected at numerous sites. Siphon samplers do not collect water samples when the stream stage is decreasing; therefore, manual samples still need to be collected during this period. Decreases in stage, however, are generally more protracted than increases in stage and commonly can be manually sampled by a field person dispatched at the beginning of the event. Additional studies may help to determine the reason for the variability between individual constituent concentrations of samples collected with an automated sampler and the siphon sampler as demonstrated by the scatter around the 1:1 lines in figure 3.

Authors: David J. Graczyk, Dale M. Robertson, Layout and illustrations: Michelle Greenwood and Aaron Konkol

References

American Public Health Association, 1995, Standard methods for examination of water and wastewater (19th ed.): Washington, D.C. variously paged.

Conover, W.J., 1980, Practical Nonparametric Statistics, Second Edition: John Wiley and Sons, New York, 493 p.

Edwards, T.K., and Glysson, G.D., 1988, Field methods for measurement of fluvial sediment: US Geological Survey Open-File Report 86-531, 118 p.

Interagency Committee on Water Resources, Subcommittee on Sedimentation, 1961, The singlestage sampler for suspended sediment: Minneapolis, Minnesota, St. Anthony Falls Hydraulics Laboratory, Report 13, 105 p.

Graczyk, D.J., Walker, J.F., Greb, S.R., and Owens, D.W., 1993, Evaluation of non-point contamination, Wisconsin-Selected data for 1992 water year: US Geological Survey Open-File Report 93-630, 48 p.

Guy, H.P., 1969, Laboratory theory and methods for sediment analysis: U. S. Geological Survey Techniques of Water-Resources Investigations; book 5. chap. Cl, 58 p.

Krug, W. R., and Goddard, G. L., 1986, Effects of urbanization on streamflow, sediment loads, and chemical morphology in Pheasant Branch Basin near Middleton, Wisconsin: US Geological Survey Water-Resources Investigations Report 85-4068, 82 p.

Information

For information on USGS programs in Wisconsin, contact:

District Chief William J. Rose and Jeffrey J. Steuer US Geological Survey 8505 Research Way Middleton, WI 53562 (608) 828-9901 http://wi.water.usgs.gov/

USGS Fact Sheet FS-067-00 July 2000

US Department of the Interior US Geological Survey

Top of page

Return to Graphic Version

APPENDIX C

QUALITY ASSURANCE PERFORMANCE AUDIT OF METEOROLOCIAL TOWER

QUALITY ASSURANCE PERFORMANCE AUDIT OF METEOROLOGICAL TOWER HOMESTAKE MINING COMPANY GRANTS, NEW MEXICO MAY 2008

Prepared for:

Homestake Mining Company Grants Project P.O. Box 98 Grants, New Mexico 87020-0011

By

Meteorological Solutions Inc. Project No. 05080728

August 2008

QUALITY ASSURANCE PERFORMANCE AUDIT OF METEOROLOGICAL TOWER BARRICK/HOMESTAKE MINING COMPANY GRANTS, NEW MEXICO MAY 2008

TABLE OF CONTENTS

Sectio	n Page
1.0	INTRODUCTION
2.0	PERFORMANCE AUDIT EQUIPMENT
3.0	SENSOR PERFORMANCE AUDITS
	3.1Description of Meteorological Station3-13.2Performance Audit Methods3-33.2.1Wind Direction3-33.2.2Wind Speed3-43.3.3Temperature3-43.43.43-43.5Solar Radiation3-43.6Barometric Pressure3-53.7Precipitation3-5
4.0	PERFORMANCE AUDIT RESULTS4-14.1Wind Direction4-14.2Wind Speed4-24.3Temperature4-24.4Precipitation4-24.5Relative Humidity4-34.6Barometric Pressure4-34.7Solar Radiation4-3
5.0	SUMMARY5-1
<u>Table</u>	Page
2-1 3-1 3-2 4-1 5-1	MSI Quality Assurance Performance Audit Equipment

i

Table of Contents Continued

<u>Figure</u>

3.1	Photograph of Meteorological Monitoring Station	3-2
4.1	Intercomparison Plot - MSI Reference Standard Versus Homestake Mining	
	Company's Solar Radiation Sensor	1-4
4.2	Linear Regression Results of Paired Solar Radiation Values	1-4

<u>Appendix</u>

Α	Audit Equipment Certifications
В	Performance Audit Field Data Sheets

QUALITY ASSURANCE PERFORMANCE AUDIT OF METEOROLOGICAL TOWER BARRICK/HOMESTAKE MINING COMPANY GRANTS, NEW MEXICO MAY 2008 MSI Project No. 05080728

1.0 INTRODUCTION

On May 28, 2008, MSI conducted quality assurance performance audits of instrumentation on a meteorological tower owned and operated by Barrick/Homestake Mining Company in Grants, New Mexico to meet US EPA Prevention of Significant Deterioration (PSD) quality assurance requirements. This report summarizes the performance audit activities conducted during that site visit.

Meteorological instrument performance audits at Barrick/Homestakes' meteorological monitoring station was conducted in accordance with the following guidelines:

- EPA's Ambient Monitoring Guidelines for Prevention of Significant Deterioration (PSD), 1987; and
- Quality Assurance Handbook for Air Pollution Measurement Systems, Vol. IV: Meteorological Measurements, March 2008.

2.0 PERFORMANCE AUDIT EQUIPMENT

The following MSI reference standard instruments, presented in Table 2-1 were used to conduct sensor performance audits.

Table 2-1

Parameter	Audit Reference Equipment	Serial Number
Wind Direction	Brunton 5008 Pocket Transit Met One Model 040 Direction Template Waters Torque Watch 366-1M	5060803362 NA 3950
Wind Speed	RM Young Model 18811 Anemometer Drive Waters Torque Watch 366-3M	CA01889 3618
Temperature	Brooklyn Digital Model 6661	C404690
Precipitation	Pyrex 100 ml graduated cylinder Kimax 50 ml graduated cylinder	3024 NA
Relative Humidity	Vaisala Model HMP45AC	W1630084
Barometric Pressure	Vaisala PTB101B	A1950021
Solar Radiation	LiCor Model 200x	PY56373

MSI Quality Assurance Performance Audit Equipment

NA = Not Available.

Copies of the audit equipment certifications are presented in Appendix A.

3.0 SENSOR PERFORMANCE AUDITS

This section describes the meteorological instrument performance checks conducted by MSI at the Barrick/Homestake Mining Company, Grants, New Mexico meteorological monitoring station.

3.1 Description of Meteorological Station

Barrick/Homestake's meteorological station is located approximately at:

Latitude: 35° 14' N

Longitude: 107° 51' W

The station is equipped to measure horizontal wind speed and wind direction at 10 meters, temperature at 9.5 meters, solar radiation at 2 meters, relative humidity at 9.4 meters, precipitation at 0.4 meters, and barometric pressure at 8.8 meters. Table 3-1 lists the meteorological sensors installed at the meteorological station. Figure 3.1 presents a photograph of the meteorological station.

Parameter	Meteorological Equipment	Serial Number 2881	
Wind Direction	Qualimetrics Model 2020		
Wind Speed	Qualimetrics Model 2030	NA	
Temperature	Vaisala Model HMP45AC	NA	
Precipitation	Weathertronics Model 6011	374	
Relative Humidity	Vaisala Model HMP45AC	NA ¹	
	Vaisala Model HMP45AC	C5110079 ²	
Barometric Pressure	Weathertronics	7112	
Solar Radiation	LiCor 200X	PY31168	

 Table 3-1

 Homestake Mining Meteorological Station Sensors

1 - As found

2 - Replacement sensor

Figure 3.1 Photograph of Meteorological Monitoring Station

05080728

MSI

3.2 Performance Audit Methods

This section describes the audit methods used to verify the performance of the meteorological equipment. A summary of the audit methods and the acceptable tolerances for each method is presented in Table 3-2.

