

REPORT

Appendix E - Mine Reclamation and Closure Plan

Copper Flat Mine

Submitted to:

Mr. Stephen Crosby
Sr. Executive Vice President

New Mexico Copper Corp
THEMAC Resources Group Ltd.
Copper Flat Mine Project
4253 Montgomery Blvd. NE, Suite 130
Albuquerque, NM 87109

Submitted by:

WSP USA Inc.

177 N. Church Avenue, Ste. 1105, Tucson, AZ 85701

520-888-8818

US0035412.9417-10-0000-00-REP-001

November 26, 2025

Distribution List

2 Copies – Mining and Minerals Division

2 Copies – New Mexico Environment Department

3 Copies – New Mexico Copper Corporation

2 Copies – WSP USA Inc.

Table of Contents

1.0 INTRODUCTION	1
2.0 RECLAMATION AND CLOSURE PLAN DESIGN CRITERIA	3
2.1 Existing Waste Rock Stockpiles	10
2.1.1 Components To Remain At Closure	11
2.1.2 EWRSP Reclamation and Closure Plan	11
2.2 Proposed Waste Rock Stockpiles	12
2.2.1 Components To Remain At Closure	13
2.2.2 WRSP Reclamation and Closure Plan.....	13
2.3 Tailings Storage Facility (Dry Stack).....	14
2.3.1 Components To Remain At Closure	16
2.3.2 TSF Reclamation and Closure Plan.....	16
2.4 Open Pit	17
2.4.1 Components to Remain at Closure	18
2.4.2 Mine Pit Reclamation and Closure Plan	18
2.5 Plant Area.....	19
2.5.1 Components To Remain At Closure	19
2.5.2 Plant Process Area Reclamation and Closure Plan	20
2.6 Surface Impoundments	21
2.6.1 Components to Remain at Closure	21
2.6.2 Surface Impoundment Reclamation and Closure Plan.....	21
2.7 Growth Media Stockpiles	22
2.7.1 Growth Media Stockpile Reclamation and Closure Plan	23
2.8 Ancillary Facilities and Structures	24
2.8.1 Components to Remain At Closure	24
2.8.2 Ancillary Facilities and Structures Reclamation and Closure Plan	25
2.9 Post-Mining Land Use	26

3.0 IMPLEMENTATION OF RECLAMATION AND CLOSURE PLAN	26
3.1 Growth Media Placement.....	27
3.2 Revegetation Plan.....	30
3.2.1 Planting Techniques	30
3.2.2 Seed Mixtures	30
4.0 RECLAMATION SCHEDULE AND SEQUENCE.....	34
4.1 Contemporaneous Reclamation.....	35
5.0 PERFORMANCE AND RECLAMATION STANDARDS AND REQUIREMENTS.....	38
5.1 Most Appropriate Technology and Best Management Practices.....	38
5.2 Contemporaneous Reclamation.....	39
5.3 Protection Assurance	39
5.4 Site Stabilization and Configuration	39
5.5 Topdressing and Cover Materials	39
5.5.1 Suitability.....	40
5.5.2 Salvage	41
5.5.3 Stockpiling.....	42
5.5.4 Re-Distribution	43
5.5.5 Stabilization.....	43
5.5.6 Soil Fertility.....	43
5.6 Erosion Control.....	43
5.7 Revegetation Success	43
5.8 Perpetual Care	44
6.0 REFERENCES	45

TABLES

Table E1: Proposed Copper Flat Reclamation Design Criteria	5
Table E2: EWRSP Details	10
Table E3: Proposed WRSP Details	12
Table E4: Disturbed versus Reclaimed Area.....	17

Table E5: Summary of Copper Flat Surface Impoundments.....	21
Table E6: Required Reclamation Growth Media/Cover Material Storage.....	23
Table E7: Reclamation Details	27
Table E8: Estimated Reclamation Cover Requirements.....	28
Table E9: Interim and Final Reclamation Seed Mixes	31
Table E10: Functions and Attributes of the Primary Plant Species.....	33
Table E11: Alternative or Substitute Plant Species for Seed Mixtures	34
Table E12: Copper Flat Reclamation Schedule and Sequence	36
Table E13: Estimated Available Reclamation Cover Materials	42

