

P. O. Drawer 571, Tyrone, New Mexico 88065 • (505) 538-5331

July 28, 2005

Via Federal Express

Mr. Clint Marshall New Mexico Environment Department Mining Environmental Compliance Section P.O. Box 26110 Santa Fe, New Mexico 87502

Dear Mr. Marshall:

Re: Phelps Dodge Tyrone, Inc., Revised Seepage Investigation of Leach Ore Stockpiles and Waste Rock Stockpiles Interim Report DP-1341 Condition 81

Attached are three hardcopies of the Phelps Dodge Tyrone, Inc. (Tyrone) Revised Seepage Investigation of Leach Ore Stockpiles and Waste Rock Stockpiles Interim Report submitted pursuant to Condition 81 of DP-1341. These copies were sent to your attention by EnviroGroup Limited via Federal Express. An electronic copy of the subject interim report was emailed to all copied parties.

Should you have questions or comments please contact Mr. Mike Jaworski at (505) 538-7181.

Very truly yours,

Nel Hall

E. L. (Ned) Hall, Manager Environment, Land & Water New Mexico Operations

ELH:mj Attachment 20050728-102

cc: Mary Ann Menetrey, NMED Keith Ehlert, NMED Holland Shepherd, MMD David Ohori, MMD Dusty Earley, EnviroGroup Ltd

Revised Seepage Investigation of Leach Ore Stockpiles and Waste Rock Stockpiles Interim Report DP-1341 Condition 81

Tyrone Mine

Prepared by:

EnviroGroup Limited Centennial, Colorado

Prepared for:

Phelps Dodge Tyrone Inc. Tyrone, New Mexico

July 29, 2005

Project No. PD-0447

Revised Seepage Investigation of Leach Ore Stockpiles and Waste Rock Stockpiles Interim Report DP-1341 Condition 81

Tyrone Mine

Prepared by:

EnviroGroup Limited Centennial, Colorado

Prepared for:

Phelps Dodge Tyrone Inc. Tyrone, New Mexico

July 29, 2005

Project No. PD-0447

Prepared by

Date

Reviewed by

Date

TABLE OF CONTENTS

TAB	LE OF CONTENTS	i
LIST	OF TABLES	iii
LIST	OF FIGURES	iv
APPI	ENDICES	v
LIST	OF ACRONYMS	vi
1.0	INTRODUCTION	
1.1	Objectives	
1.2	Scope	
1.3	Implementation and Reporting Schedule	
1.4	Background	
1.4.1	Leach Ore and Waste Rock Stockpile Facilities	
1.4.2	Summary of Stockpile Seepage Studies and Other Relevant Studies	
2.0	INVESTIGATION PROCEDURES	10
2.1	Seepage Characterization	10
2.1.1	Field Procedures	
2.1.2	Laboratory Procedures	10
2.2	Seepage Modeling	12
2.2.1	Modeling Objectives	
2.2.2	Modeling Scope	
2.2.3	Model Selection	
2.2.4	Runoff and Seepage Modeling	17
2.2.5	Geochemical Modeling	
2.2.6	Modeling Quality Assurance Plan	
3.0	RESULTS	25
3.1	Field Testing	25
3.2	Laboratory Testing	26
3.2.1	Hydraulic Testing	
3.2.2	Meteoric Water Mobility Procedure Testing	

4.0	DISCUSSION	28
4.1	Seepage Flow Monitoring	.28
4.2	Seepage Quality Monitoring	.28
5.0	PREDICTION OF IMPACTS	30
5.1	Mass Loading	.30
5.2	Transport Model	.31
6.0	ALTERNATIVES EVALUATION	32
7.0	REFERENCES AND BIBLIOGRAPHY	33

LIST OF TABLES

- Table 1.1Reports, Documents and Data
- Table 2.1Modeling Guidance and Summaries
- Table 3.1Summary of Stockpile Infiltration Tests

LIST OF FIGURES

- Figure 1.1 Existing Stockpile Facilities and Containments
- Figure 1.2 Implementation and Reporting Schedule
- Figure 2.1 Stockpile Seepage Conceptual Model

APPENDICES

Appendix A	Stockpile Infiltration Testing
Appendix B	Laboratory Hydraulic Testing
Appendix C	Meteoric Water Mobility Testing

LIST OF ACRONYMS

- ADTI Acid Rock Drainage Technical Initiative
- ARD Acid Rock Drainage
- COC Contaminants of Concern
- DP Discharge Permit
- EC Electrical Conductivity
- GWB Geochemists Work Bench
- NMED New Mexico Environment Department
- PDTI Phelps Dodge Tyrone Inc.
- MWMP Meteoric Water Mobility Procedure
- Ksat Saturated hydraulic conductivity
- mg/l milligrams per liter
- meq/l milliequivalents per liter

1.0 INTRODUCTION

This interim report was developed by Phelps Dodge Tyrone Inc. (PDTI) in order to fulfill its requirements as a mine operator in the state of New Mexico. The New Mexico Environment Department (NMED) issued Supplemental Discharge Permit for Closure DP 1341 (April 8, 2003) to PDTI for the Tyrone Mine (Tyrone). Section III of the permit requires PDTI to conduct studies of Tyrone and implement mine closure and closeout actions as a condition of the permit. The Revised Seepage Investigation work plan (Greystone 2004) describes PDTI's proposed supplemental study to fulfill the requirements of Condition 81 of the permit. Condition 81 is written in the permit as follows:

81. Tyrone shall submit a revised seepage investigation report for the Leach Ore Stockpiles and Waste Rock Piles under closure conditions. In accordance with the schedule approved under Condition 74, Tyrone shall submit to NMED for approval a work plan, including an implementation schedule, for a revised seepage investigation for the Leach Ore Stockpiles and Waste Rock Piles. The study shall be designed to consider the data needs for Conditions 82, 83 and 89, and the results of the materials characterization study described in Conditions 80. The purpose of this investigation is to predict, at a minimum, the quantity and quality of seepage from individual Leach Ore Stockpiles and Waste Rock Piles and potential associated impacts to groundwater and surface water following Cessation of Operation.

The primary purposes of this report are to provide the preliminary results of stockpile material and seepage characterization investigations and to describe PDTI's proposed seepage modeling approach. Certain mine facilities, including stockpiles, will be reclaimed prior to the next permit renewal in 2008. PDTI reserves the right to modify the conclusions of this interim and final report based on these reclamation activities. The overall objectives, scope and schedule of this study are stated in sections 1.1, 1.2 and 1.3, respectively. Applicable background information on the Tyrone stockpiles, related

reports on stockpile seepage and runoff, and other supporting studies conducted for closure and closeout planning are described in Section 1.4. Section 2 provides the methods used for this interim investigation of the stockpile's hydraulic properties and seepage and runoff quality. PDTI's proposed modeling methods for simulating the stockpile seepage flow and quality during and after mine closure are also provided in this section. Section 3 reports the interim results and Section 4 discusses the ongoing investigations. Section 5 describes the proposed approach for prediction of potential impacts to groundwater and surface water and supporting analyses. The proposed alternatives analysis for this study and coordination of this study with other closure studies is discussed in Section 6. A bibliography of relevant documents is provided in Section 7.

1.1 Objectives

There are four primary objectives of this study. They are:

- Characterize the quality and quantity of seepage and runoff from the existing leach ore and waste rock stockpiles;
- Estimate the quality and quantity of seepage and runoff from the leach ore and waste rock stockpiles during and after mine closure;
- Predict the impacts to groundwater and surface water during and after mine closure; and
- Provide data and analyses to support conditions 80, 82, 83, and 89 of DP-1341.

This study will incorporate additional objectives, as needed, in order to support studies required by other conditions in Permit DP-1341 as they are implemented.

1.2 Scope

The scope of this study includes:

- Document review and database compilation;
- Stockpile seepage and runoff characterization;
- Stockpile and foundation hydraulic testing;
- Evaluation of existing impacts to surface and groundwater quality;
- Stockpile seepage and runoff quantity and quality modeling;
- Prediction of stockpile mass loading to ground and surface water; and
- Prediction of groundwater quality beneath stockpiles.

Seepage and runoff quantity and quality from all existing leach ore and waste rock stockpiles at Tyrone will be evaluated. The leach ore stockpiles that will be evaluated for closure and closeout planning are defined in DP-1341 (NMED 2003) as follows:

- No. 1 Stockpile (presently inactive);
- Nos. 1A and 1B, Stockpiles;
- Nos. 2 and 2A Stockpiles;
- No. 3A Stockpile;
- East Main;
- Gettysburg Out Pit Stockpile; and
- Gettysburg In Pit Stockpile.

The waste rock stockpiles that will be considered in this study are,

- Nos. 1C and 1D Stockpiles;
- No. 3B Stockpile; and
- Portions of the 2B, Savanna and Upper Main Stockpiles.

The locations of these facilities are shown in Figure 1.1. These stockpiles contain the majority of mine materials that will ultimately remain at the Tyrone Mine after closure. Hence, the potential impact to surface water and groundwater, resulting from the

construction and leaching of these stockpiles, will be represented by evaluating current impacts from cumulative seepage and runoff discharges through time. In addition to the existing configurations of the stockpiles, selected stockpile regrading and reclamation alternatives (including the DP-1341 alternative) will be evaluated in this study. A range of alternatives will be selected based on the preliminary findings of the feasibility study described in DP-1341, Condition 89 (NMED 2003).

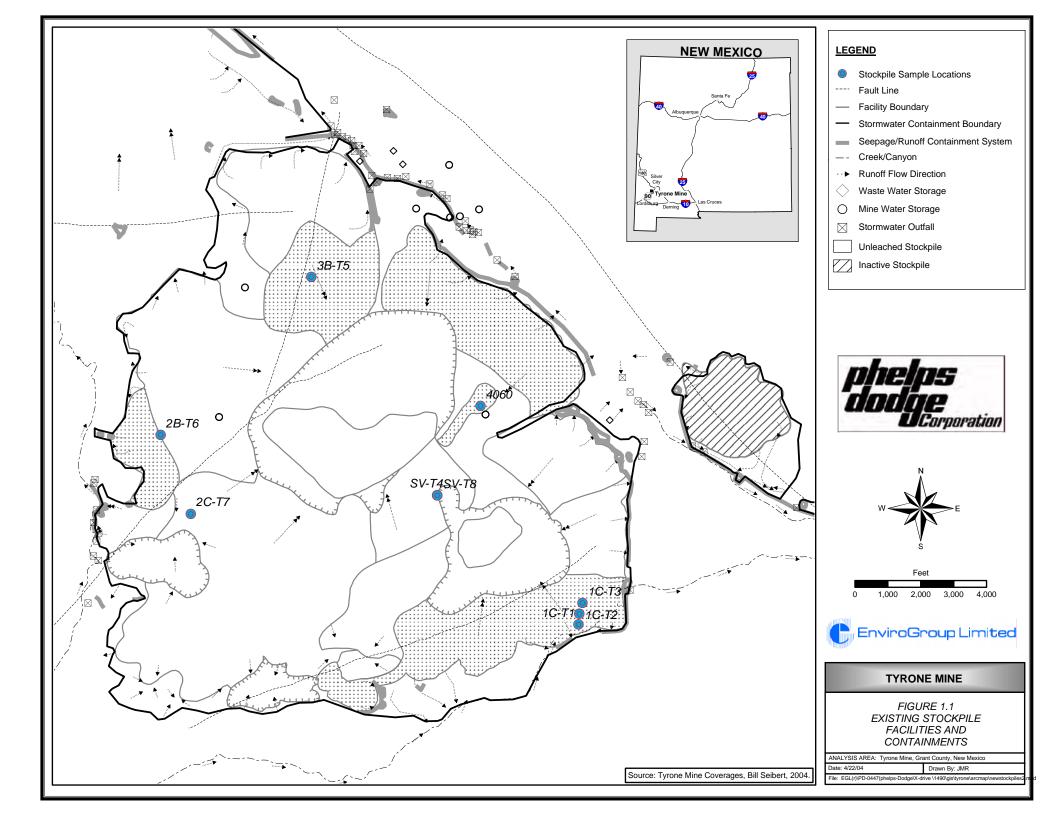

1.3 Implementation and Reporting Schedule

Figure 1.2 presents the implementation schedule and report deliverable dates presented in the Revised Seepage Investigation work plan (Greystone 2004).

This interim report is hereby submitted in accordance with the study's schedule. The results of additional investigations described in the Revised Seepage Investigation work plan will be presented in the final report.

1.4 Background

Tyrone is an open pit copper mine located adjacent to State Highway 90, approximately 10 miles southwest of Silver City in Grant County, New Mexico. The general layout of the existing stockpile facilities at the Tyrone Mine is shown in Figure 1.1. Section 1.4.1 describes the relevant stockpile facilities that will be studied for the revised seepage investigation. Background information for Tyrone is provided in the Tyrone Closure/Closeout Plan (CCP) (M3 2001), which was submitted pursuant to the New Mexico Mining Act and associated rules, the New Mexico Water Quality Act, and the New Mexico Water Quality Control Commission regulations. Baseline and future mine closure design studies were conducted in support of the CCP, including studies of leach ore and waste rock stockpiles. Additional closure studies are required per Condition 74 of Permit DP-1341. Section 1.4.2 summarizes the relevant investigations.

							2004					T					200	05										200	6				
Task	Task Description	Duration	Jan	Feb N	1ar Apr	May	Jun J	ul Au	g Sep	Oct	Nov C	Dec	Jan F	eb Ma	r Apr	May	Jun	Jul Au	ig Si	ep Oc	t No	/ Dec	Jan	Feb	Mar	Apr	May	Jun 🕽	Jul A	ug Se	ep Oc	Nov	De
						Appro	ove																									T	
ask 1	Data Review and Database Compilation					work	plan																										
		25 months																															
																																	Τ
Task 2	Stockpile Seepage & Runoff Monitoring	12 months							- Ph	ase I -				- Pl	nase II	-						-Clos	e Data	a Gaps	s -								
		6 months																						T .								1	\square
		6 months																															
	Quarterly DP Sampling Program	on-going			Х		Х		X			Х		X			Х			X		X			Х			Х			X		X
ask 3	Stockpile and Foundation Hydraulic Testing	12 months					_														Mod								\pm	+	+	╞	╞
ask 4	Modeling	16 months											Mode	el Rese	arch 8	Propos	sal			D	evelo			Ν	lodel	Simula	ations	3					
ask 4.1	Runoff Modeling	12 months																														1	+
ask 4.2	Heat Transfer and Fluid Flow Modeling	12 months																															1
ask 4.3	Geochemical Modeling	16 months																															
Task 5	Reporting	6 months																port Ap 9th int											l Repo ugust :		Rev ommer	iew an nt Resp	
Task 5.1	Interim	3 months																															
Task 5.2		3 months																															
	Total Duration	30 months																										\rightarrow				\vdash	\perp
	Related DP 1341 Conditon Reporting	Cond. No.					89		89		80 ir			89							80	82			89								
	(Pending work plan approvals)	type					qtr		qtr		89 q	tr		qtr						1	fina	I fina		1	ann I								

Legend

Task Progress Review, Comment Response & Approval X Approximate Time for Quarterly Sampling Report Due at End of Month Note: Deadlines are contingent upon work plan and interim report approval by scheduled dates

Study Implementation and Reporting Schedule

Figure 1.2

1.4.1 Leach Ore and Waste Rock Stockpile Facilities

Solution mining technology (Bartlett, 1992) is used to extract copper from the leach ore stockpiles at Tyrone. The waste rock stockpiles are used to dispose of excavated materials that have sub-economic copper values. Section 2 of the Supplemental Materials Characterization Study Work Plan (Greystone, 2003) presents updated descriptions of stockpile facility construction, operation, and closure methods employed at Tyrone, and the stockpile materials characterization studies previously conducted at the mine. This section summarizes the current stockpile leaching, seepage, and runoff management systems at Tyrone.

As shown on Figure 1.1, the Tyrone Mine contains several stockpiles located near and within the Main and Gettysburg pit areas. Tyrone is permitted to discharge up to 98.3 million gallons per day (gpd) of acidic leach solution (raffinate) on top of the leach ore stockpiles (NMED 2003), however the typical flow rate is substantially lower and averages approximately half of the allowed maximum rate. The raffinate flows through the leach ore stockpile material and dissolves copper from copper-bearing minerals. The copper-bearing, pregnant leach solution (PLS) then flows to the base of the stockpile and reports either to PLS surface collection impoundments located at the toe of the stockpiles within pre-mining drainage systems, to subsurface seepage interceptor systems, or to mine pits. The PLS collection impoundments consist of synthetically-lined, clay-lined, and unlined impoundments and stainless steel tanks. The seepage containment systems consist of constructed trenches that collect PLS, and wells that pump the PLS to the SX/EW plant for copper recovery as copper cathode. Seepage interception systems are located near the No. 3 Stockpile, along Deadman Canyon, in Oak Grove Wash, and in Brick Kiln Gulch (Figure 1.1).

The waste rock stockpiles are not subject to leaching and the seepage from these stockpiles is a result of natural infiltration of meteoric water that falls on the stockpile surfaces and that flows to the base of the stockpile. The interceptor systems also collect and pump perched groundwater contaminated by PLS and seepage from waste stockpiles. Stormwater runoff flows directly into the pits, or is routed via diversions to impoundments located near the toes of the stockpiles in the Deadman Canyon area, below the 1C stockpile, and in Oak Grove Wash (Figure 1.1).

1.4.2 Summary of Stockpile Seepage Studies and Other Relevant Studies

The completed mine closure and closeout supporting studies (M3 2001) that will be used to support this investigation and the types of data and information provided in these studies are listed in Table 1.1.

This study utilizes information from the Stockpile and Tailing Pond Seepage Investigation (DBS&A 1999), Geochemical Evaluation of Tailings and Stockpiles (SARB 2000), Outslope Evaluation Mass Loading Results for the Tyrone Mine (DBS&A 2001), and other references cited in these documents. In addition, relevant data and analyses will be used from other studies compiled in the CCP (M3 2001), and nonclosure/closeout-related reports commissioned by PDTI for mine compliance, planning, and operations purposes.