Parameter	Audit Method	Acceptable Tolerances
Wind Direction	Orientation plus Linearity Starting Threshold	±5° <0.5 m/s
Wind Speed	Synchronous Motor	$\pm 0.25 \text{ m/s} @ <5 \text{ m/s}$ or $\pm 5\% @ >5 \text{ m/s}$ < 0.5 m/s
Temperature	Reference Thermometer Comparison	±1.0°C
Relative Humidity	Collocated Reference Comparison	±10%
Solar Radiation	Certified Reference Collocation	±5%
Barometric Pressure	Collocated Reference Comparison	±3 mbar
Precipitation	Calibrated Volumetric Addition	±10%

Table 3-2
Performance Audit Methods and Acceptable Tolerances

3.2.1 Wind Direction

The orientation of the wind direction sensor was checked using a professional magnetic compass. The compass was set using a magnetic declination of 10 degrees east of north.

In addition, the wind direction sensor linearity was verified by checking the sensor output at 90 degree increments throughout the entire 0 to 360 degree range in both clockwise and counterclockwise directions. The sensor starting torques were determined by measuring shaft rotational torque.

05080728

MSI

3.2.2 Wind Speed

The performance of the wind speed sensor was verified by applying known revolutions per minute using a variable speed motor drive. The shaft of the synchronous motor was attached to the bearing shaft of the anemometer with the cups removed. Synchronous motor speeds were translated into calculated wind speeds in miles per hour using manufacturer's specifications. Sensor responses were compared to the calculated wind speeds. Wind speed sensor shaft rotational torques were measured with a torque gauge to evaluate starting threshold.

3.2.3 Temperature

The calibration of the temperature sensor was verified by direct comparison of the sensor outputs to a collocated calibrated reference standard thermometer at ambient temperature.

3.2.4 Relative Humidity

The relative humidity sensor was checked by collocating a certified reference sensor with the station sensor.

3.2.5 Solar Radiation

The solar radiation pyranometer outputs were verified by collocation of a calibrated pyranometer adjacent to the system sensor. The MSI reference pyranometer was interfaced to a Campbell datalogger for signal processing and averaging. A 4-hour period was recorded and the readings from the reference pyranometer were compared directly to the site's pyranometer readings.

05080728

MSI

3.2.6 Barometric Pressure

The barometric pressure sensor was audited by collocating a calibrated reference barometer and comparing outputs with sensor outputs recorded on the data acquisition system.

3.2.7 Precipitation

Precipitation sensor outputs were audited using a standard graduated volumetric cylinder and syringe to add water to the gauge to simulate rainfall. The volume of water required to produce ten tips was recorded for each of the three runs. This volume was compared with the calculated calibration value and the amount of precipitation recorded by the data acquisition systems. 4.0

PERFORMANCE AUDIT RESULTS

The following sections present the quality assurance performance audit results for the meteorological sensors located at Barrick/Homestake's meteorological monitoring site. Performance audits of the meteorological sensors were conducted on May 28, 2008.

4.1 Wind Direction

As found, the wind direction sensor orientation checks indicated that the cross arm alignment was 270 degrees in reference to true west. When the wind vane was positioned parallel to the cross arm at 90 and 270 degrees, the sensor output was 400 and 120 degrees, respectively. The wind direction sensor orientation was not within the acceptable tolerance of ± 5 degrees. Sensor linearity, when checked at 90 degree increments over the entire 0 to 360 degree range both clockwise and counterclockwise, was within 536 degrees. The wind direction sensor orientation plus linearity was not within the recommended tolerance of ± 5 degrees. Sensor shaft rotational torque was <4.0 gram-centimeters (gm-cm) clockwise and counterclockwise. The rotational torque was within the starting threshold of ≤ 0.5 meters per second (m/s). Further investigation revealed that the datalogger did not have the correct programming for this wind sensor. The correct program was uploaded, the bearings were replaced and the wind direction sensor was re-audited.

After program upload and bearing replacement, the orientation checks indicated that the cross arm alignment was 270 degrees in reference to true west. When the wind vane was positioned parallel to the cross arm at 90 and 270 degrees, the sensor output was 90 and 269 degrees, respectively. Sensor linearity, when checked at 90 degree increments over the entire 0 to 360 degree range both clockwise and counterclockwise, was within 2.8 degrees. The wind direction sensor orientation plus linearity was within the recommended tolerance of ± 5 degrees. Sensor shaft rotational torque was <3.0 gm-cm clockwise and counterclockwise. The rotational torque was within the starting threshold of ≤ 0.5 m/s.

4.2 Wind Speed

The wind speed sensor responses were checked over the range of 0 to 100 miles per hour (mph). As found, the shaft rotational torque was 1.2 gm-cm clockwise and counterclockwise translating to a starting threshold greater than 0.5 mps. Sensor response to anemometer drive inputs was unexpectedly an order of magnitude too high. Investigation revealed incorrect datalogger programming for this sensor.

The correct program was uploaded to the datalogger and sensor bearings were changed. Following bearing replacement and program change, the wind speed sensor was re-audited. The shaft rotational torque was less than 0.1 gm-cm clockwise and counterclockwise translating to a starting threshold less than 0.5 m/s. Sensor responses were nearly identical with the rpm audit input references that were checked.

4.3 Temperature

A certified digital thermometer was collocated with the station sensor simultaneously at ambient temperature for intercomparison. The temperature sensor output was within 0.7°C of the reference standard which exceeds the acceptable tolerance of ± 0.5 °C.

The temperature sensor was replaced and was re-audited. The digital reference thermometer was collocated with the station sensor at ambient temperature for intercomparison. The temperature sensor output was within an absolute average of 0.3° C of the reference standard which is within the acceptable tolerance of $\pm 0.5^{\circ}$ C.

4.4 Precipitation

Three runs of ten tips indicated that the precipitation gauge required an average of 3 percent more water to produce ten tips than the amounts recorded by the data acquisition system. The gauge output is within the ± 10.0 percent tolerance.

4.5 **Relative Humidity**

A reference standard relative humidity sensor was collocated with the station sensor at ambient conditions for intercomparison. Sensor output was within 0.1 percent of the reference standard which is within the acceptable tolerance of ± 10.0 percent.

The relative humidity sensor was replaced and re-audited. Sensor output was within an absolute average of 0.25 percent of the reference standard which is within the acceptable tolerance of ± 10.0 percent.

4.6 **Barometric Pressure**

A certified reference barometer was used for intercomparison with the sensor at ambient conditions in inches of mercury (in. Hg). The audit input and responses were then converted to millibars (mb) from in. Hg. The sensor was found to be an average of 15.5 mb different than the reference standard which exceeds the allowable tolerance of ± 3 mb.

4.7 Solar Radiation

A calibrated reference pyranometer was collocated with the station sensor for approximately 4 hours. Instantaneous manual readings taken at 6 different times during this period showed an average difference of 1.8 percent. Hourly averages during this period showed an average difference of 2.3%. This is within the recommended ± 5 percent tolerance.

An intercomparison plot showing one-hour reference standard data versus one-hour Homestake data is shown in Figure 4.1. Figure 4.2 presents the linear regression results of the hourly paired solar radiation values. Tabular Data from the Homestake sensor and the MSI reference standard during the audit period are presented in Table 4-1.

Figure 4.1 Intercomparison Plot - MSI Reference Standard Versus Homestake Mining Company's Solar Radiation Sensor

Figure 4.2 Linear Regression Results of Paired Solar Radiation Values

Table 4-1

Tabular Data from Homestake Mining Company's Solar Radiation Sensor and

Time	MSI Pyranometer Watts/m ²	Homestake Pyranometer Watts/m ²	Percent Difference			
900	748	748	0.0			
1000	979	913	-6.7			
1100	1057	1065	0.8			
1200	1073	1089	1.5			
	Percent Difference = 2.3					

MSI Reference Standard

Copies of the performance audit field data sheets for the meteorological station are found in Appendix B.

On May 28, 2008, MSI conducted quality assurance performance audits of meteorological instrumentation at Homestake Mining's Grants, New Mexico meteorological station.

