COMPREHENSIVE COVER PERFORMANCE EVALUATION STOCKPILES AND TAILING IMPOUNDMENTS

DP-1341 CONDITION 75 AND CONDITION 31 OF DP-27 SETTLEMENT AGREEMENT

Submitted to:

Phelps Dodge Tyrone Inc. P.O. Drawer 571 Tyrone, NM 88065

Submitted by:

Golder Associates Inc. 4910 Alameda Blvd., Suite A Albuquerque, NM 87113

Distribution

8 Copies – Phelps Dodge Tyrone 2 Copy - Golder Associates Inc.

January 2005

TABLE OF CONTENTS

1.0	1.1	INTRODUCTION	
2.0	2.1 2.2 2.3	·····	5 7 8 8
3.0	3.1 3.2		12 13 13
4.0	4.1 4.2	4.1.1 Gila Conglomerate and Associated Soils4.1.2 Leach Cap	19 19 20 21 22
5.0	5.1 5.2 5.3 5.4	Soil Hydraulic Properties	27 28 28
6.0		LONG-TERM REPORTING AND INTEGRATION WITH COMPLEMENTARY CONDITIONS	. 30
7.0		REFERENCES	.31

LIST OF TABLES

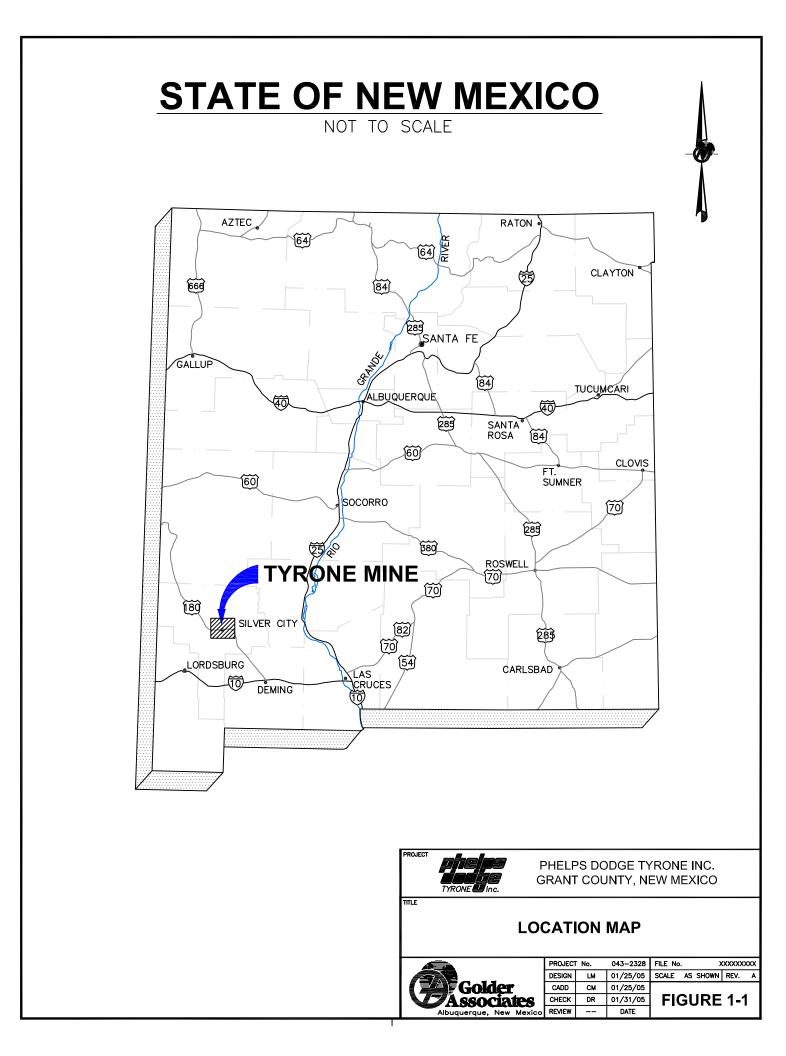
Tabl	e Page
2-1	Summary of LAI Values and Canopy Cover from the Tyrone Study Areas9
2-2	Published Values for LAI from Semi-Arid Plant Communities in the Wesern United States 10
3-1	Test Pit Site Descriptions
3-2	Summary of Root Density Data from the Tyrone Study Area14
3-3	RLD Coefficients and Root Zone Quartile Functions for Tyrone and other areas
4-1	Existing Data for Gila Conglomerate and Leached Cap Material at Tyrone Mine
4-2	Soil-Hydraulic Characterization Methods
4-3	Soil Hydraulic Properties for Tyrone Soils and Gila Conglomerate
4-4	Calculated and Predicted Hydraulic Properties for Tyrone Soils and Gila Conglomerate
5-1	Simulated Drainage and Runoff of Various Cover Depths for Tyrone Stockpiles and Tailing . 29

LIST OF FIGURES

Figu	re	Page
1-1	Location Map	2
2-1	CCPE Study Areas and Soil-Vegetation Associations, Mangus Valley, Tyrone Mine	6
2-2	Leaf Area Distribution Curves for Tyrone Mine	11
3-1	Root Density Sampling Grid on the Pit Face at Site RS-1	13
3-2	Average Cumulative Root Density Profiles for the Tyrone Study Area	15
3-3	Comparison of Regional RLD Functions and those used at Tyrone	17
4-1	Correlation of Clay Content and Saturation Percentage for Soils at Tyrone	20
5-1	Precipitation 1897-1999, Fort Bayard, New Mexico	27

LIST OF APPENDICES

Appendix A	Leaf Area Sample Sites, Photographs And Field Data
Appendix B	Root Density Data
Appendix C	Cover Material Characterization Data
Appendix D	UNSAT-H Input Parameters and Annual Output Summary


1.0 INTRODUCTION

The Tyrone Mine is an open pit copper mine and solution extraction-electrowinning (SX/EW) facility near Silver City, New Mexico (Figure 1). Phelps Dodge Tyrone Inc. (Tyrone) is evaluating reclamation options with respect to meeting pertinent applicable requirements of the New Mexico Water Quality Control Act (WQA), the Water Quality Control Commission (WQCC) Regulations, and the New Mexico Mining Act. Tyrone is permitted as an existing mine (No. GR010RE) with the New Mexico Mining and Minerals Division (MMD).

Golder Associates Inc. (Golder) conducted studies to address requirements of Condition 75 of the Supplemental Discharge Permit for Closure, DP-1341 and Paragraph 31 of the Discharge Permit DP-27 Settlement Agreement (NMED, 2003a and 2003b). In addition, these studies provide information relevant to closeout issues regulated by the MMD. Condition 75 of DP-1341 and Condition 31 of the DP-27 Settlement Agreement require the completion of a Comprehensive Cover Performance Evaluation (CCPE) for the Tyrone Mine. As indicated in DP-1341, the purpose of the CCPE is to:

"...evaluate the type and thickness of the proposed cover materials and to further characterize the physical and hydraulic properties of the proposed cover materials for the Leach Ore Stockpiles and Waste Rock Piles. The study shall be designed to determine whether the cover described in this Supplemental Discharge Permit and/or alternative cover systems will ensure that the requirements of the WQA and WQCC Regulations are met. The study shall include an evaluation of the feasibility of limiting infiltration through the required covers or alternative covers to Ipercent or less of mean annual precipitation in conjunction with the study required in Condition 89. The evaluation shall include, at a minimum, a prediction of post-closure impacts of Leach Ore Stockpile and Waste Rock Pile seepage to ground water quality based on a calibrated soil atmosphere model, calibrated ground water flow model(s), and geochemical modeling."

Condition 31 of DP-27 requires that Tyrone "evaluate the type and thickness of proposed cover materials and to further characterize the physical and hydraulic properties of the proposed cover materials for the [Mangas Valley] tailing impoundments" (NMED 2003b). In addition, Condition 79 of DP-1341 requires Tyrone to revise the borrow source materials investigation for the Leach Ore Stockpiles and Waste Rock Piles "to consider the data needs for the cover performance evaluation in Condition 75." These evaluations are linked to the feasibility study under Condition 89 of DP-1341 to predict post-closure impacts of leach ore, waste rock or tailing seepage to ground water quality

based on a calibrated soil-atmosphere model. Thus, common data requirements for the soilatmosphere model, particularly key model-input parameters associated with plants, will be collected and integrated to meet the requirements of these various permit conditions.

According to Condition 17 of DP-1341, the proposed cover for the waste rock piles and leach ore stockpiles is a store-and-release type that consists of a minimum of 36 inches of alluvium (e.g. Gila Conglomerate) or other non-acid generating materials approved by NMED. According to the Condition 23 of the DP-27 Settlement Agreement, the cover for the Mangas Valley Tailing Impoundments is a store and release cover system, consisting of a minimum of 24 inches of alluvium (e.g., Gila Conglomerate Formation) or other non-acid generating material approved by NMED. Based on the results of the CCPE and other applicable studies, alternative cover designs may be proposed if the performance of the alternative cover is equivalent to the proposed cover. Alternative covers being evaluated by PDTI include 24- and 48-inch thick store-and-release covers for the Waste Rock Piles and Leach Ore Stockpiles, and 18-, 36-, and 48-inch thick store-and-release covers for the tailing impoundments. The covers will be composed of earthen materials from nearby Gila Conglomerate, overburden, leach cap oxide materials from the Little Rock project and the Copper Mountain Pit expansion, as well as local alluvial materials.

1.1 Goals

Ultimately, the CCPE will use information generated in association with Conditions 76 (Cover, Erosion, and Revegetation Test Plot Study), 79 (Borrow Source Material Investigation), and 89 (Feasibility Study) of DP-1341, Condition 29 of the DP-27 Settlement Agreement, and other studies to complete a comprehensive evaluation of the effectiveness of the cover designs. The studies and assessments in Conditions 75, 76 and 89 of DP-1341, and Condition 29 of the DP-27 Settlement Agreement are intricately interrelated in the closure planning process as discussed in more detail in Section 6. In the near-term, the results of the CCPE will be used to support studies required in Condition 76 of DP-1341 (NMED 2003a) and Condition 29 of the DP-27 Settlement Agreement (NMED 2003b).

The primary emphasis of this report is to validate the input parameters that have been used in the water-balance models for the Tyrone Mine (DBS&A 1999a). Thus, information was collected on the physical and hydraulic characteristics of the cover materials and leaf area indices and root distributions of the native plants within the reference areas at Tyrone. The period of record for the climatic simulations was expanded from 10 to 100 years to include increased variability and more normal conditions than the initial assessments. More specifically, the CCOE efforts include:

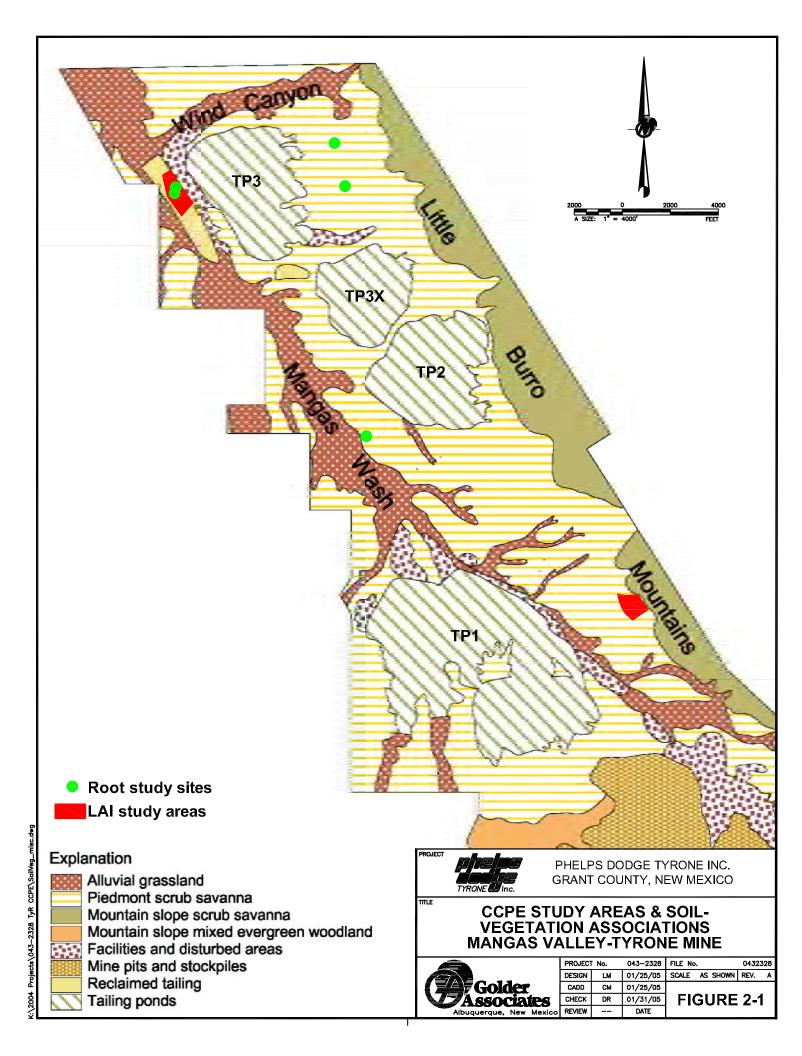
Golder Associates

- 1) Refined the leaf area index (LAI) functions used in the soil-atmosphere modeling based on data collected during field studies (Section 2)
- 2) Refined the root length density (RLD) functions used ion the soil-atmosphere modeling based on data collected during field studies (Section 3)
- 3) Compiled and reviewed existing cover materials characterization data (Section 4)
- 4) Performed long-term (100-year) UNSAT-H simulations incorporating the revised LAI and RLD functions (Section 5)

Section 6 provides a strategy for the integration of the CCPE information with related permit conditions required by the MMD and NMED.

2.0 LEAF AREA INDEX

Plant leaves and other photosynthetic organs serve to collect solar energy and exchange gases, transferring energy between plant canopies and the atmosphere. Transpiration, the movement of water from a plant to the atmosphere, is a passive process where atmospheric demand created at the leaf surface provides the energy needed to extract water from the soil. When a plant canopy is actively growing, transpiration is usually the dominant means of water loss from the soil profile (Hillel, 1998).


Leaf area index (LAI) is a key component in quantifying the transfer of energy in soil-water balance models. LAI is defined as the one-sided green foliage area-per-ground area (Scurlock et al., 2001; Campbell and Norman, 1998). It may be measured and/or described on a species or plant community basis. The LAI distribution describes the ratio of leaf surface area to the soil surface that the leaves cover throughout the year.

UNSAT-H can use daily LAI values to simulate changes in active photosynthetic tissue throughout the year. This investigation sought to determine the maximum leaf area that corresponds to the highest transpiration capacity of the reclaimed plant community.

2.1 Field Methods

Leaf area data were derived from the native piedmont scrub savanna plant community in the approved Tyrone Reference Area and a 20 year-old revegetated area on the South Main tailing repository (Figure 2-1). These areas were selected because the vegetation best represents the expected reclaimed shrub/grass plant community in the post-closure period.

A systematic random sampling procedure employing a transect/quadrat system was used to select sample sites within the two study areas. A 50 ft² grid was imposed over each study area to delineate vegetation sample plots and random coordinates were used to select plots for vegetation sampling (Appendix A). Originating from the southeast corner of the selected vegetation plot, a 30 m transect in a dog-leg pattern was established (DBS&A, 1999b). Two to four 0.25 m² quadrats were placed at predetermined intervals along the transect for quantitative vegetation measurements and plant tissue collection. A total of 8 plots (32 quadrats) were sampled in the Tyrone reference area and 7 plots (16 quadrats) were sampled at the tailing repository. Measured soil depths in the repository sampling area ranged from 15 to 25 inches.

Field work was conducted at the end of the growing season, but prior to the first killing frost (October 2004). Quantitative vegetation data (e.g. canopy cover, basal cover, and frequency) were collected using the methods approved by the MMD. Plant frequency was determined on a species-basis by counting the number of individual plants in the quadrat. Relative and total canopy cover, basal cover, surface litter, rock fragments and bare soil were visually estimated. Percent area cards were used to increase the accuracy and consistency of the cover estimates. In this study, canopy cover was defined as the percentage of the quadrat area included in the vertical projection of the canopy. The canopy cover estimates included the foliage and foliage interspaces of all the individuals rooted in the quadrat. The canopy cover estimates made on a species basis represent relative canopy cover and the sum of the total canopy cover, surface litter, rock fragments and bare soil and did not exceed 100 percent. Basal cover was defined as the portion of the ground occupied by the crowns of grasses and rooted stems of forbs and shrubs. In addition, basal cover estimates were made for surface litter, rock fragments and bare soil. Like total cover estimates, the sum of the basal cover estimates was 100 percent.

Following the estimation of vegetation parameters, each species in the vertical projection of the quadrat was clipped to within about 0.5 cm of the ground surface and placed into separate plastic bags. In cases where indvidual plant species in a quadrat contributed less the 0.1 percent basal cover they were grouped by form (e.g., forbs) and placed into a single bag. Bags were kept cool and out of the sun to maintain freshness until they could be transferred to a refrigerator. Field sheets and photographs of the sampling sites are provided in Appendix A.

2.2 Laboratory Analysis

Within one week of collection, all plant samples were removed from the bags and pressed to preserve the plant materials. After drying, a botanist separated photosynthetic (leaves) and nonphotsynthetic tissues (e.g., stems and flowers). In addition, decadent leaf tissue representing last years growth was removed from the samples. The remaining leaf materials were then arranged on white paper to minimize overlap.

Black-and-white digital images were taken of each sample. Each picture was backlit to reduce shadows and glare, providing a clear image for digital analysis. Round 1.83 cm² and square 7.5 cm² standard scales were photograph with each plant sample to allow estimation of error due to lens distortion and camera angle.

Digital photos were processed using Paint Shop Pro 9.0 (Jasc Software) to improve contrast using a standardize script and to reduce photos to a representative two-color (1-bit) bitmap image. For each bitmap image, the number of pixels corresponding to the standard scales and leaf area were

Golder Associates

determined using the software's histogram function. A LAI value was then calculated for each sample and totaled for each quadrat.

2.3 Results

The UNSAT-H conceptual model for transpiration relies on an estimate of potential evapotranspiration (PET) that is calculated from meteorological data. The model applies a userdefined annual distribution of LAI to modify the potential rate of transpiration during the simulation and partition the removal of water by transpiring plants and/or vapor diffusion (Fayer, 2000). For each day in the model domain, the transpiration rate is applied to specific depths in the soil profile based on the fraction of roots described by the RLD equation (Section 3). Accordingly, more water is extracted from the soil profile as leaf area increases. Thus, understanding the extent and seasonal distribution of leaf area is important for validating the LAI function used in the soil-atmosphere model applied at Tyrone.

2.3.1 Peak LAI

Peak LAI values were calculated by averaging individual quadrat LAI for each study area (Table 2-1). The reclaimed plant community at the tailing repository had an average LAI of 0.29 and the native vegetation in the reference area had an average LAI of 0.42. Overall, LAI ranged from 0.11 to 0.56 for the reclaimed plant community and between 0.13 to 1.23 in the reference area. The generally higher individual and and average LAI values in the reference area result because shrubs were encountered more often than in the repository sample plots. While there was little difference in average canopy cover between reference and repository sites (Table 2-1); shrub densities were higher in the reference area. Quadrats with shrubs typically had LAI values greater than 0.5, which tended to increase the average values in the reference area. Shrubs occur on the repository but none were encountered in the sample quadrats.

The LAI estimates for Tyrone are generally consistent with published LAI values for similar plant communities (Table 2-2). Higher values in some of the other studies probably reflect the use of light interception measurement techniques, which tend to include non-photosynthetic plant organs (stems) in their estimate of LAI. Additionally, much of the current regional research is part of large-scale remote sensing studies that attempt to correlate satellite absorption and reflectance data with radiation measurements in the field.

Within the context of this study, LAI estimates may be affected by a number of factors. Sample preparation and pressing ultimately resulted in leaf overlap, dessication, and folding. Leaf overlap in the digital images resulted in 10 to 20 percent relative error, particularly in large samples. The

Golder Associates

overlap and inreference of leaves resulting in underestimating leaf area and was most pronounced in the higher leaf area samples. No corrections were applied to account for the shrinkage and folding (curling of cylindrical leaves). Many plants have other herbaceous photosynthetic tissues (e.g. green twigs; grass stems) that have the capacity to transpire water vapor, but we excluded these in the interest of conservatism. These factors likely reduced the total leaf area to varying degree depending on the species and size of sample. Despite near normal precipitation at Tyrone in 2004, the region has been subject to a prolonged drought for the past 5 years. Thus, the plant communities we measured may not fully reflect the long-term average condition in the area.

For both study areas, average LAI was lower than the original estimate of 0.5 used in previous water balance simulations. The LAI estimates presented here may be modified upon further review of technical information associated with other regional studies, closer examination of the Tyrone's leaf area datasets, and the completion of the LAI dataset being developed for Chino Mines Company as part of Contion 81, DP-1340 (NMED 2003c).

Study Area		I	LAI		Ca	nopy Co	ver % (C	CC)	
/Plot	Quadrat				Quadrat				
/1 101	Α	В	С	D	Α	В	С	D	
Tailing Report	sitory l	Exclusior	n Area (E	LA)					
1	0.11	ns	0.18	ns	13	ns	23	ns	
2	0.37	ns	0.32	0.51	27	ns	39	47	
3	0.25	ns	0.32	ns	25	ns	29	ns	
4	0.11	ns	0.12	0.48	22	ns	16	80	
5	0.34	ns	0.33	ns	90	ns	66	ns	
6	0.13	ns	0.20	ns	18	ns	20	ns	
7	0.56	ns	^a	ns	85	ns	16	ns	
Av	erage l	LAI 0.29	± 0.15		Av	erage CC	38.4 ± 2	6.7	
Tyrone Refer	ence A	rea (TR)							
1	0.13	0.20	0.12	0.89	6	49	14	97	
2	0.50	0.32	0.37	0.72	35	30	25	28	
3	0.20	1.23	0.65	0.32	8	100	100	15	
4	1.23	0.40	0.33	0.54	85	30	28	95	
5	0.46	0.40	0.17	0.32	43	62	15	24	
6	0.47	0.20	0.29	0.30	38	20	25	37	
7	0.46	0.28	0.38	0.27	40	27	38	25	
8	0.45	0.20	0.28	0.33	82	30	33	37	
Av	LAI 0.42	± 0.27	Av	erage CC	41.3 ± 1	6.5			

TABLE 2-1 SUMMARY OF LAI VALUES AND CANOPY COVER FROM THE TYRONE STUDY AREAS.

^a sample incomplete

ns - not sampled

TABLE 2-2							
PUBLISHED VALUES FOR LAI FROM SEMI-ARID PLANT COMMUNITIES							
IN THE WESERN UNITED STATES.							

Plant Community	Dominant Species	LAI	State	Method	Source
Peidmont scrub savanna	Bouteloua/Hilaria/Aristida	0.13- 1.23	New Mexico	direct	Tyrone Study
Reclaimed grassland	Bouteloua spp. Aristida spp.	0.11- 0.56	New Mexico	direct	Tyrone Study
Shrub steppe	Larrea tidentata Bouteloua eriopoda	0.8-1.9	New Mexico	allometry	Asner, 1998
Desert grassland	Bouteloua eripoda	0.8-3.8	New Mexico	NA	Asner, 1998
Desert shrubland	Prosopis glandulosa	0.9-3.9	New Mexico	NA	Asner, 1998
Sub-tropical savanna	Aristida/ Stipa/ Bouteloua	0.8-4.7	Texas	NA	Asner, 1998
Desert scrub	Carnegiea/Cercidium/Prosopis Muhlenbergia/Arisitida	0.93	Arizona	light meter	Whittaker and Niering, 1975
Open oak woodland	Quercus Muhlenbergia/Bouteloua/Aristida	1.76	Arizona	light meter	Whittaker and Niering, 1975
Desert grassland	Bouteloua curtipendula	1.58	Arizona	light meter	Whittaker and Niering, 1975
Wyoming big sagebrush	Artemesia tridentata Agropyron/Poa	0.13- 0.34	Idaho	point	Clark and Seyfried 2001
Low sagebrush	Artemesia arbuscula Poa secunda	0.03- 0.53	Idaho	point	Clark and Seyfried 2001
Mountain big sagebrush	Artemesia tridentata Bromus marginatus	0.43- 1.10	Idaho	point	Clark and Seyfried 2001
Tallgrass prairie	NA	3.2	Kansas	NA	Lapitan and Parton 1996
Grass steppe	NA	0.5	Colorado	light meter	Welles and Norman 1991

2.3.2 LAI Distribution

The annual LAI distribution function used in previous modeling at Tyrone was revised to incorporate the measured peak LAI values developed herein (Figure 2-2). Winter LAI remained near zero when plants are essentially dormant. The specified plant growth season begins in March when the average temperature climbs over 40°F. The abrupt increase in July corresponds to the typical arrival of the summer monsoons and associated thunderstorms. The growing period then extends into early October when the average temperatures begin to fall below 40°F.

