TECHNICAL MEMORANDUM

Golder Associates Inc.

4730 North Oracle Road, Suite 210 Tucson, Arizona, USA 85705 Telephone: 520-888-8818 Fax Access: 520-888-8817

TO:	Michael Jaworski – Phelps Dodge Tyrone, Inc.	DATE:	May 11, 2007
FROM:	Thomas Wythes, P.E., R.G., and Eugene Muller, P.E. – Golder Associates Inc.	OUR REF.:	053-2550
RE:	TYRONE RECLAMATION STABILITY OF INTERIOR AND IN-PIT STOCKPI	LES, DP-1341,	CONDITION 78

1.0 INTRODUCTION

Golder Associates Inc. (Golder) is performing slope stability studies of waste rock and leached ore stockpiles at Phelps Dodge Tyrone, Inc.'s (PDTI) Tyrone Mine to address the supplemental stability analysis requirements of Condition 78 of the New Mexico Environment Department's Discharge Permit (DP)-1341. Stability evaluations were completed previously for exterior stockpile slopes (Golder, 2006a, 2006b, 2006c, 2007) that toe-out on the outer perimeter of the mine stockpile complex. This technical memorandum documents foundation conditions and evaluates the stability of the reclaimed configurations of the interior waste rock and leached ore slopes around the periphery of the Main, Valencia, and Savannah pits in the interior mine area, and the in-pit waste stockpile. The stability analyses of the interior stockpiles are based on proposed preliminary grading plans prepared by Montgomery Watson Harza (MWH, 2006).

The final configuration of the 8C (in-pit) Waste Stockpile is based on a mitigation and grading plan prepared by PDTI based on recommendations by Call & Nicholas, Inc. (CNI, 2002). The proposed regrading plan and the stockpiles considered in this stability evaluation are shown on Figure 1 and include:

- the interior slopes of the 1B Leach Stockpile,
- the interior slopes of the 5A and 3B Waste Stockpiles,
- the 8C In-Pit Stockpile, and
- the interior slopes of the 2B, 2C, and 7B Leach Stockpiles.

Current stockpile slopes are at angle of repose and on the order of 36 degrees (approximately 1.33H:1V). Occasional step-backs result in flatter overall slopes. For reclamation, slopes will be graded to approximately 16 degrees (3.5H:1V) overall. Portions of the 8C Stockpile

slope will remain at angle of repose. The lower rock-fill toe buttress portion has a proposed slope of 28 degrees.

2.0 METHOD

2.1 Overall Approach

Golder performed stability evaluations through a two-dimensional, limit equilibrium analysis with the computer program SLIDE (Rocscience, 2000) and application of Bishop's Method of Slices (Bishop, 1955) using effective stress parameters. In assessing the level of stability, we generally consider factors of safety above 1.3 for static conditions or 1.0 for pseudostatic conditions to be suitably safe where appropriate material parameters are applied. Khandelwal and Mozumdar, (1992) state that generally, waste rock slopes designed with a (static) factor of safety of 1.10 to 1.15 have only a minor risk of failure.

The following conditions were considered in the analyses:

- base-case (expected) conditions;
- the impact of long-term weathering and decrepitation of the leached ore and waste rock and the potential resulting reduction of strength;
- the impact of weathering and decrepitation at the interface of the leached ore and waste rock stockpiles and foundation, and the potential resulting reduction of shear strength; and
- the potential for liquefaction of Quaternary alluvium (Qal) that occurs locally in the toe area.

Base-case stability analyses represent the predicted stability of the leached ore stockpiles based on measured strength properties and engineering judgment. To address future and/or unknown conditions, Golder conducted sensitivity studies to determine the material strengths required to maintain stable conditions.

2.2 Evaluation of Weathering and Decrepitation

EnviroGroup Limited (2005a and 2005b) investigated the long-term effects of weathering and decrepitation on the strength of waste rock and leached ore at PDTI as a part of the supplemental materials characterization requirements of Condition 80 of DP-1341. The EnviroGroup studies supplement previous material characterization studies by Greystone and Daniel B. Stephens & Associates, Inc., which are referenced in EnviroGroup's reports (2005a and 2005b). The results of the material characterization studies indicate that sulfide oxidation is occurring in the stockpiles, but at generally low rates due to the low sulfide concentrations. There is a weak correlation between the age of the stockpile materials and the sulfide concentration suggesting that sulfide is being consumed over time.

- 3 -

Based on Golder's sampling and testing, there is no clear relationship between grain size, mineralogy, or clay content (or other factors that may influence shear strength) with the age of the stockpile. The variability of these factors is overwhelmingly attributable to variability in the lithology and hydrothermal alteration of the ore and overburden, and the mechanical segregation of the materials as they were originally placed in the stockpile rather than to post-placement weathering.

The geochemical characterization studies do not provide a direct means to assess the potential long-term strength reductions for the stockpile materials that may be attributable to weathering and chemical decrepitation. However, Condition 78 states that the stability analyses should account for changes in the chemical and physical properties of the stockpile materials from the time of deposition to present day and to a specified time during post-closure. To address this requirement, we have performed back-analyses to determine the maximum leached ore shear strength that results in a minimally acceptable factor of safety of 1.0 under pseudostatic loading and qualitatively assessed the potential that long-term decrepitation could reduce the stockpile and interface shear strength to levels that could lead to instability.

The possible presence of a weak zone at the stockpile-foundation interface is postulated as a result of low pH pregnant leach solutions, or acidic leachate resulting from acid rock drainage seeping along the base of the stockpile and causing chemical alteration (decrepitation) of the soil and stockpile materials or potential strain softening of the material at the interface. To assess the potential that a weak layer at the stockpile-foundation interface will impact the stockpile stability, Golder defined a basal zone in the stability models and completed back-analyses of the required shear strength that results in a computed factor of safety of 1.0 under pseudostatic loading. This was undertaken to qualitatively assess the potential that long-term decrepitation could reduce the interface shear strength to levels that would result in instability.

2.3 Evaluation of Liquefaction

At the 3B Waste Stockpile, waste rock will be advanced over recent alluvium in Niagara Gulch as shown on Section A-A'. To evaluate the impact of potentially liquefiable alluvium in the foundation at Section A-A', a supplemental stability analysis was performed in which the alluvium was assigned a residual, post-liquefaction shear strength.

2.4 DEVELOPMENT OF THE STABILITY MODELS

2.4.1 Geometry, Geology, Groundwater, and Modeling Assumptions

Figure 2 shows cross sections of the leached ore and waste rock stockpiles presented in Section 1.0 and shown on Figure 1. For the selected sections, Golder developed two-dimensional stability models. The locations of the stability models were selected based on the slope height, foundation geology, and the topography of the stockpile foundation. The cross sections illustrate existing and post-regrading stockpile topography and foundation geology.

2.4.2 Geometry

Section A-A' illustrates geological conditions on the south slope of the 3B Waste Stockpile. Regrading the 3B Waste Stockpile will result in material being advanced over recent alluvium in the upper portion of Niagara Gulch. This section was selected to evaluate the impact of potentially liquefiable recent alluvium (Qal) in the foundation at the toe of the regraded stockpile.

The interior slope height at section B-B' at the 1B Leach stockpile has a toe to crest height of 250 feet. The section was selected because it represents one of the higher interior stockpile slopes.

Section C-C' represents the maximum interior slope of the 5A Waste Stockpile adjacent to the Main Pit. The existing slope is 250 feet high and is at angle of repose. The height of the regraded slope at this location will be approximately 250 feet and will have an overall slope angle of 3.5H:1V.

Section D-D' illustrates conditions at the interior slope of the 1B Leach Stockpile located near the crest of the Savannah Pit. The toe to crest height of the regraded slope at this location will be approximately 250 feet.

Section E-E' illustrates foundation conditions and the proposed regrading plan for the 8C In-Pit Waste Stockpile. The 8C Stockpile lies within the Main Pit. The stockpile slopes currently lie at angle of repose (approximately 36 degrees), with two benches, resulting in an overall slope of approximately 29 degrees. The overall slope height is over 1000 feet. The stockpile foundation consists of the granitic rock pit walls exposed during mining.

The stability of the 8C Stockpile was analyzed by CNI (2002) and a regrading plan has been developed by PDTI based on those results. The proposed regrading plan consists of a constructed 200-foot-high, buttress on the lower portion of the slope with a 28-degree slope and 150-foot-wide catch bench above the buttress. The intermediate slope will be 525 feet

high at angle of repose with a 175-foot-wide catch bench at the top. The upper slope segment is up to 300 feet high and is at angle of repose. The benches are intended to control sloughing from the angle of repose slopes. The stability analyses mainly address the global stability of the composite 8C Stockpile slope.

Sections F-F', G-G', and H-H' represent the leach and waste rock stockpile slopes adjacent to the south and southwest walls of the Main and Valencia Pits. Maximum toe to crest height of the regraded slopes in this area will be between 200 to 250 feet.

2.4.3 Geology

Surface geologic information is available from a geologic base provided by PDTI, which is modified from Hedlund (1978) and shown on Figure 1.

On the south and southwest sides of the Main, West Main, and Valencia Pits, stockpiles generally overlie a foundation composed primarily of granitic bedrock. Stockpiles evaluated in this area include the 2B Waste, 2C Leach, and 7B Leach Stockpiles. The thickness of the leached ore and waste rock in this area is relatively thin and slope heights are low relative to exterior stockpile outslopes, which are as much as 450 feet high.

The 3B and 5A Waste Stockpiles, and the 1B Leach Stockpile are located along the north and east limit of the Main and Gettysburg Pits. These facilities lie primarily on a foundation of Upper and Lower Mangas Conglomerate, a local equivalent to the Gila Conglomerate (QTg). Recent alluvium occurs locally in the vicinity of Section A-A' below the 3B Waste Stockpile.

The 8C In-Pit Waste Stockpile and other stockpiles located on the south and southwest walls of the Main and Valencia Pits are underlain primarily by Tertiary Granodiorite, Tertiary diorite and Precambrian granitoid rocks.

Material properties for all soil and rock units incorporated in the interior stockpile stability sections are discussed in Section 2.4.5 and are summarized in Table 1 and on Figure 1.

2.4.4 Groundwater Conditions

2.4.4.1 Test Data and Observations

Information regarding moisture conditions in the stockpiles at Tyrone is available from downhole geophysical logging in sonic drill holes completed in the 3A Stockpile and the 5A Waste Stockpile, and moisture testing in the 1A Stockpile. Conditions within 3A, 5A, and

1A Stockpiles are considered to be indicative of conditions in the interior and in-pit waste rock and leached ore stockpiles.

The 3A Stockpile was under active leaching at the time of geophysical logging. Logging results (EnviroGroup, 2005a) indicate from sonic borehole TSGT-1 indicate a volumetric moisture content between 3 and 19 percent (ft^3/ft^3), and averaging approximately 12 percent. Applying a dry unit weight of 114 pounds per cubic foot (pcf), this represents an average gravimetric moisture content of 1.6 to 10 percent (lbs/lb), averaging approximately 6.6 percent. Applying a specific gravity of soil solids of 2.765 (the average from available laboratory testing), saturated conditions would occur at a gravimetric moisture content of 19 percent. Geophysical logging in drill-hole TBGC-6 in the 6B Leach Stockpile indicated an average gravimetric moisture content of approximately 5 percent, applying the same criteria as described above, and ranged from 2 percent to 7.5 percent. The results from the 6B Leach Stockpile also indicate drained conditions. Although the dry unit weight applied in these conversions are assumed values, consideration of a range of reasonably dry unit weights indicate that the measured moisture contents from geophysical logs are generally below saturation levels and generally unsaturated conditions are indicated, even while under leach.

Geophysical logging conducted in drill-hole TGST-3 in the 5A Waste Stockpile indicates a volumetric moisture content of 2 to 15 percent. These are approximately equivalent to gravimetric moisture contents of 1 to 7 percent and indicate that the waste stockpiles can be considered to be unsaturated.

Moisture content testing (American Society for Testing and Materials D2216) of rotosonic drill-hole samples collected in October 2005 (Golder, 2006a) from the 1A Leach Stockpile indicated gravimetric moisture contents ranging from 4.3 to 22.5 percent, and averaging 10.1 percent. Stockpile material properties are expected to vary; however, we believe that unsaturated conditions are indicated within the leached ore stockpiles. The potential for saturation to occur will be lower under post-closure conditions when leaching is terminated and following placement of a soil cover and surface water controls.

Elevated groundwater levels and local groundwater mounds in the stockpiles that would impact stability are not expected because of the drainage capacity of the stockpiles. In particular, the ore stockpiles have previously been leached at rates that exceed 100-year storm rainfall amounts on a daily basis. Saturation and instability did not occur under these conditions. The potential for elevated groundwater levels will be further reduced upon cessation of leaching operations, cover placement, and implementation of surface water management. In the waste rock piles, surface water management measures instituted at reclamation will reduce long-term infiltration rates and further reduce the potential for the development of elevated groundwater levels that could impact stability.

Phelps Dodge Tyrone, Inc.		May 11, 2007
Mr. Michael Jaworski	- 7 -	053-2550

These data and conclusions are consistent with EnviroGroup (2005a and 2005b) findings, which indicate that the stockpiles are drained, that moisture content correlates with the grain size of the materials, with sands and gravels having low moisture content and zones with higher clay content having higher retained moisture. On the whole, the stockpiles are indicated to be unsaturated.

2.4.4.2 Stability Model Groundwater Assumptions

In the analysis of the long-term stability of the waste rock and ore stockpiles, the bulk of the waste rock and leached ore is assumed to be unsaturated. The stability models incorporate a zone of perched water that encompasses the basal interface zone. The incorporation of a saturated basal zone is conservative because the effective stress used to calculate shear strength is reduced below a water level.

2.4.5 Material Properties

Materials considered in the stability analysis include leached ore, waste rock, decrepitated or weathered ore and waste rock, Qal, liquefied Qal, QTg, a basal stockpile-foundation interface zone and granitic bedrock. The 8C Waste Stockpile will be buttressed with coarse rock fill. Strength parameters have been assigned based on geotechnical investigation, in-situ testing, and laboratory testing programs. Where available information is sparse or lacking, we have applied parameters that are considered conservative based on the available information or have applied sensitivity analyses to back-analyze material parameters. Analyses have been performed using effective stress strength parameters, and the effect of pore pressures was modeled by defining a static water table condition.

2.4.5.1 Leached Ore Stockpile Material

Golder has completed nine shear-strength tests of the Tyrone stockpile materials derived from surface test pits, from the interior of the stockpiles exposed during re-mining and from sonic boreholes. Test results are reported by Golder (2006a). Shear-strength testing included large-scale (6-inch box) direct shear and triaxial shear testing.

Direct shear tests were performed on remolded samples that were nominally compacted and allowed to consolidate at each applied load increment. Fragments larger than 1.5 inches were removed from the direct shear samples. Tests were run under saturated conditions.

Triaxial tests were performed on the minus ³/₄-inch fraction under consolidated (C), undrained (U) conditions with pore pressure measurements. Strength tests were completed on four leached ore samples. Results of triaxial and direct shear tests are reported in the *Tyrone Supplemental Stability Evaluation Interim Report* (Golder, 2006a).

The laboratory-derived friction angles (ϕ) of the leached and unleached materials are similar and are within a range of 29.0 to 36.9 degrees. The cohesion ranges from 0.4 to11.9 pounds per square inch (psi). We have applied the shear strength at large displacement rather than peak strength when both are reported. However, the stockpile materials generally do not exhibit brittle behavior, and the peak and large displacement strengths are close in value. The average friction angle measured in the leached ore samples was 35.6 degrees and cohesion averaged 0.95 psi. Observations of the interiors of re-mined leached ore stockpiles indicate that they are cemented with sulfate minerals. However, cohesion, real or apparent, has been ignored in these stability analyses, and a friction angle of 35.5 degrees was applied for leached ore in all base-case analyses.

To evaluate the potential impact of a decrease in leached ore strength due to long-term weathering and decrepitation, the friction angle of the ore was varied in the stability analyses to yield a factor of safety of 1.0 under seismic loading. The purpose of these analyses was to determine the shear strength required for minimally acceptable stability conditions.

Geophysical data (EnviroGroup, 2005a) indicate leached ore density from 100 to 150 pcf. The leached ore is assumed to have a moist unit weight of 120 pounds per cubic foot (pcf) and a saturated unit weight of 133 pcf. These unit weights represent typical values for gravelly soils.

2.4.5.2 Waste Rock

Information concerning the composition of the 5A Waste Stockpile is available from the supplemental materials characterization studies (EnviroGroup, 2005a and 2005b). The investigation of the 1D Waste Stockpile (later redesignated the 5A and 3C) indicates that the facility contains primarily Gila Conglomerate and leached cap material. Periodically, low-grade chalcocite/pyrite and chalcopyrite/pyrite ores were deposited.

The log from TSGT-3 (Golder, 2006a) in the 5A Waste Stockpile indicates that the waste rock is composed of well to poorly graded sandy gravels (GW, GP) and gravelly sands (SW, SP). These soil classifications are consistent with the composition indicated in the material characterizations studies, which is predominantly Gila Conglomerate.

In situ density in the 5A Stockpile ranges from approximately 0.8 to 2.4 grams per cubic centimeter (g/cm^3) based on geophysical logging, and averages near 2.0 g/cm³. The corresponding moist unit weight is on the order of 125 pcf. The waste rock is assigned moist and saturated units weights of 120 and 133 pcf in stability analyses.

CNI (2002) developed strength parameters for the 8C Waste Stockpile materials from three large-scale (12 inch) direct shear tests performed on stockpile material that was scalped of

material larger than 1.5 inch diameter. The results ranged from 33.4 degrees friction and 1.69 psi apparent cohesion for the material with the smallest grain-size distribution to 39.7 degrees friction and an apparent cohesion of 1.57 psi for the coarsest sample tested.

Six waste rock samples from Tyrone were subjected to direct shear and staged triaxial testing during this study (Golder, 2006a). The average angle of internal friction from these test results (32.6 degrees) was assumed for all base-case analyses of the interior waste stockpiles.

The potential effects of waste rock weathering were investigated through back-analysis to obtain a factor of safety of 1.0 under seismic loading. The purpose of these analyses was to determine the shear strength required to maintain minimally acceptable stability conditions

2.4.5.3 Quaternary Alluvium

No strength testing has been performed on Qal samples from the vicinity of the 3B Waste Stockpile. Golder tested two samples of alluvium recovered from the 3A Stockpile seepage collection area from Boreholes 11-9 and 10-4 using staged consolidated, undrained (CU) triaxial tests (Golder, 2007). Triaxial test specimens were remolded to field-measured *in situ* density and moisture content. Effective friction angles of 38.8 and 37.5 degrees were measured in staged CU triaxial tests. These samples are believed to have been derived from reworked Gila Conglomerate and would be similar to the Qal in the vicinity of the 3B Waste Stockpile.

In conjunction with the supplemental stability analysis of the 1 Stockpile (Golder, 2006b), an analysis of standard penetration test (SPT) results was conducted for Qal drill-hole intercepts located in Brick Kiln Gulch. Based on the majority of the SPT results, the Qal in Brick Kiln Gulch would be classified as compact to dense. The corresponding internal friction angle for medium-dense to dense cohesionless soils can be expected to range from 35 to 38 degrees based on empirical values reported by Bowles (1982).

Parry (1977) estimated the internal friction angle of cohesionless soils based on SPT tests results and effective stress as:

 $\phi = 25 + 28*(N/q)1/2$ (Eqn. 1)

where:

N is the SPT blow count, and q is the effective overburden pressure.

This is analogous to the friction term (N_{ϕ}) used in conventional bearing capacity calculations. Equation 1 was applied to the uncorrected SPT test results for SB and GA-05 series borehole Qal samples in Brick Kiln Gulch (Golder, 2006b). The resulting calculated internal friction angle ranged from 26.4 to 35.7 degrees, and averaged 28.8 degrees.

Phelps Dodge Tyrone, Inc.		Ma
Mr. Michael Jaworski	- 10 -	

For the analysis of the stability of the 3B Waste Stockpile, the internal friction angle (ϕ) for the Qal is assumed to be 29 degrees. For medium-dense to dense cohesionless soils, Bowles (1982) reports moist unit weights of 110 to 140 pcf. Moist and saturated unit weights of 120 and 133 pcf, respectively, have been assumed for the Qal.

For analysis of the effects of liquefaction at the 3B Waste Stockpile, Qal zones beneath the regraded stockpiles were assumed to be liquefiable. Vaid and Thomas (1994) found that the residual strength of sand samples subjected to extension tests ranged from 0.1 to 0.18 times the effective overburden stress ($\sigma_{vo'}$). This is approximately equivalent to an internal friction angle of 5 to 11 degrees. For analysis of the impact of potential liquefaction at the 3B Waste Stockpile, the Qal zones were assigned an internal friction angle of 8 degrees representative of a residual, post-liquefaction shear strength. This strength is within the 5 to 11 degree range of residual shear strength reported by Vaid and Thomas (1994) for loose clean sands.

2.4.5.4 Gila Conglomerate

Call & Nicholas, Inc. (1982) report a peak shear strength of 40.89 degrees from large-scale, direct shear testing of disturbed samples of Gila Conglomerate (QTg). We have applied a friction angle of 39 degrees and moist and saturated unit weights of 120 and 133 pcf to the QTg in these stability analyses.

2.4.5.5 Basal Interface

A triaxial test was recently completed on basal interface material from Borehole TSGT-04 (265 to 268 feet) beneath the 2A Leach Stockpile. Laboratory data are contained in Attachment 1. Conditions in the 2A Leach Stockpile are considered analogous to conditions in the interior leached ore stockpiles, We have also considered the potential for a weak interface at the base of the waste rock stockpiles.

The basal interface sample from the 2A Leach Stockpile yielded an effective friction angle of 38.0 degrees. In each stability section, a 10-foot-thick zone at the base of each stockpile was defined. In base-case stability analyses, the basal interface zone was assigned the strength of the leached ore or waste rock (35.5 or 32.6 degrees respectively), depending upon the composition of the stockpile. To evaluate the potential risk posed by a weak interface, Golder back-calculated the shear strength in the basal interface zone required to maintain a minimally acceptable safety factor of 1.0 under seismic loading conditions.

2.4.5.6 Granodiorite and Diorite Bedrock

Granodiorite, Diorite, and Precambrian granitoid rock underlie the foundation of stockpiles lying on the southern and southwestern perimeter of the Main and Valencia Pits. CNI (1982)

used uniaxial compression and Brazilian disk tests to estimate the intact strength of mine area granitic rocks for pit slope stability studies. Minimum reported estimates for intact bedrock cohesion and internal friction angle are 669 pounds per square inch (psi) and 43.41 degrees, respectively. Strength testing along fractures resulted in a friction angle of 26 to 28 degrees and an apparent cohesion of 13 to 16 psi. Applying the intact strength listed above, a fracture strength of 26 degrees and 16 psi cohesion, and assuming that failure surfaces involve 50 percent intact material with the remainder following preexisting fractures, a strength of 35.6 degrees and 340 psi cohesion is estimated. For these stability analyses, we have applied a rock-mass cohesion of 20 psi and an internal friction angle of 35 degrees to represent the strength of the bedrock.

Wyllie and Mah (2004) report cohesion ranging from 20 to 600 psi and internal friction angles of 35 to 37 degrees for jointed porphyry, kaolinized granite, and weathered granite. General rock-strength characteristics reported by Wyllie and Mah (2004) indicate that an internal friction angle of 35 to 45 degrees is applicable to rock masses and fill containing angular, interlocking particles. For soft rock or hard rock with discontinuities, a cohesion of 200 to 400 psi is indicated. The rock strength applied to the granitic bedrock at Tyrone is below the range of strengths reported for similar rocks and is considered a conservative value.

2.4.5.7 8C Waste Stockpile Materials

Materials considered in the analysis of the 8C Waste Stockpile include waste rock, the constructed rock-fill buttress, pit lake sediments that may potentially be present beneath the waste rock at the base of the pit, and granitic bedrock.

Based on the material characterization studies (Envirogroup, 2005a, 2005b), prior to 1996, QTg, leached cap, and low-grade oxide/chalcocite ore represent the bulk of the material placed in the 8C Stockpile.

CNI conducted a geotechnical investigation of the 8C Waste Stockpile as part of their stability evaluation (CNI, 2002). As a result of end-dumping construction techniques and the segregation of grain sizes that occurs when dumping on slopes, the waste rock exhibits coarse- and fine-grained components. CNI collected bulk samples from coarse and fine waste rock zones and subjected the samples to direct shear testing in a 12-inch by 12-inch shear test apparatus. Particles larger than 1.5 inches were excluded from the tested sample.

In summary, CNI shear-strength test results indicate an internal friction angle of 39.7 degrees and cohesion of 1.57 psi for coarse waste rock, while the finer material exhibited an internal friction angle of 33.4 degrees and cohesion of 1.69 psi. Note that the internal friction angle of the finer waste sample as determined by CNI (33.4 degrees) is in good agreement with the average internal friction angle of 32.6 degrees for waste rock samples tested by Golder for

Phelps Dodge Tyrone, Inc.
Mr. Michael Jaworski

Condition 78 (Golder, 2006a). The Golder waste rock tests were conducted on finer material (minus ³/₄ to 1 inch) and also reflect the strength of the waste rock without the influence of coarse material. In global stability analyses of the 8C Waste Stockpile, an internal friction angle of 33.4 degrees was applied to the waste rock.

A coarse rock buttress will be constructed at the toe of the 8C Waste Stockpile as part of the measures PDTI proposes to increase stockpile stability. The buttress will be constructed in 10- to 15-foot lifts and compacted by equipment traffic. The coarse waste rock in the buttress was assigned an internal friction angle of 40 degrees. As reported in Wyllie and Mah (2004), the internal friction angle for fill containing angular, interlocking particles ranges from 35 to 45 degrees. Moist and saturated unit weights of 125 and 135 pcf are applied to the rock-fill buttress.

The 8C was advanced by end-dumping into the Main Pit. CNI (2002) predicted that erosion and deposition in the pit lake has resulted in the formation of a layer of fine soil and sediment on the pit floor. The buttress will be advanced on top of these sediments with the pit lake level lowered below the toe of the buttress. A zone of weaker material is incorporated in the 8C Stockpile stability analysis below the buttress. This material is modeled as being 10 feet thick on the pit floor at the base of the waste rock stockpile and beneath the rock-fill buttress. The weak material zone is assigned an internal friction angle of 25 degrees. We have not considered the "during construction" undrained shear strength for the analysis of the long-term post-closure stability.

2.4.5.8 Summary of Material Properties

Material strength parameters applied in the stability models are summarized in Table 1 on the following page. The leached ore, waste rock, alluvium, and Gila Conglomerate are assumed to have moist and saturated unit weights of 120 and 133 pcf, respectively.

25

Material Moist/Sat Cohesion **Angle of Internal** Unit weight (psi) Friction (**\$**, Degrees) (pcf) Leached Ore (base case) 120/133 35.5 0 0 Solve for FOS=1.0 Leached Ore (decrepitated) 120/133 0 Waste Rock (base case) 120/133 32.6 0 Waste Rock (decrepitated) 120/133 Solve for FOS=1.0 Qal (recent alluvium) 0 29 120/133 Gila/Mangas Cong. (QTg) 0 39 120/133 Weathered Interface (basal zone) 120/133 0 Solve for FOS=1.0 Granitic Bedrock 160/160 20 35 8C Waste Rock 120/133 0 33.4 **8C Buttress** 125/135 0 40

120/133

0

TABLE 1 MATERIAL STRENGTH MATRIX, INTERIOR STOCKPILE STABILITY STUDY

Notes:

FOS = factor of safety

8C Basal Soil Zone

pcf = pounds per cubic foot

psi = pounds per square inch

2.4.6 Seismic Loading

Based on the Tyrone seismic hazard analysis prepared by URS Corporation (2005), the peak ground acceleration for a 2,500-year return period at bedrock sites is between 0.08 and 0.09g and results from a magnitude 6.7 earthquake. For sites underlain by local soils and Gila Conglomerate, magnification of bedrock acceleration was predicted to result in a peak acceleration of 0.18g at the ground surface. Hynes and Franklin (1984) discuss the selection of pseudostatic coefficients for use in dam design and recommend the use of one-half the peak acceleration with a 20-percent reduction of the shear strength and a target factor of safety of 1.0. Bray et al. (1993) provide recommendations for seismic design of landfills and note that "the normalized fundamental periods of many solid waste landfills are greater than two, and that for these cases, the maximum horizontal equivalent acceleration value used to represent the seismic loading will be less than one-half of the bedrock maximum horizontal acceleration." Jansen (1985) states that an acceleration of 0.4 to 0.7 times peak ground acceleration is typically suitable for computing the sustained effect of an earthquake on embankment stability.

The 3B, 5A, and 1B Stockpiles lie primarily on a foundation of Mangas Conglomerate (Gila Formation). A pseudostatic coefficient equal to 0.66 times the amplified peak ground

Phelps Dodge Tyrone, Inc.		May 11, 2007
Mr. Michael Jaworski	- 14 -	053-2550

acceleration (i.e., 0.12g) for an event with a 2,500-year return period was used in pseudostatic analyses of these facilities. While the leach stockpiles adjacent to the south and southwest pit walls lie on a bedrock foundation where ground motion would not be amplified, a similar pseudostatic coefficient (0.12g) has been applied in seismic analyses. Golder believes this approach to be appropriate and consistent with standard industry practice.

In the Main Pit, a seismic acceleration coefficient equal to 0.66 times the unamplified peak acceleration (0.09g) was applied in the stability analyses of the 8C Stockpile. The resulting pseudostatic coefficient is 0.06g.

3.0 CALCULATIONS

Circular and block failure searches for critical failure surfaces were completed using SLIDE. Failure mechanisms considered include circular and block failures. In the block failure analyses, failure surface searches were configured to incorporate all foundation layers. In circular failure analyses, failure surface search limits were set to eliminate thin, infinite slope type failure mechanisms. The reported factors of safety are based on Bishop's (1955) Method of Slices.

Base-case analyses incorporate shear strengths measured or estimated based on current conditions and available test results. The factor of safety for the base-case condition was computed for static and pseudostatic loading conditions.

The potential for decrepitation to reduce the stockpile and interface shear strength to levels that could lead to instability was assessed qualitatively. Stability analyses were performed to evaluate the degree of strength loss in the stockpile and the stockpile-foundation interface due to decrepitation and weathering that could lead to instability. The shear strength that would be required to result in instability of the decrepitated ore and waste stockpiles was evaluated through back-analyses using a circular failure surface searches. To evaluate the effect of a weak foundation interface, a 10-foot-thick basal interface zone was defined in the stability models, and the strength parameters were varied until a factor of safety of 1.0 resulted. The effect of a weakened interface was evaluated for block and circular failure modes, as warranted by foundation slope conditions.

As stated above, the impact of potentially liquefiable alluvium beneath the 3B Stockpile was evaluated by assigning a residual, post-liquefaction shear strength of 8 degrees to the alluvium

4.0 RESULTS

4.1 Interior Stockpiles

The results of the stability analyses for the interior stockpiles are presented in Table 2. SLIDE computer output is provided in Attachment 2. As discussed above, base-case analyses use material properties determined through geotechnical testing or based on published information. In evaluation of ore and waste rock weathering, back calculation is used to determine the shear strength required to maintain what we would consider to be a minimally acceptable factor of safety (i.e., 1.0 under seismic loading conditions). The minimum basal interface shear strength is determined in a similar manner. Where Qal occurs, the potential for liquefaction to impact stability is evaluated by applying a post-liquefaction residual shear strength to the Qal in a static stability analysis.

In general, many of the stockpiles peripheral to the open pits lie on foundations of competent materials that slope under the stockpiles and are not susceptible to sliding along a basal interface zone. Where the foundation slope is not susceptible to basal sliding failure, stability analyses are restricted to circular failure searches.

Section	Static FOS	Pseudostatic FOS (0.12g)	Failure Mode	Analysis/Comments
A-A'	$2.2^{(A-1)}$	1.5 ^(A-2)	Block	Base Case
A-A'	$2.1^{(A-3)}$	1.4 ^(A-4)	Circular	Base Case
A-A'	NA	1.0 ^(A-5)	Block	Weathered Ore Evaluation, Back-Analyzed $\phi = 24^{\circ}$
A-A'	NA	1.0 ^(A-6)	Circular	Weak Interface Evaluation, Back-Analyzed $\phi = 18^{\circ}$
A-A'	1.4 ^(A-7)	NA	Block	Liquefied Qal Analysis, φ Qal= 8°
B-B'	$2.9^{(B-1)}$	2.0 ^(B-2)	Block	Base Case
B-B'	$2.5^{(B-3)}$	$1.7^{(B-4)}$	Circular	Base Case
B-B'	NA	1.0 ^(B-5)	Block	Weathered Ore Evaluation, Back-Analyzed $\phi = 23^{\circ}$
B-B'	NA	1.0 ^(B-6) .	Circular	Weak Interface Evaluation, Back-Analyzed φ = 5°
C-C'	$1.9^{(C-1)}$	1.4 ^(C-2)	Circular	Base Case
C-C'	NA	$1.0^{(C-3)}$	Circular	Weathered Ore Evaluation, Back-Analyzed $\phi = 25^{\circ}$
C-C'	NA	1.0 ^(C-4)	Circular	Weak Interface Evaluation, Back-Analyzed $\phi = 8^{\circ}$
D-D'	2.5 ^(D-1)	1.7 ^(D-2)	Circular	Base Case
D-D'	NA	1.0 ^(D-3)	Circular	Weathered Ore Evaluation, Back-Analyzed $\phi = 21^{\circ}$
F-F'	2.8 ^(F-1)	1.9 ^(F-2)	Block	Base Case
F-F'	$2.6^{(F-3)}$	$1.8^{(F-4)}$	Circular	Base Case
F-F'	NA	1.0 ^(F-5)	Circular	Weathered Ore Evaluation, Back-Analyzed $\phi = 22.5^{\circ}$
F-F'	NA	1.0 ^(F-6)	Circular	Weak Interface Evaluation, Back-Analyzed $\phi = 4^{\circ}$
F-F'	NA	1.1 ^(F-7)	Block	Weak Interface Evaluation, Back-Analyzed $\phi = 4^{\circ}$
G-G'	$2.8^{(G-1)}$	1.9 ^(G-2)	Circular	Base Case
G-G'	NA	1.0 ^(G-3)	Circular	Weathered Ore Evaluation, Back-Analyzed $\phi = 21^{\circ}$
H-H'	2.5 ^(H-1)	1.7 ^(H-2)	Circular	Base Case
Н-Н'	NA	1.0 ^(H-3)	Circular	Weathered Ore Evaluation, Back-Analyzed $\phi = 23^{\circ}$

TABLE 2STABILITY ANALYSIS RESULTS, INTERIOR STOCKPILES

Note:

Numbers in parentheses indicate the numbered stability analysis output provided in Attachment 2. FOS = factor of safety

4.1.1 3B Waste Stockpile, Section A-A'

Section A-A' represents the interior slope of the 3B Waste Stockpile. During final construction of the 3B Stockpile, the toe will be advanced into Niagara Gulch. Section A-A' passes through a zone of Qal in Niagara Gulch.

For base-case conditions, the calculated factor of safety is 2.2 and 1.5, for static and pseudostatic analyses in block failure mode, respectively. In circular failure mode, the static and pseudostatic safety factors were 2.1 and 1.4. The back-analyzed strength required for a minimally acceptable factor of safety of 1.0 for the regraded waste rock slope under pseudostatic loading is an internal friction angle of 24 degrees. In the analysis of waste rock weathering, the 24-degree strength was applied to both the waste rock and the basal interface zone.

For the analysis of the potential that a weak foundation interface may impact stability a basal interface strength of 18 degrees resulted in a factor of safety of 1.0. The foundation geometry beneath the 3B Waste Stockpile is not conducive to basal sliding failure. In this analysis, the base-case strength of 32.8 degrees was applied to the waste rock.