Table 1.1Reports, Documents and Data

						DATA	AVAIL	ABLE			
REPORT	REFERENCE	SITE BACKGROUND	НҮDROGEOLOGY	HYDRAULIC PARAMETERS	STOCKPILE CONFIGURATIONS	STOCKPILE COMPOSITIONS	GEOCHEMICAL PARAMETERS	PHYSICAL PARAMETERS	PREDICTIVE MODELING (HYDROLOGY/ GEOCHEMISTRY)	EXISTING IMPACTS	CONTAINMENT MEASURES
Closure/Closeout Plan	M3 2001	Х	Х		Х				X	Х	X
Stockpile Outslope Evaluation Mass Loading Results for the Tyrone Mine	DBS&A 2001				Х	Х	Х		Х		
Summary of Long-Term Stability Analyses for Stockpiles and Tailing Ponds at the Tyrone Mine	Golder 2001	Х			Х	Х		Х			
Prediction of Impact on Water Quality	DBS&A, 2000		Х	Х					X	Х	Х
Cover Design Study Status Report	DBS&A 1999a			Х			Х	Х	X		
Stockpile and Tailing Pond Seepage Investigation	DBS&A 1999b		Х		Х	Х	Х		Х		
Geochemical Evaluation of Tailings and Stockpiles	SARB, 1999				Х	Х	Х		X		
Preliminary Materials Characterization	DBS&A, 1997a				Х	Х	Х				
Supplemental Materials Characterization Study	DBS&A, 1997b				Х	Х	Х				
Borrow Materials Investigation	DBS&A 1997c	Х			Х	Х					

CCP = Closure/Closeout plan DBS&A = Daniel B. Stephens & Associates, Inc. Golder = Golder & Associates, Inc

2.0 INVESTIGATION PROCEDURES

This section describes the methods used to characterize stockpile seepage (Section 2.1) and describes the models and modeling methods that PDTI proposes to use to simulate stockpile seepage flow and seepage quality after mine closure (Section 2.2).

2.1 Seepage Characterization

Stockpile seepage is being characterized through field and laboratory investigations as described in sections 2.1.1 and 2.1.2, respectively.

2.1.1 Field Procedures

Eight infiltration (percolation) tests were conducted on the Tyrone stockpiles. The infiltration tests were conducted from March 9th through March 16th 2005 on various stockpile bench surfaces throughout the mine site. Most of the benches were cut into existing stockpiles during remining activities and the test sites had been buried by one or more lifts of material prior to excavation, but one test was conducted on a stockpile top surface that has never been buried. The infiltration tests consisted of seven falling head tests and one constant head test, which are described in greater detail in Appendix A.

2.1.2 Laboratory Procedures

Two types of laboratory tests were used to evaluate stockpile seepage. They included hydraulic testing and meteoric water mobility testing. A brief description of these lab tests is provided below.

Hydraulic Testing

Laboratory hydraulic testing was conducted on stockpile samples collected from the same bench materials subjected to the field infiltration tests. The method used for collection of stockpile samples and the laboratory testing procedures conducted are described in Appendices A and B. Twenty four stockpile samples were tested at the Daniel B. Stephens and Associates laboratory to determine moisture content, bulk density, porosity, saturated and unsaturated hydraulic conductivities, particle-size distributions, and soilwater characteristic curves (Appendix B). These samples were collected for lab testing to characterize the unsaturated as well as saturated hydraulic properties of the matrix materials in the stockpiles for the purpose of seepage modeling. Water percolation through the stockpiles occurs predominately through the finer grained matrix as the oversize materials have relatively low intrinsic hydraulic conductivity (DBS&A 1999a,b).

Meteoric Water Mobility Procedure Testing

In 2004 regrading of the No. 1C stockpile was conducted in accordance with DP-1341 requirements. Stockpile samples were collected from the No. 1C Stockpile bench cuts for the purposes of the DP-1341, Condition 80 and 78 studies. Splits of these samples were subjected to a laboratory static leach test using the Meteoric Water Mobility Procedure (MWMP) according to ASTM E2242-02. This test was developed by the Nevada Department of Environmental Protection [NDEP] (1990) to determine the mobility of chemical constituents from soluble salts generated by leaching and weathering in mined materials. These tests are conducted at a water-to-rock ratio (by weight) of 1 to 1 to simulate the interaction between natural meteoric precipitation and the stockpile material. The leach extracts and any pore waters collected from the boreholes were measured for the following parameters or constituents: pH; EC; TDS; total alkalinity; HCO₃⁻²; CO₃⁻² acidity; SO₄⁻²; and other COCs specified in DP-1341 Condition 56 (a through c). As such, these results are used in geochemical models to provide a preliminary indication of seep water quality from the waste rock stockpiles and supplement data from water quality monitoring occurring at toe collection facilities.

The MWMP test is also being conducted on the stockpile borehole samples collected as part of the DP-1341, Condition 80 study. These more comprehensive results will be presented in the final report for that study and will be available for the Revised Seepage Investigation's ongoing studies

2.2 Seepage Modeling

This section describes PDTI's proposed modeling approach to simulate stockpile seepage quantity and quality for the purpose of NMED review. Computer modeling of reactive transport in waste rock piles is a very complex subject, and a comprehensive review of the subject matter is beyond the scope of this document. The intent of this section is to provide recommendations based on the current modeling practices applied to mine stockpile and acid rock drainage (ARD) systems, as described by researchers in the field and by regulatory precedents. Modeling is necessary to evaluate post-closure seepage from the leach ore stockpile and waste rock stockpiles because the future state of these systems is expected to be different from the current state. However, the models will be calibrated using seepage quality measurements.

2.2.1 Modeling Objectives

The most important part of any modeling study is to formulate well-defined objectives and scope (Alpers and Nordstrom 1999).

PDTI proposes the following modeling objectives:

- Simulate leaching and weathering reactions in stockpiles;
- Simulate leachate and seepage quantity at existing collection systems;
- Simulate post closure leachate and seepage quality at seepage collection systems;
- Calibrate model to observed seepage quantity and quality;

- Estimate post closure stockpile mass loading to groundwater;
- Determine the existing and post closure distribution of mass loading; and
- Evaluate the potential groundwater impacts for alternative closure designs.

The first objective also will support the Supplemental Stability Study which will be used to determine the effects, if any, of rock alteration on stockpile outslope stability. Objectives two through five are requirements of DP-1341, Condition 81. The last objective will be conducted in support of Condition 89.

2.2.2 Modeling Scope

All existing waste rock and leach stockpiles at Tyrone will be evaluated in the modeling study. However, some of these stockpiles will be reclaimed prior to the next permit renewal. The existing boundaries of these facilities are shown on Figure 1.1. In addition to the existing configurations of the stockpiles, selected reclamation alternatives will be evaluated in this study based on the preliminary findings of the feasibility study (DP-1340, Condition 93).

Three distinct post-closure periods will be simulated:

- Mine closure drain down period (approximately 10 years);
- Transition period (approximately 100 years); and
- Steady state period (greater than 100 years).

The constituents to be simulated include those stipulated in Condition 56 (a,b, and c) of DP-1341 provided that sufficient data exists for model calibration.

2.2.3 Model Selection

The following modeling selection criteria are proposed to ensure that the modeling can be

feasibly completed according to the investigation schedule presented in the Condition 81 work plan (Greystone, 2004), given the objectives and scope described above.

- Model(s) must be generally accepted by scientists and regulators;
- Code execution with reasonable run-times on a desk-top computer;
- Model input requirements are compatible with existing datasets;
- Efficient post processing such that the input/output can be managed rapidly;
- Graphical capabilities for rapid data display and analysis and communication of results; and
- Output data structure that can be rapidly manipulated into spreadsheet and input files for other computations and simulations.

The last criteria will facilitate incorporation of stockpile mass loading outputs into the Feasibility Study (Condition 89) (Golder, 2004).

The documents listed in Table 2.1 provide guidance on model selection, development and application. These documents also provide recent summaries of computer codes applicable for the modeling of acid rock drainage and mine water quality.

Geochemical and reaction-transport modeling is a rapidly evolving field of study, and the state-of-the-art is always beyond even the most recent modeling reviews by the time that they are published. The Acid Drainage Technology Initiative (ADTI) modeling committee is conducting a literature survey of existing predictive models for acid rock drainage systems, and will write two workbooks or guidance manuals on geochemical modeling and coupled geochemical-transport modeling (ADTI 2003). The ADTI review is still in progress but considers over 50 geochemical transport and geochemical reaction codes that have the capability of simulating the most important processes in ARD formation.

The general comments found in these modeling summaries that are relevant to the

Condition 81 study are:

- The current state of the art allows simulation of stockpile heat and fluid flow and geochemical reaction and reactive transport, but coupling of these processes is demanding in terms of time and resources.
- Mass transfer (geochemical reaction) models coupled with reactive transport are most important for simulating ARD impacts to surface water and groundwater quality.
- Due to the limited number of processes simulated the far post-closure predictive capabilities of "engineering type" models (i.e. empirical models) are limited.

Title	Year	Authors	Publisher
Draft Guidance on the Development, Evaluation, and Application of Regulatory Environmental Models	2003	P. Pascual N. Stiber E. Sunderland	Office of Science Policy, Office of Research and Development
Quality Assurance Project Plans for Modeling	2002		U.S. Environmental Protection Agency
MiMi – Overview of models for biogeochemical modeling of acid mine drainage	1999	S. Salmon	MiMi Research Programme, MiMi Print
Geochemical Modelling – A review of current capabilities and future directions	1999	J. Crawford	Swedish Envrinomental Protection Agency
Geochemical modeling of water- rock interactions in mining environments	1999	C.N. Alpers D.K. Nordstrom	Society of Economic Geologists
Reactive transport in porous media	1996	P.C. Lichtner C.I. Steefel E.H. Oelkers	Mineralogical Society of America
Critical review of geochemical processes and geochemical models adaptable for prediction of acidic drainage from waste rock.	1995	E. Perkins H. Nesbitt W.D. Gunter L.C. St-Arnaud J.R. Mycroft	Mine Environment Neutral Drainage (MEND) Program.

Table 2.1: Modeling Guidance and Summaries

The first general comment recognizes that fully coupled transport codes that can simulate heat and fluid flow and geochemical reactions are at the forefront of computer model development at academic and government research institutions. These codes are not yet commonly used for regulatory decision making because even many of the existing and well established reaction-transport models are prone to numerical problems (Alpers and Nordstron, 1999). This makes it difficult to rapidly conduct sensitivity and uncertainty analysis with fully coupled models, especially when multiple alternatives need to be simulated. Therefore, it is important to simplify models to the degree possible such that they represent the most important system processes without loosing the capability of making meaningful predictions (Pascual et al., 2003).

The second and third comments emphasize that computer modeling efforts should be directed towards simulation of the most important geochemical processes in ARD formation as listed below (Perkins et al., 1995):

- Mineral precipitation and dissolution;
- Chemical diffusion; and
- Surface reactions.

Geochemical reaction kinetics is controlled by chemical diffusion and surface reactions, which also includes pyrite oxidation reactions. These reactions may also be microbiologically catalyzed and mediated. Mineral precipitation is important in waste rock piles because sulfate salts, such as jarosite, may accumulate as pyrite oxidation occurs (Cathles, 1994). These salts contain residual acidity and constituent masses that may affect the water quality of runoff or flushing events caused by rainstorms. Mineral dissolution is also important because weathering of feldspars and other gangue minerals may contribute towards the long-term alkalinity of the system (Nicholson, 2003). The attendant mineral replacement reactions may also affect the physical properties of the stockpiles.

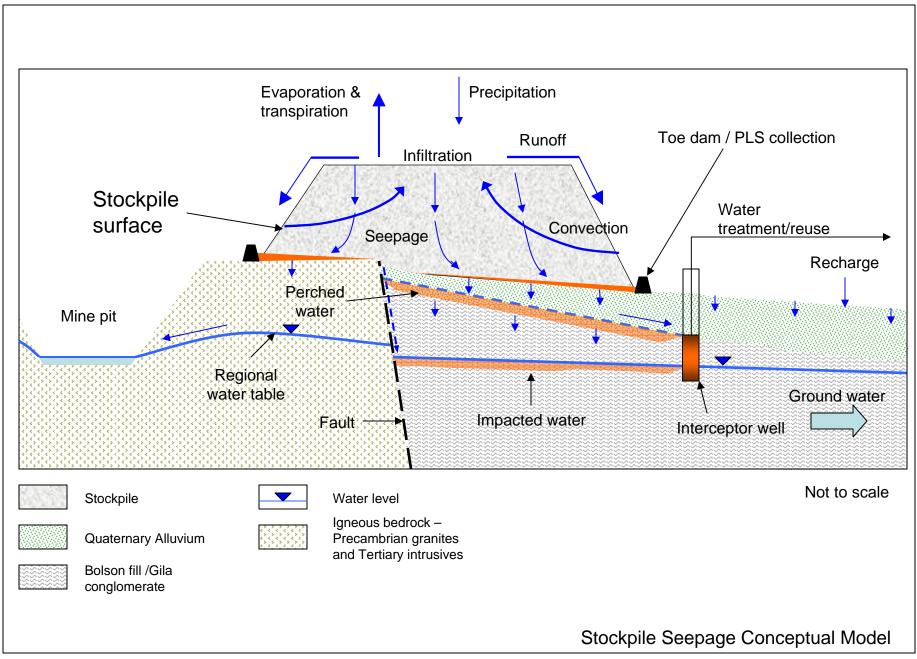
For transport of constituents generated by ARD, the processes shown in Figure 2.1 are

the most important, and the relative importance of these processes is dependent upon sitespecific conditions like climate and cover design. Drying and wetting are the most important physical processes that affect water chemistry by concentrating aqueous solutions to the point of precipitating solids and subsequently dissolving and removing these solids from solution contact (Perkins, et al., 1995). Drying and wetting occurs as a result of non-steady moisture movement through the stockpile, such as during drain-down of leach solutions from a leach ore stockpile at mine closure.

Based upon its review of the modeling guidance documents, PDTI recommends decoupling the heat and fluid flow models from the geochemical reaction simulations for the practical purpose of stockpile seepage modeling. Geochemical reaction path simulations can be used to determine the transport of constituents along distinct flow paths described by the independent flow model (Zheng and Bennet, 1995). This method avoids the difficulties associated with fully coupled models and allows for rapid simulation with variable input parameters. Therefore, PDTI recommends that the heat and fluid flow modeling and geochemical reaction path or reactive transport modeling be conducted separately as described in Sections 2.2.4 and 2.2.5, respectively.

2.2.4 Runoff and Seepage Modeling

Runoff and seepage modeling may be used to determine the water mass balance and the seepage flow paths in stockpile systems given the following site-specific input parameters:


- Stormwater flow data and weather data;
- Post closure infiltration rates through alternative stockpile covers;
- Alternative post-closure stockpile configurations; and
- Internal temperature, oxygen, and moisture monitoring results.

Constituent mass transfer by runoff and down stream surface and groundwater quality impacts will be mitigated by the cover and storm water containment systems. However

the runoff quantity must be estimated in order to predict infiltration. This will be determined as part of the cover design and test plot studies (Conditions 75 and 76). In addition, runoff quantity and quality estimates based upon field measurements will be used for base case modeling and seepage flow calibration for uncovered stockpiles.

Heat transfer and gas flow are also important processes for determining seepage water quantity and flow directions in some sulfide-bearing stockpiles. However, based upon observations of relatively low temperature gradients within most of the leach ore and waste rock stockpiles at Tyrone, heat transfer and gas convection are likely to be a minor processes in the water balance equations and will not be considered in the modeling analysis.

The two primary constituent transport mechanisms are fluid flow (advection) and diffusion. In many subsurface systems in the near earth surface, advective transport dominates diffusive transport because of precipitation-induced recharge. However, the cover studies will evaluate the feasibility of reducing the infiltration rate through the stockpiles to less than or equal to 1% of mean annual rainfall. Under very low flow conditions (less than 1 cm per year) the rate of constituent transport by diffusion may become equal to or greater than the rate of transport by advection even for long timeframes. Under these conditions stockpile seepage quality and mass loading will become independent of the rate of infiltration. It is conceivable that these conditions will occur within waste rock stockpiles.

For leach ore stockpiles, draindown of residual process solutions may be a significant or predominant constituent transport process. Draindown will be estimated from empirical data obtained from leach solution flow rates to toe collections systems, according to the closure designs evaluated by the feasibility study (DP-1341, Condition 89). As draindown proceeds after closure, the downward drainage flux declines asymptotically as water content in the stockpile decreases. Therefore, long term drainage may need to be predicted on the basis of empirical or analytical models such as those that describe internal drainage in soils (Hillel, 1998).

After the preliminary results from the cover design studies are made available, supplemental analyses and scoping modeling runs will be conducted to determine what types of additional analyses and simulation are necessary. If deemed necessary by these analyses, fluid flow models will be developed for distinct hydrogeologic units in each stockpile. These units will generally correspond to the underdump drainage systems as depicted in Figure 2.1. The drainages will be modeled separately where sufficient seepage flow information is available for calibration.

There are several models that simulate fluid flow in unsaturated systems that have been subject to rigorous scientific and regulatory agency reviews (Crawford, 1999). One of the earliest and most widely used models is TOUGH-2 (Pruess, 1991) and modifications to that code. This model was developed by Lawrence Livermore Laboratories for simulation of nuclear waste disposal systems. Recently TOUGH-2 has been adapted for applications in simulations of heat and mass transfer in sulfide mine waste piles (Wels et al., 2003).

PDTI recommends the use of the TOUGH-2 or similar codes if numerical modeling is determined to be necessary to meet the overall objectives of the Condition 81 and related DP-1341 studies. In some stockpile alternatives, where very low infiltration can be demonstrated, fluid flow modeling may not be necessary. Under these conditions, draindown flow estimates and geochemical modeling can be used to predict mass loading to a sufficient level of accuracy to meet the objectives of Condition 81 and related

studies.

2.2.5 Geochemical Modeling

Most model reviews do not provide a specific recommendation on computer codes that are most suitable for ARD and mine water quality simulation. Two reviews provide indications of existing codes that have advantageous capabilities in terms of geochemical reaction simulations. The report by Salmon (1999) reviews the relative capabilities and merits of 44 models developed to simulate acid rock drainage (ARD) and predict its impacts on water quality. The models are categorized and the strengths and weaknesses were evaluated and tabulated. Of the 44 models reviewed, five were selected for more detailed analysis for potential applications in predicting ARD. Of these five, two were recommended as having the most potential for ARD prediction:

- The empirical model developed by White and Jeffers (1993); and
- The numerical model EQ3/6 (Wolery, 1992).

The code EQ3/6 has been used as part of the modeling analysis used in the Prediction of Impact on Water Quality study (DBS&A, 2000) and the Outslope Evaluation study (DBS&A, 2001). The EQ3/6-based model used for these studies also used the concept of adjusting the humidity cell data for interstitial water contents typical of field conditions. This methodology is used in the White model (White and Jeffers, 1993).

Salmon describes the EQ3/6 code as being a general geochemical simulator, meaning that it has a wide range of geochemical simulation applications including ARD prediction and prediction of impact on groundwater quality. The model developed by White was not intended to model waste-rock dumps, but rather to model acidic drainage potential for discrete waste-rock types based on drill core and bulk samples (White and Jeffers, 1993). Furthermore, it cannot predict stockpile seepage water quality.

Crawford (1999) recommends the application of mass transfer geochemical models such

as EQ6 and PATHARC on well-defined oxidizing waste rock field or laboratory systems. Furthermore, EQ6 is a "path-finding" code (Alpers and Nordstrom, 1999). Path finding codes are advantageous because they are not subject to the bias of a user-defined heterogeneous system. Many of the other models commonly used for mine water simulations, such as PHREEQC, are not path finding codes and the range of outcomes is constrained by the operator's definition of the system. Path finding is especially important for long-term predictions when future stockpile conditions are not known apriori.