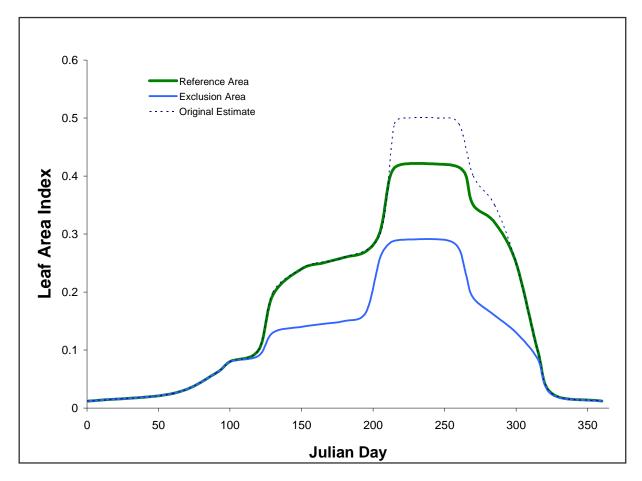


Figure 2-2. Leaf Area Distribution Curves for Tyrone Mine.

3.0 ROOT LENGTH DENSITY

Water is removed from the soil through the processes of evaporation and transpiration. Evaporation alone is relatively inefficient and can only remove water from comparatively shallow depths (2 to 3 feet) in well-drained soils. Transpiration increases the efficiency of water removal allowing more complete and deeper extraction of soil water. Because water movement by capillarity is limited in unsaturated soils, knowing the distribution of roots in the soil is important for predicting soil-water relations.

From a plant perspective, transpiration is passive with the energy supplied by the atmospheric demand created at the leaf surface. Plants roots constitute the interface between the soil, plant, and atmosphere. The atmospheric demand created at the leaf surface provides the energy needed to extract water. Water moves through the soil as a liquid and as vapor to root hairs, across into cells and up the xylem to stomatal openings on the leaf surface where it is evaporated. Negative pressures in the stem xylem may reach -20 bars at wilting point for agricultural crops, while desert plant may exist with potentials of -20 to -80 bars (Brady, 1974).

3.1 Methods

Root density was determined using the profile wall method, whereby the roots are counted to determine density (Moore and West, 1973, Böhm, 1979, Heitschmidt et al., 1988; Mackie-Dawson and Atkinson 1991; and Montaña et al., 1995). Trench locations were selected to represent grass/shrub plant communities, which are expected to be representative of the vegetation in the post-closure period. Three trenches were excavated in the piedmont scrub savanna plant community and two trenches were excavated in the revegetated plant communities in the South Main tailing repository (Fig. 2-1).

T-shaped trenches were excavated at all locations, except the hillside site (RS-1). After excavation, the soils were described by a Certified Professional Soil Scientist. The vertical pit wall was gently cleaned with a soft brush to expose the roots to a depth of about 1 to 1.5 meters. A 1 m² wire frame divided into a 10 cm² grid was then attached to the pit face and the roots within each grid cell were counted and classified by size (Fig. 3-1). The USDA system for describing roots was used to classify roots by size (Soil Survey Staff, 1983). The classes are: very fine (< 1 mm), fine (1 – 2 mm), medium (2 – 5 mm), coarse (5 – 10 mm), and very coarse (> 10 mm). The distribution of roots was mapped on field sheets. Roots counts were made on 13, 1-m² profiles at five separate sites. Three faces of the T-trench were evaluated at all sites, except the hillslope site where only one face was evaluated. Plant

canopy cover within a foot (horizontal) of the trench was estimated. Generalized soil profile descriptions are included Appendix B.

Figure 3-1. Root density sampling grid on the pit face at Site RS-1. Note: CaCO₃ accumulations (white masses) in the soil profile starting at 50 to 60 cm.

3.2 Results and Discussion

UNSAT-H applies a user-defined RLD function to allocate water removal from each node of the model domain (Fayer, 2000). For each node in the model domain, the transpiration demand is calculated as the fractional equivalent to the RLD of the node divided by the total root length in the profile. Accordingly, more water is extracted from zones with greater concentrations of roots. Thus, understanding the distribution of roots is important for validating the RLD function used in the soil-atmosphere model applied at Tyrone.

3.2.1 Root Distribution

Characteristics of each of the root density study sites are listed in Table 3-1. In general, the soils were moderately deep to deep, well drained, and had moderately coarse textured surface horizons. The slopes were mostly nearly level to gently sloping, but one site was strongly sloping. Canopy cover ranged from 35 to 50 percent and vegetation immediately adjacent to the pit walls was dominantly grasses [i.e., blue grama (*Bouteloua gracilis*) and vine mesquite (*Hilaria belangeri*)] with scattered shrubs and forbs. As expected, the root densities are higher in the native soils compared to the

repository sites (Table 3-1). The lower root density in the repositories soils when compared to the native sites is expected based on the lower leaf area measurements (Section 2).

Trench No.	Surface Texture	Soil Depth (cm)	Slope (percent)	Canopy Cover (percent)	Dominant Vegetation	Average Root Density (roots/m ²)
RS1- Native	Gr SL	150 +	31	40	BOGR	2,389
RS2-Native	Gr SL	125+	7	35 to 40	BOGR-HIBE	1,049
RS3-Repository	Gr SL	86	2	30 to 35	BOGR	1,009
RS4-Repository	Gr SL	100	1	25 to 50	BOGR-ARSC	714
RS5-Native	Gr SL	125+	9	25 to 35	BOGR	1,844

TABLE 3-1TEST PIT SITE DESCRIPTIONS

Notes: Gr SL gravelly sandy loam

BOGR = Bouteloua gracilis; HIBE = Hilaria Belangeri ARSC = Aristida schiedeana

Regardless of sampling location (native or reclaimed), the roots were concentrated in the upper portions of the profile (Table 3-2). On average, 66 percent of the roots were in the upper 20 cm of the profile with more than 90 percent were in the upper 60 cm (2 feet). Figure 3-2 illustrates the average cumulative profile root distribution for both the native and reclaimed areas, and the average for the study area. Although they vary in magnitude, the shape of the curves are similar for both the native and reclaimed areas. The roots for both native and reclaimed areas were mostly very fine (< 1 mm); occasionally fine (1 to 2mm); and rarely medium and coarse (2 to 10 mm) reflecting the dominance of grasses. Data summaries for each sampling site are included in Appendix B.

SUMMARY OF ROOT DENSITY DATA FROM THE TYRONE STUDY AREA.							
Depth	Average l	Root Density (r	Study Area Cumulative				
Interval (cm)	Native	Repository	Average	Average Root Density (percent)			
0 - 10	61.2	40.5	51.7	41			
10 - 20	32.7	16.8	25.4	62			
20-30	24.1	9.1	17.1	75			
30-40	14.5	5.5	10.4	84			
40 - 50	8.4	4.7	6.7	89			
50-60	5.0	3.3	4.2	92			
60 - 70	4.5	2.8	3.7	95			
70 - 80	3.1	2.2	2.7	98			
80 - 90	2.4	0.9	1.7	99			
90 - 100	2.3	0.4	1.5	100			

 TABLE 3-2

 SUMMARY OF ROOT DENSITY DATA FROM THE TYRONE STUDY AREA.

These data are consistent with the analysis of root distributions for terrestrial biomes throughout the world (Lee and Lauenroth, 1994; Moorhead et al., 1989; Rundel and Nobel, 1991; Schulze et al., 1996; and Sims and Singh, 1978). Jackson et al. (1996) reviewed 80 root studies to construct a database describing root density, cumulative root biomass, and cumulative root fraction. They indicated that the percentage of roots in the upper 30 cm of soil ranged from 83 percent in temperate grasslands to 53 percent in deserts.

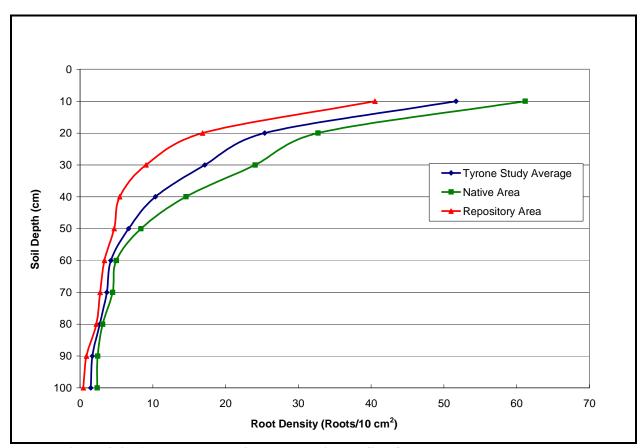


Figure 3-2. Average cumulative root density profiles for the Tyrone study area.

3.2.2 RLD Function

The RLD function used in previous modeling efforts at Tyrone was intended to emulate a 40-30-20-10 quartile root distribution, which is commonly assumed to occur in agricultural contexts (Ayers and Westcot, 1985; DBS&A, 1999a). In UNSAT-H, RLD is related to the depth below the surface (z) by the exponential equation:

$$RLD = ae^{-bz} + c$$

Where a, b, and c are coefficients that optimize the fit to normalized root density data (Fayer, 2000). The coefficients that best describe the average root density for the Tyrone study area are: a = 0.700, b = 0.060, c = 0.016. Table 3-3 lists RLD coefficients and root zone quartile functions for this and

other studies. The coefficients determined for the 25^{th} percentile (less roots in upper profile are: a = 0.700, b = 0.080, c = 0.007; and for the 75^{th} percentile (more roots in upper profile) are: a = 0.910, b = 0.068, and c = 0.040.

Study Reference		RLD Coefficio	Root Zone	
Study Kelerence	Α	b	с	Quartile Function
DBS&A (1999a)	0.250	0.030	0.001	40-30-20-10
Tyrone Study (this report)	0.700	0.060	0.016	69-20-7-4
Sandia National Lab ^a	0.509	0.063	0.026	63-24-11-2
Temperate Grassland ^b	NA	NA	NA	83-14-2-1
Desert ^b	NA	NA	NA	59-19-12-10
Cheatgrass ^c	1.163	0.129	0.020	85-10-4-1

TABLE 3-3 RLD COEFFICIENTS AND ROOT ZONE QUARTILE FUNCTIONS FOR TYRONE AND OTHER AREAS

Notes: a =from Peace et al. (2004)

b =from Jackson et al. (1996)

c =from Cline et al. (1977)

The root density curve for Tyrone is illustrated in Figure 3-3. For purposes of comparison, the RLD function used in previous modeling efforts at Tyrone (DBS&A, 1999a), and the curve developed at Sandia National Labs in Albuquerque (Peace et al., 2004) are also presented. The Tyrone and Sandia National Labs curves represent relatively higher proportions of the roots in the upper profile when compared to the function originally used for Tyrone. This result is expected since the original RLD function was estimated based on 40-30-20-10 root distribution commonly assumed for agricultural systems (Ayers and Westcot, 1985). Supply limitations associated with the prevailing climatic regime of the mid-elevations in New Mexico result in the concentration of roots in the upper part of the soil profile.

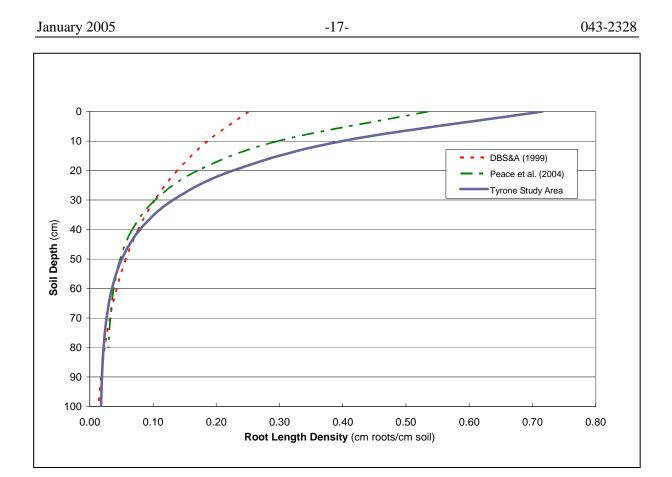


Figure 3-3. Comparison of regional RLD functions and those used at Tyrone.

4.0 COVER MATERIAL CHARACTERIZATION

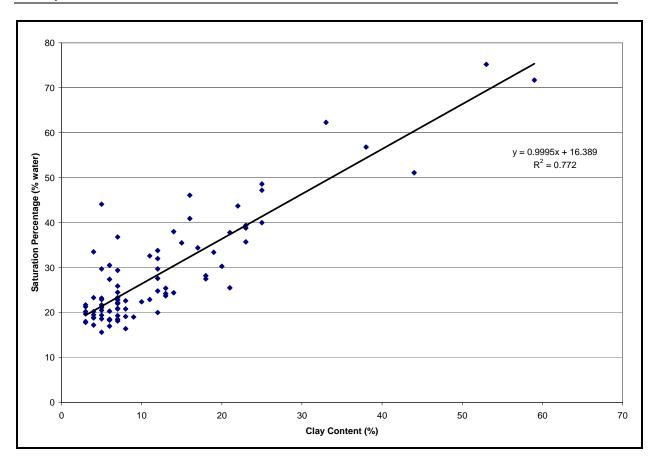
Potential cover materials identified at Tyrone include native soils, recent alluvium, native Gila Conglomerate, Gila Conglomerate in the No. 1D stockpile, and leach cap oxide materials from the Little Rock Project and the Copper Mountain Pit expansion. The characteristics and suitability of these potential cover materials have been previously evaluated in the Borrow Materials Investigation (BMI) (DBS&A, 1997a), Soil and Rock Suitability Assessment (DBS&A, 1997b), Supplemental Materials Characterization study (DBS&A, 1997b), and Little Rock Mine Cover Design Report and Test Plot Work Plan (Golder, 2004). Table 4-1 summarizes the kind and number of samples and the types of analyses conducted for past closure studies. The soil analyses were conducted using standard methods which are consistent with the 1996 MMD Draft Closeout Plan Guidelines (MMD, 1996).

LEACHED CAP MATERIAL AT TYRONE MINE.						
Material/Report	No. of Samples	Analytical Data				
Gila Conglomerate						
CCP, Soil and Rock Suitability, Appendix C (DBS&A, 1997c)	14	paste pH, EC, major cations, SAR, Se, B, CaCO ₃ , saturation percent, particle size, rock fragments, ABA, Atterberg Limits, Standard Proctor Compaction Test				
Cover Design Status Report (DBS&A, 1999a)	11	particle size, rock fragments, K_{sat} , volumetric water content, available water capacity, unsaturated hydraulic properties				
PMC (DBS&A, 1997a)	6	ABA, paste pH, whole rock metal analyses (11 metals), SPLP Extract (2 samples), X-ray diffraction including clay mineralogy (3 samples)				
Leached Cap Materials						
Copper Mountain Stockpile Reclamation (PDTI, 2002)	7	paste pH, EC, saturation percent, particle size, rock fragments, phosphorous, nitrate				
PMC (DBS&A, 1997a)	9	ABA, paste pH, whole rock metal analyses (11 metals), SPLP Extract (1 sample), Petrographic analysis (2 samples), X-ray diffraction (2 samples)				
SMC (DBS&A, 1997b)	10	ABA, paste pH, whole rock metal analyses (20 metals), SPLP Extract (2 samples), X-ray diffraction (2 samples)				
Little Rock Cover Design Report and Test Plot Work Plan (Golder, 2004)	15	paste pH, EC, saturation percent, particle size, rock fragments, phosphorous, nitrate				

TABLE 4-1 EXISTING DATA FOR GILA CONGLOMERATE AND LEACHED CAP MATERIAL AT TYRONE MINE.

The soils that will be used to cover the stockpiles and tailing impoundments will be excavated from numerous locations on the mine property. Additional materials characterization is planned as part of

the test plot program and the Supplemental Borrow Materials Investigation as required in Conditions 76 and 79 (DP-1341) and the MMD permit. Volumetric estimates of available materials will be developed as part of Condition 79. The intent of this section is to compile the existing data and summarize the characteristics of these materials. Chemical and physical properties are discussed in Section 4.1 and soil hydraulic properties in Section 4.2.


4.1 Chemical and Physical Properties

The chemical and physical properties of the Gila Conglomerate and associated soils, and the leached cap materials are discussed in this section. The data from the existing studies are compiled in Appendix C. The Gila Conglomerate and associated soils are discussed in Section 4.1.1 and leach cap materials are discussed in Section 4.1.2.

4.1.1 Gila Conglomerate and Associated Soils

Detailed soil surveys conducted in and around the Tyrone Mine indicated that significant volumes of primary and secondary root zone materials exist at Tyrone. The primary root zone materials have few or no inherent limitations for supporting native and adapted plant species. From a plant growth and erosion protection perspective, the best available materials for cover construction are moderately coarse- to medium-textured soils with moderate rock fragment contents.

Physically, the fine-earth fraction (i.e., < 2mm) of the Gila Conglomerate and associated soils are dominantly moderately coarse-textured and mainly represented by loamy sand and sandy loam textures (Appendix C). Fine-, moderately fine-, and coarse-textured soils occur locally. In general, the coarse-textured soils are more prevalent in and around the mine area, and the finer textured soils tend to occur on the flanks of the Little Burro Mountains east of the tailing ponds. The soils around Tyrone typically contain about 30 to 50 percent rock fragments (> 2 mm diameter) by volume, generally ranging from 0 to 75 percent. Saturation percentages for the soils generally range from 18 to 75 percent and are well correlated with clay content, suggesting a fairly consistent mineralogical regime (Figure 4-1).

Figure 4-1. Correlation of clay content and saturation percentage for soils at Tyrone.

Chemically, the Gila Conglomerate and associated soils have few inherent limitations. The pH of the soils range from about 5.0 to 7.8 and the salinity levels are low (0.2 to 3.8 ds/m). These materials are universally nonsodic and have favorable calcium to magnesium ratios. The soluble selenium and boron levels are low. The materials range from noncalcareous to calcareous and contain 0.5 to 9.2 percent CaCO₃ equivalent. The highest levels of CaCO₃ are found in the subsurface of the soils in the Mangas Valley. Additional testing of the Gila Conglomerate on the 5A stockpile is planned as part of the supplemental materials characterization study (Condition 79) and will be incorporated into the database as soon as they become available.

4.1.2 Leached Cap Materials

Leached cap materials may be used as cover in some portions of the mine. Leached cap is overburden that is available at the Little Rock Mine and Copper Mountain Pit expansion areas and consists predominantly of materials classified as Mineral Assemblage 1 (MA-1) at the mine. Overall, it is a net-neutralizing material that is non-acid-generating (DBS&A, 1997a). Results from the Supplemental Materials Characterization (SMC) indicate that MA-1 exhibits ABA's that are evenly

distributed around a neutral ABA (DBS&A, 1997b). For instance, 10 of the 19 MA-1 samples collected as part of the SMC were positive and 9 were negative, with values ranging between +23.7 and -38.8 tons CaCO₃ per 1,000 tons rock (average ABA -1.51 t/kt). Paste pH values of these materials ranged from 5.0 to 8.4, with an average of approximately 6.9 (DBS&A, 1997b).

ABA analyses were also performed on pulp samples from four exploration drill holes in the Copper Mountain pit expansion area and on representative samples of the mined material as part of the Plan of Operation for the Copper Mountain Mine Expansion Project (PDTI, 2003). All of the oxide material (MA-1) types that were analyzed showed a strong net acid neutralizing potential (ANP) with a ratio of ANP to AGP of well over 3, except for one sample, which did not have any measurable acid-generating potential. ABA values ranged from zero (a sample with no AGP or ANP detected) to 46.7 t/kt and tended to become more positive with depth. These results suggest that these materials are strongly net-neutralizing and may be used as cover. Summary data for these materials are provided in Appendix C

Laboratory analyses indicate that the overburden at Little Rock is relatively uniform in nature (Appendix C) and has few apparent limitations as a plant growth media when compared to the native soils. Chemically, the overburden does not vary significantly and is comparable to the native soils. There are no apparent chemical limitations with respect to salinity in either the overburden or the native soils and the pH and extractable nitrate concentrations occur at similar levels in both materials. The overburden is moderately coarse-textured (e.g., sandy loams) and contains moderate volumes of rock fragments. The native soils exhibited similar characteristics and are moderately coarse-textured with moderate amounts of rock fragments (PDTI, 2000). Thus, the overburden at the Little Rock Mine is considered to be a reasonable soil substitute relative to the native soils in the permit area.

4.2 Soil Hydraulic Properties

Infiltration, redistribution, and drainage of water are dependant on soil hydraulic properties, which UNSAT-H describes using mathematical functions. Key input parameters include saturated hydraulic conductivity (K_{sat}), van Genuchten coefficients, and water characteristic functions. The hydraulic properties analyzed for and the associated studies test methods are presented in Table 4-2. The van Genutchen coefficients, used to relate wetness to matric suction and hydraulic conductivity, were developed using measured data and the RETC model (van Genutchen et al., 1991). The residual water content (θ_r) and saturated water content (θ_s) are empirical constants. Residual water is defined as the water that will not contribute to liquid flow either because of strong adsorption or the pores are unconnected. Saturated water represents the maximum water content in the field.

4.2.1 Soil-Moisture Retention Characteristics

Soil-moisture retention characteristic curves were developed through a combination of hangingcolumn tests and pressure plate tests. The results of these analyses are included in Appendix C and summarized in Table 4-3. These data are presented as moisture contents at various suctions, beginning at a suction of 0 bars (saturated moisture content) and continuing through to a suction of 15 bars. The saturated moisture content of the < 2 mm soil fraction samples ranged between 0.34 and 0.6 cm³/cm³, with an average of approximately 0.43 cm³/cm³. The saturated moisture content of the bulk samples (including the rock fragments) were also estimated using the methods developed by Dunn and Mehuys (1984) and Bouwer and Rice (1984). These results show the saturated moisture content of the bulk samples ranged from 0.13 to 0.59 cm³/cm³, with an average of about 0.28 cm³/cm³. The 15-bar moisture content of the < 2 mm soil fraction samples ranged between 0.03 and 0.22 cm³/cm³, with an average of approximately 0.11 cm³/cm³. The estimated 15-bar moisture content of the bulk samples ranged from 0.02 to 0.15 cm³/cm³, with an average of about 0.07 cm³/cm³.

SOIL-III DRAULIC CHARACTERIZATION METHODS						
Analysis	Method					
Saturated hydraulic conductivity (K _{sat})	ASTM 2434-68					
Moisture retention curves (6 to 9 points)	ASTM D 2325-68 (94)					
Antecedent water content	Gardner (1986)					
Van Genuchten parameters (RETC4)	van Genuchten et al., (1991)					
Rock fragment content	ASTM D 2487-90					
Particle density	Blake and Hartge (1986)					

 TABLE 4-2

 SOIL-HYDRAULIC CHARACTERIZATION METHODS

Based on the test data, soil-moisture characteristic curves were developed and the residual moisture contents and unsaturated hydraulic conductivity (K_{unsat}) relationships (K_{unsat} verses moisture content and K_{unsat} versus suction) of the individual samples were estimated using the methods of van Genuchten (1978; 1980). The calculated van Genuchten parameters (α and N) for the individual samples are also presented in Table 4-3.