The zone of Qal in Niagara Gulch that will be buried during regrading was assigned a residual, liquefied, shear strength of 8 degrees to evaluate the potential impact of liquefaction. The calculated factor of safety under these conditions was 1.4. Therefore, the risk of failure due to liquefaction is considered to be low.

4.1.2 1B Leach Stockpile, Section B-B'

Section B-B' on the interior slope of the 1B Leach Stockpile overlies Gila Conglomerate (QTg). Under base case conditions, the factors of safety against instability are 2.9 to 2.5 under static conditions and 2.0 to 1.7 for pseudostatic conditions in block and circular failure modes. Input of a waste rock and basal interface zone internal friction angle of 23 degrees resulted in a factor of safety of 1.0 under pseudostatic loading conditions in circular failure mode.

The basal interface zone was assigned a shear strength of 5 degrees to evaluate the impact of decrepitation of the stockpile foundation. The factor of safety against instability was 1.0.

4.1.3 5A Waste Stockpile, Section C-C'

The interior slope of the 5A Waste Stockpile lies on an inward sloping foundation of QTg and is not susceptible to basal sliding along a weak interface layer. The section was evaluated in circular failure mode. Under base-case conditions, the factors of safety are 1.9

and 1.4 for static and pseudostatic conditions, respectively. The back-analysis of the minimum waste rock and basal interface shear strength that maintained a factor of safety of 1.0 for pseudostatic loading yielded an internal friction angle of 25 degrees. An evaluation of interface strength in circular failure mode under pseudostatic loading indicated a minimum interface strength of 8 degrees is required to maintain a safety factor of 1.0.

4.1.4 1B Leach Stockpile, Section D-D'

The interior slope of the 1B Leach Stockpile lies on an inward sloping foundation of QTg. As such, it is not susceptible to a failure along the basal interface. Stability evaluation of Section D-D' was limited to the base case analysis and back-analyses of weathered ore to determine the minimum stockpile shear strength that maintains a factor of safety of 1.0 under pseudostatic loading.

Under base case conditions the factors of safety are 2.5 and 1.7 for static and pseudostatic loading, respectively, in circular failure mode. The back-analysis yielded an ore strength of 22.5 degrees to maintain a factor of safety of 1.0 under pseudostatic loading.

4.1.5 7B Leach Stockpile, Section F-F'

For base-case conditions, the factors of safety against instability are 2.8 to 2.6 under static conditions and 1.9 to 1.8 for pseudostatic analyses for block and circular failure modes, respectively. Input of a weathered ore shear strength of 22.5 degrees resulted in a factor of safety of 1.0.

The underlying foundation slopes inward beneath the stockpile and Section F-F' is not susceptible to basal sliding. Input of a basal interface friction angle of 4 degrees resulted in a factor of safety of 1.1 in block failure mode.

4.1.6 2C Leach Stockpile, Section G-G'

The interior slope of the 2C Leach Stockpile is buttressed by an inward sloping bedrock foundation and is not susceptible to basal sliding failure. Section G-G' was evaluated through circular failure analyses. The factors of safety against instability at Section G-G' are 2.8 and 1.9 for base-case conditions under static and seismic loading conditions. Input of a leached ore internal friction angle of 22 degrees resulted in a factor of safety of 1.0 under seismic loading.

4.1.7 2B Leach Stockpile, Section H-H'

The foundation of the 2B leach stockpile consist of an inward sloping, irregular bedrock surface that is not susceptible to basal interface sliding failure. Analysis of the interior slope through circular surfaces resulted in factors of safety of 2.5 and 1.7 under static and pseudostatic loading, respectively. The back-analyzed leached ore shear strength that results in a minimally acceptable factor of safety of 1.0 is 23 degrees.

4.2 8C In-Pit Stockpile Section E-E'

4.2.1 Analysis Approach

The reclamation plan maintains a pit lake in the Main Pit. The inflows to the pit lake will be pumped to maintain a low post-closure pit water level. The purpose of the 8C Waste Stockpile grading plan proposed by PDTI is to enhance the overall stability of the stockpile and enable the maintenance of post-closure dewatering operations in the pit bottom. The construction of the catch benches and the coarse rock-fill toe buttress will have the effect of decreasing the overall slope of the stockpile and mitigating the potential for global failures that could impact dewatering facilities.

In the CNI (2002) stability study, the risk of shallow slab failures was identified on the angle of repose slopes. These failures are a result of the segregation of particle sizes that occurs during end dumping. Shallow slab failures occur along zones of finer waste rock that parallel the angle of repose slopes. Catch benches at the 5375 and 5800 elevations are intended to contain rubble generated by slab failures on the upper slopes. The buttress, which will be constructed at a slope of 28 degrees with coarse rock fill, will reduce the potential for shallow slab failures on the lower slope.

Because the upper slopes of the 8C Stockpile will remain at angle of repose, slab failures can be anticipated to occur in the future and maintenance of the benches may be required periodically. The stability analysis presented here address the overall or global stability of the 8C Stockpile. Failure surface searches have been configured to identify the potential for significant failures through or near the stockpile toe. Shallow slab failures on the angle of repose slopes were not evaluated. Stability model output for Section E-E' in the 8C Waste Stockpile is contained in Attachment 1.

4.2.2 8C Analysis Results

Stability analysis results for the 8C Stockpile are shown in Table 2. The estimated factors of safety for a crest to toe (or near toe) failure are 1.3 and 1.1 under static and pseudostatic loading conditions, respectively, in both block and circular failure mode.

Phelps Dodge Tyrone, Inc.		May 11, 2007
Mr. Michael Jaworski	- 20 -	053-2550

In circular failure mode, failure surfaces were constrained to pass from the slope crest to the toe of the buttress. With application of similar failure surface constraints, the back-analyzed waste rock strength that results in a factor of safety of 1.0 under pseudostatic loading is 30 degrees.

-				
Section	Static FOS	Pseudostatic FOS (0.06g)	Failure Mode	Analysis/Comments
E-E'	1.3 ^(E-1)	1.1 ^(E-2)	Block	Base Case
E-E'	1.3 ^(E-3)	1.1 ^(E-4)	Circular	Base Case
E-E'	NA	1.0 ^(E-5)	Circular	Weathered Ore Evaluation, Back-Analyzed $\phi = 30^{\circ}$

TABLE 38C WASTE STOCKPILE STABILITY ANALYSIS SUMMARY

Note:

Numbers in parentheses indicate the numbered stability analysis output provided in Attachment 2.

5.0 SUMMARY AND CONCLUSIONS

5.1 Summary of Interior Stockpile Analyses

The base-case strength properties used in these stability analyses are based primarily on recent and previously completed geotechnical testing. Stability evaluations incorporating base-case strength properties indicate that the stockpile in the mine interior will be stable under the reclaimed configurations shown on the proposed regrading plan (MWH, 2006). The minimum factor of safety is 1.4 for base-case conditions at section A-A' (3B Waste Stockpile) and section C-C' (5A Waste Stockpile) in circular failure mode under seismic loading conditions. In general, static safety factors range from 2.1 to 2.9 while in pseudostatic analyses, they range from 1.4 to 2.0.

The long-term effects of weathering and decrepitation on the grain-size distribution and shear strength of the leached ore, waste rock, and basal stockpile-foundation interface cannot be assessed directly. Material characterization studies completed for Tyrone suggest that little loss of strength should be anticipated given the lithology of the ore and waste rock, its current state of alteration, and the ambient conditions to which it is exposed. The laboratory-derived shear strengths were determined on the soil matrix component of the stockpile material. Golder considers the laboratory-measured values for the soil matrix component to be representative of the fully weathered (or decrepitated) condition of the leached ore and waste rock. The effect of oversize fragments, which could enhance stability, has not been incorporated into the shear strength of the leached ore waste rock assumed for the stability analyses.

Outside the main pit, PDTI is planning to regrade all stockpiles to overall 3.5H:1V slopes. At the proposed slope angle, a the maximum friction angle that resulted in a factor of safety of 1.0 for pseudostatic loading was 25 degrees representing an internal friction angle strength reduction of approximately 8 to 10 degrees relative to base-case shear strengths of the waste rock and ore.

The natural topography underlying the interior stockpiles slopes back under the stockpiles and basal sliding along a weak interface is not a critical failure mode.

The average leached ore and waste rock friction angles determined from laboratory shear strength testing are 35.6 and 32.6 degrees, respectively (Golder, 2006a). A considerable change in the physical condition of the leached ore and waste rock would be required before low factors of safety are indicated. However, material characterization studies (EnviroGroup, 2005a and 2005b) do not predict a significant change in material properties over time. Therefore, a long-term reduction in stability of the interior stockpiles due to decrepitation of the stockpile materials is not indicated.

Available information indicates that the stockpiles can be considered to be unsaturated for post-closure stability analyses. Moisture contents will be lower than those measured following reclamation as a result of the cessation of leaching, stockpile draindown, cover placement, and implementation of surface water management measures. The development of groundwater mounds that could impact the long-term stability of the stockpiles is not expected. We also consider the potential for the initiation of flowslide type failures related to stormwater runoff or infiltration near the stockpile crest will be mitigated as a result of cover placement and surface water management.

Regrading of the 3B Stockpile will result in outward movement of the stockpile toes over Qal in Niagara Gulch and the area north of the Main Pit. Application of a residual, post-liquefaction shear strength to the Qal in this area resulted in safety factor of 1.4.

5.2 Summary of 8C Waste Stockpile Analyses

The 8C stockpile was evaluated for overall global stability in block and circular failure modes. A significant aspect of this analysis was to assess the potential that a failure could impact long-term pit dewatering efforts. The minimum computed factor of safety for a global failure is 1.1 for the block and circular failure modes under pseudostatic loading conditions. Under static conditions, the safety factors for block and circular failure modes are 1.3.

A reduction of the shear strength to an internal friction angle of 30 degrees yielded a safety factor of 1.0 under pseudostatic loading conditions in circular failure mode.

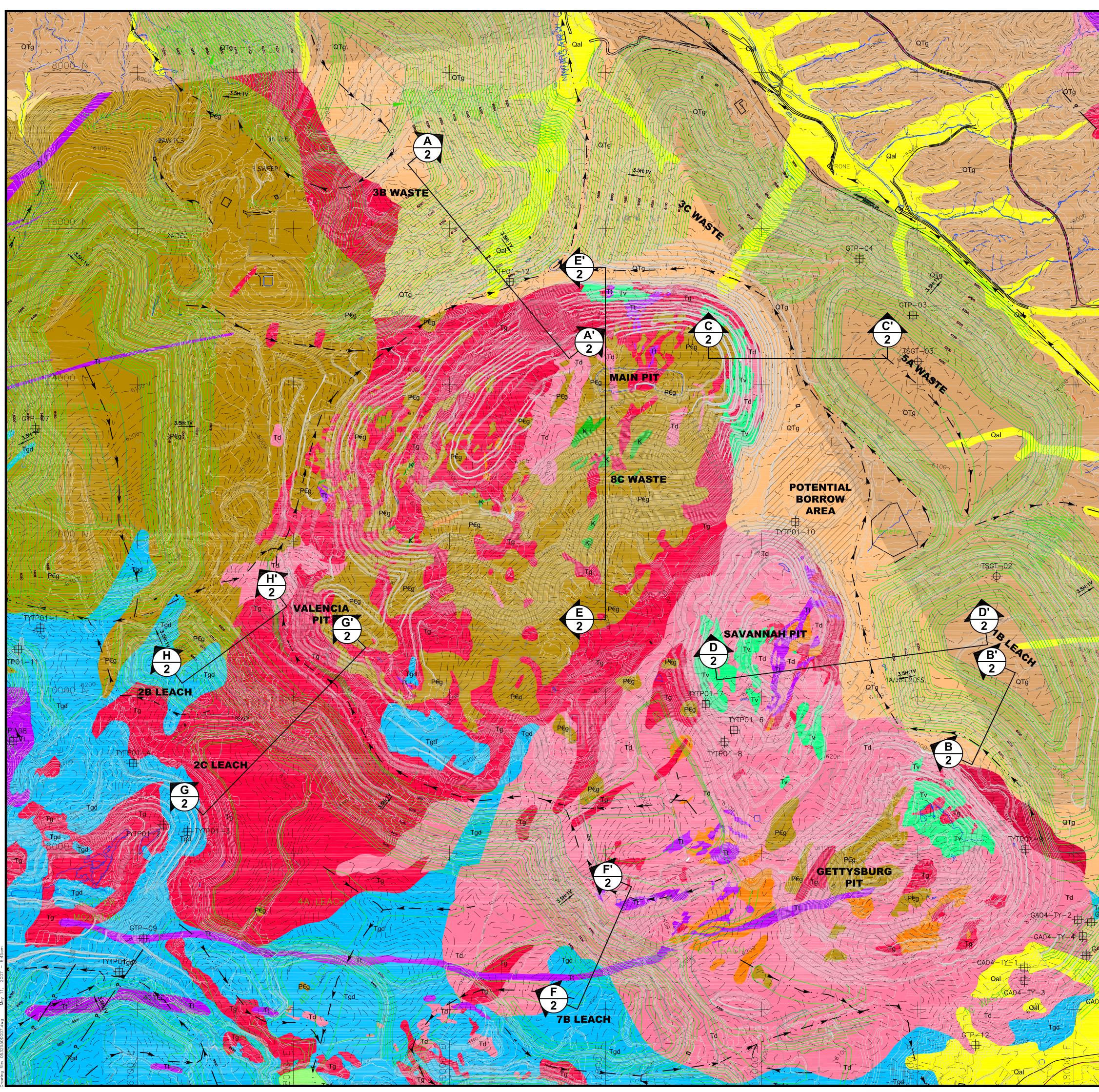
5.3 Conclusions

The base-case analyses indicate that the interior stockpiles examined in this report will be stable in their reclaimed configurations. Conservative material strength estimates have been applied to the waste rock and leached ore. These strengths disregard the apparent cohesion values indicated by the laboratory tests, the true cohesion due to cementation observed in stockpiles, and the influence of the coarse fraction of the stockpiles. With these conservative assumptions and limitations, the calculated factors of safety for the reclaimed stockpile slopes are above targeted values for adequate safety.

Back-analyses indicate a reduction in the strength of the stockpiles and stockpile interfaces of approximately 10 degrees of friction angle would be required to reduce the safety factors to levels that would indicate a high potential for instability. The shear-strength parameters that have been applied to the stockpile material are considered to be conservative for assessment of the current level of stability and are considered to be appropriate values for the long term fully decrepitated stockpile shear strength. A further 10 degree reduction in the friction angle due to long-term weathering is not supported by geochemical studies (EnviroGroup, 2005) or from comparisons of the geotechnical properties with the age or leach history of the stockpile materials. Therefore, the regraded interior stockpiles are assessed to be stable for the long term.

The proposed regrading plan for the 8C Stockpile includes catch benches to mitigate the impact of shallow, slab-type failures associated with the upper, end-dumped angle of repose waste rock slopes. Provision of a toe buttress is planned by PDTI based on analyses and recommendations by CNI (2002) as a means of increasing the stability of the overall stockpile slope and reducing the potential for impacts to the post reclamation pit dewatering activities. Results of the analysis of the overall stability of the 8C Waste Stockpile with the proposed buttress met the target factor of safety of 1.3 for static loading and was above the target value of 1.0 for pseudostatic loading. The potential for shallow slab-type failures on the angle of repose slopes can be expected to be relatively high. However the impacts of such failures will be controlled by catch benches and periodic maintenance.

The planned final configuration of the 8C Stockpile is steeper than the other reclaimed stockpiles at Tyrone and the factor of safety is correspondingly lower. The potential that long-term weathering and decrepitation would further reduce the stockpile strength to levels that would lead to instability was assessed through back-analysis. A further reduction in the friction angle of 3.4 degrees would be needed to reach a safety factor of 1.0 for pseudostatic loading. While a 3.4 degree reduction in the friction angle is much more likely than a 10-degree reduction, the current evidence that further strength reductions will occur is not sufficiently established to justify further flattening of the slopes. Also, we would anticipate a low potential for decrepitation in waste stockpiles with low sulfide content.


The common approach to ensure that the steep stockpile slopes do not pose a hazard to access, infrastructure, people, or the reclamation is to implement a slope monitoring program. CNI (2002) recommended that a series of slope monitoring measures be instituted as a means of protecting personnel and equipment operating within the Main Pit in the vicinity of the 8C Waste Stockpile. Because the upper angle of repose slopes may be subject to periodic shallow slab-type failures, it is recommended that slope monitoring measures be implemented and maintained until the behavior of the upper slope is fully understood.

6.0 **REFERENCES**

- Bishop, A.W., 1955. *The Use of the Slip Circle in the Stability Analysis of Earth Slopes.* Geotechnique, Vol. 5, 1955, pp 7-17.
- Bowles, J.E., 1982. *Foundation Analysis and Design 3rd Ed.* McGraw Hill
- Bray, J.D., P.C. Repetto, A.J. Augello, and R.J. Byrne, 1993. An Overview of Seismic Design Issues for Solid Waste Landfills. Geosynthetics Research Institute Conference. December 1993.
- Call & Nicolas, Inc., 1982. *Tyrone Pit Slope Design*. Draft Report prepared for Phelps Dodge Corp., Tyrone Branch.
- Call & Nicolas, Inc., 2002. *Stability Analysis of the Tyrone 8A/8C Waste Dump*, Prepared for Phelps Dodge Tyrone Inc, February, 2002.
- EnviroGroup Limited, 2005a. Supplemental Materials Characterization of the Leached Ore Stockpiles and Waste Rock Stockpiles, Preliminary Report for DP-1341, Condition 80, Tyrone Mine. Prepared for Phelps Dodge Tyrone, Inc. September 29, 2005.
- EnviroGroup Limited, 2005b. Supplemental Materials Characterization of the Leached Ore Stockpiles and Waste Rock Stockpiles, Final Report for DP-1341, Condition 80, Tyrone Mine. Prepared for Phelps Dodge Tyrone, Inc. December 29, 2005.
- Golder Associates Inc., 2006a. Supplemental Stability Study of Waste Rock Piles and Leached Ore, Interim Report for DP-1341, Condition 78. January 13, 2006
- Golder Associates Inc., 2006b. Tyrone Reclamation, No. 1 Stockpile Stability Analysis, Draft Report for DP-1341, Condition 78. February 1, 2006.
- Golder Associates Inc., 2006c. Tyrone Reclamation, No. 3A Stockpile Stability Analysis, Report for DP-1341, Condition 78. November 29, 2006.
- Golder Associates Inc., 2007. Tyrone Reclamation, No. 3A Stockpile Stability Analysis, Report for DP-1341, Condition 78. April 6, 2007.

- Hynes, M.E. and A.G. Franklin, 1984. *Rationalizing the Seismic Coefficient Method*. Department of the Army, Waterways Experiment Station, Corps of Engineers. Final Report. July 1984.
- Jansen, R.B., 1985. Evaluation of Seismic Effects on Embankment Dams. Presented at Hawaii Dam Safety Conference, Honolulu, Hawaii. December 5, 1985.
- Khandelwal, N.K., and Mozumdar, 1992, Preliminary Design of Spoil Dumpos, Proceedings 2nd International Conference on Environmental Issues and Management of Waste in Energy and Minerals Production, September 1992, Calgary, Canada, 2:1031-1035.
- Parry, R.H.G., 1977. *Estimating Bearing Capacity of Sand from SPT Values*. JGED, ASCE, Vol. 103, GT9, pp1014-1019. September, 1977.
- Rocscience, 2000. 2D Limit Equilibrium Slope Stability for Soil and Rock Slopes.
- URS Corporation, 2005. *Seismic Hazard Evaluation, Tyrone Tailing Impoundments*. Prepared for Phelps Dodge Tyrone and M3 Engineering & Technology Corp. March 2, 2005.
- Vaid, Y.P. and J. Thomas, 1994. *Post Liquefaction Behavior of Sand*. In: Proceedings, 13th International Conference on Soil Mechanics and Foundation Engineering, New Delhi, India.
- Wyllie, D.C., Mah, C.W., 2004, Rock Slope Engineering, Civil and Mining, 4th Edition, Spon Press, New York

Attachments: Figures 1 and 2 Attachment 1 - Triaxial Test Results, Basal Interface Material (TGST-04) Attachment 2 - Stability Output FIGURES

LEGEND

Φ	ROTOSONIC BOREHOLE LOCATION
+	STOCKPILE TEST PIT LOCATION
	EXISTING SURFACE CONTOURS
====	PRE-MINE SURFACE CONTOURS
	POST REGRADE SURFACE CONTOURS
?	INFERRED FAULT
· · _	POST-REGRADE SURFACE DRAINAGE

GEOLOGIC LEGEND

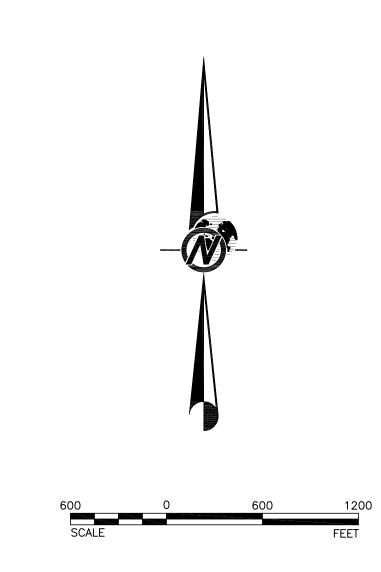
Mine Dumps Alluvium (Qal) Colluvium	Quaternary
Upper Mangas Conglomerate >(Qtg) Lower Mangas Conglomerate >(Qtg)	Upper Tertiary/ Quaternary
Latite & Basaltic Andesite (Tml) Wind Mountain Ash-flow Tuff (Twt) Volcanics and Volcaniclastics (Tv) Volcanic Rocks (undiff.) Tonalite-Dacite (Tt)	Tertiary
Igneous Breccia Granodiorite-Tonalite-Dacite (Tg) Diorite/Biotite Diorite (Td) Granodiorite-Quartz Diorite (Tgd)	Tertiary
Andesite\K volcanics Basal volcanics (K?) Colorado Shale \ Beartooth Quartzite	Cretaceous
Diabase Granitoid Rocks (P€g)	Precambrian

REFERENCES

QTg

QTg

STA=3

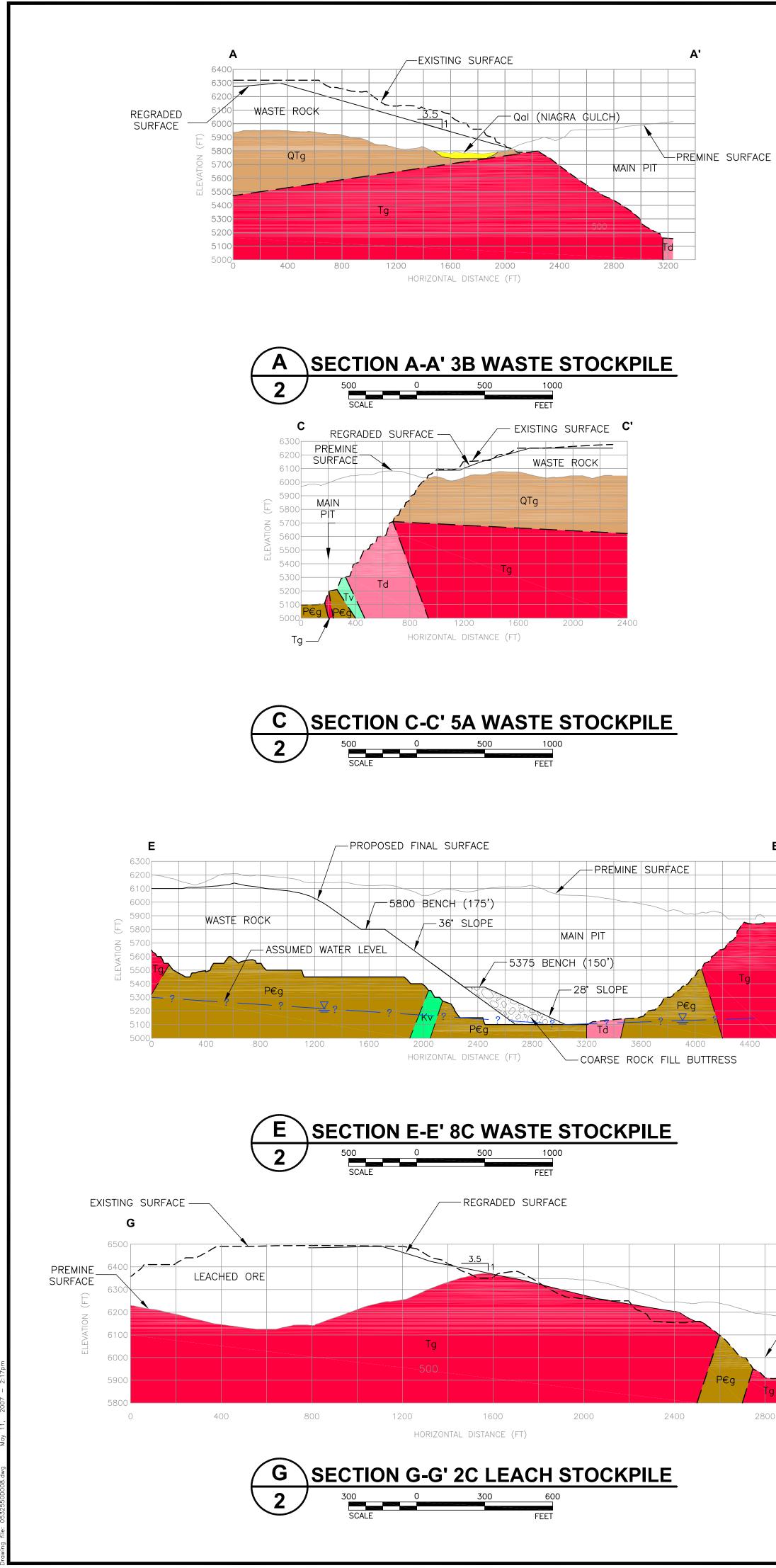

QTg

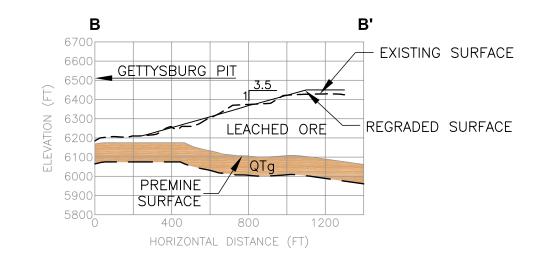
\$1A-27 +

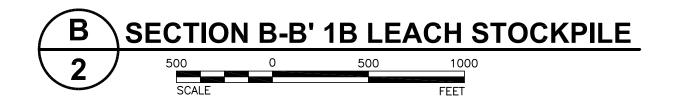
3<u>H:1V</u>

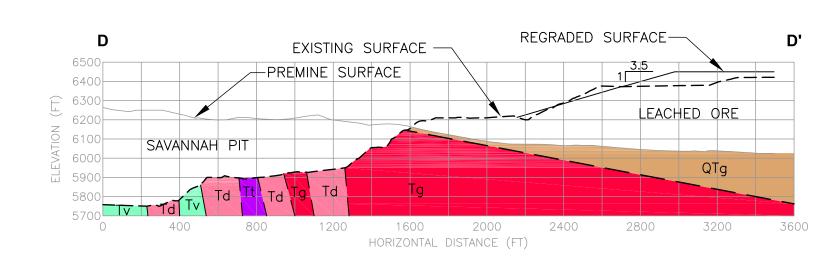
\$1A,4

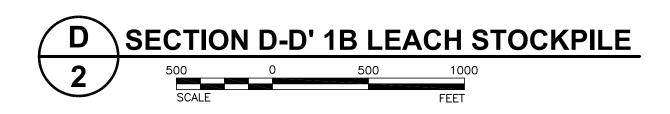
- 1.) GEOLOGY FROM PDTI PROJECT GEOLOGY MAP.
- REGRADE TOPOGRAPHY FROM TyroneMineRegrade.dwg PROVIDED BY MONTGOMERY WATSON HARZA.
- STOCKPILE GEOTECHNICAL INVESTIGATION REPORTED IN "SUPPLEMENTAL STABILITY STUDY OF WASTE ROCK PILES AND LEACH ORE STOCKPILES, INTERIM REPORT FOR DP1341, CONDITION 78, TYRONE MINE", GOLDER ASSOCIATES, JANUARY 2003. 3.)
- 4.) PRE-1999 TOPOGRAPHIC BASE MAP PROVIDED BY PHELPS DODGE TYRONE, INC.
- 5.) 8C REGRADE PLAN BASED ON PDTI SECTION.

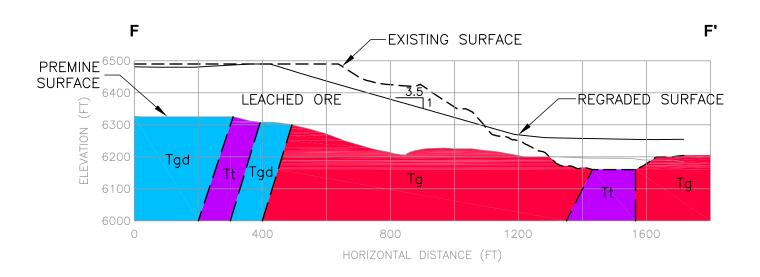


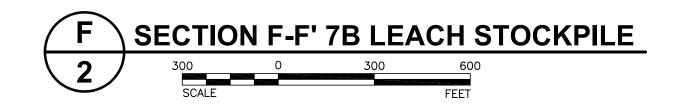

SUPPLEMENTAL STABILITY ANALYSIS TYRONE MINE, NEW MEXICO

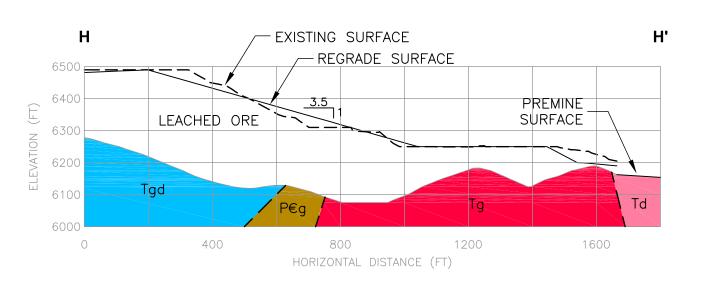

INTERIOR AND IN-PIT STOCKPILE STABILITY ANALYSIS CROSS-SECTION LOCATIONS

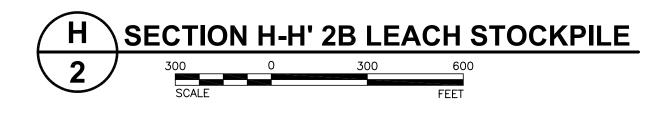


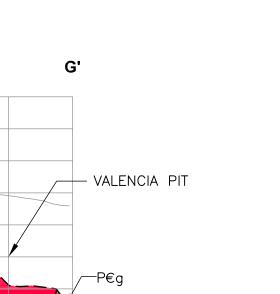

PROJECT	۲ No.	053–2550	FILE No.	053	2550DC	07
DESIGN	GM	04/26/07	SCALE A	S SHOWN	REV.	А
CADD	ANV	04/30/07	FIGURE			
CHECK	PR	04/30/07		1		
REVIEW	GM	05/10/07		-		











2800

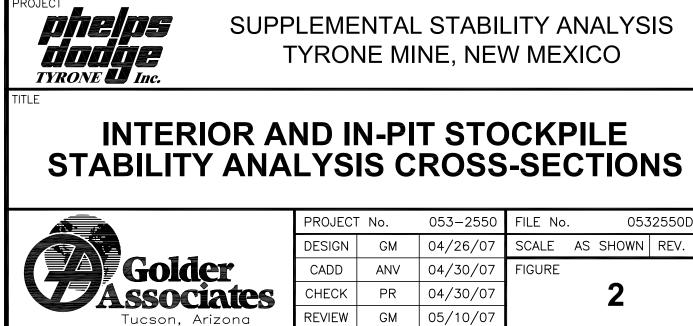
LEGEND

— — — INFERRED CONTACT

GEOLOGIC LEGEND

Mine Dumps Alluvium (Qal) Colluvium	Quaternary
Upper Mangas Conglomerate Lower Mangas Conglomerate >(Qtg)	Upper Tertiary/ Quaternary
Latite & Basaltic Andesite (Tml) Wind Mountain Ash-flow Tuff (Twt) Volcanics and Volcaniclastics (Tv) Volcanic Rocks (undiff.) Tonalite-Dacite (Tt)	Tertiary
Igneous Breccia Granodiorite—Tonalite—Dacite (Tg) Diorite/Biotite Diorite (Td) Granodiorite—Quartz Diorite (Tgd)	Tertiary
Andesite\K volcanics Basal volcanics (K?) Colorado Shale \ Beartooth Quartzite	Cretaceous
Diabase Granitoid Rocks (P€g)	Precambrian

REFERENCES


- 1.) GEOLOGY FROM PDTI PROJECT GEOLOGY MAP.
- 2.) REGRADE TOPOGRAPHY FROM TyroneMineRegrade.dwg PROVIDED BY MONTGOMERY WATSON HARZA.
- 3.) STOCKPILE GEOTECHNICAL INVESTIGATION REPORTED IN "SUPPLEMENTAL STABILITY STUDY OF WASTE ROCK PILES AND LEACH ORE STOCKPILES, INTERIM REPORT FOR DP1341, CONDITION 78, TYRONE MINE", GOLDER ASSOCIATES, JANUARY 2003.
- 4.) PRE-1999 TOPOGRAPHIC BASE MAP PROVIDED BY PHELPS DODGE TYRONE, INC.
- 5.) 8C REGRADE PLAN BASED ON PDTI SECTION.

