

Construction Quality Assurance Report Lake One Reclamation Chino Mines Company – Hurley, New Mexico

September 19, 2014

Submitted to:

Chino Mines Company 99 Santa Rita Mine Road Vanadium, New Mexico 88023 Prepared by:

EMC² 1819 East Morten Avenue, Suite 100 Phoenix, Arizona 85020

TABLE OF CONTENTS

ENGI	NEER'S CERTIFICATION	'i
1.0	INTRODUCTION	1
1.1	Background	2
1.2	Construction Summary	2
1.3	Design Clarifications and Changes to CDQAP Design	3
2.0	LAKE ONE RECLAMATION CONSTRUCTION ACTIVITIES	3
2.1	Pre-Earthwork Activities	3
2.	1.1 Well Abandonment and Modification	3
2.	1.2 Slag Pile Seep Collection System	4
2.2	Subgrade Earthwork Activities	4
	2.1 Slag Pile Subgrade	4
	2.2 Lake One Subgrade	
2.3		
	3.1 Borrow Material	
	3.2 Processed Riprap	
2.4	Cover Placement	
2.5	Channel Construction	
	5.1 Top Surface Channels	
	5.2 Outslope Channels	
	5.3 Down Drains	
	5.4 Culverts5.5 General Site Drainage	
2. 2.6	Revegetation	
2.0	Borrow Areas	
2.7	Wildlife Habitat Features	
3.0	CONSTRUCTION QUALITY CONTROL AND QUALITY ASSURANCE	
3.1	Subgrade Regrading	
3.2	Cover Material	
3.3	Channel Construction1	1
3.4	Riprap	2
3.5	Revegetation1	2
3.6	Articulated Concrete Block1	
3.7	HDPE Liner1	
3.8	Culverts1	3
4.0	CONCLUSIONS	3
5.0	REFERENCES1	3

LIST OF TABLES

Table 1: Construction Milestones

LIST OF DRAWINGS

- Drawing 1: Cover Sheet
- Drawing 2: Index Sheet
- Drawing 3: Original Topography Sheet 1 of 2
- Drawing 4: Original Topography Sheet 2 of 2
- Drawing 5: Post Reclamation Topography Sheet 1 of 2
- Drawing 6: Post Reclamation Topography Sheet 2 of 2
- Drawing 7: Final Cover Cut and Fill Isopach Sheet 1 of 2
- Drawing 8: Final Cover Cut and Fill Isopach Sheet 2 of 2
- Drawing 9: Cover Thickness Map Sheet 1 of 2
- Drawing 10: Cover Thickness Map Sheet 2 of 2
- Drawing 11: Channel Designations and Centerline Stationing Sheet 1 of 2
- Drawing 12: Channel Designations and Centerline Stationing Sheet 2 of 2
- Drawing 13: Channel Profiles Sheet 1 of 5
- Drawing 14: Channel Profiles Sheet 2 of 5
- Drawing 15: Channel Profiles Sheet 3 of 5
- Drawing 16: Channel Profiles Sheet 4 of 5
- Drawing 17: Channel Profiles Sheet 5 of 5
- Drawing 18: Down Drain Profiles Sheet 1 of 1
- Drawing 19: Outslope Channel Profiles Sheet 1 of 3
- Drawing 20: Outslope Channel Profiles Sheet 2 of 3
- Drawing 21: Outslope Channel Profiles Sheet 3 of 3
- Drawing 22: General Sections Sheet 1 of 2
- Drawing 23: General Sections Sheet 2 of 2
- Drawing 24: Channel Sections Sheet 1 of 2
- Drawing 25: Channel Sections Sheet 2 of 2
- Drawing 26: Channel Typical Details
- Drawing 27: Watershed Overview (within Lake One Reclamation Boundary)
- Drawing 28: Seep Collection System Profile and Details
- Drawing 29: Culvert Crossing Plan, Profile and Details
- Drawing 30: Lined Channel Plan and Details

LIST OF APPENDICES

Appendix A	Design Clarifications
Appendix B	Laboratory TestingAppendix B.1Proctor Test ResultsAppendix B.2Riprap Testing
Appendix C	Field Test DataAppendix C.1Nuclear Density TestingAppendix C.2Riprap Thickness Checks
Appendix D	State Cover Thickness Table and Maps
Appendix E	Cover Quality Assurance Test Data
Appendix F	Seeding and Mulching Summary Report
Appendix G	Photographic Documentation
Appendix H	ACB Record Documentation

Engineer's Certificate State of New Mexico

I, Travis S. LaBlanc, P.E., hereby certify that I am a professional engineer licensed in the State of New Mexico, qualified in Civil Engineering, that the accompanying Lake One Reclamation Construction Quality Assurance Report (CQAR), including the as-built record drawings, was prepared by me or under my supervision. Further, I hereby certify that closure closeout of the Lake One Reclamation project was conducted in compliance with the Lake One Reclamation Construction Design Quality Assurance Plan.

	V	VIS S	BOU	À	-
-		ANN ME.	lico	E	, License Number 17215
EMC^2	LICE	(1721	5	ER.	
Date submitted:	1200	PROFESS	ONAL		

1.0 INTRODUCTION

Freeport-McMoRan Chino Mines Company (Chino) has completed the Lake One Reclamation project at the Chino Mine located on the east side of the town of Hurley in Grant County, New Mexico (NM). The Lake One Reclamation project includes the Lake One tailing area and the Slag Pile. This document provides the Construction Quality Assurance Report (CQAR) for the Lake One reclamation work.

The Lake One reclamation generally included: material import, placement and regrading to achieve positive drainage in the project area; constructing surface water controls; placing a minimum three foot thick cover; and revegetation. The project reclamation area is approximately 249 acres. The project's northern area is located in Sections 31/32, Township 18 South, Range 12 West. The project area elevations range from 5,670 to 5,545 feet in the northern and southern areas, respectively. The reclaimed Slag Pile is located in the project's northwestern area. The project's eastern area is bound by rolling, rocky native terrain referred to locally as "Razorback Ridge". The project's western area is bound by Chino Mine operation facilities. The project area drains to the 1916 Whitewater Diversion Channel at the southeast corner of Lake One. Drawing 1 provides a site location map and aerial detailing the project boundary.

This CQAR was prepared to document that reclamation activities were performed consistent with the Lake One Reclamation Construction Design Quality Assurance Plan [(CDQAP) EMC², September 2012]. The CDQAP was developed to meet project closeout requirements established in: the NM Mining Act (NMMA); the NM Environment Department's (NMED) Supplemental Discharge Permit for Closure DP-1340 (DP-1340); and NM Mining and Minerals Division (MMD) Permit Revision 01-1 to Permit No. GR009RE (GR009RE). The CDQAP was approved by NMED and MMD on December 12, 2012. Condition 18 of DP-1340 states that within 180 days of project completion, Chino shall submit a final Construction Design Quality Assurance (CDQA) report to NMED. The CDQA report shall include at a minimum: a summary of work conducted; as-built drawings; a final topographic map with no greater than two foot contour intervals for the top surfaces and no greater than ten feet for the outslopes; construction photographs; the location of borrow areas; soil testing results; and laboratory analytical reports. This CQAR represents the final CDQA for the Lake One reclamation and includes the above required documents as presented below in Sections 2 through 5 as well as in the attached Drawings and Appendices A through H.

Construction quality assurance (CQA) for the duration of the reclamation work was performed by EMC², the design Engineer of Record (EOR) firm. The primary construction contractor was Freeport-McMoRan Reclamation Services (FMRS). Construction quality control (CQC) during construction was provided by FMRS. Seeding and mulching was completed by FMRS. Contech Engineered Solutions LLC. (Contech) provided design for the articulated concrete block (ACB) mats placed as revetment in down drains on the Slag Pile. Golder Associates Inc. (Golder), contracted by Contech, performed CQA during the ACB mats installation. Riprap quarry operations and delivery of riprap to the site was performed by T.G. McCauley Construction. Additional activities performed by subcontractors under contract to FMRS included: Hamilton Construction Company (and their subcontractors Field Lining Systems, Inc. and Fusion Technologies, Inc.) who installed the utility corridor UC-3A culvert crossing at the southeast end of Lake One, and who constructed the utility corridor UC1 west of Lake One; Badger Western Exploration and Drilling Company (Badger Western) who performed monitoring wells decommissioning and adjustments; and 5D Mining & Construction, Inc. (and their subcontractor American Environmental Group Ltd) who installed the Slag Pile Seep Collection System and the high density polyethylene (HDPE) liner for the lined portion of Channel P1.

The attached Drawings illustrate pre- and post-reclamation grading, cover thickness, channel profiles and cross sections, down drain profiles, seep collection system details and corrugated metal pipe (CMP) culvert profiles and details. The attached appendices include the following summaries: Appendix A - EOR design clarifications issued during construction; Appendix B - laboratory results for proctor and riprap testing; Appendix C - field testing data results; Appendix D - cover thickness checks; Appendix E - cover material physical properties; Appendix F - seeding and mulching; Appendix G – construction photographs organized by activity and date; and Appendix H - ACB design record drawings and Golder's ACB mats construction certification letters.

1.1 Background

Lake One was created in 1910 to collect and store water for use by the Hurley Mill. The lake was created by constructing an earthen dam to impound surface water runoff from Whitewater Creek. Over time Lake One gradually accumulated sediments from Whitewater Creek and later tailing from the mill. Around 1942 the mill began thickening the tailing as a water conservation measure. By 1955, the water from Lake One had become unsuitable for use in the mill and was sent to the thickeners to be neutralized by excess alkalinity in the tailings. Use of water from Lake One was discontinued in 1981 and the Hurley Mill was shut down in 1982. In 1984, flows from Whitewater Creek were diverted around the eastern side of Lake One. In 2003, Whitewater Creek was diverted along an engineered channel cut into the volcanic bedrock north of Razorback Ridge, through James Canyon and a volcanic bedrock ridge east to Bolton Draw. Chino mined tailing from Lake One for copper recovery between 2003 and 2009. A smelter was built adjacent to Lake One in 1939 and the Slag Pile was developed by depositing slag onto the flanks of the northwestern portion of the lake. The smelter was demolished in June 2007. In 2012, Chino initiated plans to reclaim inactive facilities including Lake One and the Slag Pile.

1.2 Construction Summary

The Lake One reclamation work was performed from April 2013 through August 2014 in accordance with the design requirements included in the CDQAP. Table 1 provides milestones for the main construction activities.

Earthwork activities began in April 2013 with Lake One tailing subgrade regrading. Well closure activities began in May 2013 and consisted of grouting and abandoning two adjacent monitoring wells at the Slag Pile toe (one deep and one shallow) where the reclamation design

required approximately 20 feet of backfill. Nine other monitoring wells within the Lake One reclamation area were modified by either extending or shortening well casings to match final grade. Monitoring well abandonment was completed in May 2013 and well modifications were completed in July 2014. The Slag Pile seep collection system construction began in May 2013 and was completed in October 2013.

Slag Pile top and slope subgrade surface regrading began in May 2013. Final regrading of the Lake One tailing and Slag Pile subgrade was completed in June 2014. Placement of cover material from designated borrow sources began in August 2013 and was completed in July 2014. Surface water channel construction, riprap, ACB mats placement and Channel P1 HDPE liner began in August 2013 and was completed in August 2014.

Activity	Start Date	End Date
UC-3A Culvert Crossing	July 2012	August 2012
Subgrade Earthwork	April 2013	June 2014
Well Closures and Modifications	May 2013	July 2014
Slag Pile Toe Seep Collection System	May 2013	October 2013
Riprap Production and Placement	May 2013	July 2014
Cover Borrow	August 2013	July 2014
Channel Construction	August 2013	August 2014
Revegetation	March 2014	June 2014

TABLE 1 – CONSTRUCTION MILESTONES

1.3 **Design Clarifications and Changes to CDQAP Design**

During the course of construction, design clarifications (DCIs) were issued to document: additional details for the design; minor field fit conditions; and modifications to design details to accommodate constructability, equipment constraints and field conditions. All DCIs issued conformed to the design criteria and did not deviate from the intent of the CDQAP. Appendix A Table A-1 summarizes the DCIs that were issued during construction. The DCIs are maintained in Chino and EMC^2 project files.

2.0 LAKE ONE RECLAMATION CONSTRUCTION ACTIVITIES

2.1 **Pre-Earthwork Activities**

2.1.1 Well Abandonment and Modification

Well abandonment activities were initiated and completed in May 2013 and consisted of grouting two monitoring wells. Wells 214-03-1D and 214-03-1S, shown on Drawing 3, were abandoned because they were located at the toe of the Slag Pile where the reclamation design required approximately 20 feet of backfill. Nine other monitoring wells within the Lake One project area, shown on Drawings 3 and 4, were modified by either extending or shortening

casings to match final grade as specified in the CDQAP Monitoring Well Summary. Monitoring well modifications were completed in July 2014. Badger Western, a NM licensed well driller, performed the well abandonment and modification work per the NMED well construction and abandonment guidelines. Well abandonment and modification records are maintained in Chino and EMC^2 project files and are available upon request. The following table summarizes the well abandonment on Lake One.

Well Number	Latitude	Longitude	Hole Depth (ft)	Water Depth (ft)	Depth of Cement Grout (ft)	Cubic Feet of Grout
214-2003-1D	N 32° 42' 09.30"	W 108° 07' 01.00"	82	36	82	11.23
214-2003-1S	N 32° 42' 09.30"	W 108° 07' 00.80"	35	26	35	7.50

2.1.2 Slag Pile Seep Collection System

A seep collection system was constructed at the toe of the Slag Pile and consisted of a geotextile wrapped PVC perforated drain pipe placed within a 2.5-foot-thick gravel drain rock layer wrapped in a non-woven geotextile. A HDPE liner was installed under the non-woven geotextile along the east side of the drain to promote drainage through the seep collection system. The seep collection system drains from the northeast corner of the Slag Pile to the existing Lower Lined Pond at the southeast corner of the Slag Pile. The seep collection system slopes at approximately 0.5 percent (%) or steeper consistent with the CDQAP. Drawing 28 provides the seep collection system details.

2.2 Subgrade Earthwork Activities

Subgrade work involved backfill and/or regrading to create a subgrade surface with a series of channels that convey flow to a central channel (Channel P1). Channel P1 drains southeast into the 1916 Whitewater Diversion Channel.

2.2.1 Slag Pile Subgrade

The pre-reclamation Slag Pile was approximately 100 feet tall, had a top elevation at approximately 5,670 feet and nominal 1.5-foot-horizontal-to-1.0-foot-vertical (1.5H:1V) south and east facing slopes. The Slag Pile's outer slopes were regraded by excavating the stockpile crest and filling at the toe to achieve a cut-to-fill material balance consistent with the design. The Slag Pile fill material (including slag material and/or grading fill) was placed in controlled lifts. Drawing 7 shows the Slag Pile as-built final cover surface isopach cut/fill areas. The Slag Pile slopes were constructed with 23 foot wide benches as required for surface water channels and construction equipment access. The interslope bench angles were constructed at 3H:1V or flatter. The Slag Pile top was sloped to drain at a minimum slope of 0.5% by using import material.

Slag Pile regrading was performed from May 2013 through June 2014 using conventional construction equipment including bulldozers, haul trucks, and motor graders. Water trucks were

used for dust suppression and moisture conditioning of import fill materials. Regrading activities began on the south slope with local cut-to-fill placement and continued to the top surface of the Slag Pile. Subgrade regrading and import material was placed in accordance with the approved equipment method specifications for grading fill.

A 32-inch process pipeline that extended across the Slag Pile's top surface and north slope was maintained during reclamation because this is an active operational pipeline. The design drawings called for the north section of the pipeline to be buried in place while the south pipeline section was to be left undisturbed with berms provided for containment in the event of a pipeline leak. The south and north slope sections of the pipeline subgrade were constructed as designed. However, a portion of the north section of the pipeline that was to be buried was also left undisturbed and containment berms were placed in order for operations to maintain access and inspection of the pipeline.

2.2.2 Lake One Subgrade

The Lake One subgrade surface was constructed to provide positive drainage to channels. The final subgrade surface was constructed at a minimum 0.5% grade up to a 5% grade, as required by DP-1340. The Lake One subgrade surface was constructed by excavation and fill placement and importing grading fill. Fills were placed in controlled lifts. Drawings 7 and 8 show the Lake One as-built final cover surface isopach cut/fill areas.

Regrading was performed from April 2013 through June 2014 using conventional construction equipment including bulldozers, scrapers and motor graders. Water trucks were used for dust suppression and moisture conditioning of fill and cover materials. Regrading activities began in the center section of Lake One with local cut to fill operations. The majority of the cut material was placed in the fill areas at the south end of Lake One. Regrading and grading fill material was placed in accordance with approved equipment method specifications.

2.3 Borrow Activities

2.3.1 Borrow Material

As identified in the CDQAP and as shown on Drawing 1, borrow material for both grading fill and cover was obtained from three borrow areas: the Razorback Ridge Borrow Area (87 acres), the South James Canyon Borrow Area (90 acres), and Borrow Area B (43 acres). The borrow areas can be described as native soils, including alluvium and Gila Conglomerate. Localized surface areas on the Razorback Ridge Borrow Area and the South James Canyon Borrow Area with wind-blown tailing were removed and used as grading fill (i.e., below the base of the cover) within Lake One. Borrow material properties were checked daily by FMRS CQC and confirmed by EMC² CQA personnel to meet the requirements for cover material.

2.3.2 Processed Riprap

Lone Mountain Quarry, located about two miles west of the Town of Hurley in Grant County, NM, was the limestone riprap source for processed riprap. Riprap was produced by drilling,

blasting, crushing and screening to produce riprap bedding (ASTM C33 Grading Size No. 57 aggregate) and 3-inch, 6-inch and 8-inch D_{50} (i.e., median particle size) riprap. Following riprap placement, a smooth drum roller or excavator was used to complete the riprap placement. A 6-inch thick layer of riprap bedding was placed as a filter layer for the 6-inch and 8-inch D_{50} riprap sections.

2.4 Cover Placement

Cover placement work included excavation and hauling of cover materials from designated borrow areas. The entire Lake One reclamation area (~249 acres) received a minimum 3-foot-thick cover layer, excluding surface water channels. All surface water channels received a minimum 2-foot-thick layer of Gila Bedding material prior to any revetment placement. NMED, FMRS CQC, and EMC² CQA personnel verified cover thickness during excavation of test pits.

Prior to cover placement, the regraded subgrade was surveyed and compared to the design. Cover placement began in August 2013 and was completed in July 2014. Cover material was placed in a single uniform lift.

2.5 Channel Construction

Surface water channels are generally categorized into three types: top surface channels, outslope channels, and down drains. The majority of runoff from the Lake One reclamation area is conveyed through a series of channels to ultimately discharge into the 1916 Whitewater Diversion Channel via culverts located at the southeast corner of Lake One. Runoff from a small portion on the northwest end of the Slag Pile outslope/top surface area is conveyed via a top surface channel, a down drain, and two outslope channels to discharge to Whitewater Creek north of Lake One.

Channels were excavated into the subgrade surface as required to provide the design channel depth, including the required Gila Bedding and revetment thickness, and to achieve the design channel gradients. With the exception of the channels constructed in slag subgrade material, the channel subgrade bottom and side slopes were compacted to achieve a minimum density of 95 percent of the maximum Standard Proctor (ASTM D-698) dry density in the upper one foot. If materials were too wet to achieve suitable compaction, the materials were ripped and allowed to dry or the materials were over-excavated and replaced with suitable materials.

A minimum 2-foot-thick layer of Gila Bedding material was placed above the subgrade surface in the channels to create the required channel bottom width with 3H:1V side slopes (see Drawing 26 for typical channel details). The Gila Bedding material was moisture conditioned and compacted using method specifications to achieve a minimum density of 95 percent of the maximum Standard Proctor dry density.

Top surface channels and outslope channels were armored with riprap while down drains were armored with ACB mats. Drawings 11 through 21, 24 through 26, and 30 provide channel details, profiles and sections.

2.5.1 Top Surface Channels

Construction of top surface channels began in August 2013 and continued concurrent with regrading and cover placement activities. Channels were constructed starting with the southern and middle top surface channels progressing to the north, with the Slag Pile top surface channels completed last. Sections of Channel P1 Reach 4, Channel S1 Reach 2 and Channel S5 were constructed after the regrading and cover placement was completed in each area to facilitate haul truck traffic. Channel construction was completed in August 2014.

Approximately 13,700 linear feet of top surface channels were constructed. The completed Lake One top surface was graded to allow water to flow to the armored drainage channels. Grades range from 0.5% to 5%. There are seven top surface channels in the Lake One reclamation area, Channel P1 and Channels S1 through S6. Top surface channel designations and locations are shown on Drawings 11 and 12, with top surface channel profiles provided on Drawings 13 through 17.

Channel P1 receives the majority of runoff from Lake One with the exception of a small area on the northwest end of the Slag Pile outslope/top surface area where runoff flows into Down Drain 1 and Channel S7 for eventual discharge to Whitewater Creek. Channel P1 receives flow from several top surface channels located on the Lake One area and from Down Drain 2, located on the east slope of the Slag Pile. Channel P1 Reach 2 and a portion of Reach 3 are lined with an impermeable HDPE liner overlain with a geotextile fabric and cover material, designed to eliminate infiltration into Lake One. This lined portion of Channel P1 was constructed to allow stormwater to accumulate until it reaches an elevation where it will discharge to the 1916 Whitewater Diversion Channel.

All top surface channels received riprap armoring with various D_{50} sizes based on design requirements. The majority of top surface channels were constructed 2-foot deep with a 10-foot wide bottom. One top surface channel (Channel S1, Reach 1) was constructed with a 20-foot bottom width and 2-to-2.3 foot depth. All top surface channels were constructed with 3H:1V side slopes.

2.5.2 Outslope Channels

There are approximately 7,400 linear feet of outslope channels that convey runoff from the Slag Pile slopes into two down drains. Outslope channels were constructed on the outslope benches that were graded into the slag subgrade. The outslope benches were constructed to a nominal 23 foot width. Typical interbench slope lengths between outslope channels is approximately 100 feet. Outslope channels were constructed with a typical longitudinal slope of 2%. On top of the 2-foot thick Gila Bedding layer, all outslope channels received a 6-inch thick layer of 3-inch D₅₀ riprap to create a 10-foot wide channel bottom, 2-foot deep with 3H:1V side slopes. Typical outslope channel details are shown on Drawing 26.

2.5.3 Down Drains

Runoff from the top surface of the Slag Pile area, and runoff conveyed by outslope channels are collected by two down drains. Down Drain 1 conveys flow to a riprap lined channel (Channel S7) ultimately discharging to Whitewater Creek north of Lake One. Down Drain 2 conveys flow to Channel P1.

Down drains were constructed to be trapezoidal with 10-foot and 20-foot bottom widths, 3H:1V side slopes, and maximum longitudinal slopes of 27%. A 20-foot long riprap apron with 8-inch D₅₀ riprap was constructed at the outfall of Down Drain 2 to dissipate energy before flow enters Channel P1.

Down drains were cut into the regraded Slag Pile slope subgrade and received a minimum 2foot-thick layer of Gila Bedding material. A nonwoven geotextile was placed on the compacted Gila Bedding surface and covered with a 6-inch thick layer of No. 57 aggregate, a geogrid and Armorflex 40-T ACB class size mats as specified by Contech. The void spaces within and between the ACB blocks were filled with crusher fines. All construction methods followed the Contech plan details, specifications, recommendations and were field verified by Contech's CQA contractor (Golder). Final down drain CQA documentation provided by Contech/Golder is provided in Appendix H.

2.5.4 Culverts

As shown on Drawings 6, 12 and 29, Channel P1 discharges into six 48-inch diameter, 295-foot long CMP culverts that were constructed at the southeast corner of Lake One, under utility corridor UC-3A, to discharge directly into the 1916 Whitewater Diversion Channel.

A 6-inch backfill layer was placed over the subgrade and compacted to at least 95% of the maximum density prior to placement of the culverts in accordance with the grades and alignments indicated on the design drawings. Backfill around the culverts was a combination of compacted pipe backfill material between the two middle culverts and flowable grout fill placed on both sides of the culverts and to approximately one foot above the culverts.

2.5.5 General Site Drainage

Drawing 27 provides the post-reclamation site drainage patterns within the project area. The overall site drainage routes on-site surface water runoff via a series of channels and culverts into the 1916 Whitewater Diversion Channel. All off-site contributing watershed runoff from unreclaimed areas is intercepted by a utility corridor channel along the western edge of Lake One. The utility corridor channel generally follows the existing terrain, with a grade break approximately mid-way. The utility corridor channel flows into two existing HDPE-lined operational ponds (i.e., Lower Lined Pond and Elmo's Pond).

2.6 Revegetation

Seeding and mulching for the majority of Lake One occurred between March 2014 and June 2014. After completion of cover material placement, the cover was ripped and scarified to a depth of 8-to-12 inches in order to promote infiltration, reduce compaction and prepare the surface for seeding. Seeding was accomplished using a range drill. Long-stem, native grass hay mulch certified weed-free, was applied at a rate of at least two tons per acre and stabilized. After the mulch was spread, it was anchored 3-to-4 inches into the soil by straight coulter discs. Crimping operations were performed immediately following mulching on the contour on slopes and perpendicular to the prevailing winds on flat areas. The seed mix included cool and warm season grasses, perennial forbs and shrubs. All seeding activities and CQA activities performed in 2014 are documented in the Seeding Report included in Appendix F. Remaining Lake One areas (i.e., the Slag Pile and portions of the borrow areas) will be seeded and mulched in 2015.

2.7 Borrow Areas

Borrow areas were regraded with 3H:1V slopes or flatter. The final surface was then ripped, scarified, seeded, and mulched with the same techniques used for Lake One. The South James Canyon Borrow Area that is too coarse for revegetation equipment will be broadcast seeded in 2015.

2.8 Wildlife Habitat Features

Three wildlife habitat features were constructed on Lake One. The location of the wildlife features are shown on Drawings 5 and 6. The wildlife habitat features were constructed out of loosely stacked boulders in a 'V' configuration with the apex pointing west (the prevailing wind direction).

3.0 CONSTRUCTION QUALITY CONTROL AND QUALITY ASSURANCE

CQA was performed by EMC^2 in accordance with the CDQAP and the Issued For Construction (IFC) Drawings and Specifications. CQC during construction was performed by FMRS.

3.1 Subgrade Regrading

As shown on the as-built cut/fill isopach Drawings 7 and 8, regrading of the Lake One subgrade involved cuts and fills approximately 15-to-20 feet in thickness to establish design grades. The largest cuts were in the center of Lake One in the vicinity of Channel P1. The largest fills were in the northern section of Lake One. Lake One subgrade surface CQA visual inspection to verify that excessively wet or other unsuitable materials were not present. As-built survey data provided by FMRS CQC surveyors was reviewed by the EOR to verify that subgrade elevations were at or below the design grades prior to approving for cover placement.

Slag Pile outslope grading involved cut excavations up to approximately 60 feet and fills up to 40 feet in thickness.

CQA monitors observed regrade fill placement methods on a daily basis. All subgrade materials were placed according to the approved method specifications.

As-built survey information for the completed Slag Pile outslopes prepared by the FMRS CQC surveyors was reviewed and approved by the EOR to verify the slopes were at or below design grades prior to cover placement.

3.2 Cover Material

Lake One cover material was imported from the designated Razorback Ridge Borrow Area and Borrow Area B. Razorback Ridge Borrow Area material was initially confirmed for use as cover in the 'Borrow Materials Investigation and Cover Design Report' by Golder included in the CDQAP. This Golder report approved the materials at Razorback Ridge to a depth of 12 feet. Additional cover material testing was required below the 12-foot excavation depth. Testing of the cover material at depths below 12 feet was performed by EMC² and included test pits, visual classification of soil stratigraphy and analysis of laboratory samples. Results of testing performed by EMC² and reviewed by Golder confirmed Razorback Ridge material to a depth of 50 feet was suitable as cover material. The Razorback Ridge borrow materials were pH tested by FMRS CQC personnel.

Following placement of the cover material, an as-built survey of the cover surface was generated by FMRS CQC surveyors and provided to the EOR. The as-built subgrade survey information was compared to the as-built top of cover survey information and cover thickness isopach contours were developed to verify that the cover depth met the minimum thickness of 3 feet.

In addition to the isopach, the CQA monitor verified by measuring cover thickness in test pit excavations. Test pits were excavated using either a backhoe or excavator. Thirty (30) CQA test pits were selected using a random number generator linked to coordinates for grids spaced at 150-foot centers. Test pits were excavated to the cover-tailing or cover-slag contact, or to a maximum of 3.5 foot depth if no tailings/slag contact was encountered. To measure the test pit, the CQA monitor cleaned the face of the cover profile to expose the tailing or slag contact with a shovel. A grade bar was placed across the test pit to aid with thickness measurements. Vertical cover thickness measurements were made at four locations distributed evenly around the edge of the test pit. The average of the four cover measurements was recorded.

During test pit excavations, the cover material was classified in the field using the United States Department of Agriculture soil classification system. Field descriptions included rock fragment content (based on a percent volume basis). Additional notes on material continuity, consistency and surface conditions were also documented.

Cover material samples were collected in one-gallon Ziploc bags from the 0-to-6-inch interval and from the bottom one foot of the test pit to document the physical characteristics of the cover material. Rock fragments larger than 3 inches (cobbles or larger) were not included in the collected samples, but a field estimate of the total volume of rock fragments between 3 inches and 12 inches and greater than 12 inches was recorded. Samples were then sent to Energy Laboratories in Billings, Montana for textural and particle size analysis. Laboratory results are summarized in Appendix E.

A plan map with measured cover thicknesses was provided to NMED. Based on the map, NMED determined the location of an additional 137 test pits to confirm cover thickness. All test pits were excavated with NMED present. The final cover thickness drawings and tables detailing all the test pits performed are located in Appendix D. The cover materials met the 3-foot minimum thickness requirement at all test pit locations.

In addition to the thickness requirement, all cover material samples collected from the test pits met the suitability criteria outlined in the CDQAP. Texturally, the cover materials are predominantly classified as sandy loams and loamy sands with about 47% to 70% rock fragments by volume. Clay contents for the materials in the upper 6 inches ranged from 3% to 12% with a mean value of about 8%. Rock fragment volumes for the same 0-to-6-inch interval ranged from 47% to 70% with a mean value around 59%. All of the subsurface cover materials (lower one foot) met the project requirements. The physical characteristics in the subsurface materials did not vary significantly relative to those in the upper six inches as the cover was placed in one uniform lift. Clay content throughout the profile ranged from 3% to 16%. Rock fragment volumes for the subsurface cover materials ranged from 47% to 70% with a mean value around 59%.

3.3 Channel Construction

Following channel subgrade construction, as-built survey data provided by FMRS CQC surveyors was reviewed by EMC²'s EOR to verify subgrade elevations were at or below design grades. Channel subgrade was inspected to verify that there were no ruts and the surface was firm and dense. For channels in tailing subgrade, nuclear density testing was completed at nominal 250-foot centers along the channel centerline to verify the prescribed minimum density of 95 percent of the Standard Proctor maximum dry density. Nuclear density testing was not performed in channels constructed in slag subgrade due to the nature of the slag material. Following approval of the tailing subgrade grading and density test results by the CQA monitor, channels were approved for Gila Bedding placement.

After the Gila Bedding was placed and compacted, nuclear density testing was completed at nominal 250-foot centers along the channel centerline to verify that the channel met the prescribed minimum density of 95 percent of the Standard Proctor maximum dry density. The thickness of the Gila Bedding placed in the channels, as well as the channel dimensions, was verified by survey provided by FMRS CQC surveyors for review by the EOR. If the survey data indicated that two feet or greater of Gila Bedding was present above the as-built tailing subgrade surface, confirmation CQA test pits were excavated by the CQA monitor at nominal 500-foot centers. Also, CQC test pits were excavated for field verification at any reach where survey data indicated potentially thin areas of Gila Bedding thickness.

NMED accompanied EMC^2 during the CQA test pit excavations of Gila Bedding material. Additional confirmatory test pits were excavated at the discretion of NMED. The cover thickness plans on Drawings 9 and 10 and the "sign-off" cover thickness maps provided in Appendix D include the results of the Gila Bedding thickness checks.

3.4 Riprap

CQC testing of the riprap size gradation was performed at the quarry prior to transport and stockpiling at the project. Size gradation analyses for the 6-inch and 8-inch D_{50} riprap was performed using ASTM D 5519 test method B. The 3-inch D_{50} riprap testing was completed on both a weight basis (ASTM C 136) and particle size basis by measuring the intermediate dimension of a number of rocks. Durability testing was completed at a frequency of greater than the specified frequency of 1-per-5,000 cubic yards, including LA Abrasion (AASHTO T96), Sulfate Soundness (AASHTO T104), Adsorption and Specific Gravity (ASTM D4373) tests. A summary of the riprap size gradation and durability laboratory test results is provided in Appendix B.2.

Following approval of the Gila Bedding placement, riprap bedding (if required) and riprap was placed in the channels. CQA during riprap placement included visual inspection to verify maximum particle sizes, no voids and a smooth surface. For 6-inch and 8-inch D_{50} riprap channel areas, the riprap bedding thickness was checked by hand excavated test pits at nominal 500-foot spacing prior to riprap placement. Following placement, the riprap layer thickness was also checked at nominal 500-foot centers. The measured riprap bedding and riprap thickness results are provided in Appendix C.2.

Based on results of acid base accounting (ABA) tests (Soebek Method) completed during initial characterization activities of the Tailings Reclamation project, and because of the inherently high neutralizing capacity of the limestone material obtained from the Lone Mountain Quarry, additional ABA testing during Lake One construction was deemed unnecessary.

3.5 Revegetation

The adequacy of the seedbed preparation ripping was assessed by the CQA monitors at the commencement of the ripping and seed bed preparation activities and periodically during the course of these activities. Seeding and mulching methods and equipment were observed by the CQA monitors for general conformance with the project requirements. Copies of the daily seed tags were reviewed by CQC monitors and are on file with FMRS. The CQC Seeding Report for Lake One is included in Appendix F.

3.6 Articulated Concrete Block

Contech provided the IFC level design and CQA (subcontracted to Golder) for installation of the geotextile, No. 57 aggregate, geogrid, and ACB mats placed in the down drains. The record drawings and certification letters for the constructed ACB mats are provided in Appendix H.

3.7 HDPE Liner

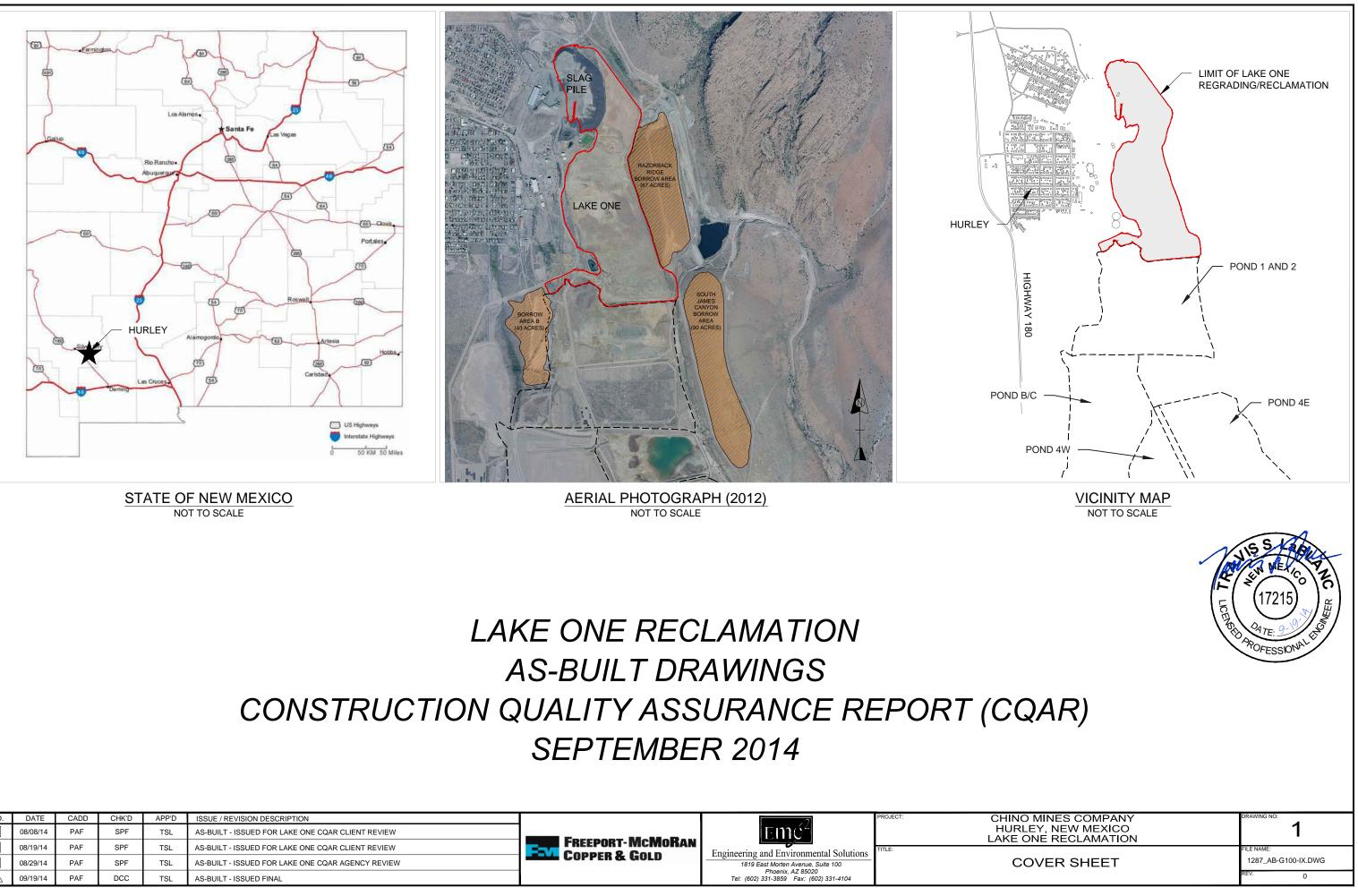
CQA for installation of the HDPE liner in the Slag Pile Seep Collection System and Channel P1 Reach 2 and a portion of Reach 3 included material verification prior to delivery, continuous observation during construction, destructive testing and non-destructive testing. The EOR verified the liner material resin and components were tested and in compliance with the applicable standards during manufacturing. Continuous observation by the CQA monitors verified the placement procedure was in compliance with the manufacturer's installation recommendations. Destructive testing included test weld samples and random in-place weld samples for every 500 linear feet of weld. Non-destructive testing included pressure testing of all welded seams and vacuum testing of all patches.

3.8 Culverts

CQA for the utility corridor UC-3A culvert crossing work included verification of the as-built culvert materials, dimensions and inlet/outlet elevations.

4.0 CONCLUSIONS

Based on the results of CQA observations, field measurements, testing, and review of the CQC data presented in this CQAR, the Lake One reclamation is in compliance with the requirements of the CDQAP and IFC Drawings and Specifications. All design clarifications made to the original design that occurred during construction are documented in Appendix A and comply with the design criteria and design intent presented in the CDQAP.


5.0 **REFERENCES**

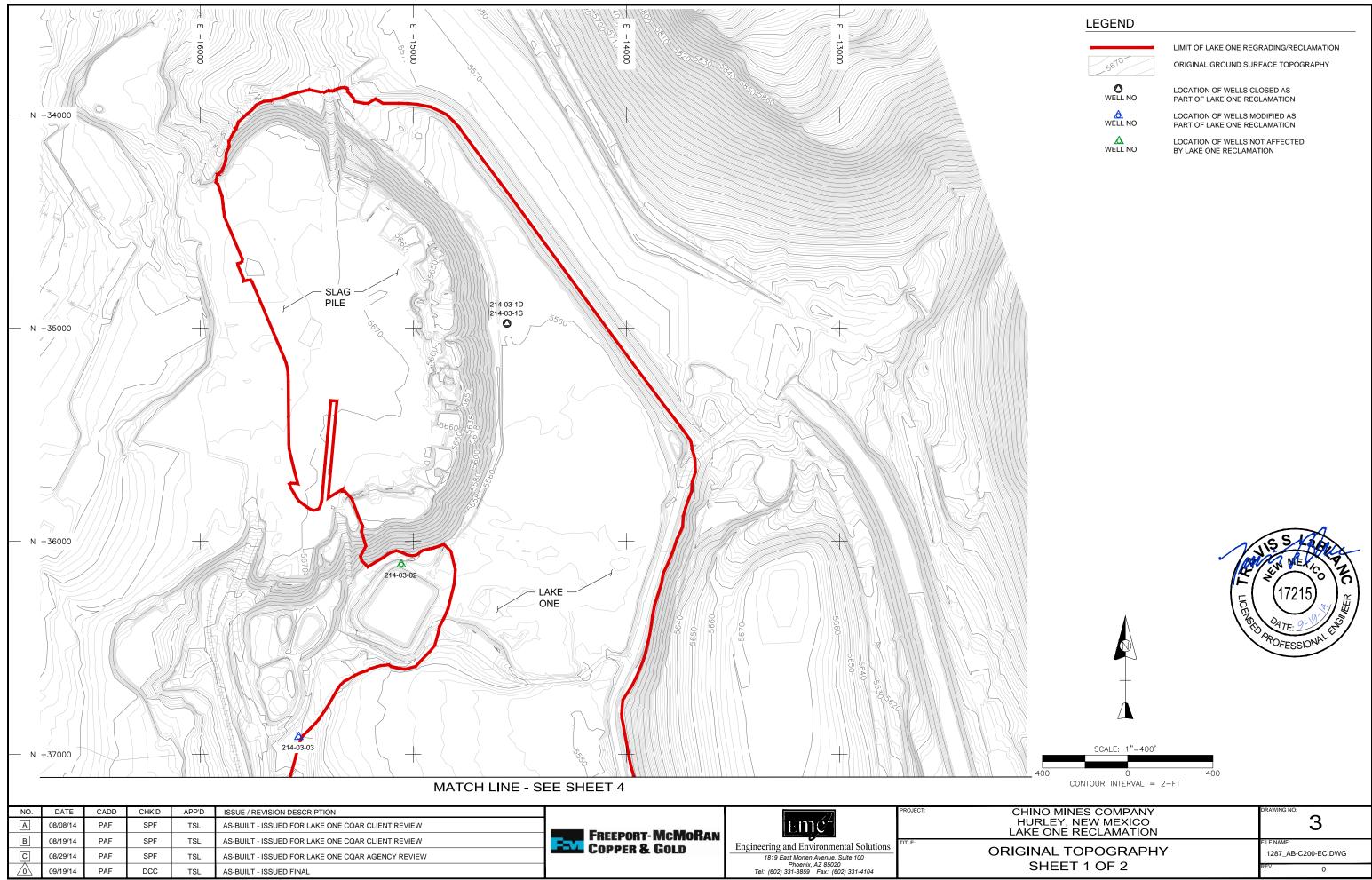
- CDQAP, 2012. Construction Design Quality Assurance Plan, Lake One Reclamation, Chino Mines Company Hurley, New Mexico, prepared by EMC², dated September 14, 2012.
- IFC, 2013. Construction Drawings for Lake One Reclamation, Freeport-McMoRan Copper & Gold Inc., Chino Mines Company, Hurley, New Mexico, prepared by EMC², dated June 14, 2013 (6th Revision).
- Technical Specifications, 2013. Technical Specifications, Lake One Reclamation, Freeport-McMoRan Copper & Gold Inc., Chino Mines Company – Hurley, New Mexico, prepared by EMC^{2,} dated February 2013.
- Chino Mines Tailing Pond 1&2 Construction Quality Assurance Report, Chino Tailing Reclamation Project, Chino Mine, prepared by Golder Associated Inc., dated August 2013.