Based upon these reviews PDTI recommends the modeling platform the Geochemists Work Bench (GWB) which has kinetic reaction path simulation and reaction path finding capabilities that are similar to EQ3/6 and utilizes the same thermodynamic databases. These databases are the most comprehensive and have the highest internal consistency of any databases in the world.

GWB is a proprietary package of geochemical modeling software developed by Dr. Bethke at the University of Illinois (Bethke 2004a). The codes in GWB can simulate all of the ARD processes listed in section 3.5.4 above. It also provides rapid input output and graphing capabilities based on a graphical user interface. GWB has the capability to not only simulate reactions paths, but also has rapid path tracing and display capabilities to quickly render output as graphs for rapid and higher quality interpretation. For example, rapid generation of Eh-pH diagrams is a capability of GWB through the use of the model Act2.

The GWB modeling platform is being used for ARD prediction at educational, government, and private institutions. For example, Kim Lappakko's research team at the Minnesota Department of Natural Resources currently uses the GWB to support the laboratory kinetic testing and field application work being conducted at that laboratory (Berndt, 2004). The Xt software package, included in most recent version of GWB Professional release has numerical reactive transport simulation capabilities in reacting geochemical systems in one and two dimensions (Bethke, 2004b). The capabilities now represented in GWB Professional covers the following processes occurring in stockpiles.

- Mass transport by advection, diffusion and dispersion;
- Fluid discharge at fixed or evolving rates owing to changes in permeability and viscosity;
- Isothermal and polythermal models for all expected temperature ranges ;
- Homogeneous and heterogeneous material domains and initial conditions;
- Specification of kinetic rate laws including catalysis;
- Microbial metabolism and growth;
- Surface complexation and sorption;
- Redox equilibrium and disequilibrium;
- Activity models for high total dissolved solids concentrations;
- Gas buffering; and
- Equilibrium and kinetic heterogeneous reactions.

This extended capability allows for multilayer, stockpile seepage quality simulation and prediction of groundwater quality. The graphical capabilities also allow for direct display of concentration gradients in the system.

For long range modeling predictions, it cannot be assumed that the internal conditions within the stockpiles will remain constant. If the cover used in a semi-arid or arid environment does little to reduce the overall sulfide oxidation rate, then the water consumed in the chemical reactions can become a large fraction of the infiltration rate (Pantelis, et al., 2002). In addition, chemical precipitation of solids, decrepidation and illuvial processes will tend to fill larger voids in the stockpiles with finer particles, which will change the distribution of hydraulic properties within the pile (Murr, 1980). Unlike most geochemical transport models, GWB has the capability of calculating reaction water balance, and predicting changes in hydraulic properties owing to changes in porosity and

permeability as a result of chemical reaction feedback mechanisms. The significance of these processes will be considered as part of the modeling task for the Condition 81 study.

2.2.6 Modeling Quality Assurance Plan

Model development, calibration, sensitivity and uncertainty analysis and documentation will follow the guidance documents listed in Table 2.1. A modeling quality assurance plan will be submitted to the NMED prior to the onset of modeling. Because GWB is a proprietary modeling platform the issue of transparency needs to be addressed. However, the model is now widely used and accepted at Universities and research institutions. Therefore, guidelines for evaluating proprietary models will be followed, including cross-checking GWB results with those produced by EQ3/6. A published benchmark geochemical model input dataset and model output, that is applicable to mine site geochemical systems, will be used for cross-checking purposes.

3.0 RESULTS

The results of field testing and laboratory testing are provided in sections 3.1 and 3.2, respectively.

3.1 Field Testing

Table 3.1 provides the saturated hydraulic conductivities (Ksat) calculated for each stockpile infiltration test described in Appendix A. The Ksat values ranged from 2.5 E-05 to 2.4 E-03.

Test ID	Infiltration Test Type	Saturated Hydraulic Conductivity
	(Falling head/Constant head)	Ksat (cm/sec)
No. 1C Stockpile		
1C-T1	Falling	1.57 E-04
1C-T2	Falling	2.15 E-04
1C-T3	Falling	9.74 E-05
Savanna Stockpile		
Savanna-T4	Constant	2.4 E-03 to 3.9 E-03
Savanna-T8	Falling	4.80 E-04
No. 3B Stockpile		
3B-T5	Falling	4.78 E-05
No. 2B and 2C Stockpile	es	
2B-T6	Falling	2.54 E-05
2C-T7	Falling	4.78 E-05

 Table 3.1 Summary of Stockpile Infiltration Tests

These values are generally lower by one to two orders of magnitude than the range of values measured during earlier field infiltration tests conducted for the Cover Design Study (DBS&A, 1999a). The new tests were conducted primarily within interior sections of the stockpiles that had been previously buried prior to excavation. Only the top surfaces of stockpile materials were tested as part of the Cover Design study. The lower stockpile interior saturated hydraulic conductivities may be attributed to the compaction

that occurred as a result of material burial and overburden loading. The saturatedhydraulic conductivity measured during one test conducted on the top surface of the No.3B Stockpile was also low because of very heavy truck traffic and compaction.

3.2 Laboratory Testing

The laboratory results for both hydraulic testing and meteoric water procedure testing are discussed in sections 3.2.1 and 3.2.2, respectively.

3.2.1 Hydraulic Testing

The results of the laboratory hydraulic testing of the stockpile materials are provided in Appendix B. In general the range of hydraulic properties found in these samples is similar to those reported for stockpile materials in the Cover Design Study (DBSA, 1999). The median saturated hydraulic conductivity determined through laboratory testing was one to two orders of magnitude higher or lower than the field test values for the same site. This indicates that larger scale macropores and other field scale structures are controlling flow in the stockpiles. These results will be discussed in more detail in the final report.

3.2.2 Meteoric Water Mobility Procedure Testing

The results of the MWMP testing performed on the No 1C Stockpile cut bench samples are provided in Appendix C. The results for these materials shows that the paste pH ranges between 2.72 and 5.23. The final extract pH ranges between 2.45 and 4.71. The initial pH of the distilled deionized water was approximately 4.83. Therefore all of the materials sampled are capable of producing some acid when meteoric water contacts the rock. The acidity of the extract solution ranged from less than 1 to 10,700 milliequivalents per liter (meq/l). There was no detectable alkalinity in any of the

extracts. The calculated TDS of the extracts ranged from 1260 to 17800 milligrams per liter (mg/l) and the sulfate concentrations ranged from 856 to 10700 mg/l. The leach extracts with the highest TDS and sulfate had the lowest extract pH values.

The constituents F, Al, Cd, Co, Cu, Mn, Ni and Zn were detected in all of the extracts. In some of the MWMP extracts B, Ba, Be, Fe, Mo, and Pb were also detected. The concentrations of the constituents F, Al, Cu, Mn, and Zn were consistently high and ranged from a few ppm to over 1000 ppm

The results of additional MWMP testing on stockpile samples collected from boreholes will be discussed in the final report.

4.0 **DISCUSSION**

This interim report provides some of the preliminary data gathering results which will be discussed in detail in the final report. Section 4.1 describes the seepage flow monitoring that is being conducted to support the seepage flow modeling investigations. Section 4.2 describes the seepage quality monitoring data available for this investigation and calibration of the geochemical model.

4.1 Seepage Flow Monitoring

Seepage and runoff quantity and flow measurements are conducted in accordance with monitoring requirements per PDTI's operational discharge permits. This information is reported to the NMED quarterly and annually. Recognizing the variable nature of stockpile runoff and seepage flow resulting from precipitation events, PDTI will conduct supplemental flow measurements and seepage sampling when and where feasible. The benches of the Tyrone stockpiles are graded so that runoff flows toward the stockpile interior and collects at the break in the stockpile slope when heavy rainfall occurs. For most precipitation events, runoff water infiltrates quickly into the stockpiles and evaporates at the surface.

Daily meteorological data will be recorded per Condition 55, and as specified in the Cover Test Plot Study Work Plan for Condition 76 (Tetra Tech 2003). Flows and quality of seepage into the 5E collection ponds were monitored as part of the Stockpile and Tailing Seepage Investigation (DBS&A 1999b), and similar monitoring systems will be used for this study.

4.2 Seepage Quality Monitoring

In addition to the meteoric water mobility testing on stockpile samples, sampling of water quality data occurs on a quarterly and annual basis in accordance with PDTI's discharge

plan (DP) permits. For example, stockpile seepage quality is presently monitored in the No. 3A Leach Stockpile and East Mine areas for existing Discharge Plans 286 and pending DP 896, respectively. Additional seepage sample collection and analysis will be conducted, where needed, to achieve the data quality objectives specified in DP-1341, Condition 43, and other relevant conditions called out in the permit. This data is compiled into the Environmental Data Management System for Phelps Dodge New Mexico operations, which includes the Tyrone mine. This database also includes stockpile seepage water quality monitoring data. This data will be used in the final report's evaluation of seep water quality from leach ore and waste rock stockpiles and for seepage model calibration.

Surface water, including stockpile runoff flow will continue to be monitored according to DP-1341 Condition 48. After rainfall events, water quality samples will be collected directly from the stockpile surfaces along benches and depressions where the runoff water collects.

5.0 PREDICTION OF IMPACTS

A prediction of the potential impacts to groundwater and surface water quality will be based on a stockpile mass loading analysis (Section 5.1) and a source area groundwater transport model (Section 5.2).

5.1 Mass Loading

The mass loading of a constituent from a stockpile facility is equal to the volumetric discharge of seepage from the stockpile times the predicted concentration of a constituent (DBS&A 2001). Mass loading estimates will be used as an indicator of the potential impact to water quality from stockpile seepage and runoff, and in transport models to predict ground and surface water quality. The results of the modeling described in Section 3.3 will be used to calculate revised estimates of mass loading for the Tyrone stockpiles. The runoff and seepage flow modeling will estimate the discharge of seepage from the stockpiles. The geochemical model will estimate the concentration of concern (COCs) in the seepage and runoff.

The distribution of mass loading beneath each stockpile to the top of the water table in its existing and alternative closure configurations will be calculated using a database of the seepage flow and geochemical transport model results for each stockpile. These results will be integrated using a geographic information system (GIS) for the Tyrone stockpiles. The GIS will be used to generate maps that illustrate mass loading distributions across the base of the stockpiles, and these maps will be presented in the final report. The existing masses of dissolved constituents in impacted groundwater will be estimated and used to calibrate the mass loading model. This analysis will also be used to compare the performance of closure alternatives.

5.2 Transport Model

The mass loading inputs will be integrated into a simplified transport model to simulate groundwater quality directly beneath the stockpiles. The extent of the transport domain will be sufficient to provide source area estimates for a more extensive analysis of groundwater quality being conducted for the Supplemental Groundwater Study, per DP-1341, Condition 82 (DBS&A 2003). The stockpiles' mass loading will be dissolved into the vertical groundwater column beneath the stockpiles through simulated mixing and attenuation processes. The zone of impacted water beneath the water table will be varied according to bounding estimates of the thickness of the regional water table and the estimated depth of dissolved mass distribution. The travel time from the base of the stockpile to the water table and loading rate of the constituents will be evaluated based on the depth to the water table, bedrock properties, and other site specific conditions. The travel time estimates and mass flux rates can be used to simulate the transition from present day to a post-closure steady state condition. This condition will be governed largely by the average draindown rate and infiltration rate into the covered or uncovered stockpile surfaces.

Updated water level, groundwater velocity, and porosity data from the Condition 82 study will be used in the transport simulations for existing mine site conditions. In addition, seepage fractions (fraction of stockpile seepage in a surface or groundwater sample) can be estimated using geochemical analyses such as the Mg concentrations in impacted and background groundwater (Bartlett 1992). The estimated seepage fractions can be used to determine the existing seepage and mass loading rates for calibration of the transport model through comparison with existing groundwater quality data.

6.0 ALTERNATIVES EVALUATION

The stockpile closure alternatives to be modeled, including the provisional alternative stipulated by DP-1341, will be developed in conjunction with the Feasibility Study (Condition 89). The long-term mass loading and water quality impacts will be evaluated for a period consistent with the design life of the other facilities associated with mine closure. For example, the bonding requirement associated with water treatment is for 100 years. We will use best methods and current practice to predict mass loading and water quality impacts for a period determined from the closure alternative development process conducted for the Feasibility Study (Condition 89). The overall performance objectives and conceptual designs for closure and reclamation of the major facilities at Tyrone will be based on the outcome of the supplemental supporting studies required in Supplemental Permit DP-1341 (NMED 2003), including this study.

The models will be used to estimate the mass loading and the groundwater quality beneath the stockpiles during and after mine closure for the selected alternative reclamation scenarios. The scope of the alternatives evaluation includes the provisional reclamation guidelines set forth in DP-1341. The results of the evaluation will be presented in the final report and will be incorporated into the Condition 82, 83, and 89 studies in a timely fashion.

7.0 REFERENCES AND BIBLIOGRAPHY

ADIT 2003. ADIT modeling committee status report. ADTI-INAP Meeting – Reno Nevada, March 26, 2003.

Alpers, D.N. and Nordstrom, D.K. 1999. Geochemical modeling of water-rock interactions in mining environments. Chapter 14 in, Plumlee, G.S. and Logsdon, M.J. 1999. The Environmental Geochemistry of Mineral Deposits. Reviews in Economic Geology. V. 6A, B. Society of Economic Geologists. Littleton, CO. p. 289-323.

ASTM. 2003. E2242-02 - Standard Test Method for Column Percolation Extraction of Mine Rock by the Meteoric Water Mobility Procedure. ASTM International.

Bartlett, R.W. 1992. Solution Mining, Leaching, and Fluid Recovery of Materials. Gordon and Breach Science Publishers. Philadelphia, Pennsylvania.

Berndt, M. 2004. Telephone Communication Between M. Berndt and D. Earley, March 4, 2004.

Bethke, C.M. 2004a. GWB Reference Manual. University of Illinois. April 14.

Bethke, C.M. 2004b. GWB Reactive Transport Modeling Guide. University of Illinois. April 24.

Cathles, L.M. 1994. Attempts to Model the Industrial Scale Leaching of Copper-Bearing Mine Waste. In: Alpers, C.N. and D.W. Blowes, eds. Environmental Geochemistry of Sulfide Oxidation. American Chemical Society (ACS) Symposium Series 550. ACS, Washington, D.C. p. 123-131.

Crawford, J. 1999. Geochemical Modelling – A Review of Current Capabilities and Future Directions. Swedish Environmental Protection Agency.

Daniel B. Stephens and Associates (DBS&A) 1997a. Preliminary Materials Characterization, Tyrone Mine Closure/Closeout. Prepared for PDTI. Tyrone, New Mexico. April 30.

DBS&A. 1997b. Supplemental Materials Characterization Study. Tyrone Mine Closure/Closeout. Prepared for PDTI. Tyrone, New Mexico. October 31.

DBS&A. 1997c. Borrow Material Investigation. Appendix D. Closure/Closeout plan, Tyrone Mine. Prepared for PDTI. Tyrone, New Mexico. December 19.

DBS&A. 1999a. Cover Design Study Status Report, Tyrone Mine. Prepared for PDTI. Tyrone, New Mexico. April 1.

DBS&A. 1999b. Stockpile and Tailing Pond Seepage Investigation, Tyrone Mine. Prepared for PDTI. Tyrone, New Mexico. July 31.

DBS&A. 2000. Prediction of Impact on Water Quality, Tyrone Mine. Prepared for PDTI. Tyrone, New Mexico. February 29.

DBS&A. 2001. Stockpile Outslope Evaluation Mass Loading Modeling Results for the Tyrone Mine. Prepared for PDTI. Tyrone, New Mexico. March 9.

DBS&A. 2003. Supplemental Groundwater and Hydrologic Conditions Study Work Plan. Letter from Joseph A. Brunner to Mary Ann Menetry. RE: Phelps Dodge Tyrone Inc. – DP-1341 Condition 82, Supplemental Groundwater and Hydrologic Conditions Study Work Plan. November 25.

Golder. 2001. Summary of Long-Term Stability Analysis for Stockpiles and Tailing Ponds at the Tyrone Mine. Letter to J. Peace, PDTI, from D. Kidd, Golder. March 16, 2001.

Golder. 2004. Feasibility Study Work Plan - Tyrone Mine Facility. Letter from Joseph A. Brunner to Mary Ann Menetry. RE: Phelps Dodge Tyrone Inc. – DP-1341, Condition 89, Tyrone Mine Feasibility Study Work Plan, Response to NMED Comments. October 3.

Greystone. 2003. Supplemental Materials Characterization Study Work Plan Letter from Joseph A. Brunner to Mary Ann Menetry. RE: Phelps Dodge Tyrone Inc. – DP-1341 Condition 80, Supplemental Materials Characterization Study Work Plan. October 3.

Greystone. 2004. Revised Seepage Investigation of Leach ore Stockpiles and Waste Rock Stockpiles Work Plan. Letter from Joseph A. Brunner to Mary Ann Menetry. RE: Phelps Dodge Tyrone Inc. – DP-1341 Condition 81, Revised Seepage Investigation Study Work Plan. April 30.

Hillel, D. 1998. Environmental Soil Physics. Academic Press. New York, NY.

M3 Engineering & Technology Corp. (M3). 2001. End-of-Year 2001 through Year 2006 Closure/Closeout Plan. Prepared for Phelps Dodge Tyrone Inc., Tyrone, New Mexico. March.

Murr, L.E. 1980. Theory and Practice of Copper Sulphide Leaching in Dumps and In Situ. Minerals Science Engineering, v. 12. p. 121-189.

Nicholson, A.D. 2003. Incorporation of Silicate Buffering in Predicting Acid Rock Drainage from Mine Wastes – A Mechanistic Approach. Mining Engineering, v. 55, no. 2, p. 33-37. NMED. 2003. Supplemental Discharge Permit for Closure, Tyrone Mine Facility, DP-1341. PDTI. April 8.

Nevada Department of Environmental Protection (NDEP). 1990. Meteoric Water Mobility Procedure. Nevada Department of Environmental Protection Guidance Document. September 19.

Pantelis, G., Ritchie, A.I.M., and Stepayants, Y.A. 2002. A Conceptual Model for the Description of Oxidation and Transport Processes in Sulphidic Waste Rock Dumps. Applied Mathematical Modelling, v. 26. p. 751-770.

Pascual, P., Stiber, N., and Sunderland, 2003. Draft Guidance on the Development, Evaluation, and Application of Regulatory Environmental Models. Office of Science Policy, Office of Research and Development.

Perkins, E.H., Nesbitt, H.W., Gunter, W.D., St-Arnaud, L.C. and Mycroft, J.R. 1995. Critical Review of Geochemical Processes and Geochemical Models Adaptable for Prediction of Acidic Drainage from Waste Rock. Mine Environment Neutral Drainage (MEND) Program Report 1.42.1. March 15.

Pruess, K. TOUGH2 – A General-Purpose Numerical Simulator for Multiphase Fluid and Heat Flow. Lawrence Berkeley Laboratory, University of California. LBL-29400.