4.2.2 Saturated Hydraulic Conductivity

The saturated hydraulic conductivity (K_{sat}) of the <2 mm soil fraction samples was determined by either the constant-head or falling-head method, depending on the clay fraction of the sample being tested. The calculated K_{sat} of the samples ranges from 1.3 x 10⁻⁵ to 5.90 x 10⁻² cm/s (Table 4-4),

						Rock Saturated Hydraulic						Volume	etric Wate	r Content ^c (c	m^3/cm^3)				van Genucł	nen Coefficients
		Particle Size (%)		USDA	Fragments		ivity (cm/s)	$\Theta_{\rm r}$			θs		$\Theta_{1/3}$		Θ_{15}	А	WC	а	Ν	
Sample Name	Type ^a	Sand	Silt	Clay	Class ^b	(Vol %)	<2mm	Whole Soil	<2mm	Corrected	<2mm	Corrected	<2mm	Corrected	<2mm	Corrected	<2mm	Corrected	1/cm	dimensionless
1D-1	GC	87	10	3	S	67	7.30 E-3	1.80 E-3	0.03	0.01	0.43	0.1419	0.17	0.056	0.07	0.023	0.7	0.231	0.113	1.2048
1D-5	GC	84	11	5	LS	67	5.90 E-2	1.46 E-2	0	0	0.53	0.1749	0.16	0.053	0.07	0.023	0.5	0.165	0.0336	1.2993
TP-1 0-2.5	Alluv	26	54	20	SiL	10	3.30 E-5	2.83 E-5	0	0	0.45	0.4050	0.34	0.306	0.17	0.153	0.07	0.063	0.0316	1.448
TP-2 4-13	Alluv	71	22	7	SL	10	5.50 E-4	4.71 E-4	0.03	0.027	0.41	0.3690	0.22	0.198	0.1	0.090	0.11	0.099	0.0295	1.2856
TP-3 1-9	Alluv	77	16	7	LS	10	6.90 E-3	5.91 E-3	0.05	0.0450	0.45	0.4050	0.2	0.180	0.08	0.072	0.1	0.090	0.0191	1.3129
TP-3 9-14	Alluv	49	39	12	L	50	2.90 E-4	1.16 E-4	0.03	0.015	0.49	0.2450	0.27	0.135	0.11	0.055	0.15	0.075	0.0054	1.1698
TP-4 2.5-14	Alluv	48	45	7	L	55	1.60 E-4	5.65 E-5	0.03	0.014	0.34	0.1530	0.21	0.095	0.08	0.036	0.1	0.045	0.0689	1.1933
TP-8 0.1-4.95	GC	37	33	30	CL	37	1.50 E-5	7.97 E-6	0	0	0.46	0.2898	0.4	0.252	0.22	0.139	0.17	0.107	0.2807	1.1958
TP-8 4-12	GC	72	21	7	SL	65	4.20 E-4	1.11 E-4	0	0	0.51	0.1785	0.29	0.102	0.14	0.049	0.12	0.042	0.0612	1.3618
TP-9 4-8	GC	60.1	15	25	SCL	2	2.70 E-3	2.62 E-3	0	0	0.6	0.5880	0.25	0.245	0.12	0.118	0.1	0.098	0.0226	1.2159
TP-10 2-8	GC	54	28	18	SL	25	1.00 E-3	6.67 E-4	0.04	0.030	0.46	0.3450	0.19	0.143	0.08	0.060	0.1	0.075	0.0307	1.1721
TP-10 8-18	GC	52	35	13	L	15	1.30 E-5	1.03 E-5	0	0	0.39	0.3315	0.25	0.213	0.12	0.102	0.12	0.102	0.0267	1.2944
TP-11 4-16	GC	57	20	23	SCL	60	2.50 E-5	7.69 E-6	0	0	0.43	0.1720	0.29	0.116	0.15	0.060	0.13	0.052	0.3936	1.3008
TP-13 2.5-6	Alluv	88	8	4	S	60	5.70 E-3	1.75 E-3	0	0	0.38	0.1520	0.2	0.080	0.07	0.028	0.5	0.200	0.0929	1.2003
TP-13 6-14	Alluv	94	3	3	S	0	4.00 E-3	4.00 E-3	0	0	0.37	0.3700	0.09	0.090	0.03	0.030	0.1	0.100	0.073	1.2983
TP-14 0-20	GC	65.1	18	17	SL	30	5.10 E-4	3.10 E-4	0	0	0.46	0.3220	0.24	0.168	0.11	0.077	0.11	0.077	0.0384	1.1627
TP-17 2-20	GC	76	13	11	SL	13	4.70 E-4	3.84 E-4	0.02	0.0174	0.34	0.2958	0.15	0.131	0.06	0.052	0.7	0.609	0.0309	1.2169
TP-18 2-5	GC	72	7	21	SCL	40	1.00 E-4	5.00 E-5	0	0	0.41	0.2460	0.27	0.162	0.16	0.096	0.1	0.060	0.0271	1.2382
TP-19 2-11	Alluv	66	22	12	SL	5	4.90 E-4	4.54 E-4	0	0	0.37	0.3515	0.23	0.219	0.1	0.095	0.11	0.105	0.0638	1.3356
TP-21 5-14	Alluv	52	42	6	SL	67	1.70 E-3	4.20 E-4	0	0	0.39	0.1287	0.24	0.079	0.1	0.033	0.13	0.043	1.0855	1.213

TABLE 4-3 SOIL HYDRAULIC PROPERTIES FOR TYRONE SOILS AND GILA CONGLOMERATE (ADAPTED FROM DBS&A, 1997C).

^a GC = Gila Conglomerate Alluv = Alluvium

^b USDA texture class according to Soil Survey Division Staff (1993) ^c Θ_r = residual moisture content

 Θ_s = saturated moisture content

 $\Theta_{1/3} = 1/3$ bar moisture content

 $\Theta_{15}^{15} = 15$ bar moisture content

Corrected = corrected for gravel content

AWC = available water-holding capacity

with a geometric mean of approximately 5.5×10^{-4} cm/s and a standard deviation of 0.013cm/s. The K_{sat} of the bulk samples (including the rock fragments) were also estimated using the methods developed by Dunn and Mehuys (1984) and Bouwer and Rice (1984). These results show the saturated hydraulic conductivities of the bulk samples ranging between 7.69 x 10^{-6} cm/s to 1.46 x 10^{-2} cm/s, with a geometric mean of approximately 2.9 x 10^{-4} cm/s and a standard deviation of 0.003 cm/s. The K_{sat} values obtained from the individual samples are consistent with published values for these material types (loamy sands and sandy loams) (Freeze and Cherry, 1979).

5	
\circ	
Ō	
Ñ	
\geq	
JL.	
ñ	
Ц	
୍ପ	

-25-

TABLE 4-4.	CALCULATED AND PREDICTED HYDRAULIC PROPERTIES FOR	FYRONE SOILS AND GILA CONGLOMERATE (ADAPTED FROM DBS&A, 1997C)
------------	---	---

CALCULATED AND PREDICTED HYDRAULIC PROPERTIES FOR	TYRONE SOILS AND GILA CONGLOMERATE (ADAPTED FROM DBS&A, 1997C)	Volumetrie Weter Content (cm ³ /cm ³)
) AND PREDICTED	GILA CONGLOME	Saturated
ILATEI	S AND	
CALCI	TYRONE SOII	

					Satu	Saturated			Volum	Volumetric Water Content (cm ⁷ /cm ⁷)	r Content	(cm ⁷ /cm ⁷)		
_	Dartic	Particle Size (%)	(%)	TISDA	Hydı	Hydraulic								
Type ^a	T al CI			Class ^b	Condu (cn	Conductivity (cm/s)		$\Theta_{\rm s}$	Ū	$\Theta_{1/3}$	Ŧ	Θ_{15}	V	AWC
	Sand	Silt	Clay		Calc.	Predict	Calc.	Predict	Calc.	Predict	Calc.	Predict	Calc.	Predict
GC	87	10	3	S	7.3 E-3	1.9 E-3	0.43	0.352	0.17	0.136	0.07	0.058	0.7	0.08
GC	84	11	5	LS	5.9 E-2	1.7 E-2	0.53	0.354	0.16	0.141	0.07	0.060	0.5	0.08
Alluv	26	54	20	SiL	3.3 E-5	2.4 E-4	0.45	0.475	0.34	0.282	0.17	0.122	0.07	0.16
Alluv	71	22	L	SL	5.5 E-4	1.1 E-3	0.41	0.383	0.22	0.173	0.1	0.075	0.11	0.10
Alluv	LL	16	7	LS	6.9 E-3	1.1 E-3	0.45	0.379	0.2	0.165	0.08	0.072	0.1	0.09
Alluv	49	39	12	L	2.9 E-4	5.0 E-4	0.49	0.429	0.27	0.227	0.11	0.097	0.15	0.13
Alluv	48	45	7	L	1.6 E-4	8.9 E-4	0.34	0.400	0.21	0.227	0.08	0.084	0.1	0.14
GC	37	33	30	CL	1.5 E-5	8.6 E-5	0.46	0.490	0.4	0.300	0.22	0.169	0.17	0.13
GC	72	21	L	SL	4.2 E-4	1.1 E-3	0.51	0.382	0.29	0.172	0.14	0.074	0.12	0.10
GC	60.1	15	25	SCL	2.7 E-3	1.0 E-4	0.6	0.463	0.25	0.244	0.12	0.150	0.1	0.10
GC	54	28	18	SL	1.0 E-3	2.3 E-4	0.46	0.449	0.19	0.232	0.08	0.119	0.1	0.11
GC	52	35	13	L	1.3 E-5	4.3 E-4	0.39	0.432	0.25	0.224	0.12	0.100	0.12	0.12
GC	57	20	23	SCL	2.5 E-5	1.3 E-4	0.43	0.460	0.29	0.243	0.15	0.141	0.13	0.10
Alluv	88	8	4	S	5.7 E-3	1.9 E-3	0.38	0.352	0.2	0.133	0.07	0.058	0.5	0.07
Alluv	94	3	3	S	4.0 E-3	2.2 E-3	0.37	0.347	0.09	0.122	0.03	0.055	0.1	0.07
GC	65.1	18	17	SL	5.1 E-4	2.5 E-4	0.46	0.437	0.24	0.214	0.11	0.117	0.11	0.10
GC	76	13	11	SL	4.7 E-4	5.9 E-4	0.34	0.405	0.15	0.177	0.06	0.091	0.7	0.09
GC	72	7	21	SCL	1.0 E-4	1.4 E-4	0.41	0.444	0.27	0.218	0.16	0.135	0.1	0.08
Alluv	66	22	12	SL	4.9 E-4	4.9 E-4	0.37	0.417	0.23	0.195	0.1	0.096	0.11	0.10
Alluv	52	42	9	SL	1.7 E-3	1.0 E-3	0.39	0.388	0.24	0.218	0.1	0.079	0.13	0.14

Notes: Analysis completed on the <2mm fraction "Compaction" held constant at normal Calculations completed using the methodology of Saxton et al. (1985) ^a GC = Gila Conglomerate, Alluv = Alluvium ^b USDA texture class according to Soil Survey Division Staff (1993)

5.0 LONG-TERM SOIL WATER BALANCE SIMULATIONS

Long-term average drainage below the proposed covers at PDTI was evaluated using the UNSAT-H model (Fayer, 2000). Developed by Battelle Pacific Northwest Laboratory, UNSAT-H is a one-dimensional soil water and heat flux model that simulates the dynamic processes of infiltration, drainage, redistribution, evaporation, and transpiration. UNSAT-H uses a fully implicit, finite difference method for solving the water and heat flow equations. Mathematically, the model uses Richards' equation for water flow, Fick's law for vapor diffusion, and Fourier's law for heat flow. The model is particularly effective in evaluating the effects of changes in hydraulic conductivity under transient soil water conditions.

UNSAT-H uses edaphic, meteorological, and vegetation input data to simulate fluxes of moisture and energy. Specifically, the required soil material inputs include bulk density, porosity, several water characteristic functions, saturated hydraulic conductivity, and relative hydraulic conductivity functions. Daily weather conditions (precipitation, temperature, relative humidity, wind speed, cloud cover, and solar radiation) constitute the climatic data input requirements. Plant input parameters include leaf area index, percentage of bare area, growing season, suction head limits, and a RLD function. Choices for the lower boundary condition in the model can be controlled as either head constant (i.e. constant matric potential or temperature) or a head-dependent flux (e.g., water fluxes and temperature gradient).

Three covers depths were evaluated using UNSAT-H for the waste rock piles and leach ore stockpiles (60, 90, and 120 cm) and four cover depths (45, 60, 90, and 120 cm) were evaluated for the tailing impoundments to compare long-term drainage. The model domain was constructed to include stockpile or tailing material below the soil cover and contained approximately 40 to 50 nodal points. The bottom boundary was located 10 m below the base of the cover; a point beyond any influence from the cover layer, and was specified as a unit gradient or free-draining boundary. The unit gradient boundary condition is used when there is a thick unsaturated zone between the base of the cover and the underlying water table (McCord 1991). Assuming a unit gradient as the lower boundary condition, any water that moves to the base of the model domain will drain freely out of the system.

These simulations also incorporated the revisions to the input parameters developed in previous sections (i.e., cover hydrologic data, LAI, and RLD). Drainage was assessed at the node corresponding to the 182 cm (6 foot) depth. Sensitivity analyses were also conducted on the 60 cm covers by varying the peak leaf area. The UNSAT-H input parameters and annual summary data are

included Appendix D. UNSAT-H output files are included on the compact disk that accompanies this document.

5.1 Climate Data

Upper boundary conditions were developed using measured daily weather data, where possible. Precipitation, temperature, wind speed, and other climatic data needed to support the soil-hydrologic modeling were derived from a variety of sources. Based upon review of the available data, the 100-year daily precipitation and temperature record from Ft. Bayard weather station (National Climatic Data Center [NCDC] Cooperative Weather Station #293265) is the most complete and longest record for the Silver City area and was used for this evaluation (Figure 5-1).

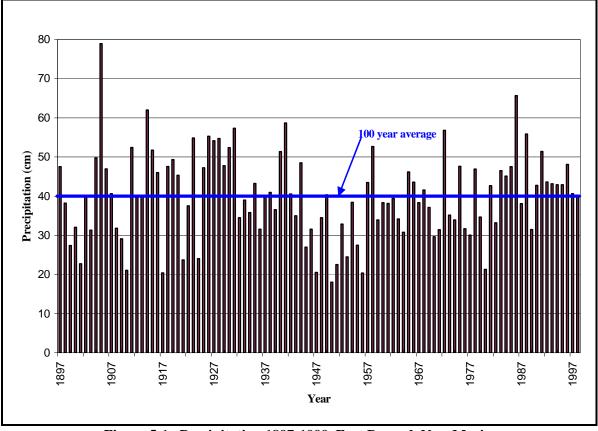


Figure 5-1. Precipitation 1897-1999, Fort Bayard, New Mexico

Average monthly wind speed data from the NCDC weather station at Deming (Cooperative Weather Station #292436) was used for the evaluation. Cloud cover and relative humidity were taken from monthly averages recorded in Albuquerque (NCDC, accessed in 1999) and dew point was calculated from the relative humidity data. Solar radiation was calculated from published relationships based on latitude (Barbour et al. 1987). Climatically, the simulation record represents a broad range of

conditions typical of the region including wet winters and summers, and prolonged droughts and wet intervals.

5.2 Vegetation Data

To maintain conservatism in the water balance model, the peak annual LAI used in CCPE simulations was 0.29, equivalent to the average value measured for the reclaimed tailing repository (Section 2.3). The LAI distribution ranged from nearly 0 during the dormant period (winter) to a peak of 0.29 during the growing season (Figure 2-2). To determine the effects on the model results, the two additional simulations for 60 cm cover on the tailing and stockpile to the reference area value of 0.42 (Section 2.3).

The site-specific RLD parameters described in Section 3.0 were used in the CCPE simulations. In all simulations, roots were restricted to the cover domain. Critical suction head limits were selected for wilting point, decreased transpiration, and anaerobic conditions. Wilting point is the soil-water content at the soil-water potential where a particular plant species either wilts or becomes dormant (Ritchie, 1981). Wilting point is typically about 15 bars for crop plants; 25 to 30 for prairie grasses; and may exceed 60 bars for some desert shrubs. The critical suction-head limits selected for the model include 20,000 cm (20 bars) for wilting point, 3,000 cm (3 bars) for the point at which plant transpiration decreases (Gardner, 1983), and 1 cm (0.001 bar) as the point where transpiration stops due the imposition of anaerobic conditions. Additional vegetation parameters for the water balance model are provided in Appendix D.

5.3 Soil Hydraulic Properties

Infiltration, redistribution, and drainage of water are dependant on soil hydraulic properties, which UNSAT-H using mathematical functions. Key input parameters include saturated hydraulic conductivity (K_{sat}), van Genuchten coefficients, and water-characteristic functions.

The soil hydraulic properties necessary to perform the CCPE were estimated using similar materials tested at the Tyrone Mine (DBS&A, 1999a). Based on similarities of the fine earth fraction of the Gila Conglomerate, sample TP-3 1-9' (loamy sand; $< 2mm K_{sat} = 6.9 \times 10^{-3} \text{ cm/s}$) was selected to represent cover materials for Tyrone. Soil hydraulic properties were modified to account for somewhat higher average rock volume observed in the Gila Conglomerate. Input soil hydrologic parameters are consistent with published, standardized relationship among soil particle size and hydraulic properties of similarly textured soils (Rawls et al., 1982; Carsel and Parrish, 1988). Additional soil hydraulic properties of TP-3 1-9' are given in Appendix D. Thus, this analysis provides a conservative estimate of long-term drainage with the conditions that occur in the field.

5.4 Simulation Results

The UNSAT-H model was used to evaluate the performance of different cover soil profiles using the site-specific input parameters and cover materials identified for the reclamation at Tyrone. The simulation results for the cover thickness scenarios for stockpiles and tailings are presented in Table 5-1. Average annual drainage for the 100-year simulation period was less than 1 percent of mean annual precipitation (MAP; 400 mm) for all cover scenarios. Runoff, an important component of the water balance, was estimated to be less than 1 percent MAP for all simulations. This suggests that a 60 cm cover composed of similarly textured Gila Conglomerate could meet the goal of limiting average drainage to less than 1 percent MAP. Annual summaries for all simulations are provided in Appendix D.

TABLE 5-1 SIMULATED DRAINAGE AND RUNOFF OF VARIOUS COVER DEPTHS FOR TYRONE STOCKPILES AND TAILING

	Stock	pile Cov	er Depth	(cm)	-	Tailing (Cover De	pth (cm)	
	60	60HL ^a	90	120	45	60	60HL ^a	90	120
Drainage (mm)	3.5	2.9	1.8	2.9	0.4	2.6	1.9	1.0	0.4
percent MAP ^b	0.87%	0.72%	0.45%	0.72%	0.92%	0.64%	0.47%	0.24%	0.11%
Runoff (mm)	0.2	0.2	0.2	0.2	0.01	0.2	0.5	0.2	0.2
percent MAP ^b	0.06%	0.06%	0.05%	0.05%	0.03%	0.06%	0.12%	0.05%	0.05%

^a HL = maximum leaf area index = 4.2

^b MAP = mean annual precipitation (400mm)

Increasing the peak LAI for the 60 cm cover showed a 15 to 30 percent reduction in average annual drainage for the 100 year simulation period (Table 5-1). This result is consistent with previous water balance analyses where LAI was evaluated over a range of peak values (Golder, 2004).

6.0 LONG-TERM REPORTING AND INTEGRATION WITH COMPLEMENTARY CONDITIONS

Condition 75 requires that the CCPE for the leach and waste rock stockpiles be completed within 3 years of approval of the work plan, and Condition 32 of the DP-27 Settlement Agreement requires that the CCPE for the tailing impoundments be completed within 5 years of approval of the work plan (NMED 2003a and 2003b). Condition 89 must be completed within 4 years of approval of DP-1341 and is required to have information relative to cover effectiveness (NMED 2003a). The cover effectiveness (i.e. drainage) information developed under Condition 75 (DP-1341) and Condition 31 of the DP-27 Settlement Agreement will be used to support the alternatives analysis required by Condition 89 of DP-1341.

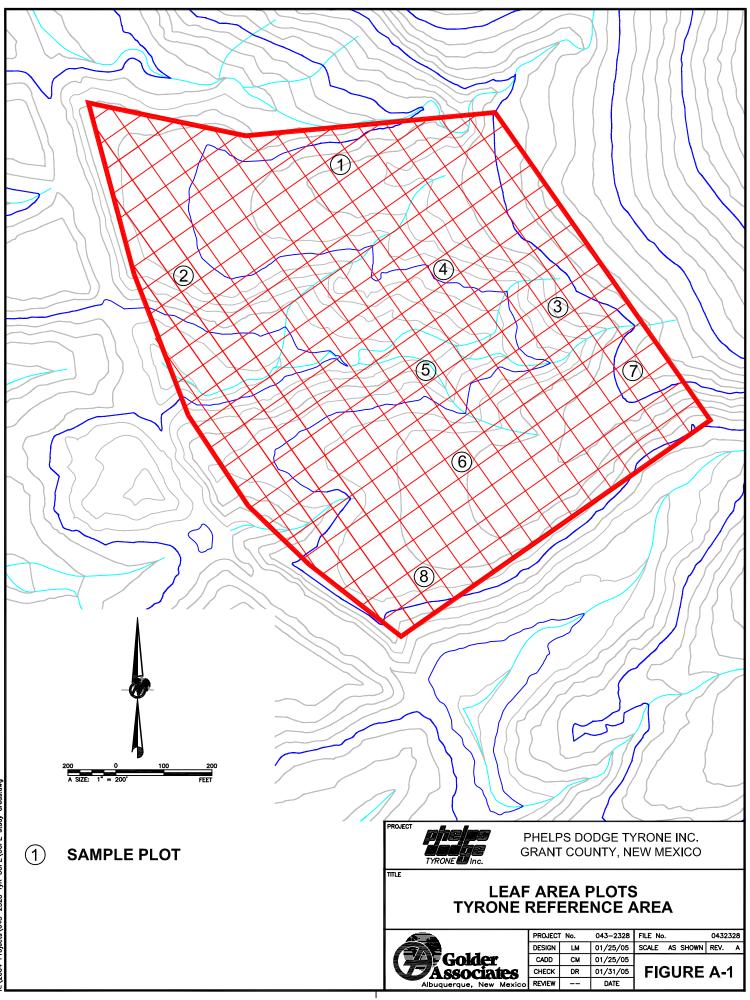
Additional chemical and physical analyses of cover materials at Tyrone, required under Conditions 76 and 79 of DP-1341 and Condition 29 of the DP-27 Settlement Agreement, will be included once the data are available. It is estimated that a complete set of results would be available following cover placement on the stockpile and tailing impoundment test plots for the leach ore and wasterock stockpiles as well as additional borrow materials information collected for the SBMI. Pertinent cover materials information will be updated in the subsequent annual reports associated with the CCPE.