DRAWINGS

CONSTRUCTION QUALITY ASSURANCE REPORT LAKE ONE RECLAMATION CHINO MINES COMPANY – HURLEY, NEW MEXICO

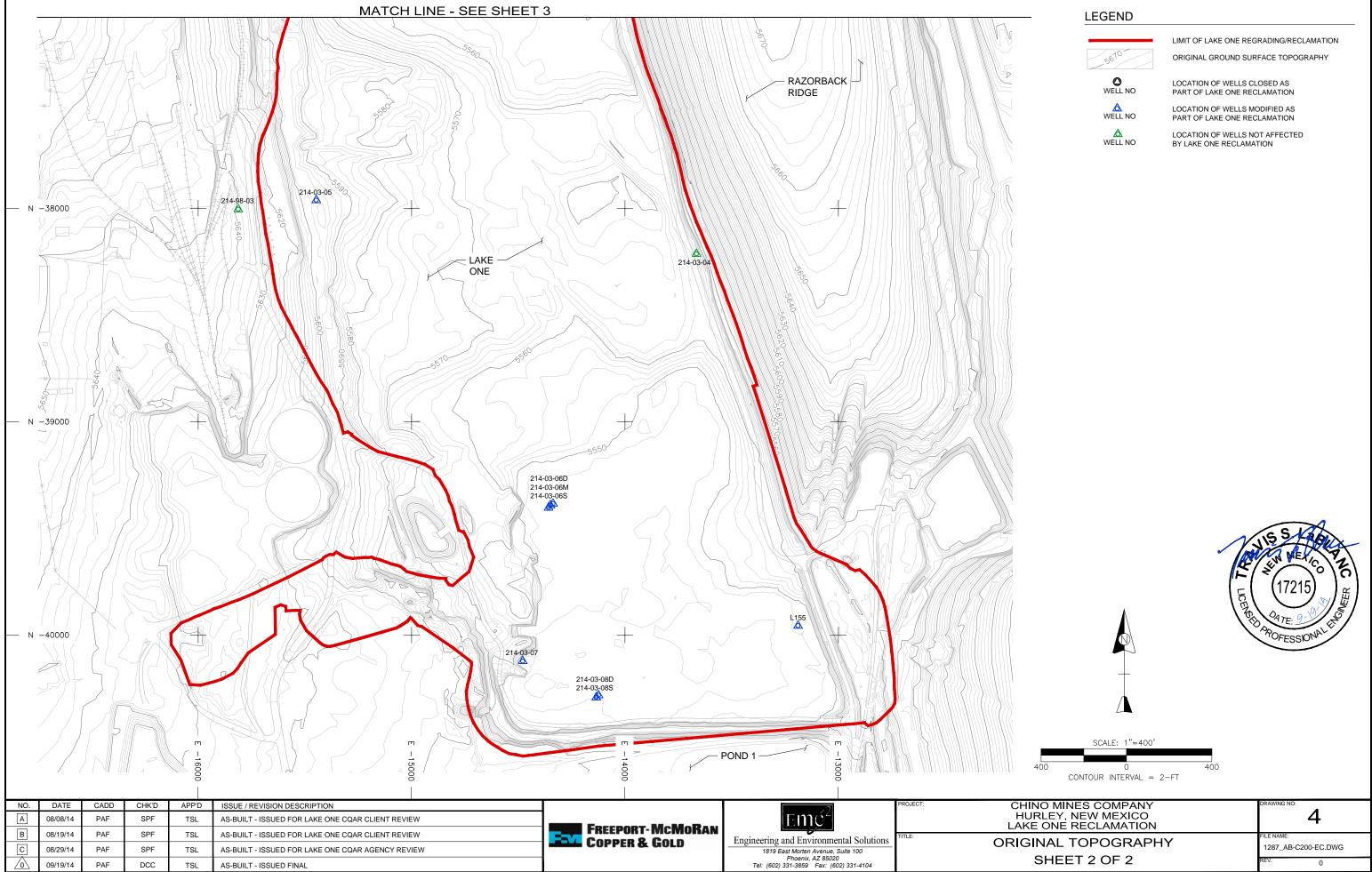
_EMC² – Engineering and Environmental Solutions_____

L										
	NO.	DATE	CADD	CHK'D	APP'D	ISSUE / REVISION DESCRIPTION			PROJECT:	С
	А	08/08/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR CLIENT REVIEW	Encroper NoNoRau	Emé ²		۲ ۱۵
	В	08/19/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR CLIENT REVIEW	FREEPORT-MCMORAN		TITLE:	L/
	С	08/29/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR AGENCY REVIEW	CUPPER & GULD	1819 East Morten Avenue, Suite 100		
	\triangle	09/19/14	PAF	DCC	TSL	AS-BUILT - ISSUED FINAL		Phoenix, AZ 85020 Tel: (602) 331-3859 Fax: (602) 331-4104		
-										

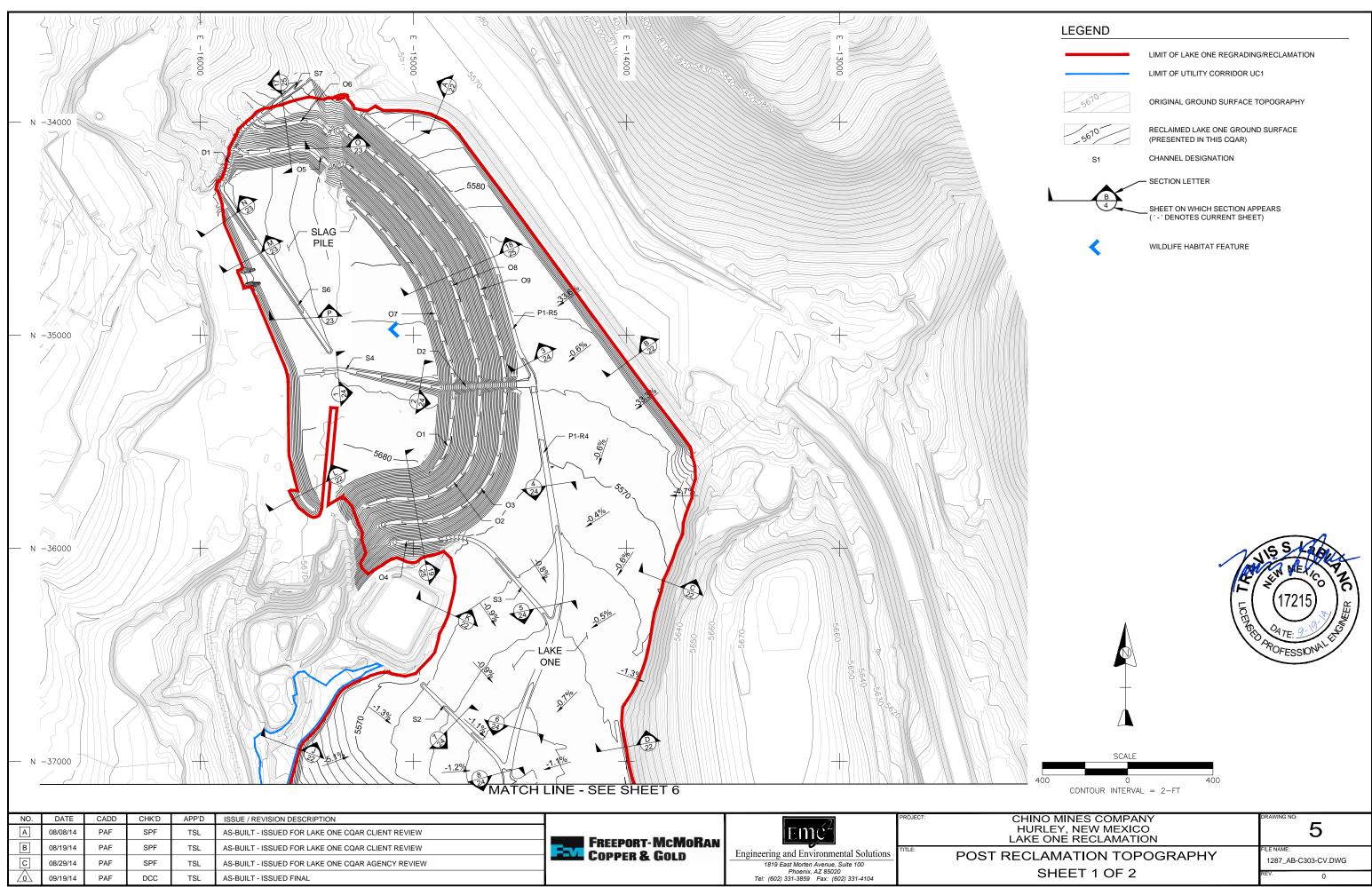

		DRAWING INDEX	
DRAWING NO.	FILE NAME	DRAWING TITLE	REVISION NO.
1	1287_AB-G100-IX.DWG	COVER SHEET	0
2	1287_AB-G100-IX.DWG	INDEX SHEET	0
3	1287_AB-C200-EC.DWG	ORIGINAL TOPOGRAPHY SHEET 1 OF 2	0
4	1287_AB-C200-EC.DWG	ORIGINAL TOPOGRAPHY SHEET 2 OF 2	0
5	1287_AB-C303-CV.DWG	POST RECLAMATION TOPOGRAPHY SHEET 1 OF 2	0
6	1287_AB-C303-CV.DWG	POST RECLAMATION TOPOGRAPHY SHEET 2 OF 2	0
7	1287_AB-C304-IS.DWG	FINAL COVER CUT AND FILL ISOPACH SHEET 1 OF 2	0
8	1287_AB-C304-IS.DWG	FINAL COVER CUT AND FILL ISOPACH SHEET 2 OF 2	0
9	1287_AB-C305-TK.DWG	COVER THICKNESS MAP SHEET 1 OF 2	0
10	1287_AB-C305-TK.DWG	COVER THICKNESS MAP SHEET 2 OF 2	0
11	1287_AB-C301-CL.DWG	CHANNEL DESIGNATIONS AND CENTERLINE STATIONING SHEET 1 OF 2	0
12	1287_AB-C301-CL.DWG	CHANNEL DESIGNATIONS AND CENTERLINE STATIONING SHEET 2 OF 2	0
13	1287_AB-C306-PFCH.DWG	CHANNEL PROFILES SHEET 1 OF 5	0
14	1287_AB-C306-PFCH.DWG	CHANNEL PROFILES SHEET 2 OF 5	0
15	1287_AB-C306-PCH2.DWG	CHANNEL PROFILES SHEET 3 OF 5	0
16	1287_AB-C306-PCH3.DWG	CHANNEL PROFILES SHEET 4 OF 5	0
17	1287_AB-C306-PCH3.DWG	CHANNEL PROFILES SHEET 5 OF 5	0
18	1287_AB-C306-PCH3.DWG	DOWN DRAIN PROFILES SHEET 1 OF 1	0
19	1287_AB-C306-POS1.DWG	OUTSLOPE CHANNEL PROFILES SHEET 1 OF 3	0
20	1287_AB-C306-POS1.DWG	OUTSLOPE CHANNEL PROFILES SHEET 2 OF 3	0
21	1287_AB-C306-POS1.DWG	OUTSLOPE CHANNEL PROFILES SHEET 3 OF 3	0
22	1287_AB-C305-XS.DWG	GENERAL SECTIONS SHEET 1 OF 2	0
23	1287_AB-C305-XS.DWG	GENERAL SECTIONS SHEET 2 OF 2	0
24	1287_AB-C306-XSCH.DWG	CHANNEL SECTIONS SHEET 1 OF 2	0
25	1287_AB-C306-XSCH.DWG	CHANNEL SECTIONS SHEET 2 OF 2	0
26	1287_AB-C308-CH-DTL.DWG	CHANNEL TYPICAL DETAILS	0
27	1287_AB-C700-WS.DWG	WATERSHED OVERVIEW (WITHIN LAKE ONE RECLAMATION BOUNDARY)	0
28	1287_AB-C720-SEEP.DWG	SEEP COLLECTION SYSTEM PROFILE AND DETAILS	0
29	1287_AB-C730-CULVERT.DWG	CULVERT CROSSING PLAN, PROFILE AND DETAILS	0
30	1287_AB-C710-CHP1.DWG	LINED CHANNEL PLAN AND DETAILS	0

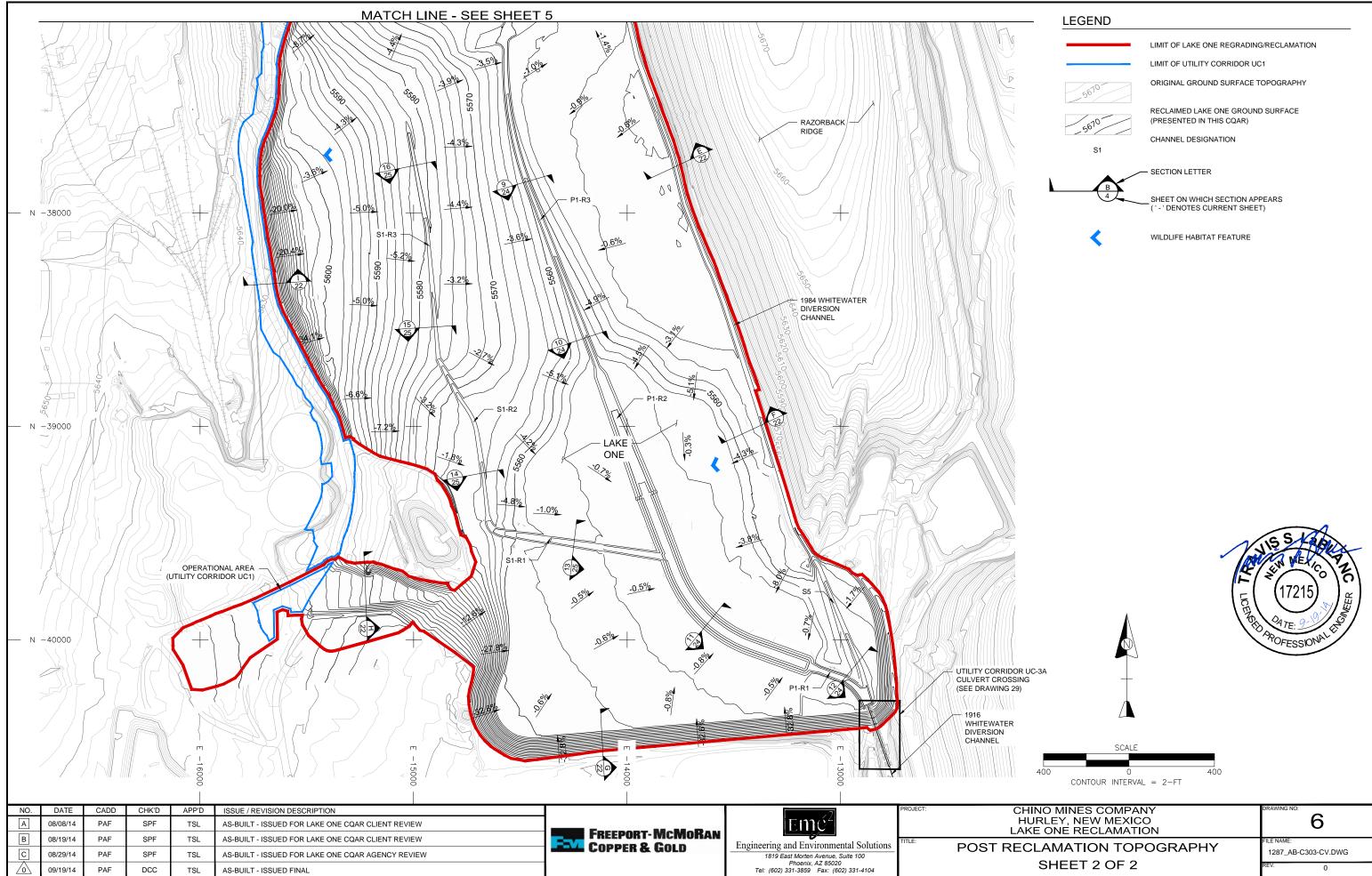
ł	NO.	DATE	CADD	CHK'D	APP'D	ISSUE / REVISION DESCRIPTION			PROJECT:
ľ	A	08/08/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR CLIENT REVIEW		Em¢ ²	
ĺ	В	08/19/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR CLIENT REVIEW	FREEPORT-MCMORAN		TITLE:
ľ	С	08/29/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR AGENCY REVIEW	COPPER & GOLD	1819 East Morten Avenue, Suite 100	
ĺ	\triangle	09/19/14	PAF	DCC	TSL	AS-BUILT - ISSUED FINAL		Phoenix, AZ 85020 Tel: (602) 331-3859 Fax: (602) 331-4104	

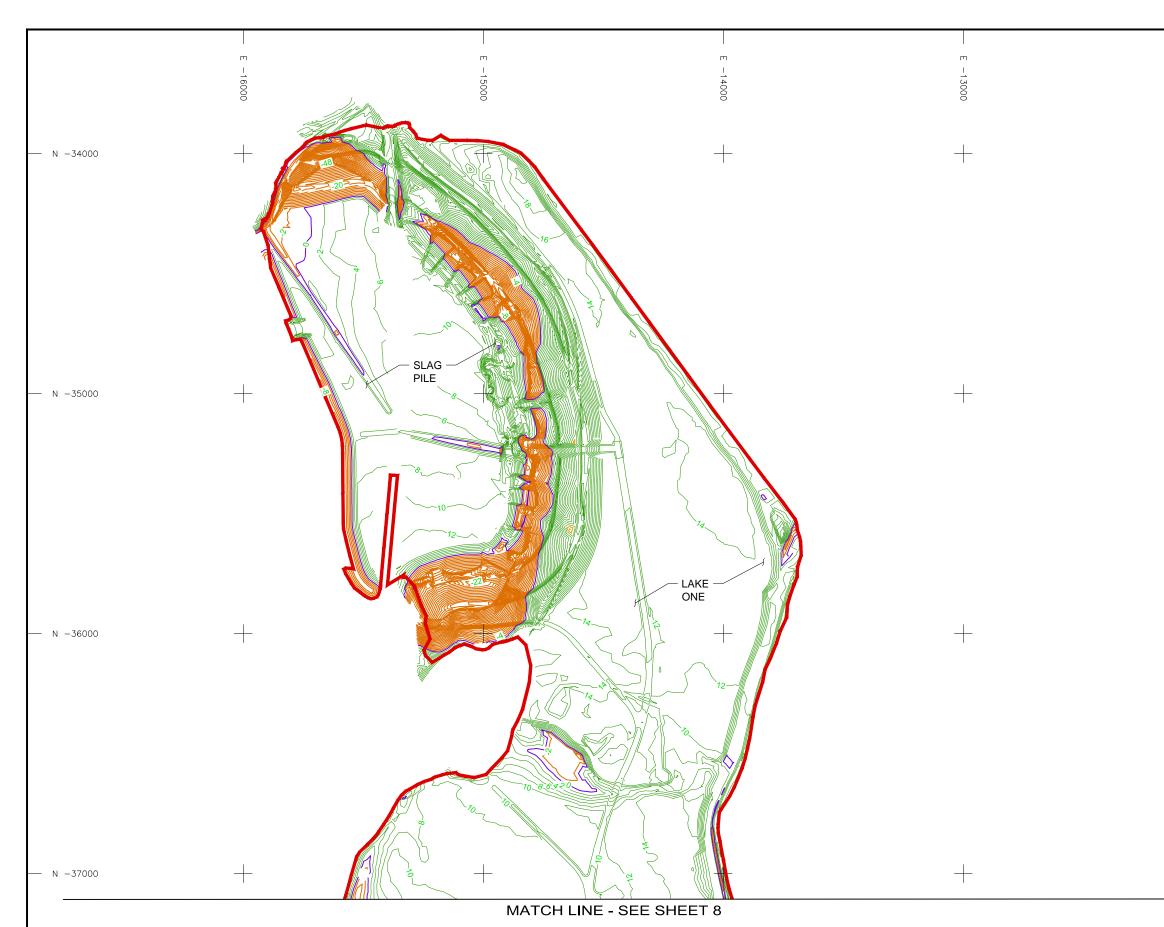
CHINO MINES COMPANY HURLEY, NEW MEXICO LAKE ONE RECLAMATION	DRAWING NO:
INDEX SHEET	FILE NAME: 1287_AB-G100-IX.DWG
	REV. 0


ISSUE DATE
09/19/14
09/19/14
09/19/14
09/19/14
09/19/14
09/19/14
09/19/14
09/19/14
09/19/14
09/19/14
09/19/14
09/19/14
09/19/14
09/19/14
09/19/14
09/19/14
09/19/14
09/19/14
09/19/14
09/19/14
09/19/14
09/19/14
09/19/14
09/19/14
09/19/14
09/19/14
09/19/14
09/19/14
09/19/14
09/19/14

NO.	DATE	CADD	CHK'D	APP'D	ISSUE / REVISION DESCRIPTION			PROJECT: C
А	08/08/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR CLIENT REVIEW		Emé ²	L
В	08/19/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR CLIENT REVIEW		FREEPORT-MICMORAN COPPER & GOLD TT Big Beast Morten Avenue, Suite 100	TITLE:
С	08/29/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR AGENCY REVIEW	COPPER & GULD		ORI
\triangle	09/19/14	PAF	DCC	TSL	AS-BUILT - ISSUED FINAL		Phoenix, AZ 85020 Tel: (602) 331-3859 Fax: (602) 331-4104	



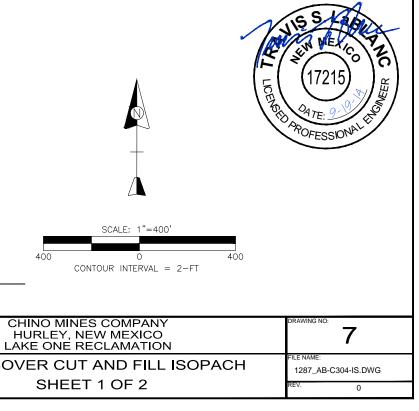


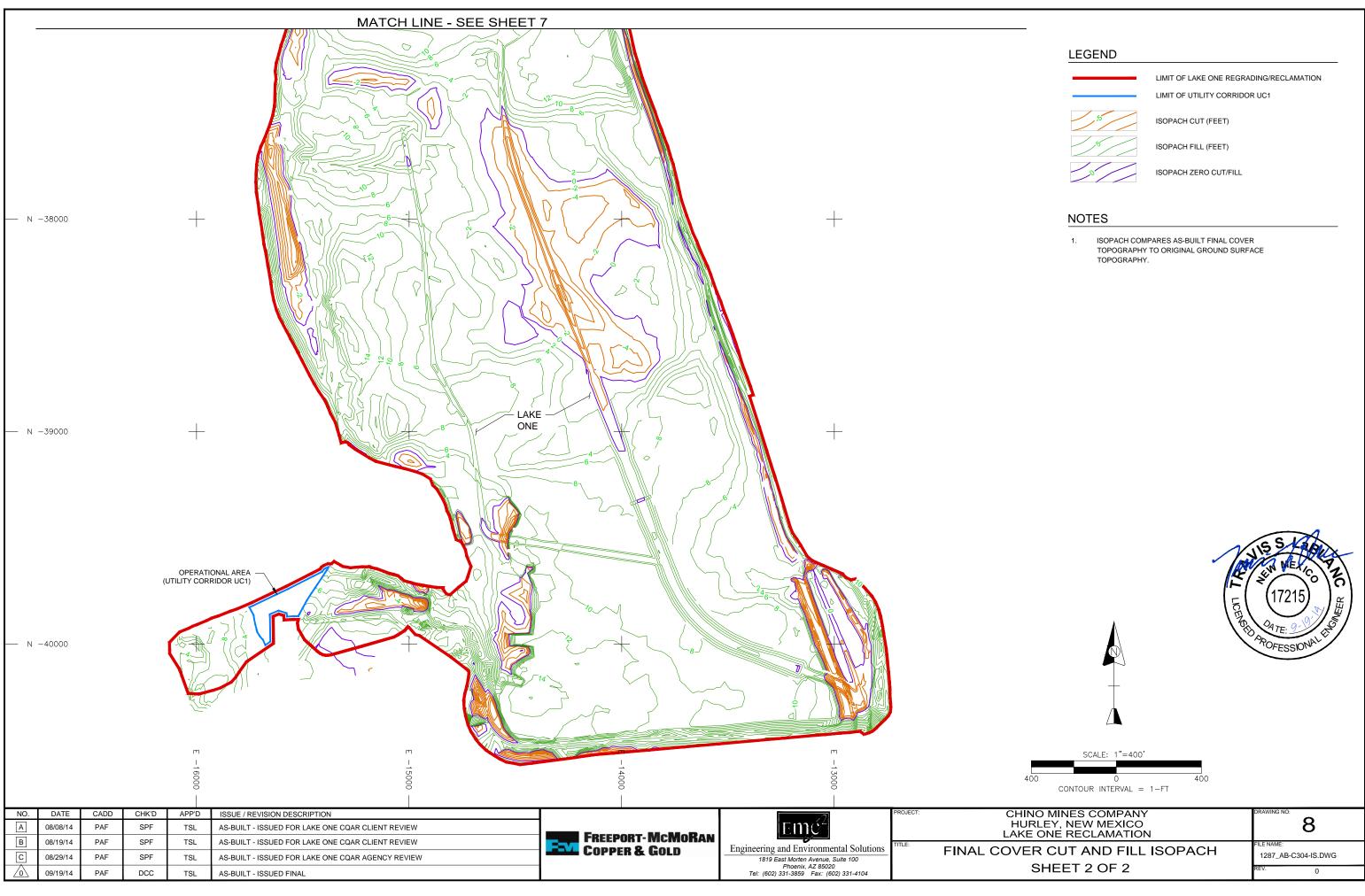

NO.	DATE	CADD	CHK'D	APP'D	ISSUE / REVISION DESCRIPTION			PROJECT:	CH
А	08/08/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR CLIENT REVIEW	Farmer MelleDau	Emé ²		H
В	08/19/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR CLIENT REVIEW	FREEPORT-MCMORAN		TITLE:	
С	08/29/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR AGENCY REVIEW	CUPPEK & GULD	1819 East Morten Avenue, Suite 100		POST REG
\triangle	09/19/14	PAF	DCC	TSL	AS-BUILT - ISSUED FINAL		Phoenix, AZ 85020 Tel: (602) 331-3859 Fax: (602) 331-4104		

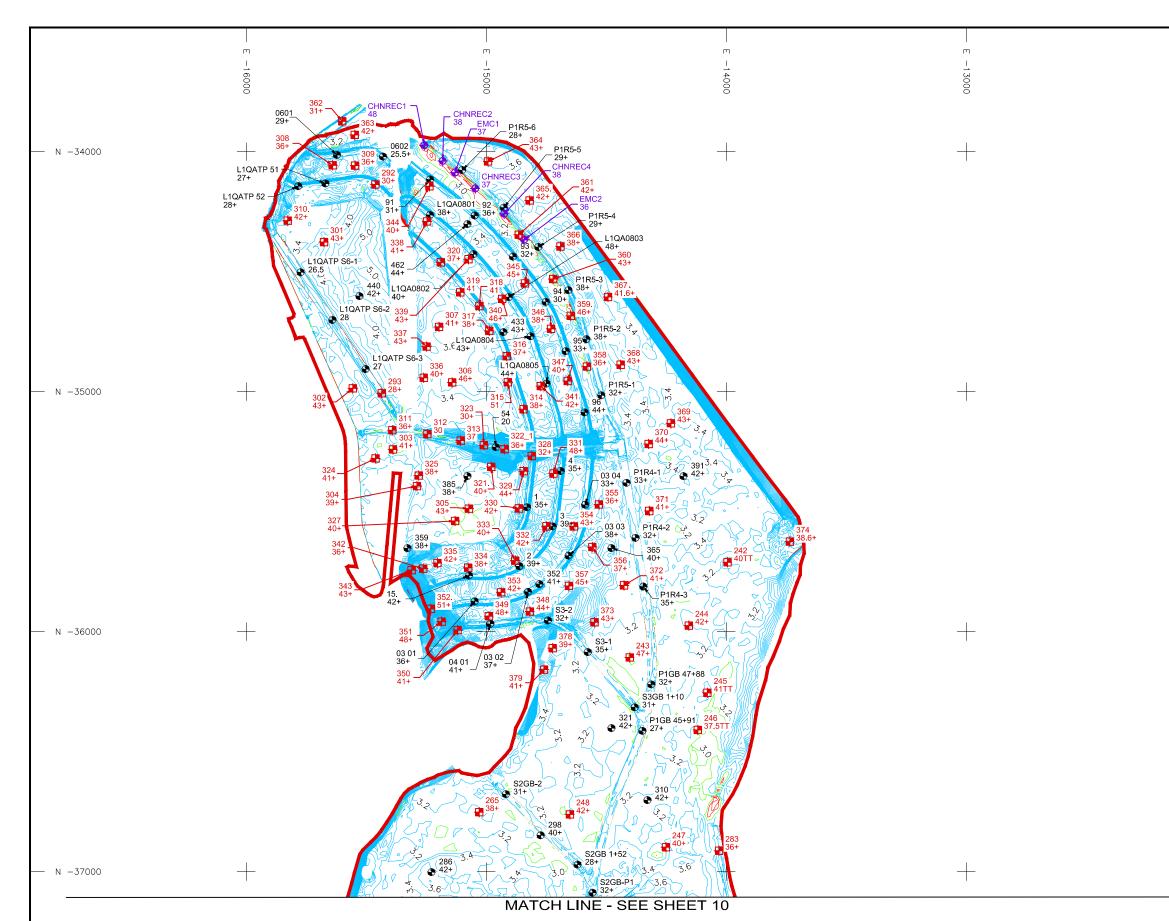
09/19/14

TSL

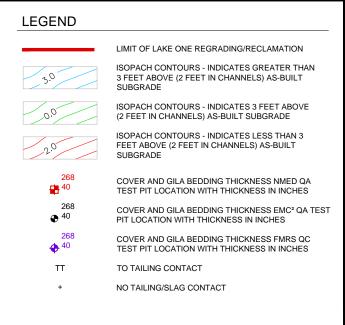
SHEET 2 OF 2 0

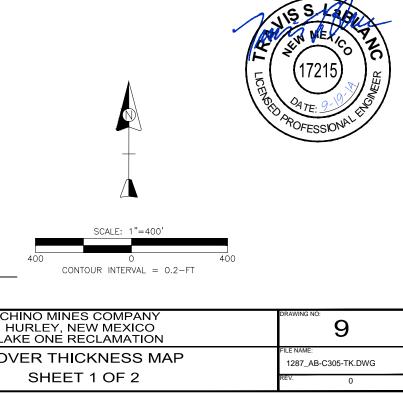

NO.	DATE	CADD	CHK'D	APP'D	ISSUE / REVISION DESCRIPTION			PROJECT:	C
А	08/08/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR CLIENT REVIEW		Emé ²		
В	08/19/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR CLIENT REVIEW	FREEPORT-MCMORAN	Engineering and Environmental Solutions	TITLE:	
С	08/29/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR AGENCY REVIEW	COPPER & GOLD	1819 East Morten Avenue, Suite 100		FINAL CO
\triangle	09/19/14	PAF	DCC	TSL	AS-BUILT - ISSUED FINAL		Phoenix, AZ 85020 Tel: (602) 331-3859 Fax: (602) 331-4104		

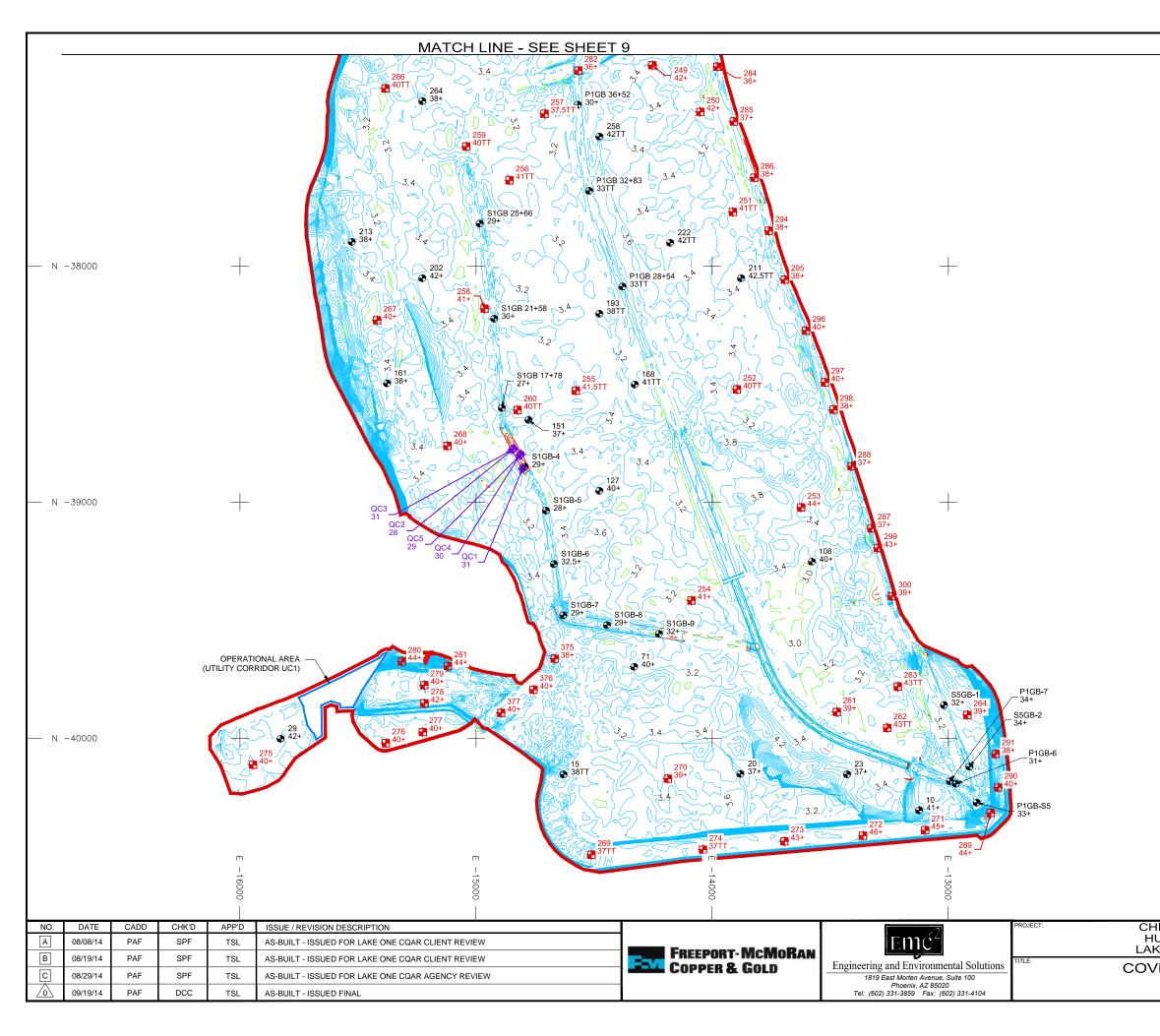

LEGEND

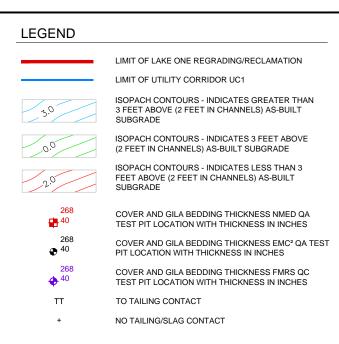

NOTES

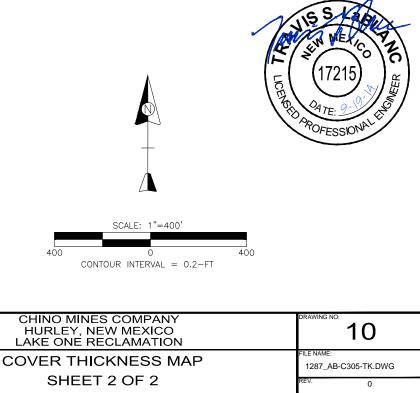
 ISOPACH COMPARES AS-BUILT FINAL COVER TOPOGRAPHY TO ORIGINAL GROUND SURFACE TOPOGRAPHY.