ATTACHMENTS

ATTACHMENT E1

Figures

ATTACHMENT E2

Mine Reclamation and Closure Plan

1.0 INTRODUCTION

WSP USA Inc. (WSP) has been contracted by New Mexico Copper Corporation (NMCC) to update the Mine Reclamation and Closure Plan for its Copper Flat project located near Hillsboro, New Mexico in Sierra County (Figure E1). This reclamation and closure plan describes the approach for reclamation of all the disturbed areas described in NMCC's Mine Operations and Reclamation Plan document to which this document is attached as Appendix E. The reclamation and closure plan and associated design criteria conform to: (1) the closure requirements in the Copper Mine Rules (Subsection A of 20.6.7.18 NMAC, 20.6.7.33 NMAC, 20.6.7.34 NMAC and 20.6.7.35 NMAC); (2) reclamation requirements described 19.10.6.602.D(15) NMAC and 19.10.6.603 NMAC (requirements established as part of the New Mexico Mining Act); and (3) applicable mine reclamation regulations set forth by the Bureau of Land Management (BLM) (3809.401(b)(3) and 3809.420(b)(3)). The goal for reclamation of the site is to re-establish the post-mining land uses consistent with the pre-mining land uses of the site and the surrounding area, i.e., wildlife habitat, grazing, mining, watershed and recreation as identified by the BLM in its approved Land Use Management Plan (BLM 1986).

Until 2024, NMCC's plans for Copper Flat were based on the use of a conventional wet tailing storage facility, as described in the July 2017 Revision 1 Mine Operation and Reclamation Plan Document (2017 MOPR). Under that plan, groundwater pumping of 6,100 acre-feet per year was required to support the operation. Recent advancements in tailings dewatering technology have enabled scaling the dewatering process for larger operations. NMCC has assessed these developments and determined that dewatering tailings, paired with storage in a dry stack facility, is an optimal solution for the tailings storage facility (TSF) at the Copper Flat Mine. This approach reduces the annual groundwater pumping requirement to less than 1,050 acre-feet (AF), an 80% reduction.

Converting from wet tailings to dry stack provides several benefits, including:

Water Conservation: Dewatering of tails slurry significantly reduces groundwater consumption by efficiently removing water from the tailings for reuse at the mineral recovery plant and producing dry unsaturated tails before storage at the TSF.

Reduced Groundwater Contamination Potential: The reduced water content in dewatered tails, compared to wet tailings, significantly lowers the potential for water seepage or release from the TSF.

Elimination of the Tailings Dam: Dewatering tailings prior to placement in the TSF, combined with stormwater diversion around the TSF, results in no free water being impounded behind a dam, which eliminates the wet tailings impoundment and dam storage method.

Reduced TSF Footprint: Dewatered dry stack tailings deposited at the TSF will produce more dense material than wet tails, reducing the storage volume required for the same quantity of wet tailings.

Accelerated Reclamation: Dewatered tailings allow TSF reclamation to be performed concurrently with operation and provide a shorter closure period following the end of the mining operations.

Enhanced Monitoring: Dewatered tailings stack results in easier inspection, monitoring, and management of the tailing facility.

Sustainable Practices: Dewatering tailings before transport to the TSF significantly reduces water consumption and enhances protection of groundwater resources.

The optimizing of process water recovery from the mill tailings stream results in limited modifications to the operating plan, specifically:

- 1) Replacing the tailings cyclone plant, previously used to classify tailings for dam construction, with a dewatering plant designed to recover process water from mill tailings.
- 2) Replacing the tailings slurry dam and impoundment with dewatered tailings that are compacted into a stable dry stack landform.
- 3) Replacing the tailings slurry pipeline with an overland conveyor to transport solid, dewatered tailings directly to the dry stack TSF.
- 4) Eliminating the process water reservoir at the plant site, previously used to receive and store process water recovered from the wet tailings facility.

Transitioning to dry stack tailings does not affect mining and mineral recovery operations upstream of the plant tailings system. Design and operational changes resulting from the updated tailings plan begin at the discharge from the concentrator tailings sump and include re-engineering the tailings transport system, substituting a tailings filter plant for the tailings cyclone plant, and re-engineering the TSF (dry stack) and the process water recovery system. NMCC's updated development plan, incorporating dry stack tailings, reduces the mine disturbed area to 1,191 acres, compared to 1,290 acres. Open pit mining, crushing, and mineral recovery operations continue as outlined in the plan currently on file with MMD.