Salmon, S.U.J. 1999. MiMi – Overview of Models for Biogeochemical Modeling of Acid Mine Drainage. MiMi Print, 4. 37 pp.

SARB. 1999. Geochemical Evaluation of Tailings and Stockpiles, Tyrone Mine. Prepared for Phelps Dodge Tyrone Inc. Tyrone, New Mexico. December 22.

Tetra Tech. 2003. Cover, Erosion, and Revegetation Test Plot Study Work Plan – Tyrone Mine Stockpiles. Letter from Joseph A. Brunner to Mary Ann Menetry. RE: Phelps Dodge Tyrone Inc. – DP-1341, Condition 76, Cover, Erosion, and Revegetation Test Plot Study Work Plan. December 15.

Wels, C. Lefbvre, R., and Robertson, A.M. 2003. An Overview of Prediction and Control of Air Flow in Acid-Generating Waste Rock Dumps. Proceedings of the 6th ICARD Conference, Cairns, QLD, July 12-18, 2003. p. 639-650.

White, W.W. and Jeffers, T.H., 1993. Chemical Predictive Modeling of Acid Mine Drainage from Metallic Sulfide-Bearing Waste Rock. In, Alpers, C.N. and Blowes, D.W., eds. Environmental Geochemistry of Sulfide Oxidation. American Chemical Society (ACS) Symposium Series 550. ACS, Washington, D.C. p. 608-630.

Wolery, T.J. 1992. EQ3/6. A Software Package for Geochemical Modeling of Aqueous

Systems: Package Overview and Installation Guide (Version 7.0): UCRL-MA-110662. Lawrence Livermore National Laboratory. Berkeley, California.

Zheng, C. and Bennett, G.D. 1995. Applied Contaminant Transport Modeling. Van Nostrand Reinhold, New York, NY.

APPENDIX B - LABORATORY HYDRAULIC TESTING

Laboratory Report for EnviroGroup Limited Stockpile Infiltration Tests

July 22, 2005

Daniel B. Stephens & Associates, Inc.

6020 Academy NE, Suite 100 • Albuquerque, New Mexico 87109

July 22, 2005

Dusty Earley EnviroGroup Limited 204 S. Bowen Street, Suite 201 Longmont, CO 80501 (720) 494-2600

Re: DBS&A Laboratory Report for EnviroGroup - Stockpile Infiltration Tests samples

Dear Mr. Earley:

Enclosed is the final report for the EnviroGroup - Stockpile Infiltration Tests samples. Please review this report and provide any comments as samples will be held for a maximum of 30 days. After 30 days samples will be returned or disposed of in an appropriate manner.

All testing results were evaluated subjectively for consistency and reasonableness, and the results appear to be reasonably representative of the material tested. However, DBS&A does not assume any responsibility for interpretations or analyses based on the data enclosed, nor can we guarantee that these data are fully representative of the undisturbed materials at the field site. We recommend that careful evaluation of these laboratory results be made for your particular application.

The testing utilized to generate the enclosed final report employs methods that are standard for the industry. The results do not constitute a professional opinion by DBS&A, nor can the results affect any professional or expert opinions rendered with respect thereto by DBS&A. You have acknowledged that all the testing undertaken by us, and the final report provided, constitutes mere test results using standardized methods, and cannot be used to disqualify DBS&A from rendering any professional or expert opinion, having waived any claim of conflict of interest by DBS&A.

We are pleased to provide this service to EnviroGroup and look forward to future laboratory testing on other projects. If you have any questions about the enclosed data, please do not hesitate to call.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC. LABORATORY / TESTING FACILITY

Joleen Hines, Laboratory Supervising Manager Enclosure

Daniel B. Stephens & Associates, Inc.

6020 Academy NE, Suite 100 505-822-9400 FAX 505-822-8877

Albuquerque, NM 87109

Summaries

Summary of Tests Performed

	Initial Soil		rated aulic		M	loisture			Unsaturated		artic					1/3, 15 Bar Points and		
Laboratory	Properties ¹	Condu				acteristi			Hydraulic		Size ⁴		Effective	Particle	Air	Water Holding		Proctor
Sample Number	(θ, ρ _d , φ)	СН	FH	НС	PP	THW	PF	RH	Conductivity	DS '	WS	Н	Porosity	Density	Permeability	Capacity	Limits	Compaction
2B-T6 (0-3)	x	х		X	х			х	х		х	Х						
2B-T6 (1-4)	×	х		X	х			х	х		х	Х						
2B-T6 (3-6)	x		х	x	х		<	Х	×		х	х						
3B-T5 (0-3)	×	х		×	х			Х	х		х	х						
3B-T5 (2-5)	×	х		×	х			х	х		х	х						
3B-T5 (3-6)	x	х		x	х	X		х	х		х	х						
1C-T1 (0-3)	x	х		x	х	×		х	х		х	х						
1C-T1 (4-7)	x	х		х	x	X		х	х		х	х						
1C-T1 (10-13)	x	х		x	х	×		х	×		х	х						
1C-T2 (0-3)	x	х		x	х	×		х	х		x	х						
1C-T2 (5-8)	x	х		x	х	×		х	х		х	х						
1C-T2 (11-14)	X	х		х	х	X		х	х		х	х						
1C-T3 (0-3)	x		х	х	х		(х	х		х	Х						
1C-T3 (4-7)	×	х		х	х	×		х	х		х	х						
1C-T3 (7-10)	×		х	x	х	×		х	х		х	х						

¹ θ = Initial moisture content, _θ = Dry bulk density, ϕ = Calculated porosity ² CH = Constant head, FH = falling head ³ HC = Hanging column, PP = Pressure plate, TH = Thermocouple psychrometer, WP = Water activity meter, RH = Relative humidity box

⁴ DS = Dry sieve, WS = Wet sieve, H = Hydrometer

Summary of Tests Performed (Continued)

	Initial Soil	Hydi	rated raulic			loistu		3	Unsaturated		artic				A !	1/3, 15 Bar Points and	6.H	Dreater
Laboratory	Properties ¹		uctivity ²			acteri			Hydraulic		Size		Effective	Particle	Air	Water Holding	}	Proctor
Sample Number	(θ, ρ _d , φ)	СН	FH	HC	14	ТН	VVP	КН	Conductivity	DS	vvs	н	Porosity	Density	Permeability	Capacity	Limits	Compaction
2C-T7 (0-3)	X	х		×	х		х	x	×		х	х						
2C-T7 (1-4)	x	x		x	х		х	х	×		х	х						
2C-T7 (2-5)	X	x		x	х		х	х	×		х	х						
Savannah-T4 (0-3)	×		х	x	х		х	х	x		х	×						
Savannah-T4 (12-15)	X ·		х	X	х		х	х	х		х	х						
Savannah-T4 (30-33)	x		х	x	х		х	x	x		х	х						
Savannah- T8 (0-3)	×		х	X	х		х	х	х		х	x						
Savannah- T8 (3-6)	×		х	x	х		х	x	x		х	x						
Savannah- T8 (6-9)	×	х		x	х		х	x	х		х	х						

¹ θ = Initial moisture content, $_{B}$ = Dry bulk density, $_{\phi}$ = Calculated porosity ² CH = Constant head, FH = falling head ³ HC = Hanging column, PP = Pressure plate, TH = Thermocouple psychrometer, WP = Water activity meter, RH = Relative humidity box

⁴ DS = Dry sieve, WS = Wet sieve, H = Hydrometer

Sample Prep Summary

· . . . • •

and the state of

	Target Remold Densities Provided by Client at As Received Moisture	Actual Remold Values					
	Dry Bulk Density	Moisture Content	Dry Bulk Density	% of Target Density			
Sample Number	(g/cm ³)	(%, g/g)	(g/cm ³)	(%)			
2B-T6 (0-3)	1.80	9.3	1.79	99%			
2B-T6 (1-4)	1.80	12.3	1.80	100%			
2B-T6 (3-6)	1.80	10.6	1.80	100%			
3B-T5 (0-3)	1.80	11.0	1.81	101%			
3B-T5 (2-5)	1.80	12.0	1.81	100%			
3B-T5 (3-6)	1.80	12.0	1.80	100%			
1C-T1 (0-3)	1.80	6.0	1.82	10 1%			
1C-T1 (4-7)	1.80	6.4	1.81	101%			
1C-T1 (10-13)	1.80	9.0	1.80	100%			
1C-T2 (0-3)	1.80	6.4	1.80	100%			
1C-T2 (5-8)	1.80	3.8	1.80	100%			
1C-T2 (11-14)	1.80	5.4	1.80	100%			
1C-T3 (0-3)	1.80	17.1	1.79	100%			
1C-T3 (4-7)	1.80	12.3	1.78	99%			
1C-T3 (7-10)	1.80	15.5	1.79	100%			
2C-T7 (0-3)	1.80	19.1	1.81	100%			
2C-T7 (1-4)	1.80	21.4	1.81	100%			
2C-T7 (2-5)	1.80	7.6	1.80	100%			
Savannah-T4 (0-3)	2.00	14.9	2.00	100%			
Savannah-T4 (12-15)	2.00	11.0	1.99	99%			
Savannah-T4 (30-33)	2.00	9.3	1.99	100%			
Savannah- T8 (0-3)	2.00	11.7	1.99	99%			
Savannah- T8 (3-6)	2.00	10.8	1.98	99%			
Savannah- T8 (6-9)	2.00	11.1	1.99	100%			

	Initial Mois	ture Content	Dry Bulk	Wet Bulk	Calculated
Somala Number	Gravimetric	Volumetric	Density	Density	Porosity
Sample Number	(%, g/g)	(%, cm ³ /cm ³)	(g/cm ³)	(g/cm ³)	(%)
2B-T6 (0-3)	9.3	16.7	1.79	1.95	32.5
2B-T6 (1-4)	12.3	22.2	1.80	2.03	31.9
2B-T6 (3-6)	10.6	19.1	1.80	1.99	32.1
3B-T5 (0-3)	11.0	19.9	1.81	2.01	31.6
3B-T5 (2-5)	12.0	21.8	1.81	2.02	31.8
3B-T5 (3-6)	12.0	21.5	1.80	2.02	32.0
1C-T1 (0-3)	6.0	10.9	1.82	1.93	31.2
1C-T1 (4-7)	6.4	11.5	1.81	1.92	31.7
1C-T1 (10-13)	9.0	16.2	1.80	1.96	32.1
1C-T2 (0-3)	6.4	11.5	1.80	1.92	32.0
1C-T2 (5-8)	3.8	6.8	1.80	1.87	32.0
1C-T2 (11-14)	5.4	9.8	1.80	1.90	32.0
1C-T3 (0-3)	17.1	30.7	1.79	2.10	32.3
1C-T3 (4-7)	12.3	22.0	1.78	2.00	32.9
1C-T3 (7-10)	15.5	27.8	1.79	2.07	32.3
2C-T7 (0-3)	19.1	34.6	1.81	2.15	31.8
2C-T7 (1-4)	21.4	38.8	1.81	2.19	31.8
2C-T7 (2-5)	7.6	13.7	1.80	1.94	31.9
Savannah-T4 (0-3)	14.9	29.7	2.00	2.29	24.6

Summary of Initial Moisture Content, Dry Bulk Density Wet Bulk Density and Calculated Porosity

NA = Not analyzed

	Initial Moist Gravimetric	ture Content Volumetric	Dry Bulk Density	Wet Bulk Density	Calculated Porosity
Sample Number	(%, g/g)	(%, cm ³ /cm ³)	(g/cm ³)	(g/cm ³)	(%)
Savannah-T4 (12-15)	11.0	22.0	1.99	2.21	24.9
Savannah-T4 (30-33)	9.3	18.6	1.99	2.18	24.7
Savannah- T8 (0-3)	11.7	23.3	1.99	2.22	25.0
Savannah- T8 (3-6)	10.8	21.3	1.98	2.20	25.2
Savannah- T8 (6-9)	11.1	22.1	1.99	2.21	24.9

Summary of Initial Moisture Content, Dry Bulk Density Wet Bulk Density and Calculated Porosity (Continued)

	K _{sat}	Method of Analysis		
Sample Number	(cm/sec)	Constant Head	Falling Head	
2B-T6 (0-3)	4.3E-04	x		
2B-T6 (1-4)	3.2E-04	X		
2B-T6 (3-6)	2.9E-05		х	
3B-T5 (0-3)	2.0E-04	x		
3B-T5 (2-5)	1.3E-05	x		
3B-T5 (3-6)	1.2E-04	x		
1C-T1 (0-3)	5.8E-03	x		
1C-T1 (4-7)	9.9E-03	x		
1C-T1 (10-13)	3.9E-02	x		
1C-T2 (0-3)	5.7E-02	х		
1C-T2 (5-8)	1.5E-02	X		
1C-T2 (11-14)	1.9E-02	х		
1C-T3 (0-3)	6.0E-07		х	
1C-T3 (4-7)	4.2E-05	х		
1C-T3 (7-10)	9.5E-07		х	
2C-T7 (0-3)	2.2E-04	x		
2C-T7 (1-4)	1.1E-04	X		
2C-T7 (2-5)	7.7E-05	х		

Summary of Saturated Hydraulic Conductivity Tests

Summary of Saturated Hydraulic Conductivity Tests (Continued)

		Κ _{sat}	Method of	Analysis
Sa	mple Number	(cm/sec)	Constant Head	Falling Head
Sav	annah-T4 (0-3)	1.5E-06		x
Sava	nnah-T4 (12-15)	1.5E-07		Х
Sava	nnah-T4 (30-33)	1.9E-06		Х
Sav	annah- T8 (0-3)	8.4E-07		Х
Sav	annah- T8 (3-6)	6.7E-07		Х
Sav	annah- T8 (6-9)	8.9E-06	x	

Summary of Calculated Unsaturated Hydraulic Properties

Sample Number	α (cm⁻¹)	N (dimensionless)	θ _r	θ_{s}
2B-T6 (0-3)	0.0169	1.1942	0.0000	0.3415
2B-T6 (1-4)	0.0096	1.1978	0.0000	0.3180
2B-T6 (3-6)	0.0069	1.2283	0.0000	0.3166
3B-T5 (0-3)	0.0250	1.1690	0.0000	0.3189
3B-T5 (2-5)	0.0084	1.1995	0.0000	0.3079
3B-T5 (3-6)	0.0169	1.1945	0.0000	0.3434
1C-T1 (0-3)	0.1709	1.2569	0.0259	0.3520
1C-T1 (4-7)	0.1577	1.3566	0.0626	0.3575
1C-T1 (10-13)	0.2904	1.1759	0.0054	0.3050
1C-T2 (0-3)	0.0486	1.8834	0.0621	0.2797
1C-T2 (5-8)	0.2994	1.4896	0.0165	0.3260
1C-T2 (11-14)	0.1501	1.4751	0.0416	0.3278
1C-T3 (0-3)	0.0004	1.3300	0.0000	0.3270
1C-T3 (4-7)	0.0078	1.2596	0.0000	0.3611
1C-T3 (7-10)	0.0002	1.4495	0.0000	0.2977
2C-T7 (0-3)	0.0019	1.2933	0.0000	0.3101
2C-T7 (1-4)	0.0033	1.2398	0.0000	0.3237
2C-T7 (2-5)	0.0727	1.1638	0.0000	0.3170
Savannah-T4 (0-3)	0.0005	1.4253	0.0000	0.2740
Savannah-T4 (12-15)	0.0002	1.9374	0.0000	0.2471
Savannah-T4 (30-33)	0.0029	1.2990	0.0000	0.2552
Savannah- T8 (0-3)	0.0002	1.4714	0.0000	0.2522

Summary of Calculated Unsaturated Hydraulic Properties (Continued)

 Sample Number	α (cm ⁻¹)	N (dimensionless)	θr	θ_{s}
Savannah- T8 (3-6)	0.0025	1.3255	0.0000	0.2515
Savannah- T8 (6-9)	0.0009	1.3467	0.0000	0.2590

Sample Number	Pressure Head (-cm water)	Moisture Content (%, cm ³ /cm ³)
2B-T6 (0-3)	0	35.3
28 10 (0-5)	18	32.7
	46	29.6
	149	26.5
	510	23.9
	19376	12.8
	851293	2.4
2B-T6 (1-4)	0	34.4
	19	30.0
	48	28.2
	149	26.1
	510	24.1
	13971	14.5
	851293	1.9
	0	22.2
2B-T6 (3-6)	0	33.9
	24	30.1
	59	28.5
	151 510	26.6
	7852	23.9
	851293	14.7 1.5
	051295	1.5
3B-T5 (0-3)	0	33.3
	18	29.5
	45	26.7
	147	24.4
	510	22.8
	19172	13.5
	851293	2.2

	Pressure Head	Moisture Content
Sample Number	(-cm water)	(%, cm ³ /cm ³)
3B-T5 (2-5)	0	32.8
	19	30.0
	44	27.6
	146	25.5
	510	23.9
	14583	13.6
	851293	2.6
3B-T5 (3-6)	0	36.1
	25	31.7
	46	29.3
	147	26.8
	510	24.7
	4895	15.5
	851293	2.8
1C-T1 (0-3)	0	35.0
	24	27.8
	52	17.7
	88	17.2
	510	14.5
	8362	8.7
	851293	3.3
		0.0
1C-T1 (4-7)	0	35.1
	7	32.4
	42	19.1
	79	17.0
	510	14.3
	16827	10.1
	851293	4.5
		1.0

Summary of Moisture Characteristics of the Initial Drainage Curve (Continued)

. .