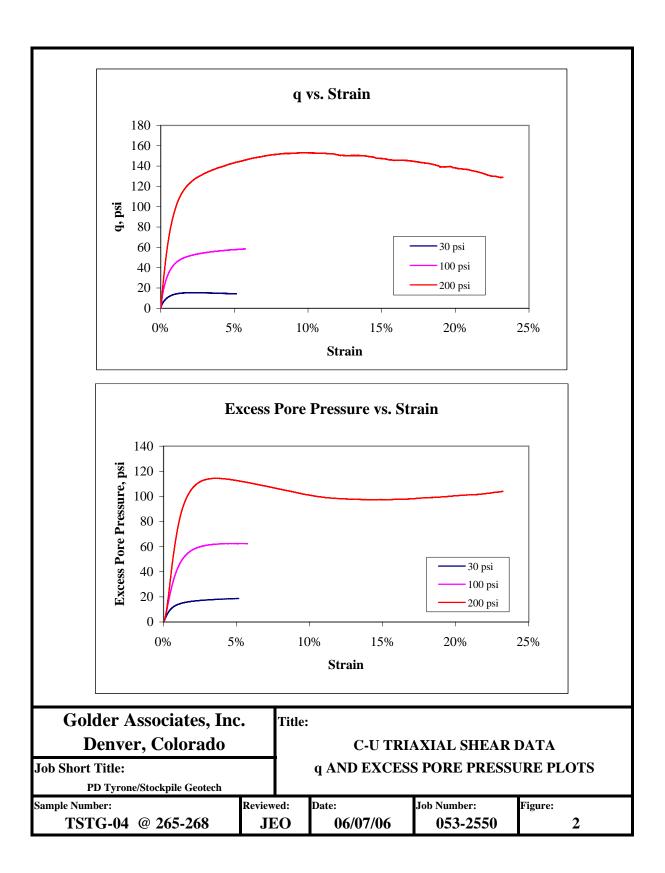
Moist/Sat Unit weight (pcf)	Cohesion (psi)	Angle of Internal Friction (¢, Degrees)
120/133	0	35.5
120/133	0	Solve for FOS=1.0
120/133	0	32.6
120/133	0	Solve for FOS=1.0
120/133	0	29
120/133	0	39
120/133	0	Solve for FOS=1.0
160/160	20	35
120/133	0	33.4
125/135	0	40
120/133	0	25
	Unit weight (pcf) 120/133 120/133 120/133 120/133 120/133 120/133 120/133 160/160 120/133 125/135	Unit weight (pcf)(psi)120/1330120/1330120/1330120/1330120/1330120/1330120/1330120/1330120/1330120/1330120/1330120/1330120/1330120/1330120/1330120/1330

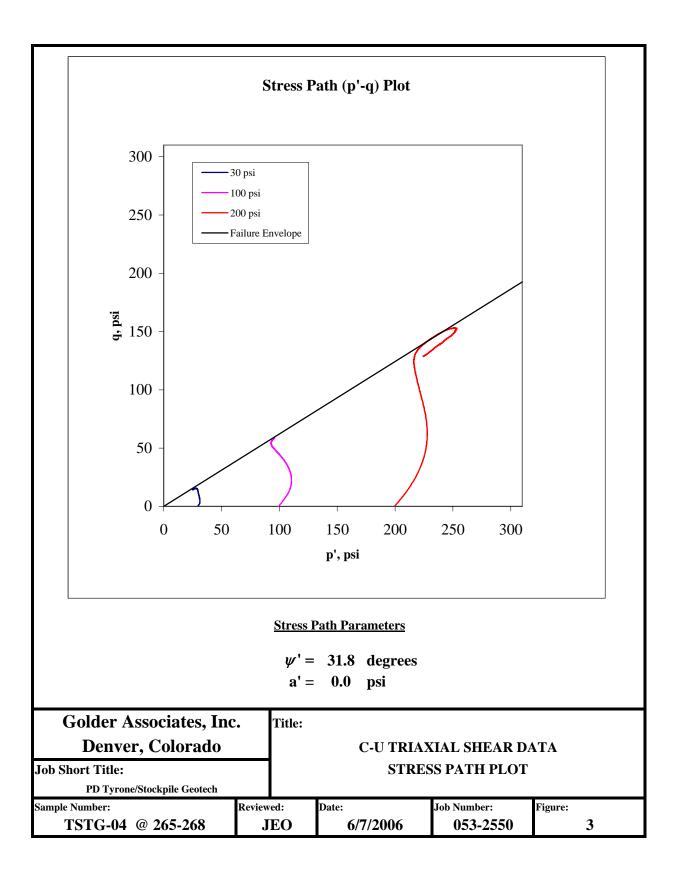
MATERIAL STRENGTH MATRIX

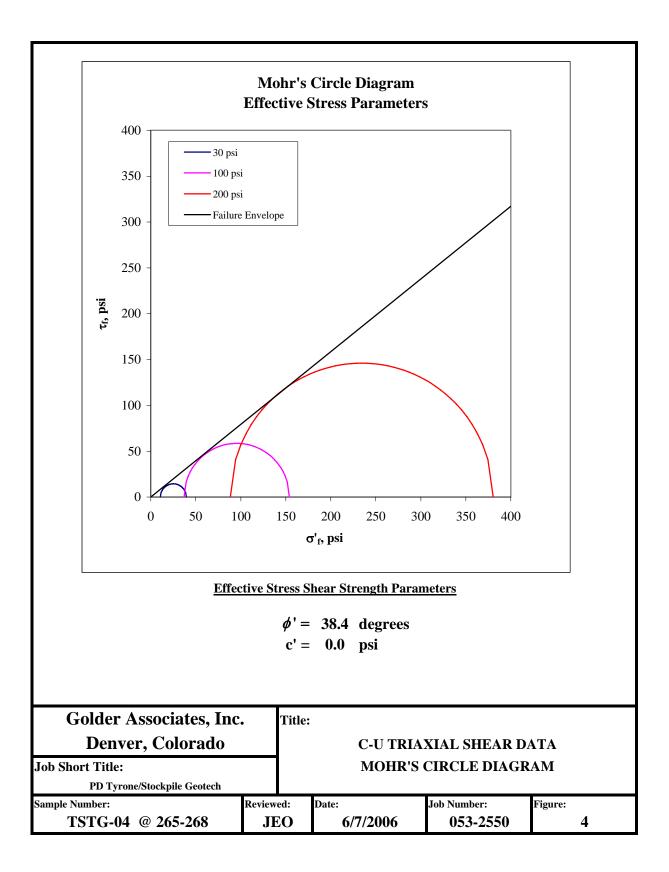
FOS = factor of safety

pcf = pounds per cubic foot psi = pounds per square inch

PROJECT	۲ No.	053–2550	FILE No. 0532550D008
DESIGN	GM	04/26/07	SCALE AS SHOWN REV. A
CADD	ANV	04/30/07	FIGURE
CHECK	PR	04/30/07	2
REVIEW	GM	05/10/07	


SUPPLEMENTAL STABILITY ANALYSIS

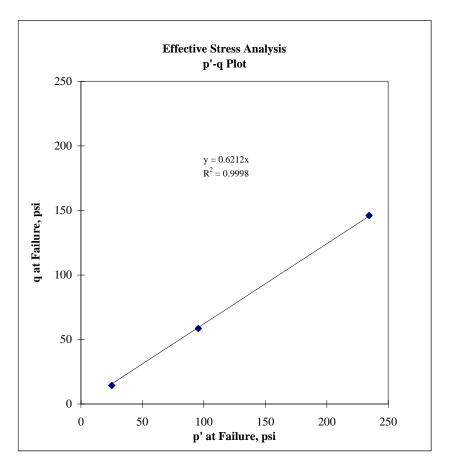

TYRONE MINE, NEW MEXICO


ATTACHMENT 1

GEOTECHNICAL DATA BASAL INTERFACE SHEAR-STRENGTH TESTING BOREHOLE TSGT-04 AT 265 TO 268 FEET

	Sample # = Point # =	TSTG-04 1		Sample # = Point # =	TSTG-04 2		Sample # = Point # =	TSTG-04 3			
		Initial			Initial			Initial			
	Length =	14.67	cm	Length =	14.67	cm	Length =	14.67	cm		
	Diameter =	7.27	cm	Diameter =	7.27	cm	Diameter =	7.27	cm		
	Wet Weight =	1235.20	g	Wet Weight =	1235.20	g	Wet Weight =	1235.20	g		
	Area =	41.5	cm ²	Area =	41.5	cm ²	Area =	41.5	cm ²		
	Sample Area =	6.43	in ²	Sample Area =	6.43	in ²	Sample Area =	6.43	in ²		
	Volume =	608.9	cm ³	Volume =	608.9	cm ³	Volume =	608.9	cm ³		
Mois	sture Content =	11.0%		Moisture Content =	11.0%		Moisture Content =	11.0%			
Spe	cific Gravity =	-		Specific Gravity =	-		Specific Gravity =	-			
Dry Wei	ght of Solids =	1112.79	g	Dry Weight of Solids =	1112.79	g	Dry Weight of Solids =	1112.79	g		
Wet	Unit Weight =	2.03	g/cm ³	Wet Unit Weight =	2.03	g/cm ³	Wet Unit Weight =	2.03	g/cm ³		
Dry	Unit Weight =	1.83	g/cm ³	Dry Unit Weight =	1.83	g/cm ³	Dry Unit Weight =	1.83	g/cm ³		
Wet	Unit Weight =	126.6	pcf	Wet Unit Weight =	126.6	pcf	Wet Unit Weight =	126.6	pcf		
Dry	Unit Weight =	114.0	pcf	Dry Unit Weight =	114.0	pcf	Dry Unit Weight =	114.0	pcf		
	Cell Pressure =	80	psi	Cell Pressure =	150	psi	Cell Pressure =	250	psi		
В	ack Pressure =	50	psi	Back Pressure =	50	psi	Back Pressure =	50	psi		
Confir	ning Pressure =	30	psi	Confining Pressure =	100	psi	Confining Pressure =	200	psi		
Notes:	Specimen re Failure defi	emolded with ned as maxin ate was 0.1n	h a light to mum princi nm/min, and	, reddish-brown, with clay and fine g moderate tamp at visually estimated o pal stress ratio. d t ₅₀ was 0.1 minutes.		isture cont	ent.				
Gol	der Associa	ates, Inc.		Title:							
D	enver, Col	orado		TRIAXIAL SHEAR TEST REPORT							
Job Short Title:					5	SAMPLE	DATA AND CALCULATION	8			
	D Tyrone/Stockpile	e Geotech								T	
Sample Number:		TST	G-04 @	265-268		Reviewed:	Date: JEO 6/7/2006	Job Number: 053-2	2550	Figure:	1

Consolidated-Undrained Triaxial Lab Data


From: GOLDER ASSOCIATES, INC.

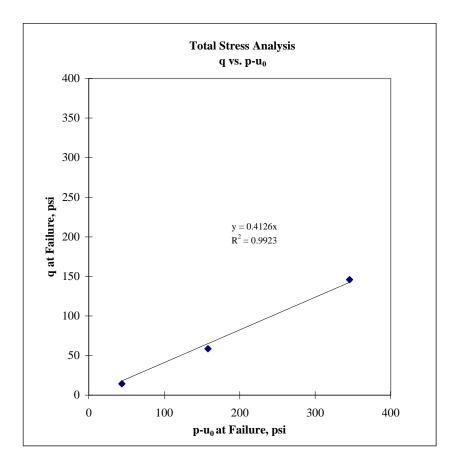
Project:PD Tyrone/Stockpile GeotechProject Number:053-2550

Sample Number	TSTG-04 @ 265-268
Effective Stress Analysis	

Point Number	p' (psi)	q (psi)
1	25.1	14.4
2	95.5	58.5
3	234.4	146.0

tan(ψ') = a' =	0.6212 0.0	psi
φ' =	38.4	degrees
c' =	0.0	psi

Consolidated-Undrained Triaxial Lab Data


From: GOLDER ASSOCIATES, INC.

Project:PD Tyrone/Stockpile GeotechProject Number:053-2550

Sample Number	TSTG-04 @ 265-268
Total Stress Analysis	

Point Number	p-u _o (psi)	q (psi)
1	43.8	14.4
2	157.8	58.5
3	345.5	146.0

$tan(\psi) =$	0.4126	
a =	0.0	psi
$\mathbf{\Phi} =$	24.4	degrees
с =	0.0	psi
•		r

Consolidated-Undrained Triaxial Lab DataFrom: GOLDER ASSOCIATES, INC.Project:PD Tyrone/Stockpile GeotechProject Number:053-2550

Mohr-Coulomb Failure Criteria:

$$\tau_{\rm ff} = c' + \sigma'_{\rm ff} \tan(\phi')$$

$$\tau_{\rm ff} = c + \sigma_{\rm ff} \tan(\phi)$$

Where:

c', c = effective and total stress cohesion intercepts

 ϕ , ϕ = effective and total stress friction angles

 $\tau_{\rm ff}$ = shear strength on the failure surface at failure

 $\sigma'_{\rm ff}$, $\sigma_{\rm ff}$ = effective and total normal stresses on the failure surface at failure

Stress Path Space:

$$q = \frac{\sigma_1 - \sigma_3}{2}$$
 $p' = \frac{\sigma'_1 + \sigma'_3}{2}$ $p = \frac{\sigma_1 + \sigma_3}{2}$

Where:

q = maximum shear stress

p', p = mean effective and total stresses

 σ_1 , σ_1 = effective and total axial stresses

 σ_3 , σ_3 = effective and total confining stresses

Stress Path Failure Criteria:

$$q = a'+p'tan(\psi')$$
$$q = a + (p - u_0)tan(\psi)$$

Where:

a', a = intercepts of the q-axis in effective stress and total stress spaces

 ψ' , ψ = angles of the failure envelopes in effective stress and total stress spaces

q = maximum shear stress at failure

p' = mean effective stress at failure

 $p-u_0 =$ mean total stress at failure minus the initial pore pressure

The relationships between ψ and ϕ and a and c are as follows:

$$\tan(\psi) = \sin(\phi)$$
$$a = c \cos(\phi)$$

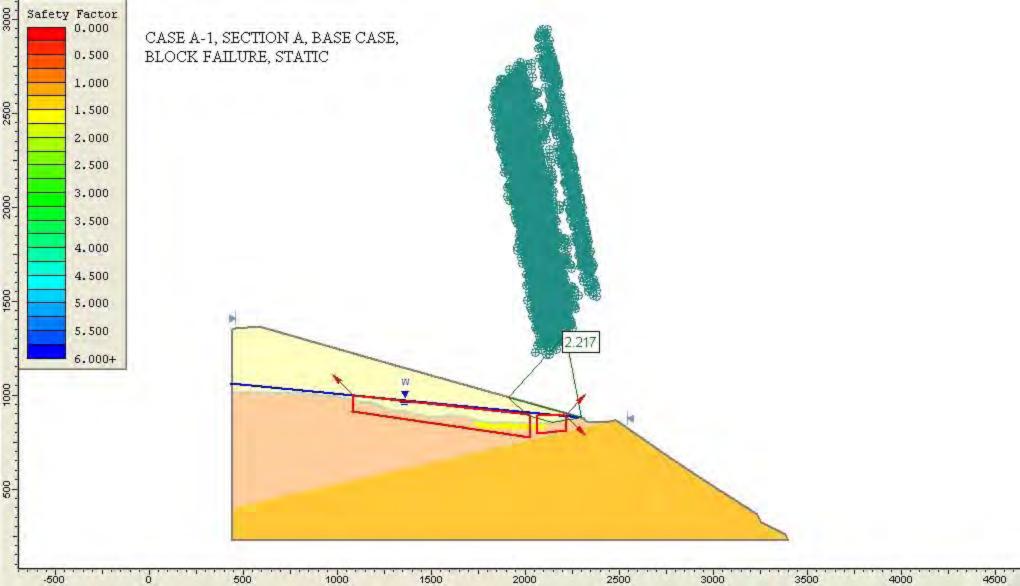
The relationships between ψ' and ϕ' and a' and c' are as follows:

$$\tan(\psi') = \sin(\phi')$$

a' = c' cos(\phi')

PD TYRONE/STOCKPILE GEOTEC 053-2550 TSTG=4 @265-268 STAGED TRIAXIAL SHEAR TEST

Golder Associates, Inc. Denver, Colorado


ന

N

H

ATTACHMENT 2

STABILITY MODEL OUTPUT

Slide Analysis Information Case A-1, Section A, Base Case Block Failure, Static

Document Name

File Name: SEC-A-BAS_B_P.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Left to Right Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Maximum Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Non-Circular Block Search Number of Surfaces: 5000 Pseudo-Random Surfaces: Enabled Convex Surfaces Only: Disabled Left Projection Angle (Start Angle): 135 Left Projection Angle (End Angle): 135 Right Projection Angle (Start Angle): 45 Right Projection Angle (End Angle): -45 Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

<u>Material: Waste Rock</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 32.6 degrees Water Surface: Water Table Custom Hu value: 1

Material: Interface Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 32.6 degrees Water Surface: Water Table Custom Hu value: 1

Material: Gila Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 39 degrees Water Surface: None

<u>Material: Bedrock</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 160 lb/ft3 Saturated Unit Weight: 160 lb/ft3 Cohesion: 20 psf Friction Angle: 35 degrees Water Surface: None

<u>Material: Qal</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 29 degrees Water Surface: Water Table Custom Hu value: 1

Global Minimums

Method: bishop simplified FS: 2.216520 Axis Location: 2214.737, 1327.280 Left Slip Surface Endpoint: 1911.757, 992.102 Right Slip Surface Endpoint: 2301.091, 883.789 Resisting Moment=5.40377e+008 lb-ft Driving Moment=2.43795e+008 lb-ft

Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 4977 Number of Invalid Surfaces: 23 Error Codes: Error Code -108 reported for 2 surfaces Error Code -110 reported for 21 surfaces

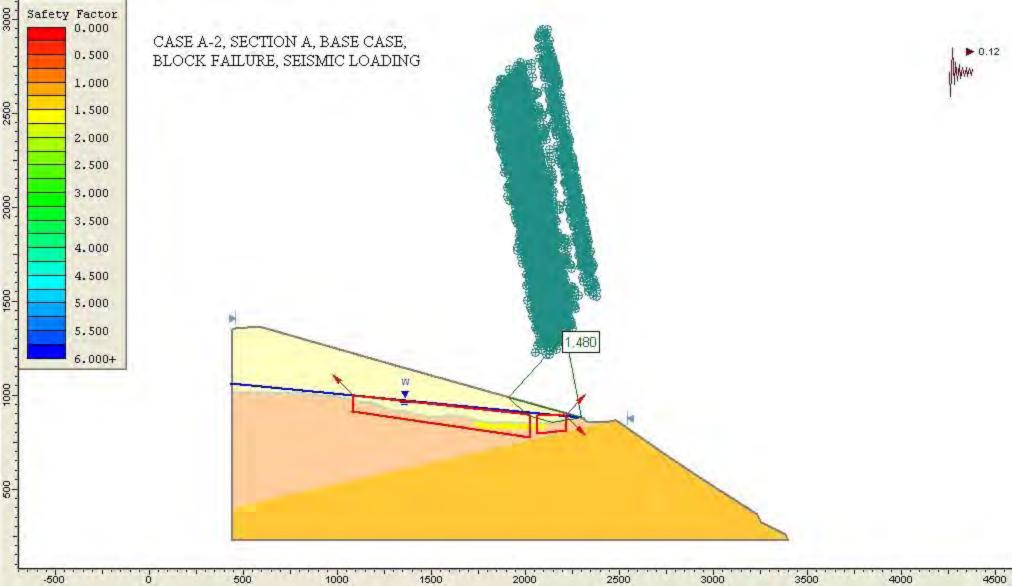
Error Codes

The following errors were encountered during the computation:

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-110 = The water table or a piezoline does not span the slip region for a given slip surface, when Water Surfaces is specified as the method of pore pressure calculation. If this error occurs, check that the water table or piezoline(s) span the appropriate soil cells.

List of All Coordinates


Material Boundary		
2314.714	877.830	
2318.833	868.390	
Material Bour	<u>ndary</u>	
444.603	406.320	
2486.603	867.072	
Material Bou		
444.603	1016.678	
778.843	1008.001	
801.628	1011.719	
930.798	992.830	
1003.814	991.555	
1134.400	961.813	
1184.160	960.878	
1287.103	917.830	
1366.363	911.427	
1508.366	879.563	
1648.978	895.441	
1714.507	866.950	
1844.878	849.115	
1899.368	859.012	
1952.062	848.639	
1966.705	853.541	
2085.988	845.717	
2122.423	850.463	
2255.746	867.830	
2294.519	886.664	

Material Boundary

444.603	1026.698
779.091	1018.011
802.295	1021.715

934.613 1003.377 1135.723 1185.851 1290.168 1367.748 1508.559 1652.887 1716.093 1845.566 1901.285 1951.586 1965.318 2085.564 2252.780 2276.933	1002.479 1001.548 971.791 927.453 921.417 889.580 904.695 876.826 859.100 868.873 859.025 863.623 855.718 877.538 889.269
<u>Material Bou</u> 2336.149 2397.411	<u>ndary</u> 857.830 857.755
<u>Material Bou</u> 1714.507 1765.721 1898.193 2086.063 2122.423	866.950 821.319 821.319
External Bou 3402.045 3383.722 3255.036 3238.120 2970.385 2714.178 2486.603 2475.385 2421.159 2408.449 2397.411 2395.880 2346.094 2336.149 2318.833 2316.428 2314.714 2294.519 2276.933 1370.131 586.556 461.847 444.603 444.603 444.603 444.603	ndary 227.830 259.787 327.580 367.830 537.830 707.830 867.072 867.830 857.830 857.830 857.830 857.830 857.830 857.830 857.830 857.830 857.830 857.830 857.830 857.830 857.830 1356.045 1356.045 1356.045 1356.045 1356.045 1356.045 1356.045 1356.045 1354.451 1026.698 1016.678 406.320 227.830

Water Table 434.232 2296.607	1067.564 886.267
Focus/Block S	Search Window
2212.566	893.654
2065.437	897.525
2067.373	800.730
2222.245	814.282
Focus/Block S 1087.806 1080.063 2026.719 2024.783	Search Window 1002.064 916.884 779.435 899.461

Slide Analysis Information CASE A-2, SECTION A, BASE CASE, BLOCK FAILURE, SEISMIC LOADING

Document Name

File Name: SEC-A-BAS_B_P.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Left to Right Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Maximum Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Non-Circular Block Search Number of Surfaces: 5000 Pseudo-Random Surfaces: Enabled Convex Surfaces Only: Disabled Left Projection Angle (Start Angle): 135 Left Projection Angle (End Angle): 135 Right Projection Angle (Start Angle): 45 Right Projection Angle (End Angle): -45 Minimum Elevation: Not Defined Minimum Depth: Not Defined

Loading

Seismic Load Coefficient (Horizontal): 0.12

Material Properties

Material: Waste Rock Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 32.6 degrees Water Surface: Water Table Custom Hu value: 1

Material: Interface

Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 32.6 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: Gila</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 39 degrees Water Surface: None

<u>Material: Bedrock</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 160 lb/ft3 Saturated Unit Weight: 160 lb/ft3 Cohesion: 20 psf Friction Angle: 35 degrees Water Surface: None

<u>Material: Qal</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 29 degrees Water Surface: Water Table Custom Hu value: 1

<u>Global Minimums</u>

Method: bishop simplified FS: 1.480400 Axis Location: 2214.737, 1327.280 Left Slip Surface Endpoint: 1911.757, 992.102 Right Slip Surface Endpoint: 2301.091, 883.789 Resisting Moment=5.22047e+008 lb-ft Driving Moment=3.5264e+008 lb-ft

Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 4975 Number of Invalid Surfaces: 25 Error Codes: Error Code -108 reported for 2 surfaces Error Code -110 reported for 21 surfaces Error Code -111 reported for 2 surfaces

Error Codes

The following errors were encountered during the computation:

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-110 = The water table or a piezoline does not span the slip region for a given slip surface, when Water Surfaces is specified as the method of pore pressure calculation. If this error occurs, check that the water table or piezoline(s) span the appropriate soil cells.

-111 = safety factor equation did not converge

List of All Coordinates

|--|

2314.714	877.830
2318.833	868.390

Material Boundary

444.603	406.320
2486.603	867.072

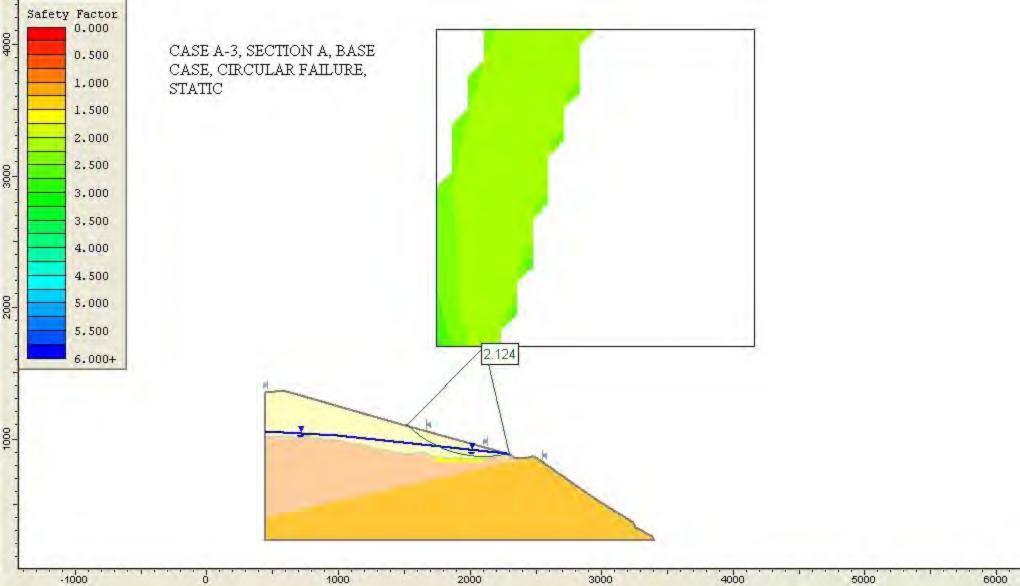
Material Boundary

naterial Dea	naury
444.603	1016.678
778.843	1008.001
801.628	1011.719
930.798	992.830
1003.814	991.555
1134.400	961.813
1184.160	960.878
1287.103	917.830
1366.363	911.427
1508.366	879.563
1648.978	895.441
1714.507	866.950
1844.878	849.115
1899.368	859.012
1952.062	848.639
1966.705	853.541
2085.988	845.717
2122.423	850.463

2255.746 2294.519	867.830 886.664
Material Bou 444.603 779.091 802.295 934.613 1003.377 1135.723 1185.851 1290.168 1367.748 1508.559 1652.887 1716.093 1845.566 1901.285 1951.586 1965.318 2085.564 2252.780 2276.933	1026.698 1018.011 1021.715 1002.479 1001.548 971.791 970.792 927.453 921.417 889.580 904.695 876.826 859.100 868.873 859.025
<u>Material Bou</u> 2336.149 2397.411	857.830
<u>Material Bou</u> 1714.507 1765.721 1898.193 2086.063 2122.423	866.950 821.319
External Bou 3402.045 3383.722 3255.036 3238.120 2970.385 2714.178 2486.603 2475.385 2421.159 2408.449 2397.411 2395.880 2346.094 2336.149 2318.833 2316.428 2314.714 2294.519 2276.933 1370.131	227.830

586.556	1367.830
461.847	1356.045
444.603	1354.451
444.603	1026.698
444.603	1016.678
444.603	406.320
444.603	227.830

Water Table


434.232	1067.564
2296.607	886.267

Focus/Block Search Window

2212.566	893.654
2065.437	897.525
2067.373	800.730
2222.245	814.282

Focus/Block Search Window

1087.806	1002.064
1080.063	916.884
2026.719	779.435
2024.783	899.461

Slide Analysis Information CASE A-3, SECTION A, BASE CASE, CIRCULAR FAILURE, STATIC

Document Name

File Name: SEC-A-BAS_C_S.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Left to Right Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Standard Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10 Composite Surfaces: Disabled Reverse Curvature: Create Tension Crack Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

<u>Material: Waste Rock</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 32.6 degrees Water Surface: Water Table Custom Hu value: 1 <u>Material: Interface</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 32.6 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: Gila</u> Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3 Cohesion: 0 psf Friction Angle: 39 degrees Water Surface: None

<u>Material: Bedrock</u> Strength Type: Mohr-Coulomb Unit Weight: 160 lb/ft3 Cohesion: 20 psf Friction Angle: 35 degrees Water Surface: None

<u>Material: Qal</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 29 degrees Water Surface: None

Global Minimums

Method: bishop simplified FS: 2.124000 Center: 2110.012, 1704.592 Radius: 843.398 Left Slip Surface Endpoint: 1519.293, 1102.619 Right Slip Surface Endpoint: 2302.082, 883.356 Resisting Moment=3.10878e+009 lb-ft Driving Moment=1.46365e+009 lb-ft

Method: janbu simplified FS: 2.026830 Center: 2110.012, 1704.592 Radius: 843.398 Left Slip Surface Endpoint: 1519.293, 1102.619 Right Slip Surface Endpoint: 2302.082, 883.356 Resisting Horizontal Force=3.43824e+006 lb Driving Horizontal Force=1.69637e+006 lb

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 1610 Number of Invalid Surfaces: 3241 Error Codes: Error Code -110 reported for 7 surfaces Error Code -1000 reported for 3234 surfaces

Method: janbu simplified Number of Valid Surfaces: 1610 Number of Invalid Surfaces: 3241 Error Codes: Error Code -110 reported for 7 surfaces Error Code -1000 reported for 3234 surfaces

Error Codes

The following errors were encountered during the computation:

-110 = The water table or a piezoline does not span the slip region for a given slip surface, when Water Surfaces is specified as the method of pore pressure calculation. If this error occurs, check that the water table or piezoline(s) span the appropriate soil cells.

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

List of All Coordinates

Search Grid

1748.503	1704.592
4158.559	1704.592
4158.559	4114.648
1748.503	4114.648

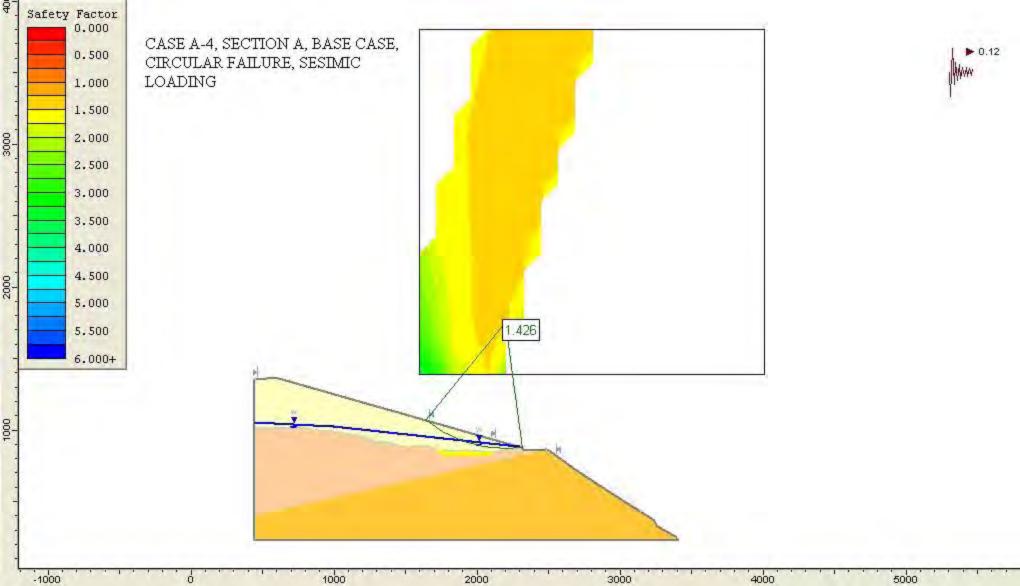
Material Boundary

2314.714	877.830
2318.833	868.390

Material Boundary

444.603	406.320
2486.603	867.072

Material Boundary


444.603	1016.678
778.843	1008.001
801.628	1011.719
930.798	992.830
1003.814	991.555
1134.400	961.813
1184.160	960.878
1287.103	917.830
1366.363	911.427
1508.366	879.563

1648.978 1714.507 1844.878 1899.368 1952.062 1966.705 2085.988 2122.423 2255.746 2294.519	895.441 866.950 849.115 859.012 848.639 853.541 845.717 850.463 867.830 886.664
Material Bou 444.603 779.091 802.295 934.613 1003.377 1135.723 1185.851 1290.168 1367.748 1508.559 1652.887 1716.093 1845.566 1901.285 1951.586 1965.318 2085.564	1026.698 1018.011 1021.715 1002.479 1001.548 971.791 970.792 927.453 921.417 889.580 904.695 876.826 859.100 868.873 859.025 863.623 855.718
2252.780 2276.933 <u>Material Bou</u> 2336.149 2397.411	857.830
<u>Material Bou</u> 1714.507 1765.721 1898.193 2086.063 2122.423	<u>indary</u> 866.950 821.319 821.319
External Bou 3402.045 3383.722 3255.036 3238.120 2970.385 2714.178 2486.603 2475.385 2421.159 2408.449 2397.411 2395.880	<u>indary</u> 227.830 259.787 327.580 367.830 537.830 867.072 867.830 857.830 857.209 857.755 857.830

2346.094	857.830
2336.149	857.830
2318.833	868.390
2316.428	873.988
2314.714	877.830
2294.519	886.664
2276.933	889.269
1370.131	1144.623
586.556	1367.830
461.847	1356.045
444.603	1354.451
444.603	1026.698
444.603	1016.678
444.603	406.320
444.603	227.830

Water Table

444.603	1057.890
994.281	1027.633
2276.933	889.269
2294.519	886.664

Slide Analysis Information CASE A-4, SECTION A, BASE CASE, CIRCULAR FAILURE, SEISMIC LOADING

Document Name

File Name: SEC-A-BAS_C_S.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Left to Right Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Standard Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10 Composite Surfaces: Disabled Reverse Curvature: Create Tension Crack Minimum Elevation: Not Defined Minimum Depth: Not Defined

Loading

Seismic Load Coefficient (Horizontal): 0.12

Material Properties

<u>Material: Waste Rock</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 32.6 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: Interface</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 32.6 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: Gila</u> Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3 Cohesion: 0 psf Friction Angle: 39 degrees Water Surface: None

<u>Material: Bedrock</u> Strength Type: Mohr-Coulomb Unit Weight: 160 lb/ft3 Cohesion: 20 psf Friction Angle: 35 degrees Water Surface: None

<u>Material: Qal</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 29 degrees Water Surface: None

<u>Global Minimums</u>

<u>Method: bishop simplified</u> FS: 1.426290 Center: 2199.094, 1754.658 Radius: 886.506 Left Slip Surface Endpoint: 1636.373, 1069.649 Right Slip Surface Endpoint: 2315.601, 875.842 Resisting Moment=2.02707e+009 lb-ft Driving Moment=1.42122e+009 lb-ft

Method: janbu simplified FS: 1.346430 Center: 2078.592, 1513.653 Radius: 657.201 Left Slip Surface Endpoint: 1579.966, 1085.533 Right Slip Surface Endpoint: 2281.570, 888.582 Resisting Horizontal Force=3.09428e+006 lb Driving Horizontal Force=2.29813e+006 lb

Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 1644 Number of Invalid Surfaces: 3207 Error Codes: Error Code -109 reported for 1 surface Error Code -110 reported for 5 surfaces Error Code -1000 reported for 3201 surfaces

<u>Method: janbu simplified</u> Number of Valid Surfaces: 1644 Number of Invalid Surfaces: 3207 Error Codes: Error Code -109 reported for 1 surface Error Code -110 reported for 5 surfaces Error Code -1000 reported for 3201 surfaces

Error Codes

The following errors were encountered during the computation:

-109 = Soiltype for slice base not located. This error should occur very rarely, if at all. It may occur if a very low number of slices is combined with certain soil geometries, such that the midpoint of a slice base is actually outside the soil region, even though the slip surface is wholly within the soil region.

-110 = The water table or a piezoline does not span the slip region for a given slip surface, when Water Surfaces is specified as the method of pore pressure calculation. If this error occurs, check that the water table or piezoline(s) span the appropriate soil cells.