Current Site Conditions

No mining or ore processing activities have occurred at Copper Flat since 1983, and site conditions are consistent with those described in the 2017 MROP. The following summary outlines key features of the existing Copper Flat Mine Property to facilitate MMD's review of the proposed operation with tailings dewatering and a dry stack tailings storage facility.

The Copper Flat Mine is a historic mining property with existing features depicted in Figure E2. These include an open pit, four waste rock stockpiles, a plant site with multiple concrete foundations, a tailings storage facility with an OSE-jurisdictional dam, and ancillary infrastructure. The existing ancillary infrastructure includes diversion channels designed to redirect stormwater flow away from the open pit, as well as roads, power lines, groundwater wells, and water distribution pipelines. Most of the existing site features were developed by Quintana Minerals Corporation (QMC) in the early 1980s.

QMC excavated four million tons of material from the open pit and processed 1.2 million tons of copper ore through a flotation mill at the plant site. Since QMC ceased operations in 1982, no commercial mining or ore processing has occurred at Copper Flat.

A small water body is present at the bottom of the existing pit. Its water level fluctuates seasonally with the annual precipitation cycle; however, it has steadily decreased in size over the past decade. The water body's surface area is currently one acre, with an estimated depth of 25 feet and a contained volume of approximately 25 AF.

Four rock stockpiles, covering an aggregate 82-acres of surface area, are located north, west, south, and east of the pit. Approximately 28 acres of stockpile area is located within the open pit surface drainage area (OPSDA).

The plant site is an approximate 80-acre, partially reclaimed area southeast of the pit. The plant site includes an exposed mill foundation along with buried building foundations for equipment maintenance facilities and administration facilities.

The existing tailings storage facility includes a 6,600-foot-long earthen dam with a maximum crest height of 60 feet. Approximately 1.2 million tons of flotation mill tailings are stored over an eighty-acre area behind the dam. The facility has not received tailings since the QMC operation and is not used to store water. The dam is under the jurisdiction of the New Mexico State Engineer (OSE File No. D-564).

Grayback Arroyo, an ephemeral stream that flows only during snowmelt or rain events, serves as the primary drainage through the mine area. To manage surface water flow, QMC constructed a diversion channel that redirects Grayback Arroyo around the southern perimeter of the open pit. Additionally, QMC constructed a second diversion to prevent stormwater inflow to the open pit from the north. Both diversions return stormwater to the natural Grayback Arroyo channel east of the pit.

The Reclamation and Closure Plan and associated design criteria for the individual Copper Flat facilities are described in Section 2. Section 3 details how the plan will be implemented with regards to regrading operations, growth media placement and the revegetation plan. Section 4 describes the projected reclamation schedule and sequence of reclamation activities. Section 5 details the performance and reclamation standards and requirements. Section 6 provides the references associated with the citations included within the report.

2.0 RECLAMATION AND CLOSURE PLAN DESIGN CRITERIA

This Reclamation and Closure Plan was developed with consideration of the site-specific conditions that exist at the Copper Flat Mine as a result of previous mine operations at the site by Quintana Minerals, and will exist at the cessation of NMCC's proposed mining operations (end of mine life). The general setting of the Copper Flat Mine area is shown in Figure E3 (final buildout) and Figure E4 (end of mine life features). The designs are depicted in the drawing set provided in Attachment E2 of this Plan and have been developed to provide sufficient detail to calculate the financial assurance cost estimate when the Plans are deemed approvable.

The Reclamation and Closure Plan is subdivided into five major facility areas and several ancillary facilities, including:

Major Facility Areas:

- Existing Waste Rock Stockpiles (EWRSPs)
- Proposed Waste Rock Stockpiles (WRSPs)
- Tailings Storage Facility (TSF)
- Open Pit
- Plant Area (includes Dewatering Plant)

Ancillary Facilities:

- Surface Impoundments and Reservoirs
- Growth Media (i.e., Topdressing) Stockpiles
- Other Ancillary Facilities

Each of the major facility areas are discussed in Sections 2.1 through 2.5, and the ancillary facilities are discussed in Sections 2.6 through 2.8. The plans and methods developed herein represent detailed designs for reclamation of the facilities sufficient for agency review and approval. Construction design documents and construction quality

assurance/construction quality control (CQA/CQC) plans will be prepared by NMCC for submittal to and approval by the State of New Mexico within 180 days of submission of a notice of intent to implement the closure plan per the Copper Rule (20.6.7.34.B, NMAC). The CQA/CQC plan will provide a detailed description of the work proposed to be performed and the final reclamation designs for the facilities to be closed. Post-closure monitoring activities will be conducted in accordance with Section 20.6.7.35 NMAC, and post-closure monitoring and maintenance requirements that may be contained in the Copper Flat Mine Permit.