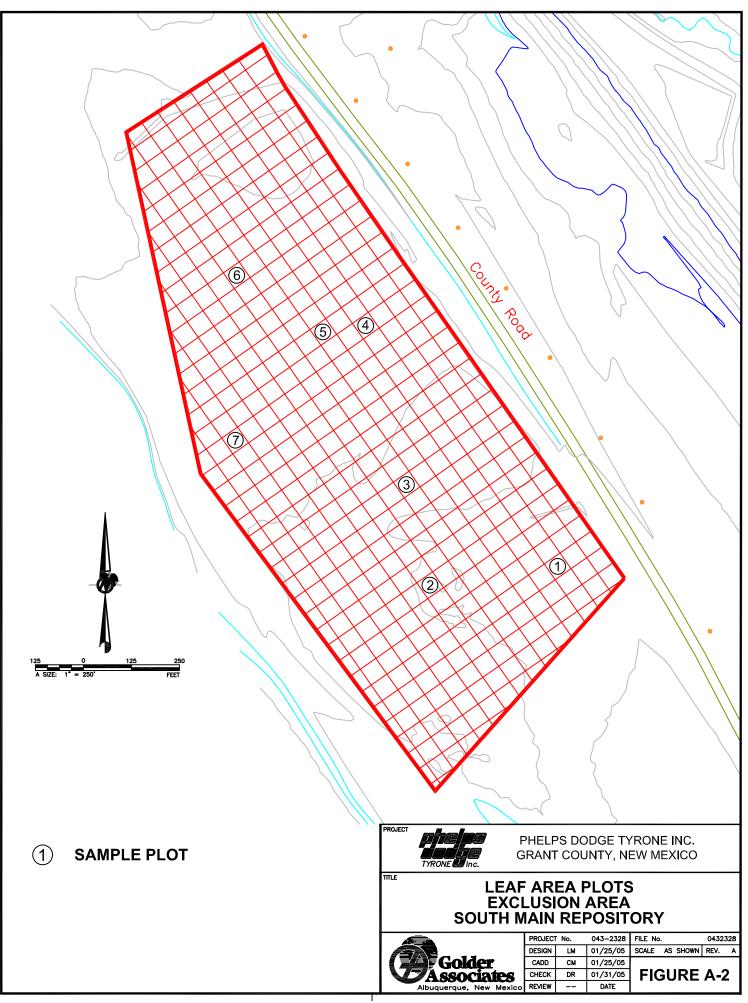
The CCPE shall be updated annually with available data from the cover and revegetation test plot studies conducted as part of Condition 76 of DP-1341 and Condition 29 of the DP-27 Settlement Agreement, and other applicable studies, when available. Tyrone proposes to combine the annual updates associated with Condition 75 (DP-1341) and Condition 31 of the DP-27 Settlement Agreement as the mechanism for reporting all information from the comprehensive cover performance evaluations as well as the cover and revegetation test plots required by Condition 76 (DP-1341) and Condition 29 of the DP-27 Settlement Agreement for DP-27. In total, this work will facilitate a feasibility evaluation of the proposed and alternative covers and will verify the sufficiency of the ultimate cover design with respect to the WQA and WQCC Regulations.

7.0 **REFERENCES**

- ASTM D 2325-68 (94). Standard Test Method For Capillary-Moisture Relationships For Coarse- And Medium-Textured Soils By Porous Plate Apparatus.
- ASTM D 2434-68. Test Method for Permeability of Granular Soils (Constant Head).
- ASTM D 2487-90. Rock Fragment Content.
- Asner, G.P. 1998. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens. Environ 64:234-253.
- Ayers, R.S., and D.W. Westcot. 1989. Water quality for agriculture. FAO Irrigation and Drainage Paper No.29, Rev. 1. Rome.
- Barbour, M.G., J.H. Burk, and W.D. Pitts. 1987. Terrestrial plant ecology, second edition. The Benjamin/Cummings Publishing Company, Inc., Menlo Park, California.
- Blake, G.R., and K.H. Hartge. 1986. Particle Density. In: Methods of Soil Analysis. Part 1-Physical and Mineralogical Methods, 2nd Edition. A. Klute (ed). Agron. 9. Soil Sci. Soc. Am., Madison, WI.
- Böhm, W. 1979. Methods of studying root systems. Springer-Verlag. Berlin. 188 pp.
- Bouwer, H., and R.C. Rice. 1984. Hydraulic properties of stony vadose zone. Groundwater 22:696-705.
- Brady, N.C. 1974. The nature and properties of soils. Eighth Edition. MacMillan publishing Company, New York.
- Campbell, G.S. and J. M. Norman. 1998. An Introduction to Environmental Biophysics. Springer-Verlag, New York.
- Carsel, R. F. and R. S. Parrish. 1988. "Developing joint probability distributions of soil water retention characteristics." Water Resour. Res. 24: 755-769.
- Clark, P. E., and M. S. Seyfried. 2001. Point sampling for leaf area index in sagebrush steppe communities. J. Range Manage. 54: 589-594.
- Cline, J.F., D.W. Ursek., and W.H. Rickard. 1977. Comparison of soil water used by a sagebrushbunchgrass and a cheatgrass community. J.Range. Manage. 30:199-201.
- Daniel B Stephens & Associated (DBS&A). 1997a. Preliminary material characterization, Tyrone Mine Closure/closeout. Prepared for Phelps Dodge Tyrone, Inc., Tyrone, New Mexico.
- DBS&A. 1997b. Supplemental material characterization, Tyrone Mine Closure/closeout. Prepared for Phelps Dodge Tyrone, Inc., Tyrone, New Mexico.
- DBS&A. 1997c. Closure/Closeout Plan, Tyrone Mine. Prepared for Phelps Dodge Tyrone Inc., Tyrone, New Mexico.

- DBS&A. 1999a. Cover design status report, Tyrone Mine. Prepared for Phelps Dodge Tyrone, Inc., Tyrone, New Mexico.
- DBS&A. 1999b. Interim technical standards for revegetation success, Tyrone and Little Rock Mines. Prepared for Phelps Dodge Tyrone, Inc., Tyrone, New Mexico.
- Dunn, A.J., and G.R. Mehuys. 1984. Relationship between gravel content of soils and saturated hydraulic conductivity in laboratory tests. In: D.M. Kral (ed.) Erosion and Productivity of Soils Containing Rock Fragments. SSSA Special Pub. No. 13. Soil Sci. Soc. Am., Madison, WI.
- Fayer, M.S. 2000. UNSAT-H Version 3.0: Unsaturated soil water and heat flow model. PNL-13249, U.S. Department of Energy, Pacific Northwest Laboratory, Richland, Washington.
- Freeze, A.R., and J.A. Cherry. 1979. Groundwater. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
- Gardner, W.H. 1986. Water Content. In: Methods of Soil Analysis. Part 1-Physical and Mineralogical Methods, 2nd Edition. A. Klute (ed). Agron. 9. Soil Sci. Soc. Am., Madison, WI.
- Gardner, W.R. 1983. Soil properties and efficient water use: An overview in limitations to efficient water use in crop production. ASA, Inc., Madison, Wisconsin.
- Golder Associates, Inc. 2004. Little Rock Mine Cover Design Report and Test Plot Work Plan. Prepared for Phelps Dodge Tyrone, Inc., Tyrone, New Mexico.
- Heitschmidt, R.K., R.J. Ansley, S.L. Dowhower, P.W. Jacoby and D.L. Price. 1988. Some observations from the excavation of honey mesquite root systems. J. Range Mgmt. 41:227-231.
- Hillel, D., 1998. Environmental soil physics. Academic Press, San Diego, California.
- Jackson. R.B., J. Canadell, H.A. Mooney, O.E. Sala, and E.D. Schulze. 1996. A global analysis of root distributions for terrestrial biomes. Oecologia. 108:389-411.
- Lapitan, R.L., and W.J. Parton. 1996. Seasonal variabilities in the distribution of microclimatic factors and evapotranspiration in a shortgrass steppe. Agr. and Forest Meteor. 79: 113-130.
- Lee, C.A. and W.K. Lauenroth. 1994. Spatial distributions of grass and shrub root systems in the shortgrass steppe. Am. Midl. Nat. 132:117-123.
- Mackie-Dawson, L.A., and D. Atkinson. 1991. Methodology for the study of roots in field experiments and the interpretation of results. p 25-47. In D. Atkinson. (ed) Plant root growth: an ecological perspective. Blackwell Sci. Publ., London.
- McCord, J.T. 1991. Application of second-type boundaries in unsaturated flow modeling. Water Resources Research 27:3257-3260.
- Mining and Minerals Division. 1996. Draft closeout plan guidelines for existing mines. Mining Act Reclamation Bureau, Santa Fe, NM. April 30.
- Montaña, C., B. Cavagnaro, and O. Briones. 1995. Soil water use by co-existing shrubs and grasses in the Southern Chihuahaun Desert, Mexico. J. Arid Environments 31:1-13


- Moore, R.T., and N.E. West. 1973. Distribution of galleta roots and rhizomes at two Utah sites. J. Range Mgmt. 26:34-36.1
- Moorhead, D.L., Reynolds, J.F., and P. Fonteyn. 1989. Patterns of stratified soil water loss in a Chihuahuan desert community. Soil Science. 148:244-249.
- National Climatic Data Center (NCDC). Western U.S. climate historical data summaries. Western Regional Climate Center http://www.wrcc.sage.dri.edu/. Accessed January 1999.
- New Mexico Environment Department (NMED). 2003a. Supplemental Discharge Permit for Closure DP 1341, Phelps Dodge Tyrone, Inc., Tyrone Mines Facility.
- NMED. 2003b. Settlement Agreement of Discharge Permit for Closure DP 27, Phelps Dodge Tyrone, Inc., Tyrone Mines Facility.
- NMED. 2003c. Supplemental Discharge Permit for Closure DP 1340, Chino Mines Company.
- PDTI. 2000. Closure/Closeout Plan for the Little Rock Mine, Grant County, New Mexico.
- PDTI. 2002. Copper Mountain Stockpile Reclamation, Revised Plan and Status Report, Deadman Canyon Area. Phelps Dodge Tyrone Inc. Grant County, New Mexico.
- PDTI. 2003. Reclamation plan, Copper Mountain Pit expansion project. Phelps Dodge Tyrone, Inc., Grant County, New Mexico.
- Peace, J. L., P. J. Knight, T. S. Ashton, and T. J. Goering. 2004. Vegetation study in Support of the Design and Optimization of Vegetative Soil Covers. Prepared for Sandia National Laboratories, Albuquerque, NM.
- Rawls, W.J., D.L. Brakensiek, and K.E. Saxton. 1982. Estimating soil water properties. Transactions ASAE 25:1316-1320, 1325
- Ritchie, J.T. 1981. Soil water availability. Plant Soil 58:327-338.
- Rundel, P., and P.S. Nobel. 1991. Sturcture and function in desert root systems. In Plant root growth: an ecological perspective. Blackwell Sci. Publ., London. Pg. 349-378.
- S.S. Papadopulos and Associates (SSP&A). 2001. Analysis of paleo-climate and climate forcing information for New Mexico and implications for modeling in the Middle Rio Grande water supply study. Memo to the New Mexico Interstate Stream Commission and U.S. Army Corp of Engineers. http://www.seo.state.nm.us/water-info/mrgwss/p3-nm-climate-memo.pdf. 22 pp.
- Salinity Laboratory Staff. 1954. Diagnosis and improvement of saline and alkali soils. Agricultural Handbook No. 60. USDA-Agricultural Research Service. US Government Printing Office, Washington, D.C.
- Saxton.K.E., Rawls,W.J., Romberger.J.S., Papendick,R.I. 1985. Contributions from Agric. Res. Serv., USDA, in cooperation with the College of Agric. and Home Economics, Agric. Res. Center, Washington State Univ., Pullman, WA 99164. Scientific Paper no. 6911. June 1995.
- Schulze, E.D., H.A. Mooney, O.W. Sala, E. Jobbagy, N. Butchmann., G. Bauer, J. Canadell, R.B. Jackson., J. Loreti, M. Oesterheld and J.R. Ehleringer. 1996. Rooting depth, water


availability, and vegetation cover along an aridity gradient in Patagonia. Oecologia. 108:503-511.

- Scurlock, J. M. O., G. P. Asner, and S. T. Gower. 2001. Worldwide Historical Estimates of Leaf Area Index, 1932-2000. Prepared by the Oak Ridge National Laboratory. Oak Ridge, Tennessee.
- Sims, P.L. and J.S. Singh. 1978. The structure and function of ten western North American grasslands. Journal of Ecology. 66:547-572.
- Soil Survey Staff. 1993. Soil survey manual. Handbook No. 18, 2nd ed. USDA-Soil Conservation Service. US Government Printing Office, Washington, D.C.
- van Genuchten, M Th. 1978. Calculating the unsaturated conductivity with a new closed-form analytical model. Research Repot 78-WR-08. Depth. Of Civil Eng., Princeton Univ., Princeton, New jersey. 63 pp.
- van Genuchten, M Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44:892-898.
- van Genuchten, M Th., F.J. Leij, S.R. Yates and J.R. Williams. 1991. RETC4 Code for quantifying the hydraulic functions of unsaturated soils. U.S. Salinity Laboratory, USDA-ARS, Riverside, CA.
- Welles, J. M., and J. M. Norman. 1991. Instrument for indirect measurement of canopy structure. Agron. J. 83: 818-825.
- Whittaker, R.H. and Niering, W.A. 1975. Vegetation of the Santa Catalina Mountains, Arizona: Biomass, production, and diversity along the elevation gradient. Ecology 56: 771-790.

APPENDIX A

LEAF AREA SAMPLE SITES, PHOTOGRAPHS AND FIELD DATA

Plot EA1; Tyrone Repository (10/05/04)

Quadrat EA1A (10/05/04)

Quadrat EA1C (10/05/04)

Plot EA2; Tyrone Repository (10/05/04)

Quadrat EA2A (10/05/04)

Quadrat EA2C (10/05/04)

Quadrat EA2D (10/05/04)

Quadrat EA3A (10/05/04)

Quadrat EA3C (10/05/04)

Plot EA4; Tyrone Repository (10/06/04)

Quadrat EA4A (10/06/04)

Quadrat EA4C (10/06/04)

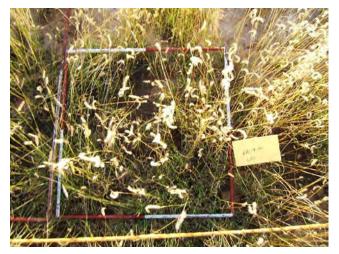
Quadrat EA4D (10/06/04)

Plot EA5; Tyrone Repository (10/06/04)

Quadrat EA5A (10/06/04)

Quadrat EA5C (10/06/04)

Plot EA6; Tyrone Repository (10/06/04)


Quadrat EA6A (10/06/04)

Quadrat EA6C (10/06/04)

Plot EA7; Tyrone Repository (10/06/04)

Quadrat EA7A (10/06/04)

Quadrat EA7C (10/06/04)

Plot TR1; Reference Area

Quadrat TR1A (10/03/04)

Quadrat TR1B (10/03/04)

Quadrat TR1C (10/03/04)

Quadrat TR1D (10/03/04)

Plot TR2; Tyrone Reference Area (10/04/04)

Quadrat TR2A (10/04/04)

Quadrat TR2B (10/04/04)

Quadrat TR2C (10/04/04)

Quadrat TR2D (10/04/04)

Plot TR3; Reference Area (10/04/04)

Quadrat TR3A (10/04/04)

Quadrat TR3B (10/04/04)

Quadrat TR3C (10/04/04)

Quadrat TR3D (10/04/04)

Plot TR4; Reference Area (10/04/04)

Quadrat TR4A (10/04/04)

Quadrat TR4B (10/04/04)

Quadrat TR4C (10/04/04)

Plot TR5; Reference Area (10/04/04)

Quadrat TR5A (10/04/04)

Quadrat TR5B (10/04/04)

Quadrat TR5C (10/04/04)

Quadrat TR5D (10/04/04)

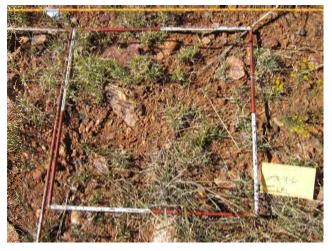
Plot TR6; Reference Area (10/04/04)

Quadrat TR6A (10/04/04)

Quadrat TR6B (10/04/04)

Quadrat TR6C (10/04/04)

Quadrat TR6D (10/04/04)


Plot TR7; Reference Area (10/05/04)

Quadrat TR7A (10/05/04)

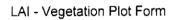
Quadrat TR7B (10/05/04)

Quadrat TR7C (10/05/04)

Quadrat TR7D (10/05/04)

Plot TR8; Reference Area (10/05/04)

Quadrat TR8A (10/05/04)


Quadrat TR8B (10/05/04)

Quadrat TR8C (10/05/04)

Quadrat TR8D (10/05/04)

.

uadrant No	<u>,</u>	· · · · · · · · · · · · · · · · · · ·	Plot No.:	Quadrant	Transect N Io.: 73			Quadrant N	의 <u>중</u> 년			Quadrant N	lo.: ~>>		
		ver				ver			St. 125	ver			Co	ver	
 Species	Basal %	Canopy %	- # Ind.	Species	Basal %	Canopy %	- # Ind.	- Species	Basai %	Canopy %	# ind.	Species	Basai %	Сапору %	# Ind.
23301	</td <td><i>C</i></td> <td></td> <td>Rosa R</td> <td>4</td> <td>41</td> <td></td> <td>BORR</td> <td>souriel Laure</td> <td>n gz</td> <td>-5</td> <td>(BOW)</td> <td>0.5</td> <td>100</td> <td>4. is</td>	<i>C</i>		Rosa R	4	41		BORR	souriel Laure	n gz	-5	(BOW)	0.5	100	4. is
		- Kent	,	STERA	0.2	5	(ARSC	\	5	-{	MOM	25	1910	
		÷		CNPR	Ţ	1	Į.	515C	-selferme	1	an Day	SING	-1	0.1	1
				Kort I	5.2	-internet	ter.	FREISA	<i>(</i> *), 1	05	and the second second	BOHL	1.5	4	4
				EX36	quu		ł					FRESE.	1	0.2	-Z-
				ļ											
				Į								<u> </u>			
				l			<u> </u>					L			
				 				L				ļ			
			<u> </u>												
				<u> </u>			 								
otal	4	(₂		Total	4.3	407		Total	3.1	13.5		Total	4.5	97.3	Magester:
lock	40,5	69.5	4.49.49.49.49.4	Rock	\$17	MU S		Rock	969.4	81		Rock	61.5	1.6	3199497
itter	6.5	n «	3.23.65.6915	Litter	i 1 Listery	6	10000000000000000000000000000000000000	Litter	0.5		10000000	Litter	3	0.1	a la marca
are Soil	25	Tuble - Stand		Bare Soil	i	0.5	1	Bare Soil	Minute State	Ş		Bare Soil	wing = were	1	

Ventered into database

;

Location:	TT		Plot No.:	2	Transect N	lo.:		Date:10	4/84	By:	an a		AS	socia	les
Quadrant N	o.: A			Quadrant N				Quadrant N				Quadrant N			
	Co	ver			Co	ver			Co	ver			Co	over	-
-	Basal	Canopy	,		Basal	Canopy			Basal	Canopy			Basal	Canopy	
Species	%	%	# Ind.	Species	%	%	# Ind.	Species	%	%	# Ind.	Species	%	%	# Ind.
CO (n K-2.	ĥ	10		BOW	- Transport	4	6	BOCN	S# 6	13	15	Block	3.0	8 strange	2
STOPPE	01	L		120662	Z	18	16	141136	63	725	6	14:1356	6	- Up	2, 2
yhMu.	in a start start and start	25		HALMR	T	4	1	PRGI	0.2	and the second	Ì	MECA		20	(
	7	05		TERLAR R	0.1	-3	1	(405A	0.1	H	1	ACAN		Dit	<u> </u>
760L PAVI	e de la compañía de la	0.5		Topolo	-	1	Binn				ļ	ļ		ļ	<u> </u>
STPA	- gen	0.2										ļ			ļ
															ļ
														<u> </u>	
														ļ	
														<u> </u>	
															<u> </u>
															<u> </u>
															<u> </u>
						L									<u> </u>
														<u> </u>	
											1950 (1970) (1970) (1970)				-management
Total	53	35.2		Total	3.(30	(1996年1997年1997年1997年1997年1997年1997年1997年	Total	2.1	25		Total	25	23	
Rock	68.3	<u> </u>	and the set of the set	Rock	769	56		Rock	<u> </u>	65		Rock	81.5	68	and the second
Litter	2,5	3.		Litter	2	"Zu		Litter	0 5		3.43 8.98	Litter	1		the second s
Bare Soil	AL .	sarty States		Bare Soil	1 🖑	12		Bare Soil	172	<u>ģ</u>		Bare Soil	- 4	5	
Comments															
REC	1. Stond of	Biense	- Rahh	, <u>1</u> 2,											

Bernand

1

~

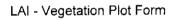
j . . .

uadrant N	lo.: 🔊			Quadrant I	No.: 55			Quadrant N	lo.:' 🦿			Quadrant N	and the second second		
		ver				ver			Co	ver				ver	
Species	Basal %	Сапору %	- # Ind.	Species	Basal %	Canopy %	# Ind.	Species	Basal %	Canopy %	# Ind.	Species	Basal %	Canopy %	# Ind.
4130	: [-47	10	PAPA		Ç.	Ű.	61131	0.2	Z	6	HIM	1	and the second second	Ling
PAN	Ť	0.1	- Z-	Boxis	0:5	5	and the second sec					3062	1 Turo		4
ARAD		0,2	G					NOMI	0.5	100	1	HIBE	0.2		2
Reco		1:5.	3									Paro	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u></u> <u> </u>	
ERWR	0.1	1		PRGI	1.59	<i>\$</i> 35	- And a second					POOL	T	1.5	
······				ALAN	2.1	i (Menority								ļ	ļ
2002	0.1	610	70											ļ	ļ
CN PK	ander.	02	14	1810	and the	en j	to and								Í
RUR	enegenere.	0.	Š	700-	T	0.5	oring Horsen								
				GIVN	0.1	Ø	1							_	
															[
					L		1								<u> </u>
												L			<u> </u>
														<u> </u>	
			<u> </u>	1		<u> </u>	_								
otal	1	(ja)		Total	2.2	100		Total	6.7	100		Total	\$ 2	14.5	
lock	\$4.7			Rock	15			Rock	The start	1. Ale		Rock	89.3	85 m 15	2015/19203
itter	<u>_(/ u _</u>	7 <u>770</u> 4		Litter	15		A Station	Litter	202	Ĩ.		Litter	0.15	0.5	
are Soil	10	95		Bare Soil	6.0.95	- CH		Bare Soil	K. 5. 5.	A		Bare Soil	and the second	:::	2254356
Comments	- AV - 10- 10	1	Le contra travestitatat		1310-3 - C	K	1			1		1			

Ind.