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

List of All Coordinates

Search Grid 1596.580 1393.150 4006.636 1393.150 4006.636 3803.206

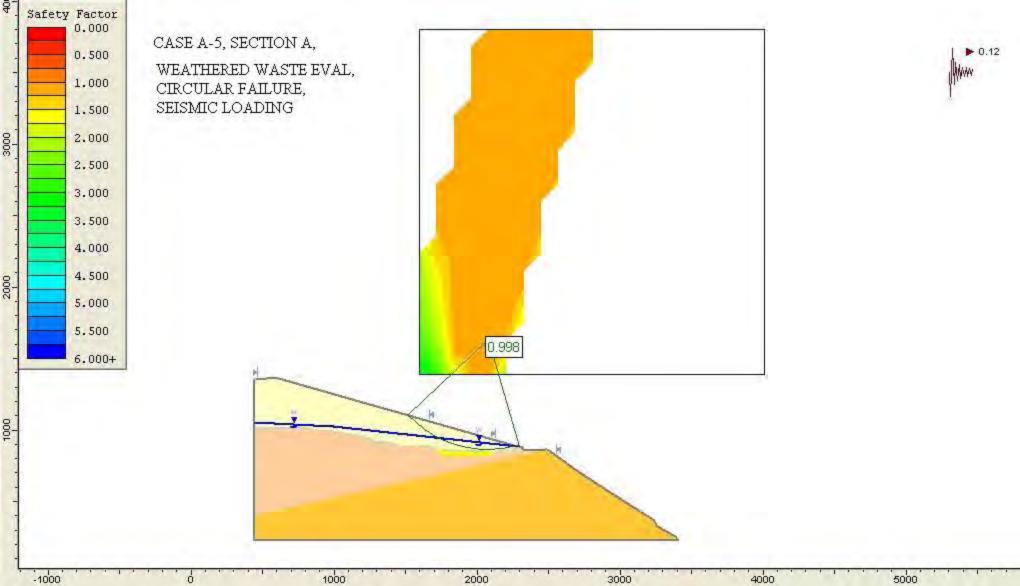
1596.580 3803.206

Material Boundary	
2314.714	877.830
2318.833	868.390

Material Boundary

444.603 406.320

2486.603	867.072


Material Bour	ndary
444.603	1016.678
778.843	1008.001
801.628	1011.719
930.798	992.830
1003.814	991.555
1134.400	961.813
1184.160	960.878
1287.103	917.830
1366.363	911.427
1508.366	879.563
1648.978	895.441
1714.507	866.950
1844.878	849.115
1899.368	859.012
1952.062	848.639
1966.705	853.541
2085.988	845.717
2122.423	850.463
2255.746	867.830
2294.519	886.664
Material Bour	ndary
444.603	1026.698
779.091	1018.011
802.295	1021.715
934.613	1002.479
1003.377	1001.548
1135.723	971.791
1185.851	970.792
1290.168	927.453
1367.748	921.417
1508.559	889.580
1652.887	904.695
1716.093	876.826
1845.566	859.100
1901.285	868.873
1951.586	859.025
1965.318	863.623
2085.564	855.718
2252.780	877.538
2276.933	889.269
<u>Material Bour</u> 2336.149 2397.411	857.830
Material Bour 1714.507 1765.721 1898.193 2086.062	ndary 866.950 821.319 821.319

11001121	0211010
1898.193	821.319
2086.063	821.319
2122.423	850.463

External Bou	
3402.045	227.830
3383.722	259.787
3255.036	327.580
3238.120	367.830
2970.385	537.830
2714.178	707.830
2486.603	867.072
2475.385	867.830
2421.159	857.830
2408.449	857.209
2397.411	857.755
2395.880	857.830
2346.094	857.830
2336.149	857.830
2318.833	868.390
2316.428	873.988
2314.714	877.830
2294.519	886.664
2276.933	889.269
1370.131	1144.623
586.556	1367.830
461.847	1356.045
444.603	1354.451
444.603	1026.698
444.603	1016.678
444.603	406.320
444.603	227.830

Water Table

Tator Table	
444.603	1057.890
994.281	1027.633
2276.933	889.269
2294.519	886.664

Slide Analysis Information CASE A-5, SECTION A, WEATHERED WASTE EVAL, CIRCULAR FAILURE, SEISMIC LOADING

Document Name

File Name: SEC-A-BAS_C_S.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Left to Right Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Standard Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10 Composite Surfaces: Disabled Reverse Curvature: Create Tension Crack Minimum Elevation: Not Defined Minimum Depth: Not Defined

Loading

Seismic Load Coefficient (Horizontal): 0.12

Material Properties

<u>Material: Waste Rock</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 24 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: Interface</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 24 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: Gila</u> Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3 Cohesion: 0 psf Friction Angle: 39 degrees Water Surface: None

<u>Material: Bedrock</u> Strength Type: Mohr-Coulomb Unit Weight: 160 lb/ft3 Cohesion: 20 psf Friction Angle: 35 degrees Water Surface: None

<u>Material: Qal</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 29 degrees Water Surface: None

<u>Global Minimums</u>

Method: bishop simplified FS: 0.997858 Center: 2078.592, 1634.156 Radius: 776.303 Left Slip Surface Endpoint: 1510.485, 1105.099 Right Slip Surface Endpoint: 2290.324, 887.285 Resisting Moment=2.07e+009 lb-ft Driving Moment=2.07445e+009 lb-ft

Method: janbu simplified FS: 0.937397 Center: 2078.592, 1513.653 Radius: 657.201 Left Slip Surface Endpoint: 1579.966, 1085.533 Right Slip Surface Endpoint: 2281.570, 888.582 Resisting Horizontal Force=2.1539e+006 lb Driving Horizontal Force=2.29774e+006 lb

Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 1644 Number of Invalid Surfaces: 3207 Error Codes: Error Code -109 reported for 1 surface Error Code -110 reported for 5 surfaces Error Code -1000 reported for 3201 surfaces

<u>Method: janbu simplified</u> Number of Valid Surfaces: 1644 Number of Invalid Surfaces: 3207 Error Codes: Error Code -109 reported for 1 surface Error Code -110 reported for 5 surfaces Error Code -1000 reported for 3201 surfaces

Error Codes

The following errors were encountered during the computation:

-109 = Soiltype for slice base not located. This error should occur very rarely, if at all. It may occur if a very low number of slices is combined with certain soil geometries, such that the midpoint of a slice base is actually outside the soil region, even though the slip surface is wholly within the soil region.

-110 = The water table or a piezoline does not span the slip region for a given slip surface, when Water Surfaces is specified as the method of pore pressure calculation. If this error occurs, check that the water table or piezoline(s) span the appropriate soil cells.

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

List of All Coordinates

Search Grid 1596.580 1393.150 4006.636 1393.150 4006.636 3803.206

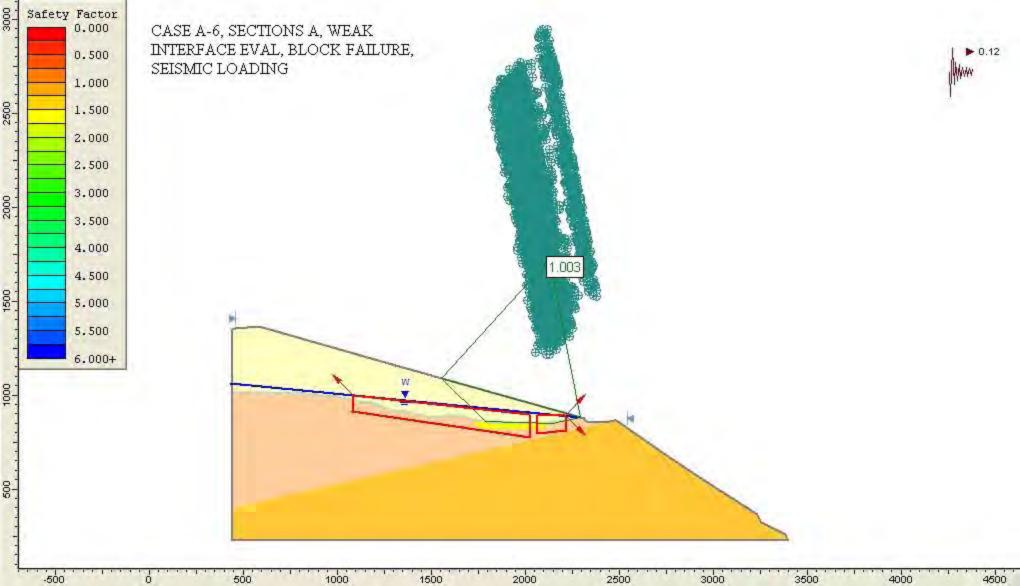
1596.580 3803.206

Material Boundary	
2314.714	877.830
2318.833	868.390

Material Boundary

444.603 406.320

2486.603	867.072


Material Bour	ndary
444.603	1016.678
778.843	1008.001
801.628	1011.719
930.798	992.830
1003.814	991.555
1134.400	961.813
1184.160	960.878
1287.103	917.830
1366.363	911.427
1508.366	879.563
1648.978	895.441
1714.507	866.950
1844.878	849.115
1899.368	859.012
1952.062	848.639
1966.705	853.541
2085.988	845.717
2122.423	850.463
2255.746	867.830
2294.519	886.664
Material Bour	ndary
444.603	1026.698
779.091	1018.011
802.295	1021.715
934.613	1002.479
1003.377	1001.548
1135.723	971.791
1185.851	970.792
1290.168	927.453
1367.748	921.417
1508.559	889.580
1652.887	904.695
1716.093	876.826
1845.566	859.100
1901.285	868.873
1951.586	859.025
1965.318	863.623
2085.564	855.718
2252.780	877.538
2276.933	889.269
<u>Material Bour</u> 2336.149 2397.411	857.830
Material Bour 1714.507 1765.721 1898.193 2086.062	ndary 866.950 821.319 821.319

11001121	0211010
1898.193	821.319
2086.063	821.319
2122.423	850.463

External Bou	
3402.045	227.830
3383.722	259.787
3255.036	327.580
3238.120	367.830
2970.385	537.830
2714.178	707.830
2486.603	867.072
2475.385	867.830
2421.159	857.830
2408.449	857.209
2397.411	857.755
2395.880	857.830
2346.094	857.830
2336.149	857.830
2318.833	868.390
2316.428	873.988
2314.714	877.830
2294.519	886.664
2276.933	889.269
1370.131	1144.623
586.556	1367.830
461.847	1356.045
444.603	1354.451
444.603	1026.698
444.603	1016.678
444.603	406.320
444.603	227.830

Water Table

Tator Table	
444.603	1057.890
994.281	1027.633
2276.933	889.269
2294.519	886.664

Slide Analysis Information CASE A-6, SECTIONS A, WEAK INTERFACE EVAL, BLOCK FAILURE, SEISMIC LOADING

Document Name

File Name: SEC-A-BAS_B_P.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Left to Right Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Maximum Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Non-Circular Block Search Number of Surfaces: 5000 Pseudo-Random Surfaces: Enabled Convex Surfaces Only: Disabled Left Projection Angle (Start Angle): 135 Left Projection Angle (End Angle): 135 Right Projection Angle (Start Angle): 45 Right Projection Angle (End Angle): -45 Minimum Elevation: Not Defined Minimum Depth: Not Defined

Loading

Seismic Load Coefficient (Horizontal): 0.12

Material Properties

Material: Waste Rock Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 32.6 degrees Water Surface: Water Table Custom Hu value: 1

Material: Interface

Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 18 degrees Water Surface: Water Table Custom Hu value: 1

Material: Gila Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 39 degrees Water Surface: None

<u>Material: Bedrock</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 160 lb/ft3 Saturated Unit Weight: 160 lb/ft3 Cohesion: 20 psf Friction Angle: 35 degrees Water Surface: None

<u>Material: Qal</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 29 degrees Water Surface: Water Table Custom Hu value: 1

Global Minimums

Method: bishop simplified FS: 1.003280 Axis Location: 2129.398, 1727.303 Left Slip Surface Endpoint: 1555.019, 1092.558 Right Slip Surface Endpoint: 2292.566, 886.953 Resisting Moment=2.32619e+009 lb-ft Driving Moment=2.3186e+009 lb-ft

Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 4975 Number of Invalid Surfaces: 25 Error Codes: Error Code -108 reported for 2 surfaces Error Code -110 reported for 21 surfaces Error Code -111 reported for 2 surfaces

Error Codes

The following errors were encountered during the computation:

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-110 = The water table or a piezoline does not span the slip region for a given slip surface, when Water Surfaces is specified as the method of pore pressure calculation. If this error occurs, check that the water table or piezoline(s) span the appropriate soil cells.

-111 = safety factor equation did not converge

List of All Coordinates

|--|

2314.714	877.830
2318.833	868.390

Material Boundary

444.603	406.320
2486.603	867.072

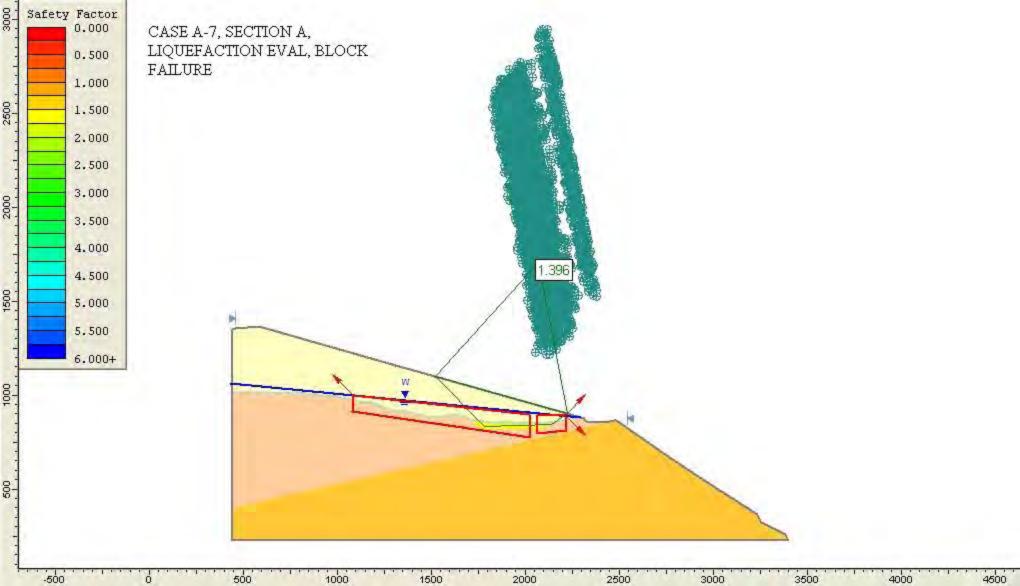
Material Boundary

naterial Dea	naury
444.603	1016.678
778.843	1008.001
801.628	1011.719
930.798	992.830
1003.814	991.555
1134.400	961.813
1184.160	960.878
1287.103	917.830
1366.363	911.427
1508.366	879.563
1648.978	895.441
1714.507	866.950
1844.878	849.115
1899.368	859.012
1952.062	848.639
1966.705	853.541
2085.988	845.717
2122.423	850.463

2255.746 2294.519	867.830 886.664
Material Bou 444.603 779.091 802.295 934.613 1003.377 1135.723 1185.851 1290.168 1367.748 1508.559 1652.887 1716.093 1845.566 1901.285 1951.586 1965.318 2085.564 2252.780 2276.933	1026.698 1018.011 1021.715 1002.479 1001.548 971.791 970.792 927.453 921.417 889.580 904.695 876.826 859.100 868.873 859.025
<u>Material Bou</u> 2336.149 2397.411	857.830
<u>Material Bou</u> 1714.507 1765.721 1898.193 2086.063 2122.423	866.950 821.319
External Bou 3402.045 3383.722 3255.036 3238.120 2970.385 2714.178 2486.603 2475.385 2421.159 2408.449 2397.411 2395.880 2346.094 2336.149 2318.833 2316.428 2314.714 2294.519 2276.933 1370.131	227.830

586.556	1367.830
461.847	1356.045
444.603	1354.451
444.603	1026.698
444.603	1016.678
444.603	406.320
444.603	227.830

Water Table


434.232	1067.564
2296.607	886.267

Focus/Block Search Window

2212.566	893.654
2065.437	897.525
2067.373	800.730
2222.245	814.282

Focus/Block Search Window

1087.806	1002.064
1080.063	916.884
2026.719	779.435
2024.783	899.461

Slide Analysis Information CASE A-7, LIQUEFACTION EVAL, BLOCK FAILURE

Document Name

File Name: SEC-A-BAS_B_P.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Left to Right Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Maximum Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Non-Circular Block Search Number of Surfaces: 5000 Pseudo-Random Surfaces: Enabled Convex Surfaces Only: Disabled Left Projection Angle (Start Angle): 135 Left Projection Angle (End Angle): 135 Right Projection Angle (Start Angle): 45 Right Projection Angle (End Angle): -45 Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

<u>Material: Waste Rock</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 32.6 degrees Water Surface: Water Table Custom Hu value: 1

Material: Interface Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 32.6 degrees Water Surface: Water Table Custom Hu value: 1

Material: Gila Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 39 degrees Water Surface: None

<u>Material: Bedrock</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 160 lb/ft3 Saturated Unit Weight: 160 lb/ft3 Cohesion: 20 psf Friction Angle: 35 degrees Water Surface: None

<u>Material: Qal</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 8 degrees Water Surface: Water Table Custom Hu value: 1

Global Minimums

Method: bishop simplified FS: 1.395880 Axis Location: 2070.980, 1706.925 Left Slip Surface Endpoint: 1520.855, 1102.179 Right Slip Surface Endpoint: 2224.702, 903.977 Resisting Moment=2.30236e+009 lb-ft Driving Moment=1.64939e+009 lb-ft

Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 4977 Number of Invalid Surfaces: 23 Error Codes: Error Code -108 reported for 2 surfaces Error Code -110 reported for 21 surfaces

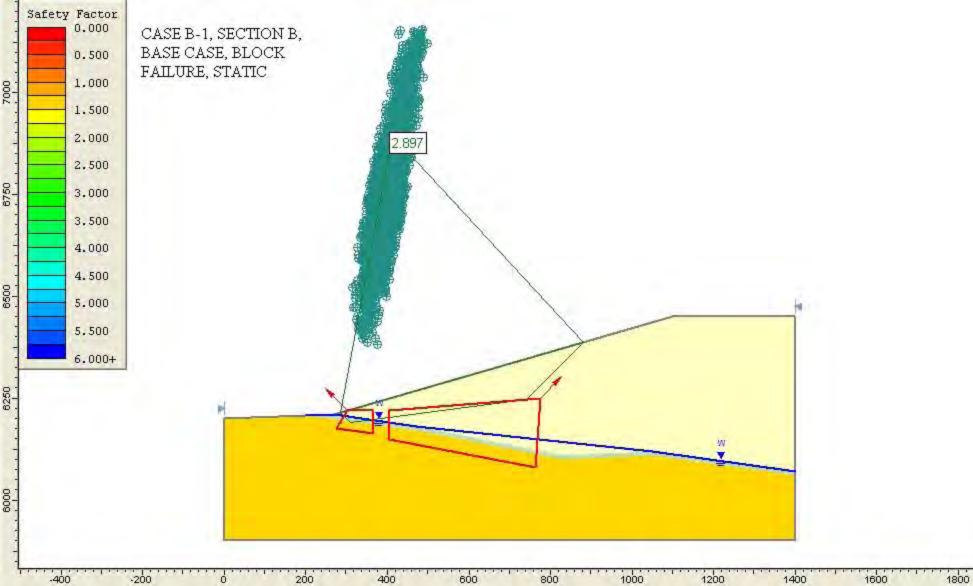
Error Codes

The following errors were encountered during the computation:

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-110 = The water table or a piezoline does not span the slip region for a given slip surface, when Water Surfaces is specified as the method of pore pressure calculation. If this error occurs, check that the water table or piezoline(s) span the appropriate soil cells.

List of All Coordinates


Material Boundary	
2314.714	877.830
2318.833	868.390
Material Bour	<u>ndary</u>
444.603	406.320
2486.603	867.072
Material Bou	
444.603	1016.678
778.843	1008.001
801.628	1011.719
930.798	992.830
1003.814	991.555
1134.400	961.813
1184.160	960.878
1287.103	917.830
1366.363	911.427
1508.366	879.563
1648.978	895.441
1714.507	866.950
1844.878	849.115
1899.368	859.012
1952.062	848.639
1966.705	853.541
2085.988	845.717
2122.423	850.463
2255.746	867.830
2294.519	886.664

Material Boundary

444.603	1026.698
779.091	1018.011
802.295	1021.715

934.613 1003.377 1135.723 1185.851 1290.168 1367.748 1508.559 1652.887 1716.093 1845.566 1901.285 1951.586 1965.318 2085.564 2252.780 2276.933	1002.479 1001.548 971.791 927.453 921.417 889.580 904.695 876.826 859.100 868.873 859.025 863.623 855.718 877.538 889.269
<u>Material Bou</u> 2336.149 2397.411	<u>ndary</u> 857.830 857.755
<u>Material Bou</u> 1714.507 1765.721 1898.193 2086.063 2122.423	866.950 821.319 821.319
External Bou 3402.045 3383.722 3255.036 3238.120 2970.385 2714.178 2486.603 2475.385 2421.159 2408.449 2397.411 2395.880 2346.094 2336.149 2318.833 2316.428 2314.714 2294.519 2276.933 1370.131 586.556 461.847 444.603 444.603 444.603 444.603	ndary 227.830 259.787 327.580 367.830 537.830 707.830 867.072 867.830 857.830 857.830 857.830 857.830 857.830 857.830 857.830 857.830 857.830 857.830 857.830 857.830 857.830 1356.045 1356.045 1356.045 1356.045 1356.045 1356.045 1356.045 1356.045 1354.451 1026.698 1016.678 406.320 227.830

Water Table 434.232 2296.607	1067.564 886.267
Focus/Block S	Search Window
2212.566	893.654
2065.437	897.525
2067.373	800.730
2222.245	814.282
Focus/Block S 1087.806 1080.063 2026.719 2024.783	Search Window 1002.064 916.884 779.435 899.461

Slide Analysis Information CASE B-1, SECTION B, BASE CASE, BLOCK FAILURE, STATIC

Document Name

File Name: Sec B 1B.sli

Project Settings

Project Title: Section B-B', 1B Leach Failure Direction: Right to Left Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Maximum Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Non-Circular Block Search Number of Surfaces: 5000 Pseudo-Random Surfaces: Enabled Convex Surfaces Only: Disabled Left Projection Angle (Start Angle): 135 Left Projection Angle (End Angle): 135 Right Projection Angle (Start Angle): 45 Right Projection Angle (End Angle): 45 Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

<u>Material: Leached Ore</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 35.5 degrees Water Surface: Water Table Custom Hu value: 1

Material: Interface Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 35.5 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: QTg</u> Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3 Cohesion: 0 psf Friction Angle: 39 degrees Water Surface: None

Global Minimums

Method: bishop simplified FS: 2.896690 Axis Location: 411.307, 6895.935 Left Slip Surface Endpoint: 285.792, 6214.566 Right Slip Surface Endpoint: 881.093, 6386.702 Resisting Moment=2.11015e+009 lb-ft Driving Moment=7.28467e+008 lb-ft

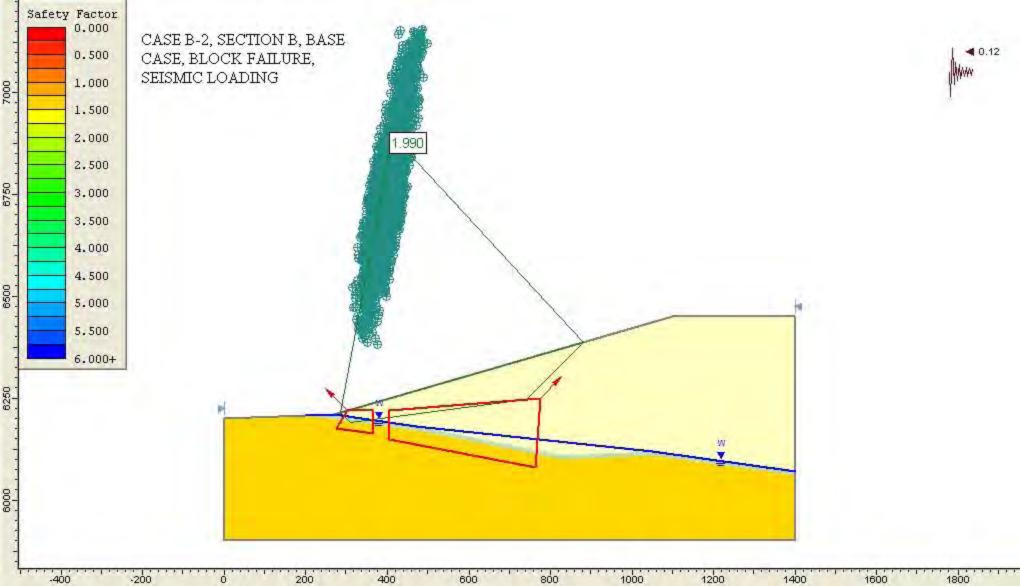
Valid / Invalid Surfaces

<u>Method: bishop simplified</u> Number of Valid Surfaces: 5000 Number of Invalid Surfaces: 0

List of All Coordinates

Material Boundary

270.000	6210.000
470.000	6180.000
830.000	6110.000
1050.000	6120.000
1400.000	6070.000


Material Boundary

200.000	6207.000
470.000	6170.000
830.000	6100.000
1050.000	6110.000
1400.000	6060.000
830.000 1050.000	6100.00 6110.00

External Boundary

5900.000
6060.000
6070.000

1400.000 1100.000 270.000 200.000 0.000 0.000	6450.000 6450.000 6210.000 6207.000 6200.000 5900.000
Water Table	
200.000	6207.000
270.000	6210.000
470.000	6180.000
1050.000	6120.000
1400.000	6070.000
Focus/Block \$	Search Window
275.266	6175.793
365.493	6162.903
365.493	6219.617
302.907	6219.515
Focus/Block	Search Window
404.162	6150.014
762.492	6080.410
775.381	6250.552
404.162	6219.617

Slide Analysis Information CASE B-2, SECTION B, BASE CASE, BLOCK FAILURE, SEISMIC LOADING

Document Name

File Name: Sec B 1B.sli

Project Settings

Project Title: Section B-B', 1B Leach Failure Direction: Right to Left Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Maximum Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Non-Circular Block Search Number of Surfaces: 5000 Pseudo-Random Surfaces: Enabled Convex Surfaces Only: Disabled Left Projection Angle (Start Angle): 135 Left Projection Angle (End Angle): 135 Right Projection Angle (Start Angle): 45 Right Projection Angle (End Angle): 45 Minimum Elevation: Not Defined Minimum Depth: Not Defined

Loading

Seismic Load Coefficient (Horizontal): 0.12

Material Properties

Material: Leached Ore Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 35.5 degrees Water Surface: Water Table Custom Hu value: 1

Material: Interface Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 35.5 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: QTg</u> Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3 Cohesion: 0 psf Friction Angle: 39 degrees Water Surface: None

Global Minimums

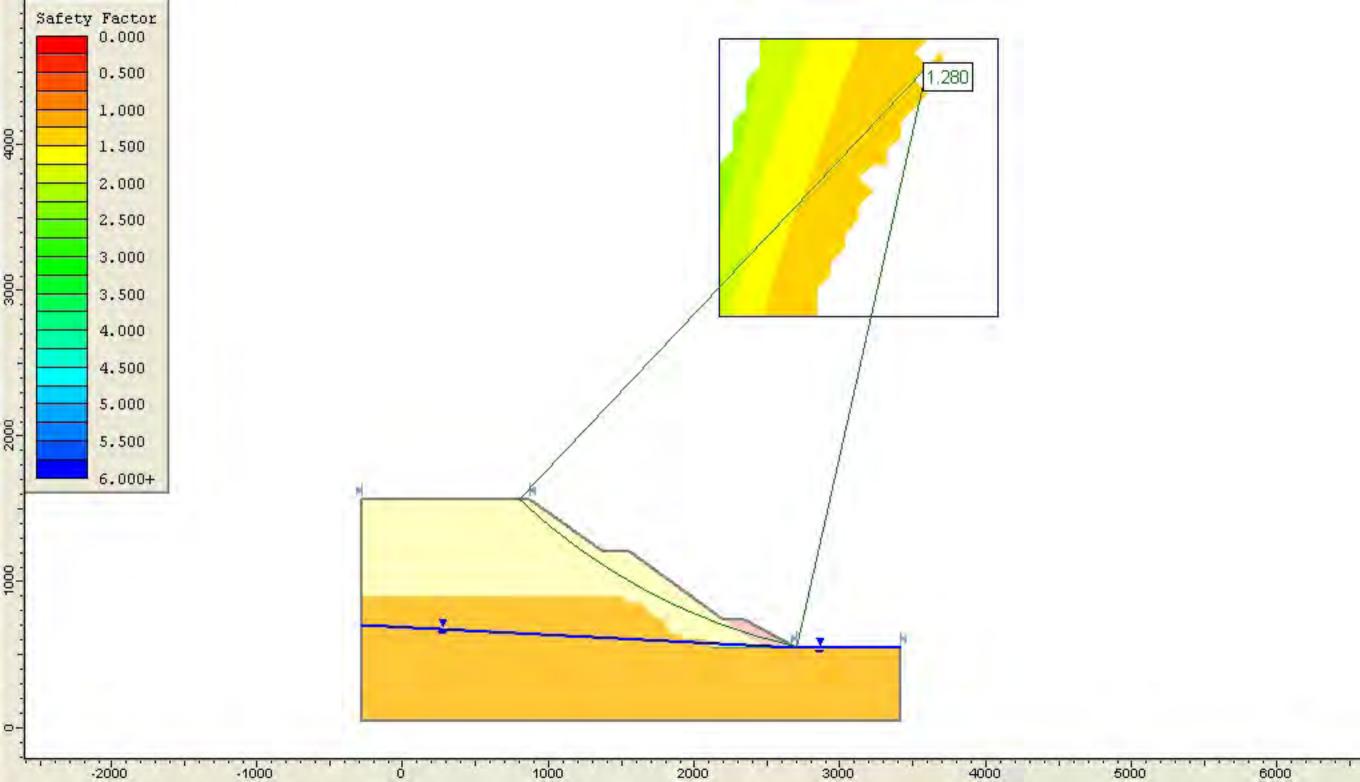
Method: bishop simplified FS: 1.989500 Axis Location: 411.307, 6895.935 Left Slip Surface Endpoint: 285.792, 6214.566 Right Slip Surface Endpoint: 881.093, 6386.702 Resisting Moment=2.05438e+009 lb-ft Driving Moment=1.03261e+009 lb-ft

Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 5000 Number of Invalid Surfaces: 0

List of All Coordinates

Material Boundary


270.000	6210.000
470.000	6180.000
830.000	6110.000
1050.000	6120.000
1400.000	6070.000

Material Boundary

6207.000
6170.000
6100.000
6110.000
6060.000

External Bour	ndarv	
1400.000	5900.000	
1400.000	6060.000	
1400.000	6070.000	
1400.000	6450.000	
1100.000	6450.000	
270.000	6210.000	
200.000	6207.000	
0.000	6200.000	
0.000	5900.000	
Water Table		
200.000	6207.000	
270.000	6210.000	
470.000	6180.000	
1050.000	6120.000	
1400.000	6070.000	
	Search Window	
275.266	6175.793	
365.493	6162.903	
365.493	6219.617	
302.907	6219.515	
	Search Window 6150.014	
404.162	0.00.0.	
762.492	6080.410	
775.381	6250.552	

110.001	0200.002
404.162	6219.617

Slide Analysis Information CASE B-3, SECTION B, BASE CASE, CIRCULAR FAILURE, STATIC

Document Name

File Name: Sec B 1B.sli

Project Settings

Project Title: Section B-B', 1B Leach Failure Direction: Right to Left Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Maximum Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10 Composite Surfaces: Disabled Reverse Curvature: Create Tension Crack Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

<u>Material: Leached Ore</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 35.5 degrees Water Surface: Water Table Custom Hu value: 1 <u>Material: Interface</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 35.5 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: QTg</u> Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3 Cohesion: 0 psf Friction Angle: 39 degrees Water Surface: None

Global Minimums

<u>Method: bishop simplified</u> FS: 2.527370 Center: 225.869, 7186.393 Radius: 977.389 Left Slip Surface Endpoint: 270.000, 6210.000 Right Slip Surface Endpoint: 709.639, 6337.125 Resisting Moment=6.71778e+008 lb-ft Driving Moment=2.65801e+008 lb-ft

Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 3351 Number of Invalid Surfaces: 1500 Error Codes: Error Code -101 reported for 49 surfaces Error Code -103 reported for 32 surfaces Error Code -1000 reported for 1419 surfaces

Error Codes

The following errors were encountered during the computation:

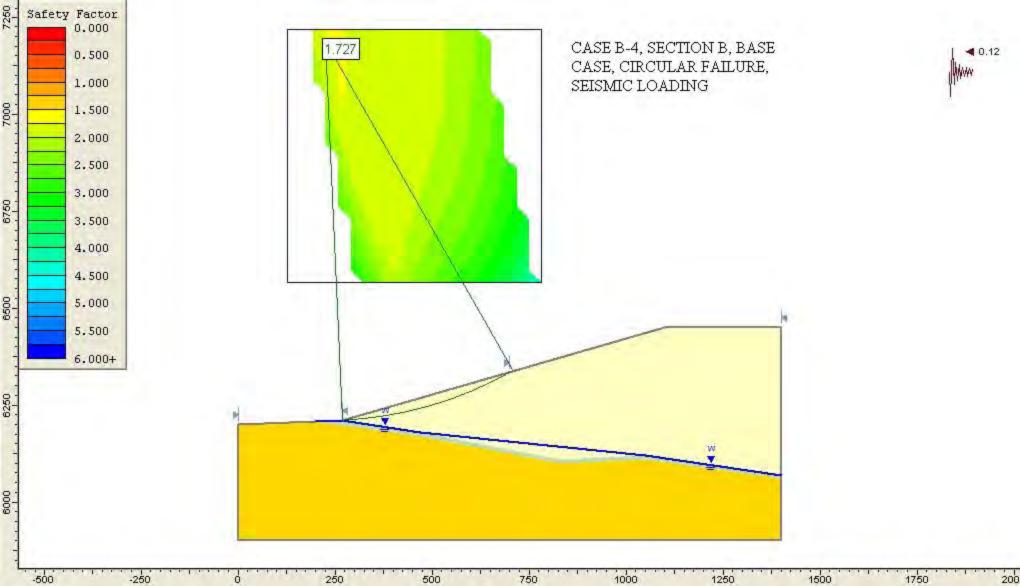
-101 = Only one (or zero) surface / slope intersections.

-103 = Two surface / slope intersections, but one or more surface / nonslope external polygon intersections lie between them. This usually occurs when the slip surface extends past the bottom of the soil region, but may also occur on a benched slope model with two sets of Slope Limits.

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

List of All Coordinates

Search Grid


127.820	6565.415
781.480	6565.415
781.480	7219.076
127.820	7219.076
Material Bou	ndary_
270.000	6210.000
470.000	6180.000
830.000	6110.000
1050.000	6120.000
1400.000	6070.000
Material Bou	ndary_
200.000	6207.000
470.000	6170.000
830.000	6100.000
1050.000	6110.000
1400.000	6060.000

External Boundary

1400.000	5900.000
1400.000	6060.000
1400.000	6070.000
1400.000	6450.000
1100.000	6450.000
270.000	6210.000
200.000	6207.000
0.000	6200.000
0.000	5900.000

Water Table

200.000	6207.000
270.000	6210.000
470.000	6180.000
1050.000	6120.000
1400.000	6070.000

Slide Analysis Information CASE B-4, SECTION B, BASE CASE, CIRCULAR FAILURE, SEISMIC LOADING

Document Name

File Name: Sec B 1B.sli

Project Settings

Project Title: Section B-B', 1B Leach Failure Direction: Right to Left Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Maximum Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10 Composite Surfaces: Disabled Reverse Curvature: Create Tension Crack Minimum Elevation: Not Defined Minimum Depth: Not Defined

Loading

Seismic Load Coefficient (Horizontal): 0.12

Material Properties

Material: Leached Ore Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 35.5 degrees Water Surface: Water Table Custom Hu value: 1

Material: Interface Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 35.5 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: QTg</u> Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3 Cohesion: 0 psf Friction Angle: 39 degrees Water Surface: None

Global Minimums

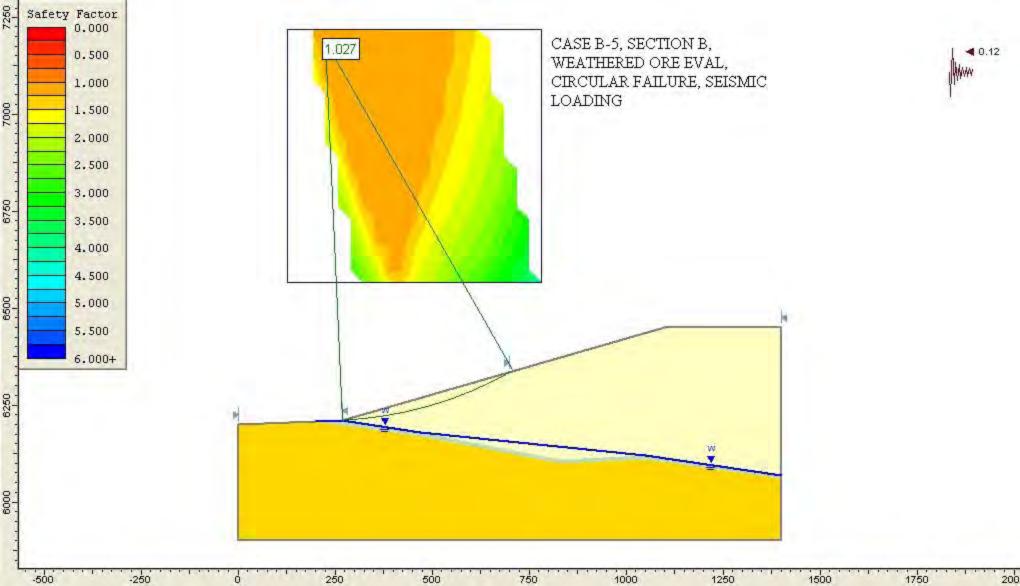
Method: bishop simplified FS: 1.726550 Center: 225.869, 7186.393 Radius: 977.389 Left Slip Surface Endpoint: 270.000, 6210.000 Right Slip Surface Endpoint: 709.639, 6337.125 Resisting Moment=6.49381e+008 lb-ft Driving Moment=3.76116e+008 lb-ft

Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 3351 Number of Invalid Surfaces: 1500 Error Codes: Error Code -101 reported for 49 surfaces Error Code -103 reported for 32 surfaces Error Code -1000 reported for 1419 surfaces

Error Codes

The following errors were encountered during the computation:


-101 = Only one (or zero) surface / slope intersections.