This Reclamation and Closure Plan describes: (1) contemporaneous reclamation that will be conducted, to the extent practicable, during mine operations; (2) facilities to be closed following cessation of mining operations; and (3) components that will be retained following closure of the site. A summary of the key design criteria for reclamation of the facilities to be closed is presented in Table E1.

Table E1: Proposed Copper Flat Reclamation Design Criteria

Facilities to be Reclaimed	Outslope Angle (Interbench) ^{1,2}	Cover Thickness ^{3,4}	Bench Width ^{2,5}	Interbench Slope Length ^{2,6}	Top Surface Slope ^{7,8}	Bench Cross Slope ⁵	Bench Longitudinal Slope ⁵	Surface Water Conveyances ^{2,9}	Comments
Existing Waste Rock Stockpiles (EWRSPs)									
EWRSP-1	3.0H:1.0V max.	36" min.	NA	200' max.	Between 1.0% and 5.0%	NA	NA	Armored channels designed to convey peak flows from 100-year, 24-hour storm event	Requires a pullback from Grayback Diversion to maintain 25-foot setback from diversion. Top surfaces and outslopes to be graded to drain back to Grayback Diversion. Area located east and south of EWRSP-1 will be backfilled and regraded to direct stormwater flows to the Grayback Arroyo Diversion via proposed toe channel TC-2. Will also regrade and cover the diversion containment dike located south of EWRSP-1. There are no slopes greater than 200 feet in length so no benches are required.
EWRSP-2A	NA	0" to 6"	NA	NA			NA		Stockpile will get partially consumed by proposed WRSP-1. Portion that does not get consumed and located outside the OPSDA will get moved to EWRSP-2B or reclaimed as part of WRSP-1 reclamation. Disturbed surfaces will be graded, ripped and covered with 6-inches of suitable cover material where unsuitable growth media exists.
EWRSP-2B	3.0H:1.0V max.	36" min.	NA	200' max.	Between 1.0% and 5.0%			Armored channels designed to convey peak flows from 100-year, 24-hour storm event	Waste material to the north of EWRSP-2B also gets graded and covered. Disturbed areas get graded, ripped, and seeded. There are no slopes greater than 200 feet in length so no benches are required.
EWRSP-3	3.0H:1.0V max.	36" min.	NA	200' max.	Between 1.0% and 5.0%			Armored channels designed to convey peak flows from 100-year, 24-hour storm event	Will be reclaimed as part of the Plant Area reclamation program. There are no slopes greater than 200 feet in length so no benches are required.
EWRSP-4	3.0H:1.0V max.	36" min.	NA	200' max.	Between 1.0% and 5.0%			Armored channels designed to convey peak flows from 100-year, 24-hour storm event	The area between the two lobes of EWRSP-4 will be filled in with clean mine waste during the pre-production years. For reclamation design purposes it is assumed that the area is filled in prior to reclamation. Top surface to be graded to drain back toward the open pit, and the top surface will be used as an equipment and laydown area during operations. There are no slopes greater than 200 feet in length so no benches are required.