2

2


117

1

Date: 10/4/04 By: DC la Transect No.: Plot No.: Location: Quadrant No.: 🐎 1 do 2.1. Quadrant No.: 🌜 Quadrant No.: 13 Ouadrant No : W. Cover Cover Cover Cover Basal Canopy Basal Canopy Basal Canopy Canopy Basal % % % % # Ind. Species % # Ind. Species % % % # Ind. Species Species 7 17, 3 4 BOW $\mathcal{P}_{n} \supset \mathcal{L}_{n} \in \mathcal{C}$ il-FOND SCHOOL 12.5 4 -12-55 CN PAU O. In 1 ... 0.2 Co - The server BOXARI ~ formel 1 horas my 25 Causa . ARO1 Spy ubangin . M. C 1 (R(a) 2 e das V 0,4 6.4 Sol X िन " spin San 3 1 1 10 2 2.5 ACAN M. C. Carlo Zň 9 ALAJ ~~Y~~~ 15 1 15 12.4 61253 01 .516²⁰⁰ 15 05 POSL 30VI nafeatari CHER Translad dian 6 0/AN -- (j). ter de la compañía d Total V.L 15 17 20 13 The second Total 35 Total 4.x Total 54 11 anning. 1.14 Rock ()_ iq Rock 11.9 10 Rock 40 Rock ŕ0 12 4 12 * 11 li Litter - ž Litter Same. t it 4 É 2 Litter Ĩ. Litter Z. Land Bare Soil Bare Soil 10 70 Bare Soil man in 44 1 Bare Soil

Comments

LAI - Vegetation Plot Form

÷

1

ocation:			Plot No.:		Transect N	lo.:		Date: 70		By: ≦1717		Quadrant N	In •		
uadrant N				Quadrant N				Quadrant N	<u></u>	ver				ver	
		ver	-			ver	•				-		Basal	Сапору	
6	Basal %	Canopy %	# Ind.	Species	Basal %	Canopy %	# Ind.	Species	Basal %	Canopy %	# Ind.	Species	6asai %	%	# Ind.
Species		70	# mu.	ARSC	70	12.1	# mg.	30447	0.7	4	estanty formation	BOCU	0.1	17 Juing	Gum
()000	<u> </u>	Į į	التين. ا	prof & Segment Marriel	<i>h</i>		41	5306N	0.4	10	ker kert	POR SP	72,8	20	5
GUSA		40	1					4 10 10 100	<u> </u>		·				
MORE		0,1	Terr	GUSA	1.5	60	ł	MORE	O.1	15	15/	NOPE	0.1	1	ı Ö
<u>, , , , , , , , , , , , , , , , , , , </u>				MOPE	ð.l	12	172	MILI	Nalan	0.1	2.	ASTAR	0.1	G	1. 1.
			1	3A50	0.1	L.	internet.	LAPR	yr	13.1				ļ	ļ
				SEVI	Ĩ	in the second second	ł	2006		0.1	i.				Ļ
				1 HPR	Steph vy.	4439 ⁴⁴⁻¹	3	TAPN	"Noight	0.1	1				Ļ
								SPAL	~~~~~	0.1	- Ter				_
															<u> </u>
							L								<u> </u>
														<u> </u>	_
							1			ļ					
			<u> </u>			ļ	1			<u></u>				<u> </u>	
			<u> </u>				<u> </u>					l			
		11.63		Total	ومنسى و			Total	ing:	15		Total	~Z . S	72	and the second
Total Rock	1.6	413		Rock	90.3	25		Rock	723	85		Rock	18.7	14	2010-54078
itter	12	2	2.11.253.34.0	Litter	40.5	1		Litter	20	15	200000	Litter	7.5	6.0	a de de se
are Soil	- 14- 	there the f		Bare Soil	L.	2		Bare Soil	6	10		Bare Soil	di Sin di M	2L-	
Comments		L	Loodan hold to an and		<u>L</u>	1 <u></u>	and a subsection of the subsec				•				
		y and the second	1 2	Conta Sor		The De State	ç.	cki	1-15	7- sta	n. Duy	det 6	ha. co co	k	
		<u> </u>	y · · · · ·		е 	(~~ L ,	ward	10 10		2*** 52 ¥	1		

SERI - Setaria viridio - green brothegens

MILL - Mirability live one -

4

ocation:			Plot No.:	\bigcirc	Transect N	lo.:		Date: 10/1		By: ∨1 '		Quadrant N	•• • • ~~ >		
Quadrant N				Quadrant I		ver		Quadrant N		ver				over	
-	Basal	ver Canopy	-		Basal	Canopy	•	-	Basal	Canopy	•	-	Basal	Canopy	-
Species	%	%	# Ind.	Species	%	%	# Ind.	Species	%	%	# Ind.	Species	%	%	# Ind.
30682	1,7	1.7	27	80682	1.5	15	- (B)	806.22	2.2	20	10	130au	62	18	10
ERAG	<u> </u>			ART	DOL	3	1.	ARRU	{	5	all and a second	BOGART.	· 1.1	11	7
Annesd												ARTU	0.1	1,5	
ZIGR	· 1	-75	and a second	CHPR	. 01	2	13	CHPR.	7	0.2	25 C - V - J	Halat	<i>0</i> . I	Ge	
CHER	01	.]	34	TXMO	we get a	0.2	20	DRMO	1	0.3	24	Cold Startes	- and the second	12	ł
ORMO	and a	- Sm	6									CHMR	wingthe	12	15
												DRMO			4
			T									SASU	2545 Patro		1
											<u> </u>	TAAU	1		nerel) Freesener
															ļ
			1		[
							1								
							1								
								Ĩ							
Total	2.0	2 %		Total	1.0	20		Totai	3: k	25		Total	2, 2	3 mg	SPARADOS,
Rock	80.2	\$0	South Standing	Rock	682	1. P.		Rock	59	44		Rock	<u> 66 S</u>	5 %	
Litter	10	unary Ju	2.521494500	Litter	5	and the second s		Litter	8	6		Litter	26	10	2,60,61,51
Bare Soil	7	5		Bare Soil	2.5	20		Bare Soil	29.0	765	教育教学	Bare Soil	j 🖒	1	
Comments		1		11		<u> </u>		. <u> </u>							

DRMO - Drigmania molluginea

S.

ţ

.

7

_ocation:	γk		Plot No.:		Transect N	lo.:		Date:		By:					
Quadrant N				Quadrant				Quadrant N				Quadrant N		<u> </u>	
	Co	ver				ver	-			ver				ver	•
	Basal	Сапору			Basal	Canopy			Basal	Canopy			Basal	Canopy	
Species	%	%	# Ind.	Species	%	%	# Ind.	Species	%	%	# Ind.	Species	%	%	# Ind.
3068-2		14	9	HIMSE_	0.5	2 Marine	7	171BE	3. E)	sty her	26	STIPA		9	2
ARSE	D ₂₄	aannaraan	ŧ	BOW	0.3		64	600	6.4	(p	1	BOLAN Z	0.1	0.7	3
CA23	-1	\mathcal{O}_{il}	- To	BOURZ	·1.Co	15	19	BOGRI	responses.	0.2	1			unte attitu	
ERUR	angene .	1.5	ţ	ARSE	T	inter-	en all and a second	EV36	T	1.6	1	Acris	0.2	20	er") Eg
(JUSA)	1.5	35	-	ACAN	wagen.	07%	sairy Juin	Real Con law	5+4 b .	0.6	5		<u> </u>	<u> </u>	<u> </u>
200 -	w par	1	<u> </u>	ERNE	0,1	1.5						Į			_
MAIA		0.3	{	COVI.	1	i									
ST F &	in a	df	noiny Lun	SPF6-	wyww	unity sharey	"Lui							ļ	ļ
				Rocal	angermi	0.1	m M							<u> </u>	ļ
						````				<u> </u>					L
										L				ļ	<u> </u>
										L				<u></u>	<u> </u>
														ļ	
															ļ
															t alexandrad blocks (b) Service
Total	2.6	40		Total	and i S	and the		Total	:3.e	3 1/-		Total	13	25	043845er.34
Rock	52,4	-30	a di nandi n	Rock	8 Torin	6 the	100000.000	Rock	gla. Co	58		Rock	<u> 9 C</u>	170	
Litter	5	ueg	3.2940.494	Litter	2	0 Anno 19		Litter	<u> </u>	2	10986846	Litter	67	3	
Bare Soil	46	20		Bare Soil	12	10		Bare Soil	Sec.	-2		Bare Soil	4	2	
Comments				()	und B	- 7200	6/A6258	o small							
6000			Veriper	10.00	Mary Res	الأير المو	11 a.								

.



		adrant No.: A			lo.: 5		I	Quadrant N	0.: 🤇			Quadrant No	. Agenetical		
	Cover Basal Canopy				·····	ver				ver			Co	ver	
	Basal %	Canopy %		- Species	Basal %	Canopy %	# ind.	- Species	Basal %	Canopy %	# Ind.	Species	Basal %	Canopy %	# Ind.
Species	70 0,7	70	agentica.	BOW	1.4	12	5	80482	1.2	1 2009	10	Back 2	11	11	10
16,166,110	·24	55		HIBE	0.1	172-	2	ARTO	0.5	Terry 5	n de la composition de la comp		, in the second s		
ZOLU _(	07	nurreg.	7 Z	Barre	1.72	19	()	BOBA	0,7	6	"Laner"				
NECA	wight (	n.2	ning.	ARPU	0.1	1.5	1					603A	all and a second second	30	2
RVE	~y~	- <u>6. 4' 4</u>	1	ALAN	negr"."	3.5	V	ACAN	un T	0.5	į				
								GA3A	1	25					
								Rhark	1 . There	255	2				ļ
															ļ
								L							<b></b>
						ļ									<b> </b>
						<b></b>									<u> </u>
															<u> </u>
						ļ				1					
					ļ			<b></b>							
						<u> </u>									<u> </u>
otal	54	Ø Z		Total	2.8	30		Total	3.6		8-17-68-944-	Total	(nel	, my	
	6 6 7	<u> </u>	1.081 Se 034.08	Rock	75.7	52		Rock	20			Rock	AG.A.	21	1000030000
itter	<u>100.(c.</u> 1	7		Litter	L.	en e		Litter		2	g ang an	Litter	1.7	7	
are Soil		<u>former</u>		Bare Soil		1 500		Bare Soil	724	50		Bare Soil	-25	25	26660

.

ste le fo 12-05 1 d 64 - 14 May 1 -1



Τ

Т

i

Г



1

Location:	EA		Plot No.:		Transect N	10.:		Date:		By:					
Quadrant N	lo.: 🛝			Quadrant N	₩0.: C			Quadrant N				Quadrant N			
	Co	ver			Co	over			Cc	over		-		over	
-	Basal	Canopy	~		Basal	Canopy			Basal	Canopy			Basal	Canopy	
Species	%	%	# Ind.	Species	%	%	# Ind.	Species	%	%	# Ind.	Species	%	%	# Ind.
BACU		Gis	""""""""""""""""""""""""""""""""""""""	3000	any U	20	25					ļ			
1303A	aler-	OIL	r ng											<u></u>	
SP/R	"instant"	0:5		TELO_	nger	4	A Manual							ļ	İ
UAGA	Ť	0.5	-7_			8		l				ļ			
DELO	0.1	£5	1											Ļ	[
										<u></u>			<u></u>	<b></b>	
							L							<b> </b>	ļ
										!					
									,	"				ļ	
								<b> </b>							
								<b> </b>						<u> </u> !	<b>[</b>
j T														<b></b>	<b> </b>
						٤,									
[]													······	ļ	
							Ļ	l						<u> </u>	<b></b>
									ļ					-	l Tanasara
Total	1. 7.	17.4		Total	7.4	235	CONTRACTOR CONTRACTOR	Total		<u> </u>		Total			
Rock	37	30	1.85.8246.03	Rock	20	17	Were to we cat do at with	Rock	ļ	<u> </u>		Rock		+	
Litter	and the second	Annee		Litter	1	l		Litter	ļ	<u> </u>	42.00.40.00	Litter			ente en el
Bare Soil	64.3	56.4		Bare Soil	766	53		Bare Soil		<u> </u>		Bare Soil			23.6660.00493.0
Comments	}						·J								
1 10.	.112	R	5.58 milia	L. Chu	Star Star	rallar	4 500	» 1 » //	e Alta	and the second s	ch. it. so as				
0	<i>⊾(</i> , \ \	- alge Warder	all and all the	iva ry	Deffect of the second	a non general a sona	a	Real of the second second	1		)				



1

.

r

Į



Location:	F.A		Plot No.:	and the second	Transect N	lo.:		Date: 10/	6/04	By:		V			
Quadrant N	lo.: A		11 100 110	Quadrant I				Quadrant N	lo.: P			Quadrant N	<b>o</b> .:		
		ver			Co	ver			Co	ver			Co	over	<u>.</u>
	Basal	Салору	-	Creation	Basal %	Canopy %	- # Ind.	Species	Basal %	Canopy %	# Ind.	Species	Basal %	Canopy %	# Ind.
Species	%	% 7	# Ind.	Species	3.3	33	#1110.	Sage	4,0	40	15			T	
BO100 BO102	0.3 2.0tm	26	2-	BOGU SPAL	0.7	6	6	BOW	0,6	- CA					
BOGA	Son Barry	0,1	6	21/11		1,0		Çel de la	<u> </u>						
MAGK	<u>l</u>	05	1	•		t		NHCO.		1.5	r				
Pool	siquil	0.1	<u>i</u>											<u> </u>	ļ
														L	ļ
							1					ļ		ļ	<u> </u>
							L							<u> </u>	
					Į	<u></u>								<u> </u>	
				<b> </b>		ļ						L			
														1	+
				-		ļ	<u> </u>			<b> </b>					
			<u> </u>	ļ										1	<u> </u>
							<u> </u>								
							<u> </u>			1					
		27		Total	4.0	39		Total	#1.B	217	18. S. (19. 19. 19. 19. 19. 19. 19. 19. 19. 19.	Total		1	97 <b>9</b> 8769525
Total	7.6	1 V 1.		Rock	86	\$1.5		Rock	50	37		Rock			20121120100
Rock	12	C) Margan		Litter	2	1:45		Litter	tay t	hundre have		Litter		1	
Litter	84.2	64		Bare Soil		45		Bare Soil	40.2	20		Bare Soil			9439439492)
Bare Soil Comments					<u> </u>		Lugarterorstand			1				1	

Т

Т



ī

Г



Location:	7 A		Plot No.:	2	Transect N	0.:		Date:		By: PR	and the second	v			
Quadrant N				Quadrant N				Quadrant N	0.:			Quadrant N			
Quantanti		ver				ver			Co	over	!	_	Co	over	
Species	Basal %	Canopy %	 # ind.	Species	Basal %	Canopy %	# Ind.	Species	Basal %	Canopy %	# ind.	Species	Basal %	Canopy %	# Ind.
Tow 1	1,5	177	18	Bacu	2.0	72,69	10								
BALLI	015	L,	and the second se	BOHRI	1.6	11	Numperson .							<u> </u>	ļ
SPCR	<u>ð.</u> 1	2													
DECO	r generation of the second	3	-	TALLO	Ţ	ì	l								
MAGR	Ť	0,5	2												
								-	······						<u> </u>
			_												<u> </u>
											1				
							······································								
Total	1.77	25		Total	3.6	29		Total				Total			- Anterna a
Rock	710.3	6.3		Rock	79.4	67 (		Rock				Rock			
Litter	2	iliz June		Litter	2	2	di Carlende	Litter		<u> </u>		Litter			
Bare Soil	72m0	10		Bare Soil	15	8		Bare Soil				Bare Soil		<u> </u>	

Т

Т

Comments

1

.



Location:	ÉA		Plot No.:		Transect N	lo.:		Date: 10/	6/04	ву: 🕅	antan Antananan Antananan			socia	tes
Quadrant N				Quadrant I				Quadrant N				Quadrant N		over	
-		ver	-			ver	-			ver		-			-
	Basal	Canopy			Basal	Canopy			Basal	Canopy			Basal	Canopy	
Species	%	%	# Ind.	Species	%	%	# Ind.	Species	%	%	# Ind.	Species	%	<u>%</u>	# Ind.
130HI	LB	19	14	621	}	9	5	150MI	é.	5/7	11			ļ	
ARPU	0.2	25	half	BOUD	() from	i	T	ARSO	1.6	1 Lan	Z.			ļ	
TROO	11	Zur	wing	ARAD	. stall for a stall of the start	1241	4	ARRU	01		) And				
LOWR	Ť	0.1	Î i	ARTU	7	4	3	ARHA	1	1 Com	ų.				<u> </u>
				LOUR	0.1	1.5	La	LOWK	h.	11	Human				
				HA/SR.	nsent/ E	water .	"Burr								
				176/0	opun.	- Zur	A Data								
			1												
			1				1								
			1												
							1							1	1
			1											1	1
											<u> </u>				1
					<u> </u>										1
				┨							+			1	1
<b>**</b> - 1 - 1	7.0	11 19		Total	2.4	37		Total	- J. mak	80		Total		1	46538664637
Total	in the second statement of the	122		Rock	946	16		Rock	723	10		Rock			
Rock	47		the second s		3	20		Litter	2.07	2	14 10 40 10	Litter			12 4464
Litter		05		Litter		ster 19		Bare Soil	here 1	$\overline{\mathcal{O}}$	00 A 80	Bare Soil			
Bare Soil	Ø	Ø		Bare Soil		<u> </u>	C. S.	Ipare Soll			1996 Sector Sector Sector			1	I

.

Comments

1

i



	ÉA		Plot No.:	ser.	Transect N	10.:		Date: / 0		By: 7	y 			sociat	ies
Quadrant N	<u>r</u>			Quadrant				Quadrant N				Quadrant N			
	Co	ver	-			ver		-		over	•	•		over	•
	Basal	Canopy		•	Basal	Canopy			Basal	Canopy			Basal	Canopy	
Species	%	%	# Ind.	Species	%	%	# Ind.	Species	%	%	# Ind.	Species	%	%	# Ind.
BOBA	12m	1,5	i	BOHI	1,4	Se Li	$\Box_{a}$							<u> </u>	<b> </b>
ARTU	D.8	6	()	ARHA		18	G								Į
BOKI	1.2	1 2	S.C. Western	ARAO2	-	0.1	1*5							L	<b>_</b>
Bau	0.2	1.5	12								Ļ				Ļ
PALE	1.2	65	8	THID	-7	her .	/							<u></u>	ļ
ASNU	0.2	10	t	HAGR	T	2	6								
				LANE	2.0	10	7								
				7002	anormany	6.1	Sec. 1								
			1	CHER	in the second	0.1									L
			-												
					[										[
														1	1
Total	5.6	89.5		Total	11.3	126		Total		1		Total		1	<b>KORMERCE</b>
Rock	93,4	a	- 18 Herberger	Rock	70.7	23		Rock		1		Rock		·	
Litter	10.1	1		Litter	5	7	MORE IN CONTRACTOR INCOMENDATION	Litter			2000000	Litter		1	alan alkinin
Bare Soil		<u> </u>		Bare Soil	770	L	the second s	Bare Soil		1		Bare Soil		1	5162022195.2
Comments	1	<u> </u>	I	1-4.0 - 0.1	L	<u></u>	<ul> <li>A set of the set of set</li></ul>	l human							

.



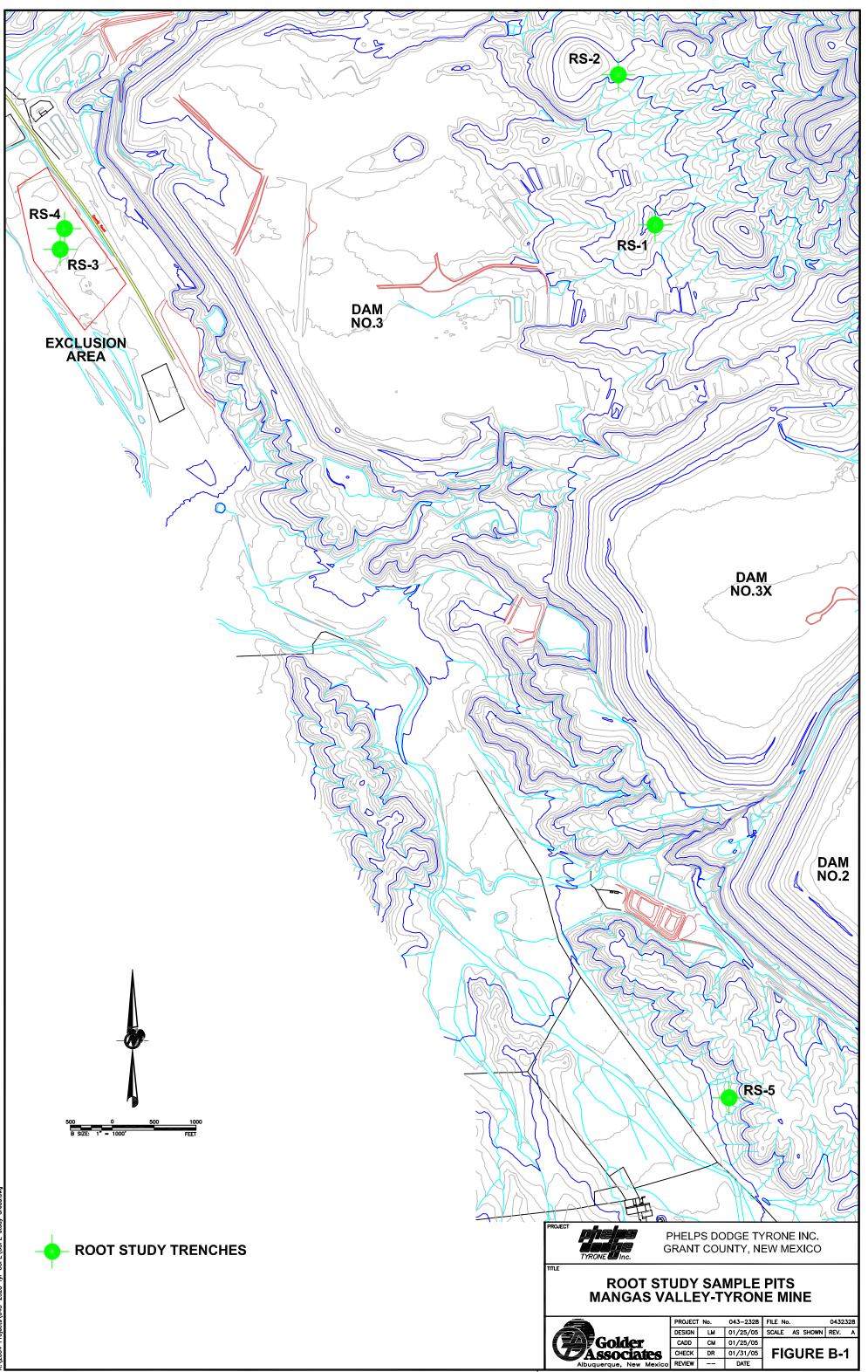
Location: EA Plot No.:			Plot No.:	G Transect No.:				Date: 10/6/04 By: DR				Associates			
Quadrant No.: Quadrant No.:									Quadrant No.:			Quadrant No.:			
	Cover				Cover				Cover			-	Cover		
Species	Basal %	Canopy %	- # Ind.	Species	Basal %	Canopy %	# Ind.	Species	Basal %	Canopy %	# ind.	Species	Basal %	Canopy %	# Ind.
BOW	1	10	15	Cow	1.5	9	il and the second s								
62111	1	Ø	6	ARAO	τ	0,1	Elas								
ARPU	0.2	1	j.	POHN	aller a	B	2-								
ASIN	and the second	ì		CHECO	-ye	1.5	B							Ļ	
HA (9K	1994	. changes	1	MAGR	vopen	0,5	s.J							1	ļ
····				Lank	-	0,5	1								
														<u> </u>	
					Ļ									<u> </u>	
														<u> </u>	
					ļ		L	<u> </u>						<u> </u>	
					ļ		[	<b> </b>							ļ
								ļ		<u> </u>		[			
														<u> </u>	
				ļ							AND COURSESSOR				121 264 268 X 1994
Total	The The	18		Total	3,5	20		Total		<u> </u>		Total			
Rock	94.0	80.5	a de agrècies		95.5	795				<u> </u>		Rock			
Litter	ſ	0,5	5.0005566666	Litter	<u> </u>	1.5		Litter				Litter			
Bare Soil	Zao	1		Bare Soil	Ô.	Ø		Bare Soil				Bare Soil		1	2028.220793

ų

Comments

A restant




.