As found, wind sensor speed and direction outputs were nowhere near reference inputs. Further investigation revealed that an extended power outage on June 23, 2007 caused the datalogger to shut down completely since the backup battery was depleted. Once power was restored and the battery re-charged, the datalogger apparently automatically retrieved an older no longer used program resident in the attached storage module used for datalogger backup. It contained different wind sensor programming from what is currently used and caused wind sensor outputs to be incorrect. In addition, the wind speed sensor starting threshold exceeded recommended tolerances because of bad bearings. Once the proper datalogger program was installed and wind sensor bearings were replaced, wind sensor performance was within US EPA recommended specifications.

Temperature sensor checks indicated that the site sensor was reporting ambient temperatures slightly lower than the reference. This sensor was scheduled for replacement during this visit and audit checks on the replacement sensor showed agreement with the reference within recommended tolerance.

Barometric pressure sensor output, when checked against a certified reference was not within recommended tolerance. This sensor is no longer supported by the manufacturer due to its age. Barometric pressure data should be scrutinized and unreasonable values should be invalidated. MSI recommends replacement of the barometric pressure sensor.

Solar radiation, relative humidity, and precipitation sensors were all operating with recommended tolerances.

The wind, temperature, and barometric pressure sensors failed the May 28, 2008 audit. All other sensors at the meteorological site were found to be operating normally and reporting data accurately within manufacturer's recommended tolerances and EPA-approved quality assurance guidelines for meteorological measurements. Table 5-1 summarizes the results of this audit.

Table 5-1Summary of May 28, 2008 Audit Results

Sensor Parameter	Result
Wind Direction	Fail
Wind Speed	Fail
Temperature	Fail
Precipitation	Pass
Relative Humidity	Pass
Barometric Pressure	Fail
Solar Radiation	Pass

05080728

Appendix A Audit Equipment Certifications

THE BRUNTON COMPANY Certificate Of Calibration

Address:	22.57	South	1100	EAST	Suite	203
City, State,	zip: <u>SAIT</u>	LAKE	CITY	LE	8410	<u>)b</u>
Calibration with Mil-S7 comparison all standards maintained and Boulder Co. and is a	traceable to the D-45662A has with standards s maintained by by the National c, CO. Comple vailable for ins	National Inst been accomp maintained by The Brunton Institute of S te record of al pection upon	itute of Sta lished on th y The Brun Co. are tra tandards an l work perfo request.	ndards and te instrum ton Co. T ceable to t d Technol ormed is r	d Technolog ent listed be he accuracy national stan logy in Wash naintained b	y in accordan low by and stability dards ungton, D.C. y The Brunto
This Unit ha	s been calibrat 675 this <u>2</u>	ed to Lietz TM <u>GTH</u> Day of	110E serial <u>APRIC</u>	number 3 20 <u>[</u>	0937 traceal	ole to N.B.S.
DESCRIPT	ON: f()	RA 17	XHNS XXIG	<u> </u>	 	
ORCHASE	MBER 17	279,30	<u>.</u>		_	
LOT NUME	ER:		<u></u>			
VIODEL NI	MBER:	5006				
SERIALNU	MBER: 5	06080	3362			
ALIBRAT	ION DATE:	4-29-0	28			
ECALIBR	ATION DUE I	ATE: 4-	29-00	<u> </u>		
igned:	Cincle	Ken	in			

Houston Precision, Inc. 8729 Gulf Freeway Houston, TX 77017-6504

Calibration Report

		- meri manin management	which are an	
Company:	Meteorological Solutions, Inc.	Doc #:	41467	
Address:	2257 South 1100 East Suite 203	Date:	8/22/2007	
	Salt Lake City, UT 84106	PO#:	CREDIT CARD	
Contact: Dept:	Mike Peterson QC	Page:	1	
Gage: Mfg: Location:	366-1M Torque Watch Waters	Control: Model:	3950 366-1M Torque Watch	
		Senai #:	3930	

Parameters:

Text:

Comments:

Calibration Completed by: Caltech Original Certificate (attached) #: 5450

Reference HPI S/O # 15322

We cartify the equipment used for this calibration is traceable to NIST through one or more of the following numbers: Vendor Master:

Last / Next Cal Dates: -->

Gage Status: PASS

Next Calibration Due: 8/22/2008

Certified By: Denice V. Mills Signature: <u>Denuc</u> This certificate is not valid unless all 1 page(s) are present.

*Laboratory Environmental Conditions: Temperature: 68*F +/- 3.6*F and/or 20C +/- 2C, Relative Humidity: between 40% and 60%.

*Calibration measurements are performed in accordance with guidelines set forth in ANSI/NCSL Z540-1-1994 and Houston Precision's Quality manual.

miles

"The measurement of uncertainity has not been taken into account when reporting readings "in" or "out of tolerance" on this calibration report. "If additional information regarding this calibration is required, please contact this laboratory.

"All calibrations have been performed under the supervision and authority of Jacob Bradley , Lab Manager.

*Any number of factors may cause the subject of this calibration to drift out of calibration before the recommended interval has expired.

HPI will not be held responsible for the calibration status of an item whose calibration interval exceeds the actual validity of the calibration. 'This Report shall not be reproduced expect in full, or with the expressed written permission of Houston Precision, Inc. End of document.

Certificate of Calibration

The instrument listed below meets or exceeds published specifications and has been calibrated under controlled conditions and is traceable to the National Institute of Standards and Technology(N.I.S.T.), or to accepted intrinsic standards of measurement, or by the ratio type of self-calibration techniques, Cal-Tech Calibration conforms to the following. ISO/IEC 25/17025.

Customer: Houston Precision Certificate Number; 5450 Instrument Make: Waters Model: 366-1M S/N: 3950 ID: n/a Date: 8-22-07 Temp: 73 Deg f Humidity: 43% Rec. In Tol. Due Date: 8-22-08

This report may not be reproduced, except in full without written permission from Cal-Tec Calibration.

Certification by: + 222000

Accuracy: #\- n/a

Comments:

Standards Used	Model	Certification Number	Due Date	
Acculab	VIC-300	19453469	11-30-07	
Troemner	Weight Set	822/266607-02	03-08	
In.Oz.				
Range	As Found	After Adjust	Final Reading	
3.01	3.00	попе	3.00	
6.02	6.01	none	6.01	
12.0	12,0	none	12.0	
18.0	18.0	none	18.0	
21.0	21.1	none	21.1	

Cal-Tech Calibration, Inc.

1314 FM 646 West /Ste. 15 / Dickinson, Texas 77539 /Phone 281-614-0050 / Fax 281-614-0046

Houston Precision, Inc. 8729 Gulf Freeway Houston, TX 77017-6504

Calibration Report

Company:	Meteorological Solutions, Inc.	Doc #:	41468
Address:	2257 South 1100 East Suite 203	Date:	8/22/2007
	Salt Lake City, UT 84106	PO#:	CREDIT CARD
Contact:	Mike Peterson	Page:	1
Dept:	QC	Ū	
Gage:	366-3M Torque Watch	Control:	3618
Mfg:	Waters	Model:	366-3M Torque Watch
Location:		Serial #:	3618

Parameters:

Text:

Comments:

Calibration Completed by: Caltech Original Certificate (attached) #: 5449

Reference HPI S/O # 15322

We certify the equipment used for this calibration is traceable to NIST through one or more of the following numbers: Vendor Master:

Last / Next Cal Dates: ->

Gage Status: PASS

Next Calibration Due: 8/22/2008

Certified By: Denice V. Mills Signature: ______ This certificate is not valid unless all 1 page(s) are present

"Laboratory Environmental Conditions: Temperature: 68°F +/- 3.6°F and/or 20C +/- 2C, Relative Humidity: between 40% and 60%.

14100

"Calibration measurements are performed in accordance with guidelines set forth in ANSI/NCSL Z540-1-1994 and Houston Precision's Quality manual.

m

*The measurement of uncertainity has not been taken into account when reporting readings "in" or "out of tolerance" on this calibration report. "If additional information regarding this calibration is required, please contact this laboratory.

"All calibrations have been performed under the supervision and authority of Jacob Bradley , Lab Manager

"Any number of factors may cause the subject of this calibration to drift out of calibration before the recommanded interval has expired.

HPI will not be held responsible for the calibration status of an item whose calibration interval exceeds the actual validity of the calibration. This Report shall not be reproduced expect in full, or with the expressed written permission of Houston Precision, Inc End of document.