Sample Number	Pressure Head (-cm water)	Moisture Content (%, cm ³ /cm ³)
1C-T1 (10-13)	0 7 33 81 510 17643 851293	30.0 28.3 17.6 16.5 14.9 8.1 3.1
1C-T2 (0-3)	0 14 52 88 510 16827 851293	27.4 25.4 14.4 11.2 10.3 8.1 2.6
1C-T2 (5-8)	0 14 50 87 510 17235 851293	32.6 17.2 8.0 7.7 6.5 2.1 0.9
1C-T2 (11-14)	0 7 27 79 510 6935 851293	32.1 28.9 15.9 12.4 10.4 5.7 2.7

Sample Number	Pressure Head	Moisture Content
Sample Number	(-cm water)	(%, cm ³ /cm ³)
1C-T3 (0-3)	0	34.7
	24	33.4
	123	31.8
	510	29.4
	7037	21.7
	13053	19.3
	851293	3.9
1C-T3 (4-7)	0	38.3
	23	34.7
	48	32.3
	148	29.4
	510	26.5
	16521	10.3
	851293	2.1
1C-T3 (7-10)	0	32.9
	25	29.9
	126	28.6
	510	27.1
	8158	20.9
	16827	17.1
	851293	2.4
		2.7
2C-T7 (0-3)	0	32.4
	24	30.8
	53	30.3
	149	28.7
	510	26.2
	15603	13.1
	851293	1.2

Sample Number	Pressure Head (-cm water)	Moisture Content (%, cm ³ /cm ³)
2C-T7 (1-4)	0 24 53 149 510 18356 851293	33.8 31.9 31.2 29.1 26.3 14.4 2.1
2C-T7 (2-5)	0 24 53 149 510 12646 851293	32.3 25.5 24.1 22.0 19.6 11.5 2.0
Savannah-T4 (0-3)	0 25 123 510 6629 14583 851293	28.9 28.1 26.6 24.6 16.9 11.9 1.6
Savannah-T4 (12-15)	0 28 123 510 8158 14889 851293	26.9 25.2 23.8 22.8 16.1 9.9 1.5

Sample Number	Pressure Head (-cm water)	Moisture Content (%, cm ³ /cm ³)
Savannah-T4 (30-33)	0 25 121 510 9586 27229 851293	26.4 25.7 22.4 20.9 9.7 7.0 1.5
Savannah- T8 (0-3)	0 24 59 151 510 17948 851293	27.9 25.5 24.9 24.2 23.2 13.9 2.0
Savannah- T8 (3-6)	0 24 58 150 510 16215 851293	28.5 23.8 23.0 22.2 21.4 7.4 1.8
Savannah- T8 (6-9)	0 27 121 510 7954 15297 851293	28.8 25.4 23.9 22.7 15.0 9.2 1.6

Summary of Calculated Unsaturated Hydraulic Properties with Gravel Corrections

Sample Number	Ksat	α (cm ⁻¹)	N (dimensionless)	θ	θ _r	θ_s	
2B-T6 (0-3)	3.4E-04	0.0169	1.1942	0.1309	0.0000	0.2664	
2B-T6 (1-4)	2.3E-04	0.0096	1.1978	0.1619	0.0000	0.2319	
2B-T6 (3-6)	2.0E-05	0.0069	1.2283	0.1305	0.0000	0.2163	
3B-T5 (0-3)	1.5E-04	0.0250	1.1690	0.1514	0.0000	0.2426	
3B-T5 (2-5)	1.0E-05	0.0084	1.1995	0.1734	0.0000	0.2449	
3B-T5 (3-6)	1.0E-04	0.0169	1.1945	0.1872	0.0000	0.2990	
1C-T1 (0-3)	4.4E-03	0.6698	1.1656	0.0827	0.0197	0.2672	
1C-T1 (4-7)	7.8E-03	0.1577	1.3566	0.0909	0.0495	0.2825	
1C-T1 (10-13)	3.2E-02	0.2904	1.1759	0.1347	0.0045	0.2536	
1C-T2 (0-3)	4.4E-02	46.4459	1.1053	0.0895	0.0483	0.2177	
1C-T2 (5-8)	6.7E-03	6.5822	1.2214	0.0305	0.0059	0.1463	
1C-T2 (11-14)	1.3E-02	0.1501	1.4751	0.0659	0.0280	0.2206	
1C-T3 (0-3)	4.7E-07	0.0004	1.3300	0.2429	0.0000	0.2587	
1C-T3 (4-7)	2.2E-05	0.0078	1.2596	0.1131	0.0000	0.1857	
1C-T3 (7-10)	6.3E-07	0.0002	1.4495	0.1837	0.0000	0.1967	
2C-T7 (0-3)	1.6E-04	0.0019	1.2933	0.2562	0.0000	0.2296	
2C-T7 (1-4)	8.1E-05	0.0033	1.2398	0.2873	0.0000	0.2397	
2C-T7 (2-5)	5.0E-04	0.0727	1.1638	0.0890	0.0000	0.2059	

Summary of Calculated Unsaturated Hydraulic Properties with Gravel Corrections

Sample Number	Ksat	α (cm ⁻¹)	N (dimensionless)	θι	θ _r	θ _s
Savannah-T4 (0-3)	1.1E-06	0.0005	1.4253	0.2226	0.0000	0.2054
Savannah-T4 (12-15)	4.4E-08	0.0002	1.9374	0.0640	0.0000	0.0719
Savannah-T4 (30-33)	9.5E-07	0.0029	1.2990	0.0931	0.0000	0.1277
Savannah- T8 (0-3)	6.9E-07	0.0002	1.4714	0.1907	0.0000	0.2064
Savannah- T8 (3-6)	3.6E-07	0.0025	1.3255	0.1129	0.0000	0.1333
Savannah- T8 (6-9)	5.8E-06	0.0009	1.3467	0.1451	0.0000	0.1701

			-					
Sample Number	d ₁₀ (mm)	d ₅₀ (mm)	d ₆₀ (mm)	Cu	C _c	Method	ASTM Classification	USDA Classification
2B-T6 (0-3)	0.0020	2.0	4.0	2000	2.8	WS/H	Classification by ASTM 2487 requires Atterberg test	Sandy Loam [†]
2B-T6 (1-4)	0.0026	2.7	5.6	2154	5.8	WS/H	Classification by ASTM 2487 requires Atterberg test	Sandy Clay Loam [†]
2B-T6 (3-6)	0.0027	1.9	3.9	1444	3.1	WS/H	Classification by ASTM 2487 requires Atterberg test	Sandy Loam [†]
3B-T5 (0-3)	0.0024	1.1	2.0	833	6.8	WS/H	Classification by ASTM 2487 requires Atterberg test	Sandy Loam [†]
3B-T5 (2-5)	0.0025	0.94	1.8	720	8.0	WS/H	Classification by ASTM 2487 requires Atterberg test	Sandy Loam [†]
3B-T5 (3-6)	0.0026	0.88	2.1	808	3.1	WS/H	Classification by ASTM 2487 requires Atterberg test	Sandy Loam [†]
1C-T1 (0-3)	0.059	4.4	6.8	115	4.9	WS/H	Classification by ASTM 2487 requires Atterberg test	Sandy Loam [†]
1C-T1 (4-7)	0.052	1.7	2.4	46	2.8	WS/H	Classification by ASTM 2487 requires Atterberg test	Loamy Sand [†]
1C-T1 (10-13)	0.15	2.9	4.1	27	2.7	WS/H	Classification by ASTM 2487 requires Atterberg test	Loamy Sand [†]
1C-T2 (0-3)	0.66	6.0	7.7	12	1.8	WS/H	Well-graded gravel with sand	Sand [†]
1C-T2 (5-8)	1.4	10.0	12	8.6	1.9	WS/H	Well-graded gravel with sand	Sand [†]

Summary of Particle Size Characteristics

d₅₀ = Median particle diameter

DS = Dry sieve

[†] Greater than 10% of sample is coarse material

H = Hydrometer

- Hydrometer

WS = Wet sieve

Est = Reported values for d₁₀, C_u, C_c, and soil classification are estimates, since extrapolation was required to obtain the d₁₀ diameter

 $\mathbf{C}_{\rm c} = \frac{(d_{30})^2}{(d_{10})(d_{60})}$

 $\mathbf{C}_{u} = -\frac{\mathbf{d}_{60}}{\mathbf{d}_{10}}$

d ₁₀ (mm)	d ₅₀ (mm)	d ₆₀ (mm)	Cu	C _c	Method	ASTM Classification	USDA Classification
0.58	8.2	11	19	2.3	WS/H	Well-graded gravel with sand	Loamy Sand [†]
0.0038	2.5	5.0	1316	2.8	WS/H	Classification by ASTM 2487 requires Atterberg test	Sandy Loam [†]
0.0074	3.8	8.7	1176	3.3	WS/H	Classification by ASTM 2487 requires Atterberg test	Sandy Loam [†]
0.0024	1.7	4.3	1792	1.9	WS/H	Classification by ASTM 2487 requires Atterberg test	Sandy Loam [†]
0.00083	1.1	2.6	3133	4.0	WS/H	Classification by ASTM 2487	Sandy Clay Loam [†] (Es
0.0025	1.7	3.3	1320	2.4	WS/H	Classification by ASTM 2487	Sandy Loam [†]
0.058	5.8	8.4	145	14	WS/H	Classification by ASTM 2487	Sandy Loam [†]
0.016	3.7	5.8	363	13	WS/H	Classification by ASTM 2487	Sandy Loam ⁺
0.064	20	31	484	7.3	WS/H	Classification by ASTM 2487	Sandy Loam [†]
0.038	8.3	14	368	7.5	WS/H	Classification by ASTM 2487	Sandy Loam [†]
0.0074	3.0	4.8	649	8.2	WS/H	Classification by ASTM 2487 requires Atterberg test	Sandy Loam [†]
	(mm) 0.58 0.0038 0.0074 0.0024 0.00083 0.0025 0.058 0.016 0.064 0.038	(mm) (mm) 0.58 8.2 0.0038 2.5 0.0074 3.8 0.0074 3.8 0.0024 1.7 0.00083 1.1 0.0025 1.7 0.058 5.8 0.016 3.7 0.064 20 0.038 8.3	(mm)(mm)(mm)0.588.2110.00382.55.00.00743.88.70.00241.74.30.000831.12.60.00251.73.30.0585.88.40.0163.75.80.06420310.0388.314	$\begin{array}{ c c c c c c c c } \hline (mm) & (mm) & (mm) & C_u \\ \hline 0.58 & 8.2 & 11 & 19 \\ \hline 0.0038 & 2.5 & 5.0 & 1316 \\ \hline 0.0074 & 3.8 & 8.7 & 1176 \\ \hline 0.0024 & 1.7 & 4.3 & 1792 \\ \hline 0.00083 & 1.1 & 2.6 & 3133 \\ \hline 0.0025 & 1.7 & 3.3 & 1320 \\ \hline 0.058 & 5.8 & 8.4 & 145 \\ \hline 0.016 & 3.7 & 5.8 & 363 \\ \hline 0.064 & 20 & 31 & 484 \\ \hline 0.038 & 8.3 & 14 & 368 \\ \hline \end{array}$	(mm)(mm)(mm) C_u C_c 0.588.211192.30.00382.55.013162.80.00743.88.711763.30.00241.74.317921.90.000831.12.631334.00.00251.73.313202.40.0585.88.4145140.0163.75.8363130.06420314847.30.0388.3143687.5	(mm)(mm)CuCcMethod0.588.211192.3WS/H0.00382.55.013162.8WS/H0.00743.88.711763.3WS/H0.00241.74.317921.9WS/H0.00251.12.631334.0WS/H0.00251.73.313202.4WS/H0.0585.88.414514WS/H0.06420314847.3WS/H0.0388.3143687.5WS/H	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Summary of Particle Size Characteristics (Continued)

d₅₀ = Median particle diameter

 $C_u = \frac{d_{60}}{d_{10}}$

DS = Dry sieve

H = Hydrometer

[†] Greater than 10% of sample is coarse material

Est = Reported values for d₁₀, C_u, C_c, and soil classification are estimates, since extrapolation was required to obtain the d₁₀ diameter

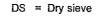
 $C_{c} = \frac{(d_{30})^{2}}{(d_{10})(d_{60})}$

WS = Wet sieve

VV3 - V

Summary of Particle Size Characteristics (Continued)

Sample Number	d ₁₀ (mm)	d ₅₀ (mm)	d ₆₀ (mm)	Cu	C _c	Method	ASTM Classification	USDA Classification
Savannah- T8 (3-6)	0.011	4.2	8.5	773	6.2	WS/H	Classification by ASTM 2487 requires Atterberg test	Sandy Loam [†]
Savannah- T8 (6-9)	0.014	4.8	9.3	664	9.3	WS/H	Classification by ASTM 2487 requires Atterberg test	Sandy Loam [†]


d₅₀ = Median particle diameter

Est = Reported values for d₁₀, C_u, C_c, and soil classification are estimates, since extrapolation was required to obtain the d₁₀ diameter

C_c =

 $\frac{(d_{30})^2}{(d_{10})(d_{60})}$

[†] Greater than 10% of sample is coarse material

H = Hydrometer

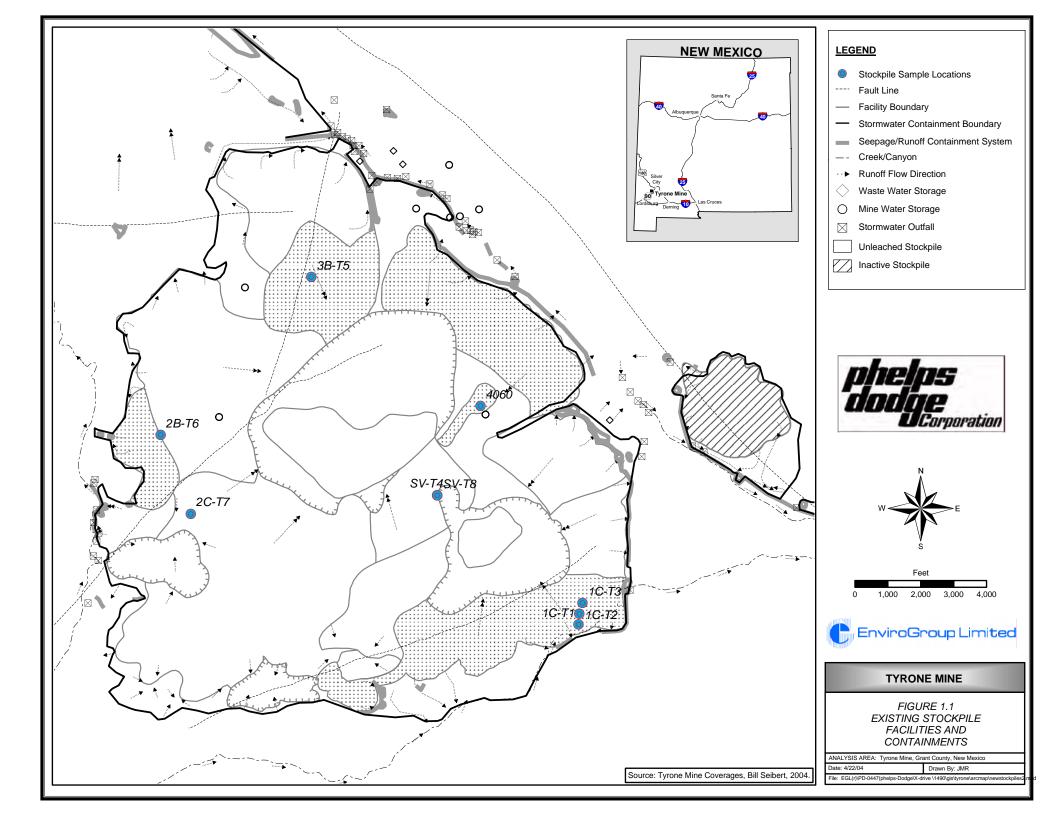
WS = Wet sieve

APPENDIX A - STOCKPILE INFILTRATION TESTING

Summary Field Report Tyrone Stockpile Infiltration Tests Tyrone Mine, New Mexico

Table of Contents

Table	of Contents	i
1.0	INTRODUCTION	1
2.0	PROCEDURES	1
2.1	INFILTRATION TEST PROCEDURES (Falling and Constant Head)	1
2.2	SOIL SAMPLING AND ANALYSIS	3
2.3	CLEANUP	3
2.4	SURVEY	3
3.0	RESULTS	4


1.0 INTRODUCTION

Eight infiltration (percolation) tests were conducted at the Phelps Dodge Tyrone Mine located in Tyrone, New Mexico. The infiltration tests were conducted from March 9th through March 16th 2005 on various stockpile bench surfaces throughout the mine site. The antecedent ground conditions were very moist as a result of heavy rains that had fallen in the winter months prior to testing. Most of the benches were cut into existing stockpiles during re-mining activities and the test sites had been buried by one or more lifts of material prior to excavation. One test (3B-T5) was conducted on a stockpile top surface that has never been buried but had seen heavy truck traffic.

The infiltration tests consisted of seven falling head tests and one constant head test, which are listed below. The first identifier of the infiltration test ID is the stockpile number where the test was conducted, followed by the test number. Figure 1.1 provides the test site locations. Two falling head tests, 1C-T1 and 1C-T2, were conducted on top of bedrock that was exposed beneath stockpile material and the remaining tests were conducted on benches cut into stockpile materials.

Infiltration Test Sites

1C-T1 1C-T2 1C-T3 Savanna-T4 (constant head) 3B-T5 2B-T6 2C-T7 Savanna-T8

2.0 PROCEDURES

The following sections describe the procedures that were used to complete the infiltration tests.

2.1 INFILTRATION TEST PROCEDURES (Falling and Constant Head)

After the initial test set up on 1C-T1 to determine the best method for conducting the infiltration tests, each test was set up in a similar manner and was completed on the same day.

Each test site was excavated to a depth ranging from approximately 8 inches to 1 foot below the existing ground surface. The horizontal dimensions of each test site were approximately 8 foot x 8 foot (square). The upper (top) section of a plastic tank was used as the ring for these tests. The modified tank was approximately 7 feet in diameter and approximately 2 feet tall. Each test area was leveled before placing the modified tank directly in the excavated area. After placing the tank at each test site, dry bentonite pellets were packed around the outside of the tank. The area outside the tank was backfilled with native soils to the existing ground surface and the tank was filled with water to approximately 1 to 1.5 feet above the base of the tank. The flow of water was carefully monitored while filling the tank to avoid any possible scouring of soils. Bentonite was hydrated and usually sealed within 30 minutes, as most of the seepage slowed from initial rates (observed by wet soil on surface or visible flows on the surface) or stopped due to the sealing properties of the bentonite. Once seepage appeared to slow or visible observations could no longer detect seepage, the tank was filled with water to the desired height to conduct the infiltration test.

Seven of the eight tests conducted were falling head tests and the following paragraph describes the procedure for those tests. The constant head test procedure is described following the falling head test procedure.

1

July 2005

Falling Head Test - Water level (head) measurements were observed from a pre-marked location on the tank (top of water elevation in tank) and were recorded in tenths to the nearest hundredth of a foot (i.e. 1.05') as the water in the tank infiltrated the soils beneath the tank (falling head). The appearance of the water in most tests was tan to brown in color, cloudy, very turbid and contained some organic debris.

After the water elevation measurements were recorded and the test was completed, water remaining in the tank was drained by excavating an area in close proximity to the tank. Once all water was drained, the tank was removed and the area below the test was excavated using a backhoe. The wetted zone beneath each test site (below bentonite layer or top of ponding surface) was observed and recorded as well as the general lithologic description of the stockpiled soils or bedrock.

Constant Head Test - Water level (head) measurements were observed from a premarked location on the tank (top of water elevation in tank) and were recorded in tenths to the nearest hundredth of a foot (i.e. 1.05') as the water in the tank infiltrated the soils beneath the tank. Constant head conditions were obtained (as best that could practically be obtained) as water flowed from a water truck, via a hose, through a flow meter, which measured flow in gallons per minute to the nearest tenth of a gallon (i.e. 2.1 gallons per minute) then into the tank. Changing water flow (velocity) was also recorded while constant head conditions were obtained. The appearance of water in the constant head test was tan to brown in color, cloudy, very turbid and contained organic debris.