New Proposed Waste Rock Stockpiles (WRSPs)										
WRSP-1	2.75H:1.0V max.	36" min.	25'	200' max.	Between 1.0% and 5.0%	1%	1%	Armored channels designed convey peak flows from 100-year, 24-hour storm event	This stockpile is located within the OPSDA and the outslopes will be graded to 2.75H:1V. Portion of EWRSP-2A located along northern perimeter of WRSP-1 will get consumed by this stockpile and reclaimed as part of WRSP-1.	
WRSP-2	3.0H:1.0V max.			200' max.					WRSP's 2 and 3 will be reclaimed as one single facility. Southeastern toe to be set back a minimum of 50' from Grayback Arroyo. A portion of the stormwater conveyance channel located at the foot of WRSP-3 will not be covered over by the reclaimed stockpile. This portion will be reclaimed by backfilling with clean fill, surface to be graded to drain and blend into the natural topography. Surface area of the exposed channel will be ripped, and covered with 6-inches of suitable cover material where unsuitable growth media exists after grading.	
WRSP-3										
Surface Impoundments	NA	0" to 6"	NA	NA	Blended to natural topography with a min. 1.0%	NA	NA	NA	HDPE liners will be ripped, folded over and buried in place, and impoundments backfilled with clean fill, surface to be graded to drain and blend into the natural topography. Surface area to be ripped and covered with 6-inches of suitable cover material where unsuitable growth media exists after grading.	
Growth Media Stockpiles (GMSPs)										
GMSP-1	NA	0"	NA	NA	Blended to natural topography	NA	NA	NA	The footprint areas of the growth media stockpiles will be graded to drain and recontoured to blend into the natural topography. It is anticipated that the only area that may require cover is GMSP-3 which is underlain by andesitic bedrock. The other two stockpile areas are underlain by alluvial materials (suitable growth media).	
GMSP-2		0"								
GMSP-3		Up to 6"								
Dry Stack Tailing Storage Facility										
Tailing Storage Facility	Between 3.0H:1.0V max	36" min.	25'	200 feet	Between 1.0% and 5.0%	1%	1%	Armored channels designed to convey peak flows from 100-year, 24-hour storm event	The toe of the TSF to stay where it is due to the underlying HDPE liner and associated HDPE lined toe berm. When operation is complete and seepage from interior of stack has ceased, cut and fold exposed perimeter liner back onto stack and bury in place, grade ditch surfaces to drain and blend into the natural topography. Exposed surface area to be ripped and covered with minimum 36 inches of growth media and seeded with approved mix.	

Dry Stack Tailing Storage Facility (cont.)									
Tailings Conveyor and Conveyor Corridor	3.0H:1.0V max	36" min	NA	NA	Conveyance channel min. 1.0% slope	NA	NA	Armored channel designed to convey peak flows from 100-year, 24-hour storm event	Remove and dispose of conveyors and associated equipment, piping, and electrical components in accordance with the design criteria for the plant area. Grade corridor for positive drainage using compacted clean fill. Grade remaining exposed slopes to a 3.0H:1V ratio and cover with 36 inches of growth media.
Surface Impoundments	NA	0" to 6"	NA	NA	Blended to natural topography with a min. 1.0%	NA	NA	NA	See above description in WRSPs.
Dewatering Plant Area	NA	6" to 36"	NA	NA	Blended to natural topography with a min. 1.0%	NA	NA	NA	All structures and equipment at the Dewatering Plant area will be removed from the site and disposed of in an approved manner according to applicable federal and state laws; concrete foundations will be broken and covered with 36" of growth media; remaining disturbed areas will be graded, ripped, and covered with 6" of growth media.
Open Pit									
Open Pit	NA	NA	NA	NA	NA	NA	NA	Armored channels designed to convey peak flows from 100-year, 24-hour storm event	Earthen berm will be constructed around the perimeter of the open pit to limit public access and reduce the physical safety hazard. Surface water conveyance channels will be constructed around the north, east, and south perimeter of the pit (immediately upstream of the perimeter berm/security fence) and along the existing haul road to direct surface water around and into the pit. Stormwater from the west perimeter will be directed to the Grayback Arroyo Diversion. It is assumed there will be an approximate 100-foot-wide disturbance area around the pit that will be ripped and revegetated. The 100-foot width is a generalized approximate average width of disturbance around the pit perimeter that occurs during mining operations. The actual width of disturbance will vary by location. In some areas there may be little or no disturbance.
Plant Area									
Buildings and Structures	NA	6" to 36"	NA	NA	Blended to natural topography with a min. 1.0%	NA	NA	Armored channels designed to convey peak flows from 100-year, 24-hour storm event	All fuel tanks, reagent storage facilities, and equipment will be removed from the site and disposed of in an approved manner according to applicable federal and state laws; concrete foundations will be broken, walls toppled, backfilled, and covered with 36" of growth media; remaining disturbed areas will be graded, ripped, and covered with 6" of growth media.