Certificate of Calibration

The instrument listed below meets or exceeds published specifications and has been calibrated under controlled conditions and is traceable to the National Institute of Standards and Technology(N.I.S.T.), or to accepted intrinsic standards of measurement, or by the ratio type of self-calibration techniques. Cal-Tech Calibration conforms to the following, ISO/IEC 25/17025.

Customer: Houston Precision Certificate Number: 5449 Instrument Make: Waters Model: 366-3M S/N: 3618 ID: n/a Date: 8-22-07 Temp: 73 Deg f Humidity: 43% Rec. In Tol. Due Date: 8-22-08

This report may not be reproduced, except in full without written permission from Cal-Tec Calibration.

Certification by:

Accuracy: -\- n/a

Comments:

Standards Used	Model	Certification Number	Due Date	
Acculab	VIC-300	19453469	11-30-07	
Troemner	Weight Set	822/266607-02	03-08	
		38 c		
In.Oz.				
Range	As Found	After Adjust	Final Reading	
.40	.42	none	.42	
.80	.81	none	.81	
1.20	1.20	none	1.2	
1.60	1.61	none	1.61	
1.80	1,80	none	1.80	

Cal-Tech Calibration, Inc.

1314 FM 646 West /Ste. 15 / Dickinson, Texas 77539 /Phone 281-614-0050 / Fax 281-614-0046

SIPPOCO electroni 6537 CECILIA CIRCLE	ies.			Cert	ificate No. 3697178
ACCREDITED CERT 1309.14	CERTIFICATE O F(TEOROLOGIC/)F CALIBR/ OR AL SOLUTI(ATIO ONS	N	
Description: BROOKLYN, 6661, D	gital Thermometer/	Probe			
Serial Nor CT071007015-TM9	Asset No:			Simco ID:	43762-1
Dept: NONE	PO No: 15	62			
Calibration Date: 11/08/07	Calibration Inte	rval: 12 Mont	hs –	Recall Date	: 11/08/08
Arrival Condition: MEETS MANUFACTURER'S SP	EC'S.	Service: CALIBRAT	ED TO	OMFR SPEC,&	CLEAN
Procedure: NAV17-20ST-10 2/95 Temperature: 69°F		4	Rel	ative Humidity:	36%
Standards Used: <u>Type</u> Digital Thermometer RTD PROBE RTD PROBE RTD PROBE Liquid Bath Liquid Bath	Simco IDDue39051*13012/39051*12712/39051*12712/39051*12712/39051*46006/39051*46006/	Intv <u>e Date Mos</u> 29/08 24 18/08 12 18/08 12 18/08 12 12/08 12 12/08 12	I TEM TEM Oto- 1to2 TEM +/-0.	/ <u>Unc</u> IPERATURE IP C 197 +/-25mK IP STABILITY 025 DEG C	<u>Trace No.</u> 269872-04 SEE FILE A4715016 A4715016 CINA 31274
Detail Of Work Performed: The Expanded Measurement Uncert of calibration and no allowance has Expanded uncertainty computed at 9 MEASUREMENT UNCERTAINTY FULL SN IS CT071007015-TM99A 6661 BROOKLYN DIGITAL THE	ainty listed on the da been made for handli 15% confidence level (* 0.03 DEG C A-E, FOR RMOMETER.	ta sheet applie ng or time rela , coverage fact	s only aled ef for K a	at the time feets. = 2.	
	Continued on next	Раде			
Duplicate Certificate	Page 1 of 2				AT THE REPORT OF THE OWNER OF THE

Certificate No. 3697178

S-I-M-CO electronics 6537 CECILIA CIRCLE BLOOMINGTON, MN 55439

CERTIFICATE OF CALIBRATION FOR METEOROLOGICAL SOLUTIONS INC

Continued from Page I

Parts Replaced: EN22	9V B	ATTERY/NO CHARGE	(1)	
			(•7	
Calibration Data: Parameter TEMPERATURE	Nominal	Measured Before	Measured After	Tolerance
SYSTEM CAL METER/PROBE	-20.7 DEG C	-20.8	-20.8	+/-0.1 DEG C
METER/PROBE	-10.1 DEG C	-10.1	-10.1	+/-0.1 DEG C
METER/PROBE	0.0 DEG C	0.0	0.0	+/-0.1 DEG C
METER/PROBE	20.0 DEG C	20.0	20.0	+/-0.1 DEG C
METER/PROBE	40.0 DEG C	40.0	40.0	+/-0.1 DEG C

Work performed by: Diane Carmon Electronic Technician B (13192) Reviewed by: Ken Wyckoff Electronic Tech Lead/ QA Rep

SIMEO Electronics' quality management system conforms to ISO 9001:2000, ISO/IRC 17025:2005, and ANSI/NCSL Z540-1-1994. All calibrations are performed using internationally recognized standards traceable to the International System of Units (SI Units). Traceability is achieved through calibrations by the National Institute of Standards and Technology (NIST), other National Measurement Institutes (NMIs'), or by using matural physical constants, intrinsic standards or ratio calibration techniques. Instruments are calibrated with a test accuracy ratio of 4:1 or greater, otherwise measurement uncertainty analysis and/or guard bands are applied during the measurement process. The information shown on this certificate applies only to the instrument identified above and may not be reproduced, except in full, without prior written consent from SIMEO Electronics. There is no implied warranty that the instrument will maintain its specified tokunces during the calibration interval due to possible drift, environment, or other factors beyond our control. This is an A2LA Accredited calibration.

Dated: 11/08/07

Duplicate Certificate

Page 2 of 2

		I		
Temperat Calibrati	ture Sensor on Record	Meteorological Science P 801.474 3828 P 601.43	1100 E ile 200 8410 7 7 8 8 100 4 0786	
Sensor Type: Sensor ID: Sensor Range: CALIBRATION: Calibrated on Next calibration due Time: Location: Reference Device Reference Device ID: Technician:	Brooklyn Digital with util C404690 -40.0 to +150.0 C 11/21/2007 11/21/2008 9:45 MSI Lab Brooklyn Digital with util CT071007015-TM9 Scott Adamson	Procedu Water ba medium minutes Values s degrees	re: alhs used for temp . Each point stirred 3-5 until stabil. should be within +/- 0.5 C.	
Calibration Temperature Point	Calibration Reference Temperature (C) Tr	Observed Sensor Temperature (C) Ts	Difference in Degrees (C)	Percent Error (dT) [dT≃((Ts-Tr)*100)/Tr]
1	47.80	47.70	-0.1	-0.21%
2	22.40	22.30	-0.1	-0.45%
3	0.00	0.00	0.0	0.00%
			1	

RELATIVE HUMIDITY SENSOR CALIBRATION RECORD

Sensor Manufacturer:	VAISALA HMP45AC
Sensor ID:	W1630084
Sensor Range:	0 - 100%
Calibrated on	12/31/07
Next calibration due	12/31/08
Time:	10:00 - 13:30
Location:	MSI lab
Reference Device:	Vaisala HMK 15 Salt Chambers
Reference Device ID:	(LICL C435) (MgCL12 C413) (NaCL C471)
	Brooklyn digital thermometer s/n CT071007015-TM9
Technician:	MRP
Comments	Lab temperature = 24.3 C

Ti	me	Reference Salt Solution	Reference Relative Humidity	Observed	
From	To	NaCL / LICL	%	Sensor Output	Difference
10.00	11 00	LiCL	11.3%	10.9%	0.4%
11:00	12.00	MgCL12	33.0%	31.1%	2.0%
12:00	13:00	NaČL	75.4%	74.6%	0.8%
			Reference Temperature	Sensor Response	Difference
13:00	13:30		24.3 C	24.3 C	0.0 C

Procedure:

Remove sensor cap and insert probe into salt chamber.

After one hour record value.

Record lab temperature and comparison with HMP sensel using reference thermometer.