$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Quadrant No.:			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
Species         %         # Ind.         Species         %         %         # Ind.				
Species         %         # Ind.         Species         %         %         # Ind.         Ind.         Ind.         Ind.				
12062 8.5 25 24 ROGR 1.2 9 5	Ind.			
5800 138 6 1 5800 01 1 1				
SPER OF I				
Image: Set in the set in				
Image: Series of the series				
Image: state stat				
Image: Section of the section of th				
Image: Sector				
Image: state stat				
	<del></del>			
Total 2 5 5 Total Total Total Total	94831C			
	_			
Bare Soil 34 5 14 Bare Soil 72 2 51 5 Million Bare Soil Bare Soil Bare Soil Bare Soil	<u> </u>			

**APPENDIX B** 

**ROOT DENSITY DATA** 



Horizon	Depth (Inches)	USDARockTextureFragmentClass(vol. %)		Soil Structure	Reaction With 10% HCl	
А	0 - 4	COSL	30	10YR 3/2	2 vf gr	NE
Bt1	4 - 10	CL	20	7.5YR 3/3	1 c sbk	NE
Bt2	10 - 26	С	18	7.5YR 3/4	3 c abk	NE
BC	26 -32	SCL	60	7.5YR 4/4	ma	SL
C1	32 - 36	SCL	61	5YR 4/6	ma	VI
C2	36 - 60 +	SL	30	5YR 5/6	ma	NE

# TABLE B-1. ABBREVIATED SOIL DESCRIPTION FOR RS-1

# TABLE B-2. ABBREVIATED SOIL DESCRIPTION FOR RS-2

Horizon	Depth (Inches)	USDA Texture Class	Rock Fragment (vol. %)	Moist Color	Soil Structure	Reaction With 10% HCl	
А	0 - 2	SL	21	10YR 3/4	2 vf gr	NE	
Bt1	2 - 12	CL	33	5YR 4/4	2 c sbk	NE	
Bt2	12 - 19	SCL	45	5YR 4/4	1 c sbk	NE	
С	19 - 50 +	LS	43	7.5YR 4/4	ma	NE	

# TABLE B-3. ABBREVIATED SOIL DESCRIPTION FOR RS-3

Horizon	Depth (Inches)	USDA Texture Class	Rock Fragment (vol. %)	Moist Color	Soil Structure	Reaction With 10% HCl	
Fill 1	0 - 3	SL	33	10YR 3/4	1 m sbk	ST	
Fill 2	3 - 11	SL	22	10YR 3/3	1 m sbk	NE	
Fill 3	11 - 18	LS	23	10YR 4/3	ma	NE	
Fill 4	18 - 34	SL	38	10YR 4/3	С	NE	
Tailings	34 - 40 +	SL	0	10YR 7/3	ma	NE	

# TABLE B-4. ABBREVIATED SOIL DESCRIPTION FOR RS-4

Horizon	Depth (Inches)	USDARockTextureFragmentClass(vol. %)		Moist Color	Soil Structure	Reaction With 10% HCl	
Fill 1	0 - 1	SL	21	10YR 3/3	1 vc pl	NE	
Fill 2	1 - 40	LCOS	42	10YR 4/4	ma	NE	
Tailings	40 +	FSL	0	10YR 7/3	ma	NE	

Horizon	Depth (Inches)	USDA Texture Class	Rock Fragment (vol. %)	Moist Color	Soil Structure	Reaction With 10% HCl
A1	0 - 1	SL	26	10YR 3/3	2 vc pl	NE
A2	1 - 8	SL	15	10YR 3/2	1 m sbk	NE
C1	8 - 30	LS	22	10YR 3/4 ma		NE
C2	30 - 41	LS	22	10YR 3/3	ma	NE
C3	41 - 49+	LS	22	10YR 3/4	ma	NE

# TABLE B-5. ABBREVIATED SOIL DESCRIPTION FOR RS-5

# ABBREVIATIONS

Texture							
S	Sand						
LS	Loamy sand						
SL	Sandy loam						
SCL	Sandy clay loam						
L	Loam						
CL	Clay loam						
SI	Silt						
SIL	Silt loam						
SICL	Silty clay loam						
SIC	Silty clay						
SC	Sandy clay						
С	Clay						
Sand Modifiers							
СО	Coarse						
F	Fine						
VF	Very Fine						
	Coarse Fragments						
GR	Gravelly						
VGR	Very gravelly						
EGR	Extremely gravelly						
	Structure - Grade						
0	Structureless						
1	Weak						
2	Moderate						
3	Strong						

Structure - Size								
1	Very fine or thin							
2	Fine or thin							
3	Medium							
4	Coarse or Thick							
5	Very coarse or thick							
Structure - Shape								
GR	Granular							
PL	Platy							
PR	Prismatic							
CPR	Columnar							
ABK	Angular blocky							
SBK	Sub-angular blocky							
SGR	Single grain							
MA	Massive							
	Consistence							
L	Loose							
VFR	Very friable							
FR	Friable							
FI	Firm							
VFI	Very firm							
EFI	Extremely firm							
	Effervescence							
NE	No effervescence							
SL	Slightly effervescence							
ST	Strangely effervescence							
VI	Violently effervescence							

43-232	8
43-232	ð

Soil Depth	Column Identification										Average roots/dm ²
cm bgs	Α	В	С	D	Ε	F	G	Н	Ι	J	100ts/um
0-10	67	65	66	50	33	47	52	58	62	73	57.3
10-20	46	73	49	28	27	38	50	21	36	54	42.2
20-30	19	60	45	31	23	50	32	52	48	50	41.0
30-40	27	17	23	49	20	52	60	77	59	63	44.7
40-50	26	20	13	7	22	37	45	26	34	23	25.3
50-60	3	13	12	9	9	15	20	10	3	10	10.4
60-70	9	8	7	13	13	11	11	9	6	3	9.0
70-80	6	5	5	5	4	4	8	3	2	0	4.2
80-90	у	5	5	5	4	3	6	0	1	0	3.2
90-100	1	3	2	2	5	4	0	2	0	0	1.9

#### TABLE B-6. MEASURED ROOT DENSITY DISTRIBUTION FOR RS1A

# TABLE B-7. MEASURED ROOT DENSITY DISTRIBUTION FOR RS2A

Soil Depth		Column Identification									Average
cm bgs	Α	В	С	D	E	F	G	Н	Ι	J	roots/dm ²
0-10	50	52	54	87	42	46	69	66	63	73	60.2
10-20	16	28	43	28	28	46	33	26	29	24	30.1
20-30	69	26	13	37	45	45	42	31	13	12	33.3
30-40	24	5	3	12	19	6	18	1	0	0	8.8
40-50	0	0	0	4	0	1	2	0	0	0	0.7
50-60	0	0	0	0	0	0	0	0	0	2	0.2
60-70	0	0	0	1	0	0	0	0	0	0	0.1
70-80	2	2	0	0	0	0	0	0	0	0	0.4
80-90	0	0	0	0	6	0	3	0	0	0	0.9
90-100	0	0	0	0	1	0	3	0	0	0	0.4

Notes: Each column of the grid was 10 cm in width

bgs = below ground surface

043-2328

											-		
Soil Depth		Column Identification											
cm bgs	Α	В	С	D	E	F	G	Η	Ι	J	roots/dm ²		
0-10	65	61	57	42	64	44	59	60	55	32	53.9		
10-20	22	33	31	43	44	39	44	41	34	44	37.5		
20-30	12	6	14	6	8	16	27	28	22	15	15.4		
30-40	3	3	7	1	1	2	4	11	11	0	4.3		
40-50	0	1	0	0	0	0	0	0	0	0	0.1		
50-60	0	0	0	0	0	0	0	0	0	0	0.0		
60-70	0	5	0	0	1	0	0	0	0	0	0.6		
70-80	0	0	0	0	0	0	2	0	0	0	0.2		
80-90	0	1	0	0	0	0	0	0	0	0	0.1		
90-100	0	0	0	4	0	0	0	2	0	0	0.6		

# TABLE B-8. MEASURED ROOT DENSITY DISTRIBUTION FOR RS2B

# TABLE B-9. MEASURED ROOT DENSITY DISTRIBUTION FOR RS2C

Soil Depth	-	Column Identification											
cm bgs	Α	В	С	D	E	F	G	Η	Ι	J	2		
0-10	64	37	27	29	33	57	47	44	34	45	41.7		
10-20	12	5	6	12	11	26	13	21	10	18	13.4		
20-30	7	8	7	9	11	13	7	1	2	13	7.8		
30-40	1	0	0	3	3	0	1	0	0	6	1.4		
40-50	0	0	0	2	1	1	2	0	0	0	0.6		
50-60	2	1	0	0	0	0	0	0	1	1	0.5		
60-70	0	0	0	2	0	0	2	0	0	3	0.7		
70-80	2	3	0	0	0	0	0	0	0	0	0.5		
80-90	0	0	0	0	0	0	0	0	0	1	0.1		
90-100	0	1	0	0	0	0	0	0	0	0	0.1		

Notes: Each column of the grid was 10 cm in width

bgs = below ground surface

042 2228	
043-2328	

Soil Depth		Column Identification											
cm bgs	Α	В	С	D	E	F	G	Η	I	J	roots/dm ²		
0-10	41	51	37	34	50	65	58	16	40	53	44.5		
10-20	21	28	21	33	30	23	6	6	7	23	19.8		
20-30	13	14	24	10	13	10	9	5	9	18	12.5		
30-40	0	1	1	19	24	13	3	7	2	7	7.7		
40-50	0	1	1	1	6	6	5	5	3	4	3.2		
50-60	1	1	0	0	0	0	3	0	3	8	1.6		
60-70	0	0	0	0	0	0	0	1	4	5	1.0		
70-80	0	0	0	0	0	0	0	0	2	1	0.3		
80-90	0	0	0	0	0	0	0	0	0	0	0.0		
90-100	0	0	0	0	0	0	0	0	0	0	0.0		

# TABLE B-10. MEASURED ROOT DENSITY DISTRIBUTION FOR RS3A

# TABLE B-11. MEASURED ROOT DENSITY DISTRIBUTION FOR RS3B

Soil Depth		Column Identification										
cm bgs	Α	В	С	D	Е	F	G	Н	Ι	J	roots/dm ²	
0-10	43	38	51	44	40	69	35	27	37	35	41.9	
10-20	18	20	17	19	28	17	9	13	8	9	15.8	
20-30	16	9	1	22	28	8	8	15	12	11	13.0	
30-40	9	7	3	13	12	6	16	12	5	10	9.3	
40-50	13	9	12	35	9	12	9	12	8	3	12.2	
50-60	11	2	11	25	15	6	17	6	4	4	10.1	
60-70	4	0	9	9	18	5	18	1	1	5	7.0	
70-80	15	10	9	4	6	0	3	1	4	8	6.0	
80-90	5	3	2	0	0	0	0	0	0	0	1.0	
90-100	1	1	0	0	0	0	0	0	0	0	0.2	

Notes: each column of the grid was 10 cm in width

bgs = below ground surface

Soil Depth		Column Identification											
cm bgs	Α	В	С	D	E	F	G	Η	Ι	J	roots/dm ²		
0-10	49	48	74	46	32	65	50	40	37	38	47.9		
10-20	23	19	18	17	25	23	19	12	23	13	19.2		
20-30	10	7	9	14	16	18	16	3	11	11	11.5		
30-40	8	5	3	2	4	8	11	2	5	4	5.2		
40-50	8	1	0	0	3	9	3	1	4	4	3.3		
50-60	0	1	0	1	2	5	2	4	4	7	2.6		
60-70	0	0	1	2	3	9	3	7	3	11	3.9		
70-80	1	0	3	2	3	0	3	5	0	2	1.9		
80-90	1	0	0	0	0	0	0	0	0	0	0.1		
90-100	0	0	0	0	0	0	0	0	0	0	0.0		

# TABLE B-12. MEASURED ROOT DENSITY DISTRIBUTION FOR RS3C

# TABLE B-13. MEASURED ROOT DENSITY DISTRIBUTION FOR RS4A

Soil Depth		Column Identification										
cm bgs	Α	В	С	D	Е	F	G	Н	Ι	J	roots/dm ²	
0-10	21	24	26	49	39	17	12	28	25	33	27.4	
10-20	13	22	4	4	9	10	7	15	15	11	11.0	
20-30	3	4	4	1	0	5	12	3	1	0	3.3	
30-40	0	1	1	1	0	1	3	11	0	0	1.8	
40-50	2	5	2	0	4	1	0	1	5	0	2.0	
50-60	1	2	1	1	1	1	0	2	3	1	1.3	
60-70	1	0	6	2	0	1	0	0	0	0	1.0	
70-80	1	0	0	0	0	0	2	1	2	2	0.8	
80-90	1	0	1	0	2	0	0	0	1	0	0.5	
90-100	1	3	2	1	3	0	0	0	7	2	1.9	

Notes: each column of the grid was 10 cm in width

bgs = below ground surface

Soil Depth		Column Identification											
cm bgs	Α	A B C D E F G H I J									roots/dm ²		
0-10	45	47	26	29	50	75	35	28	30	33	39.8		
10-20	16	34	18	28	27	22	36	7	23	17	22.8		
20-30	8	10	19	12	7	20	8	7	10	9	11.0		
30-40	3	6	5	5	12	5	14	6	10	5	7.1		
40-50	4	9	4	5	2	6	8	10	6	6	6.0		
50-60	2	2	3	5	5	2	0	4	2	2	2.7		
60-70	2	5	1	0	1	3	6	2	1	4	2.5		
70-80	0	2	1	1	2	4	5	7	5	0	2.7		
80-90	2	0	1	0	5	6	5	1	3	1	2.4		
90-100	0	0	0	0	0	0	0	0	0	0	0.0		

# TABLE B-14. MEASURED ROOT DENSITY DISTRIBUTION FOR RS4B

# TABLE B-15. MEASURED ROOT DENSITY DISTRIBUTION FOR RS4C

Soil Depth		Column Identification										
cm bgs	А	В	С	D	E	F	G	Н	Ι	J	roots/dm ²	
0-10	49	53	39	49	42	26	52	57	28	22	41.7	
10-20	20	28	12	12	8	12	6	11	12	3	12.4	
20-30	3	8	2	5	2	3	2	3	2	0	3.0	
30-40	3	0	3	1	2	2	3	1	0	1	1.6	
40-50	2	5	0	0	0	1	1	2	2	1	1.4	
50-60	4	1	3	1	1	0	0	3	1	3	1.7	
60-70	0	1	3	0	1	0	0	3	2	1	1.1	
70-80	0	1	2	3	3	1	4	0	2	1	1.7	
80-90	0	3	2	0	2	0	0	2	2	1	1.2	
90-100	0	0	1	1	0	0	0	2	0	1	0.5	

Notes: each column of the grid was 10 cm in width

bgs = below ground surface

Soil Depth		Column Identification											
cm bgs	Α	В	С	D	E	F	G	Н	Ι	J	roots/dm ²		
0-10	74	51	87	88	83	88	67	91	123	104	85.6		
10-20	29	14	14	27	70	65	69	75	71	64	49.8		
20-30	10	21	22	13	27	17	37	61	41	45	29.4		
30-40	14	14	14	14	17	25	24	21	20	3	16.6		
40-50	7	33	17	12	7	10	12	5	14	11	12.8		
50-60	3	10	14	5	13	3	5	3	5	2	6.3		
60-70	10	9	5	10	6	2	5	1	4	2	5.4		
70-80	16	2	6	12	2	1	6	6	1	0	5.2		
80-90	2	1	4	2	2	3	4	1	3	6	2.8		
90-100	3	0	1	2	1	1	0	2	2	1	1.3		

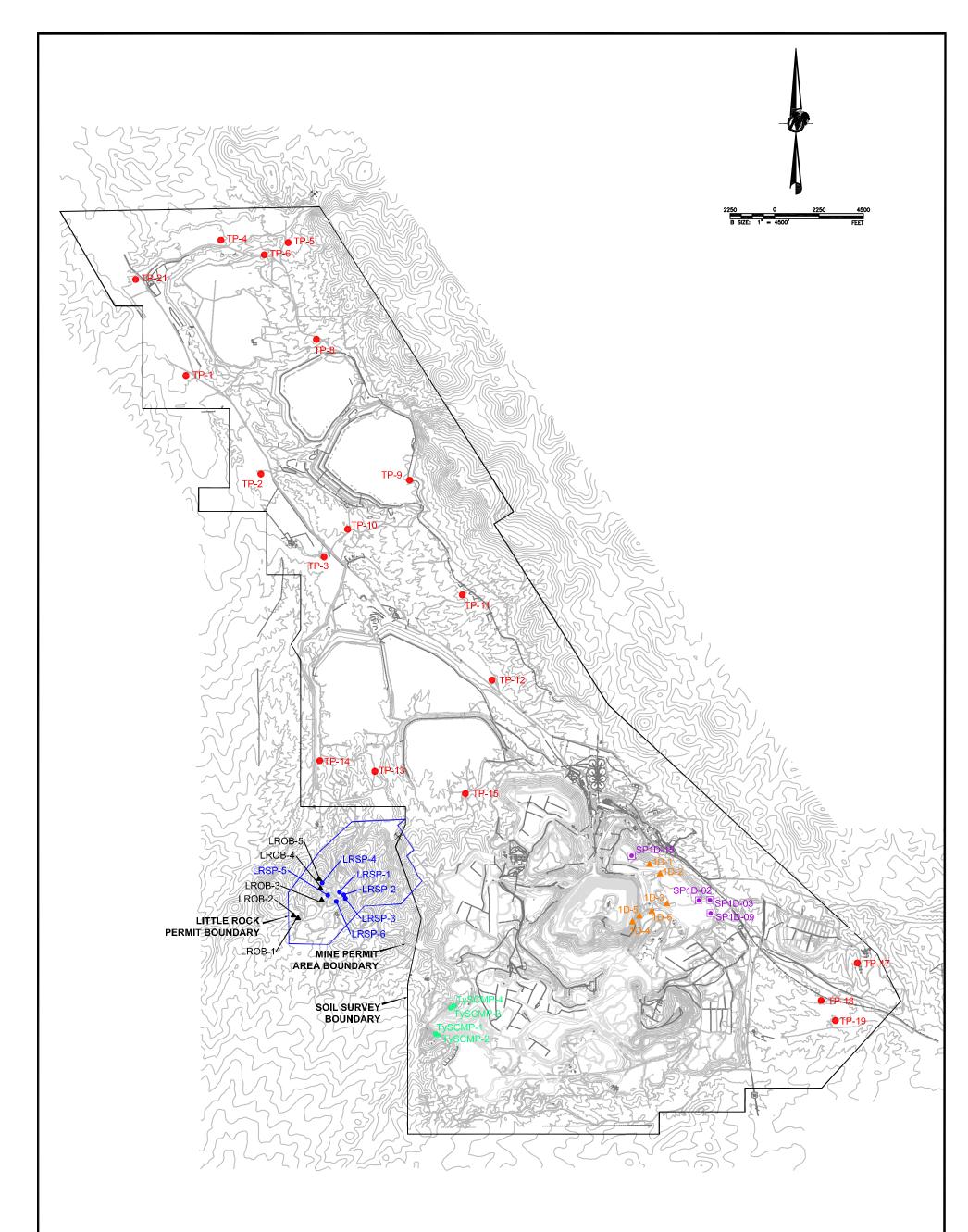
# TABLE B-16. MEASURED ROOT DENSITY DISTRIBUTION FOR RS5A

# TABLE B-17. MEASURED ROOT DENSITY DISTRIBUTION FOR RS5B

Soil Depth		Column Identification										
cm bgs	Α	В	С	D	Е	F	G	Н	Ι	J	roots/dm ²	
0-10	61	63	45	75	70	73	76	74	41	35	61.3	
10-20	31	38	25	18	56	30	36	26	23	21	30.4	
20-30	21	19	22	16	22	14	17	13	29	25	19.8	
30-40	9	19	10	12	14	4	13	14	19	13	12.7	
40-50	14	8	6	3	8	8	12	10	18	9	9.6	
50-60	15	11	6	9	8	6	9	11	21	12	10.8	
60-70	8	7	4	5	7	11	9	6	13	9	7.9	
70-80	4	9	5	5	6	5	7	7	4	5	5.7	
80-90	3	15	12	6	4	10	1	16	2	3	7.2	
90-100	3	8	12	15	5	7	9	15	7	5	8.6	

Notes: each column of the grid was 10 cm in width

bgs = below ground surface


TABLE 5-18. MEASURED ROOT DENSITY DISTRIBUTION FOR RSSC												
Soil Depth	[			Co	olumn Id	entificati	ion				Average	
cm bgs	А	В	С	D	E	F	G	H	I	J	roots/dm ²	
0-10	86	67	75	38	46	70	66	72	63	100	68.3	
10-20	12	17	30	28	12	10	38	42	49	16	25.4	
20-30	6	14	17	22	17	27	31	30	35	18	21.7	
30-40	5	7	9	10	12	14	16	25	14	21	13.3	
40-50	7	4	16	6	13	5	10	11	8	14	9.4	
50-60	5	3	6	4	6	7	14	5	1	16	6.7	
60-70	10	5	2	8	14	8	8	6	6	9	7.6	
70-80	4	3	2	6	8	9	3	5	7	8	5.5	
80-90	0	0	3	1	5	4	2	2	8	3	2.8	
90-100	5	0	1	4	2	5	10	1	2	5	3.5	

# TABLE B-18. MEASURED ROOT DENSITY DISTRIBUTION FOR RS5C

Notes: each column of the grid was 10 cm in width bgs = below ground surface

**APPENDIX C** 

COVER MATERIAL CHARACTERIZATION DATA





# Appendix C - Cover Material Characterization Data C-1

Table C-1. Chemical and Physical Properties of Selected Samples from the Tyrone Mine (adapted from DBS&A, 1997c)

	I		from the Tyrone Mine (ad Saturated Paste Extract H			Hot Wate		, 1997(0)		1	Porticlos (	Size Distri	bution			
Horizon				Satu	rateu i aste Ex	uaci			Soluble	CaCO ₃	Saturation		articles	SIZE DISTI	Rock	USDA
Designation	Depth ^a	Saturated	EC	Calcium	Magnesium	Sodium		Selenium	Boron	Equivalent	Percent	Sand	Silt	Clay	Fragments	Texture
/Laver	(in or ft)		(dS/m)	(meq/L)	(meq/L)	(meq/L)	SAR	(mg/kg)	(mg/kg)	% wt	% water	% wt	% wt	% wt	% vol	Class ^b
Test Pit 1, Map U		r aste pri	(45/11)	(meq/L)	(meq/L)	(meg/E)		(118/18)	(118/18)	70 WI	70 water	70 WI	70 111	70 101	70101	Class
BW1	2-15"	7.1	0.33	2.56	0.47	0.20	0.16	< 0.01	0.12	1.6	48.6	24	51	25	5	SiL
BW1 BW2	15-52"	7.6		2.30	2.22	1.02	0.10	<0.01	0.12	2.4	48.0	24	56		7	SiL
BW2	52-62"	7.6	1.66 0.99	8.99	1.21	0.96	0.32	<0.01	0.12	2.4	25.9	28 66	27	16 7	55	SIL
L													9		5	
Alluvium	9-11'	7.8	0.59	4.03	0.72	0.89	0.58	<0.01	0.03	2.4	18.0	88	-	3	5	S
Alluvium	11-14'	7.5	1.26	9.51	1.47	1.23	0.52	< 0.01	0.04	2.3	22.2	78	15	/	1	LS
Test Pit 2, Map U			0.46	2.61	0.77	0.56	0.20	0.01	0.00	1.0	560	22	40	20	0	CI
BW1	2-18"	7.5	0.46	3.61	0.77	0.56	0.38	< 0.01	0.09	1.3	56.8	22	40	38	0	CL
BW2	18-34"	7.8	0.73	4.56	1.42	1.96	1.13	< 0.01	0.10	3.9	32.0	60	28	12	20	SL
C	34-57"	7.8	1.56	11.40	3.23	4.40	1.63	< 0.01	0.13	2.5	21.7	88	9	3	45	S
Alluvium	4-13'	7.7	1.45	11.20	1.84	1.86	0.73	0.02	0.04	2.2	22.8	71	22	7	5	SL
Test Pit 3, Map U		1		1				1		1					1	
A	0-11"	6.3	0.24	1.32	0.64	0.14	0.14	< 0.01	0.06	1.0	21.3	72	25	3	30	SL
BW	11-18"	6.7	0.33	1.90	0.95	0.30	0.25	< 0.01	0.07	1.0	24.2	60	27	13	20	SL
BC	18-31"	6.9	0.31	1.67	0.84	0.37	0.33	< 0.01	0.05	0.8	20.3	80	14	6	30	LS
С	31-58"	7.2	0.26	1.28	0.65	0.30	0.31	< 0.01	0.06	1.1	15.6	84	11	5	45	LS
Alluvium	9-13'	7.6	1.08	5.26	1.57	3.50	1.89	0.02	0.07	1.4	33.8	49	39	12	1	L
L																I
A2	2-13"	7.6	0.50	4.26	0.66	0.22	0.14	< 0.01	0.09	3.5	36.8	48	45	7	5	L
BW	13-30"	7.7	0.47	3.73	0.65	0.61	0.41	< 0.01	0.11	3.9	29.7	58	37	5	5	SL
С	30-58"	7.9	0.39	2.53	0.49	0.68	0.55	< 0.01	0.14	2.8	19.7	84	13	3	40	LS
Alluvium	2.5-14'	7.9	0.58	3.71	0.83	1.20	0.80	< 0.01	0.10	3.3	20.2	82	14	4	5	LS
Test Pit 5, Map U	Unit 20															
A2	2-14"	7.1	0.40	3.57	0.52	0.24	0.17	< 0.01	0.05	1.1	38.0	51	35	14	5	L
BW	14-26"	7.6	0.39	3.21	0.46	0.29	0.21	< 0.01	0.06	6.0	29.4	64	29	7	22	SL
С	26-56"	7.8	0.35	2.65	0.51	0.44	0.35	< 0.01	0.04	5.1	23.2	78	17	5	50	LS
Alluvium	5-7'	7.8	0.34	2.04	0.55	0.93	0.82	< 0.01	0.05	4.2	21.7	80	15	5	10	LS
Alluvium	8-12'	7.8	0.84	4.68	1.01	3.33	1.97	< 0.01	0.05	3.3	18.3	90	4	6	10	S
Test Pit 6, Map U	Unit 30	•						•		•						
Bt 1, Bt 2	2-20"	6.7	0.44	2.69	1.14	0.59	0.43	0.01	0.13	0.9	40.0	60	15	25	55	SCL
Bt 3	20-31"	7.5	0.49	2.50	1.08	1.65	1.23	< 0.01	0.16	2.4	33.4	72	9	19	63	SL
Bt 4	31-61"	7.7	0.86	2.67	1.10	5.21	3.79	< 0.01	0.15	1.7	40.9	68	16	16	75	SL
Bt 6	61-71"	7.4	3.10	11.40	3.43	14.90	5.47	< 0.01	0.04	1.1	43.7	59	19	22	10	SCL
Gila C	6-8'	7.4	3.74	14.80	3.94	17.80	5.82	< 0.01	0.02	1.7	44.1	48	47	5	0	SL
Gila C	8-10'	7.6	2.62	9.92	2.22	11.90	4.83	0.01	0.02	2.9	27.4	75	19	6	5	SL
Gila C	10-14'	7.7	2.00	7.81	1.61	8.54	3.94	< 0.01	0.01	2.1	18.8	85	11	4	55	LS
Gila C	14-20'	7.6	0.98	6.13	0.88	2.52	1.35	<0.01	0.02	3.4	21.1	82	13	5	15	LS
Test Pit 8, Map U			0.20											-		
Btk 1	2-17"	7.4	0.56	2.37	0.80	3.02	2.40	< 0.01	0.13	1.2	75.2	27	20	53	15	С
Btk 2	17-34"	7.4	3.66	18.60	6.12	16.60	4.72	0.02	0.15	2.8	62.3	28	39	33	15	CL
Btk 3	34-58"	7.6	3.14	12.10	3.61	16.60	5.92	< 0.02	0.16	6.5	33.5	56	40	4	22	SL
Btk 4	58-73"	7.0	2.28	8.77	2.00	12.10	5.21	<0.01	0.00	9.2	23.3	78	18	4	45	LS
<b>ρικ 4</b>	30-13	1.1	2.28	0.//	2.00	12.10	3.21	<0.01	0.02	9.2	23.3	/ð	10	4	43	LS

# Appendix C - Cover Material Characterization Data C-2

043-2328

 Table C-1.