Plant Area									
Surface Impoundments	NA	0" to 6"	NA	NA	Blended to natural topography with a min. 1.0%	NA	NA	Armored channels designed to convey peak flows from 100-year, 24-hour storm event	See above description in WRSPs.
Pipelines, Pipeline Corridors	NA	0" to 6"	NA	NA	Blended to natural topography with a min. 1.0%	NA	NA	Armored channels designed to convey peak flows from 100-year, 24-hour storm event	Residual sediments and fluids will be flushed from the pipelines and placed in the TSF prior to reclamation of this facility, or at an approved location. Above-ground pipelines will be disposed of in the TSF prior to reclamation of this facility, or at a nearby approved construction and debris landfill. Buried pipelines will be capped at both ends. Disturbed surfaces will be graded and covered with 6-inches of suitable cover material where unsuitable growth media exists.
Electrical Infrastructure	NA	0" to 6"	NA	NA	Blended to natural topography with a min. 1.0%	NA	NA	Armored channels designed to convey peak flows from 100-year, 24-hour storm event	Removal of on-site overhead lines and power poles and disconnect from the 115kV line owned by Tri-State Generation and Transmission. The electrical substation and associated transmission lines will be closed once they are no longer needed. Disturbed surfaces along corridor will be graded, ripped, and covered with 6-inches of suitable cover material where unsuitable growth media exists.
Ancillary Facilities									
Surface Impoundments	NA	0" to 6"	NA	NA	Blended to natural topography with a min. 1.0%	NA	NA	NA	See above description in WRSPs.
Mine Access Roads									Access roads not needed for closure and post-closure access will be reclaimed by ripping and revegetating the surfaces. Roads will be ripped and covered with 6-inches of suitable cover material where unsuitable growth media exists. Culverts will be removed if they are not needed for post-closure storm water management and disposed of in an approved manner. Closure and post-closure access roads will be reduced to a width suitable for single vehicle access. Existing roads utilized for closure and post-closure access that are wider than that required for single vehicle access will be narrowed during reclamation by ripping, grading and covering with 6-inches of suitable cover material where unsuitable growth media exists.
Substation and Electrical Transmission Infrastructure	NA	0" to 6"	NA	NA	Blended to natural topography with a min. 1.0%	NA	NA	NA	See above description in Plant Area.
Other Disturbed Areas									Surfaces will be graded, ripped, and covered with 6-inches of suitable cover material where unsuitable growth media exists.

Notes:

NA – Not Applicable

OPSDA – Open Pit Surface Drainage Area

1 – Outslopes will be graded in accordance to 20.6.7.33.C(3) NMAC which states: "The outslopes of all tailing impoundments, waste rock and leach stockpiles at a copper mine facility shall be constructed to an interbench slope no steeper than three horizontal to one vertical (3H:1V). Alternative slope gradients may be allowed within an open pit surface drainage area, or if the permittee provides information showing that the cover performance objectives in Subsection F of this Section are met and the exception is approved by the department."

2 – For the growth media stockpiles, it is assumed that the majority of the growth media will be used for cover on the reclaimed facilities and that there will be little to no growth media remaining following closure of these facilities (no outslopes, benches, or surface water conveyances).

3 – Cover systems for the EWRSPs, WRSPs, and TSF will be in accordance to 20.6.7.33.F NMAC which states: "Any cover system installed at an existing copper mine facility after the effective date of the copper mine rule shall be a store and release earthen cover system with a thickness of thirty-six inches..."

4 – The growth media stockpile areas, disturbed areas, and other ancillary facilities will not require additional cover unless sufficient native growth media is not present in the area (such as area underlain by bedrock). In areas with insufficient residual growth media, an additional six inches of cover material will be added to promote vegetative growth as part of the reclamation plan. The surfaces will be graded to drain and recontoured to blend into the natural topography, the graded area will then be ripped to a depth of between 12 and 18 inches and then seeded.

5 – In accordance with 19.10.5.507 NMAC "final surface configuration of the disturbed area shall be suitable for achieving a self-sustaining ecosystem or approved post-mining land use".

6 – Slopes lengths will be in accordance with 20.6.7.33.C(4) NMAC which states: "The maximum uninterrupted slope lengths shall be no greater than 300 feet for 4.0:1, 200 feet for 3:1 slopes and 175 feet for 2.5:1 slopes."

7 – The top surfaces of the EWRSPs and WRSPs will be graded in accordance to 20.6.7.33C(2) NMAC which states: "The top surfaces of all waste rock and leach stockpiles at a copper mine facility shall be constructed to a minimum final grade of 1%."