😻 VAISALA

MEASUREMENT STANDARDS LABORATORY ACCREDITED CALIBRATION LABORATORY

	CERTIF	ICATE C	OF CALIE	RATION	no K008	3 -Q 02193	3			
Customer	VAISALA Oyj PO Box 28 Fi 00421 Hold	iski Eislaad								
ifem	NaCi Saturate	anki, rintanu Id Selt Solutio	ňe							
Manufacturer	Valsala Ovl	Valsala Ovl								
Model	19731HM									
Batch	NaCIC471, 10	0 pcs								
Description	Sample calibri From sait batc Solution Calib The humidity Sali Solution (physical phen saturated salt of the salts us on November	Sample calibration of 19731HM Saturated Sait Solutions. From sait batch no NaCiC471 six (6) randomly selected salts ware prepared to HMK 15 Sali Solution Calibrators according to the instruction manual of HMK 15 using water 19767HM. The humidity values of these saits were compared to Valsata Measurement Standards Laboratory Sait Solution Generator UG 8195. Traceability of the Sali Solution Generator is based on the physical phenomenon in which the equilibrium relative humidity values associated with certain saturated salt solutions are known. Measurements were made more than 16 h after preparation of the salts using Valsata HMP41 Humidity Probes and Agilent 34970 A Digital Multimeter on November 21, 2007 by Lasse Mäki.								
Uncertainty	The reported on measurement to a coverage been determine	expanded unc muliplied by probability of led in accorda	ertainty of mea the coverage f approximately the with EA P	asurement is s actor k = 2, wh 95 %. The sta ublication EA-	tated as the st lich for a norm ndard uncerta 4/02.	andard uncert al distribution inty of measur	ainty of corresponds remeni has			
Results	Sait	1	2	3	4	5	6			
	Reference	75,4 %RH	75,4 %RH	75,4 %RH	75,4 %RH	75,4 %RH	75,4 %RH			
	Reading	75,5 %RH	75,5 %RH	75,6 %RH	75,4 %RH	75,4 %RH	75,5 %RH			
	Temperature	+ 23,0 °C	+ 23,0 °C	+ 23,0 °C	+ 23,0 °C	+ 23,0 °C	+ 23,0 °C			
	Correction	- 0,1 %RH	- 0,1 %RH	- 0,2 %RH	0,0 %RH	0,0%RH	- 0,1 %RH			
	Uncertainty	± 0,4-76RH	± 0,4 %	2 0,4 26101	± 0,4 76Kn	2 0,4 28101	2 V/4 78101			
	Ali the measur (± 1,5 %RH) o	red values ext f the NaCi Sa	endad by the e turated Salt So	estimated unce plutions 19731	ertainty were w HM at the mea	iihin the speci isurement terr	ification perature.			
Conditions	Temperature - Humidity 36 %	+ 24,1 *C ± 0, RH ± 3 %RH	3 °C							
Date	November 21,	2007 11 Il	5							
Signature	Lasse Mäki	100								
Page 1 (1)	Calibration En	gineer								
Documents attached	•	2				Checked by: _	€Ð			
This Certificate may on carried out and the Cart uncertainties approved to national or internatio Multilateral Agreement Accredited Calibration I	y be reproduced in ful lificates of Calibration by the Cantre for Metr nal measurement stam and bilateral agreemen aboratories in these c	I, except with Issued by an A ology and Aoc dards. EA jEuro ts with third c puntries. Finier	the prior written correctied Calib reditation. The opean co-operat ountries for mu od is one of the	a permission by ration Laborato measurement r tion for Accredi- tual recognition signatories of t	the issuing La ry comply with asults issued by (ation) member of Calibration that agreement	boratory. The n the measurem the Laborator countries have Cartificates iss	neasurements ent ranges and y are tracsabla s signed the ued by the			
Veisele Oyl, PO Box 26, F Telephone + 358 9 894 9 Emeil MessStdLeb@veisel Domicile Ventee, Finlend •	I-OO421 Helsinki, Finland t • Fax +358 9 8949 22 a.com • www.vaisala.com • VAT Fl01244612 • Busi	227 m Inasa ID 012441	6 -2							

👀 VAISALA

MEASUREMENT STANDARDS LABORATORY ACCREDITED CALIBRATION LABORATORY

	CERTIF	ICATE C		RATION	no K008	3-Q01988	\$	
Customer Item Manufacturer Model Batch	VAISALA Oyj PO Box 28 FI-00421 HelsInki, Finland MgCl2 Saturated Sall Solutions Valsata Oyj 19730HM MgCl2C413, 100 pcs							
Description	Sample calibration of 19730HM Saturated Sall Solutions. From sall balch no MgCl2C413 six (6) randomly selected salts were prepared to HMK 15 Sall Solution Calibrators according to the Instruction manual of HMK 15 using water 19767HM. The humidity values of these salts were compared to Vaisala Measurement Standards Laboratory Sall Solution Generator UG 8195. Traceability of the Sall Solution Generator is based on the physical phenomenon in which the equilibrium relative humidity values associated with certain saturated sall solutions are known. Measurements were made more than 16 h after preparation of the salts using Vaisata HMP41 Humidity Probes and Agilent 34970 A Digital Multimeter on October 18. 2007 by Lasse Miki.							
Uncertainty	The reported measurement to a coverage been determine	expanded unc multiplied by t probability of ned in accorda	ertainty of mea the coverage f approximately nce with EA P	asurement is si actor k = 2, wh 95 %. The sta ublication EA-	aled as the st ich for a norm ndard uncerta 4/02.	andard uncerta ai distribution Inty of measur	ainly of corresponds ement has	
Results	Salt	1	2	3	4	5	6	
	Reference 32.9 %RH 32.9 %RH							
Conditions	Temperature Humidity 40 %	+ 23,4 °C ± 0,3 &RH ± 3 %RH	3 °C					
Date Signature	October 18, 2	007	R)					
Page 1 (1)	Lasse Maki Callbration Er	igineer						
Documents attached -						Checked by: _	HTD	
This Certificate may only be reproduced in full, except with the prior written permission by the Issuing Laboratory. The measurements carried out end the Certificates of Calibration issued by an Accredited Calibration Laboratory comply with the measurement uncertainties approved by the Centre for Metrology and Accreditation. The measurement results issued by the Laboratory are traceable to national or international measurement standards. EA furopean co-operation for Accreditation member countries have signed the Multilaterel Agreament and bilaterel agreements with third countries for mutual recognition of Calibration Certificates Issued by the Accredited Calibration Laboratories in these countries. Finland is one of the signatories of that agreement.								
Telephone + 358 9 894 91 • Fax Email MeasStdLab@veisela.com Domicile Vantes, Finland • VAT F	+ 358 9 8949 2 • www.vaisela.co 101244612 • Bus	227 m iness ID Ot 244 1	6-2					

🐼 VAISALA

MEASUREMENT STANDARDS LABORATORY ACCREDITED CALIBRATION LABORATORY

Customer	VAISALA Oyj								
	FU Box 20 FL-00421 Heisinki Finland								
item	LiCI Saturate	d Sait Solution	S						
Manufacturer	Vaisala Oyj								
Modet	19729HM	_							
Batch	LICIC435, 15	5 pcs							
Description	Sample calibration of 18728HM Saturated Salt Solutions. From salt batch no LICIC435 six (6) randomly selected salls were prepared to HMK 15 Salt Solution Calibrators according to the instruction manual of HMK 15 using water 19767HM. The hum/dity values of these salts were compared to Valsala Measurement Standards Laboratory Salt Solution Generator UG 8195. Traceability of the Salt Solution Generator is based on the physical phenomenon in which the equilibrium ralative hum/dity values associated with certain saturated salt solutions are known. Measurements were made more then 48 h after preparation of the salts using Valsala HMP41 Hum/dity Probes and Agilent 34970 A Digital Multimeter on November 1, 2007 by Hell Tonieri.								
Uncertainty	The reported expanded uncertainty of measurement is staled as the standard uncertainty of measurement multiplied by the coverage factor k = 2, which for a normal distribution corresponds to a coverage probability of approximately 95 %. The standard uncertainty of measurement has been determined in accordance with EA Publication EA-402.								
Results	Salt	1	2	3	4	5	6		
	Reference	11,3 %RH	11,3 %RH	11,3 %RH	11,3 %RH	11,3 %RH	11,3 %RH		
	Reading	11,2 %RH	11,1 %RH	11,2 %RH	11,3 %RH	11,3 %RH	11,3 %RH		
	Temperature	+ 23,0 °C	+ 23,1 °C	+23.1 °C	+ 23,0 °C	+ 23,0 °C	+ 23,0 °C		
	Uncertainty	+ 0,1 % RH + 0.7 % RH	+ 0,2 % RH + 0.7 % RH	+0,1%RH +0.7%RH	0,0 % RH + 0.7 % RH	0,0%RH +07%RH	0,0%RH +07%RH		
	All the measu	red values ext	ended by the i	estimaled unce	stainly were w	ithin the speci	fication		
	(± 1,3 %RH) c	f the LICI Satu	irated Salt Sol	utions 19729H	IM at the meas	surement temp	eralure.		
Conditions	Temperature Humidity 40 %	• 23,5 °C ± 0,3 RH ± 3 %RH	3 °C						
Date	November 1, 2	2007	5						
Signature	Hell Tonter	102							
Page 1 (1)	Calibration En	gineer							
Oocuments attached -						< Checked by: _	P		
his Certificate may only be	e reproduced in ful	, except with t	he prior writter	permission by	the issuing Lat	the measureme	easurements int ranges and		

.