-103 = Two surface / slope intersections, but one or more surface / nonslope external polygon intersections lie between them. This usually occurs when the slip surface extends past the bottom of the soil region, but may also occur on a benched slope model with two sets of Slope Limits. -1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

List of All Coordinates

Search Grid 127.820 781.480 781.480 127.820	6565.415 6565.415 7219.076 7219.076
Material Bour 270.000 470.000 830.000 1050.000 1400.000	ndary 6210.000 6180.000 6110.000 6120.000 6070.000
Material Bour 200.000 470.000 830.000 1050.000 1400.000	ndary 6207.000 6170.000 6100.000 6110.000 6060.000
External Bou 1400.000 1400.000 1400.000 1400.000 1100.000 270.000 200.000 0.000 0.000	ndary 5900.000 6060.000 6450.000 6450.000 6210.000 6207.000 6200.000 5900.000
Water Table 200.000 270.000 470.000 1050.000	6207.000 6210.000 6180.000 6120.000

1400.000 6070.000

Slide Analysis Information CASE B-5, SECTION B, WEATHERED ORE EVAL, CIRCULAR FAILURE, SEISMIC LOADING

Document Name

File Name: Sec B 1B.sli

Project Settings

Project Title: Section B-B', 1B Leach Failure Direction: Right to Left Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Maximum Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10 Composite Surfaces: Disabled Reverse Curvature: Create Tension Crack Minimum Elevation: Not Defined Minimum Depth: Not Defined

Loading

Seismic Load Coefficient (Horizontal): 0.12

Material Properties

Material: Leached Ore Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 23 degrees Water Surface: Water Table Custom Hu value: 1

Material: Interface Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 23 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: QTg</u> Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3 Cohesion: 0 psf Friction Angle: 39 degrees Water Surface: None

Global Minimums

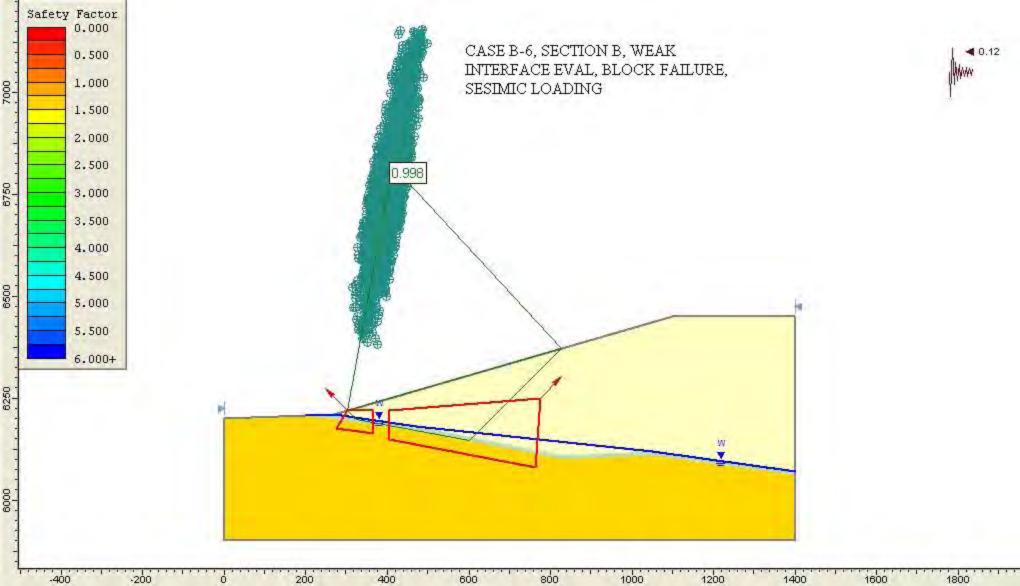
Method: bishop simplified FS: 1.027230 Center: 225.869, 7186.393 Radius: 977.389 Left Slip Surface Endpoint: 270.000, 6210.000 Right Slip Surface Endpoint: 709.639, 6337.125 Resisting Moment=3.86358e+008 lb-ft Driving Moment=3.76116e+008 lb-ft

Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 3351 Number of Invalid Surfaces: 1500 Error Codes: Error Code -101 reported for 49 surfaces Error Code -103 reported for 32 surfaces Error Code -1000 reported for 1419 surfaces

Error Codes

The following errors were encountered during the computation:


-101 = Only one (or zero) surface / slope intersections.

-103 = Two surface / slope intersections, but one or more surface / nonslope external polygon intersections lie between them. This usually occurs when the slip surface extends past the bottom of the soil region, but may also occur on a benched slope model with two sets of Slope Limits. -1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

List of All Coordinates

Search Grid 127.820 781.480 781.480 127.820	6565.415 6565.415 7219.076 7219.076
Material Bour 270.000 470.000 830.000 1050.000 1400.000	ndary 6210.000 6180.000 6110.000 6120.000 6070.000
Material Bour 200.000 470.000 830.000 1050.000 1400.000	ndary 6207.000 6170.000 6100.000 6110.000 6060.000
External Bou 1400.000 1400.000 1400.000 1400.000 1100.000 270.000 200.000 0.000 0.000	ndary 5900.000 6060.000 6450.000 6450.000 6210.000 6207.000 6200.000 5900.000
Water Table 200.000 270.000 470.000 1050.000	6207.000 6210.000 6180.000 6120.000

1400.000 6070.000

Slide Analysis Information CASE B-6, SECTION B, WEAK INTERFACE EVAL, BLOCK FAILURE, SESIMIC LOADING

Document Name

File Name: Sec B 1B.sli

Project Settings

Project Title: Section B-B', 1B Leach Failure Direction: Right to Left Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Maximum Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Non-Circular Block Search Number of Surfaces: 5000 Pseudo-Random Surfaces: Enabled Convex Surfaces Only: Disabled Left Projection Angle (Start Angle): 135 Left Projection Angle (End Angle): 135 Right Projection Angle (Start Angle): 45 Right Projection Angle (End Angle): 45 Minimum Elevation: Not Defined Minimum Depth: Not Defined

Loading

Seismic Load Coefficient (Horizontal): 0.12

Material Properties

Material: Leached Ore Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 35.5 degrees Water Surface: Water Table Custom Hu value: 1

Material: Interface Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 5 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: QTg</u> Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3 Cohesion: 0 psf Friction Angle: 39 degrees Water Surface: None

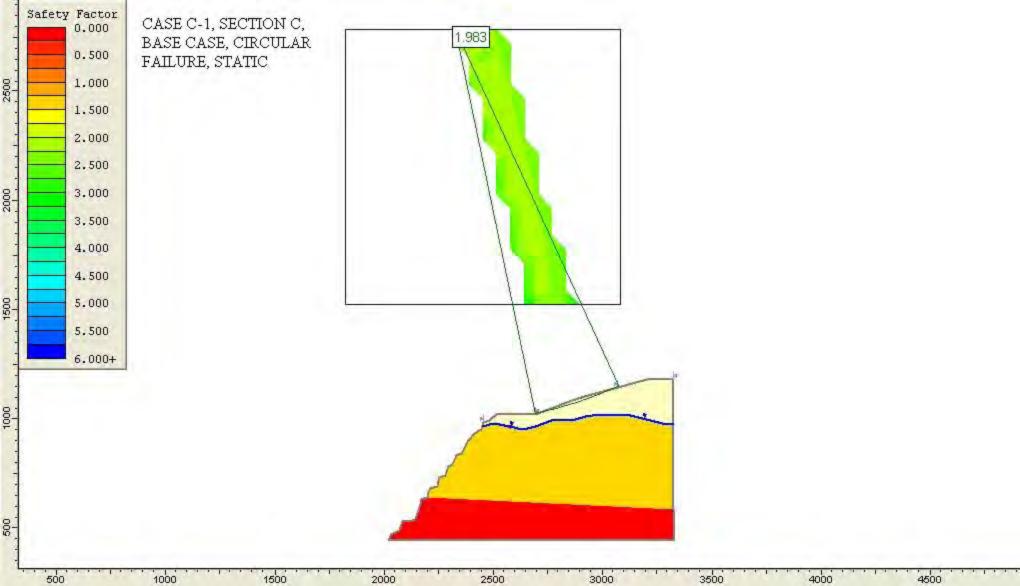
Global Minimums

Method: bishop simplified FS: 0.998182 Axis Location: 412.598, 6820.887 Left Slip Surface Endpoint: 301.758, 6219.183 Right Slip Surface Endpoint: 827.457, 6371.192 Resisting Moment=9.49213e+008 lb-ft Driving Moment=9.50941e+008 lb-ft

Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 4986 Number of Invalid Surfaces: 14 Error Codes: Error Code -112 reported for 14 surfaces

Error Codes


The following errors were encountered during the computation:

-112 = The coefficient M-Alpha = cos(alpha)(1+tan(alpha)tan(phi)/F) < 0.2 for the final iteration of the safety factor calculation. This screens out some slip surfaces which may not be valid in the context of the analysis, in particular, deep seated slip surfaces with many high negative base angle slices in the passive zone.

List of All Coordinates

Material Boundary

270.000 470.000 830.000 1050.000 1400.000	6210.000 6180.000 6110.000 6120.000 6070.000	
Material Boun 200.000	6207.000	
470.000 830.000 1050.000 1400.000	6170.000 6100.000 6110.000 6060.000	
External Boundary		
1400.000 1400.000	5900.000 6060.000	
1400.000 1400.000	6070.000 6450.000	
1100.000	6450.000	
270.000 200.000	6210.000 6207.000	
0.000	6200.000	
0.000	5900.000	
Water Table	0007.000	
200.000 270.000	6207.000 6210.000	
470.000	6180.000	
1050.000 1400.000	6120.000 6070.000	
Focus/Block S	Search Window	
275.266	6175.793	
365.493 365.493	6162.903 6219.617	
302.907	6219.515	
	Search Window	
404.162 762.492	6150.014 6080.410	
762.492 775.381	6250.552	
404.162	6219.617	

Slide Analysis Information CASE C-1, SECTION C, BASE CASE, CIRCULAR FAILURE, STATIC

Document Name

File Name: SEC-C-BAS_C_S.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Right to Left Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Standard Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10 Composite Surfaces: Disabled Reverse Curvature: Create Tension Crack Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

Material: WASTE ROCK Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3 Cohesion: 0 psf Friction Angle: 32.6 degrees Water Surface: None

Material: Interface

Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 32.6 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: Gila</u> Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3 Cohesion: 0 psf Friction Angle: 39 degrees Water Surface: None

Material: BEDROCK Strength Type: Mohr-Coulomb Unit Weight: 160 lb/ft3 Cohesion: 20 psf Friction Angle: 35 degrees Water Surface: None

Global Minimums

Method: bishop simplified FS: 1.982870 Center: 2325.942, 2781.649 Radius: 1800.591 Left Slip Surface Endpoint: 2691.215, 1018.497 Right Slip Surface Endpoint: 3074.585, 1144.071 Resisting Moment=6.66642e+008 lb-ft Driving Moment=3.362e+008 lb-ft

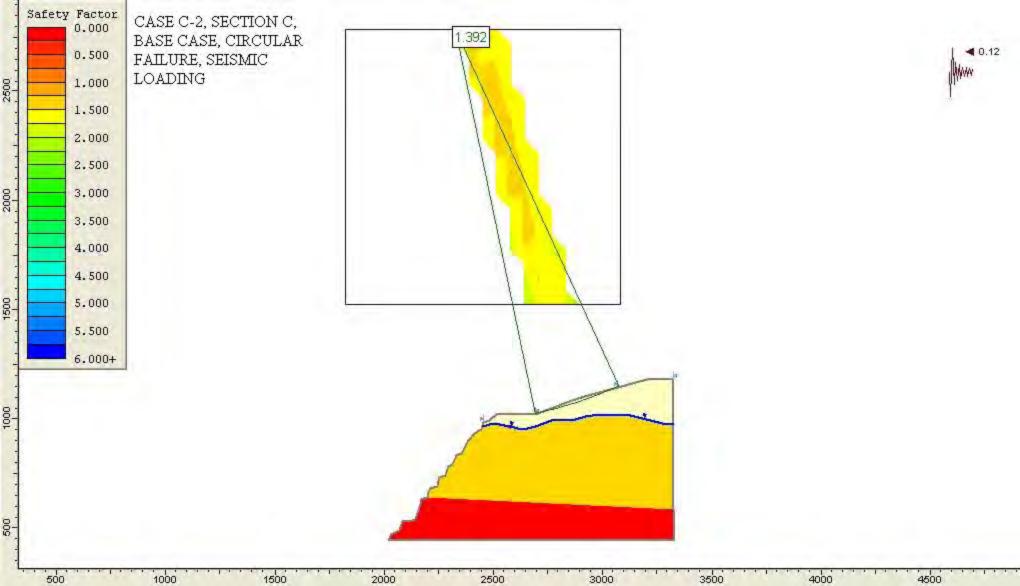
Method: janbu simplified FS: 1.977760 Center: 2325.942, 2781.649 Radius: 1800.591 Left Slip Surface Endpoint: 2691.215, 1018.497 Right Slip Surface Endpoint: 3074.585, 1144.071 Resisting Horizontal Force=351867 lb Driving Horizontal Force=177912 lb

Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 892 Number of Invalid Surfaces: 3959 Error Codes: Error Code -101 reported for 65 surfaces Error Code -1000 reported for 3894 surfaces

Method: janbu simplified Number of Valid Surfaces: 892 Number of Invalid Surfaces: 3959 Error Codes: Error Code -101 reported for 65 surfaces Error Code -1000 reported for 3894 surfaces

Error Codes


The following errors were encountered during the computation:

-101 = Only one (or zero) surface / slope intersections.

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

List of All Coordinates

Material Boundary2196.973640.0963324.967585.969Material Boundary2449.240964.0152470.232960.4402499.228971.9262518.830970.4552574.973955.4922630.990940.4972656.736943.4862766.231980.2682796.656985.1692860.114983.3842922.165998.2942955.5531005.2682982.3871008.4173124.5431005.2683272.701969.507	Search Grid 1822.181 3081.584 3081.584 1822.181	1522.245 1522.245 2781.649 2781.649
3324.967585.969Material Boundary2449.240964.0152470.232960.4402499.228971.9262518.830970.4552574.973955.4922630.990940.4972656.736943.4862766.231980.2682796.656985.1692860.114983.3842922.165998.2942955.5531005.2682982.3871008.4173124.5431005.268		
Material Boundary 2449.240 964.015 2470.232 960.440 2499.228 971.926 2518.830 970.455 2574.973 955.492 2630.990 940.497 2656.736 943.486 2766.231 980.268 2796.656 985.169 2860.114 983.384 2922.165 998.294 2955.553 1005.268 2982.387 1008.417 3124.543 1005.268		0.0.000
2449.240964.0152470.232960.4402499.228971.9262518.830970.4552574.973955.4922630.990940.4972656.736943.4862766.231980.2682796.656985.1692860.114983.3842922.165998.2942955.5531005.2682982.3871008.4173124.5431005.268	3324.967	585.969
	2449.240 2470.232 2499.228 2518.830 2574.973 2630.990 2656.736 2766.231 2796.656 2860.114 2922.165 2955.553 2982.387	964.015 960.440 971.926 970.455 955.492 940.497 943.486 980.268 985.169 983.384 998.294 1005.268 1008.417
	Material Bour 2453.376 2469.263 2497.665 2520.761 2579.719 2628.640 2654.695 2693.129 2763.566 2796.073	ndary 973.455 970.749 981.905 980.285 964.539 950.264 953.304 964.831 989.934 995.196

Slide Analysis Information CASE C-2, SECTION C, BASE CASE, CIRCULAR FAILURE, SEISMIC LOADING

Document Name

File Name: SEC-C-BAS_C_S.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Right to Left Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Standard Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10 Composite Surfaces: Disabled Reverse Curvature: Create Tension Crack Minimum Elevation: Not Defined Minimum Depth: Not Defined

Loading

Seismic Load Coefficient (Horizontal): 0.12

Material Properties

Material: WASTE ROCK Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3 Cohesion: 0 psf Friction Angle: 32.6 degrees Water Surface: None

Material: Interface Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 32.6 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: Gila</u> Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3 Cohesion: 0 psf Friction Angle: 39 degrees Water Surface: None

<u>Material: BEDROCK</u> Strength Type: Mohr-Coulomb Unit Weight: 160 lb/ft3 Cohesion: 20 psf Friction Angle: 35 degrees Water Surface: None

<u>Global Minimums</u>

<u>Method: bishop simplified</u> FS: 1.392290 Center: 2325.942, 2781.649 Radius: 1800.591 Left Slip Surface Endpoint: 2691.215, 1018.497 Right Slip Surface Endpoint: 3074.585, 1144.071 Resisting Moment=6.4097e+008 lb-ft Driving Moment=4.60373e+008 lb-ft

Method: janbu simplified FS: 1.387500 Center: 2325.942, 2781.649 Radius: 1800.591 Left Slip Surface Endpoint: 2691.215, 1018.497 Right Slip Surface Endpoint: 3074.585, 1144.071 Resisting Horizontal Force=338199 lb Driving Horizontal Force=243746 lb

Valid / Invalid Surfaces

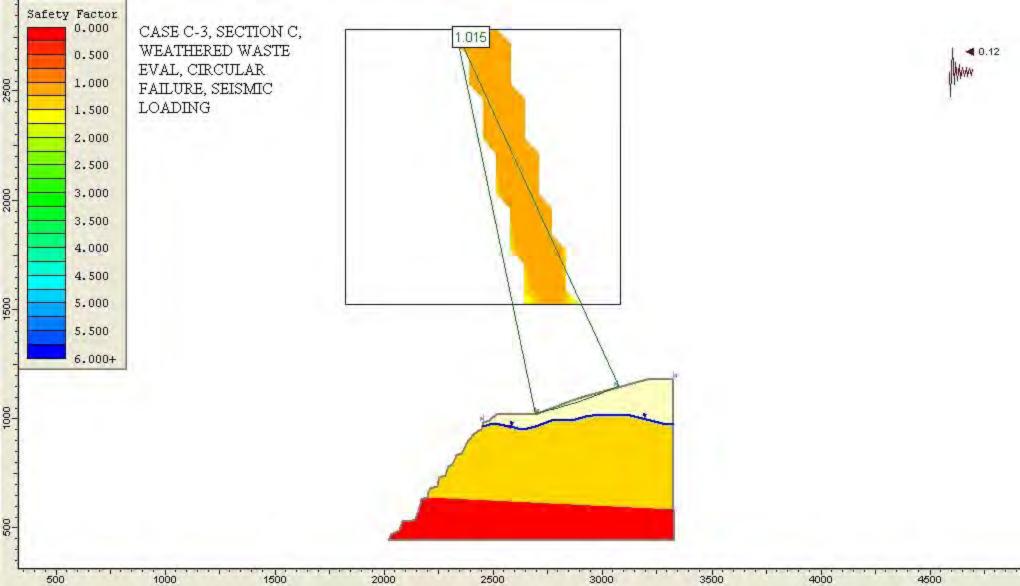
Method: bishop simplified Number of Valid Surfaces: 892 Number of Invalid Surfaces: 3959 Error Codes: Error Code -101 reported for 65 surfaces Error Code -1000 reported for 3894 surfaces <u>Method: janbu simplified</u> Number of Valid Surfaces: 892 Number of Invalid Surfaces: 3959 Error Codes: Error Code -101 reported for 65 surfaces Error Code -1000 reported for 3894 surfaces

Error Codes

The following errors were encountered during the computation:

-101 = Only one (or zero) surface / slope intersections.

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.


List of All Coordinates

Search Grid 1822.181 3081.584 3081.584 1822.181	1522.245 1522.245 2781.649 2781.649
Material Bour	ndarv
2196.973	640.096
3324.967	585.969
Material Bour	ndarv
2449.240	964.015
2470.232	960.440
2499.228	971.926
2518.830	970.455
2574.973	955.492
2630.990	940.497
2656.736	943.486
2766.231	980.268
2796.656	985.169
2860.114	983.384
2922.165	998.294
2955.553	1005.268
2982.387	1008.417
3124.543	1005.268
3272.701	969.507
3320.973	961.830
Material Bour	ndarv
2453.376	973.455
2469.263	970.749
2497.665	981.905
2520.761	980.285
2579.719	964.539

2628.640 950.264

2654.695	953.304
2693.129	964.831
2763.566	989.934
2796.073	995.196
2859.446	993.380
2920.010	1008.088
2953.725	1015.120
2982.020	1018.440
3125.771	1015.268
3274.730	979.300
3320.973	971.879
External Bour 3320.973 3320.973 3320.973 3320.973 3320.973 3320.973 3303.901 3203.554 3167.925 3051.038 2917.875 2847.839 2691.215 2511.301 2479.567 2455.874 2453.376 2449.240 2443.216 2449.240 2443.216 2410.454 2385.568 2385.562 2353.881 2329.986 2310.595 2291.371 2278.661 2252.861 2252.861 2246.787 2241.138 2210.547 2204.296 2197.407 2196.973 2170.457 2168.290 2149.366 2143.932 2116.042 2088.003 2083.702 2071.290	ndary 798.020 862.611 961.830 971.879 1181.298 1180.268 1180.268 1137.462 1100.077 1080.268 900.268 980.268 973.455 964.015 950.268 930.268 930.268 930.268 930.268 930.268 740.268 740.268 730.268 740.268 730.268 740.268 730.268 740.268 730.268 740.268 64

2033.625 2020.142 3325.722 3324.967	470.268 440.268 440.268 585.969
Water Table	
2449.240	964.015
2499.548	977.540
2578.286	964.942
2625.529	952.344
2653.874	953.394
2693.129	964.831
2763.566	989.934
2796.073	995.196
2859.446	993.380
2920.010	1008.088
2953.725	1015.120
2982.020	1018.440
3125.771	1015.268
3274.730	979.300
3320.973	971.879

Slide Analysis Information CASE C-3, SECTION C, WEATHERED WASTE EVAL, CIRCULAR FAILURE, SEISMIC LOADING

Document Name

File Name: SEC-C-BAS_C_S.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Right to Left Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Standard Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10 Composite Surfaces: Disabled Reverse Curvature: Create Tension Crack Minimum Elevation: Not Defined Minimum Depth: Not Defined

Loading

Seismic Load Coefficient (Horizontal): 0.12

Material Properties

Material: WASTE ROCK Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3 Cohesion: 0 psf Friction Angle: 25 degrees Water Surface: None

Material: Interface Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 25 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: Gila</u> Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3 Cohesion: 0 psf Friction Angle: 39 degrees Water Surface: None

<u>Material: BEDROCK</u> Strength Type: Mohr-Coulomb Unit Weight: 160 lb/ft3 Cohesion: 20 psf Friction Angle: 35 degrees Water Surface: None

<u>Global Minimums</u>

<u>Method: bishop simplified</u> FS: 1.015030 Center: 2325.942, 2781.649 Radius: 1800.591 Left Slip Surface Endpoint: 2691.215, 1018.497 Right Slip Surface Endpoint: 3074.585, 1144.071 Resisting Moment=4.67292e+008 lb-ft Driving Moment=4.60373e+008 lb-ft

Method: janbu simplified FS: 1.011700 Center: 2325.942, 2781.649 Radius: 1800.591 Left Slip Surface Endpoint: 2691.215, 1018.497 Right Slip Surface Endpoint: 3074.585, 1144.071 Resisting Horizontal Force=246599 lb Driving Horizontal Force=243748 lb

Valid / Invalid Surfaces

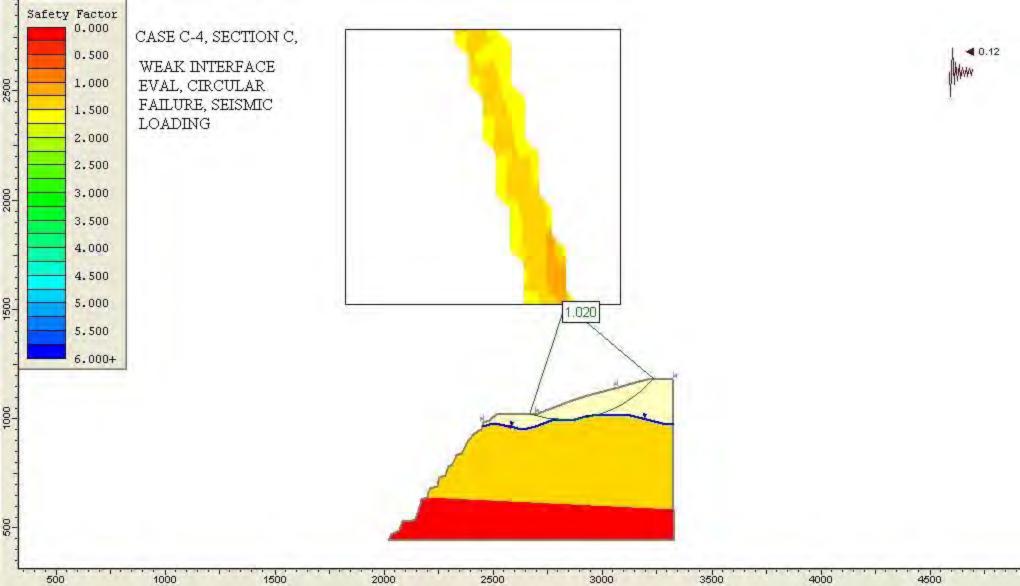
Method: bishop simplified Number of Valid Surfaces: 892 Number of Invalid Surfaces: 3959 Error Codes: Error Code -101 reported for 65 surfaces Error Code -1000 reported for 3894 surfaces <u>Method: janbu simplified</u> Number of Valid Surfaces: 892 Number of Invalid Surfaces: 3959 Error Codes: Error Code -101 reported for 65 surfaces Error Code -1000 reported for 3894 surfaces

Error Codes

The following errors were encountered during the computation:

-101 = Only one (or zero) surface / slope intersections.

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.


List of All Coordinates

Search Grid 1822.181 3081.584 3081.584 1822.181	1522.245 1522.245 2781.649 2781.649
Material Bour	ndarv
2196.973	640.096
3324.967	585.969
Material Bour	ndarv
2449.240	964.015
2470.232	960.440
2499.228	971.926
2518.830	970.455
2574.973	955.492
2630.990	940.497
2656.736	943.486
2766.231	980.268
2796.656	985.169
2860.114	983.384
2922.165	998.294
2955.553	1005.268
2982.387	1008.417
3124.543	1005.268
3272.701	969.507
3320.973	961.830
Material Bour	ndarv
2453.376	973.455
2469.263	970.749
2497.665	981.905
2520.761	980.285
2579.719	964.539

2628.640 950.264

2654.695	953.304
2693.129	964.831
2763.566	989.934
2796.073	995.196
2859.446	993.380
2920.010	1008.088
2953.725	1015.120
2982.020	1018.440
3125.771	1015.268
3274.730	979.300
3320.973	971.879
External Bour 3320.973 3320.973 3320.973 3320.973 3320.973 3320.973 3303.901 3203.554 3167.925 3051.038 2917.875 2847.839 2691.215 2511.301 2479.567 2455.874 2453.376 2449.240 2443.216 2449.240 2443.216 2410.454 2385.568 2385.562 2353.881 2329.986 2310.595 2291.371 2278.661 2252.861 2252.861 2246.787 2241.138 2210.547 2204.296 2197.407 2196.973 2170.457 2168.290 2149.366 2143.932 2116.042 2088.003 2083.702 2071.290	ndary 798.020 862.611 961.830 971.879 1181.298 1180.268 1180.268 1137.462 1100.077 1080.268 900.268 980.268 973.455 964.015 950.268 930.268 930.268 930.268 930.268 930.268 740.268 740.268 730.268 740.268 730.268 740.268 730.268 740.268 730.268 740.268 64

2033.625 2020.142 3325.722 3324.967	470.268 440.268 440.268 585.969
Water Table	
2449.240	964.015
2499.548	977.540
2578.286	964.942
2625.529	952.344
2653.874	953.394
2693.129	964.831
2763.566	989.934
2796.073	995.196
2859.446	993.380
2920.010	1008.088
2953.725	1015.120
2982.020	1018.440
3125.771	1015.268
3274.730	979.300
3320.973	971.879

Slide Analysis Information CASE C-4, SECTION C, WEAK INTERFACE EVAL, CIRCULAR FAILURE, SEISMIC LOADING

Document Name

File Name: SEC-C-BAS_C_S.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Right to Left Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Standard Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10 Composite Surfaces: Disabled Reverse Curvature: Create Tension Crack Minimum Elevation: Not Defined Minimum Depth: Not Defined

Loading

Seismic Load Coefficient (Horizontal): 0.12

Material Properties

Material: WASTE ROCK Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3 Cohesion: 0 psf Friction Angle: 32.6 degrees Water Surface: None

Material: Interface Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 8 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: Gila</u> Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3 Cohesion: 0 psf Friction Angle: 39 degrees Water Surface: None

<u>Material: BEDROCK</u> Strength Type: Mohr-Coulomb Unit Weight: 160 lb/ft3 Cohesion: 20 psf Friction Angle: 35 degrees Water Surface: None

<u>Global Minimums</u>

Method: bishop simplified FS: 1.019690 Center: 2829.703, 1522.245 Radius: 529.993 Left Slip Surface Endpoint: 2665.612, 1018.295 Right Slip Surface Endpoint: 3234.603, 1180.268 Resisting Moment=9.33154e+008 lb-ft Driving Moment=9.15132e+008 lb-ft

Method: janbu simplified FS: 0.966183 Center: 2829.703, 1522.245 Radius: 529.993 Left Slip Surface Endpoint: 2665.612, 1018.295 Right Slip Surface Endpoint: 3234.603, 1180.268 Resisting Horizontal Force=1.58517e+006 lb Driving Horizontal Force=1.64065e+006 lb

Valid / Invalid Surfaces

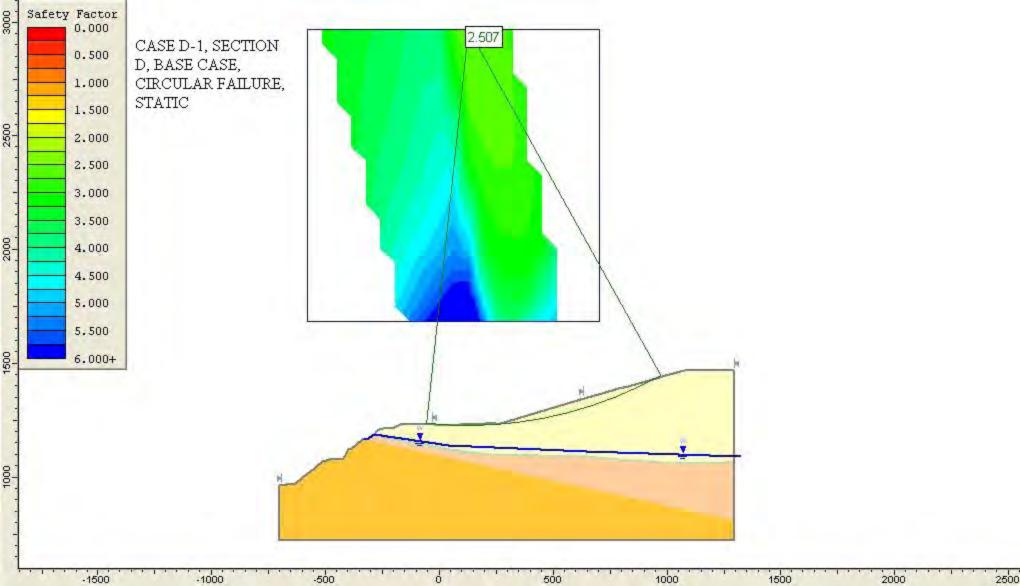
Method: bishop simplified Number of Valid Surfaces: 892 Number of Invalid Surfaces: 3959 Error Codes: Error Code -101 reported for 65 surfaces Error Code -1000 reported for 3894 surfaces <u>Method: janbu simplified</u> Number of Valid Surfaces: 892 Number of Invalid Surfaces: 3959 Error Codes: Error Code -101 reported for 65 surfaces Error Code -1000 reported for 3894 surfaces

Error Codes

The following errors were encountered during the computation:

-101 = Only one (or zero) surface / slope intersections.

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.