8 – The top surface of the TSF will be graded in accordance to 20.6.7.33. C(1) NMAC which states: "The top surfaces of all tailing impoundments at a copper mine facility shall be constructed to a minimum final grade of 0.5% after accounting for the estimated magnitude and location of large-scale settlement due to totaling consolidation or differential settlement." The reclamation plan for the TSF is to grade the top surface to a minimum grade of 1%.

9 – Surface water conveyances will be constructed in accordance to 20.6.7.33. A NMAC which states: "Permanent storm water conveyances, ditches, channels, and diversions required for closure of a discharging facility at a copper mine facility shall be designed to convey the peak flow generated by the 100 year return interval storm event."

2.1 Existing Waste Rock Stockpiles

There are four existing waste rock stockpiles at the site, EWRSP-1, EWRSP-2A and 2B, EWRSP-3 and EWRSP-4 (Figure E2). The four stockpiles were developed in the early 1980's by Quintana Minerals Corporation. The size and volume of the four EWRSPs are listed in Table E2.

Table E2: EWRSP Details

Facility	Size ¹ (Acres)	Volume ² (tons)
EWRSP 1	15.34	486,000
EWRSP 2A & 2B	21.06	760,050
EWRSP 3	19.54	333,300
EWRSP 4	22.62	1,000,050

Notes:

¹ – Includes stockpile areas and associated disturbance areas.

² – Provided by NMCC.

NMCC will conduct contemporaneous reclamation of these EWRSP's to the extent practicable. EWRSP-1 is located at the western edge of the site within the current open pit surface drainage area (OPSDA), as shown on Drawings G-002 and C-001, and contains approximately 324,000 cy of waste rock. EWRSP-2, consists of two waste rock disposal areas and associated disturbed areas (EWRSP-2A and EWRSP-2B) located northeast of the open pit. Combined, these two disposal areas are estimated to contain approximately 506,700 cy of waste rock. EWRSP-3, located immediately east of the QMC crusher foundation and approximately 3,000 feet east of the pit, is estimated to contain approximately 222,200 cy of waste rock. EWRSP-4 is located southeast of the open pit and contains approximately 666,700 cy of waste rock. NMCC will use a portion of the top surface of EWRSP-4 for an equipment/supply laydown yard during the future mining operations.

In addition to the existing waste rock stockpiles described above, there is 73,000 cy (110,000 tons) of unprocessed ore mined by Quintana Minerals also stockpiled at Copper Flat. This material will be used by NMCC for process plant commissioning and startup.

EWRSP-1, EWRSP-2B, and a portion of EWRSP-2A, as shown on Drawings C-003 and C-004, will be reclaimed during the pre-production phase of mine operations. Reclamation of EWRSP-1 will result in the area draining to the Grayback Arroyo diversion, and thus, outside the surface expression of the OPSDA in that area. EWRSP-3 (see Drawing C-010) will be reclaimed at the end of mine life as part of the plant area reclamation. The outslope of EWRSP-4 will also be reclaimed during the pre-production phase of mine operations. The top surface of EWRSP-4 will be regraded to drain toward the open pit to capture and route surface runoff during operations to the mine pit. EWRSP-4 will be reclaimed at the end of mine life after the area is no longer needed for an equipment/supply laydown yard.

Reclamation designs for the EWRSPs are based on an overall slope of 3H:1V with maximum 200-foot slope lengths. Final reclamation designs for the EWRSPs will be prepared and submitted to the agencies along with CQA/CQC plans within 180 days of submission of a notice of intent to implement the reclamation plan and may adjust the designs presented herein. The reclamation design criteria for the EWRSPs are summarized in Table E1 and the design strategy for closure of these facilities are described below. Reclamation design drawings for the facilities are presented in Attachment E2.

2.1.1 Components To Remain At Closure

There are certain components and related engineering controls associated with the EWRSPs and associated disturbance areas that will be used for post-closure purposes, including:

- The existing Grayback Diversion Channel.
- The clean water diversion channel located at the north perimeter of EWRSP-2B.
- Access for small vehicles for future monitoring of the reclaimed areas.
- Groundwater monitoring wells and surface water samplers that may be required for post-closure monitoring in accordance with 20.6.7.35.B NMAC.