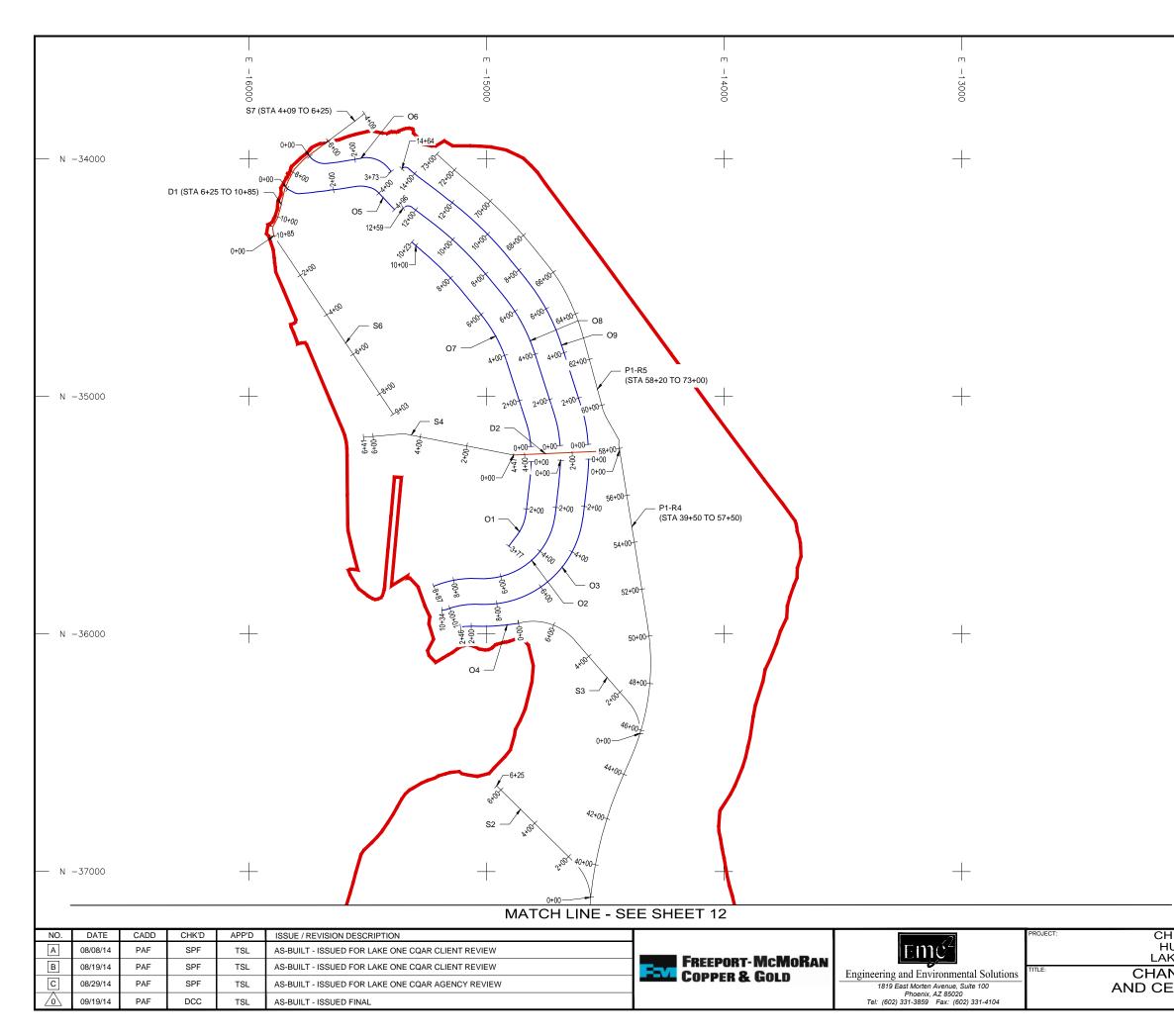


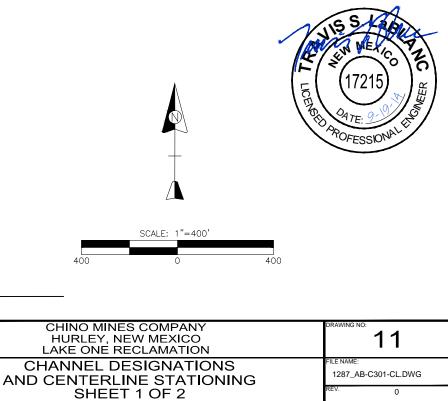


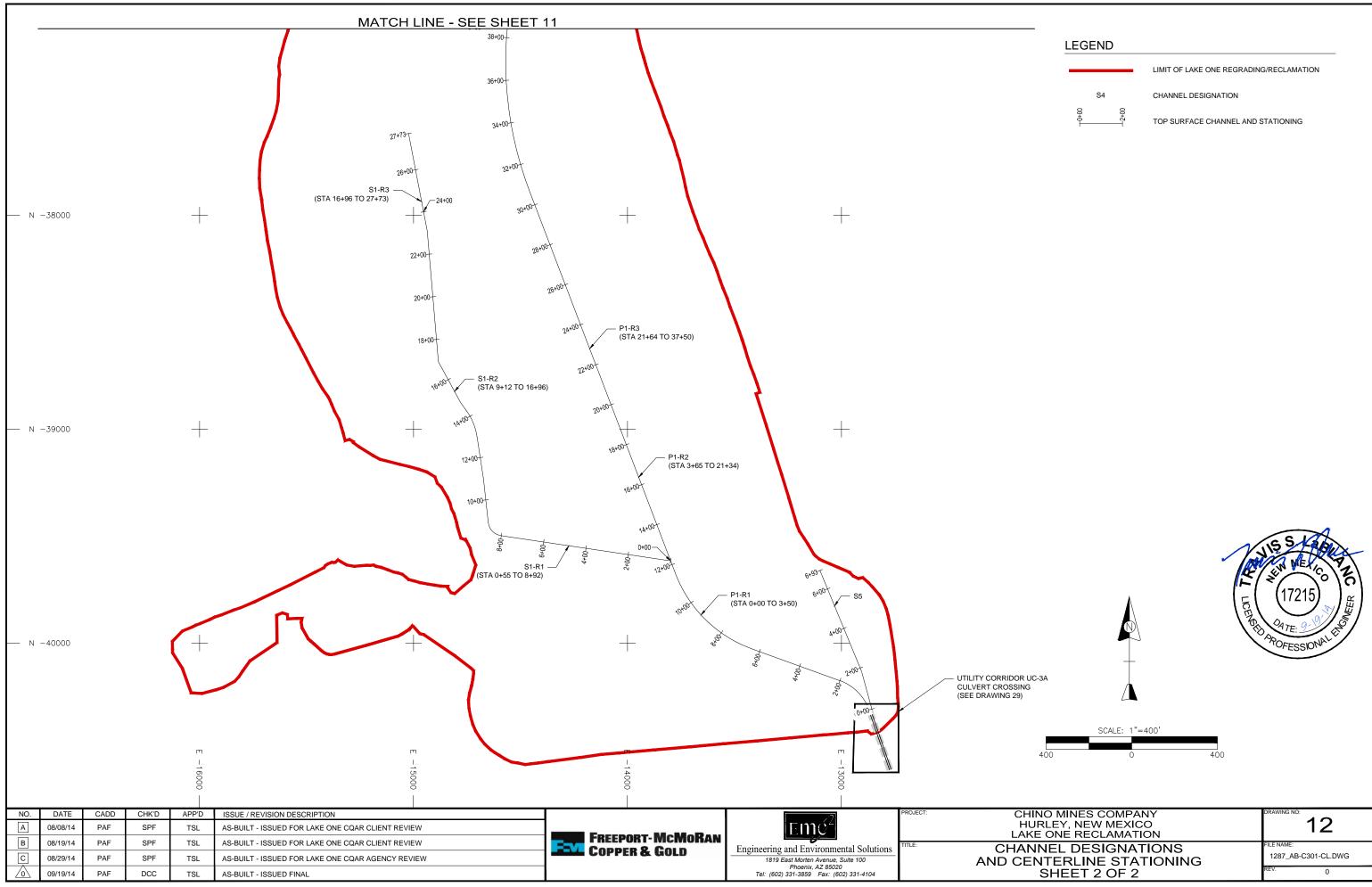




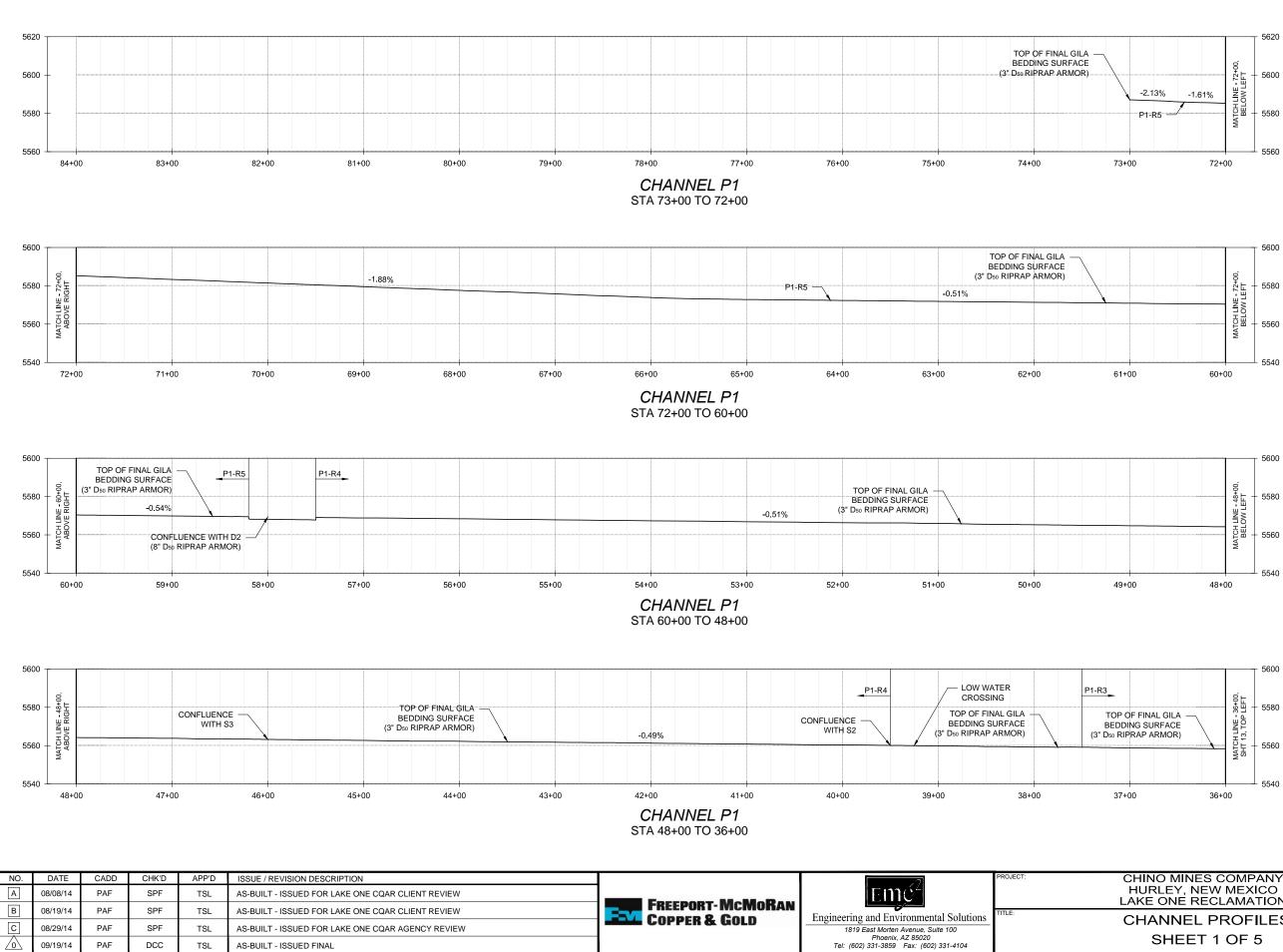

NO.	DATE	CADD	CHK'D	APP'D	ISSUE / REVISION DESCRIPTION			PROJECT: CH
А	08/08/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR CLIENT REVIEW	FREEPORT-MCMORAN COPPER & GOLD	Emé ²	
В	08/19/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR CLIENT REVIEW			
С	08/29/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR AGENCY REVIEW		1819 East Morten Avenue, Suite 100	COV
\triangle	09/19/14	PAF	DCC	TSL	AS-BUILT - ISSUED FINAL		Phoenix, AZ 85020 Tel: (602) 331-3859 Fax: (602) 331-4104	



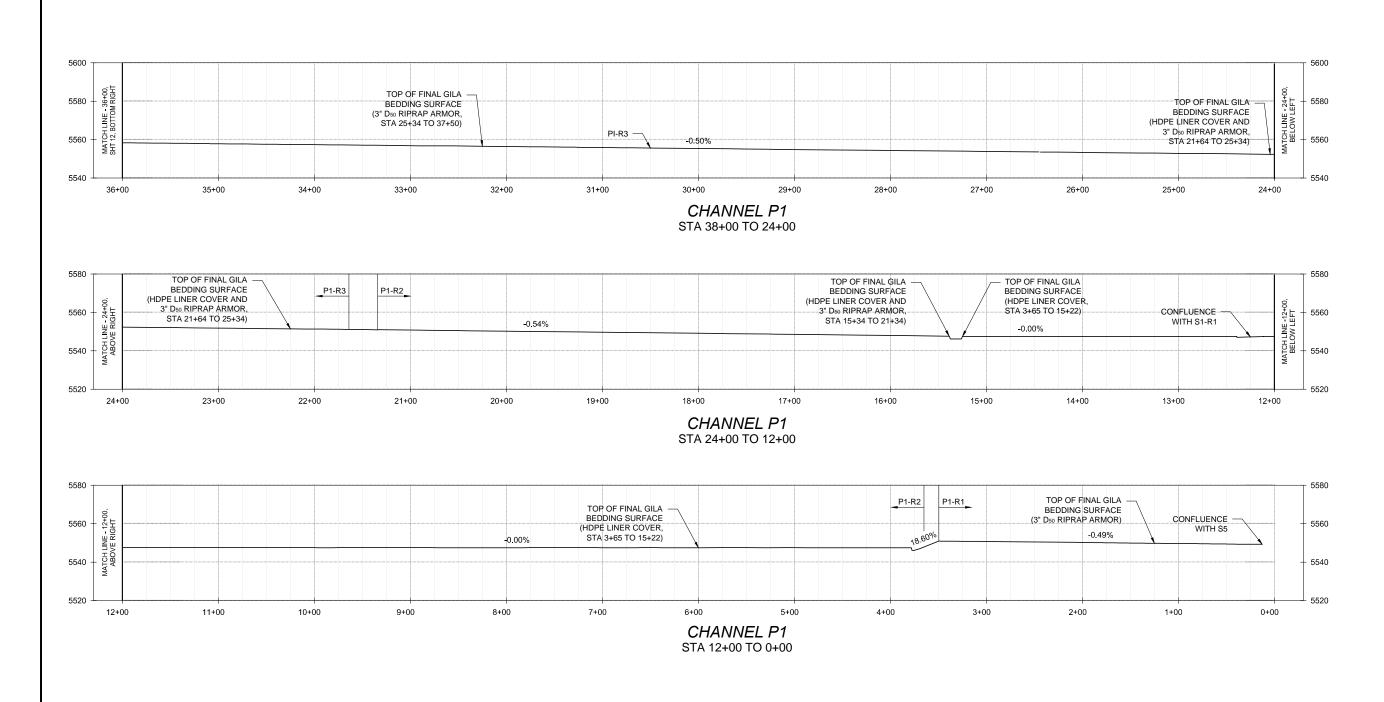


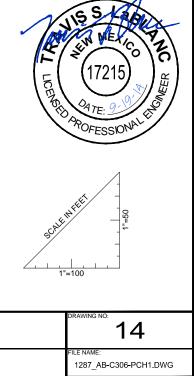





LEGEND

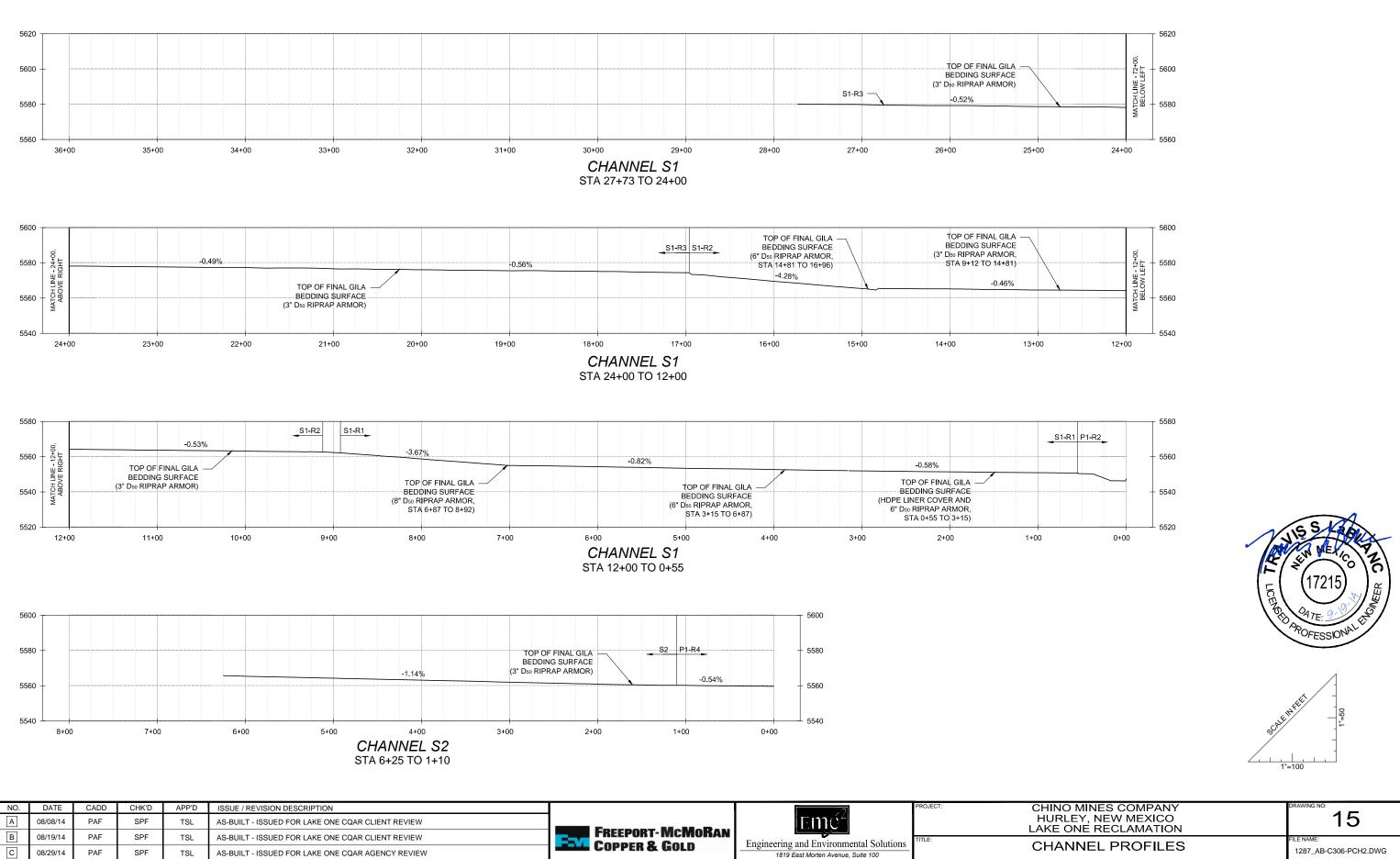
	LIMIT OF LAKE ONE REGRADING/RECLAMATION
S4	CHANNEL DESIGNATION
04	CHANNEL DESIGNATION
	TOP SURFACE CHANNEL AND STATIONING
	DOWN DRAIN AND STATIONING
	OUTSLOPE CHANNEL AND STATIONING





P OF FINAL GILA DDING SURFACE RIPRAP ARMOR) 37+00 36+00	55600 55580 55540 55540	POFESSIONAL ENGINE
CHINO MINES CO HURLEY, NEW M LAKE ONE RECLA	/EXICO	DRAWING NO: 13
CHANNEL PR SHEET 1 (FILE NAME: 1287_AB-C306-PCH1.DWG REV. 0

Ô


NO.	DATE	CADD	CHK'D	APP'D	ISSUE / REVISION DESCRIPTION			PROJECT:
А	08/08/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR CLIENT REVIEW		Emé ²	
В	08/19/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR CLIENT REVIEW	FREEPORT-MCMORAN	Engineering and Environmental Solutions	TITLE:
С	08/29/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR AGENCY REVIEW	COPPER & GOLD	1819 East Morten Avenue, Suite 100	
\triangle	09/19/14	PAF	DCC	TSL	AS-BUILT - ISSUED FINAL		Phoenix, AZ 85020 Tel: (602) 331-3859 Fax: (602) 331-4104	

0

CHANNEL PROFILES SHEET 2 OF 5

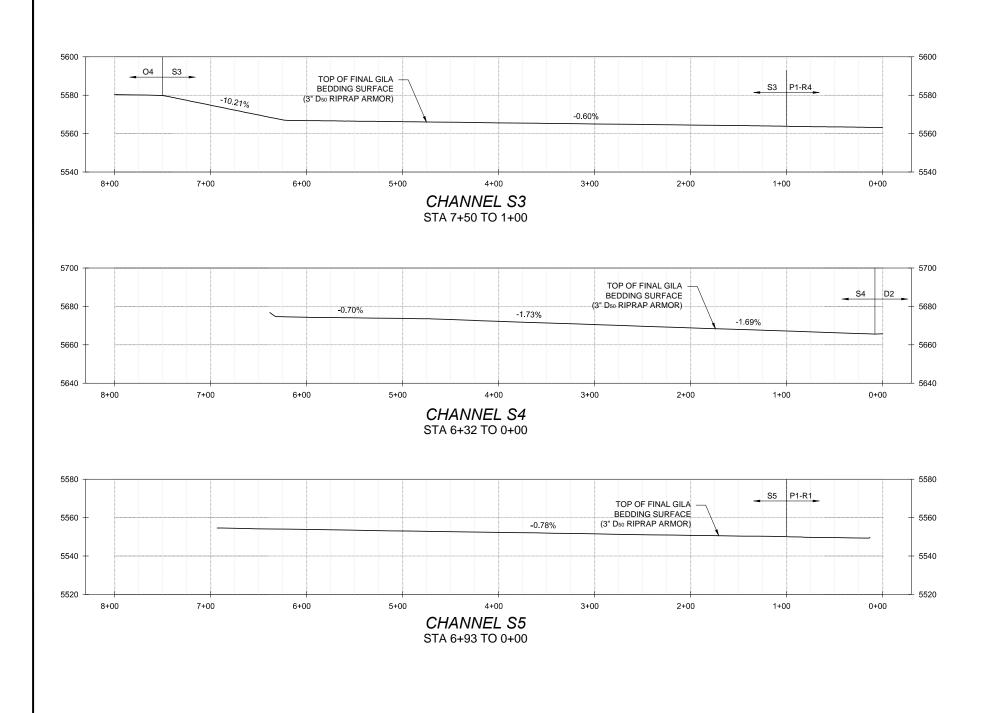
CHINO MINES COMPANY HURLEY, NEW MEXICO LAKE ONE RECLAMATION

Phoenix, AZ 85020 Tel: (602) 331-3859 Fax: (602) 331-4104

 \wedge

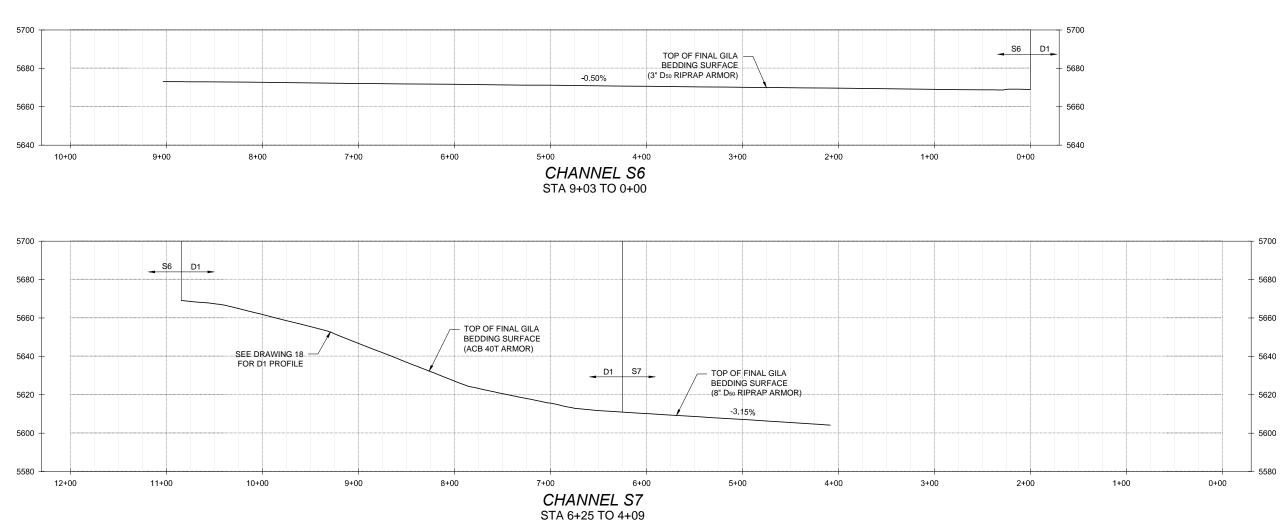
09/19/14

PAF

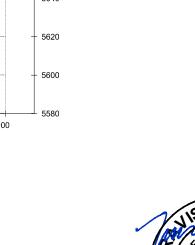

DCC

TSL

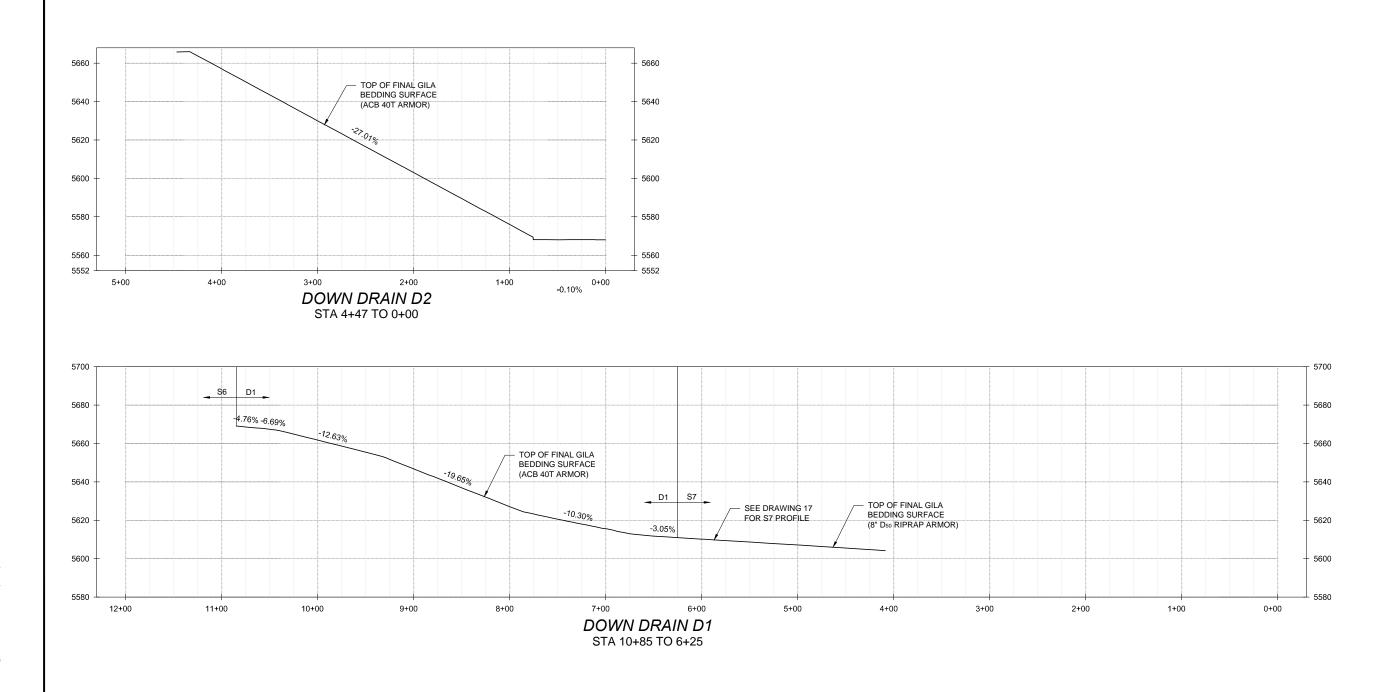
AS-BUILT - ISSUED FINAL


HURLEY, NEW MEXICO AKE ONE RECLAMATION	
CHANNEL PROFILES	
SHEET 3 OF 5	

1287_AB-C306-PCH2.DWG 0

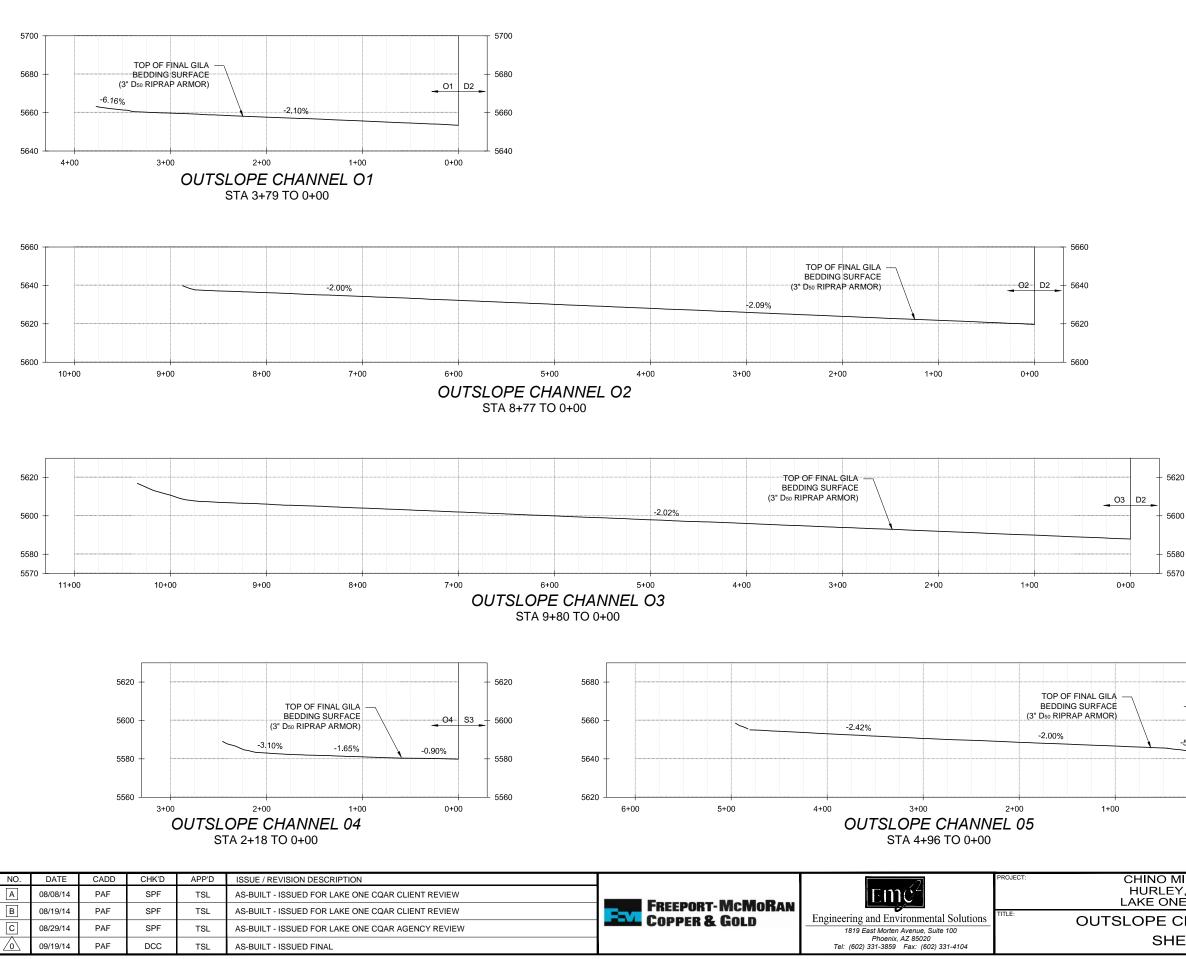

L									
	NO.	DATE	CADD	CHK'D	APP'D	ISSUE / REVISION DESCRIPTION			PROJECT:
	А	08/08/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR CLIENT REVIEW		Emé ²	
	В	08/19/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR CLIENT REVIEW	FREEPORT-MCMORAN	Engineering and Environmental Solutions	TITLE:
ſ	С	08/29/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR AGENCY REVIEW	COPPER & GOLD	1819 East Morten Avenue, Suite 100	
	\triangle	09/19/14	PAF	DCC	TSL	AS-BUILT - ISSUED FINAL		Phoenix, AZ 85020 Tel: (602) 331-3859 Fax: (602) 331-4104	

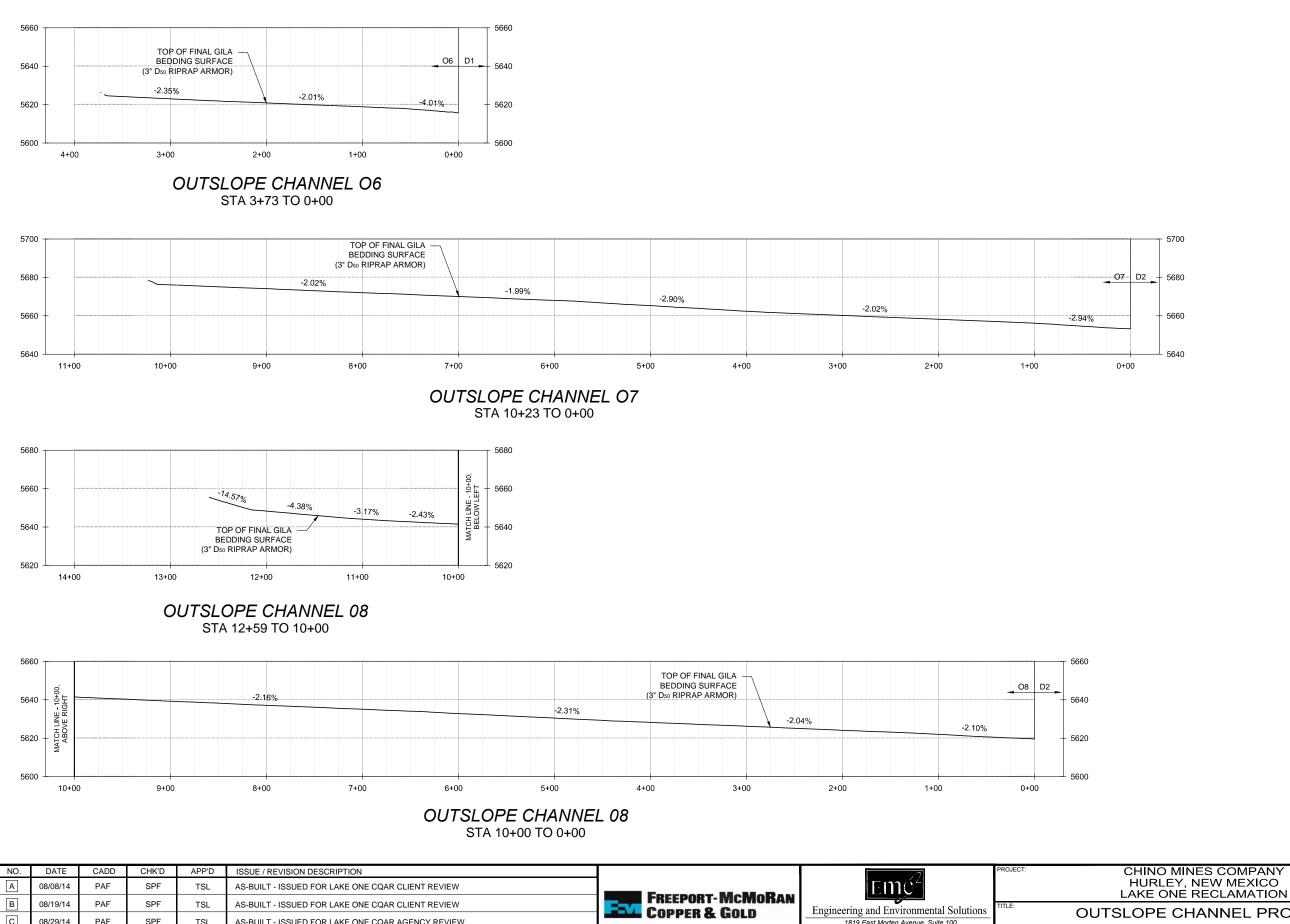
	TO TT215
	SCHEMPTER
CHINO MINES COMPANY HURLEY, NEW MEXICO LAKE ONE RECLAMATION	DRAWING NO: 16
CHANNEL PROFILES SHEET 4 OF 5	FILE NAME: 1287_AB-C306-PCH3.DWG REV. 0


NO.	DATE	CADD	CHK'D	APP'D	ISSUE / REVISION DESCRIPTION			PROJECT:
А	08/08/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR CLIENT REVIEW		Emé ²	
В	08/19/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR CLIENT REVIEW	FREEPORT-MCMORAN	Engineering and Environmental Solutions	TITLE:
С	08/29/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR AGENCY REVIEW	COPPER & GOLD	1819 East Morten Avenue, Suite 100	
\triangle	09/19/14	PAF	DCC	TSL	AS-BUILT - ISSUED FINAL		Phoenix, AZ 85020 Tel: (602) 331-3859 Fax: (602) 331-4104	

	900
CHINO MINES COMPANY HURLEY, NEW MEXICO LAKE ONE RECLAMATION	DRAWING NO: 17
CHANNEL PROFILES SHEET 5 OF 5	FILE NAME: 1287_AB-C306-PCH3.DWG REV. 0

0


OFESSIONA


NO.	DATE	CADD	CHK'D	APP'D	ISSUE / REVISION DESCRIPTION			PROJECT:	С
А	08/08/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR CLIENT REVIEW	FREEPORT-MCMoRAN Copper & Gold			F L A
В	08/19/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR CLIENT REVIEW		Engineering and Environmental Solutions	TITLE:	<u> </u>
С	08/29/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR AGENCY REVIEW		1819 East Morten Avenue, Suite 100		DO
\triangle	09/19/14	PAF	DCC	TSL	AS-BUILT - ISSUED FINAL		Phoenix, AZ 85020 Tel: (602) 331-3859 Fax: (602) 331-4104		

	50 ⁴ / ^E ¹ / ₁ ⁺ ⁻
CHINO MINES COMPANY HURLEY, NEW MEXICO LAKE ONE RECLAMATION	DRAWING NO: 18
OOWN DRAIN PROFILES SHEET 1 OF 1	FILE NAME: 1287_AB-C306-PCH3.DWG REV. 0
	•

05 		SCHE	 =100
CHINO MINES HURLEY, NE LAKE ONE RE	W MEXICO		drawing no: 19
SLOPE CHA	NNEL PROFILES		FILE NAME: 1287_AB-C306-POS1.DWG
SHEET	1 OF 3		REV. 0

С

∕₀`

08/29/14

09/19/14

PAF

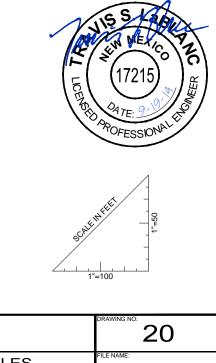
PAF

SPF

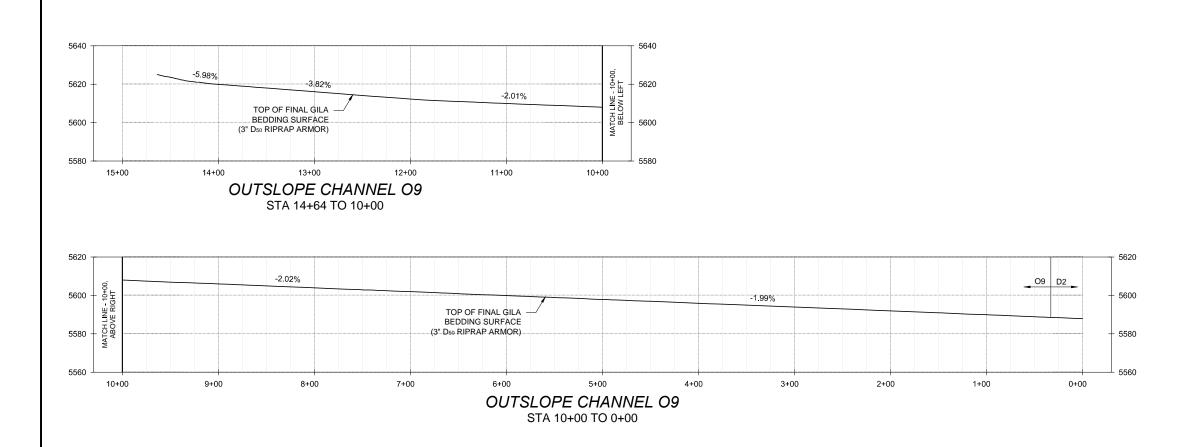
DCC

TSL

TSL

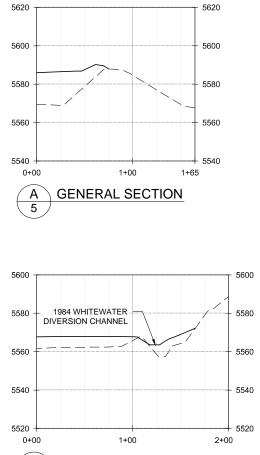

AS-BUILT - ISSUED FOR LAKE ONE CQAR AGENCY REVIEW

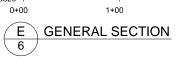
AS-BUILT - ISSUED FINAL

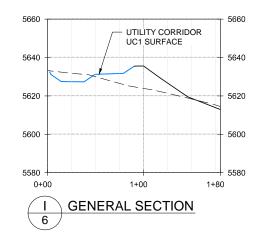

OUTSLOPE CHANNEL PROFILES

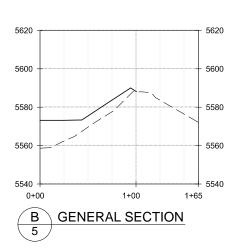
SHEET 2 OF 3

1819 East Morten Avenue, Suite 100 Phoenix, AZ 85020 Tel: (602) 331-3859 Fax: (602) 331-4104




1287_AB-C306-POS1.DWG 0




NO.	DATE	CADD	CHK'D	APP'D	ISSUE / REVISION DESCRIPTION			PROJECT:	CH
А	08/08/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR CLIENT REVIEW	FREEPORT-MCMoRAN	Emé ²		H LAI
В	08/19/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR CLIENT REVIEW		Engineering and Environmental Solutions 1819 East Morten Avenue, Suite 100	TITLE:	
С	08/29/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR AGENCY REVIEW				OUTSLC
\triangle	09/19/14	PAF	DCC	TSL	AS-BUILT - ISSUED FINAL		Phoenix, AZ 85020 Tel: (602) 331-3859 Fax: (602) 331-4104		

	TOPESSIONAL
	<u>SCNENTER</u>
CHINO MINES COMPANY HURLEY, NEW MEXICO LAKE ONE RECLAMATION	DRAWING NO: 21
LOPE CHANNEL PROFILES SHEET 3 OF 3	FILE NAME: 1287_AB-C306-POS1.DWG REV. 0

1984 WHITEWATER

DIVERSION CHANNEL

1+00

UTILITY CORRIDOR UC1 SURFACE

1+00

GENERAL SECTION

GENERAL SECTION

5600

5580

5560

5540

5520

0+00

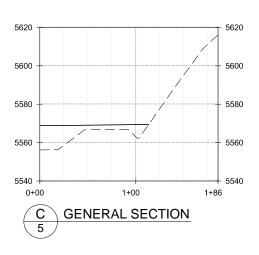
F

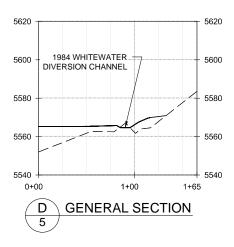
6

5640

5620

5600


5580

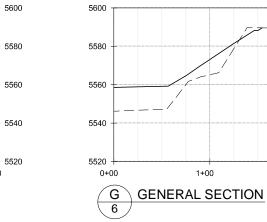

5560 -

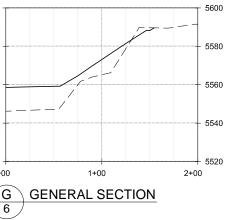
0+00

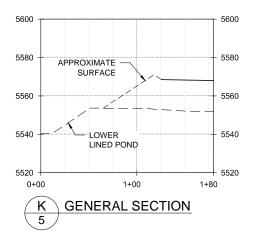
J

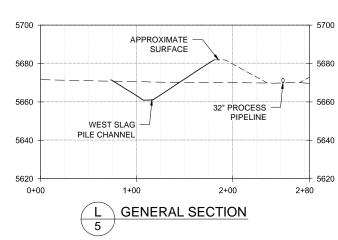
5

5640


5620


5600


5580


5560

0+00

1+00

6

NO.	DATE	CADD	CHK'D	APP'D	ISSUE / REVISION DESCRIPTION		\square	PROJECT:
А	08/08/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR CLIENT REVIEW	FREEPORT-MCMoRAN Copper & Gold	Emé ²	
В	08/19/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR CLIENT REVIEW		FREEPORT-MCMOKAN	TITLE:
С	08/29/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR AGENCY REVIEW			
	09/19/14	PAF	DCC	TSL	AS-BUILT - ISSUED FINAL			