Valsale Oyl, PO Box 26, FI-00421 Helsinkl, Finland Telephone + 358 9 694 91 • Far, + 358 9 8849 2227 Email MassNet(ab@Avisia.com + www.valsala.com Domiclis Vantas, Finland • VAT FI01244612 • Business ID 0124416-2

PRESSURE Calibration Record

Start Date	12/7/2007
Sensor Type	Vaisala PTB101B
Sensor ID	A1950021
Next calibration due	12/7/2008

Reference Device <u>Novalynx Digital Barometer (MSI REF)</u> Reference Device ID <u>930690-Y4</u> Location <u>MSI Lab</u> Comments Lab Temp checked with Brooklyn Digital

Thermometer s/n CT071007015-TM9

Technician Scott Adamson

Procedure:

Three readings taken side by side with MSI reference in ambient conditions. Then averaged.

		Lab	Reference	Pressure Sensor	Diff
Date	Time	Temp C	inches Hg	inches Hg	mb
12/7/07	1355	24	853.5	853.6	0.10
12/7/07	1423	23.2	853.5	853.6	0.10
12/7/07	1550	23.4	854.3	854.50	0.20
Aver	age	23.5	853.77	853.90	0.13

Calibration Critieria = +/- 3 mb

Adjustment required ? No

 Kipp & Zonen (USA), Inc.

 125 Wilbur Place

 Bohemia, New York 11716

 USA

 7 +1(800) 645-1025

 F +1 (631) 589-2068

 £ kipp.usa@kippzonen.com

CALIBRATION CERTIFICATE PYRANOMETER

LI-COR LI-200

5.01 mV / 1KWm⁻²

PY56373

PYRANOMETER MODEL

SERIAL NUMBER

SENSITIVITY derived indoors at normal incidence in accordance with ISO-9847 standard

CALIBRATION PROCEDURE

The indoor calibration procedure is based upon comparison to a LI-COR LI-200 calibration transfer reference pyranometer under a voltage stabilized artilicial sun/lamp source (150W metal-halide gas discharge lamp). The lamp reflector and lens assembly under illumination conditions produces a vertical beam irradiance of approximately 575 Wm² at the pyranometer transfer reference and test pyranometer detector level. Both LI-COR LI-200 transfer reference and test pyranometer to be calibrated are illuminated simultaneously side-by-side for a period of 1-minute and the voltage output signats recorded. Both pyranometers are then shaded for 1-minute and the respective dark noise offset signals of each are either added or subtracted from the recorded illumination signals. The position of the pyranometers are then reversed 180° and the above process is repeated. A lamp stability check is conducted after the second tamp illumination cycle; if the lamp test is successful the sensitivity of the LI-COR LI-200 test pyranometer is calculated from the established ratio; test signal / mean reference signal. Because the LI-COR LI-200 transfer reference and test pyranometers are of identical model type, the indoors calibration condition in principle has no adverse blas on the sensitivity transfer from the reference pyranometer to the test pyranometer.

REFERENCE PYRANOMETER

: LI-COR LI-200 S/N: PY55910

The above LI-COR LI-200 calibration transfer reference pyranomotor has been calibrated outdoors in New York on Nov. 28, 2007 under clear sky conditions against a collocated Kipp & Zonen CM21 pyranometer. s/n 990631, in the horizontal global hemispheric mode.

The CM21 reference pyranometer was calibrated on June 8, 2007 outdoors by National Renewable Energy Laboratory, Goiden CO, against a WRR traceable Primary Standard HF Cavity Radiometer via component summation technique (normal incidence SW direct + global SW diffuse). The derived sensitivity of the CM21 reference pyranometer is normalized tor 45" direct beam response.

OTHER TEST EQUIPMENT

Keithley 2000 Multi-Meter, Calibrated: April 4, 2007

IN CHARGE OF TEST

Robert Dolce, Nov. 29, 2007, Bohemia, NY

Notice:

This calibration certificate is valid for one year upon customer receipt, or instrument deployment. Although the dato of calibration and customer receipt/deployment date may differ, the instrument does not suffor from any sensitivity drift effect while packaged and shielded from solar or visible radiation; also refer to the 'non-stability' performance (max, sensitivity / year drift) in the radiometer specifications list.

CALIBRATION PROCEDURE 18801/18810 ANEMOMETER DRIVE

DWG: CP18801(A)

 REV:
 C101107
 PAGE:
 2 of 3

 BY:
 TJT
 DATE:
 10/11/07

 CHK:
 JC
 W.C.
 GAS:12

CERTIFICATE OF CALIBRATION AND TESTING

MODEL: SERIAL NUMBER:

18801 (Comprised of Models 18820 Control Unit & 18830 Motor Assembly)

R. M. Young Company certifies that the above equipment was inspected and calibrated prior to shipment in accordance with established manufacturing and testing procedures. Standards established by R.M. Young Company for calibrating the measuring and test equipment used in controlling product quality are traceable to the National Institute of Standards and Technology.

Nominal Motor Rpm	Output Frequency Hz {1}	Calculated Rpm (2)	Indicated Rpm (3)
600	320	600	600
1200	640	1200	1200
2400	1280	2400	2400
4200	2.240	4200	4200
6,000	3200	6000	6000
8,100	4320	8100	8100
9,900	52.80	9900	9900
XC	lockwise and Counte	rclockwise rotation ve	ritled

(1) Measured at the optical encoder output,

(2) Frequency output produces 32 pulses per revolution of motor shaft.

(3) Indicated on the Control Unit LCD display.

* Indicates out of tolerance

X No Calibration Adjustments Required

	As	Found
--	----	-------

🗌 As Left

Traceable frequency meter used in calibration Model: DP5740 SN: 4863

Date of inspection Inspection Interval

One Year

16 JAN 2008

Tesled By EC

Flename CP19801(A) das.