After the water elevation measurements were recorded and the test was completed, water remaining in the tank was drained by excavating an area in close proximity to the tank. Once all water was drained the tank was removed and the area below the test was excavated using a backhoe. The wetted zone beneath each test site was observed and recorded as well as the general lithologic description of the stockpiled soils or bedrock.

2

2.2 SOIL SAMPLING AND ANALYSIS

Soil samples from each test site were typically collected from representative zones at 3 discrete depths below the base of the tank. One sample was collected from the wetted zone, with the second sample usually collected from the area directly below the wetted zone and the third sample usually collected below the second sample location (depth) or lowest interval of each excavated area.

Each soil sample was placed into a gallon size Ziploc bag, double bagged, labeled, documented on a chain of custody (COC) and placed in a shipping container. The samples were hand delivered to Daniel B. Stephens & Associates Laboratory located in Albuquerque, New Mexico at the completion of all infiltration testing. Soil samples were requested to be analyzed for particle size analysis (PSA - sieve + hydrometer) by ASTM D422, saturated hydraulic conductivity by ASTM D2434/D5084, initial volumetric water content by ASTM D2216/D4643, dry bulk density by ASTM D2937/MOSA Chp.13, calculated total porosity by MOSA Chp.18, moisture characteristic (7 points) by ASTM D6836/ASTMD2325/MOSA Chp.26, calculated unsaturated hydraulic conductivity by ASTM D6836/SSSAJ, 1980. The samples were remolded to the estimated bulk density of the material prior to stockpile excavations and exposure of the test sites.

2.3 CLEANUP

At the completion of infiltration testing, the sites were back-filled with the excavated material from the test site, compacted, and leveled. At each site a flagged lathe, labeled with the site ID was located in the general area of the test site for surveying purposes.

2.4 SURVEY

Pam Pinson of Phelps Dodge arranged for a land survey, which will provide the location of each sample site.

3

3.0 RESULTS

Listed below are the infiltration test ID's and the depth of the wetted front (zone) for each test site.

1C-T1 (6-7 inches) 1C-T2 (4 inches) 1C-T3 (4 inches) Savanna-T4 (3 feet) 3B-T5 (1 to 4 inches) 2B-T6 (1 to 4 inches) 2C-T7 (1 to 4 inches) Savanna-T8 (1 to 10 inches)

Table 1 provides the calculated hydraulic conductivity (Ksat) for each infiltration test using Darcy's Law. The Ksat values ranged from 9.74 E-05 to 2.4 E-03.

Test ID	Infiltration Test Type	Saturated Hydraulic
	(Falling head /Constant head)	Conductivity
		Ksat (cm/sec)
1C-T1	Falling	1.57 E-04
1C-T2	Falling	2.15 E-04
1C-T3	Falling	9.74 E-05
Savanna-T4	Constant	2.4 E-03 to 3.9 E-03
3B-T5	Falling	4.78 E-05
2B-T6	Falling	2.54 E-05
2C-T7	Falling	4.78 E-05
Savanna-T8	Falling	4.80 E-04

Table 1: Calculated Hydraulic Conductivity (Ksat) Results

APPENDIX C - METEORIC WATER MOBILITY TESTING

PHELPS DODGE - TYRONE GA04 - TY - 1 - GT

NDEP PROFILE

II REPORT

MWMP

GA04-TY-1-0					
PARAMETERS	RESULTS	UNITS	STANDARDS	DATE	Sample Receipt: 9/23/04 SVL JOB No.:113471
Alkalinity (Total)	15.0	mg/L	-	10/11/01	SVL SAMPLE No.:414925
Aluminum	15.0	mg/L	0.050.2	10/11/04	Matrix: ESOIL
Antimony	0.050	mg/L	0.006		Extraction: MWMP
Arsenic	<0.050*	mg/L	0.05	10/11/04	
Barium	0.0270	mg/L	2.0	10/11/04	
Beryllium	<0.010*	mg/L	0.004	10/11/04	MWMP EXTRACTION PARAMETERS
Bismuth		mg/L	-		
Boron	<0.20*	mg/L		10/11/04	Extraction Fluid pH: 4.83
Cadmium	0.311	mg/L	0.005	10/11/04	Final fluid pH: 4.33
Calcium	164	mg/L	-	10/11/04	Sample Weight: 5244.0g
Chloride	12.0	mg/L	250400	10/08/04	
Chromium	<0.030*	mg/L	0.1	10/11/04	Feed Moisture: 4.88 %
Cobalt	0.348	mg/L	-	10/11/04	Retained Moisture: 14.54 %
Copper	67.3	mg/L	1.3	10/11/04	Extraction Time: 31 Hrs
Fluoride	15.2	mg/L	2.04.0	10/08/04	Extraction Type:
Gallium		mg/L	_		SINGLE PASS COLUMN
Iron	<0.10*	mg/L	0.30.6	10/11/04	
Lead	0.0341	mg/L	0.015	10/11/04	Analytical Results
Lithium		mg/L	_	,	are for EXTRACT
Magnesium	79.6	mg/L	125150	10/11/04	
Manganese	76.4	mg/L	0.050.1	10/11/04	
Mercury		mg/L	0.002		Acid/Base Accounting:
Molybdenum	0.0440	mg/L	-	10/11/04	
Nickel	0.110	mg/L	0.1	10/11/04	Paste pH: 4.52
Nitrate as N		mg/L	10.0		AGP: 12.8 *
pH (units)	4.33	S.U.	6.58.5	10/07/04	ANP: <0.30 *
Phosphorous	1.00	mg/L		10707701	ABP: - 12.8 *
Potassium	22.0	mg/L		10/11/04	*Tons CaCO3/kTon Material
Scandium	22.0	mg/L	_	10/11/04	TONS CACOSYRION MACEITAL
Selenium	<0.050*	mg/L	0.05	10/11/04	Sulfur Forms:
Silver	<0.0250*	mg/L mg/L	0.03	10/11/04	Sullui Folms.
Sodium	21.6	mg/L mg/L		10/11/04	TOTAL: 1.35 %
Strontium	21.0	mg/L mg/L		10/11/04	PYRITIC: 0.410 %
Sulfate	1340	mg/L	250500	10/07/04	
Thallium	<0.050*	mg/L mg/L	0.002	10/11/04	SULFATE: 0.320 % NON-EXT: 0.620 %
Tin	<0.050^		0.002	10/11/04	NON-EAT: 0.020 %
Titanium		mg/L			
TITANIUM		mg/L	- 5001000		
	<0 0250±	mg/L	15001000	10/11/04	
Vanadium	<0.0250*	mg/L		10/11/04	CATION SUM: 27.95 meq/L
WAD Cyanide	25.1	mg/L	0.2	10/11/05	ANION SUM: 29.12 meq/L
Zinc	35.1	mg/L	5.0	10/11/04	C/A BALANCE: -2.05 %

*Elevated detection limit due to matrix interference.

Alehen _Date 10/25/04

10/25/04 12:15

One Government Gulch		P.O. Box 929		Kellogg,	Idaho	83837-0929		Phone:	(208)784-1258	•	Fax: (208)783-0891
----------------------	--	--------------	--	----------	-------	------------	--	--------	---------------	---	--------------------

NDEP PROFILE II REPORT MWMP PHELPS DODGE - TYRONE GA04-TY-1-GT Sampled:

ADDITIONAL PARAMETERS

PARAMETERS	RESULTS	UNITS	STANDARDS	DATE
+2" Sieve ACIDITY Spec. Cond. ELECTRICAL COND. Eh (mV) SPEC GRAVITY +10 SPEC GRAVITY -10 Silica	7 586 2200 3.07 +359 2.12 2.15 15.3	<pre>% mg/L Ext umhos/cm mmhos/cm mV % % mg/L Ext</pre>		10/05/04 10/08/04 10/07/04 10/08/04 10/07/04 10/22/04 10/22/04 10/11/04

*Elevated detection limit due to matrix interference. Certificate: ID ID00019

Date 0/25/04 12:15

One Government Gulch . P.O. Box 929 . Kellogg, Idaho 83837-0929 . Phone: (208)784-1258 . Fax: (208)783-0891

MWMP

PHELPS DODGE -GA04 - TY - 2 - GT

NDEP PROFILE II REPORT TYRONE

Sampled:

PARAMETERS	RESULTS	UNITS	STANDARDS	DATE	Sample Receipt: 9/23/04 SVL JOB No.:113471
Alkalinity (Total)	<1.0	mg/L	_	10/07/04	SVL SAMPLE No.:414926
Aluminum	2.51	mg/L	0.050.2	10/11/04	Matrix: ESOIL
Antimony		mg/L	0.006		Extraction: MWMP
Arsenic	<0.010	mg/L	0.05	10/11/04	
Barium	0.0343	mg/L	2.0	10/11/04	
Beryllium	0.0022	mg/L	0.004	10/11/04	MWMP EXTRACTION PARAMETERS
Bismuth		mg/L	-		
Boron	0.070	mg/L	_	10/11/04	Extraction Fluid pH: 4.83
Cadmium	0.0770	mg/L	0.005	10/11/04	Final fluid pH: 4.71
Calcium	184	mg/L	_	10/11/04	Sample Weight: 5178.0g
Chloride	33.8	mg/L	250400	10/08/04	
Chromium	<0.0060	mg/L	0.1	10/11/04	Feed Moisture: 3.56 %
Cobalt	0.0810	mg/L	-	10/11/04	Retained Moisture: 15.06 %
Copper	19.7	mg/L	1.3	10/11/04	Extraction Time: 29 Hrs
Fluoride	1.84	mg/L	2.04.0	10/08/04	Extraction Type:
Gallium		mg/L	-		SINGLE PASS COLUMN
Iron	<0.020	mg/L	0.30.6	10/11/04	
Lead	<0.0050	mg/L	0.015	10/11/04	Analytical Results
Lithium		mg/L	-		are for EXTRACT
Magnesium	66.2	mg/L	125150	10/11/04	
Manganese	9.91	mg/L	0.050.1	10/11/04	
Mercury		mg/L	0.002		Acid/Base Accounting:
Molybdenum	0.0118	mg/L	-	10/11/04	
Nickel	0.043	mg/L	0.1	10/11/04	Paste pH: 5.08
Nitrate as N		mg/L	10.0		AGP: 3.75 *
pH (units)	4.71	s.u.	6.58.5	10/07/04	ANP: <0.30 *
Phosphorous		mg/L	-		ABP: - 3.75 *
Potassium	14.0	mg/L	-	10/11/04	*Tons CaCO3/kTon Material
Scandium		mg/L	-		
Selenium	<0.010	mg/L	0.05	10/11/04	Sulfur Forms:
Silver	<0.0050	mg/L	0.1	10/11/04	
Sodium	51.7	mg/L	-	10/11/04	TOTAL: 0.670 %
Strontium		mg/L	-		PYRITIC: 0.120 %
Sulfate	856	mg/L	250500	10/07/04	SULFATE: 0.250 %
Thallium	<0.010	mg/L	0.002	10/11/04	NON-EXT: 0.300 %
Tin		mg/L	_		
Titanium		mg/L	-		
TDS		mg/L	5001000		
Vanadium	<0.0050	mg/L	-	10/11/04	CATION SUM: 18.84 meq/L
WAD Cyanide		mg/L	0.2		ANION SUM: 18.87 meq/L
Zinc	11.2	mg/L	5.0	10/11/04	C/A BALANCE: -0.C8 %

Alexan

Certificate: ID ID00019

Date 10/25/04

10/25/04 12:15

One Government Gulch	P.O. Box 929	Kellogg,	Idaho	83837-0929	•	Phone: (208)784-1258	Fax: (208)783-0891

NDEP PROFILE II REPORT MWMP PHELPS DODGE - TYRONE Sampled: GA04 - TY - 2 - GT

ADDITIONAL PARAMETERS

PARAMETERS	RESULTS	UNITS	STANDARDS	DATE
+2" Sieve CO3, CaCO3 Spec. Cond. ELECTRICAL COND. Eh (mV) Alkalinity (HCO3) SPEC GRAVITY +10 SPEC GRAVITY -10 Silica	0 <1.0 1680 2.28 +349 <1.0 2.19 2.10 18.4	<pre>% mg/L Ext umhos/cm mmhos/cm mV mg/L Ext % mg/L Ext % mg/L Ext</pre>		10/05/04 10/07/04 10/07/04 10/08/04 10/07/04 10/07/04 10/22/04 10/22/04 10/11/04

Certificate: ID ID00019

Alleber Date 10/25/01

10/25/04 12:15

·· ····

One Government Gulch P.O. Box 929

Kellogg, Idaho 83837-0929
 Phone: (208)784-1258
 Fax: (208)783-0851

NDEP P

PROFILE II REPORT TYRONE

MWMP

PHELPS DODGE -GA04-TY-3-GT

Sampled:

PARAMETERS	RESULTS	UNITS	STANDARDS	DATE	Sample Receipt: 9/23/04
Alkalinity (Total)		mg/L			SVL JOB No.:113471 SVL SAMPLE No.:414927
Aluminum	535	mg/L	0.050.2	10/12/04	Matrix: ESOIL
Antimony		mg/L	0.006	,,	Extraction: MWMP
Arsenic	<0.10*	mg/L	0.05	10/11/04	
Barium	<0.020*	mg/L	2.0	10/11/04	
Beryllium	0.0210	mg/L	0.004	10/11/04	MWMP EXTRACTION PARAMETERS
Bismuth		mg/L	-		
Boron	<0.40*	mg/L	_	10/11/04	Extraction Fluid pH: 4.83
Cadmium	0.0370	mg/L	0.005	10/11/04	Final fluid pH: 2.45
Calcium	171	mg/L	-	10/11/04	Sample Weight: 5282.0
Chloride	<5.00*	mg/L	250400	10/08/04	
Chromium	<0.060*	mg/L	0.1	10/11/04	Feed Moisture: 5.64 🗧
Cobalt	1.13	mg/L	-	10/11/04	Retained Moisture: 11.16 +
Copper	420	mg/L	1.3	10/11/04	Extraction Time: 27 Hrs
Fluoride	5.37	mg/L	2.04.0	10/08/04	Extraction Type:
Gallium		mg/L	_	,,	SINGLE PASS COLUMN
Iron	1030	mg/L	0.30.6	10/11/04	
Lead	<0.050*	mg/L	0.015	10/11/04	Analytical Results
Lithium		mg/L	-		are for EXTRACT
Magnesium	86.2	mg/L	125150	10/11/04	
Manganese	73.2	mg/L	0.050.1	10/11/04	r===================================
Mercury		mg/L	0.002	., ,	Acid/Base Accounting:
Molybdenum	<0.080*	mg/L	_	10/11/04	
Nickel	0.240	mg/L	0.1	10/12/04	Paste pH: 3.25
Nitrate as N		mg/L	10.0		AGP: 63.4 *
pH (units)	2.45	s.u.	6.58.5	10/07/04	ANP: <0.30 *
Phosphorous		mg/L	-		ABP: - 63.4 *
Potassium	<10*	mg/L	-	10/11/04	*Tons CaCO3/kTon Material
Scandium		mg/L	-		
Selenium	<0.10*	mg/L	0.05	10/11/04	Sulfur Forms:
Silver	<0.050*	mg/L	0.1	10/11/04	
Sodium	<5.0*	mg/L	-	10/11/04	TOTAL: 3.03 %
Strontium		mg/L	_		PYRITIC: 2.03 %
Sulfate	7540	mg/L	250500	10/07/04	SULFATE: 0.760 %
Thallium	<0.10*	mg/L	0.002	10/11/04	NON-EXT: 0.240 %
Tin		mg/L	-		
Titanium		mg/L	-		
TDS		mg/L	5001000		
Vanadium	<0.050*	mg/L	_	10/11/04	CATION SUM: 169.89 meg/1
WAD Cyanide		mg/L	0.2		ANION SUM: 157.35 meg/L
Zinc	14.2	mg/L	5.0	10/11/04	C/A BALANCE: 3.83 %
	L	L		IL	JL

*Elevated detection limit due to matrix interference. Certificate: ID ID00019

Kekad

Date 10/25

^{10/25/04 12:15}

SVL ANALYTICAL, INC. One Government Gulch P.O. Box 929	■ Kellogg, Idaho 83837-0929 ■ Phone: (208)784-1258	■ Fax: (208)783-089
	PROFILE II REPORT	MWMP
PHELPS DODGE -	TYRONE	
GA04-TY-3-GT	Sampled:	

ADDITIONAL PARAMETERS

PARAMETERS	RESULTS	UNITS	STANDARDS	DATE
+2" Sieve ACIDITY Spec. Cond. ELECTRICAL COND. Eh (mV) SPEC GRAVITY +10 SPEC GRAVITY -10 Silica	11.85 7710 6330 11.7 +523 2.35 2.11 14.5	<pre>% mg/L Ext umhos/cm mmhos/cm mV % % mg/L Ext</pre>		10/05/04 10/08/04 10/07/04 10/08/04 10/07/04 10/22/04 10/22/04 10/11/04

*Elevated detection limit due to matrix interference. Certificate: ID ID00019

Date 10/25/04 12:15

One Government Gulch
P.O. Box 929

Kellogg, Idaho 83837-0929 Phone: (208)784-1258 Fax: (208)783-0891

NDEP PHELPS DODGE -GA04 - TY - 4 - GT

II REPORT PROFILE TYRONE

MWMP

GA04-TY-4-	GT		Samp	led:	
PARAMETERS	RESULTS	UNITS	STANDARDS	DATE	Sample Receipt: 9/23/04 SVL JOB No.:113471
Alkalinity (Total)	<1.0	mg/L	-	10/07/04	SVL SAMPLE No.:414928
Aluminum	32.3	mg/L	0.050.2	10/12/04	Matrix: ESOIL
Antimony		mg/L	0.006		Extraction: MWMP
Arsenic	<0.10*	mg/L	0.05	10/11/04	
Barium	0.0250	mg/L	2.0	10/11/04	
Beryllium	0.0330	mg/L	0.004	10/11/04	MWMP EXTRACTION PARAMETERS
Bismuth		mg/L	-		
Boron	<0.40*	mg/L	_	10/11/04	Extraction Fluid pH: 4.83
Cadmium	0.595	mg/L	0.005	10/11/04	Final fluid pH: 4.88
Calcium	282	mg/L	-	10/11/04	Sample Weight: 5067.0g
Chloride	<5.00*	mg/L	250400	10/08/04	
Chromium	<0.060*	mg/L	0.1	10/11/04	Feed Moisture: 1.34 %
Cobalt	1.52	mg/L	_	10/11/04	Retained Moisture: 8.12 %
Copper	30.3	mg/L	1.3	10/11/04	Extraction Time: 32 Hrs
Fluoride	45.3	mg/L	2.04.0	10/08/04	Extraction Type:
Gallium	13.3	mg/L		10/00/01	SINGLE PASS COLUMN
Iron	0.210	mg/L	0.30.6	10/11/04	
Lead	0.275	mg/L	0.015	10/11/04	Analytical Results
Lithium	0.273	mg/L	-	10/11/04	are for EXTRACT
Magnesium	183	mg/L	125150	10/11/04	
Manganese	775	mg/L	0.050.1	10/11/04	
Mercury	1 115	mg/L	0.002	10/11/04	Acid/Base Accounting:
Molybdenum	0.0850	mg/L	-	10/11/04	Acid/base Accounting.
Nickel	0.290	mg/L	0.1	10/12/04	Paste pH: 5.23
Nitrate as N	0.290	mg/L	10.0	10/12/04	AGP: 30.3 *
pH (units)	4.88	S.U.	6.58.5	10/07/04	ANP: <0.30 *
Phosphorous	4.00	mg/L	0.50.5	10/0//04	ABP: - 30.3 *
Potassium	17.0	mg/L		10/11/04	*Tons CaCO3/kTon Material
Scandium	1 17.0	mg/L		10/11/04	Tons Cacos/Rion Material
Selenium	<0.10*	mg/L	0.05	10/11/04	Sulfur Forms:
Silver	<0.050*	mg/L	0.1	10/11/04	Sullui Forms.
Sodium	14.3	mg/L		10/11/04	TOTAL: 1.19 %
Strontium	14.5	mg/L	-	10/11/04	PYRITIC: 0.970 %
Sulfate	3210	mg/L	250500	10/07/04	SULFATE: 0.200 %
Thallium	<0.10*	mg/L	0.002	10/11/04	NON-EXT: 0.020 %
Tin	<0.10^	mg/L mg/L	0.002	10/11/04	NON-EAT: 0.020 8
1		mg/L mg/L	-		
Titanium TDS			- 5001000		l
11	<0.050*	mg/L		10/11/04	CATION SUM: 67.77 meg/L
Vanadium	<0.050*	mg/L	0.2	10/11/04	CATION SUM: 67.77 meg/L ANION SUM: 69.17 meg/L
WAD Cyanide	158	mg/L	5.0	10/11/04	C/A BALANCE: -1.02 %
Zinc	158	mg/L	5.0	10/11/04	C/A BALANCE: -1.02 *