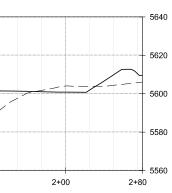
2+00

5640

5620

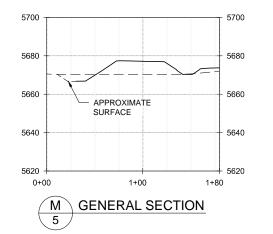
5600

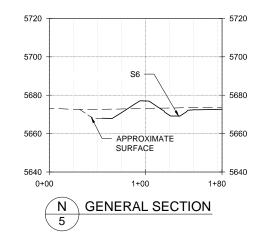
5580

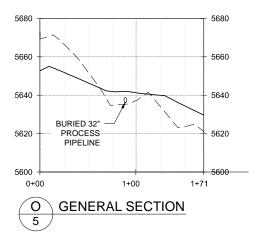

- 5560

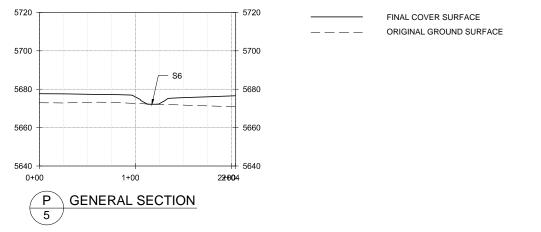
1+80

2+00 2+80 RAL SECTION	5ChEINTEEL
CHINO MINES COMPANY HURLEY, NEW MEXICO LAKE ONE RECLAMATION	DRAWING NO: 22
GENERAL SECTIONS	FILE NAME: 1287_AB-C305-XS.DWG
SHEET 1 OF 2	REV. 0

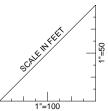


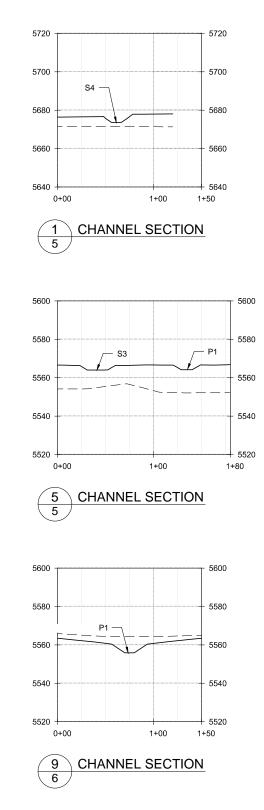

H GENERAL SECTION

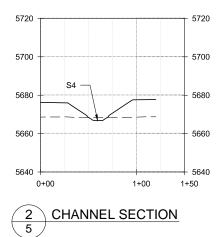


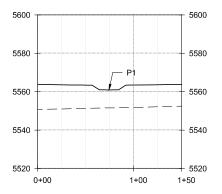

LEGEND

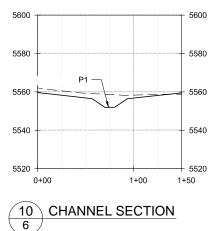
 FINAL COVER SURFACE
 ORIGINAL GROUND SURFACE
 UTILITY CORRIDOR UC1 SURFACE

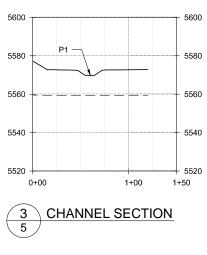


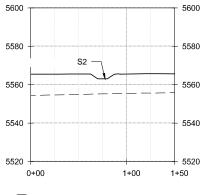

NO.	DATE	CADD	CHK'D	APP'D	ISSUE / REVISION DESCRIPTION			PROJECT:	
А	08/08/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR CLIENT REVIEW		Emé ²		
В	08/19/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR CLIENT REVIEW	FREEPORT-MCMORAN		TITLE:	
C	08/29/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR AGENCY REVIEW	Copper & Gold	1819 East Morten Avenue, Suite 100		
\triangle	09/19/14	PAF	DCC	TSL	AS-BUILT - ISSUED FINAL		Tel: (60	Phoenix, AZ 85020 Tel: (602) 331-3859 Fax: (602) 331-4104	

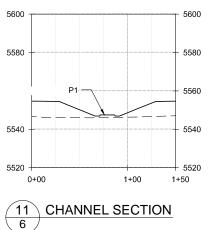


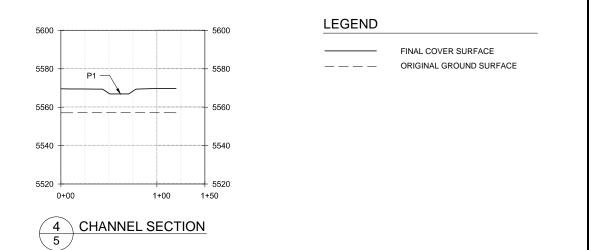


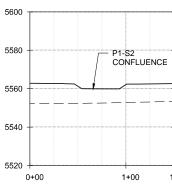

CHINO MINES COMPANY HURLEY, NEW MEXICO LAKE ONE RECLAMATION	DRAWING NO:
GENERAL SECTIONS	FILE NAME: 1287_AB-C305-XS.DWG
SHEET 2 OF 2	REV. 0

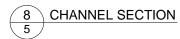


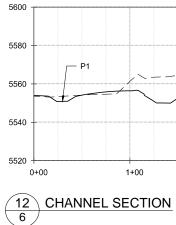


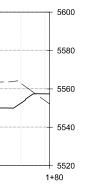


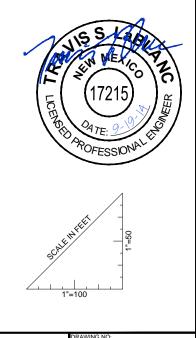


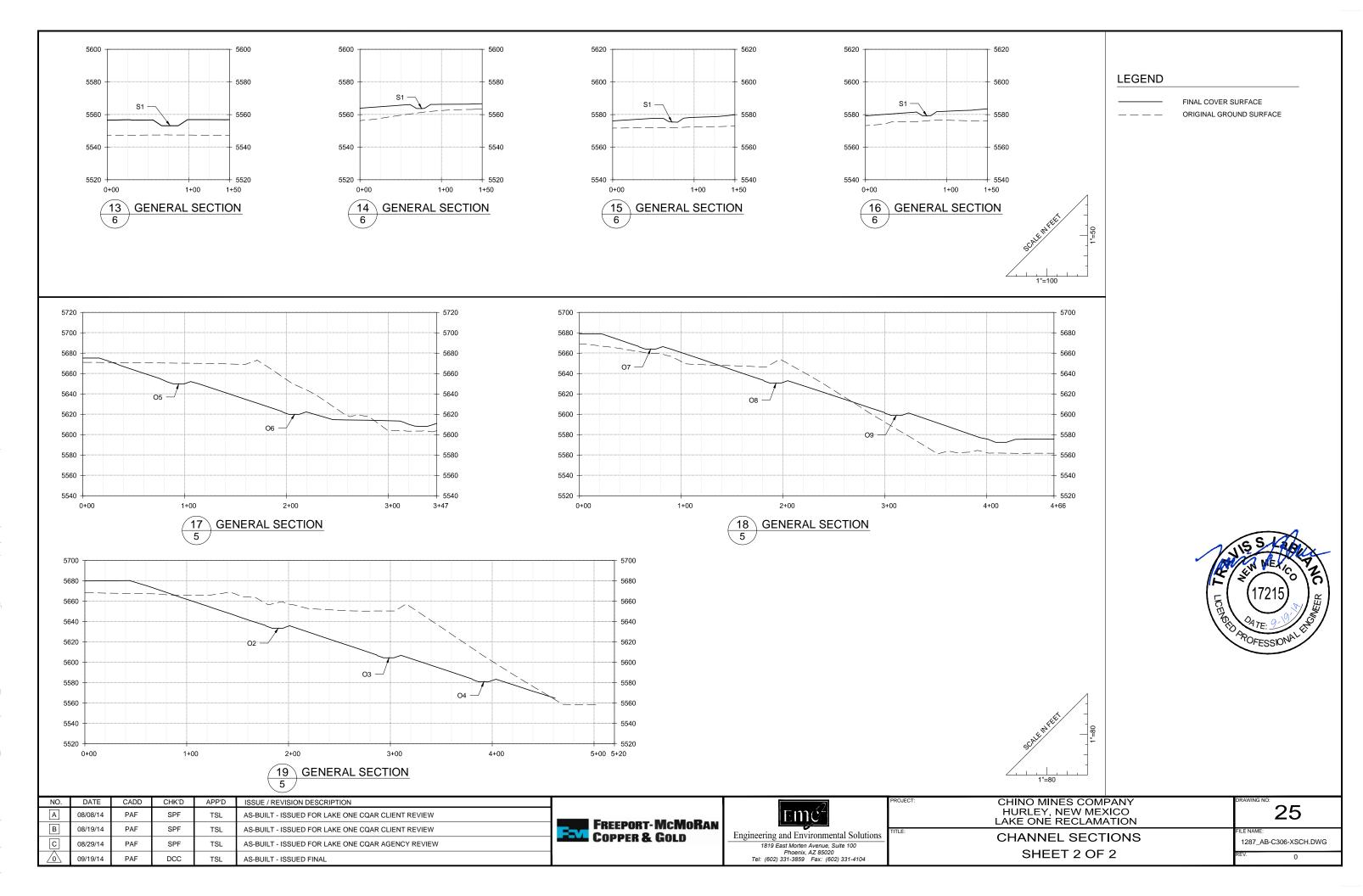


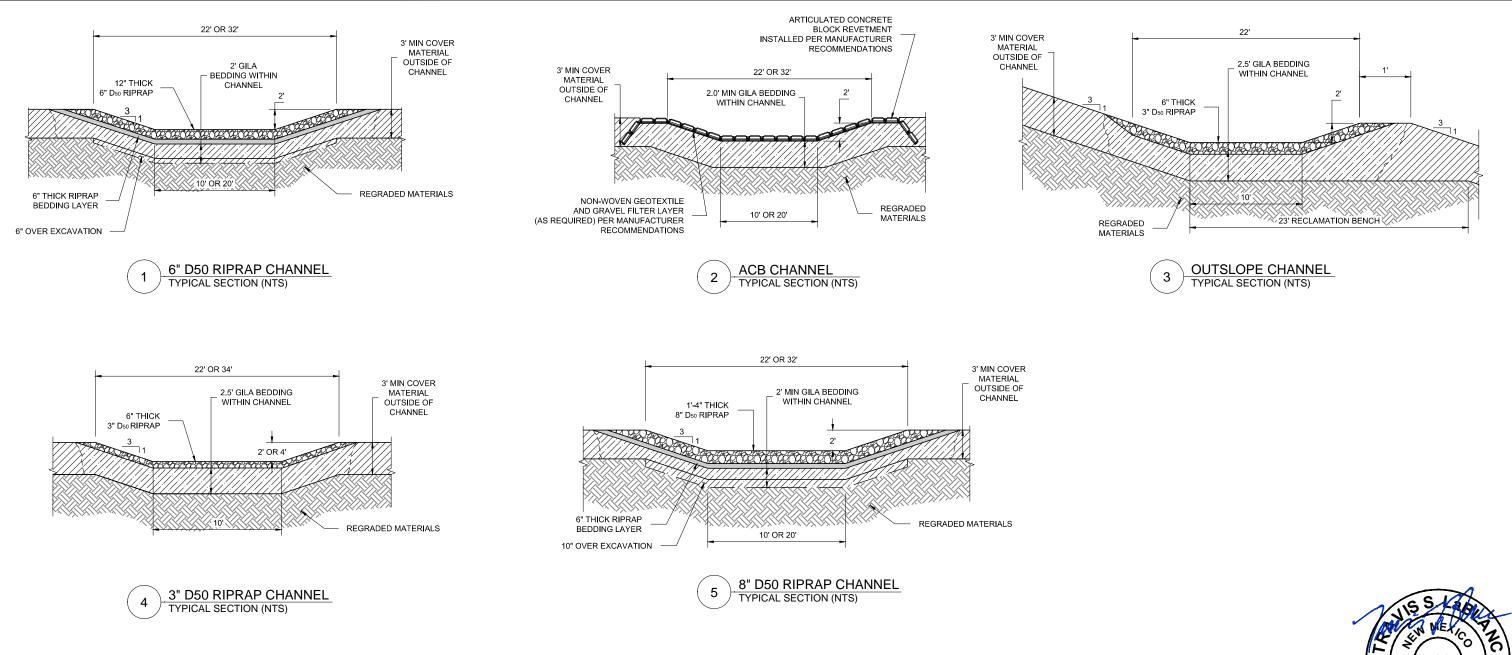


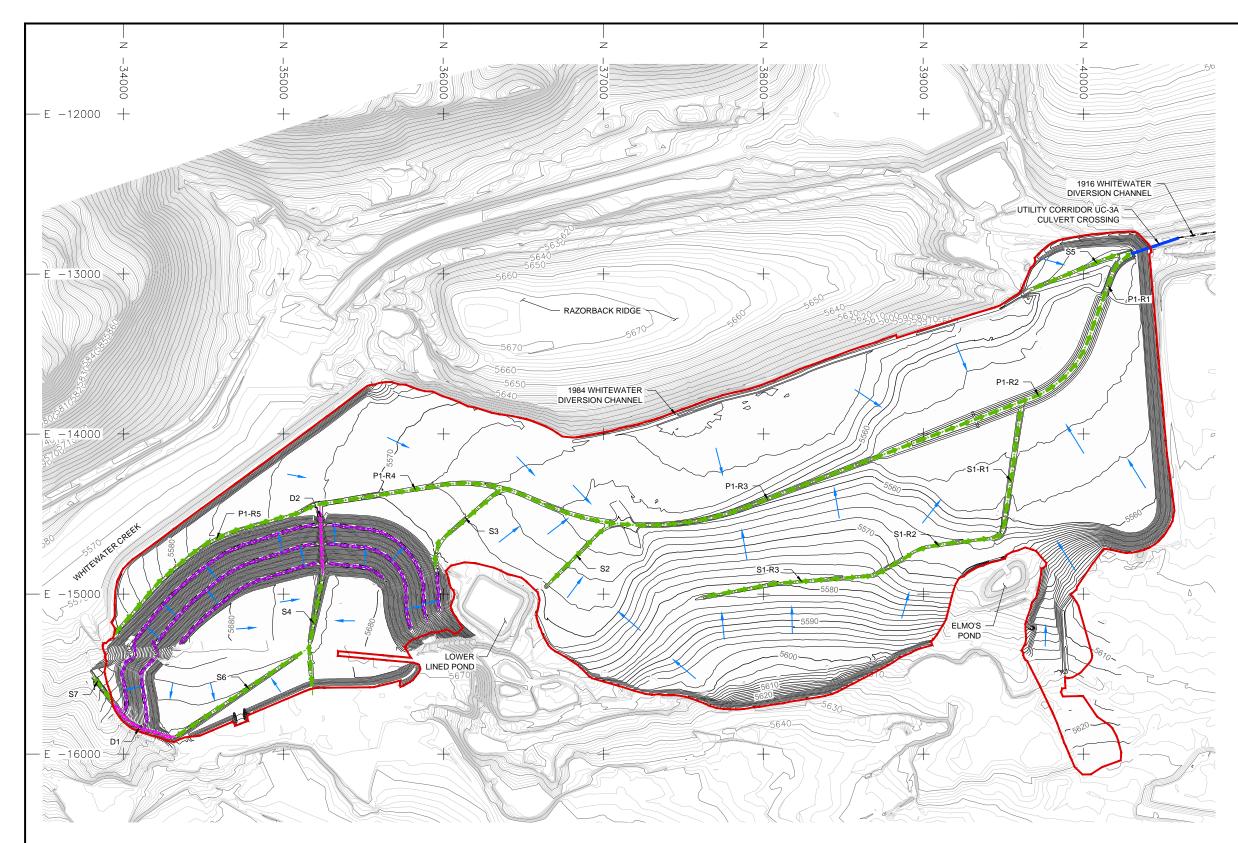




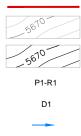



NO.	DATE	CADD	CHK'D	APP'D	ISSUE / REVISION DESCRIPTION			PROJECT: CHINO MINES COMPANY	DRAWING NO:
A	08/08/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR CLIENT REVIEW		Emé ²	HURLEY, NEW MEXICO LAKE ONE RECLAMATION	24
В	08/19/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR CLIENT REVIEW	FREEPORT-MCMoRAN			FILE NAME:
C	08/29/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR AGENCY REVIEW	Engin Copper & Gold	Engineering and Environmental Solutions 1819 East Morten Avenue, Suite 100	UNANNEL DEUTIONU	1287_AB-C306-XSCH.DWG
\triangle	09/19/14	PAF	DCC	TSL	AS-BUILT - ISSUED FINAL		Phoenix, AZ 85020 Tel: (602) 331-3859 Fax: (602) 331-4104	SHEET 1 OF 2	REV. 0

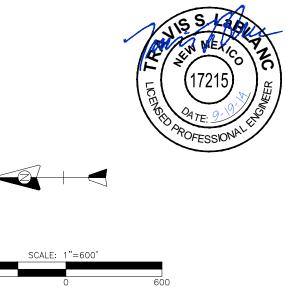




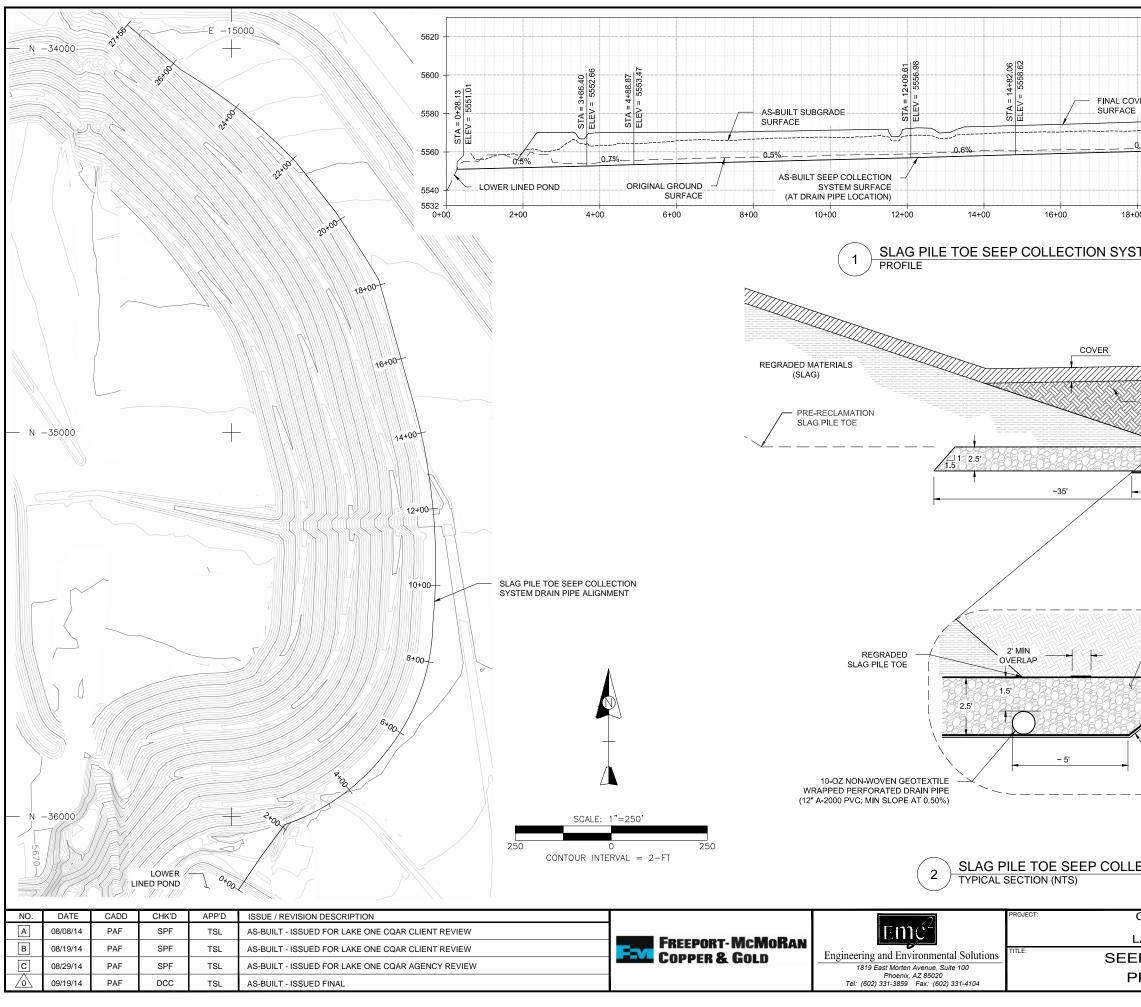
NO.	DATE	CADD	CHK'D	APP'D	ISSUE / REVISION DESCRIPTION			PROJECT:	Cl	
А	08/08/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR CLIENT REVIEW	FREEPORT-MCMoRAN	EREFORT MCMORAN			H LA
В	08/19/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR CLIENT REVIEW		Engineering and Environmental Solutions 1819 East Morten Avenue, Suite 100 TITLE:	TITLE:	LA	
С	08/29/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR AGENCY REVIEW				CHAN	
\triangle	09/19/14	PAF	DCC	TSL	AS-BUILT - ISSUED FINAL		Phoenix, AZ 85020 Tel: (602) 331-3859 Fax: (602) 331-4104			

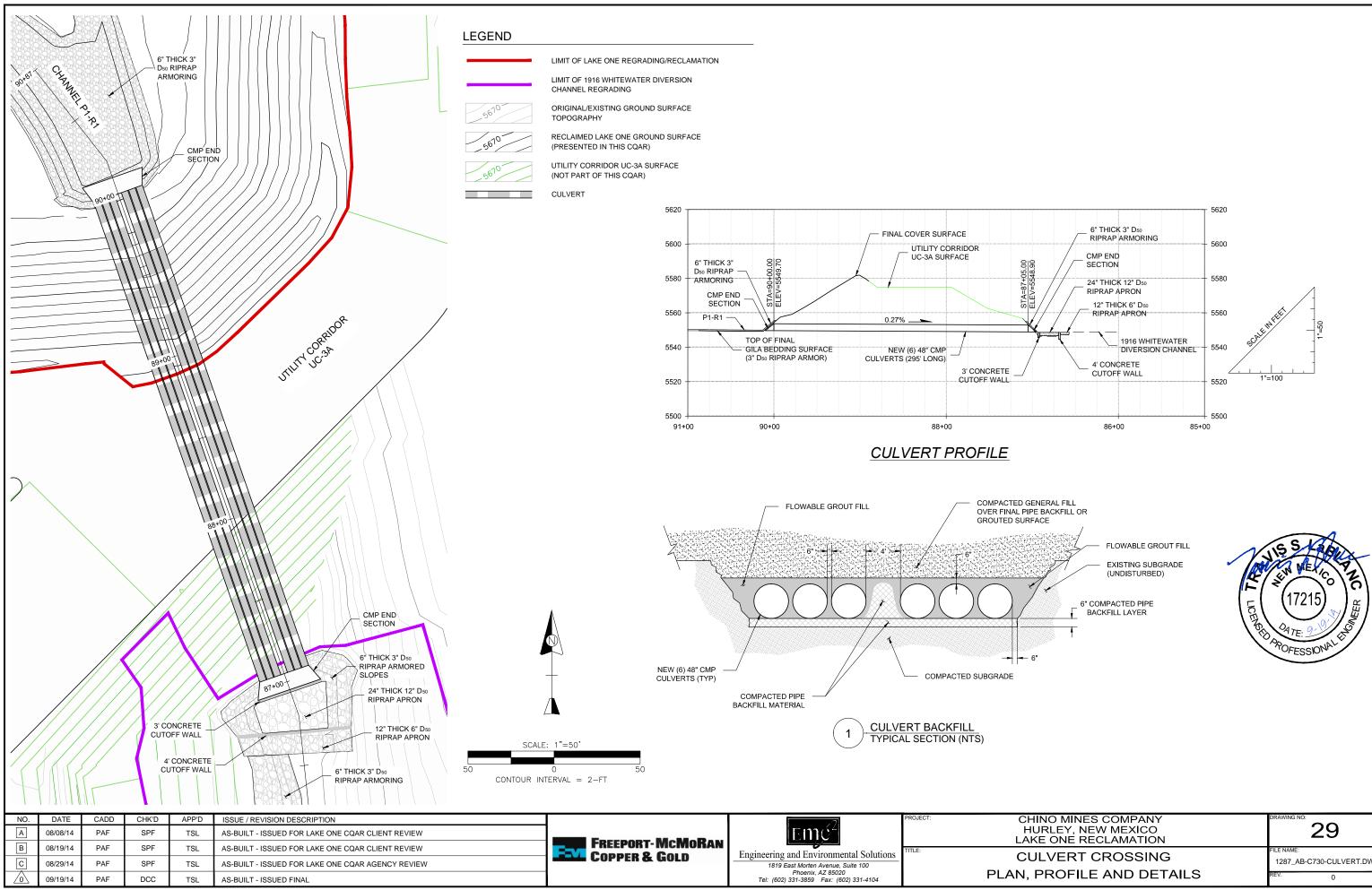


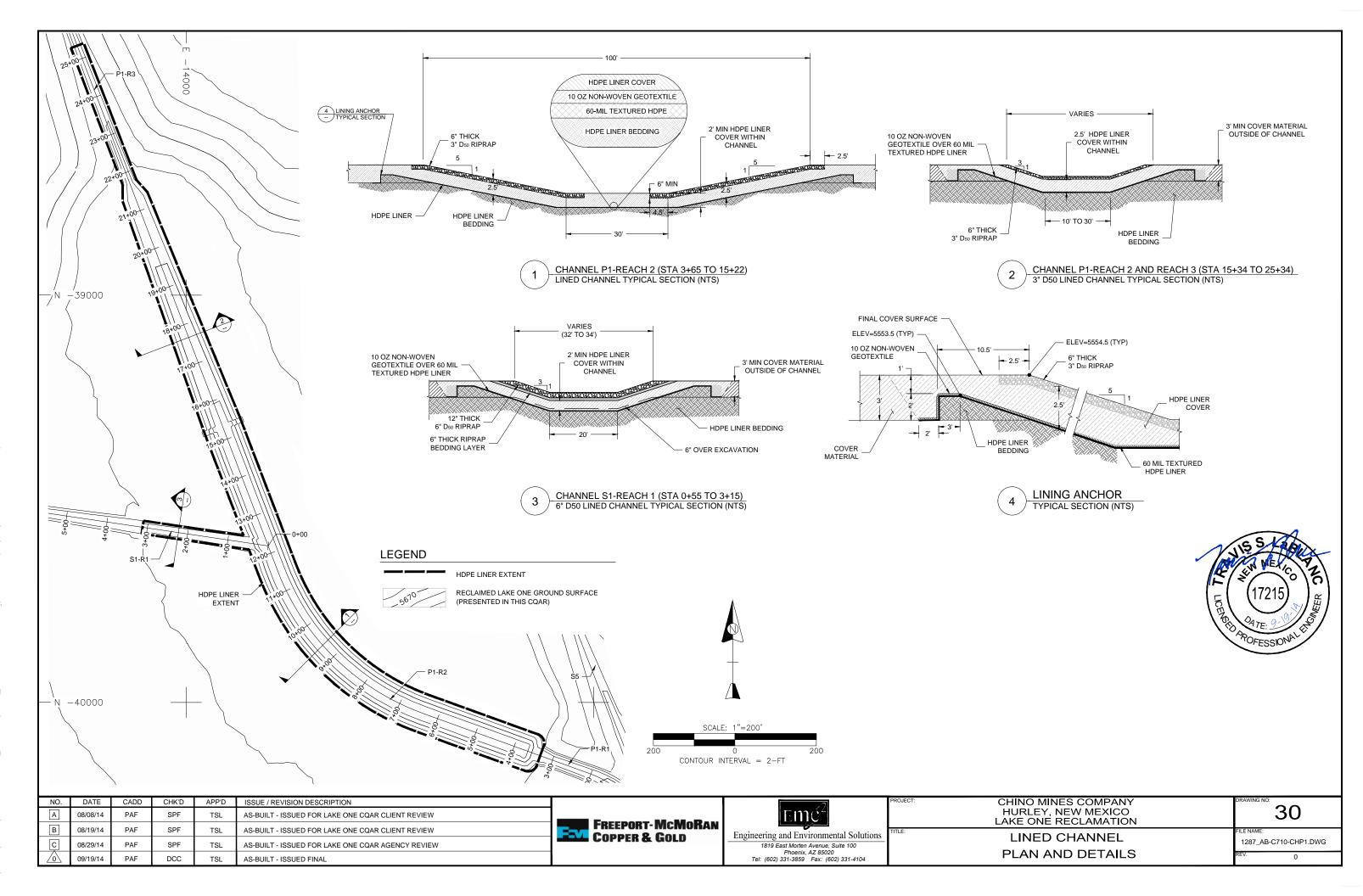
CHINO MINES COMPANY HURLEY, NEW MEXICO _AKE ONE RECLAMATION	DRAWING NO: 26
ANNEL TYPICAL DETAILS	FILE NAME: 1287_AB-C308-CH-DTL.DWG
	REV. 0



NO.	DATE	CADD	CHK'D	APP'D	ISSUE / REVISION DESCRIPTION			PROJECT: CHINO MINES COMPANY	
А	08/08/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR CLIENT REVIEW		<u>Emé</u> ²	HURLEY, NEW MEXICO LAKE ONE RECLAMATION	21
В	08/19/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR CLIENT REVIEW	FREEPORT-MCMORAN	Engineering and Environmental Solutions	TTLE.	FILE NAME:
С	08/29/14	PAF	SPF	TSL	AS-BUILT - ISSUED FOR LAKE ONE CQAR AGENCY REVIEW	CUPPER & GULD	1819 East Morten Avenue, Suite 100	WATERSHED OVERVIEW	1287_AB-C700-WS.DWG
\triangle	09/19/14	PAF	DCC	TSL	AS-BUILT - ISSUED FINAL		Phoenix, AZ 85020 Tel: (602) 331-3859 Fax: (602) 331-4104	(WITHIN LAKE ONE RECLAMATION BOUNDARY)	REV. 0


LEGEND


LIMIT OF LAKE ONE REGRADING/RECLAMATION
ORIGINAL GROUND SURFACE TOPOGRAPHY
RECLAIMED LAKE ONE GROUND SURFACE (PRESENTED IN THIS CQAR)
CHANNEL - REACH DESIGNATION
DOWN DRAIN DESIGNATION
SHEET FLOW DIRECTION
TOP SURFACE CHANNEL
DOWN DRAIN
OUTSLOPE CHANNEL
CULVERT PIPE


600 0 CONTOUR INTERVAL = 2-FT

OVER CE		ELEV = 5562.18	BTA = 24+25.84	ELEV = 5576.52	12 994 J2 5620 18 1499 5620 12 994 J2 = V1S 14 997 5580
0.5%		<u> </u>			- 5560
8+00	20+00	22+00	24+00	26+00	5540 5532 27+56
STEM REGRADED MATERIALS		VARIES		5 ^{CNENFEE}	
	GRAVEL DRAIN ROCK	60 MIL HDPE LINER	LICENSC	USSIN UNIVEL 17215 DATE: 9-9 AROFESSION	
HURLEY LAKE ON EP COLI	INES COMP (, NEW MEX E RECLAMA LECTION E AND DE	ICO TION SYSTEM		DRAWING NO: 2 FILE NAME: 1287_AB-C720- REV.	

CHINO MINES COMPANY HURLEY, NEW MEXICO LAKE ONE RECLAMATION	DRAWING NO: 29
CULVERT CROSSING	FILE NAME: 1287_AB-C730-CULVERT.DWG
AN, PROFILE AND DETAILS	REV. 0

APPENDIX A

DESIGN CLARIFICATIONS

Table A-1 Design Clarification Summary Lake One Reclamation Chino Mines Company - Hurley, New Mexico

Item No.	DCI No.	FMRS Record No.	Date Received	Description	Date Submitted	Date Approved	Item No.
1				Lake One Reclamation and Utility Corridor			1
2	001	2693	04/16/13	Slag Pile Toe Seep Collection System Gravel Drain Rock Gradation	04/23/13	04/23/13	2
3	002	2694	04/17/13	Existing 30" Welded Steel Process Pipeline (P1) Corrosion Protection Verification	04/23/13	04/23/13	3
4	003	2695	04/22/13	New Pond Network Pipeline (P3) - Replace design 14" HDPE SDR 11 PE 4710 with 24" HDPE SDR 15.5 PE 3608 Pipe	05/06/13	05/06/13	4
5	004	2696	04/23/13	New Pond Network Pipeline (P3) - Replace design 12" HDPE SDR 11 PE 4710 with 12" Contech A-2000 Perforated Pipe	05/06/13	05/06/13	5
6	005	2697	04/24/13	Channel S5 Drainage Design Verification	05/22/13	05/22/13	6
7	006	2698	05/02/13	Utility Corridor Channel Centerline Data	05/03/13	05/03/13	7
8	007	2699	05/03/13	Utility Corridor Culvert Crossings Final Design Elevation Verification	05/03/13	05/03/13	8
9	008	2700	05/06/13	Slag Pile Toe Seep Collection System French Drain Width Modification	05/09/13	05/09/13	9
10	009	2701	05/16/13	Alluvial Riprap - Use 3" instead of 2" D ₅₀	05/17/13	05/17/13	10
11	010	2702	05/17/13	Drawing C-36 New Pond Network Pipeline (P3) Tie-in	05/21/13	05/21/13	11
12	011	2703	05/22/13	Slag Pile Toe Seep Collection System Details	05/22/13	05/22/13	12
13	012	2704	05/22/13	Drawing C-7 Channel P1 Reach 3 Detail	06/11/13	06/11/13	13
14	013	2705	06/25/13	West Slag Channel Detail	07/11/13	07/11/13	14
15	014	2706	08/06/13	Slag Pile Redesign (-3.5-ft Drop)	08/14/13	08/14/13	15
16	015	2707	08/07/13	Lake One Containment Area Redesign Adj Channel S5	08/28/13	08/28/13	16
17	016	2708	08/14/13	Pipeline Crossings at Slag Pile Including Process Water Pipeline Minimum Cover	08/26/13	08/26/13	17
18	017	2709	04/26/13	777 Truck Test Pad Method Specification	08/24/13	08/24/13	18
19	018	2710	04/28/13	988 Loader Test Pad Method Specification	08/24/13	08/24/13	19
20	019	2711	04/28/13	Steel Wheel 683 Test Pad Method Specification	08/24/13	08/24/13	20
21	020	2712	08/14/13	Pond Network Pipeline P16 Size Change	09/26/13	09/26/13	21
22	021	2713	09/06/13	563 Sheepsfoot Compactor Method Specification	09/10/13	09/10/13	22
23	022	2714	09/17/13	Channel S7 Realignment	09/24/13	09/24/13	23
24	023	2715	10/02/13	Lake One Lined Channels - Subgrade Tailings for use as Bedding	10/10/13	10/10/13	24
25	024	2716	10/09/13	Flowable Fill for Utility Corridor CMP Culverts	10/10/13	10/10/13	25
26	025	2717	10/09/13	Drain Rock Width in Seep Collection System	10/10/13	10/10/13	26
27	026	1034	10/16/13	Utility Corridor Redesign - North End to avoid P24 McCauley Pipeline	10/18/13	10/18/13	27
28	027A	1035	10/16/13	Lower Lined Pond Liner Extension	10/23/13	10/23/13	28
29	027B	2813	10/22/13	Utility Corridor 32" Pipe Alternatives for McCauley Pipeline	10/29/13	10/29/13	29
30	027C		12/13/14	Utility Corridor 32" Pipe Alternatives for McCauley Pipeline	12/13/14	12/13/14	30
31	028	2816	10/22/13	Utility Corridor Ponding Issues due to thickeners on W side of channel	10/29/13	10/29/13	31
32	029	3183	12/02/13	Lower Lined Pond Design	12/03/13	12/03/13	32
33	030A	1187	12/17/13	Lined Channel Detail	12/20/13	12/20/13	33 34
34	030B	3285	12/18/13	Slag Pile Down drain Pipeline	12/27/13	12/27/13	
35	031A	3294	12/19/13	S1 Channel Design	12/20/13	12/20/13	35
36 37	031B 032	1192 1193	12/31/13 12/31/13	Process Waterline Bedding	01/31/14 01/31/14	01/31/14 01/31/14	36 37
37	032 032A	3443	01/17/14	Flowfill at Process Waterline Concrete Transition	01/31/14	01/31/14 01/23/14	37 38
30 39	032A 033	1198	01/02/14	Realignment West Slag Channel	01/23/14	01/23/14	30 39
40	033	1198	01/10/14	Lake One ACB Quantities	01/03/14	01/03/14	40
41	034	1202	01/16/14	Slag Pipe Redesign for Process Waterline	02/01/14	01/31/14	40
42	036A	1214	02/04/14	Cutoff Wall Design Modification	02/06/14	02/06/14	42
43	037	1261	02/18/14	Slag Pile Gila Outslope Dimensions	02/18/14	02/18/14	43
44	038	1266	02/19/14	Single Barrel Culvert UC1	Retracted	Retracted	44
45	039	1267	02/20/14	Downdrain 1 CAD Info Request	02/24/14	02/24/14	45
46	039A	4607	04/09/14	P1 Lined Channel Redesign	04/10/14	04/10/14	46
47	040	1269	02/20/14	Lined Channel HDPE Cover Detail	02/28/14	02/28/14	47
48	041	1671	06/17/14	Slag Pile Process Water Pipeline	07/17/14	07/17/14	48
49	042	6409	06/24/14	Fiber Optic Realignment	06/24/14	06/24/14	49

DCI = Design Clarification; FMRS = Freeport-McMoRan Reclamation Services; (--) = not applicable; HDPE = high-density polyethylene pipe; SDR = standard dimension ratio; CMP = corrugated metal pipe; ACB = articulated concrete block.