Appendix B Performance Audit Field Data Sheets

DIREC	As Found	DIT SHE	ET			Meteoro P: 801.474	logical Soluti 3.3826 F: 801.4
Operator	Но	mestake Minir	ng	_ Dat	e <u> </u>	Start Time	0845 D/
Site Name Project	Gra	nts, New Mex	ico	Stn I	D	Stop Time_	1530 D
	····	710207-20		- 01161		Iomestake with	ang
Sensor Mfg Qualimetrics		_ V	VD Sensor Model		2020		
Serial No.	arm Alignment	2881	1/00	- V	VD Sensor Ht (m)	260) (33')
Site Declina	tion (degrees)	270 10°	<i>"3</i> 0	- Vane par	allel to crossarm=	0	uegrees 0/120
Last Calibration Date				WD Shaft I	Rotational Torque	<4 (gm-ccm
AUDIT (deg) North East South West	INPUT (deg) 0/360 90/450 180/540 270	CLOCKV DAS (v)	VISE DAS RE DAS (deg) 536.0 117.0 255.0 397.0	SPONSE DIFF (deg) 536.0 27.0 75.0 127.0	COUNTERCLO DAS (V)	0CKWISE DAS DAS (deg) 533.0 118.0 255 395.0	RESPONS DIFF (deg 533.0 28.0 75.0 125.0
udit Criteria:	А А	lignment with inearity Test:	true North: ± 5	5 degrees			
WD WI WD	Audit Device Audit Model _0 Audit Serial #	Met One 40 Template NA		Comments:	Brunton 5008 Po Waters Torque 3	cket Transit # 5 66-1M #3950	5060803362

Ĩ

HORIZONTAL WIND	
DIRECTION AUDIT SHEET	

After Datalogger Programming Change and Bearing Replacement

Operator	Homest	ake Mining	Date	5/28/2008	Start Time	0845 DAS
Site Name	Grants, I	New Mexico	Stn ID		Stop Time	1530 DAS
Project	AQ	07-28	Client		Stop Time 1530 DAS Homestake Mining 10 (33') Model 2020 Ht (m) 10 (33') nge 0- 360 degrees sarm= 90/269 50 m cm	
Sensor Mfg	Qua	alimetrics	WD	Sensor Model	2	020
Serial No.	2	881	WD	Sensor Ht (m)	10	(33')
Crossarm	Alignment	270/90	WD Se	nsor Range 0-	360 d	egrees
Site Declination	n (degrees)	10°	Vane paralle	l to crossarm=	90	/269
Last Calib	ration Date		WD Shaft Rota	ational Torque	<3 g	Im-cm
			Star	ting Threshold		NA

AUDIT	INPUT	CLOCKW	ISE DAS RE	SPONSE	COUNTERCL	OCKWISE DAS	S RESPONSE
(dea)	(dea)	DAS (v)	DAS (deg)	DIFF (deg)	DAS (V)	DAS (deg)	DIFF (deg)
((403)		(dog)	(deg)	(*)	(dcg)	(ueg)
North	0/360		0.2	0.2		0.2	0.2
East	90/450		87.2	-2.8		87.5	-2.5
South	180/540		177.5	-2.5		178.2	-1.8
West	270		271.0	1.0		269.0	-1.0
Audit Criteria:		Alignment with Linearity Test: Starting Thresh	true North: ± ± 3 degrees old: <= .5 m	5 degrees /s	· · · · · · · · · · · · · · · · · · ·		
WD	Audit Device	Met One		Comments:	Brunton 5008 P	ocket Transit#	5060803362
W	O Audit Model	040 Template			Waters Torque	366-1M #3950	
WD	Audit Serial #	NA			New bearings in	stalled.	
–					Datalogger prog	ramming chang	ge due to
Audited By		W. Hauze			power failure Ju	ne 23, 2007.	

HC SPE	ORIZONT EED AUD As Found	AL WIND IT SHEET	Г			Meteorol P. 801.474	2257 S 1100 E Suite 203 SLC, UT 84106 SUC, UT 84105 SUC, U
Operator	Н	omestake Minir	ומ	Date	5/28/2008	Start Time	0845 DAS
Site Name	Gra	ants, New Mex	ico	– Stn ID		Stop Time	1530 DAS
Project		AQ07-28		Client		Homestake Min	ing
Sensor Mfg Serial No. Last Ca	libration Date	Qualimetrics Not readable		_ ws _ ws	Sensor Model Sensor Ht (m)	20 10	030 (33')
WS Shaft Rota	ational Torque	1.2 gi	m-cm	_ Sensor Star	rting Threshold	>0.:	5 m/s
AUDIT	INPUT	PRIMA	RY DAS RES DAS		BACKU	JP DAS RESPOI	NSE
(rpm)	(mph)	(V)	(mph)	(mph)	(V)	(mps)	(mps)
0.0	0.0		0.0	0.0			
300	15.9		227	211.1			
600	31.1		450	418.9	12.1		
900	46.2		675	628.8			
1500	76.5		1125	1048.5			
1800	91.65		1345	1253.4			
Audit Criteria:	I	± 0.25 m/s whe ± 5% when ws	en wind speed >5 m/s	<= 5 m/s		l	
WS WS	Audit Device S Audit Model S Audit SER #	R M Young 18811 CA01889		Comments	Waters Torque Incorrect datalo	366-3M #3618 gger program	
Audited By		W. Hauze					

HC SPI After Da	DRIZONT EED AUD talogger Prog and Bearing	AL WIND IT SHEE ramming Cha Replacement	T ange			Meteoror P: 801.474	2257 S 1100 E Suite 203 SLC, UT 84106 SUC, UT 84106 Object Solutions Inc. 4.3826 F: 801.474.0766
Operator	H	omestake Mini	ng	_ Date	e <u>5/28/2008</u>	Start Time	0845 DAS
Site Name	Gr	ants, New Mex	rico	Stn IE)	Stop Time	1530 DAS
Project		AQ07-28		Clien	t	Homestake Min	ling
Sensor Mfg Serial No		Qualimetrics	,,	W	S Sensor Model	2	030
Last C	alibration Date	Hotreadable		_	WS Range 0-	10	(33)
WS Shaft Rot	ational Torque	<0.1 ç	gm-cm	_ Sensor Sta	Inting Threshold	<u> </u>	5 m/s
AUDIT	INPUT	PRIMA DAS	ARY DAS RES		BACKU	JP DAS RESPO	NSE
(rpm)	(mph)	(V)	(mph)	(mph)	(v)	(mps)	(mps)
0.0	0.0	<u>-</u>	0.0	0.0			
300	5.8		5.89	0.09			
600	15.9		15.9	0.0			
900	31.1		31.1	0.0			
1200	46.2		46.2	0.0			
1500	76.5		76.5	0.0			24
1800	91.65		91.65	0.0			
Audit Criteria:		± 0.25 m/s whe ± 5% when ws	en wind speed >5 m/s	<= 5 m/s	L	I	
ws ws Audited By	S Audit Device _ S Audit Model _ S Audit SER # _	R M Young 18811 CA01889 W. Hauze		Comments	Waters Torque New bearings in program upload	366-3M #3618 nstalled. Correct led.	datalogger
					-		

BARON	METRIC AUDIT S As Found	PRESSU HEET	RE			Meteorolog P. 801.474.3	SLC, UT SLC, UT SLC, UT SLC, UT SLC, UT SLC, UT SLC, UT SLC, UT
Operator Site Name Project	H Gr	omestake Mini ants, New Mex AQ07-28	ng kico	Date Stn IE Clien	e <u>5/28/2008</u>)) t <u>H</u> (Start Time Stop Time	1147 DA 1445 DA ning
Sensor Mfg Serial No Recordin Last Cali	g Resolution	Weathertronic: 7112 12/7	s /2007		Sensor Ht (m)	8.8	(29')
AUDIT IN	NPUT (in. Ha)	PRIMA DAS (V)	ARY DAS RESI DAS (in Ha)	PONSE % DIFF	BACKU DAS	P DAS RESP DAS (in Ha)	ONSE % DIFF
1147	23.63		23.46	-0.72		(
1340	23.58		22.85	-3.10			
1401	23.57		22.85	-3.05			
1445	23.56		23.35	-0.89			
			Abs. Avg. =	1.94			
Audit Criteria: 3	mbar						
Gauge / Gauge Gauge /	Audit Device Audit Model Audit SER #	Vaisala PTB101B A1950021		Comments	Sensor failed	audit.	

As F	ound Millibar	Conversion	1			Meteorologi	cal Solutio
						P. 801.474.38	26 F: 801.4
Operator	Но	mestake Mir	nina	Dat	te 5/28/2008	Start Time	е 1147 Г
Site Name	Gra	ints, New Me	exico	. Stn I	D	Stop Time	1445 E
Project		AQ07-28	· · · · · · · · · · · · · · · · · · ·	Clie	nt He	omestake Min	ing
Sensor Mfa	v	Veathertronic	cs				
Serial No.		7112			Sensor Ht (m)	8.8	(29')
Recordin	g Resolution						(
Last Cal	ibration Date	12/	7/2007				
		127					
		PRIM	IARY DAS RESF	PONSE	BACKU	JP DAS RESI	PONSE
		DAS	DAS	DIFF	DAS	DAS	DIF
Time	(mb)	(v)	(mb)	(mb)	(V)	(mb)	(mb
1147	800.2		794.4	5.80			
1340	798.5		773.8	24.70			
1401	798.2		773.8	24.40			
1445	797.8		790.7	7.10			
			Abs. Avg. =	15.5			
udit Criteria: ±	3 mb				- I		L
			<u></u>				
Gauge	Audit Device	Vaisala	_	Comments	Sensor failed	audit.	
Gauge		FIDIVIB	_		.		