 Chemical and Physical Properties of Selected Samples

 from the Tyrone Mine (adapted from DBS&A, 1997c)

			Saturated Paste Extract			Hot Wate				]	Particles <b>S</b>	Size Distri	bution			
Horizon										CaCO ₃	Saturation		<u> </u>		Rock	USDA
Designation	<b>Depth</b> ^a	Saturated	EC	Calcium	Magnesium	Sodium		Selenium	Boron	Equivalent	Percent	Sand	Silt	Clay	Fragments	Texture
/Laver	(in or ft)	Paste pH	(dS/m)	(meq/L)	(meq/L)	(meq/L)	SAR	(mg/kg)	(mg/kg)	% wt	% water	% wt	% wt	% wt	% vol	Class ^b
Gila C	4-12'	7.6	1.92	9.87	1.72	7.00	2.90	< 0.01	0.01	4.1	24.5	72	21	7	65	SL
Gila C	12-14'	7.6	1.20	7.10	1.21	2.53	1.24	<0.01	0.01	1.7	32.6	60	29	11	15	SL
Gila C	14-20'	7.6	1.00	6.11	1.16	1.68	0.88	<0.01	0.01	1.7	25.4	70	17	13	50	SL
Test Pit 9, Map Ur		7.0	1.00	0.11	1.10	1.00	0.00	<0.01	0.01	1.5	23.4	70	17	15	50	5E
A	0-6"	5.0	0.92	4.97	2.55	0.44	0.23	< 0.01	0.09	0.9	27.6	58	30	12	35	SL
Bt 1	6-34"	6.5	0.26	0.94	0.63	0.64	0.72	<0.01	0.17	0.6	71.7	24	17	59	35	C
Bt 2	34-70"	7.6	2.65	8.57	6.08	14.50	5.36	<0.01	0.15	6.0	47.2	60	15	25	65	SCL
0.07	0170	,	2.00	0107	0100	11100	0.00	(0101	0.110	0.0	.,.2	00	10	20	00	Del
A, AB	0-16"	6.6	0.30	1.48	0.69	0.33	0.32	< 0.01	0.07	0.8	18.1	70	23	7	20	SL
Bt 1, Bt 2	16-49"	7.4	0.65	3.04	1.44	1.94	1.30	<0.01	0.08	0.9	30.3	60	20	20	30	SCL
Bt 1, Bt 2 Bt 3	49-63"	7.8	1.01	2.47	1.68	5.98	4.15	<0.01	0.08	1.9	34.4	48	35	17	7	L
Gila C	8-18'	7.2	1.01	1.56	0.78	7.87	7.28	<0.01	0.00	0.7	23.7	52	35	13	1	L
Gila C	18-20'	6.8	0.70	0.91	0.48	5.14	6.17	<0.01	0.01	0.7	16.4	84	8	8	10	LS
Test Pit 11, Map U		0.0	0.70	0.91	0.10	5.11	0.17	0.01	0.01	0.7	10.1	01	Ū	Ŭ	10	15
A	0-5"	6.3	0.38	2.25	1.05	0.24	0.19	< 0.01	0.06	0.7	18.6	74	21	5	30	SL
Bt 1	1-18"	6.7	0.69	1.39	0.56	5.09	5.15	<0.01	0.02	1.4	38.8	57	20	23	10	SCL
Bt 2	18-60"	6.8	0.92	1.78	0.73	6.21	5.54	< 0.01	0.01	1.7	35.5	62	23	15	25	SL
Gila C	16-20'	6.6	0.70	2.33	0.99	3.17	2.46	< 0.01	0.02	1.1	37.8	54	25	21	5	SCL
Test Pit 12, Map U															-	~~
C	2-54"	7.5	0.36	2.81	0.57	0.23	0.18	< 0.01	0.02	0.7	17.0	82	12	6	50	LS
Alluvium	7-10'	7.2	1.64	15.40	3.10	1.15	0.38	< 0.01	0.09	0.6	22.0	70	23	7	<5	SL
Alluvium	10-15'	7.4	0.59	4.08	1.04	0.53	0.33	< 0.01	0.03	0.5	18.4	88	6	6	<5	LS
Test Pit 13, Map U	Unit 20															
A, C1	0-39"	6.4	0.22	1.14	0.50	0.26	0.29	< 0.01	0.06	0.6	18.9	90	6	4	30	S
C2	39-62"	6.3	0.18	0.98	0.40	0.30	0.36	< 0.01	0.04	0.7	17.2	87	9	4	30	LS
Alluvium	6-14'	6.8	0.23	1.37	0.84	0.47	0.45	< 0.01	0.04	0.4	20.2	94	3	3	20	S
Test Pit 14, Map U	Unit 40			1						1						
C1	0-46"	6.9	0.43	0.50	0.24	3.80	6.25	< 0.01	< 0.01	0.9	22.9	76	13	11	46	SL
C2	46-55"	7.2	0.38	0.17	0.11	3.41	9.11	< 0.01	< 0.01	0.8	39.4	54	23	23	25	SCL
Test Pit 15, Map U	Unit 40															
А	0-9"	5.5	0.52	3.53	1.38	0.34	0.22	0.01	0.10	0.6	20.9	75	18	7	15	SL
Bt 1	9-15"	5.6	0.35	1.14	0.63	0.86	0.91	< 0.01	0.08	1.1	35.7	64	13	23	45	SCL
Bt 2	15-46"	7.4	0.71	1.71	0.72	4.54	4.12	< 0.01	0.08	1.1	22.6	72	20	8	50	SL
C2	46-60"	7.6	2.07	6.74	2.26	13.70	6.46	< 0.01	0.03	1.5	23.3	80	13	7	65	LS
Gila C	9-12.5"	7.5	2.07	8.27	2.15	9.54	4.18	< 0.01	0.02	4.2	19.3	78	15	7	15	LS
Test Pit 17, Map U				,				•		•	•				•	
A	0-11"	5.2	0.42	1.97	0.90	0.24	0.20	< 0.01	0.09	0.7	18.5	66	28	6	17	SL
Bt 1, Bt 2	11-29"	5.8	0.28	1.36	0.64	0.63	0.63	< 0.01	0.11	1.2	24.4	71	15	14	50	SL
BC	29-60"	7.5	0.42	2.17	0.90	1.32	1.07	< 0.01	0.01	0.7	22.4	80	10	10	65	SL
Test Pit 18, Map U								•						•		
A	0-8"	6.4	0.34	1.79	0.85	0.29	0.25	< 0.01	0.06	1.5	20.0	65	23	12	20	SL
d I	8-14"	6.5	0.32	1.59	0.83	0.70	0.64	< 0.01		0.9	27.5		22	1		SL

 Table C-1.

 Chemical and Physical Properties of Selected Samples

 from the Tyrone Mine (adapted from DBS&A, 1997c)

				Sa4-	rated Paste Ex		one mine	Hot Wate		, 1))/(c)		1	Dontiolog	Size Distril	hard on	
··· ·				Satu	rated Paste Ex	iraci		Hot wate	r Soluble	G 60	<i>a</i>		Particles a	Size Distri		USDA
Horizon									_	CaCO ₃	Saturation				Rock	
Designation	Depth ^a	Saturated	EC	Calcium	Magnesium	Sodium		Selenium	Boron	Equivalent	Percent	Sand	Silt	Clay	Fragments	Texture
/Layer	(in or ft)	Paste pH	(dS/m)	(meq/L)	(meq/L)	(meq/L)	SAR	(mg/kg)	(mg/kg)	% wt	% water	% wt	% wt	% wt	% vol	Class ^b
Bt 2	14-24"	6.5	0.56	0.95	0.45	1.75	2.09	< 0.01	0.20	0.4	51.1	42	14	44	40	С
BC	24-60"	7.7	0.53	0.76	0.47	4.16	5.30	< 0.01	0.05	3.0	25.5	72	7	21	60	SCL
Test Pit 19, Map	Unit 20															
А	0-7"	7.5	0.44	3.44	0.96	0.26	0.18	< 0.01	0.09	1.3	28.2	58	24	18	7	SL
C1	7-43"	7.5	0.24	1.51	0.54	0.33	0.33	< 0.01	0.04	1.1	20.8	88	5	7	32	LS
C2	43-62"	7.3	0.34	1.42	0.53	1.30	1.32	< 0.01	0.04	1.3	24.8	66	22	12	5	SL
Test Pit 21, Map	Unit 10															
A, C1, C2	0-35"	7.6	0.37	2.94	0.44	0.26	0.20	< 0.01	0.09	3.1	22.9	90	5	5	70	S
C3	35-55"	7.7	0.51	3.90	0.67	0.40	0.26	0.01	0.14	4.0	30.5	52	42	6	5	SL
Pit Wall Gila Co.	nglomerate															
1D-4	Grab	6.1	1.27	7.56	4.39	2.38	0.97	< 0.01	0.03	0.9	17.8	87	10	3	60	S
1D-5	Grab	6.2	0.94	6.43	2.36	1.47	0.70	< 0.01	0.04	0.9	19.4	84	11	5	40	LS
1D-6	Grab	6.7	1.96	15.00	6.06	4.43	1.37	< 0.01	0.03	1.2	19.5	84	12	4	15	LS
1D (5A) Stockpil	е															
1D-1		5.7	0.63	2.52	1.31	1.23	0.89	< 0.01	0.05	0.8	20.8	79	13	8	ND	LS
1D-2		5.1	0.75	4.67	2.29	0.51	0.27	< 0.01	0.03	0.8	20.5	85	10	5	ND	LS
1D-3		5.9	0.56	2.88	1.33	1.44	0.99	< 0.01	0.03	1	21.3	84	11	5	ND	LS
SP1D-02		5.7	1.17	7.61	3.97	1.86	0.77	< 0.01	0.02	ND	21.8	80	11	9	ND	LS
SP1D-03		6.5	0.16	2.39	1.24	1.07	0.79	< 0.01	0.02	0.4	23.2	80	12	8	ND	LS
SP1D-09		6.2	0.53	2.96	1.42	0.69	0.47	< 0.01	0.03	BA	18.5	86	7	7	ND	LS
SP1D-15		6.3	0.41	2.24	0.9	0.68	0.54	< 0.04	0.02	NA	19.1	82	10	8	ND	LS

^a Depths for soil horizons are in inches; depths for the underlying geologic layers are in feet.

^b USDA texture class according to Soil Survey Division Staff (1993)

#### TABLE C-2 CHEMICAL AND PHYSICAL PROPERTIES OF SELECTED SAMPLES OF LITTLE ROCK AND TYRONE LEACHED CAP MATERIAL

			Saturated	l Paste Extract	1		Particles S	Size Distril	oution	
Sample Identification	<b>Depth</b> ^a (ft)	Saturated Paste pH	<b>EC</b> ( <i>dS/m</i> )	NO ₃ (mg/kg)	CaCO ₃ Equivalent % wt	Sand % wt	Silt % wt	Clay % wt	Rock Fragments % vol	USDA Texture Class ^b
Little Rock Mine				•					•	
LRSP-1	0-0.5	5.7	0.12	1.9	0.9	65	19	16	59	SL
LRSP-2	0-0.5	5.8	0.14	1.8	0.9	67	19	14	65	SL
LRSP-3	0-0.5	7.1	0.25	2.5	1.1	72	16	12	64	SL
LRSP-4	0-0.5	5.5	0.14	1.5	0.5	60	24	16	52	SL
LRSP-5	0-0.5	5.7	0.12	<1	0.9	70	16	14	46	SL
LRSP-6	0-0.5	5.6	0.15	3	0.7	80	10	10	66	SL
LROB-1	4-5	6.8	0.65	<1	1.1	72	15	13	64	SL
LROB-2	4-5	6.7	0.21	<1	1	74	13	13	65	SL
LROB-3	4-5	6.2	0.22	<1	1	70	13	17	64	SL
LROB-4	4-5	6.6	0.27	<1	1.3	72	13	15	52	SL
LROB-5	4-5	6	0.87	16	0.6	68	21	11	46	SL
Tyrone Leach Cap	1									
TySCMP-1		6.7	0.36		< 0.1	74	12	14	55	SL
TySCMP-2		6.1	0.29		< 0.1	68	15	17	60	SL
TyNCMP-1		5.9	0.52		< 0.1	66	18	16	65	SL
TyNCMP-2		4.9	0.68		<0.1	67	16	24	60	SCL

^a Depths for soil horizons are in inches; depths for the underlying geologic layers are in feet.

^b USDA texture class according to Soil Survey Division Staff (1993)

 Table C-3

 Whole Rock Elemental Analytical Results for Mineral Assemblages 0 and 2

 Assay Pulp Mineral Assemblage Samples (DBS&A, 1997)

Sample ID ^a	Concentration (mg/kg)																		
	Ag	Al	As	В	Ba	Be	Cd	Со	Cr	Cu	Fe	F	Mn	Mo	Ni	Pb	Se	V	Zn
Mineral Assemblage 0																			
D43A-0-MA0	1.6	12300	28.7	12.1	265	0.5	1.07	6.6	31.6	697	19100	29.9	291	43.2	7.7	67.9	0.3	12.2	331
D43A-100-MA0	0.5	8540	18.3	13.2	72.4	0.4	ND	2.9	34.6	421	10500	19.3	178	29.6	21.4	33	0.7	11.8	101
D43A-150-MA0	0.6	7220	17.3	9.2	93.3	0.3	ND	5.4	25.3	930	12000	31.8	439	69.7	6.1	29.5	ND	7	130
F44-140-MA0	0.6	11900	31.8	14.8	120	0.5	0.28	4	61.8	717	13500	17.3	258	47.8	9.8	36.2	ND	13.4	143
F44-90-MAO	0.6	7420	14.8	9.6	73.4	0.4	0.36	3.4	66.4	424	11500	16.1	183	23.2	11.6	23.5	ND	13.2	126
GILA#1-MAO	1.5	59300	60.7	12.2	112	1.8	ND	1.3	10.7	31.6	10100	15.3	172	2.9	4.1	27.1	ND	7.6	49.8
GILA#2-MAO	ND	6900	26.2	11.8	88.1	0.4	ND	2.8	23.4	194	10600	6.1	228	13.4	3.6	18.4	0.2	17.9	78
GILA#3-MAO	0.6	8410	16.9	8.8	63.1	0.8	0.45	4	33.8	289	13700	6.7	269	11.1	7.7	33.7	ND	19	111
GILA#4MAO	1.2	13000	21.4	10.9	79.1	0.8	ND	5.2	25.9	652	15200	11.7	274	12.5	5.3	30.2	ND	22.1	121
GILA#5-MAO	1.3	8930	27.4	13.3	83.4	0.7	0.51	2.8	32.3	333	17500	8.7	163	40.2	8.4	33.3	ND	21.3	115
GILA#6-MAO	0.7	7070	17.1	11.1	77.3	0.5	0.37	2.2	22.9	254	13800	8.1	150	22.7	6.9	30.9	ND	16.7	100
DE43A-50-MAO	ND	8620	ND	21.2	88	0.3	ND	3.1	42	314	14100	17.8	ND	32	11.7	35.6	ND	17.6	81
Mineral Assemblage 1	-													-					
AD33-451-MA1	0.5	10700	31.7	5.1	260	0.8	0.85	9.2	3.3	549	16200	8.2	1970	2.2	8.8	52.6	ND	4.2	782
AG34-684-MA-1	3.0	5190	8.7	ND	133	0.5	14	9.1	34.9	631	16200	20.2	325	16.2	8.2	566	0.8	2.7	2430
BE38-148-MA1	0.4	9570	22	7	49.5	0.4	ND	0.7	41.1	321	9070	7.3	20.8	210	4.3	42.8	1.2	6.6	12.2
BE38-98-MA1	0.6	8930	14	5.3	46.3	0.3	ND	1.6	29.2	182	6900	8.9	26.2	110	2.2	167	0.5	7.8	13.9
BH26-172-MA1	3.0	6720	ND	ND	109	0.2	0.41	0.8	49.9	807	20600	7.1	124	138	4.8	354	ND	9.8	176
BJ40-237-MA1	0.7	10700	19.9	9.3	109	0.5	0.73	1.5	63.1	504	12800	4.9	69	151	10.7	54	0.2	16.8	100
BJ40-287-MA1	ND	6460	22.3	6.2	54	0.3	1.12	1.5	56.9	455	6500	4.2	58.4	74.6	10.8	12.5	0.3	7.7	89.9
M50-294-MA1	0.4	7730	ND	ND	136	0.1	ND	1.4	69.1	241	22900	3.1	52.7	11.5	ND	27.3	0.4	6.6	55.1
O50-700-MA1	1.7	13200	32.2	5.7	242	0.7	ND	12.2	3.8	576	28200	5.6	1530	48.8	ND	15.6	0.3	4.1	186
AL18-253-MA1	ND	14800	ND	19.6	208	0.4	ND	4	48.1	76.7	13100	4.4	ND	5.9	4.6	26.1	0.3	10.5	92.4
BB25-44-MA1	1.2	7580	ND	34.8	191	ND	ND	0.6	6.2	327	28000	ND	ND	382	4.3	41.7	0.6	11.3	23.8
E10-0-MA1	3.2	5980	ND	44	470	ND	ND	1.4	8.6	365	36200	ND	ND	55.4	18.2	56.1	ND	8.7	40.8
F17-0-MA1	1.8	5980	ND	17	182	ND	ND	ND	ND	162	11200	5.3	ND	73.8	ND	48.7	0.8	2.3	15.7
F17-108-MA1	ND	2180	ND	11.4	68.6	ND	ND	0.5	ND	244	6720	4.8	24.2	58.8	ND	61.2	0.7	1.6	22.2
F17-58-MA1	ND	1340	ND	9.9	73.6	ND	ND	0.6	ND	186	6040	3.9	7.6	55.6	ND	49.4	ND	2.3	24.2
G50-627-MA1	ND	10200	ND	18.3	150	0.3	ND	ND	130	226	15700	3.1	40.7	50.3	2.1	10.3	0.4	5.8	21.5
G50-677-MA1	ND	12800	ND	18.3	142	0.4	ND	0.6	173	218	17400	5.9	83	35.7	ND	23.4	0.2	6.9	31.8
G50-777-MA1	1.1	15200	ND	28.7	199	0.7	ND	1.2	83.5	624	25500	16.4	61.8	37.9	ND	31.5	ND	9.3	61.5
M50-434-MA1	0.9	10600	ND	16.5	141	0.7	ND	6.2	56.5	984	13600	19.7	436	18.7	ND	86.6	0.6	7	288

Notes:

^a Combination of assay pulp samples analyzed during PMC and SMC

Sample ID ^a					Sulfur Con	tent (wt %)	
•	ABA ^b	AGP ^c	ANP ^d	Residual	Pyritic	Sulfate	Total
Mineral Assemblage 0	•						
D43A-0-MA0	-13.7		7.5	0.01	0.68	0.11	0.8
D43A-100-MA0	9.7	0.31	10	ND	0.01	0.03	0.04
D43A-150-MA0	6.9	0.31	7.2	ND	0.01	0.04	0.05
F44-140-MA0	19.5	0.31	19.8	ND	0.01	0.05	0.06
F44-90-MAO	15.1	0.31	15.4	ND	0.01	0.02	0.03
GILA#1-MAO	29.5	ND	29.5	ND	ND	ND	0.01
GILA#2-MAO	11.8	ND	11.8	0.02	ND	ND	0.02
GILA#3-MAO	14.1	ND	14.1	ND	ND	0.09	0.09
GILA#4MAO	6	0.31	6.3	ND	0.01	0.22	0.23
GILA#5-MAO	12.6	0.31	12.9	ND	0.01	0.03	0.04
GILA#6-MAO	6.9	0.31	7.2	ND	0.01	0.05	0.06
D43A-50-MAO	5.6	ND	5.6	ND	ND	0.03	0.04
1D-1	8	<1	8	nt	nt	nt	0.03
1D-2	8	<1	8	nt	nt	nt	0.03
1D-3	10	<1	10	nt	nt	nt	0.03
1D-4 ^e	9	<1	9	nt	nt	nt	0.03
1D-5 ^e	9	<1	9	nt	nt	nt	0.03
1D-6 ^e	12	<1	12	nt	nt	nt	0.02
SP1D-02	2	<1	2	< 0.01	0.01	0.03	0.05
SP1D-03	3	1	4	< 0.01	0.02	0.01	0.03
SP1D-07	-2	5	3	0.01	0.16	0.16	0.33
SP1D-09	6	<1	6	< 0.01	< 0.01	0.01	0.02
SP1D-11	1	3	4	0.08	0.08	0.05	0.21
SP1D-15	3	<1	3	< 0.01	< 0.01	0.03	0.04
Mineral Assemblage 1						•	
AD33-451-MA1	14.8	0.31	15.1	ND	0.01	0.03	0.04
AG34-684-MA-1	-38.9	55.6	16.8	0.03	1.78	0.24	2.05
BE38-148-MA1	5.5	0.63	6.2	ND	0.02	0.09	0.12
BE38-98-MA1	7.7	0.63	8.3	0.01	0.02	0.08	0.11
BH26-172-MA1	14.6	7.19	21.7	0.02	0.23	0.1	0.35
BJ40-237-MA1	7.3	2.81	10.1	ND	0.09	0.14	0.23
BJ40-287-MA1	5.1	0.31	5.4	ND	0.01	0.07	0.08
M50-294-MA1	2.5	12.5	15	0.34	0.4	0.22	0.96
O50-700-MA1	-9.7	19.7	10	0.84	0.63	0.18	1.65
AL18-253-MA1	23.7	ND	23.7	ND	ND	ND	0.01
BB25-44-MA1	-4	10.6	6.6	0.32	0.34	0.05	0.71
E10-0-MA1	-14.2	18.6	4.6	ND	0.6	0.11	0.72
F17-0-MA1	-4.8	5.3	0.5	0.01	0.17	0.06	0.24
F17-108-MA1	-1.3	1.3	ND	ND	0.04	0.06	0.11
F17-58-MA1	-5.9	5.9	ND	0.04	0.19	0.08	0.31
G50-627-MA1	-16.6	20.3	3.7	0.07	0.65	0.05	0.77
G50-677-MA1	-4.5	8.1	3.6	0.02	0.26	0.11	0.39
G50-777-MA1	-14	16.6	2.6	0.01	0.53	0.12	0.66
M50-434-MA1	4.2	1.6	5.8	0.04	0.05	0.1	0.19