APPENDIX B

LABORATORY TESTING

APPENDIX B-1

PROCTOR TEST RESULTS

Table B-1 Proctor Summary Table Lake One Reclamation Chino Mines Company - Hurley, New Mexico

Item	Sample	Proctor	Lab Performing	Lab	Sample	Material	Soil Classif (ASTM 2				l Gradation A C136)			erberg Lin STM D431			d Proctor 8 Method C)	Rock Corre Modified	l Test ected Proctor AASHTO thod D (1)	Rock Corre AASHTO T	Test ected Proctor 99 Method D 2)	Field Notes	Item
No.	ID	Test ID	Analysis	ID	Date	Description	USCS	AASHTO	Gravel ≥No. 4 (%)	Gravel > 3/4" (%)	Sand > No. 200 & < No. 4 (%)	Silt / Clay ≤ No. 200 (%)	Plastic Limit PL	Liquid Limit LL	Plasticity Index PI	Maximum Dry Density (pcf)	Optimum Moisture Content (%)	Maximum Dry Density (pcf)	Optimum Moisture Content (%)	Maximum Dry Density (pcf)	Optimum Moisture Content (%)		No.
1	LK-1 A-1	1a	Summit Technical Inc.	3202	04/22/13	Light Tailings	SM / Silty Sand	A-2-4	1%	0%	62%	37%			0	116.6	15.7%						1
2		1b				5 5				35%								127.9	10.5%			Rock Corr per Field Test 11/29/13	
3	LK-1 A-2	2a	Summit Technical Inc.	3203	04/22/13	Darker Tailings	SM / Silty Sand	A-2-4	1%	0%	63%	36%			0	118.4	16.7%						3
4	LK-1 A-3	2b 3	Summit Technical Inc.	3206	04/22/13	Mixed / Pushed Tailings	CL / Lean Clay	A-6	7%	26% 1%	39%	54%	19	34	15	107.8	20.8%					Rock Corr per Field Test 12/17/13	4 5
6		4				Tuning5				< 10%													6
7	-	4a								40%	-							132.1	8.0%				7
8	-	4b								20%										126.0	12.7%		8
9	-	4c								31%								129.6	9.0%			Rock Corr per Field Test 8/31/13	9
10	-	4d								10%	_							123.7	11.5%			Rock Corr per Field Test 2/4/14	10
11	T TZ 1 A 4	4e	G	2207	04/05/12		CW CC	1.2.6	600/	25%	210/	00/	22	22	10	120.0	10.7%	127.9	9.8%			Rock Corr per Field Test 2/12/14	11
12	LK-1 A-4	4f	Summit Technical Inc.	3207	04/25/13	Light Brown Tailing	GW-GC	A-2-6	60%	20%	31%	9%	22	32	10	120.9	12.7%	126.5	10.4%			Rock Corr per Field Test 2/27/14	12
13		4g								30%										128.8	9.0%	Lab Corrected Value	13
14		4h								40%										131.7	7.8%	Lab Corrected Value	14
15		4i								20%										126.0	10.3%	Lab Corrected Value	15
16		4j								25%										127.4	9.6%	Lab Corrected Value	16
17		4k								10%										123.4	11.5%	Lab Corrected Value	17
18	LK-1 A-5	5a	Summit Technical Inc.	3220	05/09/13	Uncontaminated	GW	A-1-a	67%	51%	28%	5%			0	133.5	7.5%	141.3	4.2%	145.6	4.0%		18
19	ER I M S	5b	Builling Feelinear Inc.	5220	05/05/15	Cover Material	011	71 T u	0770	25%	2070	570			Ŭ	155.5	7.570	137.3	5.9%			Rock Corr per Field Test 4/10/14	19
20	LK-1 A-6	6	Summit Technical Inc.	3238	05/28/13	Yellowish Tailings	CL / Sandy Lean Clay	A-6	0%	0%	50%	50%	21	32	11	105.4	19.7%						20
21	LK-1 A-7	7a	Summit Technical Inc.	3251	06/12/13	Silty Sand Native	SM / Silty Sand	A-2-4	24%	12%	46%	30%	16	34	18	108.2	17.3%	113.1	15.3%	111.8	15.3%		21
22		7b				-				27%								119.0	13.0%			Rock Corr per Field Test 11/29/13	
23	-	8a								39%								132.2	8.2%	133.3	9.0%		23
24	-	8b								23%	_							127.7	10.1%			Rock Corr per Field Test 8/17/13	
25	-	8c								27%	_							129.0	9.6%			Rock Corr per Field Test 8/17/13	
26	-	8d								23%	_							128.0	10.0%			Rock Corr per Field Test 8/18/13	
27	-	8e								25%	_							128.4	9.8%			Rock Corr per Field Test 8/19/13	
28 29	-	8f								33%	_							130.7	8.9%			Rock Corr per Field Test 8/27/13	
	-	8g								32%	_							130.4	9.0%			Rock Corr per Field Test 10/3/13	
30 31	-	8h 8;								15% 15%	_							125.6 125.7	11.1% 11.0%			Rock Corr per Field Test 10/5/13 Rock Corr per Field Test 10/10/13	
31		8j 8k								36%	-							123.7	8.6%			Rock Corr per Field Test 10/10/13 Rock Corr per Field Test 10/14/13	
33	-	81								25%	-							128.4	9.9%			Rock Corr per Field Test 12/1/13	
34	ŀŀ	8m								39%	-							132.2	8.2%			Rock Corr per Field Test 12/1/13	
35	LK-1 A-8	8n	Summit Technical Inc.	3285	07/17/13	Silty Sandy Gravel	GW-GC	A-2-6	58%	35%	30%	12%	22	29	7	121.6	12.8%	131.1	8.7%			Rock Corr per Field Test 12/3/13	
36		80				Cover				34%	1							131.0	8.7%			Rock Corr per Field Test 12/5/13	
37	ŀŀ	8p								37%	1							131.7	8.4%			Rock Corr per Field Test 12/9/13	
38	ŀ	8q								35%	1							131.0	8.7%			Rock Corr per Field Test 12/14/13	
39	F	8r								50%	1							135.2	6.9%			Rock Corr per Field Test 2/12/14	
40		8s								39%	1									133.3	9.0%	Lab Corrected Value	40
41	Ī	8t								37%								131.7	8.4%			Rock Corr per Field Test 4/1/14	41
42		8u								25%								128.4	9.9%			Rock Corr per Field Test 4/2/14	42
43		8v								40%								132.5	8.1%			Rock Corr per Field Test 4/8/14	43
44		8w								35%								131.1	8.7%			Rock Corr per Field Test 5/21/14	44
45		8x								44%								133.6	7.6%			Rock Corr per Field Test 7/16/14	
46		8y								41%								132.6	8.0%			Rock Corr per Field Test 7/24/14	
47		8z								36%								131.5	8.5%			Rock Corr per Field Test 7/28/14	47

Table B-1 **Proctor Summary Table** Lake One Reclamation Chino Mines Company - Hurley, New Mexico

	Sample		Lab Performing	Lab	Sample	Material	Soil Classifi (ASTM 2			0.000.000	Gradation I C136)			erberg Lin STM D431		Standar (ASTM D69	l Proctor 8 Method C)	Field Rock Corre Modified T224 Met	cted Proctor AASHTO	Rock Corre AASHTO T	Test cted Proctor 99 Method D 2)	Field Notes	Item
No.	ID	Test ID	Analysis	ID	Date	Description	USCS	AASHTO	Gravel ≥No. 4 (%)	Gravel > 3/4" (%)	Sand > No. 200 & < No. 4 (%)	Silt / Clay ≤ No. 200 (%)	Plastic Limit PL	Liquid Limit LL	Plasticity Index PI	Maximum Dry Density (pcf)	Optimum Moisture Content (%)	Maximum Dry Density (pcf)	Optimum Moisture Content (%)	Maximum Dry Density (pcf)	Optimum Moisture Content (%)		No.
48		9a								44%								128.2	9.3%	127.9	9.9%		48
49	LK-1 A-9	9e	Summit Technical Inc.	3302	08/07/13	Sandy Clayey	GW-GC	A-2-6	56%	22%	32%	11.7%	22	46	24	112.0	15.8%	120.0	12.6%			Rock Corr per Field Test 9/6/13	49
50	LK-1 A-9	9f	Summe reennearme.	5502	00/07/15	Gravel Cover	011-00	A-2-0	5070	14%	5270	11.7 /0	22	40	24	112.0	13.870	117.2	13.7%			Rock Corr per Field Test 9/6/13	50
51		9h								43%								127.9	9.4%			Rock Corr per Field Test 10/15/13	51
52	2517	2517	Summit Technical Inc.	2517	05/02/11	Rounded Non-Spec Base Course	GW	A-1-a	49%	6%	45%	6%	20	21	1	131.3	7.2%			-		Proctor for Utility Corridor Sewer Crossing	52

ID = identification; ft = feet; % = percent; pcf = pounds per cubic feet; ASTM = American Society for Testing and Materials; USCS = Unified Soil Classification System; AASHTO = American Association of State Highway and Transportation Officials; (--) = not applicable.

Notes: 1. Calculations assume a specific gravity value of 2.65.

2. Calculations use measured laboratory test results for specific gravity and moisture content of oversized particles.

APPENDIX B-2

RIPRAP TESTING

Table B-2Riprap Gradation Testing Data - Lone Mountain Quarry
Lake One Reclamation
Chino Mines Company - Hurley, New Mexico

Sample ID	Sample Date	LA Abrasion (%)	Soundness Sulfate Loss (%)	Absorption (%)	Specific Gravity
3199	4/24/2013	27.60%	1.63%	0.660%	2.564
3322	8/22/2013	23.60%	1.14%	0.522%	2.661
3330	8/29/2013	17.10%	0.99%	0.486%	2.698

Table B-3 Riprap Gradation Testing Data - Lone Mountain Quarry Lake One Reclamation Chino Mines Company - Hurley, New Mexico

			D ₅₀ =	= 3 inch					
Sample ID	Sample Date			Perce	ent Passin	g Sieve Si	ze		
Sample ID	Sample Date	1''	2''	3''	4''	5''	6''	7''	8''
No ID	4/22/2013	0	4	40	70	93	98	100	100
No ID	9/4/2013	0	0	27	79	94	97	98	100
No ID	12/5/2013	0	2	22	69	93	100	100	100
No ID	12/9/2013	0	2	47	87	98	99	100	100
Ave	erage	0	2	44	75	95	99	100	100
Speci	fication	0-5	5-15	30-50	70-85		90-100		
			D ₅₀ =	= 6 inch					
Sample ID	Sample Date			Perce	ent Passin	g Sieve Si	ze		
Sample ID	Sample Date	2''	4''	6''	9''	10''	12''	14''	16''
No ID	8/29/2013	0	14	40	84	91	95	99	99
Speci	fication	0-5	5-15	30-50	70-85		90-100		
			D ₅₀ =	= 8 inch					
Samula ID	Sample Date		D ₅₀ =		ent Passin	g Sieve Si	ze		
Sample ID	Sample Date	3"	D ₅₀ =		ent Passin 10''	g Sieve Si 12''	ze 16''	18''	20''
Sample ID No ID	Sample Date 4/26/2013	3'' 0		Perce				18'' 99	
-	-		5''	Perce 8''	10''	12"	16''		
No ID No ID	4/26/2013	0	5'' 12	Perce 8'' 48	10'' 75	12'' 85	16'' 97	99	100 99
No ID No ID Ave	4/26/2013 8/29/2013	0 4	5'' 12 15	Perce 8" 48 50	10'' 75 77	12'' 85 85	16'' 97 98	99 99	100 99
No ID No ID Ave	4/26/2013 8/29/2013 erage	0 4 2	5'' 12 15 13.5	Perce 8" 48 50 49	10'' 75 77	12'' 85 85 85 85	16'' 97 98 98	99 99	100 99
No ID No ID Ave	4/26/2013 8/29/2013 erage	0 4 2 0-5	5'' 12 15 13.5	Perce 8'' 48 50 49 30-50	10'' 75 77 76	12'' 85 85 85 85	16'' 97 98 98	99 99	20'' 100 99 100
No ID No ID Ave Speci	4/26/2013 8/29/2013 erage fication	0 4 2 0-5	5'' 12 15 13.5 5-15	Perce 8" 48 50 49 30-50 3 No. 57 Ro	10'' 75 77 76	12" 85 85 85 70-85	16'' 97 98 98 98 90-100	99 99	100 99 100
No ID No ID Ave Speci	4/26/2013 8/29/2013 erage fication Sample Date	0 4 2 0-5 No. 100	5" 12 15 13.5 5-15 ASTM C3. No. 40	Perce 8'' 48 50 49 30-50 3 No. 57 Ro Perce No.8	10'' 75 77 76 ock ent Passin No.4	12" 85 85 85 70-85 g Sieve Si 1/2"	16'' 97 98 98 90-100 ze 3/4''''	99 99 99 1''	100 99 100 1.5''
No ID No ID Ave Speci Sample ID 3330	4/26/2013 8/29/2013 erage fication	0 4 2 0-5	5" 12 15 13.5 5-15 ASTM C3.	Perce 8" 48 50 49 30-50 3 No. 57 Ro Perce	10'' 75 77 76 ock ent Passin	12" 85 85 85 70-85 g Sieve Si	16'' 97 98 98 90-100 ze	99 99 99	100 99 100

APPENDIX C

FIELD TEST DATA

APPENDIX C-1

NUCLEAR DENSITY TESTING

_							chino tonico	Company - Hurl	icy, ite # fileat						-	
								Lab P	roctor Test Re	sults		Field Proctor	Test Results			
Item No.	Test ID	Test Description	Elevation / Lift Description	Northing	Easting	Elevation (ft)	Test Date	Comparison Proctor Test ID	Optimum Moisture Content (%)	Maximum Dry Density (pcf)	Moisture Content (%)	Difference Optimum Moisture Content (± %)	Density (pcf)	Percent Compaction (%)	Required Compaction (%)	Passed? Notes Item No.
1	042613-02	Method Spec (Tailings in Fill Areas) - 777 Haul Truck	Top of Pad / 3-ft Lift				4/26/2013	3	20.80%	107.8	14.2%	-6.6%	104.6	97.0%	95%	PASS 1
2	042613-03 042613-05	Method Spec (Tailings in Fill Areas) - 777 Haul Truck	Top of Pad / 3-ft Lift			5,533.0 5,533.0	4/26/2013	3	20.80%	107.8	15.3%	-5.5%	106.2	98.5%	95%	PASS 2
4	042613-03	Method Spec (Tailings in Fill Areas) - 777 Haul Truck Method Spec (Tailings in Fill Areas) - 777 Haul Truck	Top of Pad / 3-ft Lift 1-ft Below Pad / 3-ft Lift			5,533.0	4/26/2013 4/26/2013	3	20.80% 20.80%	107.8	16.8% 20.1%	-4.0% -0.7%	104.8 105.8	97.2% 98.1%	95% 95%	PASS 3 PASS 4
5	042613-08	Method Spec (Tailings in Fill Areas) - 777 Haul Truck	1-ft Below Pad / 3-ft Lift				4/26/2013	3	20.80%	107.8	17.8%	-3.0%	106.0	98.3%	95%	PASS 5
6	042613-09	Method Spec (Tailings in Fill Areas) - 777 Haul Truck	1-ft Below Pad / 3-ft Lift			5,533.0	4/26/2013	3	20.80%	107.8	17.2%	-3.6%	104.6	97.0%	95%	PASS 6
8	042613-10 042613-11	Method Spec (Tailings in Fill Areas) - 777 Haul Truck Method Spec (Tailings in Fill Areas) - 777 Haul Truck	1-ft Below Pad / 3-ft Lift 1-ft Below Pad / 3-ft Lift			5,533.0 5,533.0	4/26/2013 4/26/2013	3	20.80% 20.80%	107.8 107.8	17.7% 18.5%	-3.1%	104.6 104.6	97.0% 97.0%	95% 95%	PASS 7 PASS 8
9	042613-12	Method Spec (Tailings in Fill Areas) - 777 Haul Truck	2-ft Below Pad / 3-ft Lift			- /	4/26/2013	3	20.80%	107.8	6.9%	-13.9%	104.8	97.2%	95%	PASS 9
10	042613-13	Method Spec (Tailings in Fill Areas) - 777 Haul Truck	2-ft Below Pad / 3-ft Lift			5,533.0	4/26/2013	3	20.80%	107.8	6.4%	-14.4%	107.8	100.0%	95%	PASS 10
11	042813-01 042813-02	Method Spec (Tailings in Channel Areas)- 988 Loader Method Spec (Tailings in Channel Areas)- 988 Loader	Top of Pad / 2-ft Lift Top of Pad / 2-ft Lift			5,533.0 5,533.0	4/28/2013 4/28/2013	3	20.80% 20.80%	107.8 107.8	13.2% 12.7%	-7.6% -8.1%	113.8 105.3	105.6% 97.7%	95% 95%	PASS 11 PASS 12
13	042813-04	Method Spec (Tailings in Channel Areas)- 988 Loader	Top of Pad / 2-ft Lift			5,533.0	4/28/2013	3	20.80%	107.8	14.9%	-5.9%	106.2	98.5%	95%	PASS 13
14	042813-05	Method Spec (Tailings in Channel Areas)- 988 Loader	Top of Pad / 2-ft Lift			5,533.0	4/28/2013	3	20.80%	107.8	13.5%	-7.3%	105.4	97.8%	95%	PASS 14
15	042813-06 042813-07	Method Spec (Tailings in Channel Areas)- 988 Loader Method Spec (Tailings in Channel Areas)- 988 Loader	Top of Pad / 2-ft Lift 1-ft Below Pad / 2-ft Lift				4/28/2013 4/28/2013	3 1a	20.80%	107.8 116.6	13.0% 13.8%	-7.8% -1.9%	106.9 118.9	99.2% 102.0%	95% 95%	PASS 15 PASS 16
17	042813-08	Method Spec (Tailings in Channel Areas)- 988 Loader	1-ft Below Pad / 2-ft Lift			5,533.0	4/28/2013	la	15.70%	116.6	14.7%	-1.0%	115.7	99.2%	95%	PASS 17
18	042813-09	Method Spec (Tailings in Channel Areas)- 988 Loader	1-ft Below Pad / 2-ft Lift			5,533.0	4/28/2013	la 1-	15.70%	116.6	13.8%	-1.9%	115.5	99.0%	95%	PASS 18
20	042813-10 042813-11	Method Spec (Tailings in Channel Areas)- 988 Loader Method Spec (Tailings in Channel Areas)- 988 Loader	1-ft Below Pad / 2-ft Lift 1-ft Below Pad / 2-ft Lift				4/28/2013 4/28/2013	la la	15.70% 15.70%	116.6 116.6	14.7% 13.8%	-1.0%	114.7 115.7	98.4% 99.2%	95% 95%	PASS 19 PASS 20
21	042813-13	Method Spec (Tailings in Channel Areas) - 683 Vibratory Roller	Top of Pad / 2-ft Lift			5,533.0	4/28/2013	2a	16.70%	118.4	13.2%	-3.5%	116.2	98.1%	95%	PASS 21
22	042813-14	Method Spec (Tailings in Channel Areas) - 683 Vibratory Roller	Top of Pad / 2-ft Lift			5,533.0	4/28/2013	2a	16.70%	118.4	13.9%	-2.8%	113.4	95.8%	95%	PASS 22
23	042813-15 042813-16	Method Spec (Tailings in Channel Areas) - 683 Vibratory Roller Method Spec (Tailings in Channel Areas) - 683 Vibratory Roller	Top of Pad / 2-ft Lift Top of Pad / 2-ft Lift				4/28/2013 4/28/2013	2a 2a	16.70% 16.70%	118.4 118.4	13.4% 13.3%	-3.3% -3.4%	125.7 116.1	106.2% 98.1%	95% 95%	PASS 23 PASS 24
25	042813-18	Method Spec (Tailings in Channel Areas) - 683 Vibratory Roller	Top of Pad / 2-ft Lift			- /	4/28/2013	2a	16.70%	118.4	14.3%	-2.4%	119.1	100.6%	95%	PASS 25
26	042813-19	Method Spec (Tailings in Channel Areas) - 683 Vibratory Roller	1-ft Below Pad / 2-ft Lift			5,533.0	4/28/2013	2a	16.70%	118.4	14.7%	-2.0%	122.4	103.3%	95%	PASS 26
27	042813-20 042813-21	Method Spec (Tailings in Channel Areas) - 683 Vibratory Roller Method Spec (Tailings in Channel Areas) - 683 Vibratory Roller	1-ft Below Pad / 2-ft Lift 1-ft Below Pad / 2-ft Lift			5,533.0 5,533.0	4/28/2013 4/28/2013	2a 2a	16.70% 16.70%	118.4 118.4	13.7% 13.7%	-3.0%	113.6 112.1	96.0% 94.7%	95% 95%	PASS 27 PASS 28
29	042813-22	Method Spec (Tailings in Channel Areas) - 683 Vibratory Roller	1-ft Below Pad / 2-ft Lift			5,533.0	4/28/2013	2a	16.70%	118.4	15.2%	-1.5%	116.9	98.7%	95%	PASS 29
30	042813-23	Method Spec (Tailings in Channel Areas) - 683 Vibratory Roller	1-ft Below Pad / 2-ft Lift			5,533.0	4/28/2013	2a	16.70%	118.4	13.4%	-3.3%	116.7	98.6%	95%	PASS 30
31	050413-01 050413-02	Channel P1R4 Sta 45+50 100-ft East Channel P1R4 Sta 45+50 150-ft East	Top of Surface / 1st 3-ft Lift Top of Surface / 1st 3-ft Lift	36485.3581 36501.9166	14268.9502 14221.7717	5,555.4 5,561.2	5/4/2013 5/4/2013	la la	15.70% 15.70%	116.6 116.6	11.3% 11.5%	-4.4% -4.2%	113.4 117.9	97.3% 101.1%	95% 95%	PASS 31 PASS 32
33	050413-03	Channel P1R4 Sta 45+50 200-ft East	Top of Surface / 1st 3-ft Lift	36518.4751	14174.5932	5,561.0	5/4/2013	la	15.70%	116.6	8.5%	-7.2%	111.4	95.5%	95%	PASS 33
34	050413-05 050413-06	Channel P1R4 Sta 44+50 75-ft East	Top of Surface / 1st 3-ft Lift	36575.1377	14332.2653	5,554.2	5/4/2013	1a	15.70%	116.6	10.2%	-5.5%	113.6	97.4%	95%	PASS 34 PASS 35
36	050413-08	Channel P1R4 Sta 44+50 75-ft East - Rotated 90° Channel P1R4 Sta 44+50 125-ft East	Top of Surface / 1st 3-ft Lift Top of Surface / 1st 3-ft Lift	36575.1377 36595.3128	14332.2653 14286.5163	5,554.2 5,554.2	5/4/2013 5/4/2013	la la	15.70% 15.70%	116.6 116.6	10.7% 10.4%	-5.0% -5.3%	112.3 113.1	96.3% 97.0%	95% 95%	PASS 35 PASS 36
37	050413-08	Channel P1R4 Sta 44+50 125-ft East - Rotated 90°	Top of Surface / 1st 3-ft Lift	36595.3128	14286.5163	5,554.2	5/4/2013	1a	15.70%	116.6	9.9%	-5.8%	117.0	100.3%	95%	PASS 37
38	052313-06 060413-01	Channel P1R4 CL Sta 38+50 Slag Pile Seep Collection Sta 5+00 10-ft LT of CL	3-ft Above Tailings Top of Surface	37119.8818 35843.6698	14561.5369 14640.7333	5,555.6 5,553.4	5/23/2013 6/4/2013	4a 6	8.02% 19.70%	132.1 105.4	4.6% 18.1%	-3.4%	125.3 100.9	94.9% 95.7%	95% 95%	PASS 38 PASS 39
40	060413-01	Slag Pile Seep Collection Sta 5+00 10-ft RT of CL	Top of Surface	35857.1497	14625.9586	5,553.4	6/4/2013	6	19.70%	105.4	11.5%	-8.2%	100.9	97.5%	95%	PASS 40
41	060413-03	Slag Pile Seep Collection Sta 7+90 CL	Top of Surface	35603.3355	14504.7296	5,554.8	6/4/2013	6	19.70%	105.4	12.0%	-7.7%	102.5	97.2%	95%	PASS 41
42	060413-04 060413-05	Slag Pile Seep Collection Sta 10+75 10-ft LT of CL Slag Pile Seep Collection Sta 11+85 CL	Top of Surface Top of Surface	35323.6382 35214.7481	14494.7091 14490.0707	5,556.2 5,556.8	6/4/2013 6/4/2013	6 6	19.70% 19.70%	105.4 105.4	6.3% 7.8%	-13.4%	105.5 109.8	100.1% 104.2%	95% 95%	PASS 42 PASS 43
44	060413-06	Slag Pile Seep Collection Sta 12+70 CL	Top of Surface	35131.1161	14499.3381	5,557.3	6/4/2013	6	19.70%	105.4	13.6%	-6.1%	100.5	95.4%	95%	PASS 44
45	060413-07	Slag Pile Seep Collection Sta 14+70 10-ft LT of CL	Top of Surface	34939.5197	14548.6134	5,558.4	6/4/2013	6	19.70%	105.4	8.3%	-11.4%	105.8	100.4%	95%	PASS 45
46	060413-08 060513-01	Slag Pile Seep Collection Sta 15+70 CL Slag Pile Seep Collection Sta 16+60 10-ft RT of CL	Top of Surface Top of Surface	34841.0656 34751.7296	14565.7872 14580.5869	5,559.0 5,559.4	6/4/2013 6/5/2013	6	19.70% 19.70%	105.4 105.4	6.8% 12.5%	-12.9%	101.7 107.0	96.5% 101.5%	95% 95%	PASS 46 PASS 47
48	060513-02	Slag Pile Seep Collection Sta 19+80 CL	Top of Surface	34470.3438	14718.5020	5,561.1	6/5/2013	6	19.70%	105.4	10.6%	-9.1%	104.3	99.0%	95%	PASS 48
49	060513-03	Slag Pile Seep Collection Sta 13+60 CL	Top of Surface	35042.9869	14513.9989	5,557.8	6/5/2013	6	19.70%	105.4	9.5%	-10.2%	104.0	98.7%	95%	PASS 49
50	062513-01 062513-02	Slag Pile Seep Collection Sta 25+55 10-ft LT of CL Slag Pile Seep Collection Sta 24+85 10-ft LT of CL	Top of Surface Top of Surface	34087.5872 34125.3763	15129.2068 15071.3022	5,577.2 5,574.0	6/25/2013 6/25/2013	7a 7a	15.34% 15.34%	113.1	5.3% 6.1%	-10.0%	107.5	95.1% 95.8%	95% 95%	PASS 50 PASS 51
52	062513-03	Slag Pile Seep Collection Sta 24+15 10-ft LT of CL	Top of Surface	34165.3029	15015.1425	5,570.3	6/25/2013	7a	15.34%	113.1	7.8%	-7.5%	116.6	103.1%	95%	PASS 52
53	072813-01 072813-02	Channel P1R4 Sta 58+50 5-ft LT of CL Channel P1R4 Sta 56+00 5-ft RT of CL	Top of Final Subgrade Surface Top of Final Subgrade Surface	35173.3827 35415.4426	14452.1259 14403.3659		7/28/2013 7/28/2013	4b 4b	12.70% 12.70%	126.0 126.0	8.1% 10.3%	-4.6% -2.4%	120.6 119.1	95.7% 94.5%	95% 95%	PASS Superseded by density tests dated 8/31/13 53 PASS Superseded by density tests dated 8/31/13 54
55	072813-02	Channel P1R4 Sta 50+50 CL	Top of Final Subgrade Surface	35959.3182	14321.3641		7/28/2013	4b 4b	12.70%	126.0	7.9%	-2.4%	119.1	94.3%	93%	PASS Superseded by density tests dated 8/31/13 54 PASS Superseded by density tests dated 8/31/13 55
56	072813-04	Channel P1R4 Confluence with Channel S3 CL	Top of Final Subgrade Surface	36419.2764	14352.3836	5,561.1	7/28/2013	4b	12.70%	126.0	7.5%	-5.2%	124.3	98.7%	95%	PASS Superseded by density tests dated 8/31/13 56
57	072813-05 072813-06	Channel S3 Sta 4+00 CL Channel P1R4 Sta 48+00 5-ft RT of CL	Top of Final Subgrade Surface Top of Final Subgrade Surface	36094.1436 36208.8682	14568.5449 14306.0627		7/28/2013 7/28/2013	4b 4b	12.70% 12.70%	126.0 126.0	10.9% 8.2%	-1.8%	119.5 124.6	94.8% 98.9%	95% 95%	PASS Superseded by density tests dated 8/31/13 57 PASS Superseded by density tests dated 8/31/13 58
59	072813-06	Channel P1R4 Sta 45+50 5-ft LT of CL	Top of Final Subgrade Surface	36450.5852	14368.0252		7/28/2013	4b 4b	12.70%	126.0	8.2% 9.5%	-4.3%	124.0	98.9%	93% 95%	PASS Superseded by density tests dated 8/31/13 59
60	081713-01	Channel S1R1 CL Sta 0+80	1-ft Above Tailings	39603.8560	13877.6730		8/17/2013	8b	10.13%	127.7	4.8%	-5.3%	128.9	100.9%	95%	PASS 60
61 62	081713-02 081813-01	Channel S1R1 CL Sta 0+85 Channel S1R1 CL Sta 6+00	2-ft Above Tailings 1.5-ft Above Tailings / 1st Lift	39603.1238 39527.7029	13882.6191 14392.0665		8/17/2013 8/18/2013	8c 8d	9.61% 10.04%	129.0 128.0	3.8% 8.1%	-5.8% -1.9%	127.4 125.6	98.8% 98.1%	95% 95%	PASS 61 PASS 62
63	081813-02	Channel S1R1 CL Sta 5+75	Tailings Surface / 1st Lift	39531.3641	14367.3361	5,546.4	8/18/2013	la	15.70%	116.6	16.3%	0.6%	111.2	95.4%	95%	PASS 63
64	081813-03	Channel SIRI CL Sta 4+75	2-ft Above Tailings / 1st Lift	39546.0089	14268.4142	5,549.4	8/18/2013	8d	10.04%	128.0	7.1%	-2.9%	124.8	97.5%	95%	PASS 64
65 66	081913-01 081913-02	Channel S1R1 CL Sta 2+00 Channel S1R1 CL Sta 4+00	4-ft Above Tailings 4-ft Above Tailings	39586.2822 39556.9925	13996.3792 14194.2228	5,550.6 5,551.4	8/19/2013 8/19/2013	8e 8e	9.84% 9.84%	128.4 128.4	6.2% 8.3%	-3.6% -1.5%	125.6 123.0	97.8% 95.8%	95% 95%	PASS 65 PASS 66
67	081913-03	Channel S1R1 CL Sta 6+00	4-ft Above Tailings	39527.7029	14392.0665	5,551.0	8/19/2013	8e	9.84%	128.4	6.1%	-3.7%	124.3	96.8%	95%	PASS 67
68	083113-01	Channel P1 CL Sta 54+00	Top of Final Subgrade Surface	35613.7185	14376.6889	5,564.7	8/31/2013	4c	9.04%	129.6	5.5%	-3.5%	128.8	99.3%	95%	PASS 68 PASS 69
69 70	083113-02 083113-03	Channel P1 CL Sta 51+50 Channel P1 CL Sta 49+00	Top of Final Subgrade Surface Top of Final Subgrade Surface	35860.5754 36108.5460	14337.1712 14307.6212		8/31/2013 8/31/2013	4c 4c	9.04% 9.04%	129.6 129.6	7.3% 6.1%	-1.7% -2.9%	125.4 124.6	96.7% 96.1%	95% 95%	PASS 69 PASS 70
71	083113-04	Channel P1 CL Sta 46+50	Top of Final Subgrade Surface	36356.3720	14335.0122	5,560.9	8/31/2013	4c	9.04%	129.6	5.9%	-3.1%	130.7	100.8%	95%	PASS 71
72	083113-05 083113-06	Channel P1 CL Sta 44+00 Channel P1 CL Sta 41+50	Top of Final Subgrade Surface Top of Final Subgrade Surface	36590.6241 36825.4179	14421.0637 14506.2657	5,559.7	8/31/2013 8/31/2013	4c 4c	9.04% 9.04%	129.6 129.6	5.3% 6.3%	-3.7% -2.7%	133.6 131.4	103.1%	95% 95%	PASS 72 PASS 73
74	083113-06 083113-07	Channel P1 CL Sta 41+50 Channel P1 CL Sta 39+00	Top of Final Subgrade Surface	37070.1946	14506.2657 14555.9697		8/31/2013	4c 4c	9.04%	129.6	8.3%	-2.7%	131.4	98.0%	95%	PASS 73 PASS 74
75	083113-08	Channel S3 CL Sta 1+50	Top of Final Subgrade Surface	36282.7372	14404.4338			4c	9.04%	129.6	7.1%	-1.9%	123.0	94.9%	95%	PASS 75

_		1				, ,	.mno Milles	Company - Hu	-						1		-	<u> </u>
								Lab I	Proctor Test Re	esults		Field Proctor	· Test Results		4			
Item No.	Test ID	Test Description	Elevation / Lift Description	Northing	Easting	Elevation (ft)	Test Date	Comparison Proctor Test ID	Optimum Moisture Content (%)	Maximum Dry Density (pcf)	Moisture Content (%)	Difference Optimum Moisture Content (± %)	Density (pcf)	Percent Compaction (%)	Required Compaction (%)	Passed?	Notes	Item No.
76	083113-09	Channel S3 CL Sta 4+00	Top of Final Subgrade Surface	36094.1436	14568.5449	5,563.0	8/31/2013	4c	9.04%	129.6	7.7%	-1.3%	124.8	96.3%	95%	PASS		76
77	083113-10	Channel S2 CL Sta 5+00 Channel S2 CL Sta 2+50	Top of Final Subgrade Surface Top of Final Subgrade Surface	36726.9656	14867.0978 14689.0727	5,561.7 5,558.9	8/31/2013 8/31/2013	4c 4c	9.04% 9.04%	129.6 129.6	5.3% 6.0%	-3.7% -3.0%	123.5 123.6	95.3% 95.3%	95% 95%	PASS PASS		77
79	090613-01	Utility Corridor Alignment Sta 18+50 CL	Top of Final Subgrade Surface	38204.7055	15700.5574	5,632.8	9/6/2013	40 9e	12.59%	129.0	6.9%	-5.7%	115.2	96.0%	95%	PASS	Method Spec - 563 Sheepsfoot Compactor	79
80	090613-02	Utility Corridor Alignment Sta 19+00 CL	Top of Final Subgrade Surface	38254.1553	15693.1602	5,632.2	9/6/2013	9f	13.71%	117.2	10.0%	-3.7%	113.5	96.9%	95%	PASS	Method Spec - 563 Sheepsfoot Compactor	80
81	090613-03 092513-05	Utility Corridor Alignment Sta 17+50 CL Slag Pile Seep Collection Sta 24+32 CL (Channel P1 Sta 70+50)	Top of Final Subgrade Surface Top of Surface	38105.8060 34146.7455	15715.3519 15021.9077	5,632.8 5,571.0	9/6/2013 9/25/2013	9f 7a	13.71% 15.34%	117.2 113.1	10.5%	-3.2%	113.6 110.7	96.9% 97.9%	95% 95%	PASS PASS	Method Spec - 563 Sheepsfoot Compactor	81 82
83	092513-06	Slag Pile Seep Collection Sta 21+76 CL (Channel P1 Sta 68+00)	Top of Surface	34315.1825	14836.2173	5,563.0	9/25/2013	7a	15.34%	113.1	13.9%	-1.4%	107.0	94.6%	95%	PASS		83
84	092513-07 092513-08	Slag Pile Seep Collection Sta 19+24 CL (Channel P1 Sta 65+50)	Top of Surface Top of Surface	34516.5526 34747.0489	14687.5782 14591.3668	5,560.9 5,559.5	9/25/2013 9/25/2013	6	19.70% 19.70%	105.4 105.4	14.6%	-5.1% -8.7%	106.9 106.3	101.4%	95% 95%	PASS PASS		84 85
85	092513-08	Slag Pile Seep Collection Sta 16+67 CL (Channel P1 Sta 63+00) Slag Pile Seep Collection Sta 14+17 CL (Channel P1 Sta 60+50)	Top of Surface	34988.1830	14525.2709	5,558.2	9/25/2013	6	19.70%	105.4	12.8%	-6.9%	106.5	100.9%	95%	PASS		85
87	092513-10	Slag Pile Seep Collection Sta 11+77 CL (Channel P1 Sta 58+00)	Top of Surface	35222.7264	14488.4203	5,556.7	9/25/2013	6	19.70%	105.4	13.7%	-6.0%	104.7	99.3%	95%	PASS		87
88	092513-11 092513-12	Slag Pile Seep Collection Sta 9+37 CL (Channel P1 Sta 55+50) Slag Pile Seep Collection Sta 7+34 CL (Channel P1 Sta 53+00)	Top of Surface Top of Surface	35459.4490 35655.6082	14487.6736 14519.6326	5,555.6 5,554.7	9/25/2013 9/25/2013	6	19.70% 19.70%	105.4	14.9% 15.7%	-4.8%	105.9	100.5% 99.8%	95% 95%	PASS PASS		88 89
90	092513-13	Slag Pile Seep Collection Sta 5+82 CL (Channel P1 Sta 50+50)	Top of Surface	35787.5496	14585.0079	5,553.9	9/25/2013	6	19.70%	105.4	17.9%	-1.8%	106.7	101.2%	95%	PASS		90
91	092513-14	Slag Pile Seep Collection Sta 4+66 CL (Channel P1 Sta 48+00)	Top of Surface	35873.7403	14656.8276	5,553.3 5,551.8	9/25/2013	6	19.70% 19.70%	105.4	16.0%	-3.7%	106.5	101.0% 83.2%	95%	PASS	 The subgrade surface was visually approved by the COA Monitor: therefore	91 92
92	100113-01 100113-02	Slag Pile Seep Collection Sta 1+75 CL Slag Pile Seep Collection Sta 1+85 CL	Top of Surface Top of Surface	36064.3332 36057.1697	14863.9282 14857.0648	5,551.8	10/1/2013 10/1/2013	6	19.70%	105.4 105.4	23.4%	3.7% 2.5%	87.7 97.8	92.8%	95% 95%		The subgrade surface was visually approved by the CQA Monitor; therefore, the 95% compaction requirement was waived for these two locations.	92
94	100113-03	Slag Pile Seep Collection Sta 2+25 CL	Top of Surface	36029.6975	14830.7572	5,552.1	10/1/2013	6	19.70%	105.4	16.5%	-3.2%	102.6	97.3%	95%	PASS		94
95	100113-04 100113-05	Slag Pile Seep Collection Sta 4+00 CL Slag Pile Seep Collection Sta 6+50 CL	Top of Surface Top of Surface	35916.7696 35730.7061	14704.8261 14551.3307	5,552.8 5,554.2	10/1/2013	6	19.70% 19.70%	105.4	22.1% 17.4%	2.4%	106.5	101.0% 97.3%	95% 95%	PASS PASS		95 96
97	100113-05	Slag Pile Seep Collection Sta 0+30 CL Slag Pile Seep Collection Sta 7+25 CL	Top of Surface	35663.6937	14522.5282	5,554.6	10/1/2013	6	19.70%	105.4	16.2%	-2.5%	102.0	102.1%	95%	PASS		97
98	100313-01	Channel S1R3 CL Sta 18+00	Top of Subgrade	38580.7476	14893.0492	5,572.3	10/3/2013	8g	9.01%	130.4	4.9%	-4.1%	125.2	96.0%	95%	PASS		98
99 100	100313-02 100313-03	Channel S1R3 CL Sta 19+50 Channel S1R3 CL Sta 22+00	Top of Subgrade Top of Subgrade	38431.2907 38182.1958	14905.8016 14927.0557	5,573.1 5,574.4	10/3/2013 10/3/2013	8g 8g	9.01% 9.01%	130.4 130.4	8.2% 6.4%	-0.8%	123.8 125.5	95.0% 96.3%	95% 95%	PASS PASS		99 100
101	100313-04	Channel S1R3 CL Sta 24+50	Top of Subgrade	37935.1052	14962.8336	5,575.6	10/3/2013	8g	9.01%	130.4	5.2%	-3.8%	128.4	98.5%	95%	PASS		100
102	100313-05	Channel S1R3 CL Sta 27+00	Top of Subgrade	37689.5640	15009.8392	5,576.9	10/3/2013	8g	9.01%	130.4	7.1%	-1.9%	127.3	97.7%	95%	PASS		102
103	100513-01 100513-02	Utility Corridor Sewer Drain/Channel Crossing CL, Channel Bottom Utility Corridor Sewer Drain/Channel Crossing 25-ft W of CL. Channel Crest	Top of Backfill Top of Backfill	39567.0732 39560.6755	15393.5439 15417.5982		10/5/2013 10/5/2013	8h 8h	11.05% 11.05%	125.6 125.6	9.5% 7.9%	-1.6%	128.0 119.7	101.9% 95.3%	95% 95%	PASS PASS		103
105	100513-03	Utility Corridor Sewer Drain/Channel Crossing 40-ft W of CL, Channel Crest	Top of Backfill	39556.6358	15431.9743		10/5/2013	8h	11.05%	125.6	8.8%	-2.3%	119.1	94.8%	95%	PASS		105
106	101013-01 101013-02	Utility Corridor Crossing Sta 32+50 @ W End (Culvert Inlet) Utility Corridor Crossing Sta 32+50 @ E End (Culvert Outlet)	Top of Subgrade Top of Subgrade	39511.9118 39544.6606	15396.9871 15315.0033	5,588.4 5,585.2	10/10/2013	8j 8i	11.02% 11.02%	125.7 125.7	7.8% 6.7%	-3.2%	125.2 122.7	99.6% 97.6%	95% 95%	PASS PASS		106
107	101013-02	Utility Corridor Crossing Sta 32+50 @ E End (Curvert Outlet) Utility Corridor Crossing Sta 32+50 (CMP Culverts) 19.5-ft E of CL	Top of Subgrade, 10-ft Above Top of Pipe	39527.5915	15357.4085	5,596.3	10/10/2013	9h	9.40%	125.7	6.5%	-4.3%	122.7	99.4%	95%	PASS		107
109	101513-03	Utility Corridor Crossing Sta 32+50 (CMP Culverts) 1.3-ft W of CL	Top of Subgrade, 8-ft Above Top of Pipe	39519.9416	15376.7184	5,595.9	10/15/2013	9h	9.40%	127.9	8.2%	-1.2%	124.4	97.2%	95%	PASS		109
110	101513-04 101513-05	Utility Corridor Crossing Sta 32+50 (CMP Culverts) 9.6-ft W of CL Utility Corridor Crossing Sta 32+50 (CMP Culverts) 9.6-ft W of CL	Top of Subgrade, 6-ft Above Top of Pipe Top of Subgrade, 6-ft Above Top of Pipe	39516.8662 39516.8662	15384.4814 15384.4814	5,594.5 5,594.5	10/15/2013	9h 9h	9.40% 9.40%	127.9 127.9	8.7% 7.9%	-0.7%	122.5 126.4	95.8% 98.8%	95% 95%	PASS PASS		110
112	101513-06	Utility Corridor Crossing Sta 32+50 (CMP Culverts) 14.4-ft W of CL	Top of Subgrade, 4-ft Above Top of Pipe	39515.0946	15388.9532	5,592.9	10/15/2013	9h	9.40%	127.9	7.3%	-2.1%	125.4	98.0%	95%	PASS		112
113	111813-01 111813-02	Utility Corridor (New 5" Concentrate Pipeline) 70-ft W of E Tie-in Utility Corridor (New 5" Concentrate Pipeline) 200-ft W of E Tie-in	Top of Bedding, 1-ft Above Pipe Top of Bedding, 1-ft Above Pipe	34165.6820 34059.1860	15940.9640 15870.7840		11/18/2013 11/18/2013	2517 2517	7.20%	131.3 131.3	8.0% 8.5%	0.8%	128.1 129.5	97.6% 98.6%	95% 95%	PASS PASS		113 114
114	111813-02	Utility Corridor (New 5" Concentrate Pipeline) 200-ft W of E Tie-in	Top of Bedding, 1-ft Above Pipe	33957.1810	15774.8940	- ,	11/18/2013	2517	7.20%	131.3	9.0%	1.3%	129.5	97.3%	95%	PASS		114
116	111813-04	Utility Corridor (New 5" Concentrate Pipeline) 470-ft W of E Tie-in	Top of Bedding, 1-ft Above Pipe	33876.6980	15679.4950	5,606.0	11/18/2013	2517	7.20%	131.3	9.0%	1.8%	125.9	95.9%	95%	PASS		116
117	111813-05 112913-01	Utility Corridor (New 5" Concentrate Pipeline) 620-ft W of E Tie-in Channel S5 CL Sta 2+29.15	Top of Bedding, 1-ft Above Pipe Top of Subgrade	33873.1330 40089.4294	15529.5370 12923.9754	5,597.6	11/18/2013 11/29/2013	2517 1b	7.20%	131.3 127.9	9.4% 11.3%	2.2% 0.8%	126.8 123.5	96.6% 96.6%	95% 95%	PASS PASS		117 118
119	112913-02	Channel S5 CL Sta 4+50	Top of Subgrade	39885.2737	13008.2083	5,549.9	11/29/2013	1b 1b	10.54%	127.9	6.5%	-4.0%	123.9	96.9%	95%	PASS	-	119
120	112913-03	Channel S5 CL Sta 6+50 Utility Corridor New 5" Concentrate Pipeline 500-ft from upper end	Top of Subgrade	39700.3920 33875.9852	13084.4890 15649.5032	5,551.5 5,606.4	11/29/2013	1b 7b	10.54% 12.95%	127.9 119.0	4.4%	-6.1% -7.4%	126.7 117.8	99.1% 99.0%	95%	PASS PASS		120
121	112913-05 112913-06	Utility Corridor New 5 Concentrate Pipeline 500-ft from upper end	Top of Subgrade (3-ft Above Top of Pipe) Top of Subgrade (3-ft Above Top of Pipe)	33875.9852	15649.5032	- ,	11/29/2013 11/29/2013	7b 7b	12.95%	119.0	5.6%	-7.4%	117.8	99.0%	95% 95%	PASS		121
123	120113-01	Channel S1R2 CL Sta 16+75	Top of Subgrade	38702.8214	14874.1651	5,571.0	12/1/2013	81	9.87%	128.4	11.5%	1.6%	122.5	95.4%	95%	PASS		123
124	120113-02 120113-03	Channel S1R2 CL Sta 14+25 Channel S1R2 CL Sta 11+75	Top of Subgrade Top of Subgrade	38919.0016 39157.7647	14749.2364 14684.7964	5,562.4 5,561.3	12/1/2013 12/1/2013	8m 3	8.19% 20.80%	132.2 107.8	7.0% 14.5%	-1.2%	135.5 107.8	102.5%	95% 95%	PASS PASS	<u></u>	124 125
126	120113-03	Channel S1R2 CL Sta 11+75	Top of Subgrade	39157.7647	14684.7964	5,561.3	12/1/2013	3	20.80%	107.8	11.2%	-9.6%	107.8	96.5%	95%	PASS		125
127		Channel S1R2 CL Sta 9+25	Top of Subgrade	39405.8505 39593.6046	14654.2518		12/1/2013	8m	8.19%	132.2	6.9%	-1.3%	132.3	100.1%	95%	PASS		127
128	120313-01 120313-02	Channel S1R1 CL Sta 1+50 Channel S1R1 CL Sta 4+00	Top of Subgrade Top of Subgrade	39593.6046 39556.9925	13946.9183 14194.2228	5,549.5 5,550.8	12/3/2013 12/3/2013	8n 8n	8.67% 8.67%	131.1 131.1	5.0% 5.3%	-3.7% -3.4%	130.9 133.3	99.8% 101.7%	95% 95%	PASS PASS	<u>+</u>	128 129
130	120313-03	Channel S1R1 CL Sta 6+50	Top of Subgrade	39520.3805	14441.5274	5,552.0	12/3/2013	8n	8.67%	131.1	6.8%	-1.9%	132.1	100.7%	95%	PASS		130
131	120313-04 120413-01	Channel S1R2 CL Sta 9+00 Lower Lined Pond Northwest Corner	Top of Subgrade 2-ft Grading Fill	39430.6976 36210.0780	14651.4914 14858.3610		12/3/2013 12/4/2013	8n 2b	8.67% 12.64%	131.1 126.3	6.4% 10.9%	-2.3%	132.1 121.6	100.7% 96.3%	95% 95%	PASS PASS	<u></u>	131 132
132	120413-01	Lower Lined Pond Northeast Corner	2-ft Grading Fill	36103.1980	15071.0590		12/4/2013	20 2b	12.64%	126.3	10.9%	-1.7%	121.6	98.0%	95%	PASS		133
134	120413-03	Lower Lined Pond Southeast Corner	2-ft Grading Fill	36515.2100	15014.2450		12/4/2013	2b	12.64%	126.3	12.1%	-0.5%	122.8	97.2%	95%	PASS		134
135	120413-04 120513-01	Pond Network Pipeline P16 Crossing 50-ft E of Channel Channel S1R3 CL Sta 17+00	Top of Bedding, 1-ft Above Pipe Top of Gila Bedding	36876.1110 38680.3856	15506.9920 14884.5475		12/4/2013 12/5/2013	2517 80	7.20% 8.74%	131.3 131.0	10.1%	2.9% -4.7%	124.7 130.5	95.0% 99.6%	95% 95%	PASS PASS		135 136
137	120513-02	Channel S1R3 CL Sta 19+50	Top of Gila Bedding	38431.2907	14905.8016	5,573.3	12/5/2013	80	8.74%	131.0	4.0%	-4.7%	130.7	99.8%	95%	PASS		137
138	120513-03 120513-04	Channel S1R3 CL Sta 22+00 Channel S1R3 CL Sta 24+50	Top of Gila Bedding Top of Gila Bedding	38182.1958 37935.1052	14927.0557 14962.8336		12/5/2013 12/5/2013	80 80	8.74% 8.74%	131.0 131.0	3.6%	-5.1% -4.9%	130.2	99.4% 100.8%	95% 95%	PASS PASS	<u> -</u>	138 139
140	120513-04	Channel S1R3 CL Sta 24+50 Channel S1R3 CL Sta 27+00	Top of Gila Bedding	37689.5640	15009.8392		12/5/2013	80 80	8.74%	131.0	4.1%	-4.9%	132.0	99.1%	95%	PASS	+ ^{2*}	139
141	121413-01	Utility Corridor Sta 17+00 Fresh 2C P22 Pipeline Channel Crossing	1-ft Below Drainage Channel Subgrade	38059.6110	15744.5071		12/14/2013	8q	8.71%	131.0	8.0%	-0.7%	124.5	95.0%	95%	PASS		141
142	121613-01 121713-01	Utility Corridor Sta 34+50 Fresh McCauley P24 Pipeline Channel Crossing Utility Corridor Sta 34+00 Fresh McCauley P24 Pipeline Crossing	Top of Pipe Bedding Foundation Top of Bedding, 1-ft Above Pipe	39689.0301 39658.5388	15494.1155 15434.2814	5,599.8 5.601.5	12/16/2013 12/17/2013	2517 2517	7.20%	131.3 131.3	5.6% 5.3%	-1.6%	125.9 124.7	95.9% 95.0%	95% 95%	PASS PASS		142 143
144	011014-01	Utility Corridor Sta 1+50 Channel CL	Bottom of Bedding, Channel Subgrade	36615.0234	15357.8120	5,568.6	1/10/2014	4g	9.00%	128.8	11.0%	2.0%	129.7	100.7%	95%	PASS		144
145	011014-02 011614-01	Utility Corridor Sta 4+00 Channel CL Channel P1R3 CL Sta 37+50	Bottom of Bedding, Channel Subgrade Top of Subgrade	36820.3870 37219.6416	15504.0085 14568.2509		1/10/2014 1/16/2014	4g 4h	9.00% 7.80%	128.8 131.7	10.6% 8.7%	1.6%	129.8 130.4	100.8%	95% 95%	PASS PASS		145 146
140	011614-01 011614-02	Channel P1R3 CL Sta 37+50 Channel P1R3 CL Sta 35+00	Top of Subgrade	37469.2487	14568.2509		1/16/2014		7.80%	131.7	8.7%	0.9%	130.4	99.0%	95%	PASS		146
148	011614-03	Channel P1R3 CL Sta 32+50	Top of Subgrade	37714.7919	14513.4068		1/16/2014	4h	7.80%	131.7	11.4%	3.6%	129.2	98.1%	95%	PASS		148
149	011614-04 011614-05	Channel P1R3 CL Sta 32+50 Channel P1R3 CL Sta 30+00	Top of Subgrade Top of Subgrade	37714.7919 37951.4521	14513.4068 14433.3181	5,554.0	1/16/2014 1/16/2014	4h 4h	7.80% 7.80%	131.7 131.7	11.4% 10.9%	3.6% 3.1%	130.9 128.9	99.4% 97.9%	95% 95%	PASS PASS	<u></u>	149 150
130	511014-03	Channel I IKJ CL Sta JUTUU	rop of Subgrade	51751.4521	1010.3101	5,552.0	1/10/2014	+11	7.0070	131.7	10.770	5.170	120.7	21.270	2370	1 400		150