List of All Coordinates

Search Grid 1822.181 3081.584 3081.584 1822.181	1522.245 1522.245 2781.649 2781.649
Material Bour	ndarv
2196.973	640.096
3324.967	585.969
Material Bour	ndarv
2449.240	964.015
2470.232	960.440
2499.228	971.926
2518.830	970.455
2574.973	955.492
2630.990	940.497
2656.736	943.486
2766.231	980.268
2796.656	985.169
2860.114	983.384
2922.165	998.294
2955.553	1005.268
2982.387	1008.417
3124.543	1005.268
3272.701	969.507
3320.973	961.830
Material Bour	ndarv
2453.376	973.455
2469.263	970.749
2497.665	981.905
2520.761	980.285
2579.719	964.539

2628.640 950.264

2654.695	953.304
2693.129	964.831
2763.566	989.934
2796.073	995.196
2859.446	993.380
2920.010	1008.088
2953.725	1015.120
2982.020	1018.440
3125.771	1015.268
3274.730	979.300
3320.973	971.879
External Bour 3320.973 3320.973 3320.973 3320.973 3320.973 3320.973 3303.901 3203.554 3167.925 3051.038 2917.875 2847.839 2691.215 2511.301 2479.567 2455.874 2453.376 2449.240 2443.216 2449.240 2443.216 2410.454 2385.568 2385.562 2353.881 2329.986 2310.595 2291.371 2278.661 2252.861 2252.861 2246.787 2241.138 2210.547 2204.296 2197.407 2196.973 2170.457 2168.290 2149.366 2143.932 2116.042 2088.003 2083.702 2071.290	ndary 798.020 862.611 961.830 971.879 1181.298 1180.268 1180.268 1137.462 1100.077 1080.268 900.268 980.268 973.455 964.015 950.268 930.268 930.268 930.268 930.268 930.268 740.268 740.268 730.268 740.268 730.268 740.268 730.268 740.268 730.268 740.268 64

2033.625 2020.142 3325.722 3324.967	470.268 440.268 440.268 585.969
Water Table	
2449.240	964.015
2499.548	977.540
2578.286	964.942
2625.529	952.344
2653.874	953.394
2693.129	964.831
2763.566	989.934
2796.073	995.196
2859.446	993.380
2920.010	1008.088
2953.725	1015.120
2982.020	1018.440
3125.771	1015.268
3274.730	979.300
3320.973	971.879

Slide Analysis Information CASE D-1, SECTION D, BASE CASE, CIRCULAR FAILURE, STATIC

Document Name

File Name: SEC-D-BAS_C_P.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Right to Left Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Standard Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10 Composite Surfaces: Disabled Reverse Curvature: Create Tension Crack Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

<u>Material: Leached Ore</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 32.6 degrees Water Surface: Water Table Custom Hu value: 1 <u>Material: Interface</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 32.6 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: Gila</u> Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3 Cohesion: 0 psf Friction Angle: 39 degrees Water Surface: None

<u>Material: Bedrock</u> Strength Type: Mohr-Coulomb Unit Weight: 160 lb/ft3 Cohesion: 20 psf Friction Angle: 35 degrees Water Surface: None

Global Minimums

<u>Method: bishop simplified</u> FS: 2.506820 Center: 127.523, 2968.003 Radius: 1745.349 Left Slip Surface Endpoint: -57.540, 1232.493 Right Slip Surface Endpoint: 974.903, 1442.162 Resisting Moment=3.43396e+009 lb-ft Driving Moment=1.36985e+009 lb-ft

Method: janbu simplified FS: 2.468250 Center: 191.642, 2968.003 Radius: 1752.011 Left Slip Surface Endpoint: -53.687, 1233.253 Right Slip Surface Endpoint: 1101.545, 1470.799 Resisting Horizontal Force=3.48917e+006 lb Driving Horizontal Force=1.41362e+006 lb

Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 2791 Number of Invalid Surfaces: 2060 Error Codes: Error Code -101 reported for 126 surfaces Error Code -103 reported for 31 surfaces Error Code -1000 reported for 1903 surfaces

Method: janbu simplified

Number of Valid Surfaces: 2791 Number of Invalid Surfaces: 2060 Error Codes: Error Code -101 reported for 126 surfaces Error Code -103 reported for 31 surfaces Error Code -1000 reported for 1903 surfaces

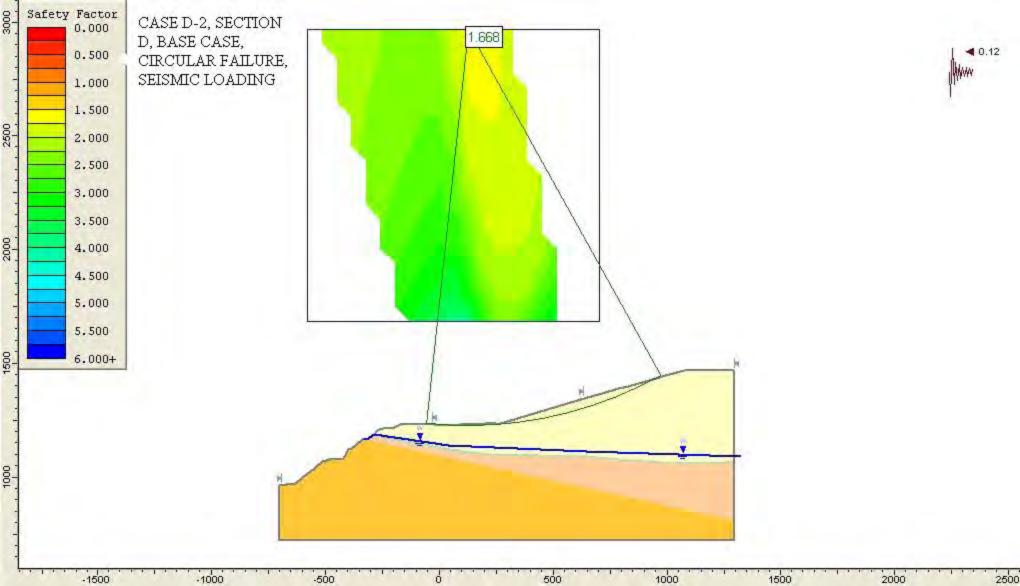
Error Codes

The following errors were encountered during the computation:

-101 = Only one (or zero) surface / slope intersections.

-103 = Two surface / slope intersections, but one or more surface / nonslope external polygon intersections lie between them. This usually occurs when the slip surface extends past the bottom of the soil region, but may also occur on a benched slope model with two sets of Slope Limits.

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.


List of All Coordinates

Search Grid -577.790 704.596 704.596 -577.790	1685.617 1685.617 2968.003 2968.003
Material Bour	ndary
-294.245	1183.286
-178.641	1157.040
-93.570	1141.722
69.036	1112.217
87.861	1111.316
109.345	1106.495
225.068	1094.587
438.459	1090.734
497.426	1086.228
578.273	1088.590
600.661	1086.488
643.098	1087.685
795.171	1074.704
981.280	1060.980
1123.832	1056.699
1160.865	1057.159
1175.396	1058.898
1236.406 1251.025	1055.055 1060.078
1251.025	1060.078
1290.004	1029.200

Material Bour -286.124 -176.746 -91.721 70.126 89.205 110.940 225.365 439.330 497.682 578.919 600.836 643.562 795.617 981.742 1123.648 1159.729 1175.412 1227.808 1249.759	ndary 1189.654 1166.860 1151.549 1122.176 1121.263 1116.385 1104.584 1100.703 1096.231 1096.515 1097.685 1084.707 1070.970 1066.709 1067.157 1068.923 1064.773 1070.059
1296.864 <u>Material Bou</u> -332.136	1069.316
1296.864 External Bou 237.462 208.788 201.650 92.480 -0.069 -21.747 -22.636 -54.531 -64.246 -170.386 -196.183 -221.474 -234.618 -245.704 -261.121 -275.826 -286.124 -294.245 -315.351 -324.535 -332.136 -338.838 -390.602 -399.386 -417.364 -427.625 -438.213	808.728 ndary 1240.799 1238.925 1238.560 1230.799 1229.884 1230.799 1233.243 1233.254 1230.799 1230.799 1230.799 1230.799 1215.210 1216.060 1215.228 1210.799 1200.799 1200.799 1189.654 1167.753 1166.821 1164.930 1123.991 1120.799 1090.799 1090.799 1080.799 1077.281

E44 070	4070 005
-514.670	1070.805
-514.682	1070.799
-569.393	1020.799
-580.930	1015.931
-633.744	973.823
-671.436	966.884
-691.936	964.487
-703.136	962.854
-703.136	720.799
1296.864	720.799
1296.864	808.728
1296.864	1059.286
1296.864	1069.316
1296.864	1470.799
1293.611	1470.799
1075.415	1470.799
994.283	1447.684
967.570	1440.073
829.722	1400.799
787.766	1390.799
714.249	1369.215
651.852	1350.799
253.916	1233.336
200.010	1200.000
Vater Table	

200.010	1200.000
<u>Water Table</u> -332.136 -315.351 -294.245 -286.124	1166.821 1167.884 1183.286 1189.654
37.823	1138.224
645.204	1114.080
1320.745	1091.669

Slide Analysis Information CASE D-2, SECTION D, BASE CASE, CIRCULAR FAILURE, SEISMIC LOADING

Document Name

File Name: SEC-D-BAS_C_P.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Right to Left Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Standard Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10 Composite Surfaces: Disabled Reverse Curvature: Create Tension Crack Minimum Elevation: Not Defined Minimum Depth: Not Defined

Loading

Seismic Load Coefficient (Horizontal): 0.12

Material Properties

Material: Leached Ore Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 32.6 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: Interface</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 32.6 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: Gila</u> Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3 Cohesion: 0 psf Friction Angle: 39 degrees Water Surface: None

<u>Material: Bedrock</u> Strength Type: Mohr-Coulomb Unit Weight: 160 lb/ft3 Cohesion: 20 psf Friction Angle: 35 degrees Water Surface: None

Global Minimums

Method: bishop simplified FS: 1.668240 Center: 127.523, 2968.003 Radius: 1745.349 Left Slip Surface Endpoint: -57.540, 1232.493 Right Slip Surface Endpoint: 974.903, 1442.162 Resisting Moment=3.33102e+009 lb-ft Driving Moment=1.99673e+009 lb-ft

Method: janbu simplified FS: 1.644240 Center: 127.523, 2968.003 Radius: 1745.349 Left Slip Surface Endpoint: -57.540, 1232.493 Right Slip Surface Endpoint: 974.903, 1442.162 Resisting Horizontal Force=1.83145e+006 lb Driving Horizontal Force=1.11386e+006 lb

Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 2791 Number of Invalid Surfaces: 2060 Error Codes: Error Code -101 reported for 126 surfaces Error Code -103 reported for 31 surfaces Error Code -1000 reported for 1903 surfaces

<u>Method: janbu simplified</u> Number of Valid Surfaces: 2791 Number of Invalid Surfaces: 2060 Error Codes: Error Code -101 reported for 126 surfaces Error Code -103 reported for 31 surfaces Error Code -1000 reported for 1903 surfaces

Error Codes

The following errors were encountered during the computation:

-101 = Only one (or zero) surface / slope intersections.

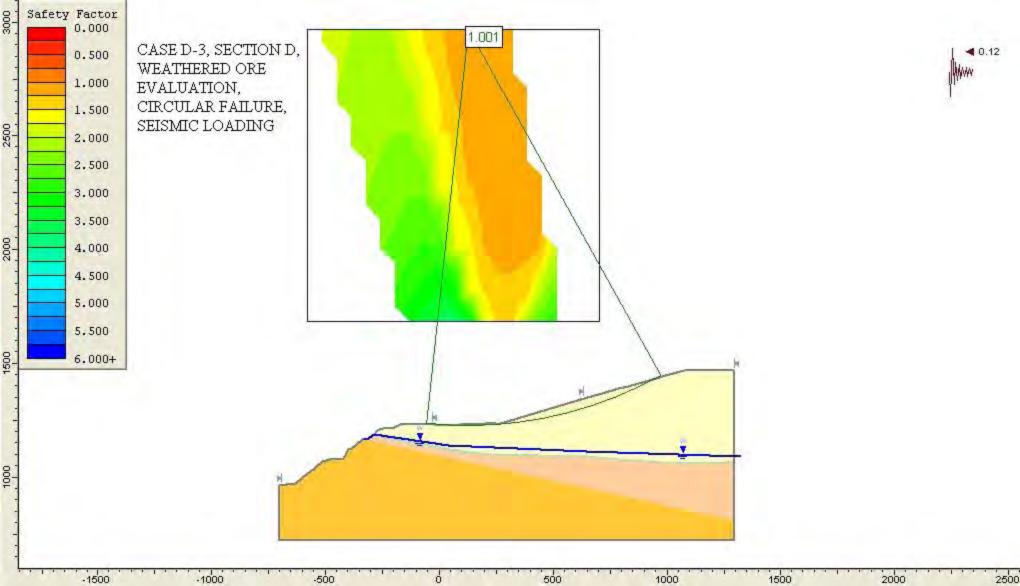
-103 = Two surface / slope intersections, but one or more surface / nonslope external polygon intersections lie between them. This usually occurs when the slip surface extends past the bottom of the soil region, but may also occur on a benched slope model with two sets of Slope Limits.

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

List of All Coordinates

Search Grid	
-577.790	1685.617
704.596	1685.617
704.596	2968.003
-577.790	2968.003

Material Boundary


-294.245	1183.286
-178.641	1157.040
-93.570	1141.722
69.036	1112.217
87.861	1111.316
109.345	1106.495
225.068	1094.587
438.459	1090.734
497.426	1086.228
578.273	1088.590
600.661	1086.488
643.098	1087.685
795.171	1074.704
981.280	1060.980
1123.832	1056.699
1160.865	1057.159
1175.396	1058.898

1236.406	1055.055
1251.025	1060.078
1296.864	1059.286
Material Bour -286.124 -176.746 -91.721 70.126 89.205 110.940 225.365 439.330 497.682 578.919 600.836 643.562 795.617 981.742 1123.648 1159.729 1175.412 1227.808 1249.759 1296.864	ndary 1189.654 1166.860 1151.549 1122.176 1121.263 1116.385 1104.584 1100.703 1096.231 1098.573 1096.515 1097.685 1084.707 1066.709 1067.157 1068.923 1064.773 1070.059 1069.316
<u>Material Bou</u>	<u>ndary</u>
-332.136	1166.821
1296.864	808.728
External Bou	ndary
237.462	1240.799
208.788	1238.925
201.650	1238.560
92.480	1230.799
-0.069	1229.884
-21.747	1230.799
-22.636	1233.243
-54.531	1233.254
-64.246	1230.799
-170.386	1230.799
-196.183	1219.383
-221.474	1215.210
-234.618	1216.060
-245.704	1215.228
-261.121	1210.799
-275.826	1200.799
-286.124	1289.654
-294.245	1183.286
-315.351	1167.884
-324.535	1167.753
-332.136	1166.821
-338.838	1164.930
-390.602	1123.991
-399.386	1120.799
-417.364	1090.799

-427.625	1080.799
-438.213	1077.281
-482.650	1076.509
-496.982	1076.287
-514.670	1070.805
-514.682	1070.799
-569.393	1020.799
-580.930	1015.931
-633.744	973.823
-671.436	966.884
-691.936	964.487
-703.136	962.854
-703.136	720.799
1296.864	720.799
1296.864	808.728
1296.864	1059.286
1296.864	1069.316
1296.864	1470.799
1293.611	1470.799
1075.415	1470.799
994.283	1447.684
967.570	1440.073
829.722	1400.799
787.766	1390.799
714.249	1369.215
651.852	1350.799
253.916	1233.336
Water Table	
-332.136	1166.821

<u>v v</u>	alu	Table
	-333	136

-332.136	1166.821
-315.351	1167.884
-294.245	1183.286
-286.124	1189.654
37.823	1138.224
645.204	1114.080
1320.745	1091.669

Slide Analysis Information CASE D-3, SECTION D, WEATHERED ORE EVAL, CIRCULAR FAILURE, SEISMIC LOADING

Document Name

File Name: SEC-D-BAS_C_P.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Right to Left Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Standard Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10 Composite Surfaces: Disabled Reverse Curvature: Create Tension Crack Minimum Elevation: Not Defined Minimum Depth: Not Defined

Loading

Seismic Load Coefficient (Horizontal): 0.12

Material Properties

Material: Leached Ore Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 21 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: Interface</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 21 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: Gila</u> Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3 Cohesion: 0 psf Friction Angle: 39 degrees Water Surface: None

<u>Material: Bedrock</u> Strength Type: Mohr-Coulomb Unit Weight: 160 lb/ft3 Cohesion: 20 psf Friction Angle: 35 degrees Water Surface: None

Global Minimums

Method: bishop simplified FS: 1.001250 Center: 127.523, 2968.003 Radius: 1745.349 Left Slip Surface Endpoint: -57.540, 1232.493 Right Slip Surface Endpoint: 974.903, 1442.162 Resisting Moment=1.99922e+009 lb-ft Driving Moment=1.99673e+009 lb-ft

Method: janbu simplified FS: 0.986928 Center: 127.523, 2968.003 Radius: 1745.349 Left Slip Surface Endpoint: -57.540, 1232.493 Right Slip Surface Endpoint: 974.903, 1442.162 Resisting Horizontal Force=1.09933e+006 lb Driving Horizontal Force=1.11389e+006 lb

Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 2791 Number of Invalid Surfaces: 2060 Error Codes: Error Code -101 reported for 126 surfaces Error Code -103 reported for 31 surfaces Error Code -1000 reported for 1903 surfaces

<u>Method: janbu simplified</u> Number of Valid Surfaces: 2791 Number of Invalid Surfaces: 2060 Error Codes: Error Code -101 reported for 126 surfaces Error Code -103 reported for 31 surfaces Error Code -1000 reported for 1903 surfaces

Error Codes

The following errors were encountered during the computation:

-101 = Only one (or zero) surface / slope intersections.

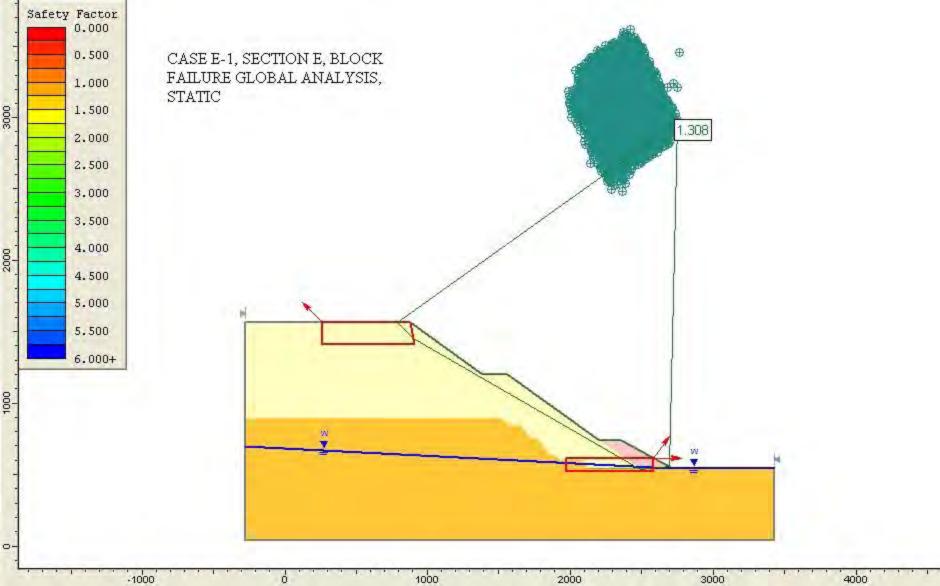
-103 = Two surface / slope intersections, but one or more surface / nonslope external polygon intersections lie between them. This usually occurs when the slip surface extends past the bottom of the soil region, but may also occur on a benched slope model with two sets of Slope Limits.

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

List of All Coordinates

Search Grid	
-577.790	1685.617
704.596	1685.617
704.596	2968.003
-577.790	2968.003

Material Boundary


-294.245	1183.286
-178.641	1157.040
-93.570	1141.722
69.036	1112.217
87.861	1111.316
109.345	1106.495
225.068	1094.587
438.459	1090.734
497.426	1086.228
578.273	1088.590
600.661	1086.488
643.098	1087.685
795.171	1074.704
981.280	1060.980
1123.832	1056.699
1160.865	1057.159
1175.396	1058.898

1236.406	1055.055
1251.025	1060.078
1296.864	1059.286
Material Bour -286.124 -176.746 -91.721 70.126 89.205 110.940 225.365 439.330 497.682 578.919 600.836 643.562 795.617 981.742 1123.648 1159.729 1175.412 1227.808 1249.759 1296.864	ndary 1189.654 1166.860 1151.549 1122.176 1121.263 1116.385 1104.584 1100.703 1096.231 1098.573 1096.515 1097.685 1084.707 1066.709 1067.157 1068.923 1064.773 1070.059 1069.316
<u>Material Bou</u>	<u>ndary</u>
-332.136	1166.821
1296.864	808.728
External Bou	ndary
237.462	1240.799
208.788	1238.925
201.650	1238.560
92.480	1230.799
-0.069	1229.884
-21.747	1230.799
-22.636	1233.243
-54.531	1233.254
-64.246	1230.799
-170.386	1230.799
-196.183	1219.383
-221.474	1215.210
-234.618	1216.060
-245.704	1215.228
-261.121	1210.799
-275.826	1200.799
-286.124	1289.654
-294.245	1183.286
-315.351	1167.884
-324.535	1167.753
-332.136	1166.821
-338.838	1164.930
-390.602	1123.991
-399.386	1120.799
-417.364	1090.799

-427.625	1080.799
-438.213	1077.281
-482.650	1076.509
-496.982	1076.287
-514.670	1070.805
-514.682	1070.799
-569.393	1020.799
-580.930	1015.931
-633.744	973.823
-671.436	966.884
-691.936	964.487
-703.136	962.854
-703.136	720.799
1296.864	720.799
1296.864	808.728
1296.864	1059.286
1296.864	1069.316
1296.864	1470.799
1293.611	1470.799
1075.415	1470.799
994.283	1447.684
967.570	1440.073
829.722	1400.799
787.766	1390.799
714.249	1369.215
651.852	1350.799
253.916	1233.336
Water Table	
-332.136	1166.821

<u>v v</u>	alci	Table
	-333	136

-332.130	1166.821
-315.351	1167.884
-294.245	1183.286
-286.124	1189.654
37.823	1138.224
645.204	1114.080
1320.745	1091.669

Slide Analysis Information CASE E-1, SECTION E, BLOCK GLOBAL ANALYSIS, STATIC

Document Name

File Name: SEC-E-BASE_B_S-.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Left to Right Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Standard Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Non-Circular Block Search Number of Surfaces: 5000 Pseudo-Random Surfaces: Enabled Convex Surfaces Only: Disabled Left Projection Angle (Start Angle): 135 Left Projection Angle (End Angle): 135 Right Projection Angle (Start Angle): 52 Right Projection Angle (End Angle): 0 Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

<u>Material: WASTROCK</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 33.4 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: BASAL ZONE</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 25 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: BEDROCK</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 160 lb/ft3 Saturated Unit Weight: 160 lb/ft3 Cohesion: 20 psf Friction Angle: 35 degrees Water Surface: Water Table Custom Hu value: 1

Material: COARSE MATERIAL Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 125 lb/ft3 Saturated Unit Weight: 135 lb/ft3 Cohesion: 0 psf Friction Angle: 40 degrees Water Surface: Water Table Custom Hu value: 1

Global Minimums

Method: bishop simplified FS: 1.308440 Axis Location: 2742.139, 2966.094 Left Slip Surface Endpoint: 783.818, 1562.896 Right Slip Surface Endpoint: 2689.705, 557.518 Resisting Moment=2.34774e+010 lb-ft Driving Moment=1.7943e+010 lb-ft

Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 4754 Number of Invalid Surfaces: 246 Error Codes: Error Code -105 reported for 246 surfaces

Error Codes

The following errors were encountered during the computation:

-105 = More than two surface / slope intersections with no valid slip surface.

List of All Coordinates

Material Boundary

547.896
547.896
547.896

Material Boundary

2112.460	537.896
2299.818	537.896
3422.769	537.896

Material Boundary

2200.464	737.896
2487.657	547.896
2707.802	547.896

Material Boundary

-278.866	897.760
1512.952	897.760
1562.607	848.105
1644.311	847.896
1732.931	744.665

Material Boundary

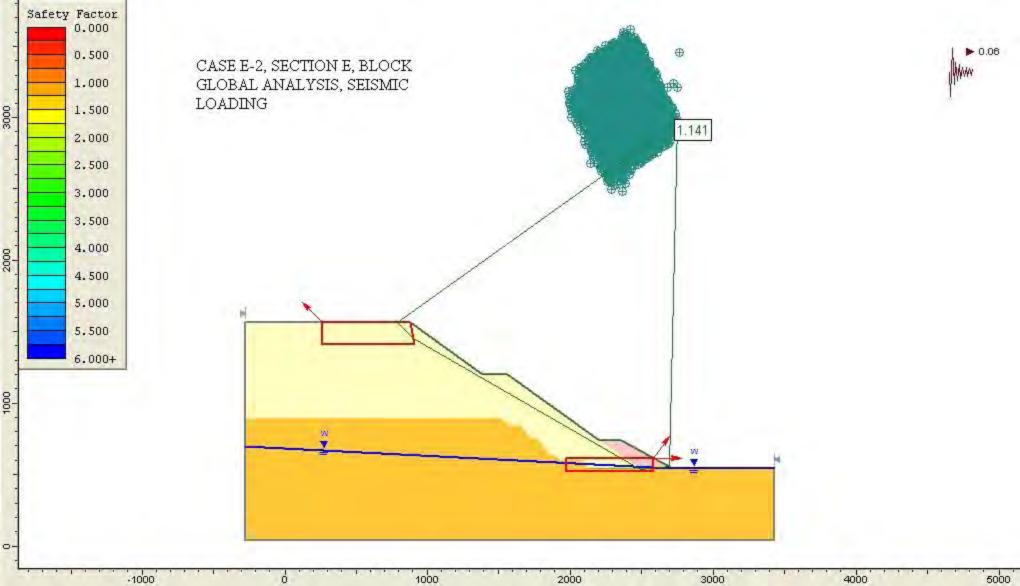
2112.460	537.896
2116.769	547.896

Material Boundary

2088.671	597.896
2116.769	547.896

Material Boundary

1732.931	744.665
1776.286	744.665
1854.032	634.410
1881.986	634.410
1924.959	598.485


Material Boundary

1924.959	598.485
2088.671	597.896

External Boundary

2707.802	547.896
2350.464	737.896
2200.464	737.896
1556.510	1205.667
1381.510	1205.667
874.523	1562.896
-278.866	1562.896
-278.866	897.760
-278.866	37.940
3422.769	37.940
3422.769	537.896

3422.769	547.896
Water Table	
-278.866	698.431
2707.802	547.896
3422.769	547.896
Focus/Block \$	Search Window
1969.752	611.403
1969.752	522.881
2580.788	522.881
2580.788	611.403
Focus/Block \$	Search Window
264.963	1562.896
264.963	1415.103
905.225	1415.103
874.523	1562.896

Slide Analysis Information CASE E-2, SECTION E, BLOCK GLOBAL ANALYSIS, SEISMIC LOADING

Document Name

File Name: SEC-E-BASE_B_S-.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Left to Right Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Standard Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Non-Circular Block Search Number of Surfaces: 5000 Pseudo-Random Surfaces: Enabled Convex Surfaces Only: Disabled Left Projection Angle (Start Angle): 135 Left Projection Angle (End Angle): 135 Right Projection Angle (Start Angle): 52 Right Projection Angle (End Angle): 0 Minimum Elevation: Not Defined Minimum Depth: Not Defined

Loading

Seismic Load Coefficient (Horizontal): 0.06

Material Properties

Material: WASTROCK Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 33.4 degrees Water Surface: Water Table Custom Hu value: 1

Material: BASAL ZONE

Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 25 degrees Water Surface: Water Table Custom Hu value: 1

Material: BEDROCK

Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 160 lb/ft3 Saturated Unit Weight: 160 lb/ft3 Cohesion: 20 psf Friction Angle: 35 degrees Water Surface: Water Table Custom Hu value: 1

Material: COARSE MATERIAL Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 125 lb/ft3 Saturated Unit Weight: 135 lb/ft3 Cohesion: 0 psf Friction Angle: 40 degrees Water Surface: Water Table Custom Hu value: 1

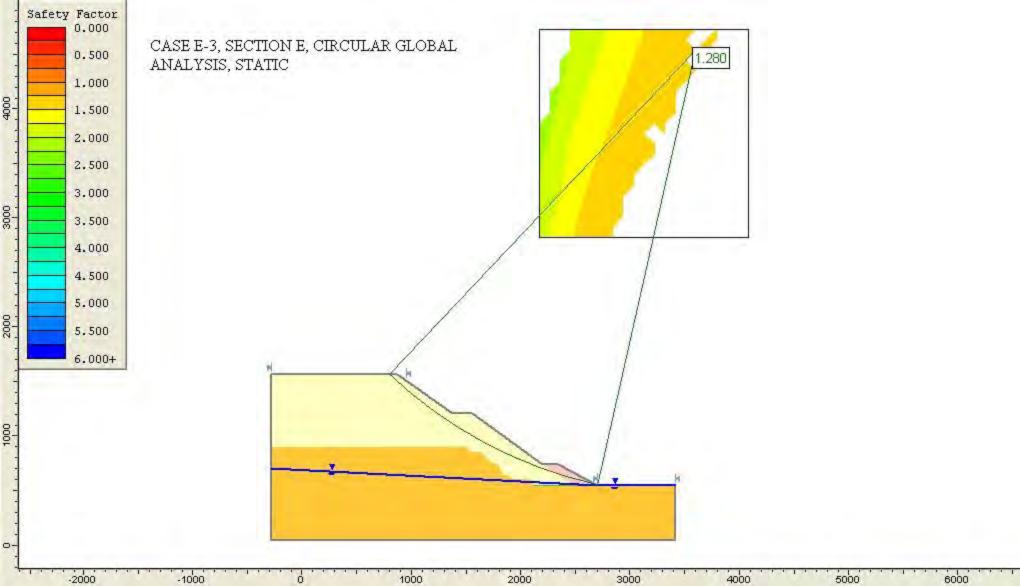
Global Minimums

Method: bishop simplified FS: 1.140690 Axis Location: 2742.139, 2966.094 Left Slip Surface Endpoint: 783.818, 1562.896 Right Slip Surface Endpoint: 2689.705, 557.518 Resisting Moment=2.28026e+010 lb-ft Driving Moment=1.99901e+010 lb-ft

Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 4707 Number of Invalid Surfaces: 293 Error Codes: Error Code -105 reported for 246 surfaces Error Code -112 reported for 47 surfaces

Error Codes


The following errors were encountered during the computation:

-105 = More than two surface / slope intersections with no valid slip surface.

-112 = The coefficient M-Alpha = cos(alpha)(1+tan(alpha)tan(phi)/F) < 0.2 for the final iteration of the safety factor calculation. This screens out some slip surfaces which may not be valid in the context of the analysis, in particular, deep seated slip surfaces with many high negative base angle slices in the passive zone.

Material Bour 2116.769	<u>ndary</u> 547.896
2299.818 2487.657	547.896 547.896
Material Bour	
2112.460	537.896
2299.818 3422.769	537.896 537.896
Material Bour	ndary
2200.464 2487.657	737.896 547.896
2707.802	547.896
Material Bour	
-278.866 1512.952	897.760 897.760
1562.607	848.105
1644.311	847.896
1732.931	744.665
Material Bour	ndary
2112.460 2116.769	537.896 547.896
	0.11000
Material Bour	
2088.671 2116.769	597.896 547.896
Material Bour	ndary
1732.931 1776.286	744.665 744.665
1854.032	634.410
1881.986	634.410
1881.986 1924.959	634.410 598.485
1924.959 Material Bour	598.485
1924.959 <u>Material Bour</u> 1924.959	598.485 <u>ndary</u> 598.485
1924.959 Material Bour	598.485

	1205.667 1205.667 1562.896 1562.896 897.760 37.940 37.940
Water Table	
-278.866	698.431
2707.802	547.896
3422.769	547.896
Focus/Block S	Search Window
1969.752	611.403
1969.752	522.881
2580.788	522.881
2580.788	611.403
	Search Window
264.963	1562.896
	1415.103
905.225	
874.523	1562.896

Slide Analysis Information

Document Name

File Name: SEC-E-BASE_C_S-.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Left to Right Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Standard Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10 Composite Surfaces: Disabled Reverse Curvature: Create Tension Crack Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

Material: WASTEROCK Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 33.4 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: BASAL ZONE</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 25 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: BEDROCK</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 160 lb/ft3 Saturated Unit Weight: 160 lb/ft3 Cohesion: 20 psf Friction Angle: 35 degrees Water Surface: Water Table Custom Hu value: 1

Material: COARSE MATERIAL Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 125 lb/ft3 Saturated Unit Weight: 135 lb/ft3 Cohesion: 0 psf Friction Angle: 40 degrees Water Surface: Water Table Custom Hu value: 1

Global Minimums

<u>Method: bishop simplified</u> FS: 1.280090 Center: 3605.698, 4530.386 Radius: 4082.456 Left Slip Surface Endpoint: 802.049, 1562.896 Right Slip Surface Endpoint: 2707.802, 547.896 Resisting Moment=5.67712e+010 lb-ft Driving Moment=4.43495e+010 lb-ft

Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 1992 Number of Invalid Surfaces: 2859 Error Codes: Error Code -101 reported for 91 surfaces Error Code -104 reported for 2 surfaces Error Code -113 reported for 588 surfaces Error Code -1000 reported for 2178 surfaces

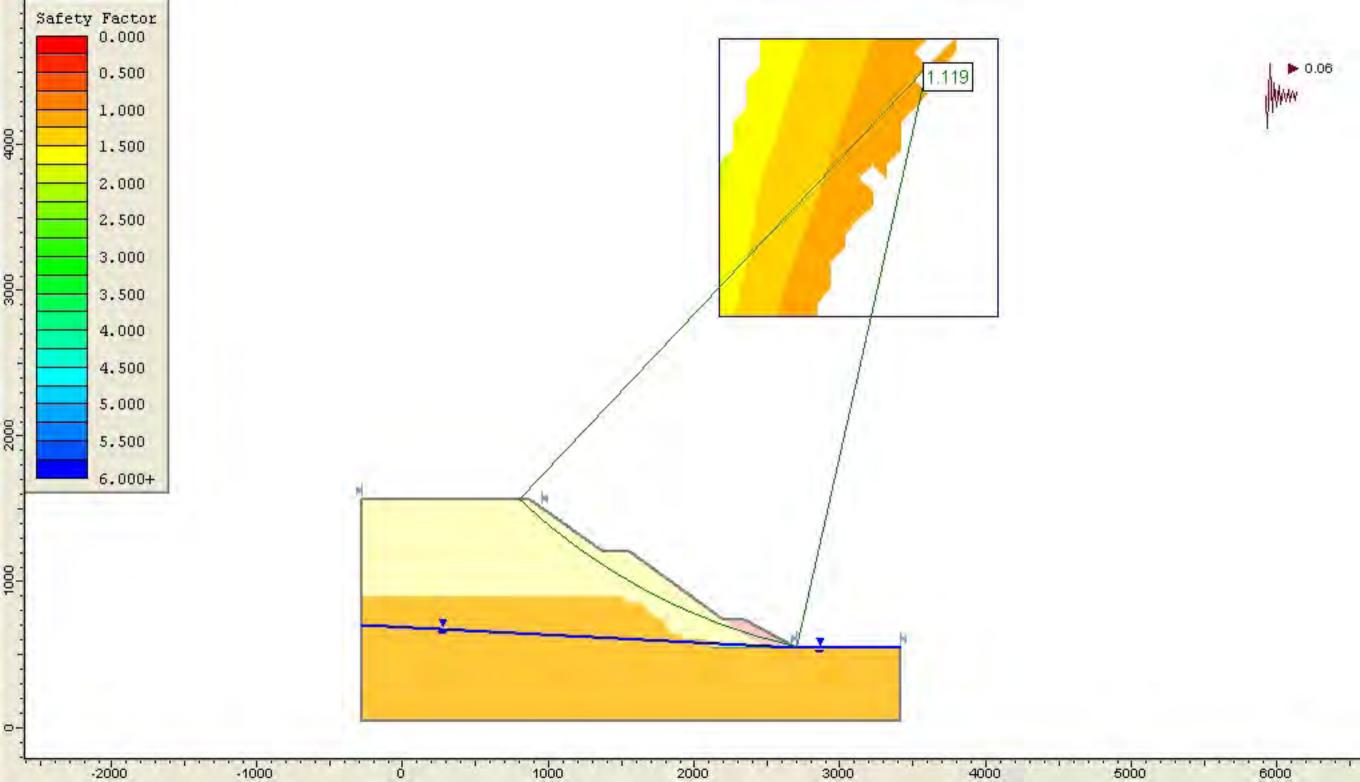
Error Codes

The following errors were encountered during the computation:

-101 = Only one (or zero) surface / slope intersections.

-104 = Same as -102. Surface / nonslope intersections also exist, but these points lie outside

the arc defined by the two surface / slope intersections.


-113 = Surface intersects outside slope limits.