*Elevated detection limit due to matrix interference. Certificate: ID ID00019

Reviewed By:_____

Kern

Date 10/25 '04 10/25/04 12:15

One Government Gulch		P.O. Box 929	•	Kellogg,	Idaho	83837-0929		Phone: (208)784-1258		Fax: (208)783-0891
----------------------	--	--------------	---	----------	-------	------------	--	----------------------	--	--------------------

NDEP PROFILE II REPORT MWMP PHELPS DODGE - TYRONE GA04-TY-4-GT Sampled:

ADDITIONAL PARAMETERS

PARAMETERS	RESULTS	UNITS	STANDARDS	DATE
+2" Sieve CO3, CaCO3 Spec. Cond. ELECTRICAL COND. Eh (mV) Alkalinity (HCO3) SPEC GRAVITY +10 SPEC GRAVITY -10 Silica	18.3 <1.0 4180 6.10 +358 <1.0 2.53 2.33 7.60	<pre>% mg/L Ext umhos/cm mmhos/cm mV mg/L Ext % mg/L Ext % mg/L Ext</pre>		10/05/04 10/07/04 10/07/04 10/08/04 10/07/04 10/07/04 10/22/04 10/22/04 10/11/04

*Elevated detection limit due to matrix interference. Certificate: ID ID00019

Albert Date 10/25 04 0/25/04 12:15

One Government Gulch
P.O. Box 929
Kellogg, Idaho 83837-0929
Phone: (208)784-1258
Fax: (208)783-0897

PHELPS DODGE -GA04 - TY - 5 - GT

II REPORT NDEP PROFILE TYRONE

Sampled:

MWMP

PARAMETERS	RESULTS	UNITS	STANDARDS	DATE	Sample Receipt: 9/23/04 SVL JOB No.:113471
Alkalinity (Total)		mg/L			SVL JOB NO.:113471 SVL SAMPLE No.:414929
Aluminum	380	mg/L	0.050.2	10/12/04	Matrix: ESOIL
Antimony		mg/L	0.006		Extraction: MWMP
Arsenic	<0.20*	mg/L	0.05	10/11/04	
Barium	<0.040*	mg/L	2.0	10/11/04	
Beryllium	0.0480	mg/L	0.004	10/11/04	MWMP EXTRACTION PARAMETER
Bismuth	0.0100	mg/L	-	10/11/01	
Boron	<0.80*	mg/L	_	10/11/04	Extraction Fluid pH: 4.83
Cadmium	1.35	mg/L	0.005	10/11/04	Final fluid pH: 3.33
Calcium	315	mg/L	-	10/11/04	Sample Weight: 5311.0
Chloride	12.0	mg/L	250400	10/08/04	Bampie Height. 5571.0
Chromium	<0.120*	mg/L	0.1	10/11/04	Feed Moisture: 6.22
Cobalt	4.55	mg/L	<u> </u>	10/11/04	Retained Moisture: 14.68
Copper	2110	mg/L mg/L	1.3	10/11/04	Extraction Time: 27 Hrs
Fluoride	14.9	mg/L mg/L	2.04.0	10/08/04	Extraction Type:
Gallium	14.5	mg/L mg/L	2.04.0	10/00/04	SINGLE PASS COLUM
Iron	15.2	mg/L	0.30.6	10/11/04	
	0.320	mg/L mg/L	0.015	10/11/04	Analytical Results
Lead Lithium	0.520	mg/L	0.015	10/11/04	are for EXTRACT
	193	mg/L	125150	10/11/04	
Magnesium	444	mg/L mg/L	0.050.1	10/11/04	
Manganese	444	mg/L mg/L	0.002	10/11/04	Acid/Base Accounting:
Mercury	<0.160*	mg/L mg/L	0.002	10/11/04	Acid/Base Accounting.
Molybdenum	0.980	mg/L mg/L	0.1	10/12/04	Paste pH: 3.92
Nickel	0.960		10.0	10/12/04	AGP: 22.8 *
Nitrate as N	2 22	mg/L	6.58.5	10/07/04	AGP: 22.8 ANP: <0.30 *
pH (units)	3.33	S.U.	0.00.0	10/0//04	ABP: - 22.8 *
Phosphorous	20.4	mg/L	_	10/11/04	*Tons CaCO3/kTon Materia
Potassium	<20*	mg/L	-	10/11/04	Alons CacO3/kion Materia.
Scandium		mg/L		10/11/04	Sulfur Forms:
Selenium	<0.20*	mg/L	0.05		Sullur Forms:
Silver	0.120	mg/L	0.1	10/11/04	TOTAL: 1.34 %
Sodium	<10*	mg/L	-	10/11/04	TOTAL: 1.34 % PYRITIC: 0.730 %
Strontium		mg/L		10/07/04	
Sulfate	8300	mg/L	250500	10/07/04	
Thallium	<0.20*	mg/L	0.002	10/11/04	NON-EXT: 0.060 %
Tin		mg/L	-		
Titanium		mg/L	-	11	
TDS		mg/L	5001000		
Vanadium	<0.10*	mg/L	-	10/11/04	CATION SUM: 154.03 meg/
WAD Cyanide		mg/L	0.2		ANION SUM: 174.01 meg/
Zinc	158	mg/L	5.0	10/11/04	C/A BALANCE: -6.09 %

*Elevated detection limit due to matrix interference. Certificate: ID ID00019

leren

10/25/04 12:15

One Government Gulch	•		•	Kellogg,	Idaho	83837-0929		Phone: (208)784-1258	Fax: (208)783-0891
		NDEP	F	ROF	ILE	E II	R	EPORT	 MWMP
PHELPS	DC	DGE -	T	YRONI	E				

GA04-TY-5-GT

Sampled:

ADDITIONAL PARAMETERS

PARAMETERS	RESULTS	UNITS	STANDARDS	DATE
+2" Sieve ACIDITY Spec. Cond. ELECTRICAL COND. Eh (mV) SPEC GRAVITY +10 SPEC GRAVITY -10 Silica	9.1 6120 7700 6.68 +427 2.64 2.31 11.4	<pre>% mg/L Ext umhos/cm mmhos/cm mV % mg/L Ext</pre>		10/05/04 10/08/04 10/07/04 10/08/04 10/07/04 10/22/04 10/22/04 10/11/04

*Elevated detection limit due to matrix interference. Certificate: ID ID00019

Date 10/25/01 12:15

One Government Gulch . P.O. Box 929 . Kellogg, Idaho 83837-0929 . Phone: (208)784-1258 . Fax: (208)783-0891

TYRONE

NDEP PROFILE II REPORT PHELPS DODGE -GA04 - TY - 6 - GT

Sampled:

Alkalinity (Total) Aluminum Antimony	598	mg/L	۱ <u>۱</u> ۱		
Antimony	598	шд/ь	-		SVL JOB No.:113471 SVL SAMPLE No.:414930
	220	mg/L	0.050.2	10/12/04	Matrix: ESOIL
. – .		mg/L	0.006		Extraction: MWMP
Arsenic	<0.10*	mg/L	0.05	10/11/04	
Barium	<0.020*	mg/L	2.0	10/11/04	
Beryllium	0.0400	mg/L	0.004	10/11/04	MWMP EXTRACTION PARAMETERS
Bismuth		mg/L	-		
Boron	<0.40*	mg/L	-	10/11/04	Extraction Fluid pH: 4.83
Cadmium	1.17	mg/L	0.005	10/11/04	Final fluid pH: 3.14
Calcium	290	mg/L	-	10/11/04	Sample Weight: 5324.0g
Chloride	7.16	mg/L	250400	10/08/04	
Chromium	<0.060	mg/L	0.1	10/11/04	Feed Moisture: 5.48 %
Cobalt	2.31	mg/L	-	10/11/04	Retained Moisture: 14.82 %
Copper	780	mg/L	1.3	10/11/04	Extraction Time: 27 Hrs
Fluoride	19.2	mg/L	2.04.0	10/08/04	Extraction Type:
Gallium		mg/L	-		SINGLE PASS COLUMN
Iron	4.60	mg/L	0.30.6	10/11/04	
Lead	0.0900	mg/L	0.015	10/11/04	Analytical Results
Lithium		mg/L	-		are for EXTRACT
Magnesium	319	mg/L	125150	10/11/04	
Manganese	232	mg/L	0.050.1	10/11/04	
Mercury		mg/L	0.002		Acid/Base Accounting:
Molybdenum	0.103	mg/L	-	10/11/04	
Nickel	0.660	mg/L	0.1	10/12/04	Paste pH: 3.72
Nitrate as N		mg/L	10.0		AGP: 11.9 *
pH (units)	3.14	s.u.	6.58.5	10/07/04	ANP: <0.30 *
Phosphorous		mg/L	-		ABP: - 11.9 *
Potassium	<10*	mg/L	-	10/11/04	*Tons CaCO3/kTon Material
Scandium		mg/L	-		
Selenium	<0.10*	mg/L	0.05	10/11/04	Sulfur Forms:
Silver	<0.050*	mg/L	0.1	10/11/04	
Sodium	9.00	mg/L	-	10/11/04	TOTAL: 1.02 %
Strontium		mg/L	-		PYRITIC: 0.380 %
Sulfate	7700	mg/L	250500	10/07/04	SULFATE: 0.490 %
Thallium	<0.10*	mg/L	0.002	10/11/04	NON-EXT: 0.150 %
Tin		mg/L	-		
Titanium		mg/L	-		
TDS		mg/L	5001000		
Vanadium	<0.050*	mg/L	-	10/11/04	CATION SUM: 160.28 meg/L
WAD Cyanide		mg/L	0.2		ANION SUM: 161.52 meg/L
Zinc	118	mg/L	5.0	10/11/04	C/A BALANCE: -0.39 %

*Elevated detection limit due to matrix interference. Certificate: ID ID00019

Reviewed By: _____ Date 10/15/01

10/25/04 12:15

MWMP

One Government Gulch	■ P.O. B	ox 929			83837-0929			•	Fax: (208)783-0891
	ND	EP	P				EPORT		MWMP
PHELPS	DODGE		$\mathbf{T}\mathbf{Y}$	RONI					
GA04-TY	-6-GT	•			\$ Sampl	eċ	1:		

ADDITIONAL PARAMETERS

PARAMETERS	RESULTS	UNITS	STANDARDS	DATE
+2" Sieve ACIDITY Spec. Cond. ELECTRICAL COND. Eh (mV) SPEC GRAVITY +10 SPEC GRAVITY -10 Silica	8.1 5960 7080 8.31 +463 2.33 2.11 13.6	% mg/L Ext umhos/cm mW % % mg/L Ext		10/05/04 10/08/04 10/07/04 10/08/04 10/07/04 10/22/04 10/22/04 10/11/04

*Elevated detection limit due to matrix interference. Certificate: ID ID00019

Date 10/25/04 10/25/04 12:15

One Government Gulch • P.O. Box 929

Kellogg, Idaho 83837-0929
 Phone: (208)784-1258
 Fax: (208)783-0891

NDEP PHELPS DODGE -GA04 - TY - 7 - GT

PROFILE ΙI REPORT TYRONE

Sampled:

MWMP

					[]
PARAMETERS	RESULTS	UNITS	STANDARDS	DATE	Sample Receipt: 9/23/04 SVL JOB No.:113471
Alkalinity (Total)		mg/L	_		SVL SAMPLE No.:414931
Aluminum	1080	mg/L	0.050.2	10/12/04	Matrix: ESOIL
Antimony		mg/L	0.006	, , , , , , , , , , ,	Extraction: MWMP
Arsenic	<0.050*	mg/L	0.05	10/11/04	
Barium	0.0180	mg/L	2.0	10/11/04	
Beryllium	0.0650	mg/L	0.004	10/11/04	MWMP EXTRACTION PARAMETERS
Bismuth	0.0050	mg/L	0.004	10/11/04	
Boron	<0.20*	mg/L		10/11/04	Extraction Fluid pH: 4.83
Cadmium	0.226	mg/L	0.005	10/11/04	Final fluid pH: 2.52
Calcium	401	mg/L	0.005	10/11/04	Sample Weight: 5403.0g
Chloride	<5.00*	mg/L	250400	10/08/04	Sample weight. 5405.0g
	0.163	mg/L mg/L	0.1	10/11/04	Feed Moisture: 8.06 %
Chromium Cobalt	2.54	mg/L mg/L	0.1	10/11/04	Retained Moisture: 14.24 %
11 1	1		1.3	10/11/04	
Copper	454	mg/L	11 1	10/11/04	Extraction Time: 30 Hrs
Fluoride	32.9	mg/L	2.04.0	10/08/04	Extraction Type:
Gallium	220	mg/L	-	10 (11 (0)	SINGLE PASS COLUMN
Iron	239	mg/L	0.30.6	10/11/04	
Lead	0.0442	mg/L	0.015	10/11/04	Analytical Results
Lithium		mg/L	-		are for EXTRACT
Magnesium	196	mg/L	125150	10/11/04	
Manganese	219	mg/L	0.050.1	10/11/04	
Mercury		mg/L	0.002		Acid/Base Accounting:
Molybdenum	0.0570	mg/L	-	10/11/04	
Nickel	1.14	mg/L	0.1	10/12/04	Paste pH: 3.11
Nitrate as N		mg/L	10.0		AGP: 20.3 *
pH (units)	2.52	S.U.	6.58.5	10/07/04	ANP: <0.30 *
Phosphorous		mg/L	-		ABP: - 20.3 *
Potassium	<5.0*	mg/L	-	10/11/04	*Tons CaCO3/kTon Material
Scandium		mg/L	-		
Selenium	<0.050*	mg/L	0.05	10/11/04	Sulfur Forms:
Silver	0.0266	mg/L	0.1	10/11/04	
Sodium	<2.5*	mg/L	-	10/11/04	TOTAL: 1.38 %
Strontium		mg/L	-		PYRITIC: 0.650 %
Sulfate	10700	mg/L	250500	10/07/04	SULFATE: 0.590 %
Thallium	<0.050*	mg/L	0.002	10/11/04	NON-EXT: 0.140 %
Tin		mg/L	-		
Titanium		mg/L	-		
TDS	·	mg/L	5001000		
Vanadium	<0.0250*	mg/L	_	10/11/04	CATION SUM: 249.17 meg/L
WAD Cyanide		mg/L	0.2		ANION SUM: 225.50 meg/L
Zinc	67.9	mg/L	5.0	10/11/04	C/A BALANCE: 4.99 %
	L	<u> </u>			

*Elevated detection limit due to matrix interference. Certificate: ID ID00019

Stelener Date 10/25/04

10/25/04 12:15

One Government Gulch	P.O. Box 929	•	Kellogg,	Idaho	83837-0929		Phone: (208)784-1258		Fax: (203)783-0891
----------------------	--------------	---	----------	-------	------------	--	----------------------	--	--------------------

NDEP PROFILE II REPORT MWMP PHELPS DODGE -TYRONE GA04 - TY - 7 - GTSampled:

ADDITIONAL PARAMETERS

PARAMETERS	RESULTS	UNITS	STANDARDS	DATE
+2" Sieve ACIDITY Spec. Cond. ELECTRICAL COND. Eh (mV) SPEC GRAVITY +10 SPEC GRAVITY -10 Silica	1.1 10700 8730 4.61 +542 2.32 2.11 17.1	<pre>% mg/L Ext umhos/cm mmhos/cm mV % % mg/L Ext</pre>		10/05/04 10/08/04 10/07/04 10/08/04 10/07/04 10/22/04 10/22/04 10/11/04

*Elevated detection limit due to matrix interference.