								Company - Hurley, New Mexico							1 1			
							ļ	Lab Pi	roctor Test Res	sults		Field Proctor	Test Results					
Item No.	Test ID	Test Description	Elevation / Lift Description	Northing	Easting	Elevation (ft)	Test Date	Comparison Proctor Test ID	Optimum Moisture Content (%)	Maximum Dry Density (pcf)	Moisture Content (%)	Difference Optimum Moisture Content (± %)	Density (pcf)	Percent Compaction (%)	Required Compaction (%)	Passed?	Notes	Item No.
151				38185.0351	14344.2173	5,551.6		4h	7.80%	131.7	11.3%	3.5%	124.3	94.4%	95%	FAIL	Retested - see Test ID 011614-07	151
152	011614-07 011614-08	*		38185.0351 38418.6182	14344.2173 14255.1165		1/16/2014 1/16/2014	4h 4h	7.80% 7.80%	131.7 131.7	11.9%	4.1% 2.3%	124.1 124.9	94.2% 94.8%	95% 95%	FAIL PASS	Retested - see Test ID 011714-01	152 153
154	011714-01		0	38185.0351	14344.2173	5,551.6	1/17/2014	4h 4h	7.80%	131.7	11.7%	3.9%	120.7	91.6%	95%	FAIL	Retested - see Test ID 011714-02	154
155	011714-02 011714-03			38185.0351 36962.0584	14344.2173 15594.7347	.,	1/17/2014 1/17/2014	4h 4h	7.80% 7.80%	131.7 131.7	11.7% 8.3%	3.9% 0.5%	122.0	92.6% 102.5%	95% 95%	FAIL PASS	Retested - see Test ID 012414-01	155 156
150	011714-03		0	38091.6019	14379.8576	5,552.0	1/18/2014	411 4h	7.80%	131.7	6.6%	-1.2%	130.8	99.3%	95%	PASS		150
158	011814-02	· · · · · · · · · · · · · · · · · · ·		36646.2267	14948.9894	5,562.8	1/18/2014	4c	9.04%	129.6	5.8%	-3.2%	116.3	89.7%	95%	FAIL	Retested - see Test ID 011914-01	158
159	011914-01 012414-01			36646.2267 38185.0351	14948.9894 14344.2173	5,562.8 5,551.6	1/19/2014 1/24/2014	4c 4h	9.04% 7.80%	129.6 131.7	9.3% 5.4%	0.3%	124.6 129.4	96.1% 98.3%	95% 95%	PASS PASS	Retest of 011814-02 Retest of 011714-02	159 160
161	012714-01	*	f Gila Bedding 3	37319.6238	14569.0537	5,558.1		8p	8.44%	131.7	4.7%	-3.7%	133.1	101.1%	95%	PASS		161
162	012714-02 012714-03			37666.2681 37904.7355	14525.4589 14451.1383	5,556.3 5,555.1	1/27/2014 1/27/2014	8p 8p	8.44% 8.44%	131.7 131.7	5.2% 4.5%	-3.2% -3.9%	129.7 130.0	98.5% 98.7%	95% 95%	PASS PASS		162 163
164	012714-03	*	0	38203.7218	14337.0892	5,553.5		ар 8р	8.44%	131.7	4.5%	-3.5%	130.0	99.0%	95%	PASS		164
165	012714-05		0	38371.9016	14272.9366		1/27/2014	8p	8.44%	131.7	5.6%	-2.8%	130.2	98.9%	95%	PASS		165
166 167	013114-01 020414-01			40070.1554 40188.0195	12931.9277 12891.0259	5,548.7 5,547.6	1/31/2014 2/4/2014	8s 8s	9.00% 9.00%	133.3 133.3	3.0%	-6.0% -5.1%	129.1 131.4	96.8% 98.6%	95% 95%	PASS PASS		166 167
168	020414-02	Channel P1R1 CL Sta 0+75 Top of S	f Subgrade 4	40247.7958	12906.4848	5,546.7	2/4/2014	8s	9.00%	133.3	6.1%	-2.9%	129.3	97.0%	95%	PASS		168
169	020414-03 020414-04	· · · · · · · · · · · · · · · · · · ·		40141.8104 40056.8787	13100.8293 13335.9603	5,548.0 5,544.9	2/4/2014 2/4/2014	8s 8s	9.00%	133.3 133.3	3.8%	-5.2%	135.3	101.5%	95% 95%	PASS PASS	-	169 170
171	020414-05	Channel P1R2 CL Sta 8+00 (Lined Channel) Top of I	f Liner Subgrade (Cover Replacement Material) 3	39952.1142	13561.8336	5,544.9	2/4/2014	8s	9.00%	133.3	4.1%	-4.9%	132.0	99.0%	95%	PASS		171
172	020414-06 020414-07			39769.7406 39796.7543	13730.1804 13775.5467	5,544.9 5,552.0	2/4/2014 2/4/2014	4d 4d	11.53% 11.53%	123.7 123.7	9.9% 11.6%	-1.6% 0.1%	119.9 119.5	96.9% 96.6%	95% 95%	PASS PASS		172 173
175	020414-07 020614-01		0	39796.7543 39633.2500	13775.5467 13791.7921	5,552.0	2/4/2014 2/6/2014	4d 8s	9.00%	123.7	3.9%	-5.1%	119.5	96.6%	95% 95%	PASS		173
175	020614-02			39396.1029	13871.5497	5,544.9	2/6/2014	8s	9.00%	133.3	4.6%	-4.4%	130.3	97.7%	95%	PASS		175
176	020614-03 020614-04			39166.0839 39176.7760	13969.9938 13998.0238	5,545.8 5,548.3	2/6/2014 2/6/2014	4d 4	11.53%	123.7 120.9	4.6% 8.1%	-6.9% -4.6%	119.6 116.1	96.7% 96.0%	95% 95%	PASS PASS		176 177
178	020614-05	Channel S1R1 CL Sta 1+00 (Lined Portion) Top of I	f Liner Subgrade (Cover Replacement Material) 3	39600.9271	13897.4573	5,548.8	2/6/2014	8s	9.00%	133.3	4.6%	-4.4%	134.1	100.6%	95%	PASS		178
179	020614-06 020614-07			39571.6374 39556.9925	14095.3010 14194.2228	5,549.8 5,550.8	2/6/2014 2/6/2014	8s 8s	9.00% 9.00%	133.3 133.3	3.6%	-5.4% -4.1%	131.4	98.6% 100.5%	95% 95%	PASS PASS	-	179 180
181	020014-07		0	36008.8117	14314.2973	5,565.3	2/7/2014	8s	9.00%	133.3	3.2%	-5.8%	132.8	99.6%	95%	PASS		180
182	020714-02		8	36208.4447	14311.0447	5,564.2	2/7/2014	8s	9.00%	133.3	2.6%	-6.4%	134.5	100.9%	95%	PASS		182
185	020714-03 020714-04	· · · · · · · · · · · · · · · · · · ·		36404.6641 36683.0170	14347.9480 14459.2845	5,563.2 5,561.7	2/7/2014 2/7/2014	8s 8s	9.00% 9.00%	133.3 133.3	3.3%	-5.7% -6.1%	130.7 136.8	98.0% 102.6%	95% 95%	PASS PASS		183 184
185	020714-05	Channel P1R4 CL Sta 40+50 Top of C	f Gila Bedding 3	36922.4244	14530.4900	5,560.5	2/7/2014	8s	9.00%	133.3	3.4%	-5.6%	129.3	97.0%	95%	PASS	-	185
186	020714-06 020714-07			36207.2998 36323.1130	14470.0782 14375.1531	5,564.8 5,563.8	2/7/2014 2/7/2014	8s 8s	9.00% 9.00%	133.3 133.3	3.8%	-5.2% -5.9%	131.9 135.7	98.9% 101.8%	95% 95%	PASS PASS		186 187
188	020714-08	*	0	36972.9809	14618.1584	5,560.5	2/7/2014	8s	9.00%	133.3	3.0%	-6.0%	128.5	96.4%	95%	PASS		188
189	020714-09 021214-01			36832.2772 38558.7680	14760.2827 14201.6560	5,562.6 5,549.7	2/7/2014 2/12/2014	8s 4h	9.00% 7.80%	133.3 131.7	4.1%	-4.9% -3.6%	132.8 126.3	99.6% 95.9%	95% 95%	PASS PASS		189 190
191	021214-02	Channel P1R2 CL Sta 21+00 (Lined Portion) Top of I	f Liner Subgrade (Tailing Material) 3	38792.3510	14112.5551	5,548.5	2/12/2014	4h	7.80%	131.7	4.9%	-2.9%	124.9	94.8%	95%	PASS		191
192	021214-03 021214-04		0	38979.2175 39331.3091	14041.2745 14662.5328	5,547.5 5,563.3	2/12/2014 2/12/2014	4h 4h	7.80% 7.80%	131.7	5.1%	-2.7% -2.8%	125.6	95.4% 100.3%	95% 95%	PASS PASS		192 193
195	021214-04			39058.8892	14699.7505		2/12/2014 2/12/2014	411 8r	6.90%	135.2	5.4%	-1.5%	134.7	99.6%	95%	PASS		194
195	021214-06 021214-07			38856.6478 37665.0099	14790.7237 15014.5398	5,565.4 5,579.9	2/12/2014 2/12/2014	8r 8r	6.90% 6.90%	135.2 135.2	4.2%	-2.7% -3.2%	136.2 133.3	100.7% 98.6%	95% 95%	PASS PASS		195 196
190	021214-07	*	0	39528.5120	15425.4080	5,597.0	2/12/2014 2/27/2014	4h	7.80%	131.7	5.3%	-2.5%	127.0	96.4%	95%	PASS		190
198	022714-02	Utility Corridor Sta 30+25 Channel CL Top of S	f Subgrade 3	39299.9743	15357.9578	5,593.1	2/27/2014	4h	7.80%	131.7	4.5%	-3.3%	127.8	97.0%	95% 05%	PASS		198
200	022714-03 022714-04	· · · · · · · · · · · · · · · · · · ·		39062.0132 38840.2160	15384.2366 15483.4193	5,596.5 5,604.8	2/27/2014 2/27/2014	4k 4i	11.50% 10.30%	123.4 126.0	8.5% 5.5%	-3.0% -4.8%	117.5 121.1	95.2% 96.1%	95% 95%	PASS PASS		199 200
201	022714-05			38619.9564	15601.6805	5,618.4	2/27/2014	4k	11.50%	123.4	9.2%	-2.3%	117.1	94.9%	95%	PASS		201
202 203				38383.3122 38133.7427	15703.1868 15733.6322		2/27/2014 2/27/2014	4k 4i	11.50% 10.30%	123.4 126.0	8.2% 12.7%	-3.3% 2.4%	116.9	94.7% 97.9%	95% 95%	PASS PASS		202 203
204	022714-08	Utility Corridor Sta 15+00 Channel CL Top of S	f Subgrade 3	37861.6343	15773.3960	5,628.6	2/27/2014	4k	11.50%	123.4	7.7%	-3.8%	116.6	94.5%	95%	PASS		204
205	022714-09 022714-10			37605.3124 37347.5540	15737.9874 15685.8728	5,608.2 5,599.5	2/27/2014 2/27/2014	4j 4j	9.60% 9.60%	127.4 127.4	5.8% 5.1%	-3.8% -4.5%	125.1 121.4	98.2% 95.3%	95% 95%	PASS PASS		205 206
207	022714-11	Utility Corridor Sta 7+50 Channel CL Top of S	f Subgrade 3	37127.4505	15642.0703	5,591.8	2/27/2014	4j	9.60%	127.4	8.1%	-1.5%	120.6	94.7%	95%	PASS		207
208	031314-01 031314-02	· · ·	5	39772.0175 39644.3003	15534.2749 15465.6912	5,607.0 5,598.0	3/13/2014 3/13/2014	4	12.70% 12.70%	120.9 120.9	8.0%	-4.7% -2.6%	114.3 114.8	94.5% 95.0%	95% 95%	PASS PASS		208 209
210	031314-03	Utility Corridor Sta 32+50 Channel CL Top of S	f Subgrade 3	39507.9066	15414.7226	5,587.2	3/13/2014	4h	7.80%	131.7	7.2%	-0.6%	133.6	101.4%	95%	PASS		210
211		· · ·		36600.1712 40212.1351	15335.0227 12884.4352	5,568.2 5,550.3	3/13/2014 4/1/2014	4h 8t	7.80% 8.41%	131.7 131.7	9.9% 4.7%	2.1%	127.2 125.6	96.6% 95.3%	95% 95%	PASS PASS		211 212
212	040114-01 040114-02			39977.7146	12884.4352 12970.0680	5,550.3	4/1/2014 4/1/2014	8t 8t	8.41% 8.41%	131.7	4.7%	-3.7%	125.6	95.3% 94.8%	95% 95%	PASS		213
214	040214-01			39546.2212	15308.4388 15141.1514	5,579.6	4/2/2014	8u	9.85%	128.4	7.0%	-2.9%	129.7	101.0%	95% 05%	PASS		214 215
215	040214-02 040414-01	· · · · · · · · · · · · · · · · · · ·	0	39597.5880 39661.1423	15141.1514 15009.2407	5,573.0 5,568.9	4/2/2014 4/4/2014	8u 1a	9.85% 15.70%	128.4 116.6	6.9% 11.3%	-3.0%	121.5	94.6% 94.4%	95% 95%	PASS PASS		215
217	040814-01	Channel S2 CL Sta 5+00 Top of C	f Gila Bedding 3	36726.9656	14867.0978	5,564.2	4/8/2014	8v	8.08%	132.5	2.9%	-5.2%	127.7	96.4%	95%	PASS		217
218 219					14555.9697 14651.4914	5,559.9 5,562.3	4/8/2014 4/8/2014	8v 8v	8.08% 8.08%	132.5 132.5	2.4%	-5.7% -3.5%	129.5 133.6	97.7% 100.8%	95% 95%	PASS PASS		218 219
220	041014-01	Channel S1 CL Sta 3+20 Top of C	f Gila Bedding 3	39568.7084	14115.0854	5,552.1	4/10/2014	5b	5.88%	137.3	3.7%	-2.2%	133.6	97.3%	95%	PASS		220
221		, ,		39568.7084 39535.0253	14115.0854 14342.6056		4/10/2014 4/10/2014	5b 5b	5.88% 5.88%	137.3 137.3	3.8%	-2.1%	131.5 129.8	95.8% 94.5%	95% 95%	PASS PASS	-	221 222
222			f Gila Bedding 3	34775.3600	14342.0030 15756.3200	5,668.7	5/2/2014	30 8v	3.88% 8.08%	137.5	4.0% 5.5%	-2.6%	133.7	94.5%	95% 95%	PASS		223
224				34775.3600	15756.3200	5,668.7	5/2/2014	8v	8.08%	132.5	5.7%	-2.4%	128.5	97.0%	95% 05%	PASS		224
225	050214-03	West Slag Pile Channel CL Sta 17+68.2 64.2-ft RT Top of C	f Gila Bedding 3	34682.7700	15796.1500	5,669.4	5/2/2014	8v	8.08%	132.5	4.8%	-3.3%	129.2	97.5%	95%	PASS		225

-								LahI	Proston Tast D				T			
No.						Lab Proctor Test Results		Field Proctor Test Results								
-	Test ID	Test Description	Elevation / Lift Description	Northing	Easting	Elevation (ft)	Test Date	Comparison Proctor Test ID	Optimum Moisture Content (%)	Maximum Dry Density (pcf)	Moisture Content (%)	Difference Optimum Moisture Content (± %)	Density (pcf)	Percent Compaction (%)	Required Compaction (%)	Passed? Notes
227	052114-01	Channel P1R1 CL Sta 3+29	Top of Gila Bedding	40131.9584	13128.1045		5/21/2014	8w	8.67%	131.1	5.3%	-3.4%	127.7	97.4%	95%	PASS Test location corrected
220	052114-02		Top of Gila Bedding	40229.1872	12923.1614	5,549.7	5/21/2014	8w	8.67%	131.1	5.8%	-2.9%	125.7	95.9%	95%	PASS
228	060914-01 060914-02	Slag Pile Outslope Channel O5 CL Sta 0+80 Slag Pile Outslope Channel O5 CL Sta 3+30	Top of Gila Bedding Top of Gila Bedding	34143.9801 34115.0374	15761.8100 15513.8279	5,646.2 5,651.3	6/9/2014 6/9/2014	8v 8v	8.08% 8.08%	132.5 132.5	4.9% 4.2%	-3.2%	138.7 127.5	104.7% 96.2%	95% 95%	PASS High density reading may be due to rock interference. To be retested for more accurate reading. PASS
230	061014-02	Channel S6 CL Sta 2+00	Top of Gila Bedding	34489.9820	15782.6560	5,669.6	6/10/2014	8v	8.08%	132.5	4.3%	-3.8%	127.5	95.0%	95%	PASS
231	061014-02	Channel S6 CL Sta 4+50	Top of Gila Bedding	34697.7153	15643.5628		6/10/2014	8v	8.08%	132.5	3.9%	-4.2%	127.4	96.2%	95%	PASS
232	061014-03		Top of Gila Bedding	34905.4485	15504.4697		6/10/2014	8v	8.08%	132.5	4.5%	-3.6%	125.9	95.0%	95%	PASS
233	061114-01 061814-01	Slag Pile Outslope Channel O5 CL Sta 0+80 Channel S7 CL Sta 4+34	Top of Gila Bedding Top of Subgrade	34143.9801 33824.6836	15761.8100 15532.6152	5,646.2 5,603.0	6/11/2014 6/18/2014	8v 8v	8.08% 8.08%	132.5 132.5	5.1% 6.0%	-3.0%	127.3 127.1	96.1% 95.9%	95% 95%	PASS Retest of 060914-01 PASS
	061814-02		Top of Subgrade	33905.8916	15640.4589		6/18/2014	8v	8.08%	132.5	6.7%	-1.4%	127.1	95.7%	95%	PASS
236	063014-01	Slag Pile Outslope Channel O6 CL Sta 1+00	Top of Gila Bedding	34016.8628	15651.4953	5,618.8	6/30/2014	8v	8.08%	132.5	7.3%	-0.8%	129.8	98.0%	95%	PASS
237	063014-02	Slag Pile Outslope Channel O6 CL Sta 3+50	Top of Gila Bedding	34034.9552	15414.9157	5,624.2	6/30/2014	8v	8.08%	132.5	7.5%	-0.6%	132.5	100.0%	95%	PASS
238	070714-01 070714-02	Slag Pile Outslope Channel O7 CL Sta 0+50 Slag Pile Outslope Channel O7 CL Sta 2+50	Top of Gila Bedding Top of Gila Bedding	35161.2147 34970.0363	14814.9440 14876.3558	5,654.6 5,659.2	7/7/2014 7/7/2014	8v 8v	8.08% 8.08%	132.5 132.5	4.9% 5.3%	-3.2%	133.5 137.4	100.8%	95% 95%	PASS PASS
240	070714-02	Slag Pile Outslope Channel O7 CL Sta 2+50 Slag Pile Outslope Channel O7 CL Sta 5+00	Top of Gila Bedding	34736.8537	14964.8477	5,665.3	7/7/2014	8v 8v	8.08%	132.5	4.8%	-2.8%	137.4	103.7%	95%	PASS
241	070714-04		Top of Gila Bedding	34538.8031	15116.9072	5,671.1	7/7/2014	8v	8.08%	132.5	5.9%	-2.2%	130.0	98.1%	95%	PASS
242	070714-05	Slag Pile Outslope Channel O7 CL Sta 10+00	Top of Gila Bedding	34364.9703	15296.1561	5,676.0	7/7/2014	8v	8.08%	132.5	5.1%	-3.0%	132.3	99.9%	95%	PASS
243	070814-01 070814-02		Top of Gila Bedding Top of Gila Bedding	35222.5033 35174.9357	15007.6935 15253.1264	5,667.6 5,671.8	7/8/2014 7/8/2014	8v 8v	8.08% 8.08%	132.5 132.5	7.4% 6.5%	-0.7% -1.6%	132.3 131.1	99.9% 99.0%	95% 95%	PASS PASS
244	070814-02		Top of Gila Bedding	35168.0547	15475.8853	5.674.3	7/8/2014	8v	8.08%	132.5	8.4%	0.3%	128.7	99.0%	95%	PASS
246	070914-01	Channel S7 CL Sta 4+50	Top of Gila Bedding	33834.3082	15545.3967	5,605.5	7/9/2014	8v	8.08%	132.5	10.9%	2.8%	128.9	97.3%	95%	PASS
247	071514-01		Top of Gila Bedding	35374.1382	14819.0379	5,655.6	7/15/2014	8v	8.08%	132.5	5.4%	-2.7%	130.1	98.2%	95%	PASS
248	071514-02		Top of Gila Bedding	35608.7735	14888.5016	5,661.4	7/15/2014	8v	8.08%	132.5	5.9%	-2.2%	127.6	96.3%	95%	PASS
249	071614-01 071614-02	Slag Pile Outslope Channel O2 CL Sta 1+15 Slag Pile Outslope Channel O2 Sta 3+65 E Slope	Top of Gila Bedding Top of Gila Bedding	35382.8807 35618.0190	14696.2810 14762.2071	5,622.1 5,629.1	7/16/2014 7/16/2014	8x 8x	7.61% 7.61%	133.6 133.6	4.0% 3.5%	-3.6%	131.3 129.5	98.3% 96.9%	95% 95%	PASS PASS
	071614-03		Top of Gila Bedding	35623.7963	14752.8464	5,627.3	7/16/2014	8x	7.61%	133.6	4.0%	-3.6%	129.5	96.3%	95%	PASS
252	071614-04	Slag Pile Outslope Channel O2 CL Sta 6+15	Top of Gila Bedding	35761.6790	14952.8331	5,632.5	7/16/2014	8x	7.61%	133.6	4.6%	-3.0%	129.3	96.8%	95%	PASS
253	071614-05	Slag Pile Outslope Channel O2 CL Sta 8+65	Top of Gila Bedding	35791.3163	15199.6059		7/16/2014	8x	7.61%	133.6	4.3%	-3.3%	127.6	95.5%	95%	PASS
254	072114-01 072114-02	Slag Pile Outslope Channel O8 CL Sta 1+00 Slag Pile Outslope Channel O8 CL Sta 3+50	Top of Gila Bedding Top of Gila Bedding	35107.6893 34869.3765	14703.8807 14779.3803	5,622.0 5,627.2	7/21/2014 7/21/2014	8v 8v	8.08% 8.08%	132.5 132.5	2.9% 3.2%	-5.2% -4.9%	129.3 128.3	97.6% 96.8%	95% 95%	PASS PASS
256	072114-02	Slag Pile Outslope Channel OS CL Sta 5+50 Slag Pile Outslope Channel OS CL Sta 6+00	Top of Gila Bedding	34641.2938	14879.3729	5,632.8	7/21/2014	8v	8.08%	132.5	3.7%	-4.4%	128.3	98.3%	95%	PASS
257	072114-04		Top of Gila Bedding	34446.1990	15035.4428	5,638.3	7/21/2014	8v	8.08%	132.5	2.6%	-5.5%	130.1	98.2%	95%	PASS
	072114-05	Slag Pile Outslope Channel O8 CL Sta 11+00	Top of Gila Bedding	34275.5823	15217.7104		7/21/2014	8v	8.08%	132.5	2.7%	-5.4%	131.1	99.0%	95%	PASS
259	072114-06 072114-07	Slag Pile Outslope Channel O8 CL Sta 12+35 Slag Pile Outslope Channel O9 CL Sta 1+50	Top of Gila Bedding Top of Gila Bedding	34197.9804 35054.0956	15327.1381 14596.5858	5,651.7 5,591.0	7/21/2014 7/21/2014	8v 8x	8.08% 7.61%	132.5 133.6	4.3% 2.9%	-3.8% -4.7%	132.0 131.3	99.6% 98.3%	95% 95%	PASS PASS
261	072114-07		Top of Gila Bedding	34815.9726	14672.7248	5,595.9	7/21/2014	8x	7.61%	133.6	3.2%	-4.4%	131.0	98.1%	95%	PASS
262	072114-09		Top of Gila Bedding	34588.0771	14773.4914		7/21/2014	8x	7.61%	133.6	3.0%	-4.6%	130.8	97.9%	95%	PASS
263	072114-10	0 1	Top of Gila Bedding	34390.9448	14926.9284	5,606.0	7/21/2014	8x	7.61%	133.6	2.4%	-5.2%	131.9	98.7%	95%	PASS
264	072114-11 072114-12	Slag Pile Outslope Channel O9 CL Sta 11+50	Top of Gila Bedding	34215.5043 34061.8509	15104.6279 15301.7702	5,611.0 5,619.9	7/21/2014	8x	7.61% 7.61%	133.6 133.6	2.6%	-5.0% -5.0%	130.9 130.1	98.0% 97.4%	95%	PASS PASS
265	072214-12	Slag Pile Outslope Channel O9 CL Sta 14+00 Channel P1R5 CL Sta 71+70	Top of Gila Bedding Top of Gila Bedding	34061.8309	15111.4555	5,584.7	7/21/2014 7/22/2014	8x 8v	8.08%	133.6	2.6% 4.0%	-3.0%	126.3	97.4%	95% 95%	PASS
267	072214-02		Top of Gila Bedding	34233.0549	14925.1919	5,579.9	7/22/2014	8v	8.08%	132.5	3.4%	-4.7%	125.9	95.0%	95%	PASS
268	072214-03		Top of Gila Bedding	34421.9245	14761.6188	5,575.2	7/22/2014	8v	8.08%	132.5	3.6%	-4.5%	130.7	98.6%	95%	PASS
	072214-04		Top of Gila Bedding	34633.9940 34872.7022	14631.4079 14558.0092	5,572.5 5,571.3	7/22/2014 7/22/2014	8v	8.08%	132.5 132.5	2.9%	-5.2%	129.7	97.9%	95%	PASS PASS
270	072214-05 072214-06		Top of Gila Bedding Top of Gila Bedding	34872.7022 35110.0833	14558.0092	5,570.0	7/22/2014	8v 8v	8.08% 8.08%	132.5	4.1% 2.9%	-4.0%	130.8 130.5	98.7% 98.5%	95% 95%	PASS PASS
272	070914-02	Down Drain 1 CL Sta 6+50	Top of Gila Bedding	33954.6163	15705.1651	5,611.8	7/9/2014	8v	8.08%	132.5	8.7%	0.6%	130.5	99.0%	95%	PASS
273	072414-01	Down Drain 1 CL Sta 8+00	Top of Gila Bedding	34055.7499	15814.1621	5,627.1	7/24/2014	8y	8.01%	132.6	5.0%	-3.0%	131.0	98.8%	95%	PASS
274	072414-02		Top of Gila Bedding	34289.4889 35453.0244	15898.0115	5,667.4	7/24/2014	8y	8.01%	132.6	4.0%	-4.0%	132.1	99.6%	95%	PASS
275	072814-01 072814-02	Slag Pile Outslope Channel O3 CL Sta 1+90 Slag Pile Outslope Channel O3 CL Sta 4+40	Top of Gila Bedding Top of Gila Bedding	35453.0244 35689.2307	14585.7418 14658.3274	5,591.7 5,596.8	7/28/2014 7/28/2014	8v 8v	8.08% 8.08%	132.5 132.5	3.5% 4.2%	-4.6% -3.9%	129.1 128.1	97.4% 96.7%	95% 95%	PASS PASS
277	072814-02		Top of Gila Bedding	35845.2955	14848.7934			8v	8.08%	132.5	3.8%	-4.3%	128.1	100.2%	95%	PASS
278	072814-04	Slag Pile Outslope Channel O3 CL Sta 9+40	Top of Gila Bedding	35878.5723	15094.6581	5,606.8	7/28/2014	8v	8.08%	132.5	3.3%	-4.8%	129.6	97.8%	95%	PASS
	072814-05		Top of Gila Bedding	35317.5062	14424.2102	5,568.8	7/28/2014	8v	8.08%	132.5	3.9%	-4.2%	131.6	99.3%	95%	PASS
	072814-06 072814-07		Top of Gila Bedding Top of Gila Bedding	35564.3471 35970.6134	14384.5924 15082.8691		7/28/2014 7/28/2014	8v 8z	8.08% 8.52%	132.5 131.5	2.7% 2.9%	-5.4% -5.6%	130.6 127.2	98.6% 96.8%	95% 95%	PASS PASS
	072814-07		Top of Gila Bedding	35949.8636	14764.5919		7/28/2014	8z	8.52%	131.5	4.2%	-4.3%	132.7	100.9%	95%	PASS
283	072814-09		Top of Gila Bedding	36094.1436	14568.5449	5,565.6	7/28/2014	8z	8.52%	131.5	3.5%	-5.0%	132.3	100.6%	95%	PASS
-	073014-01		Top of Gila Bedding	35229.3573	14488.7584	5,568.1	7/30/2014	8v	8.08%	132.5	5.3%	-2.8%	126.3	95.3%	95%	PASS
	073014-02 073014-03		Top of Gila Bedding Top of Gila Bedding	35238.9625 35811.2040	14713.5533 14345.0748		7/30/2014 7/30/2014	8v 8v	8.08% 8.08%	132.5 132.5	4.0% 4.1%	-4.1%	127.9 130.6	96.5% 98.6%	95% 95%	PASS PASS
	073014-03		Top of Gila Bedding	35229.3573	14343.0748	5,568.1	8/11/2014	8v 8x	7.61%	132.5	4.1% 5.3%	-4.0%	130.6	98.6%	95% 95%	PASS Retest due to heavy rains.
			Top of Gila Bedding	35238.9625	14713.5533		8/11/2014		7.61%	133.6	4.6%	-3.0%	130.4	97.6%	95%	PASS Retest due to heavy rains.