RELAT	TIVE HU DIT SHI As Found					Met P: 80	2257 S 110 Suite 2 SLC, UT 841
Operator Site Name Project Sensor Mfg Sensor Model Serial No. Range Last Cali	Ho Gra	omestake Min ants, New Me AQ07-28 Vaisala HMP45AC NA 0-100%	ing xico	Date Stn ID Client	9/26/2007 Ho	Start Time Stop Time mestake Mir 9.4 (31' A	<u>15:09</u> <u>17:05</u> ning .GL)
AUDIT DAS (Time)	INPUT (%)	PRIMAR DAS (V)	Y DAS RES DAS (%)	SPONSE DIFF (%)	BACKL DAS (v)	JP DAS RES DAS (%)	PONSE DIFF (%)
925	39.3		39.1	-0.2			
1145	22.2		22.2	0.0			
1341	9.3		9.3	0.0			
Audit Criteria: Rel. Humidity A Rel. Humidity Rel. Humidity Audited By	± 10% RH Audit Device Audit Model Audit SER #	Vaisala HMP45AC W1630084 W. Hauze		Comments - - -			

RELATIVE HUMIDITY AUDIT SHEET

After Sensor Replacement

Operator	Homestake Mining	
Site Name	Grants, New Mexico	
Project	AQ07-28	
Sensor Mfg	Vaisala	
Sensor Model	HMP45AC	
Serial No.	C5110079	
Range	0-100%	

Date	9/26/2007	Start Time	15:09
Stn ID		Stop Time	17:05
Client	Но	mestake Minii	ng

Sensor Ht. (m): 9.4 (31' AGL)

Last Calibration Date

AUDIT	INPUT	PRIMA	RY DAS RES	PONSE	BACKUP DAS RESPONSE			
DAS		DAS	DAS	DIFF	DAS	DAS	DIFF	
(Time)	(%)	(v)	(%)	(%)	(v)	(%)	(%)	
1402	7.4		7.7	0.3				
1443	6.3		6.5	0.2				
						-		
Audit Criteri:	± 7% RH				I			

Rel. Humidity Audit Device Vaisala Rel. Humidity Audit Model HMP45AC Rel. Humidity Audit SER # W1630084 Comments

New sensor installed; Vaisala C5110079.

Audited By _____ W. Hauze

SO	LAR RAD AUDIT SH As Found	IEET				Meteorol P. 801.474	ogical Soli
Operato Site Name Projec	r <u> Ho</u> eGra t	mestake Min nts, New Me AQ07-28	ing kico	DateStn ID Client	5/28/2008 Hom	_ Start Time _ Stop Time estake Mining	0925 DAS 1440 DAS
Sensor Mfg Serial No Range Last Ca	alibration Date	Li-Cor PY31168 1400 watts/n 5/16/	1 ² 2007	-	Sensor Mode Sensor Ht. (m)	l <u>LI2</u>) <u>2 (6</u>	00X .56')
AUDIT INPUT			DAS RESPONSE (watts/m^2)		DAS RESPONSE (watts/m^2)		
Time	(watts/m^2)	(Ly/min)	(volts)	(watts/m^2)	(diff %)	(watts/m^2)	(diff)
935	894		· ·	928	3.8%		
957	948			978	3.2%		
1146	1106			1126	1.8%		
1342	1042			1050	0.8%		
1400	1005			1012	0.7%		
1440	915			919.5	0.5%		
					1.8%		
udit Criter	± 5%						
r Radiatior ar Radiatio ar Radiatio	n Audit Device n Audit Model n Audit SER #	Li Cor Li200x PY56373		Comments	**************************************		

PRECIPITATIO AUDIT SH As Found	N GAUG IEET	E			Meteory P: 801.47	SLC. SLC. Diogical Solu 4,3826 F: 801
Operator H	omestake Mini	ng	Date	5/28/2008	Start Time	1410 DA
Site Name Gr	ants, New Mex	(ico	Stn ID		Stop Time	1445 DA
	AQ07-20				Homestake Mir	ning
Sensor Mfg	Weathertronic	s		Sensor Model	6	011
Serial No.	374	·····		Sensor Ht (m)	0.43	(17"AGL)
Recording Resolution	1 TIP =	= 0.01 in	Ga	uge Range 0	unl	imited
Last Calibration Date			Fu	nnel size (cm) _	2(D cm
AUDIT INPUT	PRIMA DAS	ARY DAS RES	SPONSE	BACKU DAS	P DAS RESPO DAS	NSE % DIF
(in.)	(v)	(in.)		(v)	(in.)	
80 ml		0.1				
85 ml		0.1				
82 ml		0.1				····
Ave. = 82.3 ml = 0.1031		0.1	-3.0			
Audit Criteria: ± 10% of input						<u></u>
Gauge Audit Device Gauge Audit Model Gauge Audit SER #	Pyrex 100 ml grad cy 3024	yl	Comments _	Kimax 50 ml gr	ad cyl	
Audited By	W. Hauze					

1	FEMPERA AUDIT S As Four	ATURE HEET ^{Id}				Meteor P: 80143	2257 S 1100 E Suite 203 SLC, UT 84106
Operator Site Name Project	Operator Homestake Mining Site Name Grants, New Mexico Project AQ07-28			Date Stn ID Client	5/28/2008	Start Time Stop Time Homestake Mi	1143 DAS 1441 DAS ning
Sensor Mfg Serial No. Range Last Ca	alibration Date	Vaisala NA -40 to 60 °C		- - -	Sensor Model _ Sensor Ht (m) _	9.5	IP45AC (31.17")
AUDIT (Time)	INPUT (°C)	PRIMA DAS (V)	RY DAS RESI DAS (°C)	PONSE DIFF (°C)	BACKU DAS (V)	JP DAS RESPO DAS (°C)	DNSE DIFF (°C)
1143	23.9		23.2	0.7			
Audit Criteria: Temperature Temperature Temperature Audited By	± 0.5 °C Audit Device e Audit Model ∋ Audit SER #	Brooklyn 6661 C404690 W. Hauze		Comments:			

	_
	ſ
	ŀ
	L

Operator	Homestake Mining			Date	5/28/2008	Start Time	11
Site Name	G	Grants, New Mexico		Stn ID		Stop Time	14
Project		AQ07-28		Client		Homestake Mini	ing
Sensor Mfg		Vaisala			Sensor Model	HMP	245AC
Serial No.		C5110079)		Sensor Ht (m)	9.5 (3	31.17"
Range		-40 to 60 °C				**************************************	
Last Ca	libration Date						
AUDIT	INPUT	PRIM	ARY DAS RESP	ONSE	BACKU	JP DAS RESPO	NSE
(Time)	(°C)	DAS (V)	DAS (°C)	DIFF (°C)	DAS (v)	DAS (°C)	l
1408	27.8		27.4	-0.4			
1441	28.8		28.6	-0.2			
			Absolute Avg.	0.3			
	10						
Audit Criteria:	± 0.5 °C						

Temperature Audit Device Brooklyn Temperature Audit Model Digital 6661 Temperature Audit SER # C404690

Comments:

New temperature sensor installed;

Audited By W. Hauze

Meteorological Solutions Inc. P. 801.474.3826 F: 801.474.0766

DIFF

(°C)

2257 S 1100 E Suite 203 SLC, UT 84106

Date	5/28/2008	Start Time	1143 DAS	
in ID		Stop Time	1441 DAS	
lient	Homestake Mining			

Sensor Model	HMP45AC		
Sensor Ht (m)	9.5 (31.17")		

TEMPERATURE AUDIT SHEET After Sensor Replacement

Vaisala C5110079