Certificate: ID ID00019

Date 10/25/001

10/25/04 12:15

One Government Gulch
P.O. Box 929

Kellogg, Idaho 83837-0929

Phone: (208)784-1258 Fax: (208)783-0891

NDEP

ΙI PROFILE REPORT MWMP

TYRONE PHELPS DODGE -GA04-TY-8-GT Sampled: RESULTS UNITS STANDARDS DATE Sample Receipt: 9/23/04 PARAMETERS SVL JOB No.:113471 SVL SAMPLE No.:414932 Alkalinity (Total) mq/L 0.05--0.2 10/12/04 Matrix: ESOIL Aluminum 804 mg/L 0.006 Extraction: MWMP Antimony mg/L 10/11/04 Arsenic <0.10* mg/L 0.05 Barium <0.020* mg/L 2.0 10/11/04 10/11/04 MWMP EXTRACTION PARAMETERS Beryllium 0.0290 mg/L 0.004 Bismuth mg/L -10/11/04 Extraction Fluid pH: 4.83 <0.40* Boron mg/L ---Final fluid pH: 2.73 0.005 10/11/04 Cadmium 0.427 mg/L Sample Weight: 5294.0g Calcium 75.3 mg/L ----10/11/04 250--400 10/08/04 Chloride 6.40 mg/L 0.188 0.1 10/11/04 Feed Moisture: 5.88 % Chromium mg/L 10/11/04 Retained Moisture: 14.68 % Cobalt 1.70 mg/L _ 1.3 Extraction Time: 30 Hrs 10/11/04 Copper 665 mg/L 2.0--4.0 10/08/04 Extraction Type: Fluoride 5.60 mg/L SINGLE PASS COLUMN Gallium mg/L 0.3--0.6 10/11/04 Iron 261 mg/L 0.015 Analytical Results Lead <0.050* mg/L 10/11/04 Lithium are for EXTRACT mg/L .-125--150 10/11/0484.6 Magnesium mg/L 67.3 0.05--0.1 10/11/04 Manganese mg/L Acid/Base Accounting: 0.002 Mercury mg/L 10/11/04 Molybdenum <0.080* mg/L ----0.620 0.1 10/12/04 Paste pH: 2.72 Nickel ma/L 10.0 30.0 * Nitrate as N mg/L AGP: 10/07/04 ANP: <0.30 * 6.5--8.5 2.73 S.U. pH (units) ABP: - 30.0 * mg/L Phosphorous 10/11/04 *Tons CaCO3/kTon Material <10* _ Potassium mg/L Scandium ma/L <0.10* 0.05 10/11/04 Sulfur Forms: Selenium mg/L Silver <0.050* 0.1 10/11/04 mg/L <5.0* 10/11/04 TOTAL: 1.69 % Sodium mg/L _ 0.960 % PYRITIC: Strontium mg/L ---0.650 % Sulfate 7210 mg/L 250--500 10/07/04 SULFATE: 0.080 % Thallium <0.10* mg/L 0.002 10/11/04 NON-EXT:

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

*Elevated detection limit due to matrix interference. Certificate: ID ID00019

64.5

0.281

Reviewed By:

Tin

TDS

Zinc

Titanium

Vanadium

WAD Cyanide

Series

10/11/04

10/11/04

500--1000

0.2

5.0

Date 10/25/04 12:15

CATION SUM: 142.95 meg/L

C/A BALANCE: -2.63 %

ANION SUM: 150.67 meg/L

One Government Gulch			929		Kellogg,	Idaho	83837-0929	•	Phone: (208)784-1258	•	Fax: (208)783-0891
		NDE	Ρ	P	ROF	ILI	E II	R	EPORT		MWMP
PHELPS	DC	DGE		T	RON	E					

Sampled: GA04 - TY - 8 - GT

ADDITIONAL PARAMETERS

PARAMETERS	RESULTS	UNITS	STANDARDS	DATE
+2" Sieve ACIDITY Spec. Cond. ELECTRICAL COND. Eh (mV) SPEC GRAVITY +10 SPEC GRAVITY -10 Silica	7.7 6610.7 6330 7.72 +431 2.49 2.20 6.40	<pre>% mg/L Ext umhos/cm mmhos/cm mV % mg/L Ext</pre>		10/05/04 10/08/04 10/07/04 10/08/04 10/07/04 10/22/04 10/22/04 10/11/04

*Elevated detection limit due to matrix interference. Certificate: ID ID00019

Reviewed By:____

10/25/01 Date

10/25/04 12:15

Quality Control Report Part I Prep Blank and Laboratory Control Sample

Client :PHELPS DODGE - TYRONE SVL JOB No: 13471 Analysis													
Analyte	Method	Matrix	Units	Prep Blank	True	-LCS-Found	LCS %R	Date					
		ESOIL	mg/L Ext	<0.0050	1.00	0.992	99.2	1011/04					
Aluminum	200.7	ESOIL	mg/L Ext	<0.020	1.00	0.999	99.9	12 1/04					
Arsenic	200.7	ESOIL	mg/L Ext	<0.010	1.00	0.985	98.5	1: 1/04					
Boron	200.7	ESOIL	mg/L Ext	<0.040	1.00	1.02	102.0	1011/04					
Barium	200.7	ESOIL	mg/L Ext	<0.0020	1.00	1.00	100.0	10 11/04					
Beryllium	200.7	ESOIL	mg/L Ext	<0.0020	1.00	1.00	100.0	10:11/04					
	200.7	ESOIL	mg/L Ext	<0.040	20.0	20.4	102.0	10/11/04					
	200.7	ESOIL	mg/L Ext	<0.0020	1.00	1.00	100.0	10/11/04					
Cobalt	200.7	ESOIL	mg/L Ext	<0.0060	1.00	0.993	99.3	10/11/04					
Chromium	200.7	ESOIL	mg/L Ext	<0.0060	1.00	1.01	101.0	12/11/04					
Copper	200.7	ESOIL	mg/L Ext	<0.0030	1.00	0.995	99.5	10/11/04					
Iron	200.7	ESOIL	mg/L Ext	<0.020	10.0	9.67	96.7	10/11/04					
Potassium	200.7	ESOIL	mg/L Ext	<1.0	30.0	30.5	101.7	10 11/04					
Magnesium	200.7	ESOIL	mg/L Ext	<0.040	20.0	20.1	100.5	10 11/04					
Manganese	200.7	ESOIL	mg/L Ext	<0.0020	1.00	1.02	102.0	10 11/04					
Molybdenum	200.7	ESOIL	mg/L Ext	<0.0080	1.00	1.04	104.0	11:11/04					
Sodium	200.7	ESOIL	mg/L Ext	<0.50	20.0	20.2	101.0	12-11/04					
Nickel	200.7	ESOIL	mg/L Ext	<0.010	1.00	0.922	92.2	12 11/04					
Lead	200.7	ESOIL	mg/L Ext	<0.0050	1.00	1.00	100.0	12 11/04					
Selenium	200.7	ESOIL	mg/L Ext	<0.010	1.00	0.950	95.0	12/11/04					
Silica	200.7	ESOIL	mg/L Ext	<0.171	10.7	11.2	104.7	1: 11/04					
Thallium	200.7	ESOIL	mg/L Ext	<0.010	1.00	0.991	99.1	11/04					
Vanadium	200.7	ESOIL	mg/L Ext	<0.0050	1.00	1.04	104.0	1: 11/04					
Zinc	200.7	ESOIL	mg/L Ext	<0.0050	1.00	1.01	101.0	12/11/04					
Chloride	300.0	ESOIL	mg/L Ext	<0.20	5.00	4.99	99.8	10:07/04					
Fluoride	300.0	ESOIL	mg/L Ext	<0.10	2.50	2.67	106.8	11.07/04					
Sulfate, SO4	300.0	ESOIL	mg/L Ext	<0.30	10.0	10.0	100.0	11:07/04					
ALKALINITY	2320B	ESOIL	mg/L Ext	<1.0	47.0	52.4	111.5	11/07/04					
На	150.1	ESOIL	2	5.59	5.40	5.37	99.4	10/07/04					
Spec. Cond.	120.1	ESOIL	umhos/cm		298	290	97.3	101/04					
ELECTRICAL COND.			mmhos/cm	<0.010	0.298	0.292	98.0	10/08/04					
Eh (mV)	2580	ESOIL	mV	N/A	+228	+228	100.0	11/07/04					
Acid Generating	EPA600	ESOIL	TCaCO3/k	N/A	9.36	9.63	102.9	10.07/04					
Acid Neut. Pot.	EPA600	1	TCaCO3/k		52.0	51.4	98.8	11/07/04					
pH Paste	ASA M9			5.50	8.45	8.34	98.7	12/07/04					
Non-Ext Sulfur,S		ESOIL	ક	<0.010	N/A		N/A	10/07/04					
Pyritic Sulfur,S		ESOIL	9	<0.010	N/A		N/A	10:07/04					
Sulfate Sulfur,S	LECO	ESOIL	8	<0.010	N/A		N/A	12/07/04					
Total Sulfur, S	LECO	ESOIL	8	<0.010	0.298	0.310	104.0	15/07/04					
ACIDITY	2310B	ESOIL	mg/L Ext		0.50	0.526	105.2	12/08/04					

LEGEND:

3

LCS = Laboratory Control Sample

LCS %R = LCS Percent Recovery

N/A = Not Applicable

T

Quality Control Report Part II Duplicate and Spike Analysis

Client :PH	ELPS						_		SVI		: 113471
	J) (+ -		QC SAMPL		Duplicate of		SD-T		atrix Spike		Analysis
Test Metho	a Mt3	×	Units	Result	Found	R	PD%	Result	SPK ADD	%R	Date
Ag 200.			mg/L Ex	<0.0250*	<0.0250*		UDL	4.68	5.00	93.6	10/11/04
Al 200.			mg/L Ex	15.0	16.2		7.7	15.5	1.00	R >4S	10/11/04
As 200.			mg/L Ex	<0.050*	<0.050*		UDL	0.995	1.00	99.5	10/11/04
в 200.			mg/L Ex	<0.20*	<0.20*		UDL	0.940	1.00	94.0	10/11/04
Ba 200.			mg/L Ex	0.0270	0.0270		0.0	1.05	1.00	102.3	10/11/04
Be 200.			mg/L Ex	<0.010*	<0.010*	1	UDL	0.854	1.00	85.4	10/11/04
Ca 200.			mg/L Ex	164	188		3.6	178	20.0	R >4S	10/11/04
Cd 200.			mg/L Ex	0.311	0.312		0.3	1.36	1.00	104.9	10/11/04
Co 200.			mg/L Ex	0.348	0.350		0.6	1.38	1.00	103.2	10/11/04
Cr 200.			mg/L Ex	<0.030*	<0.030*		UDL	1.04	1.00	104.0	10/11/04
Cu 200.			mg/L Ex	67.3	68.2		1.3	64.5	1.00	R >4S	10/11/04
Fe 200.			mg/L Ex	<0.10*	<0.10*		UDL	8.86	10.0	88.6	10/11/04
К 200.	7 E		mg/L Ex	22.0	24.8	1	2.0	46.8	30.0	82.7	10/11/04
Mg 200.		1	mg/L Ex	79.6	90.8	1	3.1	178	100	98.4	10/11/04
Mn 200.		1	mg/L Ex	76.4	86.9	1	2.9	75.2	1.00	R >4S	10/11/04
Mo 200.	7 E	1	mg/L Ex	0.0440	0.0420		4.7	1.09	1.00		10/11/04
Na 200.	7 E	1	mg/L Ex	21.6	24.6	1	3.0	38.1	20.0		10/11/04
Ni 200.	7 E	1	mg/L Ex	0.110	0.102		7.5	1.08	1.00	97.0	10/11/04
Pb 200.	7 E	1	mg/L Ex	0.0341	<0.0250*	20	0.0	1.08	1.00		10/11/04
Se 200.		1	mg/L Ex	<0.050*	<0.050*		UDL	0.991	1.00	99.1	10/11/04
SiO2 200.		1	mg/L Ex	15.3	16.6		8.2	25.1	10.7	91.6	10/11/04
Tl 200.	7 E	1	mg/L Ex	<0.050*	<0.050*		UDL	1.05	1.00	105.0	10/11/04
V 200.	7 E	1	mg/L Ex	<0.0250*	<0.0250*		UDL	1.05	1.00	105.0	10/11/04
Zn 200.		1	mg/L Ex	35.1	35.5		1.1	34.9	1.00	R >4S	10/11/04
Cl 300,	0 E	1	mg/L Ex	12.0	11.4		5.1	22.7	10.0	107.0	10/08/04
F 300.		1	mg/L Ex	15.2	15.4		1.3	24.6	10.0	94.0	10/08/04
SO4 300.	0 E	1	mg/L Ex	1340	1350		0.7	1850	500	102.0	10/07/04
рН 150.	1 E	1		4.33	4.34		0.2	N/A	N/A	N/A	10/07/04
COND 120.	1 E	1	umhos/c	2200	2210		0.5	N/A	N/A	N/A	10/07/04
EC ASA N	19 E	1	mmhos/c	3.07	3.08		0.3	N/A	N/A	N/A	10/08/04
Eh 258	30 E	1	mV	+359	+358		0.3	N/A	N/A	N/A	10/07/04
ABP EPA60	0 E	1	TCaCO3/	-12.8	-12.8		0.0	N/A	N/A	N/A	10/07/04
AGP EPA6)0 E	1	TCaCO3/	12.8	12.8		0.0	N/A	N/A	N/A	10/07/04
ANP EPA60	0 E	1	TCaCO3/	<0.30	<0.30		UDL	N/A	N/A	N/A	10/07/04
pH PstASA N	19 E	1		4.62	4.58		0.9	N/A	N/A	N/A	10/07/04
	20 E	1	ક	0.620	0.630		1.6	N/A	N/A	N/A	10/07/04
	CO E	1	ક	0.410	0.410		0.0	N/A	N/A	N/A	10/07/04
S-SO4 LEG	CO E	1	ક	0.320	0.320		0.0	N/A	N/A	N/A	10/07/04
	COE	1		1.35	1.36		0.7	1	N/A	N/A	10/07/04
	B E	1	mg/L Ex	586	597		1.9	N/A	N/A	N/A	10/08/04
				1	1					1	l

LEGEND:

RPD% = (|SAM - DUP|/((SAM + DUP)/2) * 100) UDL = Both SAM & DUP not detected. *Result or *Found: Interference required dilution. RPD% = (|SPK - MSD|/((SPK + MSD)/2) * 100) M in Duplicate/MSD column indicates MSD.

SPIKE ADD column, A = Post Digest Spike; %R = Percent Recovery N/A = Not Analyzed; R > 4S = Result more than 4X the Spike Added QC limits for MS recoveries apply only if the spike is at least 1/4 the concentration of the analyte in the sample.

Control limits for the RPD apply only if the concentration of the analyte in the sample is at least five times the reporting limit. QC Sample 1: SVL SAM No.: 414925 Client Sample ID: GA04-TY-1-GT

Requested Analyses: XRF Analysis, Major elements XRF Analysis, Trace Elements

SVL will select another 250 - 500 gram subsplit for mineralogical characterization and ship to:

Pittsburg Mineral and Environmental Technology Inc. (PMET) 700 Fifth Avenue Néw Brighton, PA 15066-1837 Tel. 724-843-5000 Fax 724-843-5353 pmet@pmet-inc.com

Requested Analyses:

- Quanititative X-ray Diffraction (XRD) and IR Mineralogical Analyses
 - o Bulk sample mineralogy
 - Amorphous and semi-crystalline material content
 - o Clay fraction mineralogy

The analytical labs will return any remaining sample masses to the point of origin (Tyrone Mine).

If possible, the electronic data should be in a **flat file format**. For more detail on this specification please contact Greystone's database specialist John Rodgers at 303-544-0043 (jrodgers@greystone.us).

GA04-TY-3-GE is Blind Puplicate" Pom 10/15/0-1

	DATE,TIME FAX NO./NA DURATION PAGE(S) RESULT MCDE	ME			09/25 13:21 915053885773 00:20 01 0K FINE ECM	TIME : 09/25/23 NAME : SVL ANAI FAX : 2087830 TEL : 2097841 SER.# : BROF3J4	804 13:22 _YTICAL 891 253 96971
Page 1 of 1	SVL JOB No: 113471 Received: 9/23/04 Expected Due date: 10/07/04						disposal options. these samples. 9/23/04 16:47
SVL ANALYTICAL, INC. Government Gulch - Kellogg, 1D 83837-0929	SAMPLE RECEIPT CONFIRMATION	nc By Received Sample Comments	9/23/04 9/23/04 9/23/04 9/23/04	9/23/04 9/23/04 9/23/04	'Container temp not measured upon receipt. NST CODING INFORMATION MPLE LABEL IDS BND WITH "GC" NTALNERS SENT, SVL RECEIVED 1 BUCKET EACH		after job completion. , then you will receive a letter requesting di you have questions regarding the receipt of th

TRANSMISSION VERIFICATION REPORT

																									24	171	
					<u> </u>	Ch	nair	10	fC	ust	ody	R	Reco	ord													
		Pam	Pinson0915	04-		<u>.</u>	.													<u> </u>						Page 1 of 1	
Project Name							ł	12 A	174	I- T	Y-7	1-1	GC	4	201-	+	Ġ Z	~ "j	3/i	nil	Pu	plica	te	Ar	naly	ical Parameters	<u>s</u>
C	P 1341	Cond	dition 84		Project Mar	nager		Un	0	'	ر آ	•				2	9.3r	ι	<i>.</i>			/	Chi	no Mi	ines (tical Parameters ^{Company}	
Project Locatio	n:		PD Tyrone	1 CStockpile	Chuck T	hompson												101	15 /	04			ELV	VD.			
Tom Wythe	es with	n Gol	der, Inc	•			ins	stru	ctio	ns a	ccor	din	ig to	Du	sty E	Earl	ey F	°O#	043	-257	2		P.O.	Box	7		
	r							·		Hurley, N.M.																	
Date	time	Grab	(Fie	ld ID)		Containers	1	2	3	4	5	6	7	8	9 1	10 ·	11 1	2 1	3 14	1 15	5 16	17	18	19	20	Chain of Custody S	Seal#
GAOY-Ty-			<u> </u>	+ 10	Soil/Sed		X					-+		-+		-+-									┟	ALLST	
				-Ty-1-GT -2-2	Soil/Sed		X X							-						+	+					All Sam	pre
				-3- "	Soil/Sed Soil/Sed	5	$\frac{\lambda}{\chi}$							+	-+-										<u> </u>	End in	
			18		Soil/Sed	rdraf char	Ŷ			+		-+	-+-					-+-		+-		+			†		
				-5- 11	Soil/Sed	2	X						\rightarrow	-				-		+-		1		<u> </u>	<u> </u>	GC Inste	ad
			11	-6-n	Soil/Sed	and a	Х																				
			11	7 . "		B	Х					_	_													CRS	
			<u> </u>	8 11	<u>ر، ز</u>	2	$\mathbf{\Lambda}$					_										<u> </u>			L	CRS CRS 9/23/0	<u>oy</u>
					<u> </u>	ļ						_									4		<u> </u>				
					·····					-+												<u> </u>					
												-+															
																- -			+	+		+					
										-+					-+-		-			+	+					· · · · · · · · · · · · · · · · · · ·	
										-+						1				+	1	+					
										-†										1			1				
																_				\downarrow						<u> </u>	
																				-		<u> </u>				<u> </u>	
										+								_			+						
			····			├			_	-+		-+						+	+	+							
					<u> </u>					+		-							+	+							
					······································					-+		-	-+-	+				+-	+	+	+	+					
										-+		+					-		+	1-	+	<u> </u>	$\left - \right $				
·		k.		<i></i>		··					l												Spe	cial	Instr	ructions	
		nature	s			& Time	, vt						Shi	ppin	g De	tails											
Relinquished by	: Par	n (m	201	9/15	104 4:00	Meth	nod o	of Sh	ipme	ent:	Fre	eight														
Received by:	LAVIE		Molin	an /6/				ill No															As s	<u>pe</u> cifi	ied b'	y Drummond Early,	
Relinquished by	<i>/</i> :						Lab	Add	resse	es:	ATTN	I: C	hris	Mve	r											vironmental Consulta	<u>ants</u>
Received for La	boratory	by:					Den	ver S	oils	Lab						hone	:							DÆ	, 1	1	
Z Pelko	ously				9-23.0	Y		50 W.			r. Sui 228	te 2	:06		Fa	ax:								60	103	RT'	