 $ID = identification; \, ft = feet; \, \% = percent; \, pcf = pounds \; per \; cubic \; feet; \, (--) = not \; applicable.$

APPENDIX C-2

RIPRAP THICKNESS CHECKS

Table C-2 Riprap/Bedding Thickness Checks Lake One Reclamation Chino Mines Company - Hurley, New Mexico

Item	T. (ID	T	D. (D	Channel	St	Riprap	Loca	ation	Thickness	Item
No.	Test ID	Location	Date	Ву	ID	Station	Size (in) (D ₅₀)	Northing	Easting	(in)	No.
1	S1R1-050214	CL	05/02/14	ASP	S1	7 + 50	Bedding	-39505.74	-14540.45	6	1
2	S1R1-050514	CL	05/05/14	ASP	S1	9 + 00	Bedding	-39430.7	-14651.49	6	2
3	S1R1-050714	CL	05/07/14	ASP	S1	4 + 50	Bedding	-39549.67	-14243.68	6	3
4	S1R1-050814	CL	05/08/14	ASP	S1	0+50	Bedding	-39608.25	-13848	6	4
5	P1R2-050914	CL	05/09/14	ASP	P1	3+45	3	-40126.52	-13143.15	11	5
6 7	P1R2-050814	CL	05/08/14 05/07/14	ASP	P1 P1	3+64 4+00	6	-40120.07 -40107.84	-13161.02 -13194.88	12	6
8	P1R2-050714 P1R2-050914	Slope Toe	05/09/14	ASP ASP	P1 P1	4 + 00 7 + 00	3	-40107.84	-13194.88	6 7.5	7 8
0 9	P1R2-050914	Slope	05/09/14	ASP	P1	7+00 7+00	3	-40002.93	-13475.84	6	9
1 0	P1R2-050714	Slope	05/07/14	ASP	P1	9 + 00	3	-39887.74	-13638.21	6	10
11	P1R2-050914	Slope	05/09/14	ASP	P1	12 + 00	3	-39633.25	-13791.79	6	11
12	P1R2-050914	Toe	05/09/14	ASP	P1	12 + 00	3	-39633.25	-13791.79	8	12
13	P1R2-050214	CL	05/02/14	ASP	P1	17 + 00	3	-39166.08	-13969.99	6	13
14	P1R2R3-090214	CL	09/02/14	ASP	P1	21 + 34	3	-38760.58	-14124.67	6	14
15	P1R3-050214	CL	05/02/14	ASP	P1	27 + 00	3	-38231.75	-14326.4	6	15
16	P1R3-050214	CL	05/02/14	ASP	P1	32 + 00	3	-37762.94	-14499.92	6	16
17	P1R3-050214	CL	05/02/14	ASP	P1	37 + 00	3	-37629.63	-14569.39	6	17
18	P1R4-090214	CL	09/02/14	ASP	P1	42 + 00	3	-36777.49	-14492.01	6	18
19	P1R4-090214	CL	09/02/14	ASP	P1	47 + 00	3	-36307.49	-14324.53	6	19
20	P1R4-090214	CL	09/02/14	ASP	P1	52 +75	3	-35737.15	-14356.93	6	20
21	P1R4-090214	CL	09/02/14	ASP	P1	56 + 00	3	-35416.23	-14408.30	6	21
22	P1R5-090214	CL CL	09/02/14	ASP	P1 P1	60 + 00	3	-35036.85	-14513.77	6	22
23 24	P1R5-090214 P1R5-090214	CL	09/02/14	ASP ASP	P1 P1	65 + 00 70 + 00	3	-34561.49 -34177.66	-14665.18 -14982.90	6 6	23 24
24	S1R1-050814	CL	05/08/14	ASP	S1	1+00	6	-39600.93	-14982.90	12	24
26	S1R1-050614	CL	05/06/14	SPF	S1	4+50	6	-39649.67	-14243.68	12	26
20	S1R1-050614	CL	05/06/14	SPF	S1	8 + 50	6	-39476.29	-14633.52	12	20
28	S1R2-050214	CL	05/02/14	ASP	S1	13 + 00	3	-39034.17	-14703.49	6	28
29	S1R3-050214	CL	05/02/14	ASP	S1	18 + 00	3	-38580.75	-14893.05	6	29
30	S1R3-090214	CL	09/02/14	ASP	S1	23 + 00	3	-38082.56	-14935.56	6	30
31	S1R3-050214	CL	05/02/14	ASP	S1	27 + 00	3	-37689.56	-15009.84	6	31
32	S2-090214	CL	09/02/14	ASP	S2	3 + 00	3	-36832.28	-14760.28	6	32
33	S3-090214	CL	09/02/14	ASP	S3	3 + 75	3	-36113.00	-14552.13	6	33
34	S3-090214	CL	09/02/14	ASP	S3	6 + 00	3	-35963.22	-14716.51	6	34
35	S4-090214	CL	09/02/14	ASP	S4	1 + 00	3	-35227.26	-14983.15	6	35
36	S4-090214	CL	09/02/14	ASP	S4	5+50	3	-35163.69	-15426.08	6	36
37	S5-050914	CL	05/09/14	ASP	S5	2 + 00	3	-40116.38	-12912.86	6	37
38 39	S5-050914 S6-061714	CL CL	05/09/14 06/17/14	ASP ASP	S5 S6	6+00 1+00	3	-39746.61 -34406.89	-13065.42 -15838.29	6 6	38 39
<u> </u>	S6-061714	CL	06/17/14	ASP		1+00 4+50	3	-34697.72	-15643.56	6	<u> </u>
40	S6-061714	CL	06/17/14	ASP	S6	7 + 00	3	-34097.72	-15504.47	6	40
41	S7-090214	CL	09/02/14	ASP		6 + 10	8	-33930.55	-15673.2114	16	41
43	O1-090214	CL	09/02/14	ASP	01	2+00	3	-35473.47	-14830.6148	6	43
44	O2-072814	CL	07/28/14	ASP	02	1+50	3	-35417.65	-14700.28	6	44
45	O2-072814	CL	07/28/14	ASP	02	6 + 50	3	-35766.26	-14987.51	7	45
46	O2-072814	CL	07/28/14	ASP	O2	9 + 00	3	-35804.35	-15232.08	6	46
47	O3-090214	CL	09/02/14	ASP	03	3 + 25	3	-35585.75	-14609.01	6	47
48	O3-081114	CL	08/11/14	ASP	03	7 + 50	3	-35863.76	-14905.83	7	48
49	O4-090214	CL	09/02/14	ASP	04	2 + 00	3	-35967.55	-15063.02	6	49
50	O5-061714	CL	06/17/14	ASP	05	0 + 20	3	-34135.61	-15819.49	6	50
51	O5-061714	CL	06/17/14	ASP	05	4 + 50	3	-34180.02	-15417.35	6	51
52	06-071414	CL	07/14/14	ASP	06	2+00	3	-34001.75	-15552.66	6	52 52
53 54	O7-072314 O7-072314	CL CL	07/23/14 07/23/14	ASP	07 07	2+00 7+00	3	-35017.66 -34577.32	-14861.13 -15085.03	6 6	53 54
54 55	07-072314	CL	07/23/14	ASP ASP	07	7 + 00 10 + 35	3	-34577.32 -34358.29	-15085.03	6	54 55
55 56	07-072314 08-073014	CL	07/23/14	ASP	07	10+35 2+00	3	-34358.29	-15303.6	6	55 56
50	08-073014	CL	07/30/14	ASP	08	$\frac{2+00}{7+00}$	3	-33012.23	-14733.04	6	50
58	O8-073014 O8-073014	CL	07/30/14	ASP	08	12 + 00	3	-34214.89	-14939.30	6	58
59	O9-073014	CL	07/30/14	ASP	09	3+00	3	34911.21	-14642.23	6	59
60	O9-073014	CL	07/30/14	ASP	09	8 + 00	3	-34468.12	-14863.34	7	60
61	O9-073014	CL	07/30/14	ASP	09	13 + 00	3	-34122.41	-15222.20	6	61

APPENDIX D

STATE COVER THICKNESS TABLE AND MAPS

Item No.	Test Pit ID	Thickness (inches)	Туре	Tested By	Easting	Northing	Item No.
1	10	41	Cover	EMC ²	-13123.91	-40305.23	1
2	15	38	Cover	EMC ²	-14629.12	-40153.62	2
3	20	37	Cover	EMC ²	-13880.55	-40151.19	3
4	23	37	Cover	EMC ²	-13428.83	-40152.89	4
5	29	42	Cover	EMC ²	-15827.81	-40002.47	5
6	71	40	Cover	EMC ²	-14330.92	-39698.07	6
7	108	40	Cover	EMC ²	-13577.81	-39252.47	7
8	127	40	Cover	EMC ²	-14477.81	-38952.47	8
9	151	37	Cover	EMC ²	-14777.81	-38652.47	9
10	161	38	Cover	EMC ²	-15376.88	-38497.62	10
11	168	41	Cover	EMC ²	-14327.81	-38502.47	11
12	193	38	Cover	EMC ²	-14477.81	-38202.47	12
13	202	42	Cover	EMC ²	-15227.81	-38052.47	13
14	211	42.5	Cover	EMC ²	-13877.81	-38052.47	14
15	213	38	Cover	EMC ²	-15526.35	-37898.74	15
16	222	42	Cover	EMC ²	-14177.81	-37902.47	16
17	258	42	Cover	EMC ²	-14477.81	-37452.47	17
18	264	38	Cover	EMC ²	-15227.81	-37302.47	18
19	286	42	Cover	EMC ²	-15227.81	-37002.47	19
20	298	40	Cover	EMC ²	-14772.88	-36848.71	20
21	310	42	Cover	EMC ²	-14327.81	-36702.47	21
22	321	42	Cover	EMC ²	-14477.81	-36402.47	22
23	352	41	Cover	EMC ²	-14777.81	-35802.47	23
24	359	38	Cover	EMC ²	-15327.88	-35652.32	24
25	365	40	Cover	EMC ²	-14477.81	-35652.47	25
26	385	38	Cover	EMC ²	-15077.81	-35352.47	26
27	391	42	Cover	EMC ²	-14177.81	-35352.47	27
28	433	43 42	Cover	EMC ²	-14927.81	-34752.47	28
<u>29</u> 30	440	42	Cover	EMC ²	-15527.81	-34602.47	<u>29</u>
<u>30</u> 31	462	35	Cover Gila Bedding	EMC ² EMC ²	-15077.81	-34302.47	30
$\frac{31}{32}$	1 2	<u> </u>	Gila Bedding Gila Bedding	EMC ² EMC ²	-14829.64 -14861.98	-35481.90	31 32
32	3	39	Gila Bedding	EMC ²	-14801.98	-35727.36 -35561.35	33
33	4	39	Gila Bedding	EMC ²	-14689.61	-35331.15	33
35	15	42	Gila Bedding	EMC ²	-15071.75	-35766.15	35
36	54	20 (1)	Gila Bedding	EMC ²	-14959.65	-35231.25	36
37	91	31	Gila Bedding	EMC ²	-15233.82	-34116.21	37
38	92	36	Gila Bedding	EMC ²	-15047.50	-34266.42	38
39	93	32	Gila Bedding	EMC ²	-14888.22	-34437.49	39

Item No.	Test Pit ID	Thickness (inches)	Туре	Tested By	Easting	Northing	Item No.
40	94	30	Gila Bedding	EMC ²	-14751.74	-34626.13	40
41	95	33	Gila Bedding	EMC ²	-14668.39	-34831.69	41
42	96	44	Gila Bedding	EMC ²	-14589.82	-35087.11	42
43	601	29	Gila Bedding	EMC ²	-15621.49	-34013.85	43
44	602	25.5	Gila Bedding	EMC ²	-15429.54	-34020.99	44
45	03 01	36	Gila Bedding	EMC ²	-15047.99	-35874.15	45
46	03 02	37	Gila Bedding	EMC ²	-14825.57	-35834.25	46
47	03 03	38	Gila Bedding	EMC ²	-14656.43	-35683.67	47
48	03 04	33	Gila Bedding	EMC ²	-14587.51	-35471.19	48
49	04 01	41	Gila Bedding	EMC ²	-14982.21	-35967.59	49
50	L1QA0801	38	Gila Bedding	EMC ²	-15234.63	-34264.02	50
51	L1QA0802	40	Gila Bedding	EMC ²	-15053.28	-34427.41	51
52	L1QA0803	48	Gila Bedding	EMC ²	-14905.89	-34606.27	52
53	L1QA0804	43	Gila Bedding	EMC ²	-14815.25	-34769.36	53
54	L1QA0805	44	Gila Bedding	EMC ²	-14749.31	-34966.64	54
55	L1QATP 51	27	Gila Bedding	EMC ²	-15669.73	-34132.56	55
56	L1QATP 52	28	Gila Bedding	EMC ²	-15782.95	-34144.29	56
57	L1QATP S6-1	26.5	Gila Bedding	EMC ²	-15772.91	-34502.67	57
58	L1QATP S6-2	28	Gila Bedding	EMC ²	-15640.10	-34701.70	58
59	L1QATP S6-3	27	Gila Bedding	EMC ²	-15502.48	-34906.35	59
60	P1GB 28+54	33	Gila Bedding	EMC ²	-14380.29	-38087.79	60
61	P1GB 32+83	33	Gila Bedding	EMC ²	-14520.56	-37682.64	61
62	P1GB 36+52	30	Gila Bedding	EMC ²	-14568.56	-37318.01	62
63	P1GB 45+91	27	Gila Bedding	EMC ²	-14349.12	-36413.71	63
64	P1GB 47+88	32	Gila Bedding	EMC ²	-14311.78	-36220.51	64
65	P1GB-6	31	Gila Bedding	EMC ²	-12968.18	-40193.35	65
66	P1GB-7	34	Gila Bedding	EMC ²	-12992.77	-40181.76	66
67	P1GB-S5	33	Gila Bedding	EMC ²	-12879.82	-40272.51	67
68	P1R4-1	33	Gila Bedding	EMC ²	-14415.00	-35379.89	68
69	P1R4-2	32	Gila Bedding	EMC ²	-14377.58	-35609.82	69
70	P1R4-3	35	Gila Bedding	EMC ²	-14345.31	-35812.41	70
71	P1R5-1	32	Gila Bedding	EMC ²	-14520.65	-35015.26	71
72	P1R5-2	38	Gila Bedding	EMC ²	-14582.74	-34781.82	72
73	P1R5-3	38	Gila Bedding	EMC ²	-14656.92	-34577.16	73
74	P1R5-4	29	Gila Bedding	EMC ²	-14782.52	-34397.43	74
75	P1R5-5	29	Gila Bedding	EMC ²	-14926.63	-34233.20	75
76	P1R5-6	28	Gila Bedding	EMC ²	-15100.02	-34077.05	76
77	S1GB 17+78	27	Gila Bedding	EMC ²	-14890.46	-38602.37	77
78	S1GB 21+58	30	Gila Bedding	EMC ²	-14923.58	-38223.65	78
79	S1GB 25+66	29	Gila Bedding	EMC ²	-14984.54	-37820.89	79

Item No.	Test Pit ID	Thickness (inches)	Туре	Tested By	Easting	Northing	Item No.
80	S1GB-4	29	Gila Bedding	EMC ²	-14794.20	-38850.98	80
81	S1GB-5	28	Gila Bedding	EMC ²	-14703.93	-39035.87	81
82	S1GB-6	32.5	Gila Bedding	EMC ²	-14670.39	-39262.64	82
83	S1GB-7	29	Gila Bedding	EMC ²	-14630.45	-39479.66	83
84	S1GB-8	29	Gila Bedding	EMC ²	-14445.52	-39520.99	84
85	S1GB-9	32	Gila Bedding	EMC ²	-14225.28	-39558.01	85
86	S2GB 1+52	28	Gila Bedding	EMC ²	-14619.38	-36970.71	86
87	S2GB-2	31	Gila Bedding	EMC ²	-14917.62	-36677.63	87
88	S2GB-P1	32	Gila Bedding	EMC ²	-14556.56	-37088.06	88
89	S3GB 1+10	31	Gila Bedding	EMC ²	-14381.03	-36315.46	89
90	S5GB-1	32	Gila Bedding	EMC ²	-13018.72	-39859.67	90
91	S5GB-2	34	Gila Bedding	EMC ²	-12910.51	-40120.84	91
92	S3-1	35	Gila Bedding	EMC ²	-14576.69	-36085.38	92
93	S3-2	32	Gila Bedding	EMC ²	-14742.75	-35953.72	93
94	242	40	Cover	NMED	-13994.29	-35711.04	94
95	243	47	Cover	NMED	-14401.89	-36107.55	95
96	244	42	Cover	NMED	-14155.70	-35974.67	96
97	245	41	Cover	NMED	-14078.38	-36254.92	97
98	246	37.5	Cover	NMED	-14118.42	-36409.38	98
99	247	40	Cover	NMED	-14251.43	-36898.08	99
100	248	42	Cover	NMED	-14651.12	-36761.29	100
101	249	42	Cover	NMED	-14253.70	-37150.59	101
102	250	42	Cover	NMED	-14050.56	-37347.92	102
103	251	41	Cover	NMED	-13912.87	-37771.48	103
104	252	40	Cover	NMED	-13895.38	-38523.13	104
105	253	44	Cover	NMED	-13623.35	-39022.89	105
106	254	41	Cover	NMED	-14088.13	-39416.96	106
107	255	41.5	Cover	NMED	-14577.18	-38527.95	107
108	256	41	Cover	NMED	-14858.56	-37637.50	108
109	257	37.5	Cover	NMED	-14710.40	-37355.68	109
110	258	41	Cover	NMED	-14964.08	-38180.86	110
111	259	40	Cover	NMED	-15041.44	-37494.58	111
112	260	40	Cover	NMED	-14824.94	-38610.35	112
113	261	39	Cover	NMED	-13472.30	-39888.74	113
114	262	43	Cover	NMED	-13258.56	-39956.67	114
115	263	43	Cover	NMED	-13214.27	-39780.93	115
116	264	39	Cover	NMED	-12919.48	-39901.01	116
117	265	38	Cover	NMED	-15029.04	-36752.09	117
118	266	40	Cover	NMED	-15384.31	-37248.30	118
119	267	40	Cover	NMED	-15419.31	-38230.34	119

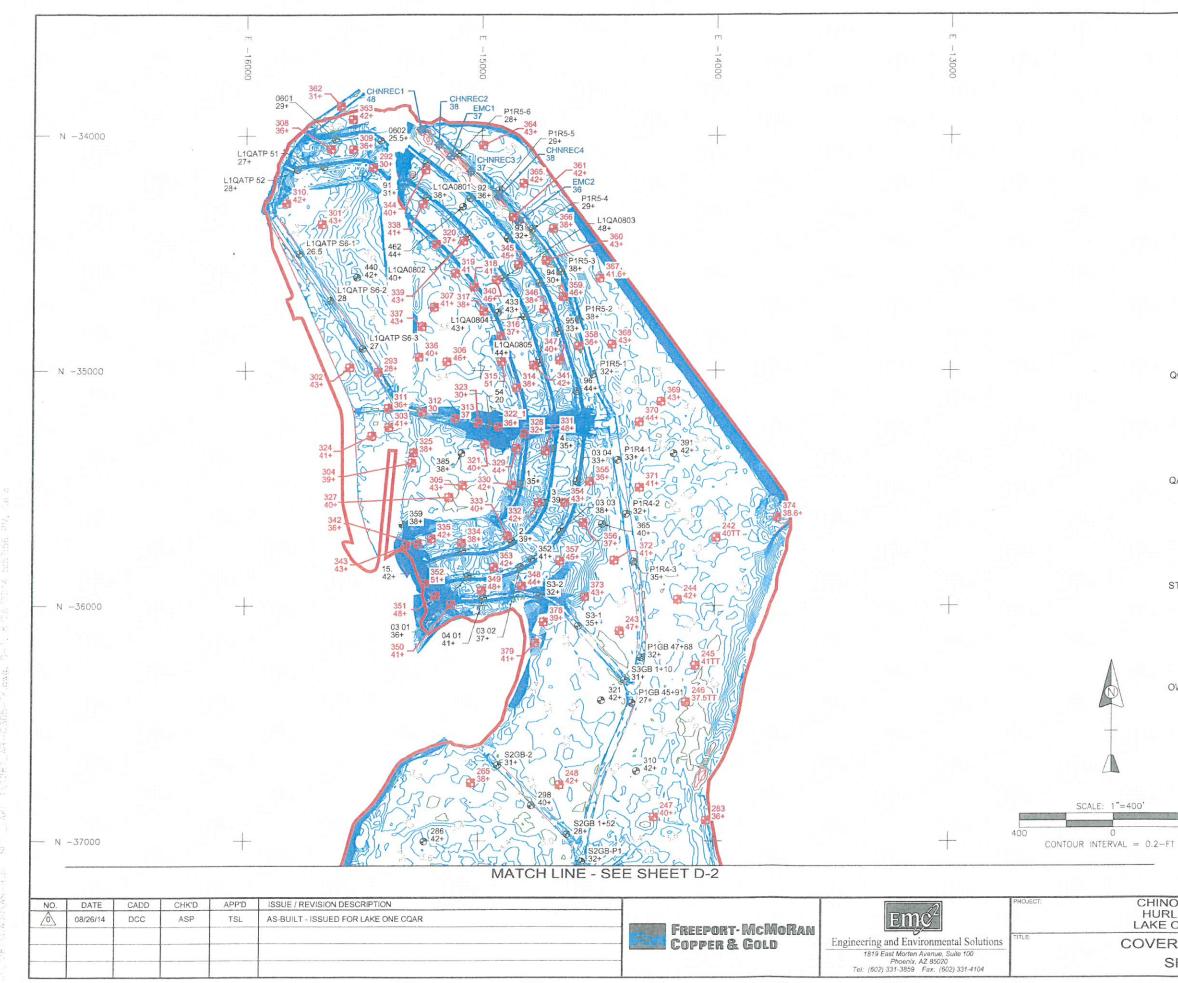
Item No.	Test Pit ID	Thickness (inches)	Туре	Tested By	Easting	Northing	Item No.
120	268	40	Cover	NMED	-15121.19	-38761.91	120
121	269	37	Cover	NMED	-14511.79	-40493.28	121
122	270	39	Cover	NMED	-14188.04	-40171.30	122
123	271	45	Cover	NMED	-13098.29	-40389.47	123
124	272	46	Cover	NMED	-13361.07	-40412.73	124
125	273	43	Cover	NMED	-13693.95	-40436.39	125
126	274	37	Cover	NMED	-14039.47	-40471.90	126
127	275	40	Cover	NMED	-15944.63	-40112.77	127
128	276	40	Cover	NMED	-15382.25	-40020.86	128
129	277	40	Cover	NMED	-15225.47	-39973.60	129
130	278	42	Cover	NMED	-15218.49	-39852.44	130
131	279	40	Cover	NMED	-15219.63	-39775.38	131
132	280	44	Cover	NMED	-15314.58	-39675.53	132
133	281	44	Cover	NMED	-15119.64	-39694.57	133
134	282	36	Cover	NMED	-14567.61	-37173.04	134
135	283	36	Cover	NMED	-14030.03	-36913.08	135
136	284	36	Cover	NMED	-13978.18	-37156.35	136
137	285	37	Cover	NMED	-13908.50	-37388.25	137
138	286	38	Cover	NMED	-13821.31	-37626.25	138
139	287	37	Cover	NMED	-13326.09	-39111.54	139
140	288	37	Cover	NMED	-13409.68	-38848.17	140
141	289	44	Cover	NMED	-12820.67	-40316.19	141
142	290	40	Cover	NMED	-12789.51	-40208.77	142
143	291	38	Cover	NMED	-12800.20	-40066.79	143
144	292	30	Gila Bedding	NMED	-15461.71	-34136.83	144
145	293	28	Gila Bedding	NMED	-15435.26	-35006.75	145
146	294	38	Cover	NMED	-13759.83	-37851.34	146
147	295	38	Cover	NMED	-13692.62	-38058.29	147
148	296	40	Cover	NMED	-13602.75	-38274.18	148
149	297	40	Cover	NMED	-13522.80	-38493.17	149
150	298	38	Cover	NMED	-13485.74	-38608.53	150
151	299	43	Cover	NMED	-13298.77	-39194.65	151
152	300	39	Cover	NMED	-13237.71	-39398.57	152
153	301	43	Cover	NMED	-15675.85	-34376.70	153
154	302	43	Cover	NMED	-15555.71	-34986.35	154
155	303	41	Cover	NMED	-15388.62	-35241.09	155
156	304	39	Cover	NMED	-15288.27	-35393.36	156
157	305	43	Cover	NMED	-15072.09	-35487.50	157
158	306	46	Cover	NMED	-15141.57	-34961.68	158

Item No.	Test Pit ID	Thickness (inches)	Туре	Tested By	Easting	Northing	Item No.
159	307	41	Cover	NMED	-15196.63	-34730.21	159
160	308	36	Cover	NMED	-15639.55	-34056.60	160
161	309	36	Cover	NMED	-15546.32	-34058.33	161
162	310	42	Cover	NMED	-15827.12	-34287.56	162
163	311	36	Gila Bedding	NMED	-15391.12	-35160.67	163
164	312	30	Gila Bedding	NMED	-15245.04	-35176.58	164
165	313	37	Gila Bedding	NMED	-15106.25	-35203.83	165
166	314	38	Gila Bedding	NMED	-14844.62	-35073.18	166
167	315	51	Cover	NMED	-14909.91	-34961.03	167
168	316	37	Gila Bedding	NMED	-14914.64	-34851.99	168
169	317	38	Cover	NMED	-14987.04	-34747.02	169
170	318	41	Gila Bedding	NMED	-15028.06	-34643.12	170
171	319	41	Cover	NMED	-15108.06	-34586.12	171
172	320	37	Gila Bedding	NMED	-15189.00	-34461.20	172
173	321	40	Cover	NMED	-14477.81	-36402.47	173
174	322_1	36	Gila Bedding	NMED	-14923.21	-35239.20	174
175	323	30	Gila Bedding	NMED	-15009.94	-35222.85	175
176	324	41	Cover	NMED	-15460.78	-35278.08	176
177	325	38	Cover	NMED	-15281.34	-35349.49	177
178	327	40	Cover	NMED	-15129.81	-35538.95	178
179	328	32	Gila Bedding	NMED	-14810.21	-35268.22	179
180	329	44	Cover	NMED	-14843.53	-35331.23	180
181	330	42	Cover	NMED	-14863.38	-35486.50	181
182	331	48	Cover	NMED	-14719.97	-35341.18	182
183	332	42	Cover	NMED	-14748.75	-35561.20	183
184	333	40	Cover	NMED	-14879.04	-35704.44	184
185	334	38	Cover	NMED	-15075.35	-35733.32	185
186	335	42	Cover	NMED	-15202.92	-35714.14	186
187	336	40	Cover	NMED	-15260.43	-34942.19	187
188	337	43	Cover	NMED	-15248.16	-34812.07	188
189	338	41	Cover	NMED	-15246.23	-34290.89	189
190	339	43	Cover	NMED	-15073.57	-34447.97	190
191	340	46	Cover	NMED	-14933.62	-34613.73	191
192	341	42	Cover	NMED	-14772.18	-34977.00	192
193	342	36	Cover	NMED	-15262.18	-35737.36	193
194	343	43	Cover	NMED	-15310.72	-35743.32	194
195	344	40	Cover	NMED	-15236.34	-34144.33	195
196	345	45	Cover	NMED	-14838.67	-34548.61	196

Table D-1 Cover and Gila Bedding Thickness Summary Table Lake One Reclamation Chino Mines Company - Hurley, New Mexico

Item No.	Test Pit ID	Thickness (inches)	Туре	Tested By	Easting	Northing	Item No.
197	346	38	Cover	NMED	-14729.55	-34738.44	197
198	347	40	Cover	NMED	-14660.60	-34955.44	198
199	348	44	Cover	NMED	-14817.74	-35916.36	199
200	349	48	Cover	NMED	-14988.72	-35935.74	200
201	350	41	Cover	NMED	-15119.34	-35993.74	201
202	351	48	Cover	NMED	-15185.89	-35957.90	202
203	352	51	Cover	NMED	-15230.76	-35905.08	203
204	353	42	Cover	NMED	-14937.66	-35836.24	204
205	354	43	Cover	NMED	-14634.74	-35561.55	205
206	355	36	Cover	NMED	-14530.46	-35470.46	206
207	356	37	Cover	NMED	-14557.64	-35647.37	207
208	357	45	Cover	NMED	-14655.37	-35809.46	208
209	358	36	Cover	NMED	-14580.34	-34895.24	209
210	359	46	Cover	NMED	-14647.48	-34684.33	210
211	360	43	Cover	NMED	-14721.09	-34530.93	211
212	361	42	Cover	NMED	-14864.58	-34346.27	212
213	362	31	Gila Bedding	NMED	-15599.86	-33873.41	213
214	363	42	Cover	NMED	-15547.67	-33930.07	214
215	364	43	Cover	NMED	-14992.39	-34040.82	215
216	365	42	Cover	NMED	-14819.09	-34203.46	216
217	366	38	Cover	NMED	-14690.43	-34395.21	217
218	367	41.6	Cover	NMED	-14492.51	-34605.71	218
219	368	43	Cover	NMED	-14440.03	-34887.84	219
220	369	43	Cover	NMED	-14230.45	-35132.09	220
221	370	44	Cover	NMED	-14323.34	-35218.26	221
222	371	41	Cover	NMED	-14320.81	-35497.16	222
223	372	41	Cover	NMED	-14425.65	-35807.22	223
224	373	43	Cover	NMED	-14548.80	-35960.68	224
225	374	38.6	Cover	NMED	-13734.33	-35624.99	225
226	375	38	Cover	NMED	-14667.40	-39663.45	226
227	376	40	Cover	NMED	-14756.98	-39794.39	227
228	377	40	Cover	NMED	-14894.39	-39892.70	228
229	378	39	Cover	NMED	-14723.19	-36069.11	229
230	379	41	Cover	NMED	-14759.01	-36158.13	230
231	CHNREC1	48	Cover	FMRS	-15257.82	-33973.54	231
232	CHNREC2	38	Cover	FMRS	-15181.29	-34038.66	232
233	CHNREC3	37	Cover	FMRS	-15044.84	-34153.47	233
234	CHNREC4	38	Cover	FMRS	-14925.32	-34259.00	234

Table D-1 Cover and Gila Bedding Thickness Summary Table Lake One Reclamation Chino Mines Company - Hurley, New Mexico


Item No.	Test Pit ID	Thickness (inches)	Туре	Tested By	Easting	Northing	Item No.
235	EMC1	37	Cover	FMRS	-15130.04	-34087.30	235
236	EMC2	36	Cover	FMRS	-14841.77	-34367.04	236
237	QC1	31	Gila Bedding	FMRS	-14802.95	-38857.30	237
238	QC2	28	Gila Bedding	FMRS	-14841.13	-38774.92	238
239	QC3	31	Gila Bedding	FMRS	-14845.95	-38778.00	239
240	QC4	30	Gila Bedding	FMRS	-14815.08	-38801.87	240
241	QC5	29	Gila Bedding	FMRS	-14810.05	-38797.89	241

NMED = New Mexico Environment Department; FMRS = Freeport-McMoRan Reclamation Services.

Note:

(1) Since Test Pit 54 indicated a thickness less than 24 inches, additional test pits (322_1 and 323) were performed on either side, which verified that the 24-inch thickness was met.

LEGEND

\$ 40 TT

+

LIMIT OF LAKE ONE REGRADING/RECLAMATION

ISOPACH CONTOURS - INDICATES GREATER THAN 3 FEET ABOVE (2 FEET IN CHANNELS) AS-BUILT SUBGRADE

ISOPACH CONTOURS - INDICATES 3 FEET ABOVE (2 FEET IN CHANNELS) AS-BUILT SUBGRADE

ISOPACH CONTOURS - INDICATES LESS THAN 3 FEET ABOVE (2 FEET IN CHANNELS) AS-BUILT SUBGRADE

COVER AND GILA BEDDING THICKNESS NMED QA TEST PIT LOCATION WITH THICKNESS IN INCHES

COVER AND GILA BEDDING THICKNESS EMC² QA TEST PIT LOCATION WITH THICKNESS IN INCHES

COVER AND GILA BEDDING THICKNESS FMRS QC TEST PIT LOCATION WITH THICKNESS IN INCHES

TO TAILING CONTACT

NO TAILING/SLAG CONTACT

SIGNATURE

QC APPROVAL:

Bein Davis 8/27/14 m

QA APPROVAL:

SIGNATURE

TRAVIS LABLANC 8-26-14 PRINT NAME & DATE

STATE REP. APPROVAL:

SIGN Deorge Llewellow 5/28/14 PRINT NAME & DATE Daren Albrecht 8/27/14 PRINT NAME & DATE

OWNER'S APPROVAL:

400 CHINO MINES COMPANY D-1 HURLEY, NEW MEXICO LAKE ONE RECLAMATION COVER THICKNESS MAP 1287_AB-C305-TK.DWG SHEET 1 OF 2 0

LEGEND

40 TT

+

LIMIT OF LAKE ONE REGRADING/RECLAMATION

ISOPACH CONTOURS - INDICATES GREATER THAN 3 FEET ABOVE (2 FEET IN CHANNELS) AS-BUILT SUBGRADE

ISOPACH CONTOURS - INDICATES 3 FEET ABOVE (2 FEET IN CHANNELS) AS-BUILT SUBGRADE

ISOPACH CONTOURS - INDICATES LESS THAN 3 FEET ABOVE (2 FEET IN CHANNELS) AS-BUILT SUBGRADE

COVER AND GILA BEDDING THICKNESS NMED QA TEST PIT LOCATION WITH THICKNESS IN INCHES

COVER AND GILA BEDDING THICKNESS EMC² QA TEST PIT LOCATION WITH THICKNESS IN INCHES

COVER AND GILA BEDDING THICKNESS FMRS QC TEST PIT LOCATION WITH THICKNESS IN INCHES

TO TAILING CONTACT

NO TAILING/SLAG CONTACT

SIGNATURE

QC APPROVAL:

Beinn Davis 8/27/14 PRINT NAME & DATE Ven

QA APPROVAL:

SIGNATURE

TRAVIS LABLANC 8-26-14 PRINT NAME & DATE Murch 0

SIGNATURE

STATE REP. APPROVAL:

George LI-ewellow 8/38/14 PRINT NAME & DATE Docen & allout SIGNATURE

OWNER'S APPROVAL:

.

Daren Albrecht 8/27/14 PRINT NAME & DATE

400

CHINO MINES COMPANY HURLEY, NEW MEXICO LAKE ONE RECLAMATION COVER THICKNESS MAP SHEET 2 OF 2

	[D-2					
•	FILE NAME: 1287_AB-C305-TK.DWG						
	REV.	0					
		0					

APPENDIX E

COVER MATERIAL QUALITY ASSURANCE TEST RESULTS

CONSTRUCTION QUALITY ASSURANCE REPORT LAKE ONE RECLAMATION CHINO MINES COMPANY – HURLEY, NEW MEXICO

_EMC² – Engineering and Environmental Solutions_____

TABLE E-1 COVER MATERIAL QUALITY ASSURANCE TEST RESULTS LAKE ONE RECLAMATION CHINO MINES COMPANY – HURLEY, NEW MEXICO

						Field Estimates				Labor	atory Data (%	wt.) (2)		
Item No.	Field ID (1)	Date Sampled	Total Thickness (in)		Rock Fragm	ents (% vol)		a	6 J	Silt	C1	Coarse	FF (Item No.
140.			T mechess (m)	Gravel	Cobble	Stone	Total	Clay	Sand	Sit	Clay	Fragments	Texture	110.
Lake (One Surface Samples													
1	L1QATP-211-0-6	1/15/2014	42	50%	12%	2%	64%	10%	72%	19%	9%	50%	SL	1
2	L1QATP-211-30-42	1/13/2014	42	50%	12%	2%	64%	10%	75%	16%	9%	41%	SL	2
3	L1QATP-222-0-6	1/15/2014	42	50%	12%	2%	64%	12%	76%	16%	8%	53%	SL	3
4	L1QATP-222-30-42	1/15/2014	42	50%	12%	2%	64%	12%	76%	16%	8%	52%	SL	4
5	L1QATP-258-0-6	1/15/2014	42	40%	12%	2%	54%	12%	76%	16%	8%	59%	SL	5
6	L1QATP-258-30-42	1/15/2014	42	40%	12%	2%	54%	12%	80%	14%	6%	55%	LS	6
7	L1QATP-310-0-6	1/15/2014	42	50%	12%	3%	65%	10%	71%	19%	10%	50%	SL	7
8	L1QATP-310-30-42	1/13/2014	42	50%	12%	3%	65%	10%	73%	17%	10%	50%	SL	8
9	L1QATP-321-0-6	1/15/2014	42	55%	12%	3%	70%	10%	74%	17%	9%	50%	SL	9
10	L1QATP-321-30-42		42	55%	12%	3%	70%	10%	76%	15%	9%	49%	SL	10
11	L1QATP-391-0-6	1/15/2014	42	55%	12%	3%	70%	12%	68%	20%	12%	48%	SL	11
12	L1QATP-391-30-42	1/15/2014	42	55%	12%	3%	70%	12%	64%	20%	16%	56%	SL	12
13	L1QATP-108-0-6	2/14/2014	40	45%	15%	5%	65%	8%	81%	15%	4%	50%	LS	13
14	L1QATP-108-28-40	2/14/2014	40	45%	15%	5%	65%	8%	75%	19%	6%	52%	SL	14
15	L1QATP-127-0-6	2/14/2014	41	40%	10%	5%	55%	10%	77%	17%	6%	53%	LS	15
16	L1QATP-127-29-41	2/14/2014	41	40%	10%	5%	55%	10%	72%	19%	9%	47%	SL	16
17	L1QATP-151-0-6	2/14/2014	27	50%	10%	TR	60%	8%	75%	19%	6%	51%	SL	17
18	L1QATP-151-25-37	2/14/2014	37	50%	10%	TR	60%	8%	75%	17%	8%	49%	SL	18
19	L1QATP-168-0-6	2/14/2014	41	50%	10%	TR	60%	6%	79%	18%	3%	50%	LS	19
20	L1QATP-168-29-41	2/14/2014	41	50%	10%	TR	60%	6%	80%	13%	7%	49%	LS	20
21	L1QATP-193-0-6	2/14/2014	38	45%	10%	TR	55%	10%	77%	17%	6%	53%	LS	21
22	L1QATP-193-26-38	2/14/2014	56	45%	10%	TR	55%	10%	76%	17%	7%	52%	SL	22

TABLE E-1 COVER MATERIAL QUALITY ASSURANCE TEST RESULTS LAKE ONE RECLAMATION CHINO MINES COMPANY – HURLEY, NEW MEXICO

						Field Estimates				Labor	atory Data (% v	vt.) (2)		
Item No.	Field ID (1)	Date Sampled	Total Thickness (in)			nents (% vol)		Clay	Sand	Silt	Clay	Coarse	Texture	Item No.
				Gravel	Cobble	Stone	Total					Fragments		
23	L1QATP-286-0-6	2/14/2014	42	55%	15%	TR	70%	10%	76%	16%	8%	48%	SL	23
24	L1QATP-286-30-42	2/14/2014	72	55%	15%	TR	70%	8%	75%	17%	8%	49%	SL	24
25	L1QATP-264-0-6	2/14/2014	38	45%	10%	TR	55%	8%	77%	17%	6%	55%	LS	25
26	L1QATP-264-26-38	2/14/2014	30	45%	10%	TR	55%	8%	79%	15%	6%	55%	LS	26
27	L1QATP-202-0-6	2/14/2014	10	55%	10%	5%	70%	8%	78%	16%	6%	57%	LS	27
28	L1QATP-202-30-42	2/14/2014	42	55%	10%	5%	70%	8%	79%	17%	4%	50%	LS	28
29	L1QATP-298-0-6	1/20/2014	10	40%	15%	TR	55%	8%	82%	14%	4%	54%	LS	29
30	L1QATP-298-28-40	4/30/2014	40	40%	15%	TR	55%	8%	82%	11%	7%	55%	LS	30
31	L1QATP-213-0-6	1/20/2014	20	40%	10%	TR	50%	10%	77%	13%	10%	54%	SL	31
32	L1QATP-213-26-38	4/30/2014	38	40%	10%	TR	50%	10%	78%	12%	10%	58%	SL	32
33	L1QATP-161-0-6	4/20/2014	20	38%	10%	0%	48%	8%	74%	18%	8%	53%	SL	33
34	L1QATP-161-26-38	4/30/2014	38	38%	10%	0%	48%	8%	74%	17%	9%	57%	SL	34
35	L1QATP-71-0-6	4/20/2014	40	35%	10%	5%	50%	6%	73%	15%	12%	53%	SL	35
36	L1QATP-71-28-40	4/30/2014	40	35%	10%	5%	50%	6%	78%	11%	11%	52%	SL	36
37	L1QATP-15-0-6	4/30/2014	38	48%	18%	TR	66%	8%	84%	10%	6%	60%	LS	37
38	L1QATP-15-26-38	4/30/2014	38	48%	18%	TR	66%	8%	77%	16%	7%	61%	SL	38
39	L1QATP-20-0-6	4/20/2014	37	44%	10%	0%	54%	8%	76%	15%	9%	58%	SL	39
40	L1QATP-20-25-37	4/30/2014	37	44%	10%	0%	54%	8%	74%	16%	10%	56%	SL	40
41	L1QATP-10-0-6	4/20/2014	41	45%	12%	TR	57%	8%	73%	17%	10%	57%	SL	41
42	L1QATP-10-29-41	4/30/2014	41	45%	12%	TR	57%	8%	74%	16%	10%	59%	SL	42
43	L1QATP-23-0-6	4/20/2011	27	40%	12%	TR	52%	8%	73%	16%	11%	56%	SL	43
44	L1QATP-23-25-37	4/30/2014	37	40%	12%	TR	52%	8%	73%	17%	10%	60%	SL	44

TABLE E-1 COVER MATERIAL QUALITY ASSURANCE TEST RESULTS LAKE ONE RECLAMATION CHINO MINES COMPANY – HURLEY, NEW MEXICO

						Field Estimates				Labor	ratory Data (% v	wt.) (2)		
Item No.	Field ID (1)	Date Sampled	Total Thickness (in)		Rock Fragm	ents (% vol)			a 1	c	C1	Coarse	5	Item No.
NO.		_	T nickness (in)	Gravel	Cobble	Stone	Total	Clay	Sand	Silt	Clay	Fragments	Texture	NO.
45	L1QATP-29-0-6	5/21/2014	42	55%	15%	TR	70%	8%	78%	15%	7%	52%	LS	45
46	L1QATP-29-30-42	5/21/2014	42	55%	15%	TR	70%	8%	82%	11%	7%	61%	LS	46
47	L1QATP-440-0-6	7/2/2014	12	25%	25%	5%	55%	8%	78%	13%	9%	45%	SL	47
48	L1QATP-440-30-42	//2/2014	42	25%	25%	5%	55%	8%	74%	15%	11%	51%	SL	48
49	L1QATP-385-0-6	7/17/2014	20	40%	20%	5%	65%	10%	80%	13%	7%	56%	LS	49
50	L1QATP-385-26-38	7/17/2014	38	40%	20%	5%	65%	10%	80%	13%	7%	66%	LS	50
51	L1QATP-365-0-6	0/4/2014	40	38%	15%	TR	53%	10%	78%	15%	7%	52%	LS	51
52	L1QATP-365-28-40	8/4/2014		38%	15%	TR	53%	10%	80%	13%	7%	58%	LS	52
53	L1QATP-359-0-6	8/11/2014	38	40%	12%	TR	52%	10%	78%	14%	8%	58%	SL	53
54	L1QATP-359-26-38	8/11/2014	38	40%	12%	TR	52%	10%	76%	16%	8%	62%	SL	54
Slag Pi	le Outslope Samples	-	-	-	-		-	-	-		-			
55	L1QATP-433-0-6	7/22/2014	43	35%	18%	TR	53%	8%	79%	13%	8%	65%	LS	55
56	L1QATP-433-31-43	1/22/2014	45	35%	18%	TR	53%	8%	81%	12%	7%	68%	LS	56
57	L1QATP-462-0-6	7/24/2014	44	35%	12%	TR	47%	10%	81%	12%	7%	59%	LS	57
58	L1QATP-462-32-44	//24/2014	44	35%	12%	TR	47%	10%	82%	11%	7%	58%	LS	58
59	L1QATP-352-0-6	7/20/2014		25%	30%	10%	65%	8%	78%	13%	9%	58%	SL	59
60	L1QATP-352-29-41	7/29/2014	41	25%	30%	10%	65%	8%	78%	15%	7%	75%	LS	60

ID = identification; ft = feet; % = percent; USDA = United States Department of Agriculture; TR = trace; LS = Loamy Sand; SL = Sandy Loam.

Note:

(1) Field ID descriptions: L1 = Lake One; QA = Quality Assurance; TP = Test Pit; 211 = Test Pit ID; and 0-6, 30-42 = Sample Depth Interval (in inches).

(2) Laboratory analysis provided by Energy Laboratories, Inc.

APPENDIX F

SEEDING AND MULCHING SUMMARY REPORT

CONSTRUCTION QUALITY ASSURANCE REPORT LAKE ONE RECLAMATION CHINO MINES COMPANY – HURLEY, NEW MEXICO

Lake One 2014 Seeding Report

Freeport-McMoRan Reclamation Services

July 18, 2014

Kenny White

Introduction:

This Lake One 2014 Seeding Report covers the re-vegetation done by Freeport-McMoRan Reclamation Services (FMRS) seeding crew from April 1, 2014 through July 1, 2014. The areas included in this report are the Lake One Reclamation area, the Razorback Borrow areas, and the A and B borrows. Included is a summary of the work completed and the materials delivered and used.

The weather during this period varied from sunny to cloudy. The temperatures throughout the seeding period ranged from 40° F to 85° F. The winds ranged from low to very high gusts. There were trace amounts of precipitation that occurred during this period.

Work Performed:

Seed Bed Preparation:

As an area was completed and approved by the Engineer of Record (EOR), the FMRS crew used bulldozers to rip the approved areas. The approved areas were then scarified to a depth of 8 to 12 inches. This process continued until all approved areas were ripped and scarified. Maintenance roads, power pole roads, and access to monitoring wells were not disturbed and will remain open for access purposes.

FMRS completed ripping and scarifying operations on June 30, 2014. Throughout the ripping operations, Quality Control Monitors (QC) periodically took random measurements of the penetration on the ripped and scarified areas for the seed bed. All measurements taken were within the 8 to 12 inch tolerance.

Mulching:

The mulch delivered was long-stem native grass hay mulch which was grown in Kansas. Deliveries started arriving for Lake One on February 6th and continued until April 30th with a total of 747 tons being delivered. FMRS has copies of all mulch certifications and scale tickets on file.

Application of the mulch began on March 11th and was completed on June 26th. The mulch was evenly applied to the ripped and scarified areas using a mulch broadcaster. After broadcasting, all mulched areas were crimped to a depth of 3-4 inches using straight coulter discs. QC performed visual inspection and daily monitoring of the mulch application.