Table C-4. Acid-Base Account and Sulfur Forms Data from the Supplemental Materials Characterization Tyrone Mine Closure/Closeout (DBS&A, 1997)

Notes:

^a Combination of assay pulp samples analyzed during PMC and SMC

^b ABA = Acid-base account = ANP - AGP, in tons  $CaCO^3$  per 1,000 tons or rock

^c AGP = Acid-generation potential, in tons  $CaCO^3$  per 1,000 tons of rock

 d  ANP = Acid-neutralization potential, in ton CaCO³ per 1,000 tons of rock

^e = Grab sample obtained from pit wall of the Main Pit

ND = non-detect

nt = not tested

# APPENDIX D

# UNSAT-H INPUT PARAMETERS AND ANNUAL OUTPUT SUMMARIES

D-1

# 043-2328

# TABLE D-1COVER MODELING INPUT PARAMETERS FORCONDITION 75: COMPREHENSIVE COVER PERFORMANCE EVALUATION.

Input Parameter	Model Variable	Values	Units	Comments
Climate				
Precipitation		102 years of daily data,	in/day	Ft. Bayard period of record; first 2 years set initial soil-water conditions
Temperature		102 years of daily data	°F	Ft. Bayard period of record
Dewpoint		9.8-22.7	°F	Monthly average calculated from average temperature and relative humidity (RH).
Solar radiation		400-900	langleys	Calculated from latitude and date (Barbour et al., 1987)
Wind speed		8.3-12.7	mi/hr	Monthly average for Deming, NM.
Cloud cover		3.4-5.1	tenths	Monthly average for Albuquerque, NM
Vegetation				
Leaf area index	NDLAI, IDLAI, VLAI	0.012 to 0.29	none	Functional relationship with a maximum of 0.29 (see Section 2)
Rooting growth and density	AA, B1, B2	7.0E-01, 6.0E-02, 1.6E-02	none	Functional relationship with a 69-20-7-4 quartile root distribution; $RLD = a \exp(-bz) + c$ (see Section 3)
Growth day roots are at model node	NTROOT	1 – cover 366 – stockpile		Assumes perennial vegetation and roots restricted to cover: 1 – roots always at node, 366 – no roots at node for stockpile
Water uptake	NUPTAK	Sink term		Feddes et al., 1978
PET partitioning	NFPET	calculated		Program partitions based on LAI and equation by Ritchie and Burnett (1971)
PET partitioning coefficients	PETPC	0.0, 0.52, 0.5, 0.0, 2.7		Coefficients of Ritchie equation $(= a + bLAI^{c})$
Head				
Wilting point	HW	2.0E+04	cm	Head below which plant wilt and stop transpiring
Dry conditions	HD	3.0E+03	cm	Head below which plant decrease transpiration
Anaerobic	HN	1.0E+0	cm	Head above which transpiration stops due to anaerobic conditions

# TABLE D-1 COVER MODELING INPUT PARAMETERS FOR CONDITION 75: COMPREHENSIVE COVER PERFORMANCE EVALUATION (CON'T).

Input Parameter	Model Variable	Values	Units	Comments
Soil				
K _{sat}	SK	15.12 – cover (TP3 1-9') ^a	cm/hr	measured (DBS&A, 1999)
		36.0 – stockpile		
		0.0018 – tailing		
Saturated water content	THET	0.3120 – cover (TP3 1-9') ^a	$cm^3/cm^3$	measured (DBS&A, 1999)
		0.140 – stockpile		
		0.430 – tailing		
Residual water content	THTR	0.0350 – cover (TP3 1-9') ^a	$cm^3/cm^3$	measured (DBS&A, 1999)
		0.0 – stockpile		
		0.01 – tailing		
α	VGA	0.0316- cover (TP3 1-9')	cm ⁻¹	Van Genuchten coefficient for material (DBS&A, 1999)
		0.0425 – stockpile		
		0.0010 – tailing		
n	VGN	1.4480 - cover (TP3 1-9')	none	Van Genuchten coefficient for material (DBS&A, 1999)
		1.2134 – stockpile		
		1.6517 – tailing		
Conductivity model	RKMOD			Mualem ( $m = 1 - 1/n$ )
Cover thickness		60, 90, 120, 150	cm	3 cover depths for stockpile, 4 cover depths for tailing
Lower boundary domain		variable	cm	10 m below cover

^a modified to account for increased rock fragments

043-2328

# TABLE D-1COVER MODELING INPUT PARAMETERS FORCONDITION 75: COMPREHENSIVE COVER PERFORMANCE EVALUATION (CON'T).

Input Parameter	Model Variable	Values	Units	Comments
Other Model Variables				
Surface boundary condition	ITOPBC	flux	none	
Upper boundary- heat flow	UPPERH	calculated		based on weather and soil parameters
Surface evaporation	IEVOPT	allow		
PET distribution	NFHOUR	hourly		sine wave function from 6am to 6pm
Lower boundary condition	LOWER	unit gradient	none	
Lower boundary- heat flow	LOWERH	none	none	
Minimum head -wet	HIRRI	0	cm	
Maximum head – dry	HDRY	$1.0 e^{6}$	cm	
Constant head at surface	НТОР	0	cm	
Vapor flow	IVAPOR	allowed		
Tortuousity	TORT	0.66		
Vapor diffusion coefficient	VAPDIF	0.24	cm ² /s	
PET	ALBEDO	0.35	cm/day	
Altitude	ALT	1872.1	m	
Height of wind measure	ZU	6.1	m	
Average atmospheric pressure	PMB	838.4	mb	

# TABLE D-2SUMMARY OF SIMULATED DRAINAGE (100 YEARS) FORSTOCKPILE AND TAILING COVERS TYRONE MINE CCPE.

	Stockpile Covers						Tailing Covers							
Year	60	60HL ^a	90	120		45	60	60HL	90	120				
	I	cn	1					cm						
1899	< 0.01	< 0.01	< 0.01	< 0.01		0.02	0.01	0.01	< 0.01	< 0.01				
1900	0.01	< 0.01	< 0.01	< 0.01		0.04	0.02	0.01	< 0.01	< 0.01				
1901	0.04	0.03	< 0.01	0.03		0.05	0.02	0.01	< 0.01	< 0.01				
1902	0.55	0.41	0.02	0.41		0.06	0.02	0.01	< 0.01	< 0.01				
1903	0.57	0.50	0.18	0.50		0.08	0.03	0.01	< 0.01	< 0.01				
1904	4.68	4.21	3.31	4.21		0.17	0.08	0.03	< 0.01	< 0.01				
1905	3.27	3.15	3.15	3.15		1.56	1.10	0.71	1.39	2.21				
1906	0.22	0.18	0	0.18		1.78	1.54	1.32	1.21	0.74				
1907	0.91	0.94	0.79	0.94		1.62	1.38	1.20	0.96	0.49				
1908	< 0.01	< 0.01	< 0.01	< 0.01		1.04	0.93	0.86	0.60	0.23				
1909	< 0.01	< 0.01	< 0.01	< 0.01		0.59	0.52	0.49	0.28	0.04				
1910	< 0.01	< 0.01	< 0.01	< 0.01		0.34	0.29	0.28	0.14	< 0.01				
1911	< 0.01	< 0.01	< 0.01	< 0.01		0.21	0.17	0.17	0.06	< 0.01				
1912	0.28	0.18	< 0.01	0.18		0.23	0.15	0.12	0.02	< 0.01				
1913	< 0.01	< 0.01	< 0.01	< 0.01		0.32	0.20	0.13	0.02	< 0.01				
1914	0.68	0.43	< 0.01	0.43		0.28	0.17	0.11	< 0.01	< 0.01				
1915	2.01	1.84	1.40	1.84		1.03	0.62	0.37	0.12	< 0.01				
1916	0.14	< 0.01	< 0.01	< 0.01		1.03	0.77	0.59	0.30	0.10				
1917	< 0.01	< 0.01	< 0.01	< 0.01		0.89	0.63	0.45	0.16	< 0.01				
1918	< 0.01	< 0.01	< 0.01	< 0.01		0.52	0.41	0.32	0.09	< 0.01				
1919	< 0.01	< 0.01	< 0.01	< 0.01		0.33	0.24	0.19	0.03	< 0.01				
1920	< 0.01	< 0.01	< 0.01	< 0.01		0.31	0.18	0.13	< 0.01	< 0.01				
1921	< 0.01	< 0.01	< 0.01	< 0.01		0.22	0.12	0.08	< 0.01	< 0.01				
1922	< 0.01	< 0.01	< 0.01	< 0.01		0.11	0.06	0.04	< 0.01	< 0.01				
1923	< 0.01	< 0.01	< 0.01	< 0.01		0.06	0.02	0.01	< 0.01	< 0.01				
1924	0.03	< 0.01	< 0.01	< 0.01		0.11	0.02	< 0.01	< 0.01	< 0.01				
1925	1.73	1.52	1.25	1.52		0.13	0.03	< 0.01	< 0.01	< 0.01				
1926	< 0.01	< 0.01	< 0.01	< 0.01		0.41	0.21	0.10	0.10	0.04				
1927	0.63	0.24	< 0.01	0.24		0.54	0.32	0.20	0.17	0.06				
1928	0.41	0.19	0.01	0.19		0.69	0.42	0.22	0.13	< 0.01				
1929	0.39	0.27	0.11	0.27		0.76	0.49	0.25	0.11	< 0.01				
1930	0.33	0.11	< 0.01	0.11		0.70	0.51	0.27	0.11	< 0.01				
1931	0.07	0.05	< 0.01	0.05		0.82	0.57	0.28	0.09	< 0.01				
1932	< 0.01	< 0.01	< 0.01	< 0.01		0.58	0.44	0.27	0.08	< 0.01				
1933	< 0.01	< 0.01	< 0.01	< 0.01		0.27	0.22	0.16	0.03	< 0.01				
1934	< 0.01	< 0.01	< 0.01	< 0.01		0.12	0.10	0.08	< 0.01	< 0.01				
1935	< 0.01	< 0.01	< 0.01	< 0.01		0.12	0.06	0.04	< 0.01	< 0.01				
1936	< 0.01	< 0.01	< 0.01	< 0.01		0.13	0.06	0.03	< 0.01	< 0.01				
1937	< 0.01	< 0.01	< 0.01	< 0.01		0.10	0.04	0.02	< 0.01	< 0.01				
1938	< 0.01	< 0.01	< 0.01	< 0.01		0.03	< 0.01	< 0.01	< 0.01	< 0.01				
1939	< 0.01	< 0.01	< 0.01	< 0.01		0.03	< 0.01	< 0.01	< 0.01	< 0.01				
1940	< 0.01	< 0.01	< 0.01	< 0.01		0.06	< 0.01	< 0.01	< 0.01	< 0.01				

# TABLE D-2 SUMMARY OF SIMULATED DRAINAGE (100 YEARS) FOR STOCKPILE AND TAILING COVERS TYRONE MINE CCPE (CON T).

Stockpile Covers					Tailing Covers							
Year	60	60HL ^a	90	120	45	60	60HL	90	120			
		cn	1				cm					
1941	0.58	0.50	0.06	0.50	0.09	0	0	< 0.01	< 0.01			
1942	0.06	0.01	< 0.01	0.01	0.26	0.06	0.02	< 0.01	< 0.01			
1943	0.05	< 0.01	< 0.01	< 0.01	0.25	0.09	0.04	< 0.01	< 0.01			
1944	0.79	0.59	0.17	0.59	0.24	0.08	0.04	< 0.01	< 0.01			
1945	< 0.01	< 0.01	0.11	< 0.01	0.45	0.20	0.09	< 0.01	< 0.01			
1946	< 0.01	< 0.01	< 0.01	< 0.01	0.36	0.22	0.13	< 0.01	< 0.01			
1947	< 0.01	< 0.01	< 0.01	< 0.01	0.18	0.13	0.09	< 0.01	< 0.01			
1948	< 0.01	< 0.01	< 0.01	< 0.01	0.08	0.05	0.04	< 0.01	< 0.01			
1949	1.04	0.95	0.38	0.95	0.16	0.06	0.03	< 0.01	< 0.01			
1950	< 0.01	< 0.01	< 0.01	< 0.01	0.33	0.18	0.12	< 0.01	< 0.01			
1951	< 0.01	< 0.01	< 0.01	< 0.01	0.20	0.14	0.11	< 0.01	< 0.01			
1952	< 0.01	< 0.01	< 0.01	< 0.01	0.07	0.06	0.06	< 0.01	< 0.01			
1953	< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.01	0.02	< 0.01	< 0.01			
1954	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1955	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1956	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1957	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1958	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1959	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1960	0.34	0.23	< 0.01	0.23	0.04	< 0.01	< 0.01	< 0.01	< 0.01			
1961	< 0.01	< 0.01	< 0.01	< 0.01	0.13	< 0.01	< 0.01	< 0.01	< 0.01			
1962	0.19	0.15	< 0.01	0.15	0.12	0.01	< 0.01	< 0.01	< 0.01			
1963	< 0.01	0.01	< 0.01	0.01	0.16	0.03	< 0.01	< 0.01	< 0.01			
1964	< 0.01	< 0.01	< 0.01	< 0.01	0.14	0.04	< 0.01	< 0.01	< 0.01			
1965	< 0.01	< 0.01	< 0.01	< 0.01	0.09	0.02	< 0.01	< 0.01	< 0.01			
1966	0.69	0.50	< 0.01	0.50	0.10	0.02	< 0.01	< 0.01	< 0.01			
1967	0.17	0.14	0.01	0.14	0.26	0.07	0.01	< 0.01	< 0.01			
1968	0.60	0.46	< 0.01	0.46	0.37	0.16	0.06	< 0.01	< 0.01			
1969	< 0.01	< 0.01	< 0.01	< 0.01	0.47	0.24	0.12	< 0.01	< 0.01			
1970	< 0.01	< 0.01	< 0.01	< 0.01	0.29	0.19	0.12	< 0.01	< 0.01			
1971	< 0.01	< 0.01	< 0.01	< 0.01	0.14	0.10	0.08	< 0.01	< 0.01			
1972	2.22	1.61	0.92	1.61	0.09	0.05	0.04	< 0.01	< 0.01			
1973	0.21	0.25	0.55	0.25	0.66	0.36	0.15	< 0.01	< 0.01			
1974	< 0.01	< 0.01	< 0.01	< 0.01	0.60	0.48	0.30	0.07	0.01			
1975	0.81	0.62	0.16	0.62	0.33	0.28	0.21	0.08	0.02			
1976	< 0.01	< 0.01	0.08	< 0.01	0.58	0.38	0.23	0.07	< 0.01			
1977	< 0.01	< 0.01	< 0.01	< 0.01	0.35	0.30	0.23	0.08	< 0.01			
1978	< 0.01	< 0.01	< 0.01	< 0.01	0.14	0.15	0.14	0.05	< 0.01			
1979	0.98	0.96	0.54	0.96	0.23	0.15	0.11	0.03	< 0.01			
1980	< 0.01	< 0.01	< 0.01	< 0.01	0.31	0.23	0.19	0.07	< 0.01			

**Golder Associates** 

# TABLE D-2 SUMMARY OF SIMULATED DRAINAGE (100 YEARS) FOR STOCKPILE AND TAILING COVERS TYRONE MINE CCPE (CON T).

Stockpile Covers							T	ailing Cover	Tailing Covers						
Year	60	60HL ^a	90	120		45	60	60HL	90	120					
		cn	n					cm							
1981	0.34	0.20	< 0.01	0.20		0.16	0.13	0.13	0.06	< 0.01					
1982	< 0.01	< 0.01	< 0.01	< 0.01		0.26	0.16	0.12	0.03	< 0.01					
1983	1.07	0.85	0.26	0.85		0.20	0.14	0.11	0.02	< 0.01					
1984	0	0.05	0.36	0.05		0.52	0.29	0.18	0.02	< 0.01					
1985	0.68	0.58	0.07	0.58		0.51	0.36	0.26	0.08	< 0.01					
1986	1.68	1.13	0.54	1.13		0.58	0.41	0.30	0.10	< 0.01					
1987	0.41	0.50	0.74	0.50		1.37	0.94	0.55	0.20	< 0.01					
1988	0.45	0.21	< 0.01	0.21		0.90	0.78	0.59	0.31	0.07					
1989	< 0.01	< 0.01	< 0.01	< 0.01		0.77	0.68	0.48	0.22	0.05					
1990	< 0.01	< 0.01	< 0.01	< 0.01		0.29	0.31	0.28	0.15	0.01					
1991	< 0.01	< 0.01	< 0.01	< 0.01		0.11	0.13	0.14	0.08	< 0.01					
1992	0.14	0.15	< 0.01	0.15		0.25	0.15	0.12	0.03	< 0.01					
1993	1.00	1.03	0.63	1.03		0.54	0.35	0.24	0.04	< 0.01					
1994	0.68	0.67	0.04	0.67		0.38	0.35	0.32	0.11	< 0.01					
1995	1.71	1.72	1.22	1.72		0.67	0.55	0.46	0.19	< 0.01					
1996	0.83	0.60	0.80	0.60		1.29	1.14	0.99	0.56	0.13					
1997	< 0.01	< 0.01	< 0.01	< 0.01		0.94	0.87	0.77	0.49	0.18					
1998	< 0.01	< 0.01	< 0.01	< 0.01		0.31	0.34	0.34	0.24	0.09					
Average	0.35	0.29	0.18	0.29		0.37	0.26	0.19	0.10	0.04					

^a high leaf area (peak LAI = 0.42)

# TABLE D-3 SUMMARY OF SIMULATED RUNOFF (100 YEARS) FOR STOCKPILE AND TAILING COVERS TYRONE MINE CCPE.

Stockpile Covers						Tailing Covers							
Year	60	60HL ^a	90	120		45	60	60HL	90	120			
		cn	1	-				cm					
1899	0.02	0.02	0.02	0.02		< 0.01	0.02	0.02	0.02	0.02			
1900	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1901	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1902	< 0.01	0.01	< 0.01	< 0.01		< 0.01	< 0.01	0.01	< 0.01	< 0.01			
1903	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1904	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1905	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1906	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1907	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1908	0.04	0.06	0.02	0.02		0.04	0.04	0.06	0.02	0.02			
1909	0.13	0.13	0.13	0.13		0.08	0.13	0.13	0.13	0.13			
v1910	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1911	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1912	0.05	0.06	0.04	0.03		0.03	0.06	0.06	0.04	0.03			
1913	0.10	0.10	0.10	0.10		0.05	0.10	0.10	0.10	0.10			
1914	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1915	0.02	0.02	0.02	0.01		< 0.01	0.02	0.02	0.02	0.01			
1916	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1917	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1918	0.01	0.01	0.01	0.01		< 0.01	0.01	0.01	0.01	0.01			
1919	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1920	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1921	0.46	0.46	0.46	0.46		0.13	0.47	0.46	0.46	0.46			
1922	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1923	0.11	0.11	0.11	0.11		0.07	0.11	0.11	0.11	0.11			
1924	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1925	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1926	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1927	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1928	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1929	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01		< 0.01			
1930	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1931	0.02	0.04	0.02	0.07		0.04	0.03	0.05	0.02	0.07			
1932	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1933	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1934	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1935	0.03	0.03	0.03	0.03		< 0.01	0.03	0.03	0.03	0.03			
1936	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1937	0.01	0.03	0.02	0		0.03	0.01	0.03	0.02	< 0.01			
1938	0.11	0.12	0.10	0.10		0.04	0.11	0.12	0.10	0.10			
1939	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1940	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			

# TABLE D-3 SUMMARY OF SIMULATED RUNOFF (100 YEARS) FOR STOCKPILE AND TAILING COVERS TYRONE MINE CCPE (CON'T).

Stockpile Covers						Tailing Covers							
Year	60	60HL ^a	90	120		45	60	60HL	<u> </u>	120			
	00	cn		120			00	cm	70	120			
1941	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1942	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1943	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1944	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1945	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1946	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1947	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1948	0.09	0.01	0.01	0.01		< 0.01	0.01	0.01	0.01	0.01			
1949	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1950	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1951	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	0.01	< 0.01	< 0.01			
1952	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1953	0.06	0.06	0.06	0.06		0.02	0.06	0.06	0.06	0.06			
1954	0.02	0.02	0.02	0.02		0.01	0.02	0.02	0.02	0.02			
1955	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1956	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1957	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1958	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1959	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1960	0.02	0.02	0.02	0.02		0.01	0.02	0.02	0.02	0.02			
1961	0.12	0.12	0.12	0.12		0.08	0.12	0.12	0.12	0.12			
1962	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1963	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1964	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1965	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1966	0.07	0.07	0.07	0.07		0.04	0.07	0.07	0.07	0.07			
1967	0.07	0.07	0.07	0.07		0.03	0.07	0.07	0.07	0.07			
1968	0.10	0.10	0.10	0.10		0.05	0.10	0.10	0.10	0.10			
1969	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1970	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1971	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1972	0.13	0.13	0.13	0.14		0.08	0.13	0.13	0.13	0.14			
1973	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1974	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1975	0.09	0.09	0.09	0.09		0.05	0.09	0.09	0.09	0.09			
1976	0.07	0.07	0.06	0.06		0.02	0.07	0.07	0.06	0.06			
1977	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1978	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
1979	0.03	0.04	0.02	0.02		0.02	0.03	0.04	0.02	0.02			
1980	0.14	0.15	0.14	0.13		0.06	0.14	0.15	0.14	0.13			

# TABLE D-3 SUMMARY OF SIMULATED RUNOFF (100 YEARS) FOR STOCKPILE AND TAILING COVERS TYRONE MINE CCPE (CON'T).

	<b>60</b> 0.11 < 0.01	Stockpile 60HL ^a cn 0.12	90	120	45	Ta 60	ailing Cover 60HL	rs 90	120	
1981 1982 <	0.11	<b>cn</b> 0.12	1	120	45	60	60HL	90	120	
1982 <		0.12								
1982 <			0.11			cm				
	< 0.01		0.11	0.10	0.09	0.11	0.12	0.11	0.10	
1983 <		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
1705	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
1984 <	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
1985 <	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
1986 <	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
1987 <	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
1988 <	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
1989 <	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
1990 <	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
1991 <	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
1992 <	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
1993 <	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
1994 <	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
1995 <	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
1996	0.07	0.07	0.07	0.06	0.04	0.07	0.09	0.07	0.06	
1997	0.01	0.01	0.01	0.01	< 0.01	0.01	0.01	0.01	0.01	
1998 <	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	2.41	< 0.01	< 0.01	
Average	0.02	0.02	0.02	0.02	0.01	0.02	0.05	0.02	0.02	

high leaf area (peak LAI = 0.42)

A compact disk with output files from the water balance model

accompanies the original submittal of this report.