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

Search Grid 2175.117 4082.558 4082.558 2175.117	2813.690 2813.690 4721.130 4721.130
<u>Material Boun</u>	<u>dary</u>
2116.769	547.896
2299.818	547.896
2487.657	547.896
Material Boun	<u>dary</u>
2112.460	537.896
2299.818	537.896
3422.769	537.896
Material Boun	<u>dary</u>
2200.464	737.896
2487.657	547.896
2707.802	547.896
Material Boun	<u>dary</u>
-278.866	897.760
1512.952	897.760
1562.607	848.105
1644.311	847.896
1732.931	744.665
<u>Material Boun</u>	<u>dary</u>
2112.460	537.896
2116.769	547.896
<u>Material Boun</u>	<u>dary</u>
2088.671	597.896
2116.769	547.896
<u>Material Boun</u>	dary
1732.931	744.665
1776.286	744.665
1854.032	634.410
1881.986	634.410
1924.959	598.485
<u>Material Boun</u>	<u>dary</u>
1924.959	598.485
2088.671	597.896

External Bour	ndary_
2707.802	547.896
2350.464	737.896
2200.464	737.896
1556.510	1205.667
1381.510	1205.667
874.523	1562.896
-278.866	1562.896
-278.866	897.760
-278.866	37.940
3422.769	37.940
3422.769	537.896
3422.769	547.896
Water Table	
-278 866	698 431

-278.866	698.431
2707.802	547.896
3422.769	547.896

Slide Analysis Information CASE E-4, SECTION E, GLOBAL CIRCULAR ANALYSIS, SEISMIC LOADING

Document Name

File Name: SEC-E-BASE_C_P-.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Left to Right Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Maximum Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10 Composite Surfaces: Disabled Reverse Curvature: Create Tension Crack Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

<u>Material: WASTROCK</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 33.4 degrees Water Surface: Water Table Custom Hu value: 1 <u>Material: BASAL ZONE</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 25 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: BEDROCK</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 160 lb/ft3 Saturated Unit Weight: 160 lb/ft3 Cohesion: 20 psf Friction Angle: 35 degrees Water Surface: Water Table Custom Hu value: 1

Material: COARSE MATERIAL Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 125 lb/ft3 Saturated Unit Weight: 135 lb/ft3 Cohesion: 0 psf Friction Angle: 40 degrees Water Surface: Water Table Custom Hu value: 1

Global Minimums

<u>Method: bishop simplified</u> FS: 1.280090 Center: 3605.698, 4530.386 Radius: 4082.456 Left Slip Surface Endpoint: 802.049, 1562.896 Right Slip Surface Endpoint: 2707.802, 547.896 Resisting Moment=5.67712e+010 lb-ft Driving Moment=4.43495e+010 lb-ft

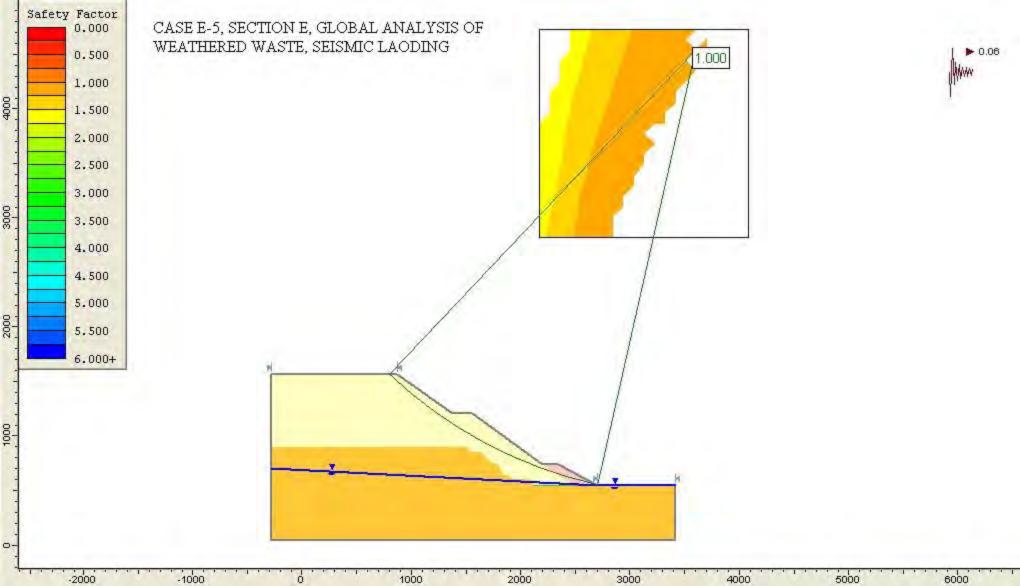
Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 2008 Number of Invalid Surfaces: 2843 Error Codes: Error Code -101 reported for 93 surfaces Error Code -113 reported for 638 surfaces Error Code -1000 reported for 2112 surfaces

Error Codes

The following errors were encountered during the computation:

-101 = Only one (or zero) surface / slope intersections.


-113 = Surface intersects outside slope limits.

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

Search Grid 2175.117 4082.558 4082.558 2175.117	2813.690 2813.690 4721.130 4721.130
<u>Material Bour</u> 2116.769 2299.818 2487.657	<u>ndary</u> 547.896 547.896 547.896
Material Bour 2112.460 2299.818 3422.769	<u>ndary</u> 537.896 537.896 537.896
<u>Material Bour</u> 2200.464 2487.657 2707.802	737.896 547.896
Material Bour -278.866 1512.952 1562.607 1644.311 1732.931	<u>ndary</u> 897.760 897.760 848.105 847.896 744.665
<u>Material Bour</u> 2112.460 2116.769	537.896
Material Bour 2088.671 2116.769	597.896
Material Bour 1732.931 1776.286 1854.032 1881.986 1924.959	744.665 744.665 634.410 634.410
<u>Material Bour</u> 1924.959 2088.671	<u>idary</u> 598.485
External Bour	

2707.802	547.896
2350.464	737.896
2200.464	737.896
1556.510	1205.667
1381.510	1205.667
874.523	1562.896
-278.866	1562.896
-278.866	897.760
-278.866	37.940
3422.769	37.940
3422.769	537.896
3422.769	547.896
Water Table	
-278 866	698 431

-278.866	698.431
2707.802	547.896
3422.769	547.896

Slide Analysis Information CASE E-5, SECTION E, GLOBAL ANALYSIS OF WEATHERED WASTE, CIRCULAR FAILURE, SEISMIC LOADING

Document Name

File Name: SEC-E-DEC_C_P-.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Left to Right Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Maximum Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10 Composite Surfaces: Disabled Reverse Curvature: Create Tension Crack Minimum Elevation: Not Defined Minimum Depth: Not Defined

Loading

Seismic Load Coefficient (Horizontal): 0.06

Material Properties

<u>Material: WASTROCK</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 30 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: BASAL ZONE</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 25 degrees Water Surface: Water Table Custom Hu value: 1

Material: BEDROCK Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 160 lb/ft3 Saturated Unit Weight: 160 lb/ft3 Cohesion: 20 psf Friction Angle: 35 degrees Water Surface: Water Table Custom Hu value: 1

Material: COARSE MATERIAL Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 125 lb/ft3 Saturated Unit Weight: 135 lb/ft3 Cohesion: 0 psf Friction Angle: 40 degrees Water Surface: Water Table Custom Hu value: 1

Global Minimums

<u>Method: bishop simplified</u> FS: 0.999563 Center: 3605.698, 4530.386 Radius: 4082.456 Left Slip Surface Endpoint: 802.049, 1562.896 Right Slip Surface Endpoint: 2707.802, 547.896 Resisting Moment=4.91574e+010 lb-ft Driving Moment=4.91788e+010 lb-ft

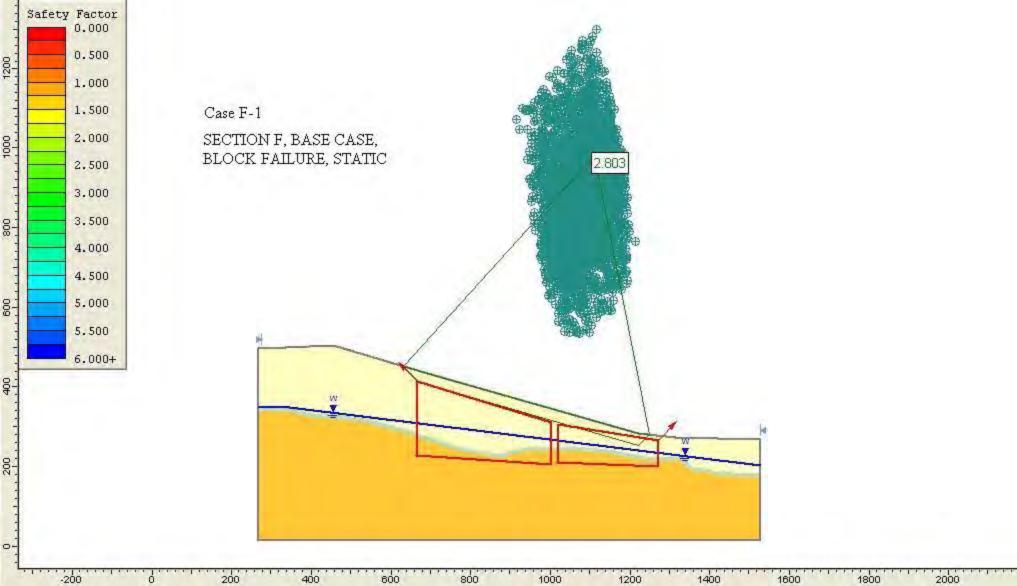
Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 1992 Number of Invalid Surfaces: 2859 Error Codes: Error Code -101 reported for 91 surfaces Error Code -104 reported for 2 surfaces Error Code -113 reported for 588 surfaces Error Code -1000 reported for 2178 surfaces

Error Codes

The following errors were encountered during the computation:

-101 = Only one (or zero) surface / slope intersections.


-104 = Same as -102. Surface / nonslope intersections also exist, but these points lie outside the arc defined by the two surface / slope intersections.

-113 = Surface intersects outside slope limits.

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

Search Grid 2175.117 4082.558 4082.558 2175.117	2813.690 2813.690 4721.130 4721.130
Material Bour	ndarv
2116.769	547.896
2299.818	547.896
2487.657	547.896
Material Bour	
2112.460	537.896
2299.818	537.896
3422.769	537.896
Material Bour	ndarv
2200.464	737.896
2487.657	547.896
2707.802	547.896
Material Bour	ndarv
-278.866	897.760
1512.952	897.760
1562.607	848.105
1644.311	847.896
1732.931	744.665
Material Bour	dan
2112.460	537.896
2112.460	547.896
2110.709	347.090
Material Bour	
2088.671	597.896
2116.769	547.896

Material Bou	ndary_
1732.931	744.665
1776.286	744.665
1854.032	634.410
1881.986	634.410
1924.959	598.485
Material Bou	<u>ndary</u>
1924,959	598.485
2088.671	597.896
External Bou	ndary
2707.802	547.896
2350.464	737.896
2200.464	737.896
1556.510	1205.667
1381.510	1205.667
874.523	1562.896
-278.866	1562.896
-278.866	897.760
-278.866	37.940
3422.769	37.940
3422.769	537.896
3422.769	547.896
Water Table -278.866 2707.802 3422.769	698.431 547.896 547.896

Slide Analysis Information Section F, Case F-1 Base Case, Block Failure, Static

Document Name

File Name: SEC-F-BAS_C_S.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Left to Right Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Standard Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Non-Circular Block Search Number of Surfaces: 5000 Pseudo-Random Surfaces: Enabled Convex Surfaces Only: Disabled Left Projection Angle (Start Angle): 135 Left Projection Angle (End Angle): 135 Right Projection Angle (Start Angle): 45 Right Projection Angle (End Angle): 45 Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

<u>Material: WASTE ROCK</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 35.5 degrees Water Surface: Water Table Custom Hu value: 1

Material: Interface Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 35.5 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: BEDROCK</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 160 lb/ft3 Saturated Unit Weight: 160 lb/ft3 Cohesion: 20 psf Friction Angle: 35 degrees Water Surface: None

Global Minimums

Method: bishop simplified FS: 2.803060 Axis Location: 1110.592, 981.917 Left Slip Surface Endpoint: 631.919, 450.912 Right Slip Surface Endpoint: 1248.193, 280.375 Resisting Moment=9.72203e+008 lb-ft Driving Moment=3.46836e+008 lb-ft

Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 4996 Number of Invalid Surfaces: 4 Error Codes: Error Code -108 reported for 2 surfaces Error Code -111 reported for 2 surfaces

Error Codes

The following errors were encountered during the computation:

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-111 = safety factor equation did not converge

List of All Coordinates

Material Boundary

$\begin{array}{c} 266.754\\ 343.208\\ 397.000\\ 425.057\\ 444.068\\ 524.674\\ 644.046\\ 774.740\\ 881.054\\ 894.073\\ 910.654\\ 940.760\\ 1001.358\\ 1087.496\\ 1143.492\\ 1250.938\\ 1329.035\\ 1349.749\\ 1367.319\\ 1387.299\\ 1401.346\\ 1419.174\\ 1431.525\\ 1446.207\\ 1463.649\\ 1528.173\\ \end{array}$	338.405 338.405 324.571 319.891 321.737 313.405 280.826 238.405 219.218 228.055 233.395 238.405 240.985 238.405 232.126 213.405 213.708 193.405 184.765 185.849 183.400 175.778 180.528 178.341 173.405
Material Bour 266.754	348.405
344.473	348.405
398.800	334.433
426.209	330.050
443.784	331.756
526.505	323.247
647.474	290.222
777.302	248.089
876.240	229.337
890.429	237.387
908.944	243.350
939.507	248.335
1001.596	250.999
1089.096	248.330
1144.420	242.086
1252.036	223.405
1332.652	224.112
1355.968	201.460
1369.263	194.793
1387.497	195.966
1404.438	193.029
1419.824	186.312
1430.857	190.672
1448.590	188.088
1465.015	183.405
1528.173	183.405
1020.170	100.400

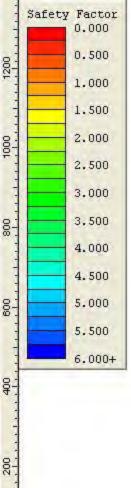
External Boundary

1313.951	273.405	
1219.612	283.405	
690.701	433.405	
455.667	503.405	
274.239	496.513	
266.754	496.081	
266.754	348.405	
266.754	338.405	
266.754	13.405	
1528.173	13.405	
1528.173	173.405	
1528.173	183.405	
1528.173	269.025	
Water Table		
266.754	348.405	
344.473	348.405	
1528.173	201.909	
1020.170	201.000	
Focus/Block Search Window		
1018.826	305.184	
1016.310	209.587	
1270.397	199.524	

1270.397 264.933

664.109

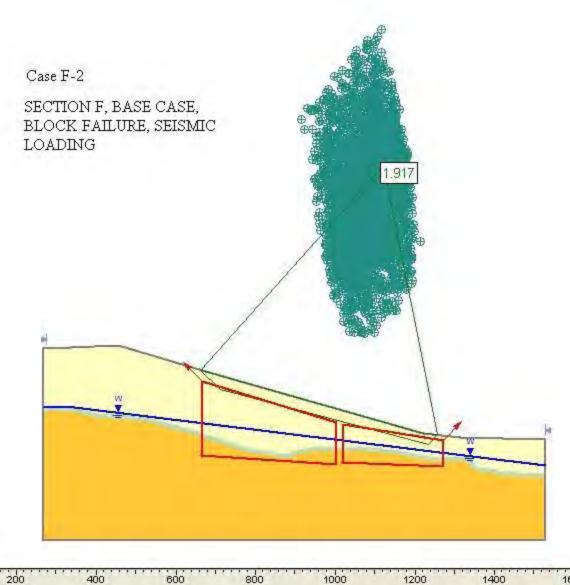
1001.216


1001.216 666.625

Focus/Block Search Window

227.197 204.556

310.216


413.360

0-

-200

Ó.

1600

2000

1800

Slide Analysis Information Section F, Case F-2 Base Case, Block Failure, Seismic Loading

Document Name

File Name: SEC-F-BAS_C_S.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Left to Right Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Standard Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Non-Circular Block Search Number of Surfaces: 5000 Pseudo-Random Surfaces: Enabled Convex Surfaces Only: Disabled Left Projection Angle (Start Angle): 135 Left Projection Angle (End Angle): 135 Right Projection Angle (Start Angle): 45 Right Projection Angle (End Angle): 45 Minimum Elevation: Not Defined Minimum Depth: Not Defined

Loading

Seismic Load Coefficient (Horizontal): 0.12

Material Properties

Material: WASTE ROCK Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 35.5 degrees Water Surface: Water Table Custom Hu value: 1

Material: Interface Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 35.5 degrees Water Surface: Water Table Custom Hu value: 1

Material: BEDROCK Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 160 lb/ft3 Saturated Unit Weight: 160 lb/ft3 Cohesion: 20 psf Friction Angle: 35 degrees Water Surface: None

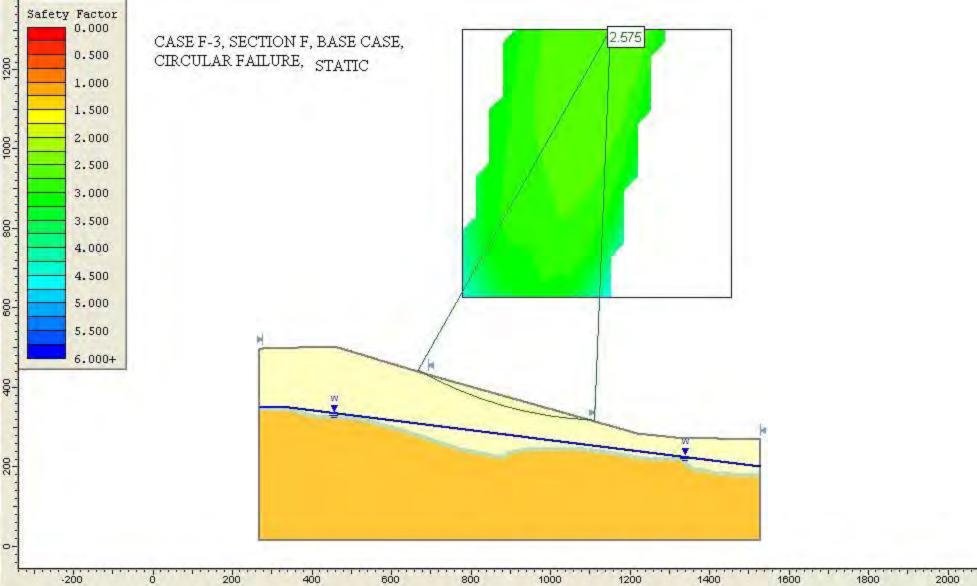
Global Minimums

Method: bishop simplified FS: 1.917290 Axis Location: 1120.996, 956.282 Left Slip Surface Endpoint: 660.518, 442.394 Right Slip Surface Endpoint: 1255.819, 279.566 Resisting Moment=8.90965e+008 lb-ft Driving Moment=4.64701e+008 lb-ft

Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 4995 Number of Invalid Surfaces: 5 Error Codes: Error Code -108 reported for 3 surfaces Error Code -111 reported for 2 surfaces

Error Codes


The following errors were encountered during the computation:

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-111 = safety factor equation did not converge

Material Bou 266.754 343.208 397.000 425.057 444.068 524.674 644.046 774.740 881.054 894.073 910.654 940.760 1001.358 1087.496 1143.492 1250.938 1329.035 1349.749 1367.319 1387.299 1401.346 1419.174 1431.525 1446.207 1463.649 1528.173	ndary 338.405 324.571 319.891 321.737 313.405 280.826 238.405 238.405 238.405 238.405 238.405 238.405 238.405 238.405 238.405 238.405 238.405 238.405 13.708 193.405 184.765 185.849 183.400 175.778 180.528 178.341 173.405 173.405
Material Bou 266.754 344.473 398.800 426.209 443.784 526.505 647.474 777.302 876.240 890.429 908.944 939.507 1001.596 1089.096 1144.420 1252.036 1332.652 1355.968 1369.263 1387.497 1404.438 1419.824 1430.857 1448.590	

1465.015	183.405
1528.173	183.405
External Bour 1313.951 1219.612 690.701 455.667 274.239 266.754 266.754 266.754 266.754 1528.173 1528.173 1528.173	273.405 283.405 433.405 503.405 496.513 496.081 348.405 338.405 13.405 13.405 173.405
Water Table 266.754 344.473 1528.173	348.405 348.405 201.909
Focus/Block 3	Search Window
1018.826	305.184
1016.310	209.587
1270.397	199.524
1270.397	264.933
Focus/Block 3	Search Window
664.109	227.197
1001.216	204.556
1001.216	310.216
666.625	413.360

Slide Analysis Information CASE F-3, SECTION F, BASE CASE, CIRCULAR, FAILURE, STATIC

Document Name

File Name: SEC-F-BAS_C_S.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Left to Right Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Standard Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10 Composite Surfaces: Disabled Reverse Curvature: Create Tension Crack Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

<u>Material: WASTE ROCK</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 35.5 degrees Water Surface: Water Table Custom Hu value: 1 <u>Material: Interface</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 35.5 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: BEDROCK</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 160 lb/ft3 Saturated Unit Weight: 160 lb/ft3 Cohesion: 20 psf Friction Angle: 35 degrees Water Surface: None

Global Minimums

<u>Method: bishop simplified</u> FS: 2.575190 Center: 1150.578, 1300.654 Radius: 987.045 Left Slip Surface Endpoint: 665.940, 440.779 Right Slip Surface Endpoint: 1110.195, 314.435 Resisting Moment=6.85395e+008 lb-ft Driving Moment=2.66153e+008 lb-ft

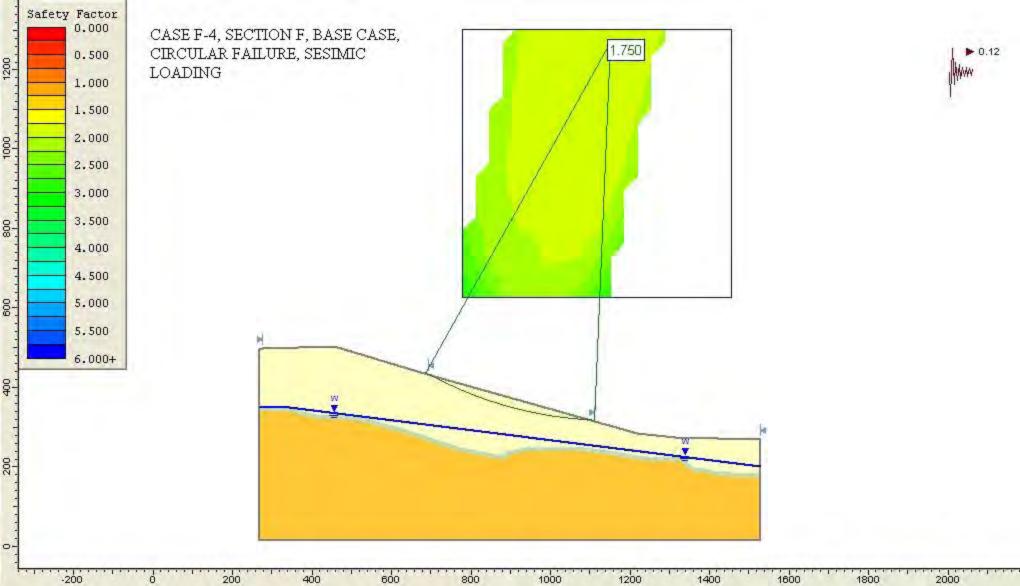
Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 2760 Number of Invalid Surfaces: 2091 Error Codes: Error Code -101 reported for 53 surfaces Error Code -103 reported for 14 surfaces Error Code -1000 reported for 2024 surfaces

Error Codes

The following errors were encountered during the computation:

-101 = Only one (or zero) surface / slope intersections.


-103 = Two surface / slope intersections, but one or more surface / nonslope external polygon intersections lie between them. This usually occurs when the slip surface extends past the bottom of the soil region, but may also occur on a benched slope model with two sets of Slope Limits.

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

<u>Search Grid</u> 779.548 1454.147 1454.147 779.548	626.054 626.054 1300.654 1300.654
Material Bour	ndary
266.754	338.405
343.208	338.405
397.000	324.571
425.057	319.891
444.068	321.737
524.674	313.405
644.046	280.826
774.740	238.405
881.054	219.218
894.073	228.055
910.654	233.395
940.760	238.405
1001.358	240.985
1087.496	238.450
1143.492	232.126
1250.938	213.405
1329.035	213.708
1349.749	193.405
1367.319	184.765
1387.299	185.849
1401.346	183.400
1419.174	175.778
1431.525	180.528
1446.207	178.341
1463.649	173.405
1528.173	173.405
Material Bour	ndary
266.754	348.405
344.473	348.405
398.800	334.433
426.209	330.050
443.784	331.756
526.505	323.247
647.474	290.222
777.302	248.089
876.240	229.337
890.429	237.387
908.944	243.350
939.507	248.335
1001.596	250.999
1089.096	248.330
1144.420	242.086
1252.036	223.405
1332.652	224.112
1355.968	201.460

1369.263	194.793
1387.497	195.966
1404.438	193.029
1419.824	186.312
1430.857	190.672
1448.590	188.088
1465.015	
1528.173	183.405
External Bou	
1313.951	273.405
1219.612	283.405
690.701	433.405
455.667	503.405
274.239	496.513
266.754	496.081
266.754	348.405
266.754	338.405
266.754	13.405
1528.173	13.405
1528.173	173.405
1528.173	183.405
1528.173	269.025
	_00.020
Water Table	
266 754	348 405

348.405
348.405
201.909

Slide Analysis Information CASE F-4, SECTION F, BASE CASE, CIRCULAR FAILURE, SEISMIC LOADING

Document Name

File Name: SEC-F-BAS_C_S.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Left to Right Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Standard Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10 Composite Surfaces: Disabled Reverse Curvature: Create Tension Crack Minimum Elevation: Not Defined Minimum Depth: Not Defined

Loading

Seismic Load Coefficient (Horizontal): 0.12

Material Properties

<u>Material: WASTE ROCK</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 35.5 degrees Water Surface: Water Table Custom Hu value: 1

Material: Interface Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 35.5 degrees Water Surface: Water Table Custom Hu value: 1

Material: BEDROCK Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 160 lb/ft3 Saturated Unit Weight: 160 lb/ft3 Cohesion: 20 psf Friction Angle: 35 degrees Water Surface: None

Global Minimums

Method: bishop simplified FS: 1.750440 Center: 1150.578, 1266.924 Radius: 953.344 Left Slip Surface Endpoint: 684.596, 435.223 Right Slip Surface Endpoint: 1110.195, 314.435 Resisting Moment=5.86173e+008 lb-ft Driving Moment=3.34872e+008 lb-ft

Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 2760 Number of Invalid Surfaces: 2091 Error Codes: Error Code -101 reported for 53 surfaces Error Code -103 reported for 14 surfaces Error Code -1000 reported for 2024 surfaces

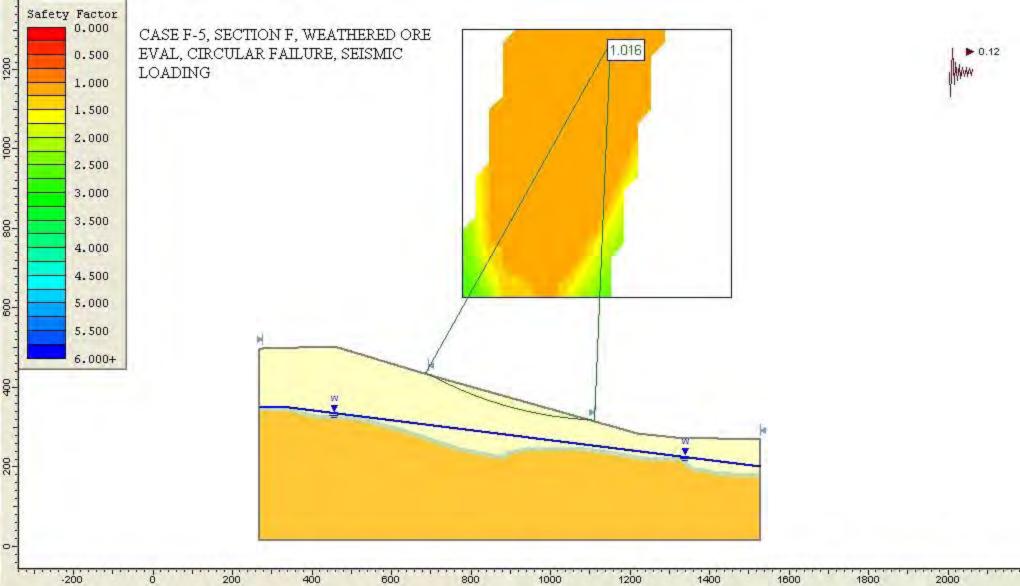
Error Codes

The following errors were encountered during the computation:

-101 = Only one (or zero) surface / slope intersections.

-103 = Two surface / slope intersections, but one or more surface / nonslope external polygon intersections lie between them. This usually occurs when the slip surface extends past the bottom of the soil region, but may also occur on a benched slope model with two sets of Slope Limits. -1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

<u>Search Grid</u> 779.548 1454.147 1454.147 779.548	626.054 626.054 1300.654 1300.654
Material Bou 266.754 343.208 397.000 425.057 444.068 524.674 644.046 774.740 881.054 894.073 910.654 940.760 1001.358 1087.496 1143.492 1250.938 1329.035 1349.749 1367.319 1387.299 1401.346 1419.174 1431.525 1446.207 1463.649 1528.173	ndary 338.405 338.405 324.571 319.891 321.737 313.405 280.826 238.405 219.218 228.055 233.395 238.405 240.985 238.405 238.450 232.126 213.708 193.405 184.765 185.849 183.400 175.778 180.528 178.341 173.405 173.405
Material Bou 266.754 344.473 398.800 426.209 443.784 526.505 647.474 777.302 876.240 890.429 908.944 939.507 1001.596 1089.096	


1144.420	242.086
1252.036	223.405
1332.652	224.112
1355.968	201.460
1369.263	194.793
1387.497	195.966
1404.438	193.029
1419.824	186.312
1430.857	190.672
1448.590	188.088
1465.015	183.405
1528.173	183.405

External Boundary

1313.951	273.405
1219.612	283.405
690.701	433.405
455.667	503.405
274.239	496.513
266.754	496.081
266.754	348.405
266.754	338.405
266.754	13.405
1528.173	13.405
1528.173	173.405
1528.173	183.405
1528.173	269.025

Water Table

266.754	348.405
344.473	348.405
1528.173	201.909

Slide Analysis Information CASE F-5, SECTION F, WEATHERED ORE EVAL, CIRCULAR FAILURE, SEISMIC LOADING

Document Name

File Name: SEC-F-BAS_C_S.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Left to Right Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Standard Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10 Composite Surfaces: Disabled Reverse Curvature: Create Tension Crack Minimum Elevation: Not Defined Minimum Depth: Not Defined

Loading

Seismic Load Coefficient (Horizontal): 0.12

Material Properties

<u>Material: WASTE ROCK</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 22.5 degrees Water Surface: Water Table Custom Hu value: 1

Material: Interface Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 22.5 degrees Water Surface: Water Table Custom Hu value: 1

Material: BEDROCK Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 160 lb/ft3 Saturated Unit Weight: 160 lb/ft3 Cohesion: 20 psf Friction Angle: 35 degrees Water Surface: None

Global Minimums

<u>Method: bishop simplified</u> FS: 1.016400 Center: 1150.578, 1266.924 Radius: 953.344 Left Slip Surface Endpoint: 684.596, 435.223 Right Slip Surface Endpoint: 1110.195, 314.435 Resisting Moment=3.40363e+008 lb-ft Driving Moment=3.34872e+008 lb-ft

Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 2760 Number of Invalid Surfaces: 2091 Error Codes: Error Code -101 reported for 53 surfaces Error Code -103 reported for 14 surfaces Error Code -1000 reported for 2024 surfaces

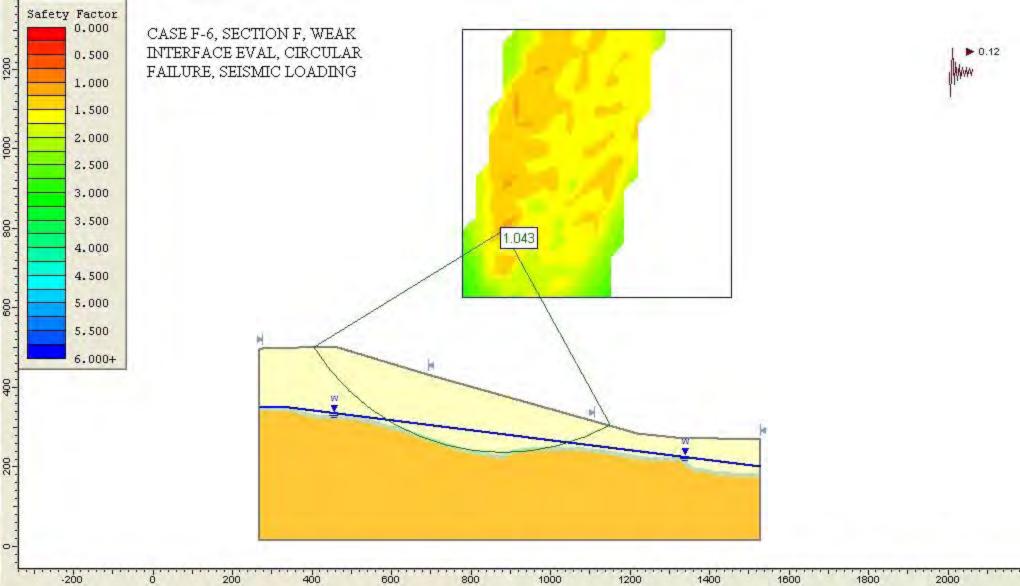
Error Codes

The following errors were encountered during the computation:

-101 = Only one (or zero) surface / slope intersections.

-103 = Two surface / slope intersections, but one or more surface / nonslope external polygon intersections lie between them. This usually occurs when the slip surface extends past the bottom of the soil region, but may also occur on a benched slope model with two sets of Slope Limits. -1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

<u>Search Grid</u> 779.548 1454.147 1454.147 779.548	626.054 626.054 1300.654 1300.654
Material Bou 266.754 343.208 397.000 425.057 444.068 524.674 644.046 774.740 881.054 894.073 910.654 940.760 1001.358 1087.496 1143.492 1250.938 1329.035 1349.749 1367.319 1387.299 1401.346 1419.174 1431.525 1446.207 1463.649 1528.173	ndary 338.405 338.405 324.571 319.891 321.737 313.405 280.826 238.405 219.218 228.055 233.395 238.405 240.985 238.405 238.450 232.126 213.708 193.405 184.765 185.849 183.400 175.778 180.528 178.341 173.405 173.405
Material Bou 266.754 344.473 398.800 426.209 443.784 526.505 647.474 777.302 876.240 890.429 908.944 939.507 1001.596 1089.096	


1144.420	242.086
1252.036	223.405
1332.652	224.112
1355.968	201.460
1369.263	194.793
1387.497	195.966
1404.438	193.029
1419.824	186.312
1430.857	190.672
1448.590	188.088
1465.015	183.405
1528.173	183.405

External Boundary

1313.951	273.405
1219.612	283.405
690.701	433.405
455.667	503.405
274.239	496.513
266.754	496.081
266.754	348.405
266.754	338.405
266.754	13.405
1528.173	13.405
1528.173	173.405
1528.173	183.405
1528.173	269.025

Water Table

266.754	348.405
344.473	348.405
1528.173	201.909

Slide Analysis Information CASE F-6, SECTION F, WEAK INTERFACE EVAL, CIRCULAR FAILURE, SEISMIC LOADING

Document Name

File Name: SEC-F-BAS_C_S.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Left to Right Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Standard Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10 Composite Surfaces: Disabled Reverse Curvature: Create Tension Crack Minimum Elevation: Not Defined Minimum Depth: Not Defined

Loading

Seismic Load Coefficient (Horizontal): 0.12

Material Properties

<u>Material: WASTE ROCK</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 35.5 degrees Water Surface: Water Table Custom Hu value: 1

Material: Interface Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 4 degrees Water Surface: Water Table Custom Hu value: 1

Material: BEDROCK Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 160 lb/ft3 Saturated Unit Weight: 160 lb/ft3 Cohesion: 20 psf Friction Angle: 35 degrees Water Surface: None

Global Minimums

Method: bishop simplified FS: 1.042740 Center: 880.738, 794.704 Radius: 560.982 Left Slip Surface Endpoint: 402.548, 501.387 Right Slip Surface Endpoint: 1150.696, 302.949 Resisting Moment=1.99992e+009 lb-ft Driving Moment=1.91795e+009 lb-ft

Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 2760 Number of Invalid Surfaces: 2091 Error Codes: Error Code -101 reported for 53 surfaces Error Code -103 reported for 14 surfaces Error Code -1000 reported for 2024 surfaces

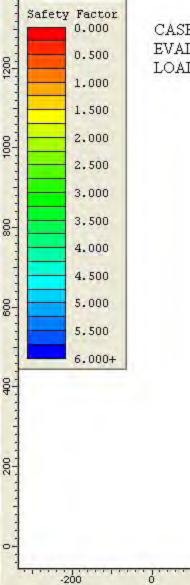
Error Codes

The following errors were encountered during the computation:

-101 = Only one (or zero) surface / slope intersections.