Seeding:

The seed mix for the Lake One reclamation project consisted of approved species which is listed in the table below:

Species	Planting Rate (pls #'s/acre)
Blue grama (Bouteloua gracilis)	0.25
Sideoats grama (Bouteloua curtipendula)	1.25
Galleta grass (Pleuraphis jamesii)	0.40
Green sprangletop (Leptochloa dubia)	0.50
Bottlebrush squirreltail (Elymus elymoides) sub for Needle and thread	1.25
Indian ricegrass (Achnatherum hymenoides)	1.50
Sand dropseed (Sporobolus cryptandrus)	0.10
Streambank wheatgrass (Elymus lanceolatus ssp. psammophilus)	0.50
Fairy-duster (Calliandra eriophylla)	0.04
Fourwing saltbush (Atriplex canescens)	1.50
Rubber rabbitbrush (Ericameria nauseosa)	0.25
Winterfat (Krascheninnikovia lanata)	0.60
White prairie clover (Dalea candida)	0.20
Prairie coneflower (Ratibida columnifera)	0.30
Blue flax (Linum lewisii)	0.15
Total	8.79

Lake One Approved Seed Mix for 2014

Drill seeding of Lake One began on April 14th using a modified rangeland drill with depth control bands, packer wheels, agitators and augers, picker wheels, and a drag chain. The drill seeder was calibrated at the beginning of the project and monitored throughout seeding. Seeding began at the south end of the project working northwards. The seeding was completed on June 26th.

All seed was stored per the manufacturer's recommendation and in the manufacturer's original packaging until used.

The seeding and mulching operation was monitored daily by the site QC. QC visually inspected application procedures, collecting tags from the seed bags used, recorded the acres completed for the day and the amount of seed used.

Attachments:

<u>Appendix A</u> – Daily Mulch Delivery Log with Ticket and Certification Numbers.

<u>Appendix B</u> – Daily Seeding Log with Amount of Seed Applied and Acres Seeded.

<u>Appendix C</u> – Photographs of the Mulching and Seeding

Kenny White Senior QC Specialist

Appendix A

Daily Mulch Delivery Log

		Daily Mu	Ich Delivery	Log		
Date	Ticket #	Certification #	Pounds	Tonnage	Bales	Area Staged
2/6/2014	341821	123331	62,100	31.05	42	Lake One
2/6/2014	365851	123978	60,760	30.38	42	Lake One
2/9/2014	365813	149020	50,240	25.1	42	Lake One
2/14/2014	365758	148942	52,000	26	43	Lake One
2/19/2014	365816	148901	49,500	24.75	35	Lake One
2/20/2014	341822	142720	50,680	25.34	35	Lake One
2/20/2014	365852	123979	49,260	24.63	34	Lake One
2/21/2014	365903	148981	49,200	24.6	34	Lake One
2/26/2014	365819	148902	49,220	24.61	42	Lake One
3/18/2014	365826	148904	50,840	25.42	43	Lake One
3/18/2014	365906	148984	53,080	26.54	44	Lake One
3/19/2014	341826	142719	53,180	26.59	44	Lake One
3/21/2014	341827	142718	49,680	24.89	35	Lake One
3/21/2014	365828	148905	53,850	26.93	44	Lake One
3/25/2014	365761	148945	52,960	26.48	43	Lake One
3/27/2014	365762	148946	51,460	25.73	36	Lake One
4/2/2014	365763	148947	50,380	25.19	36	Lake One
4/3/2014	365830	148906	50,980	25.49	36	Lake One
4/4/2014	341828	142717	43,580	21.79	36	Lake One
4/4/2014	365764	148948	48,480	24.24	42	Lake One
4/6/2014	365831	148907	51,600	25.8	44	Lake One
4/9/2014	365832	148908	51,020	25.51	36	Lake One
4/10/2014	365765	148949	50,440	25.22	36	Lake One
4/12/2014	365766	148950	50,200	25.1	36	Lake One
4/15/2014	365767	148951	52,160	26.08	42	Lake One
4/15/2014	365845	148909	53,340	26.67	44	Lake One
4/17/2014	365768	148952	50,320	25.16	44	Lake One
4/17/2014	365841	148910	51,780	25.89	46	Lake One
4/30/2014	366980	148888	50,920	25.46	44	Lake One
		Totals	1,493,210	746.64	1,160	
			Pounds	Tons	Bales	

Appendix B

Daily Seeding Log

	Daily	Seeding I	og with Amo	unt of See	d Applied ar	nd Acres Seeded
Date	Bulk (Ibs.)	PLS (Ibs.)	Mulch (Tons)	Acreage	Area Seeded	Bags of Seed Used
4/14/2014	101.64	87.92	2.5 per Acre	8.7	Lake One	Mix: 123464 x 2, Mix: 123465 x 2
4/15/2014	203.28	175.84	2.5 per Acre	17.6	Lake One	Mix: 123464 x 4, Mix: 123465 x 4
4/16/2014	203.28	175.84	2.5 per Acre	10.4	Lake One	Mix: 123464 x 4, Mix: 123465 x 4
4/17/2014	101.64	87.92	2.5 per Acre	16.0	Lake One	Mix: 123464 x 2, Mix: 123465 x 2
4/18/2014	203.28	175.84	2.5 per Acre	11.3	Lake One	Mix: 123464 x 4, Mix: 123465 x 4
4/27/2014	101.64	87.92	2.5 per Acre	12.1	Lake One	Mix: 123464 x 1, Mix: 123465 x 1
4/28/2014	50.82	43.96	2.5 per Acre	4.6	Lake One	Mix: 123464 x 2, Mix: 123465 x 2
4/29/2014	50.82	43.96	2.5 per Acre	2.8	Lake One	Mix: 123464 x 1, Mix: 123465 x1
4/30/2014	101.64	87.92	2.5 per Acre	7.0	Lake One	Mix: 123464 x 2, Mix: 123465 x 2
5/1/2014	101.64	87.92	2.5 per Acre	11.0	Lake One	Mix: 123464 x 2, Mix: 123465 x 2
5/2/2014	50.82	43.96	2.5 per Acre	11.1	Lake One	Mix: 123464 x 1, Mix: 123465 x 1
5/3/2014	203.28	175.84	2.5 per Acre	13.7	Lake One	Mix: 123464 x 4, Mix: 123465 x 4
5/21/2014	101.64	87.92	2.5 per Acre	11.1	Lake One	Mix: 123464 x 2, Mix: 123465 x 2
5/22/2014	101.64	87.92	2.5 per Acre	9.3	Lake One	Mix: 123464 x 2, Mix: 123465 x 2
5/26/2014	101.64	87.92	2.5 per Acre	13.9	Lake One	Mix: 123464 x 2, Mix: 123465 x 2

	Daily Seeding Log with Amount of Seed Applied and Acres Seeded										
6/10/2014	101.64	87.92	2.5 per Acre	4.6	Lake One	Mix: 123464 x 2, Mix: 123465 x 2					
6/11/2014	305.58	263.76	2.5 per Acre	19.9	Lake One	Mix: 123464 x 6, Mix: 123465 x 6					
6/17/2014	101.64	87.92	2.5 per Acre	20.3	Lake One	Mix: 123464 x 2, Mix: 123465 x 2					
6/18/2014	101.64	87.92	2.5 per Acre	10.6	Lake One	Mix: 123464 x 2, Mix: 123465 x 2					
6/20/2014	203.28	175.84	2.5 per Acre	16.7	Lake One	Mix: 123464 x 4, Mix: 123465 x 4					
6/23/2014	50.82	43.96	2.5 per Acre	2.4	Lake One	Mix: 123464 x 1, Mix: 123465 x 1					
6/24/2014	203.28	175.84	2.5 per Acre	8.9	Lake One	Mix: 123464 x 4, Mix: 123465 x 4					
6/25/2014	203.28	175.84	2.5 per Acre	23.1	Lake One	Mix: 123464 x 4, Mix: 123465 x 4					
6/26/2014	101.64	87.92	2.5 per Acre	9.3	Lake One	Mix: 123464 x 2, Mix: 123465 x 2					

Appendix D

Seed and Mulch Photographs

Unloading and Staging Mulch Deliveries.

Seed Bed Preparations at Lake One.

Seed Bed Preparations at Lake One.

Mulching Operations at Lake One.

Mulching Operations at Lake One.

Seeding Operations at Lake One.

Seeding Operations at Lake One.

Seeding Operations at Lake One.

APPENDIX G

PHOTOGRAPHIC DOCUMENTATION

CONSTRUCTION QUALITY ASSURANCE REPORT LAKE ONE RECLAMATION CHINO MINES COMPANY – HURLEY, NEW MEXICO

Borrow Area Photographic Documentation

Construction Quality Assurance Report, Lake One Reclamation Chino Mines Company - Hurley, New Mexico

August 16, 2013 FMRS excavating material from the Razorback Ridge Borrow Area.

РНОТО 2

March 28, 2014 FMRS hauling cover material from Borrow Area B.

Construction Quality Assurance Report, Lake One Reclamation Chino Mines Company - Hurley, New Mexico

January 11 - January 17, 2014 FMRS excavating QA test pits for EMC2 to measure cover thicknesses within IR-018.

PHOTO 4

February 15 -February 21, 2014 FMRS scarifying the final approved cover surface in IR-018.

Construction Quality Assurance Report, Lake One Reclamation Chino Mines Company - Hurley, New Mexico

February 8 - February 14, 2014 Placement of cover material in IR 027.

PHOTO 6

March 8 - March 14, 2014 FMRS crews placing cover material in IR 032.

Construction Quality Assurance Report, Lake One Reclamation Chino Mines Company - Hurley, New Mexico

PHOTO 7

March 15 - March 21, 2014 FMRS crews placing cover material in IR 033.

PHOTO 8

March 22 - March 28, 2014 FMRS crews placing cover material in IR 033.

Construction Quality Assurance Report, Lake One Reclamation Chino Mines Company - Hurley, New Mexico

PHOTO 9

March 29 - April 4, 2014 FMRS crews placing cover material in IR-033.

April 12 - April 18, 2014 FMRS crews placing cover material in IR 033.

Construction Quality Assurance Report, Lake One Reclamation Chino Mines Company - Hurley, New Mexico

PHOTO 11

January 18 - January 24, 2014 Placing Gila Bedding from the south end of the Razorback Ridge Borrow Area in plug-dumps above Channel P1, Reach 3 in approved IR-020.

РНОТО 12

January 25 - January 31, 2014 Compaction of Gila Bedding in Channel P1, Reach 3.

Construction Quality Assurance Report, Lake One Reclamation Chino Mines Company - Hurley, New Mexico

PHOTO 13

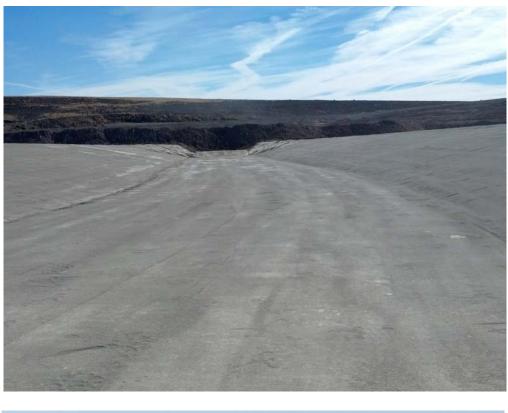

January 25 - January 31, 2014 Subgrade surface preparation in Channel P1, Reach 3.

PHOTO 14

January 25 - January 31, 2014 Removal of soft, saturated tailing material in Channel P1, Reach 1.

Construction Quality Assurance Report, Lake One Reclamation Chino Mines Company - Hurley, New Mexico

February 8 - February 14, 2014 Compaction of liner bedding surface in Channel P1, Reach 2 (Lined Channel).

PHOTO 16

February 15 -February 21, 2014 FMRS completed preparing the HDPE liner bedding surface and anchor trench construction in Channel P1, Reach 2.

Construction Quality Assurance Report, Lake One Reclamation Chino Mines Company - Hurley, New Mexico

PHOTO 17

February 15 -February 21, 2014 AEG installing 60-mil textured HDPE Liner in Channel P1, Reach 2.

PHOTO 18

February 22 -February 28, 2014 Destructive testing of the liner installation in Channel P1, Reach 2

Channel Construction Photographic Documentation

Construction Quality Assurance Report, Lake One Reclamation Chino Mines Company - Hurley, New Mexico

PHOTO 19

February 22 -February 28, 2014 Placement of additional sandbags in the anchor trench to resist wind gusts.

PHOTO 20

March 8 - March 14, 2014 FMRS crews placing fine sand bedding material in Channel P1, Reach 2.

Channel Construction Photographic Documentation

Construction Quality Assurance Report, Lake One Reclamation Chino Mines Company - Hurley, New Mexico

PHOTO 21

March 15 - March 21, 2014 FMRS crews placing Gila bedding material in Channel P1 Reach 2.

PHOTO 22

March 15 - March 21, 2014 FMRS placing fine sand bedding material in Channel P1.

Channel Construction Photographic Documentation

Construction Quality Assurance Report, Lake One Reclamation Chino Mines Company - Hurley, New Mexico

July 12 - July 18, 2014 FMRS constructing Outslope Channels 08 and 09.

PHOTO 24

July 26 - August 1, 2014 FMRS constructing Down Drain 2.

Channel Armoring Photographic Documentation

Construction Quality Assurance Report, Lake One Reclamation Chino Mines Company - Hurley, New Mexico

РНОТО 25

March 1 - March 7, 2014 FMRS placing 3" D50 riprap in Channel P1, Reach 3.

PHOTO 26

April 5 - April 11, 2014 FMRS placing 3" D50 riprap in Channel S1, Reach 2.

Channel Armoring Photographic Documentation

Construction Quality Assurance Report, Lake One Reclamation Chino Mines Company - Hurley, New Mexico

PHOTO 27

July 19 - July 25, 2014 FMRS placing 3" D50 riprap in Outslope Channel 08.

Slag Subgrade Photographic Documentation

Construction Quality Assurance Report, Lake One Reclamation Chino Mines Company - Hurley, New Mexico

PHOTO 28

December 27, 2013 -January 3, 2014 Slag material from the north end of the Slag Pile being placed as fill on the east crest.

April 5 - April 11, 2014 FMRS continuing subgrade regrading operations on the top of the Slag Pile.

Slag Subgrade Photographic Documentation

Construction Quality Assurance Report, Lake One Reclamation Chino Mines Company - Hurley, New Mexico

PHOTO 30

December 27, 2013 -January 3, 2014 Regrading of outslopes and channel benches on the northern slope of the Slag Pile.

РНОТО 31

January 4 - January 10, 2014 Grading the east crest and the upper channel benches and outslopes on the Slag Pile.

Slag Subgrade Photographic Documentation

Construction Quality Assurance Report, Lake One Reclamation Chino Mines Company - Hurley, New Mexico

РНОТО 32

January 4 - January 10, 2014 Excavating slag material from the base of the Slag Pile and placing it over the Slag Pile toe seep collection system.

РНОТО 33

January 11 - January 17, 2014 FMRS dozer-pushing slag material from the base of the Slag Pile to cover over the seep collection system.

Slag Cover Photographic Documentation

Construction Quality Assurance Report, Lake One Reclamation Chino Mines Company - Hurley, New Mexico

PHOTO 34

January 11 - January 17, 2014 FMRS placing cover material in approved IR-019 on top of the Slag Pile.

РНОТО 35

January 18 - January 24, 2014 Placing cover material in approved IR-019 on top of the Slag Pile.

Slag Cover Photographic Documentation

Construction Quality Assurance Report, Lake One Reclamation Chino Mines Company - Hurley, New Mexico

PHOTO 36

July 12 - July 18, 2014 FMRS placing cover in approved IR-69 on the northeast outslope of the Slag Pile.

PHOTO 37

July 5 - July 11, 2014 FMRS placing cover on the east outslope of the Slag Pile.

Slag Cover Photographic Documentation

Construction Quality Assurance Report, Lake One Reclamation Chino Mines Company - Hurley, New Mexico

PHOTO 38

July 12 - July 18, 2014 FMRS excavating QA test pits for cover thickness measurement within IR-63.

Down Drain Photographic Documentation

Construction Quality Assurance Report, Lake One Reclamation Chino Mines Company - Hurley, New Mexico

PHOTO 39

September 2, 2014 Completed Down Drain 1.

September 2, 2014 Down Drain 2 prior to filling voids with crusher fines.

Down Drain Photographic Documentation

Construction Quality Assurance Report, Lake One Reclamation Chino Mines Company - Hurley, New Mexico

PHOTO 41

September 2, 2014 FMRS crews working on Down Drain 2.

PHOTO 42

September 2, 2014 Outslope Channel to Down Drain 2 transition under construction.

Construction Quality Assurance Report, Lake One Reclamation Chino Mines Company - Hurley, New Mexico

PHOTO 43

January 21, 2013 (Google Image) Slag Pile prior to reclamation, looking southwest.

PHOTO 44

September 10, 2014 Completed Slag Pile, looking southwest.

Construction Quality Assurance Report, Lake One Reclamation Chino Mines Company - Hurley, New Mexico

PHOTO 45

January 21, 2013 (Google Image) Lake One prior to reclamation, looking north.

PHOTO 46

September 10, 2014 Completed Lake One Reclamation area, looking north.

Construction Quality Assurance Report, Lake One Reclamation Chino Mines Company - Hurley, New Mexico

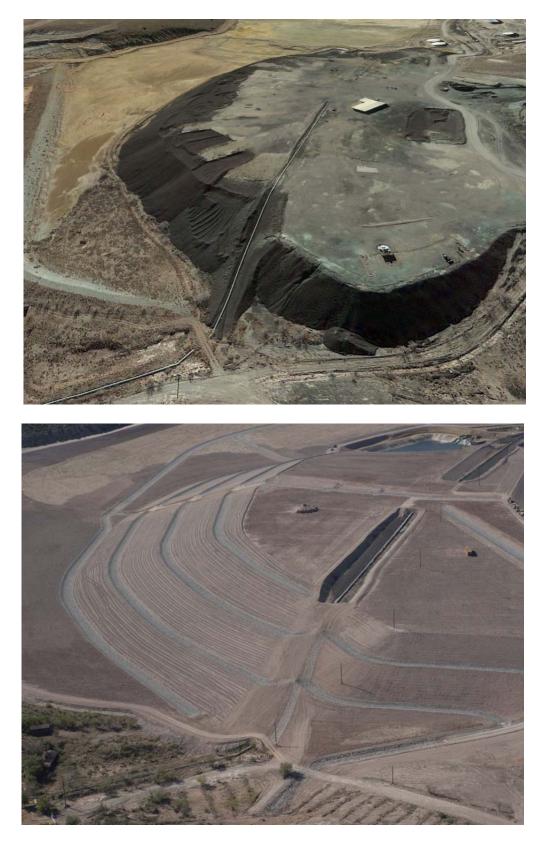


PHOTO 47

January 21, 2013 North side of Slag Pile prior to reclamation, looking southeast.

PHOTO 48

September 10, 2014 North side of completed Slag Pile, looking southeast.

Construction Quality Assurance Report, Lake One Reclamation Chino Mines Company - Hurley, New Mexico

PHOTO 49

September 10, 2014 East side of completed Slag Pile, looking southwest.

РНОТО 50

September 10, 2014 Completed Slag Pile and Lake One Reclamation area, looking southwest.

Construction Quality Assurance Report, Lake One Reclamation Chino Mines Company - Hurley, New Mexico

PHOTO 51

January 21, 2013 (Google Image) Slag Pile and Lake One prior to reclamation, looking southwest.

РНОТО 52

September 10, 2014 Completed Slag Pile and Lake One Reclamation area, looking southwest.

APPENDIX H

ACB RECORD DOCUMENTATION

CONSTRUCTION QUALITY ASSURANCE REPORT LAKE ONE RECLAMATION CHINO MINES COMPANY – HURLEY, NEW MEXICO

Date: September 9, 2014

Project: Contech Armorflex ACB Installation Freeport McMoRan Miami Inc. Lake One Project Downdrain DD-1 Golder Project No. 140-1252

Project Certification

I, the undersigned, as a representative of Golder Associates Inc., certify that the contractor has satisfactorily completed the Armorflex ACB installation for downdrain DD-1 in accordance with the Contech construction plans (Contech Project No. 495786) from the geotextile (above the prepared subgrade) to the Armorflex concrete mattress (including the block infill, grout seams, and anchor trenches).

Brent Bronson

Signed:

Title:

Principal

c:\users\bbronson\appdata\local\microsoft\windows\temporary internet files\content.outlook\f1k5shjw\ltrofcompletion_dd-1.docx

Golder Associates: Operations in Africa, Asia, Australasia, Europe, North America and South America

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation

Date: September 9, 2014

Project: Contech Armorflex ACB Installation Freeport McMoRan Miami Inc. Lake One Project Downdrain DD-2 Golder Project No. 140-1252

Project Certification

I, the undersigned, as a representative of Golder Associates Inc., certify that the contractor has satisfactorily completed the Armorflex ACB installation for downdrain DD-2 in accordance with the Contech construction plans (Contech Project No. 495786) from the geotextile (above the prepared subgrade) to the Armorflex concrete mattress (including the block infill, grout seams, and anchor trenches).

Signed:

Diorson

Brent Bronson

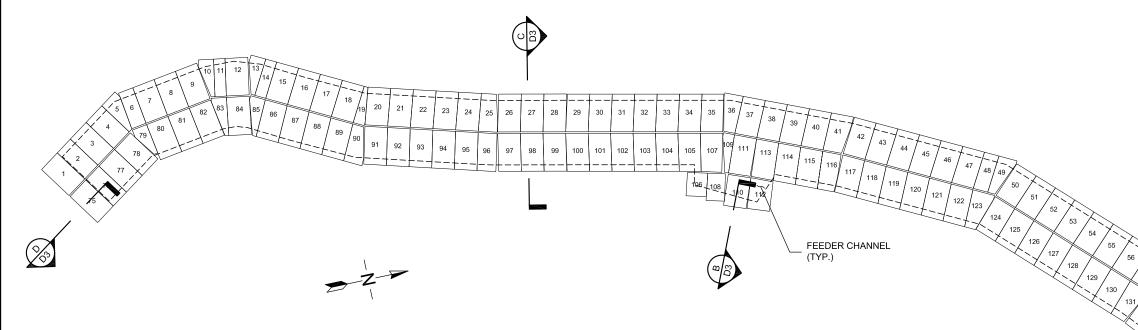
Title: Principal

c:\users\bbronson\appdata\local\microsoft\windows\temporary internet files\content.outlook\f1k5shjw\ltrofcompletion_dd-2.docx

Golder Associates Inc. 44 Union Boulevard, Suite 300 Lakewood, CO 80228 USA Tel: (303) 980-0540 Fax: (303) 985-2080 www.golder.com

Golder Associates: Operations in Africa, Asia, Australasia, Europe, North America and South America

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation


NOTES:

1. ALL MAT LENGTHS ARE AS SPECIFIED ON THE SPREADSHEET.

- 2. ALL MAT WIDTHS ARE AS SPECIFIED ON THE SPREADSHEET.
- 3. TOE ANCHORS AND SLOPE FACTORS HAVE BEEN ADDED TO LENGTHS OF ALL MATS.
- 4. ALL VOIDS GREATER THAN 2" BETWEEN MATS SHALL BE FILLED WITH 4,000PSI CONCRETE.

CHINO LAKE ONE DOWNDRAIN 1

HURLEY, NEW MEXICO

LAKE ONE DOWNDRAIN 1

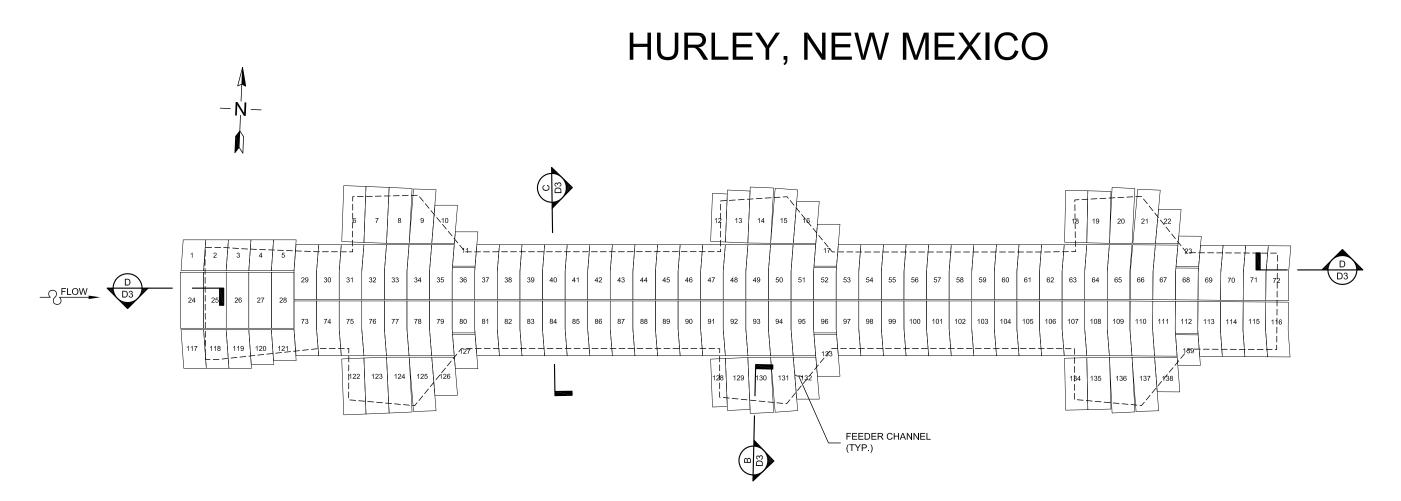
NOT TO SCALE

PRELIMINARY:

INFORMATION CONTAINED IN THIS DRAWING IS TO BE USED ONLY AS AN AID TO THE BUYER AND IS NOT TO BE CONSTRUED AS ENGINEERING ADVICE OR AS A WARRANTY AS TO THE QUANTITY REQUIRED OR THE SUITABILITY OF THE FABRIC OR BLOCK FOR A PARTICULAR USE. AUTHORIZATION TO SHIP FABRIC OR BLOCK DESCRIBED HERE EITHER WRITTEN OR VERBAL WILL BE RECOGNIZED AS BUYER'S CONFIRMATION OF THE ACCURACY OF THESE DRAWINGS. NO CREDIT WILL BE ALLOWED FOR ERROR AFTER REVIEW AND ACCEPTANCE BY CLIENT.

	The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by						
	Contech Engineered Solutions LLC ("Contech"). Neither this drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of			-			-
	Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for such use.			1			_
	If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered		-	-			-
	as site work progresses, these discrepancies must be reported						-
	to Contech immediately for re-evaluation of the design. Contech accepts no liability for designs based on missing, incomplete or inaccurate information supplied by others.	MARK	DATE		REVISION DESCRIPTION	B	Y
1		-					_

CHINO LAKE ONI DOWNDRAIN 1


HURLEY, NEW MEX

	QUAN	TITIES: 13,040 SQ. FT.
	S SPECIAL	1,258 SQ. FT.
CL 40TS	S TOTAL	14,298 SQ. FT.
\sim		
57		
58 59		
139 66 67		
140 68	\sim	
141	⁶⁹ 70	
143	71	\mathbf{X}
14		73
\sim	146	74 Ro.
	147	A ROM
	PROJECT No.: SE	Q. No.: DATE:
IE	472051	10 3/11/2014
l	DESIGNED: MBS	DRAWN: MAH
	CHECKED: MBS	APPROVED:
XICO	SHEET NO.:	Г1 ∘⊧ CT1

NOTES:

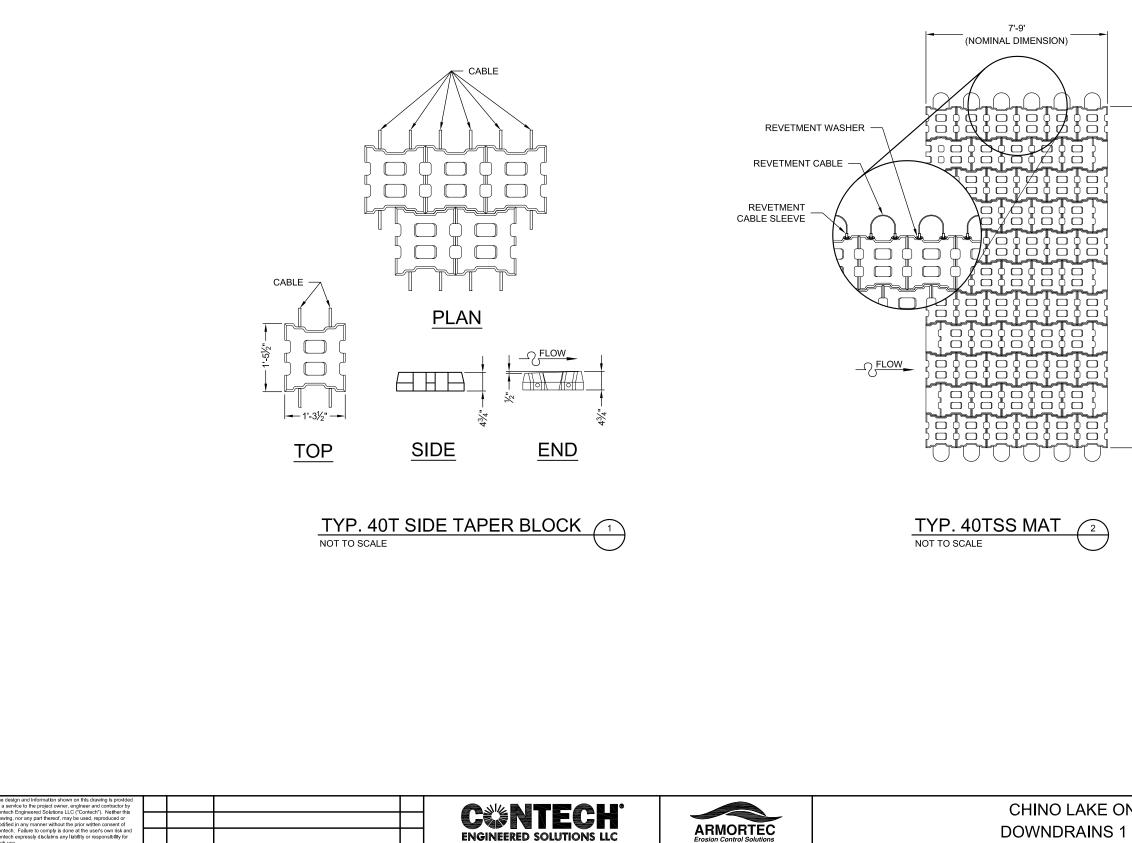
1. ALL MAT LENGTHS ARE AS SPECIFIED ON THE SPREADSHEET. 2. ALL MAT WIDTHS ARE AS SPECIFIED ON THE SPREADSHEET. 3. TOE ANCHORS AND SLOPE FACTORS HAVE BEEN ADDED TO LENGTHS OF ALL MATS. 4. ALL VOIDS GREATER THAN 2" BETWEEN MATS SHALL BE FILLED WITH 4,000PSI CONCRETE.

CHINO LAKE ONE **DOWNDRAIN 2**

LAKE ONE DOWNDRAIN 2

PRELIMINARY:

INFORMATION CONTAINED IN THIS DRAWING IS TO BE USED ONLY AS AN AID TO THE BUYER AND IS NOT TO BE CONSTRUED AS ENGINEERING ADVICE OR AS A WARRANTY AS TO THE QUANTITY REQUIRED OR THE SUITABILITY OF THE FABRIC OR BLOCK FOR A PARTICULAR USE. AUTHORIZATION TO SHIP FABRIC OR BLOCK DESCRIBED HERE EITHER WRITTEN OR VERBAL WILL BE RECOGNIZED AS BUYER'S CONFIRMATION OF THE ACCURACY OF THESE DRAWINGS. NO CREDIT WILL BE ALLOWED FOR ERROR AFTER REVIEW AND ACCEPTANCE BY CLIENT.


ŏ	The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this					ank eitean n°		
N	drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of					C INTECH		
6	Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for such use.					ENGINEERED SOLUTIONS LLC	ARMORTEC Erosion Control Solutions	DOWNDRAII
TECH	If discrepancies between the supplied information upon which					www.ContechES.com	CONTECH	
8	the drawing is based and actual field conditions are encountered as site work progresses, these discrepancies must be reported to Contech Immediately for re-evaluation of the design. Contech					9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069 800-338-1122 513-645-7000 513-645-7993 FAX	CUNTRACT	HURLEY, NEW M
NAL N	accepts no llability for designs based on missing, incomplete or inaccurate information supplied by others.	MARK	DATE	REVISION DESCRIPTION	BY	800-338-1122 513-645-7000 513-645-7993 FAX		

ONE	PROJECT No.: 472051	SEQ. No 20		^{рате:} 3/11/2014
N 2	DESIGNED: MBS		DRAWN: MAH	
	CHECKED: MBS	А	\PPRO\	/ED:
MEXICO	SHEET NO.:	CT1	OF	CT1

ONE	PROJECT No.: 472051	SEQ. 1 2		DATE: 3/11/2014
N 2	DESIGNED: MBS		DRAW	^{/N:} MAH
	CHECKED: MBS		APPR	OVED:
1EXICO	SHEET NO .:	CT'	0	E CT1

CL 40TSS TOTAL

www.contechES.com

9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069

800-338-1122 513-645-7000 513-645-7993 FAX

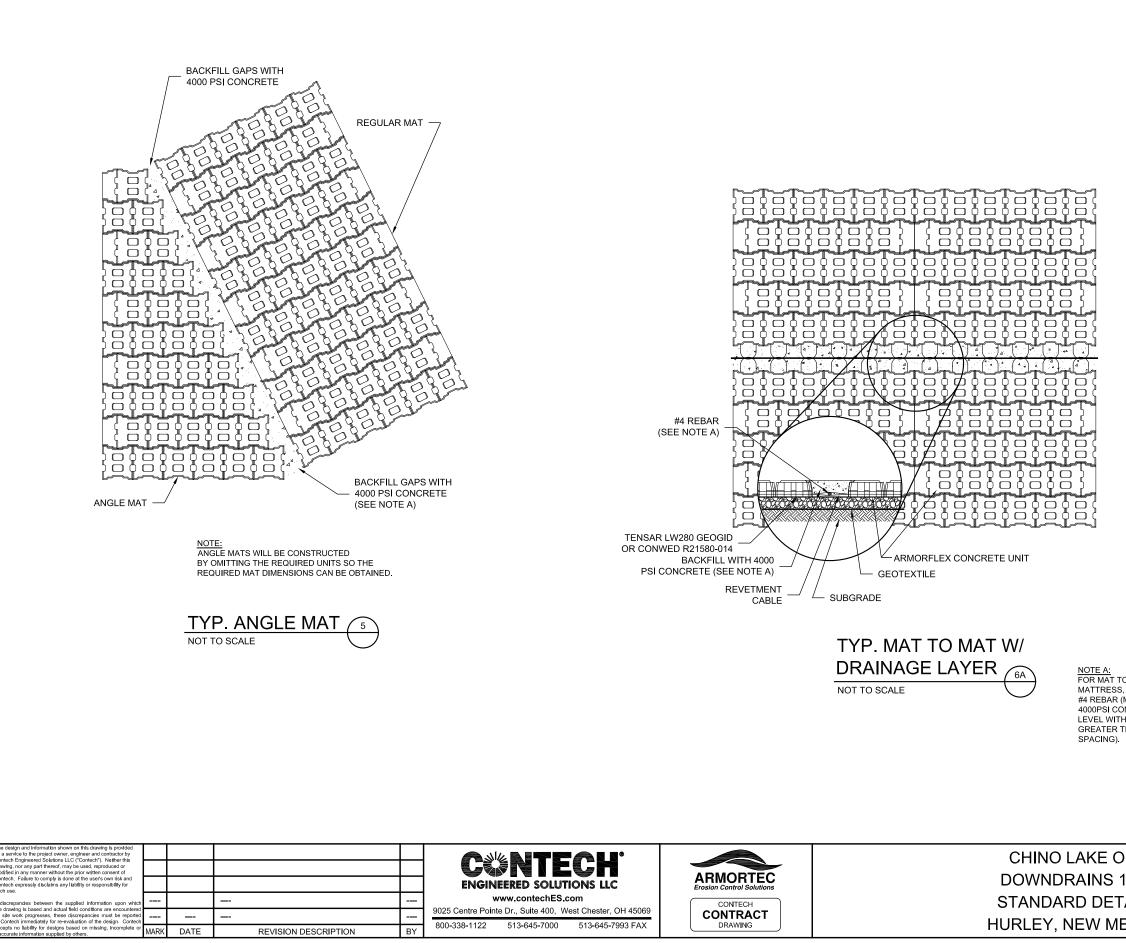
CONTECH CONTRACT

DRAWING

ROJECTACTIVE495700495786495788_ARMORFLEX_STANDARDETALS.DWG 3/11/20

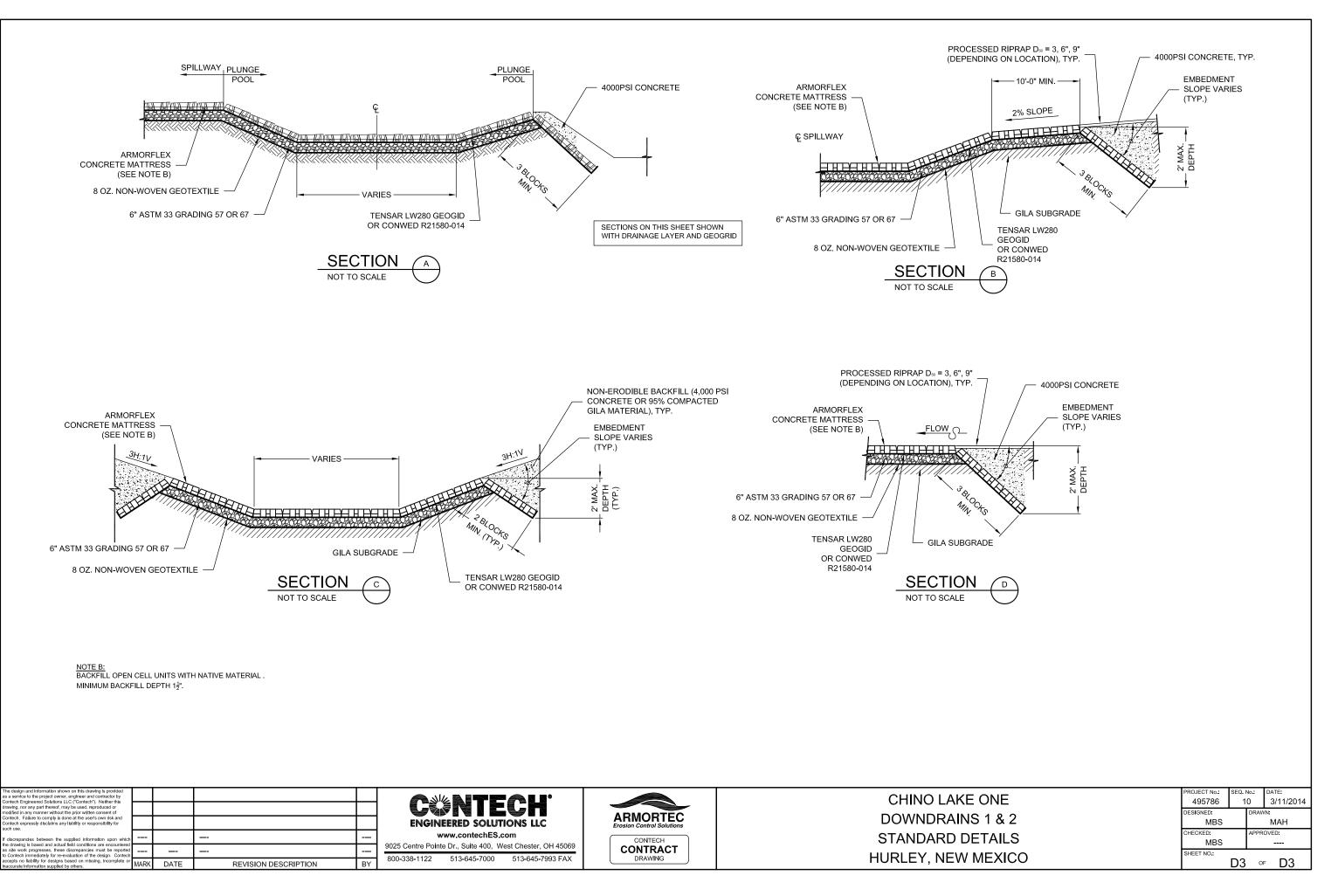
screpancies between the supplied information upon whit drawing is based and actual field conditions are encounter if work progresses, these discrepancies must be report ontech immediately for re-evaluation of the design. Conter upbs no lability for designs based on missing, incomplete curate information suppled by others.

MARK DATE



REVISION DESCRIPTION

BY


DOWNDRAINS 1 STANDARD DET HURLEY, NEW ME

PROJECT No.: SEQ. No.: DATE:	
ONE 495786 10 3/11/20	14
DESIGNED: DRAWN:	
1 & 2 MBS MAH	
TAILS CHECKED: APPROVED:	
MBS	
EXICO D1 ₀ D3	

	PROJECT No.:	SEQ. N	No.	DATE:
DNE	495786	1	0	3/11/2014
4 9 0	DESIGNED:		DRAW	/N:
1 & 2	MBS		MAH	
AILS	CHECKED:		APPR	OVED:
AILS	MBS			
EXICO	SHEET NO .:			
LAICO		D2	O	⁼ D3

NOTE A: FOR MAT TO MAT CLOSURE DETAIL AND ANGLE MATTRESS, IF VOID SPACE IS LESS THAN 12", PLACE ONE #4 REBAR (MIN. SIZE) INTO VOID AND BACKFILL WITH 4000PSI CONCRETE. ENSURE FINISHED CONCRETE IS LEVEL WITH SURROUNDING UNITS. (VOID SPACES GREATER THAN 12" REQUIRE 2 - #4 BARS @ EQUAL