-103 = Two surface / slope intersections, but one or more surface / nonslope external polygon intersections lie between them. This usually occurs when the slip surface extends past the bottom of the soil region, but may also occur on a benched slope model with two sets of Slope Limits. -1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

<u>Search Grid</u> 779.548 1454.147 1454.147 779.548	626.054 626.054 1300.654 1300.654
Material Bou 266.754 343.208 397.000 425.057 444.068 524.674 644.046 774.740 881.054 894.073 910.654 940.760 1001.358 1087.496 1143.492 1250.938 1329.035 1349.749 1367.319 1387.299 1401.346 1419.174 1431.525 1446.207 1463.649 1528.173	ndary 338.405 338.405 324.571 319.891 321.737 313.405 280.826 238.405 219.218 228.055 233.395 238.405 240.985 238.405 238.450 232.126 213.708 193.405 184.765 185.849 183.400 175.778 180.528 178.341 173.405 173.405
Material Bou 266.754 344.473 398.800 426.209 443.784 526.505 647.474 777.302 876.240 890.429 908.944 939.507 1001.596 1089.096	


1144.420	242.086
1252.036	223.405
1332.652	224.112
1355.968	201.460
1369.263	194.793
1387.497	195.966
1404.438	193.029
1419.824	186.312
1430.857	190.672
1448.590	188.088
1465.015	183.405
1528.173	183.405

External Boundary

1313.951	273.405
1219.612	283.405
690.701	433.405
455.667	503.405
274.239	496.513
266.754	496.081
266.754	348.405
266.754	338.405
266.754	13.405
1528.173	13.405
1528.173	173.405
1528.173	183.405
1528.173	269.025

Water Table

266.754	348.405
344.473	348.405
1528.173	201.909

CASE F-7, SECTION F, WEAK INTERFACE EVAL, BLOCK FAILURE, SEISMIC LOADING

W

1.144

T.

Slide Analysis Information CASE F-7, SECTION F, WEAK INTERFACE EVAL, BLOCK FAILURE, SEISMIC LOADING

Document Name

File Name: SEC-F-BAS_C_S.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Left to Right Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Standard Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Non-Circular Block Search Number of Surfaces: 5000 Pseudo-Random Surfaces: Enabled Convex Surfaces Only: Disabled Left Projection Angle (Start Angle): 135 Left Projection Angle (End Angle): 135 Right Projection Angle (Start Angle): 45 Right Projection Angle (End Angle): 45 Minimum Elevation: Not Defined Minimum Depth: Not Defined

Loading

Seismic Load Coefficient (Horizontal): 0.12

Material Properties

Material: WASTE ROCK Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 35.5 degrees Water Surface: Water Table Custom Hu value: 1

Material: Interface Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 4 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: BEDROCK</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 160 lb/ft3 Saturated Unit Weight: 160 lb/ft3 Cohesion: 20 psf Friction Angle: 35 degrees Water Surface: None

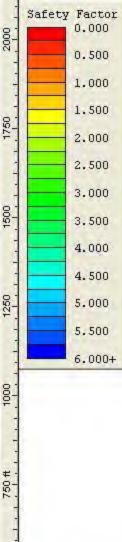
Global Minimums

Method: bishop simplified FS: 1.143750 Axis Location: 1089.171, 1079.060 Left Slip Surface Endpoint: 542.750, 477.469 Right Slip Surface Endpoint: 1242.591, 280.969 Resisting Moment=2.3526e+009 lb-ft Driving Moment=2.05692e+009 lb-ft

Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 4996 Number of Invalid Surfaces: 4 Error Codes: Error Code -108 reported for 3 surfaces Error Code -111 reported for 1 surface

Error Codes

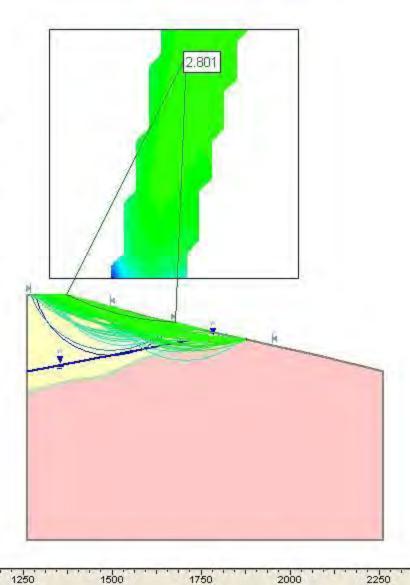

The following errors were encountered during the computation:

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-111 = safety factor equation did not converge

Material Bou	ndary
266.754	338.405
343.208	324.571
397.000	319.891
425.057	321.737
444.068	313.405
524.674	280.826
644.046	238.405
774.740	238.405
881.054	238.405
894.073	238.405
910.654	238.405
940.760	238.405
1001.358	238.405
1087.496	238.405
1143.492	238.405
1250.938	238.450
1329.035	232.126
1349.749	213.708
1367.319	193.405
1387.299	184.765
1401.346	185.849
1419.174	183.400
1431.525	175.778
1446.207	180.528
1463.649	178.341
1528.173	173.405
Material Bou 266.754 344.473 398.800 426.209 443.784 526.505 647.474 777.302 876.240 890.429 908.944 939.507 1001.596 1089.096 1144.420 1252.036 1332.652 1355.968 1369.263 1387.497 1404.438 1419.824 1430.857 1448.590	

1465.015	183.405
1528.173	183.405
External Bour 1313.951 1219.612 690.701 455.667 274.239 266.754 266.754 266.754 266.754 1528.173 1528.173 1528.173	273.405 283.405 433.405 503.405 496.513 496.081 348.405 338.405 13.405 13.405 173.405
<u>Water Table</u> 266.754 344.473 1528.173	348.405 348.405 201.909
Focus/Block 3	Search Window
1018.826	305.184
1016.310	209.587
1270.397	199.524
1270.397	264.933
Focus/Block 3	Search Window
664.109	227.197
1001.216	204.556
1001.216	310.216
666.625	413.360



500 ft

750

1000

Case G-1 SECTION G, BASE CASE, CIRCULAR FAILURE, STATIC

2750

2500

3000

Slide Analysis Information Section G, Case G-1 Base Case, Circular Failure Static Loading

Document Name

File Name: SEC-G-BAS_C_S.sli

Project Settings

Project Title: 2C Leached Ore Stockpile Failure Direction: Left to Right Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Maximum Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10 Composite Surfaces: Disabled Reverse Curvature: Create Tension Crack Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

<u>Material: Leached Ore</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 35.5 degrees Water Surface: Water Table

Custom Hu value: 1

<u>Material: Basal Interface</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 35.5 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: Granodiorite Bedrock</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 160 lb/ft3 Saturated Unit Weight: 160 lb/ft3 Cohesion: 20 psf Friction Angle: 35 degrees Water Surface: None

Global Minimums

<u>Method: bishop simplified</u> FS: 2.800800 Center: 1708.130, 1959.288 Radius: 756.558 Left Slip Surface Endpoint: 1370.588, 1282.202 Right Slip Surface Endpoint: 1677.136, 1203.365 Resisting Moment=2.0529e+008 lb-ft Driving Moment=7.3297e+007 lb-ft

Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 1733 Number of Invalid Surfaces: 3118 Error Codes: Error Code -101 reported for 126 surfaces Error Code -1000 reported for 2992 surfaces

Error Codes

The following errors were encountered during the computation:

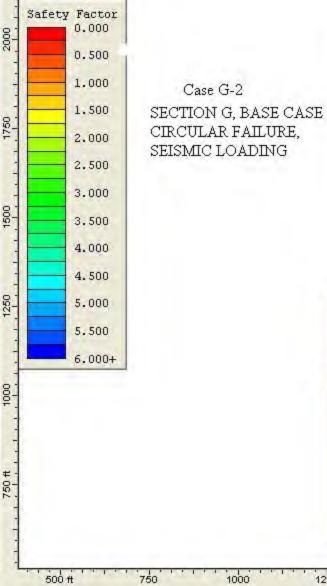
-101 = Only one (or zero) surface / slope intersections.

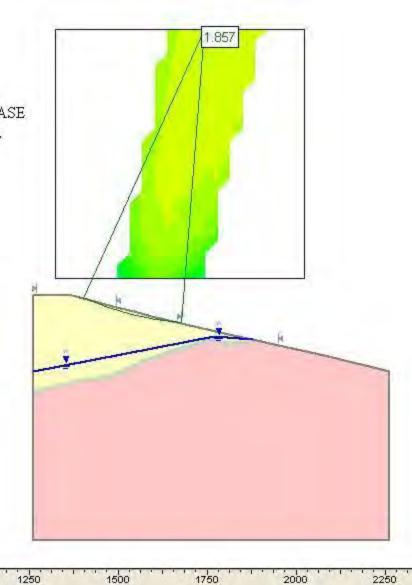
-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

List of All Coordinates

<u>Search Grid</u> 1323.994 1330.702 2022.423 1330.702

2022.423	2029.131
1323.994	2029.131
Material Bou	ndary
1262.654	1014.425
1288.832	1024.194
1394.218	1049.494
1430.867	1052.137
1475.035	1058.867
1570.678	1101.460
1637.490	1126.611
1771.339	1166.224
1797.007	1151.804
1852.383	1152.682
1876.118	1156.825


Material Boundary


1262.654	1003.752
1292.132	1014.752
1394.406	1039.473
1432.188	1042.224
1477.771	1049.172
1574.536	1092.224
1640.939	1117.224
1770.297	1155.599
1796.217	1141.686
1854.411	1142.224
1876.118	1156.825

External Boundary

1262.654	1280.502
1262.654	1014.425
1262.654	1003.752
1262.654	592.224
2262.654	592.224
2262.654	1067.152
2079.683	1112.224
1948.847	1142.224
1876.118	1156.825
1809.684	1171.600
1592.556	1223.635
1545.195	1235.914
1496.084	1248.321
1372.183	1282.205
1372.116	1282.224
1372.062	1282.224
1270.100	1280.679
Water Table	

1069.226
1166.224
1156.825

Slide Analysis Information Section G Case G-2 Base Case Circular Failure, Seismic Loading

Document Name

File Name: SEC-G-BAS_C_S.sli

Project Settings

Project Title: 2C Leached Ore Stockpile Failure Direction: Left to Right Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Maximum Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10 Composite Surfaces: Disabled Reverse Curvature: Create Tension Crack Minimum Elevation: Not Defined Minimum Depth: Not Defined

Loading

Seismic Load Coefficient (Horizontal): 0.12

Material Properties

<u>Material: Leached Ore</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 35.5 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: Basal Interface</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 35.5 degrees Water Surface: Water Table Custom Hu value: 1

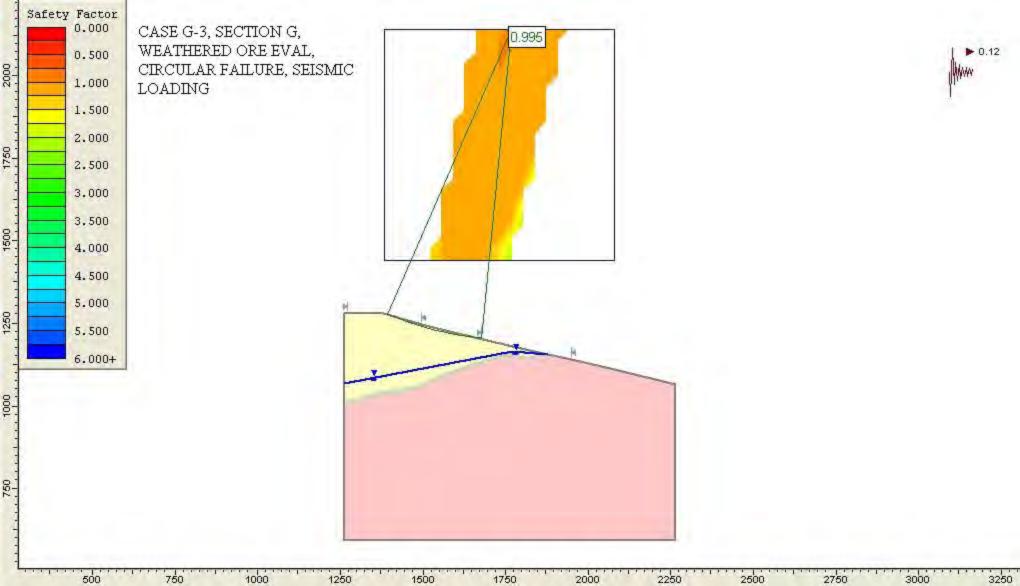
Material: Granodiorite Bedrock Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 160 lb/ft3 Saturated Unit Weight: 160 lb/ft3 Cohesion: 20 psf Friction Angle: 35 degrees Water Surface: None

Global Minimums

<u>Method: bishop simplified</u> FS: 1.857060 Center: 1743.051, 2029.131 Radius: 828.392 Left Slip Surface Endpoint: 1402.853, 1273.817 Right Slip Surface Endpoint: 1677.136, 1203.365 Resisting Moment=1.35707e+008 lb-ft Driving Moment=7.30766e+007 lb-ft

Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 1733 Number of Invalid Surfaces: 3118 Error Codes: Error Code -101 reported for 126 surfaces Error Code -1000 reported for 2992 surfaces


Error Codes

The following errors were encountered during the computation:

-101 = Only one (or zero) surface / slope intersections.

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

Search Grid 1323.994 2022.423 2022.423 1323.994	1330.702 1330.702 2029.131 2029.131
Material Bour	ndary
1262.654	1014.425
1288.832	1024.194
1394.218	1049.494
1430.867	1052.137
1475.035	1058.867
1570.678	1101.460
1637.490	1126.611
1771.339	1166.224
1797.007	1151.804
1852.383	1152.682
1876.118	1156.825
Material Bour	ndary
1262.654	1003.752
1292.132	1014.752
1394.406	1039.473
1432.188	1042.224
1477.771	1049.172
1574.536	1092.224
1640.939	1117.224
1770.297	1155.599
1796.217	1141.686
1854.411	1142.224
1876.118	1156.825
External Bour	ndary
1262.654	1280.502
1262.654	1014.425
1262.654	1003.752
1262.654	592.224
2262.654	592.224
2262.654	1067.152
2079.683	1112.224
1948.847	1142.224
1876.118	1156.825
1809.684	1171.600
1592.556	1223.635
1545.195	1235.914
1496.084	1248.321
1372.183	1282.205
1372.116	1282.224
1372.062	1282.224
1270.100	1282.224
Water Table 1262.387 1771.339 1876.118	1069.226 1166.224 1156.825

Slide Analysis Information CASE G-3, SECTION G, WEATHERED ORE EVAL, CIRCULAR FAILURE, SEISMIC LOADING

Document Name

File Name: SEC-G-BAS_C_S.sli

Project Settings

Project Title: 2C Leached Ore Stockpile Failure Direction: Left to Right Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Maximum Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10 Composite Surfaces: Disabled Reverse Curvature: Create Tension Crack Minimum Elevation: Not Defined Minimum Depth: Not Defined

Loading

Seismic Load Coefficient (Horizontal): 0.12

Material Properties

<u>Material: Leached Ore</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 21 degrees Water Surface: Water Table Custom Hu value: 1

Material: Basal Interface Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 120 lb/ft3 Saturated Unit Weight: 133 lb/ft3 Cohesion: 0 psf Friction Angle: 21 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: Granodiorite Bedrock</u> Strength Type: Mohr-Coulomb Unsaturated Unit Weight: 160 lb/ft3 Saturated Unit Weight: 160 lb/ft3 Cohesion: 20 psf Friction Angle: 35 degrees Water Surface: None

Global Minimums

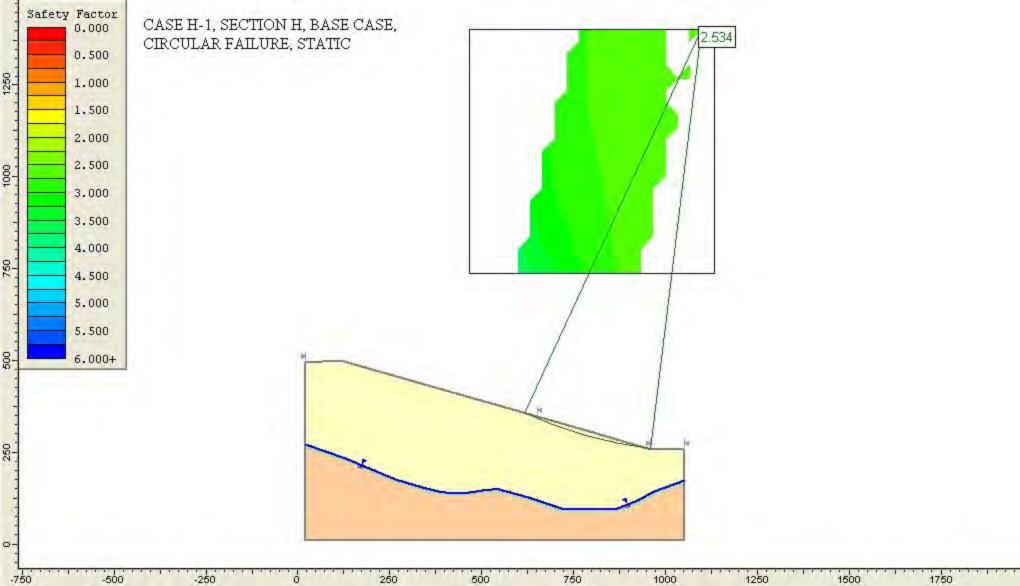
<u>Method: bishop simplified</u> FS: 0.995423 Center: 1766.486, 2140.539 Radius: 941.423 Left Slip Surface Endpoint: 1392.118, 1276.753 Right Slip Surface Endpoint: 1677.136, 1203.365 Resisting Moment=8.06713e+007 lb-ft Driving Moment=8.10423e+007 lb-ft

Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 1778 Number of Invalid Surfaces: 3073 Error Codes: Error Code -101 reported for 103 surfaces Error Code -1000 reported for 2970 surfaces

Error Codes

The following errors were encountered during the computation:


-101 = Only one (or zero) surface / slope intersections.

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

List of All Coordinates

Search Grid

1382.350	1442.110
2080.779	1442.110
2080.779	2140.539
1382.350	2140.539
<u>Material Bour</u>	ndary
1262.654	1014.425
1288.832	1024.194
1394.218	1049.494
1430.867	1052.137
1475.035	1058.867
1570.678	1101.460
1637.490	1126.611
1771.339	1166.224
1797.007	1151.804
1852.383	1152.682
1876.118	1156.825
<u>Material Bour</u>	ndary
1262.654	1003.752
1292.132	1014.752
1394.406	1039.473
1432.188	1042.224
1477.771	1049.172
1574.536	1092.224
1640.939	1117.224
1770.297	1155.599
1796.217	1141.686
1854.411	1142.224
1876.118	1156.825
External Bour 1262.654 1262.654 1262.654 1262.654 2262.654 2079.683 1948.847 1876.118 1809.684 1592.556 1545.195 1496.084 1372.183 1372.116 1372.062 1270.100	ndary 1280.502 1014.425 1003.752 592.224 592.224 1067.152 1112.224 1142.224 1142.224 1156.825 1171.600 1223.635 1235.914 1248.321 1282.205 1282.224 1282.224 1280.679
<u>Water Table</u> 1262.387 1771.339 1876.118	1069.226 1166.224 1156.825

Slide Analysis Information CASE H-1, SECTION H, BASE CASE, CIRCULAR FAILURE, STATIC

Document Name

File Name: SEC-H-BAS_C_S.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Left to Right Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Standard Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10 Composite Surfaces: Disabled Reverse Curvature: Create Tension Crack Minimum Elevation: Not Defined Minimum Depth: Not Defined

Material Properties

Material: Leached Ore Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3 Cohesion: 0 psf Friction Angle: 35.5 degrees Water Surface: None

Material: Interface

Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3 Cohesion: 1 psf Friction Angle: 35.5 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: Bedrock</u> Strength Type: Mohr-Coulomb Unit Weight: 160 lb/ft3 Cohesion: 20 psf Friction Angle: 35 degrees Water Surface: None

Global Minimums

<u>Method: bishop simplified</u> FS: 2.534160 Center: 1098.416, 1401.355 Radius: 1150.113 Left Slip Surface Endpoint: 615.670, 357.461 Right Slip Surface Endpoint: 959.478, 259.665 Resisting Moment=3.16342e+008 lb-ft Driving Moment=1.24831e+008 lb-ft

Method: janbu simplified FS: 2.520910 Center: 1098.416, 1401.355 Radius: 1150.113 Left Slip Surface Endpoint: 615.670, 357.461 Right Slip Surface Endpoint: 959.478, 259.665 Resisting Horizontal Force=263926 lb Driving Horizontal Force=104695 lb

Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 2324 Number of Invalid Surfaces: 2527 Error Codes: Error Code -101 reported for 22 surfaces Error Code -109 reported for 5 surfaces Error Code -113 reported for 190 surfaces Error Code -1000 reported for 2310 surfaces

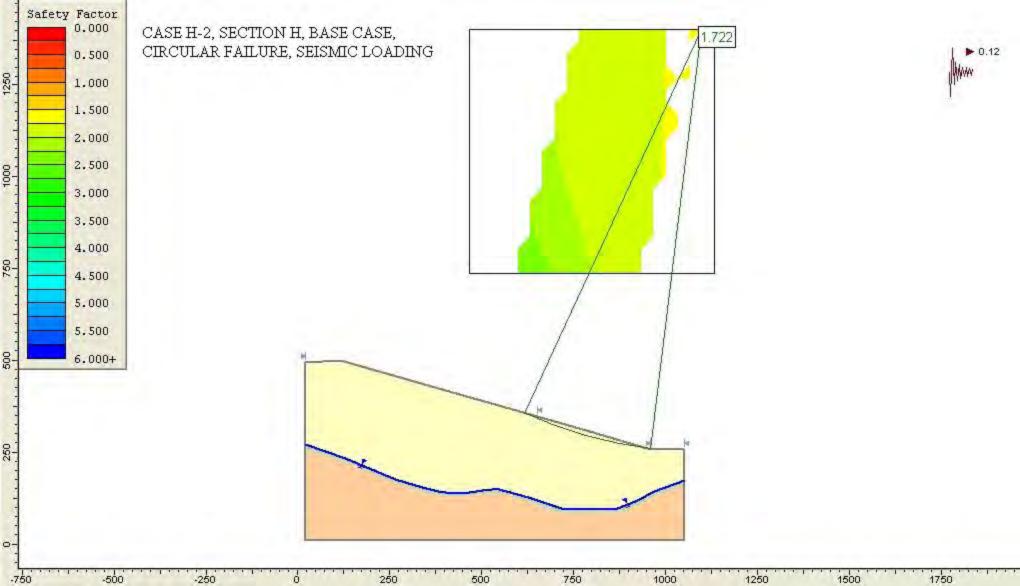
Method: janbu simplified Number of Valid Surfaces: 2324 Number of Invalid Surfaces: 2527 Error Codes: Error Code -101 reported for 22 surfaces Error Code -109 reported for 5 surfaces Error Code -113 reported for 190 surfaces Error Code -1000 reported for 2310 surfaces

Error Codes

The following errors were encountered during the computation:

-101 = Only one (or zero) surface / slope intersections.

-109 = Soiltype for slice base not located. This error should occur very rarely, if at all. It may occur if a very low number of slices is combined with certain soil geometries, such that the midpoint of a slice base is actually outside the soil region, even though the slip surface is wholly within the soil region.


-113 = Surface intersects outside slope limits.

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

List of All Coordinates

Search Grid 467.117 1131.642 1131.642 467.117	736.830 736.830 1401.355 1401.355
Material Bour	ndary
20.615	271.422
130.646	234.016
265.979	176.930
340.058	154.460
383.202	144.383
421.328	139.863
451.585	140.018
503.056	147.774
527.655	149.132
546.999	148.341
567.690	144.335
625.928	128.890
725.693	94.665
862.381	94.665
923.726	118.795
969.511	143.731
1050.770	174.833
Material Bour	ndary
20.615	261.114
126.886	224.749
262.270	167.628
337.584	144.769
381.481	134.526
420.688	129.883
451.062	129.951
503.551	137.757

527.803	139.118
546.153	138.367
565.139	134.665
622.943	119.336
724.139	84.665
864.492	84.665
927.863	109.665
973.775	134.665
1050.770	164.278
External Bou	ndary
1050.770	9.665
1050.770	164.278
1050.770	174.833
1050.770	259.665
959.478	259.665
783.745	309.665
488.597	393.596
115.279	499.665
20.615	495.641
20.615	271.422
20.615	261.114
20.615	9.665
Water Table 20.615 130.646 265.979 340.058 383.202 421.328 451.585 503.056 527.655 546.999 567.690 625.928 725.693 862.381 923.726 969.511 1050.770	271.422 234.016 176.930 154.460 144.383 139.863 140.018 147.774 149.132 148.341 144.335 128.890 94.665 94.665 118.795 143.731 174.833

Slide Analysis Information CASE H-2, SECTION H, BASE CASE, CIRCULAR FAILURE, SEISMIC LOADING

Document Name

File Name: SEC-H-BAS_C_S.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Left to Right Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Standard Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10 Composite Surfaces: Disabled Reverse Curvature: Create Tension Crack Minimum Elevation: Not Defined Minimum Depth: Not Defined

Loading

Seismic Load Coefficient (Horizontal): 0.12

Material Properties

Material: Leached Ore Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3 Cohesion: 0 psf Friction Angle: 35.5 degrees Water Surface: None

Material: Interface Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3 Cohesion: 1 psf Friction Angle: 35.5 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: Bedrock</u> Strength Type: Mohr-Coulomb Unit Weight: 160 lb/ft3 Cohesion: 20 psf Friction Angle: 35 degrees Water Surface: None

Global Minimums

Method: bishop simplified FS: 1.722440 Center: 1098.416, 1401.355 Radius: 1150.113 Left Slip Surface Endpoint: 615.670, 357.461 Right Slip Surface Endpoint: 959.478, 259.665 Resisting Moment=3.05724e+008 lb-ft Driving Moment=1.77495e+008 lb-ft

Method: janbu simplified FS: 1.712860 Center: 1098.416, 1401.355 Radius: 1150.113 Left Slip Surface Endpoint: 615.670, 357.461 Right Slip Surface Endpoint: 959.478, 259.665 Resisting Horizontal Force=255054 lb Driving Horizontal Force=148905 lb

Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 2324 Number of Invalid Surfaces: 2527 Error Codes: Error Code -101 reported for 22 surfaces Error Code -109 reported for 5 surfaces Error Code -113 reported for 190 surfaces Error Code -1000 reported for 2310 surfaces

<u>Method: janbu simplified</u> Number of Valid Surfaces: 2324 Number of Invalid Surfaces: 2527 Error Codes: Error Code -101 reported for 22 surfaces Error Code -109 reported for 5 surfaces Error Code -113 reported for 190 surfaces Error Code -1000 reported for 2310 surfaces

Error Codes

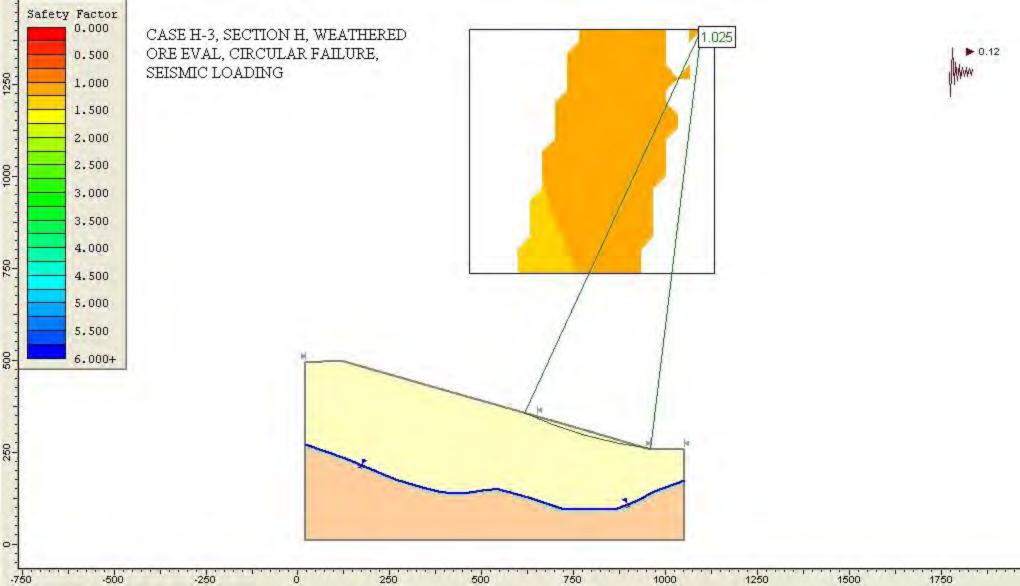
The following errors were encountered during the computation:

-101 = Only one (or zero) surface / slope intersections.

-109 = Soiltype for slice base not located. This error should occur very rarely, if at all. It may occur if a very low number of slices is combined with certain soil geometries, such that the midpoint of a slice base is actually outside the soil region, even though the slip surface is wholly within the soil region.

-113 = Surface intersects outside slope limits.

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.


List of All Coordinates

Search Grid 467.117 1131.642 1131.642 467.117	736.830 736.830 1401.355 1401.355
Material Bour	ndarv
20.615	271.422
130.646	234.016
265.979	176.930
340.058	154.460
383.202	144.383
421.328	139.863
451.585	140.018
503.056	147.774
527.655	149.132
546.999	148.341
567.690	144.335
625.928	128.890
725.693	94.665
862.381	94.665
923.726	118.795
969.511	143.731
1050.770	174.833

Μ	a	te	ri	а	Boundary

261.114
224.749
167.628

337.584 381.481 420.688 451.062 503.551 527.803 546.153 565.139 622.943 724.139 864.492 927.863 973.775 1050.770	$\begin{array}{c} 144.769\\ 134.526\\ 129.883\\ 129.951\\ 137.757\\ 139.118\\ 138.367\\ 134.665\\ 119.336\\ 84.665\\ 84.665\\ 109.665\\ 134.665\\ 134.665\\ 134.665\\ 164.278\end{array}$
External Bou	
1050.770	9.665
1050.770	164.278
1050.770	174.833
1050.770	259.665
959.478 783.745	259.665 309.665
783.745 488.597	
	393.596
115.279 20.615	499.665 495.641
20.615	271.422
20.615	261.114
20.615	9.665
20.010	0.000
Water Table	
20.615	271.422
130.646	234.016
265.979	176.930
340.058	154.460
383.202	144.383
421.328	139.863
451.585	140.018
503.056	147.774
527.655	149.132
546.999	148.341
567.690	144.335
625.928	128.890
725.693	94.665
862.381	94.665
923.726	118.795
969.511	143.731
1050.770	174.833

Slide Analysis Information CASE H-3, SECTION H, WEATHERED ORE EVALUATION, CIRCULAR FAILURE, SEISMIC LOADING

Document Name

File Name: SEC-H-BAS_C_S.sli

Project Settings

Project Title: SLIDE - An Interactive Slope Stability Program Failure Direction: Left to Right Units of Measurement: Imperial Units Pore Fluid Unit Weight: 62.4 lb/ft3 Groundwater Method: Water Surfaces Data Output: Standard Calculate Excess Pore Pressure: Off Allow Ru with Water Surfaces or Grids: Off Random Numbers: Pseudo-random Seed Random Number Seed: 10116 Random Number Generation Method: Park and Miller v.3

Analysis Methods

Analysis Methods used: Bishop simplified Janbu simplified

Number of slices: 25 Tolerance: 0.005 Maximum number of iterations: 50

Surface Options

Surface Type: Circular Search Method: Grid Search Radius increment: 10 Composite Surfaces: Disabled Reverse Curvature: Create Tension Crack Minimum Elevation: Not Defined Minimum Depth: Not Defined

Loading

Seismic Load Coefficient (Horizontal): 0.12

Material Properties

Material: Leached Ore Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3 Cohesion: 0 psf Friction Angle: 23 degrees Water Surface: None

<u>Material: Interface</u> Strength Type: Mohr-Coulomb Unit Weight: 120 lb/ft3 Cohesion: 1 psf Friction Angle: 23 degrees Water Surface: Water Table Custom Hu value: 1

<u>Material: Bedrock</u> Strength Type: Mohr-Coulomb Unit Weight: 160 lb/ft3 Cohesion: 20 psf Friction Angle: 35 degrees Water Surface: None

Global Minimums

Method: bishop simplified FS: 1.024820 Center: 1098.416, 1401.355 Radius: 1150.113 Left Slip Surface Endpoint: 615.670, 357.461 Right Slip Surface Endpoint: 959.478, 259.665 Resisting Moment=1.819e+008 lb-ft Driving Moment=1.77495e+008 lb-ft

Method: janbu simplified FS: 1.019310 Center: 1098.416, 1401.355 Radius: 1150.113 Left Slip Surface Endpoint: 615.670, 357.461 Right Slip Surface Endpoint: 959.478, 259.665 Resisting Horizontal Force=151781 lb Driving Horizontal Force=148906 lb

Valid / Invalid Surfaces

Method: bishop simplified Number of Valid Surfaces: 2324 Number of Invalid Surfaces: 2527 Error Codes: Error Code -101 reported for 22 surfaces Error Code -109 reported for 5 surfaces Error Code -113 reported for 190 surfaces Error Code -1000 reported for 2310 surfaces

<u>Method: janbu simplified</u> Number of Valid Surfaces: 2324 Number of Invalid Surfaces: 2527 Error Codes: Error Code -101 reported for 22 surfaces Error Code -109 reported for 5 surfaces Error Code -113 reported for 190 surfaces Error Code -1000 reported for 2310 surfaces

Error Codes

The following errors were encountered during the computation:

-101 = Only one (or zero) surface / slope intersections.

-109 = Soiltype for slice base not located. This error should occur very rarely, if at all. It may occur if a very low number of slices is combined with certain soil geometries, such that the midpoint of a slice base is actually outside the soil region, even though the slip surface is wholly within the soil region.

-113 = Surface intersects outside slope limits.

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

List of All Coordinates

Search Grid 467.117 1131.642 1131.642 467.117	736.830 736.830 1401.355 1401.355
Material Boun	dary
20.615	271.422
130.646	234.016
265.979	176.930
340.058	154.460
383.202	144.383
421.328	139.863
451.585	140.018
503.056	147.774
527.655	149.132
546.999	148.341
567.690	144.335
625.928	128.890
725.693	94.665
862.381	94.665
923.726	118.795
969.511	143.731
1050.770	174.833
<u>Material Boun</u>	I <u>dary</u>
20.615	261.114

$\begin{array}{c} 126.886\\ 262.270\\ 337.584\\ 381.481\\ 420.688\\ 451.062\\ 503.551\\ 527.803\\ 546.153\\ 565.139\\ 622.943\\ 724.139\\ 864.492\\ 927.863\\ 973.775\\ 1050.770\end{array}$	$\begin{array}{c} 224.749\\ 167.628\\ 144.769\\ 134.526\\ 129.883\\ 129.951\\ 137.757\\ 139.118\\ 138.367\\ 134.665\\ 119.336\\ 84.665\\ 84.665\\ 109.665\\ 134.665\\ 134.665\\ 134.665\\ 134.665\\ 134.665\\ 164.278\end{array}$
External Bour 1050.770 1050.770 1050.770 1050.770 959.478 783.745 488.597 115.279 20.615 20.615 20.615 20.615	9.665 164.278 174.833 259.665 259.665 309.665 393.596 499.665 495.641 271.422 261.114 9.665
Water Table 20.615 130.646 265.979 340.058 383.202 421.328 451.585 503.056 527.655 546.999 567.690 625.928 725.693 862.381 923.726 969.511 1050.770	271.422 234.016 176.930 154.460 144.383 139.863 140.018 147.774 149.132 148.341 144.335 128.890 94.665 94.665 118.795 143.731 174.833