2.1.2 EWRSP Reclamation and Closure Plan

The approach for reclamation and closure of the EWRSPs is summarized below and the associated reclamation schedule and sequence is summarized in Section 4.0. The reclamation designs for the EWRSPs are detailed in sheets C-001 through C-006, C-015 and C-016 in Attachment E2. The approach for reclamation and closure of the EWRSPs include the following:

- Waste rock adjacent to the Grayback Diversion pulled back from EWRSP-1 or moved to provide clear separation between the final toe of the reclaimed stockpile and the bank of the Grayback Diversion channel.
- The portion of the EWRSP-2A that lies within the footprint of proposed WRSP-1 incorporated into this new stockpile.
- The portion of EWRSP-2A located outside of the OPSDA boundary relocated to the top of EWRSP-2B located inside the OPSDA boundary.
- Grading of the EWRSP top surfaces to a final grade of between 1 and 5% to direct storm water to slope drainage channels.
- Grading of the EWRSP outslopes down to an overall slope of 3.0H:1V with maximum uninterrupted slope lengths of 200 feet.
- Covering of the top surfaces and outslopes of the EWRSPs with 36 inches of growth media.
- Backfilling and grading of the area located east and south of EWRSP-1 to direct stormwater flows to proposed toe channel TC-2.
- Construction of an earthen protective safety/containment berm around the outer edge of the equipment/supply laydown yard on top of EWRSP-4 to prevent surface water run-on onto the top surface and to provide a safety berm for vehicles and equipment operating in the area.
- Construction of surface water conveyance channels on the top surfaces (where required) to direct surface water off the covered stockpile surfaces. Surface water directed to the OPSDA for the top surfaces and interior slopes of EWRSPs 2B, 3, and 4 and to the exterior for the exterior slopes. Surface water directed to the exterior to Grayback Diversion for the top surfaces, slopes, and area east and south of EWRSP-1.
- Construction of energy-dissipation structures at channel outlets to reduce erosive velocities where necessary. Where possible channels will be constructed to incorporate existing topography, grade controls and exposed inert bedrock to promote long-term integrity of the structures.

- Construction of diversion swales and/or surface water conveyance channels to prevent storm water run on onto the EWRSPs.
- Grading and ripping of the disturbed areas associated with the EWRSPs to provide positive drainage. Where adequate growth media does not exist, areas will be ripped and covered with 6-inches of growth media.
- Ripping and seeding of covered and disturbed areas to reestablish vegetation using a seed mix approved by the BLM and MMD, seeding of the equipment and material storage area on top of EWRSP-4 will be completed as part of the plant area reclamation.
- Installation, operation, and maintenance of groundwater monitoring wells that may be required for post-closure monitoring in accordance with 20.6.7.35.B NMAC.

2.2 Proposed Waste Rock Stockpiles

Waste rock will be hauled from the mine pit and placed in three proposed new waste rock stockpile (WRSP) areas shown in Figure E3. The planned sizes and capacities of the three WRSPs at the end of mine life are listed in Table E3.

Table E3: Proposed WRSP Details

Facility	Size ¹ (Acres)	Storage Volume ² (MT)
WRSP 1	39.71	3.16
WRSP 2	48.78	8.64
WRSP 3	121.35	32.89

Notes:

¹ – Includes stockpile areas and associated disturbance areas.

² – Provided by NMCC.

MT – Million tons

Proposed waste rock stockpiles WRSP-1, WRSP-2 and WRSP-3 will be constructed in areas of the site that are completely underlain by andesite bedrock, a geologic formation that has a transmissivity of less than 10^{-6} centimeters per second (SRK 2013). The proposed WRSPs will cover approximately 210 acres at final built-out and will be constructed by end dumping in lifts approximately 75 feet high. The outslopes of the stockpiles will be built at angle of repose with benches sufficiently wide enough on each lift to allow grading the final slope and allow sufficient space for cross slope ditches.

Reclamation of the WRSP areas will be completed after the cessation of mining operations. However, select areas may be reclaimed contemporaneous during mine operations. NMCC is committed to maximizing contemporaneous reclamation activities, to the extent practicable, at the Copper Flat Project that will reduce erosion, provide early impact mitigation, limit costs and reduce final reclamation work. For example, portions of WRSP-3 may begin to be reclaimed by regrading and contouring of the WRSP beginning on the north side and proceeding south after the area is filled. Also, some roads that are no longer required for operations may be decommissioned and reclaimed contemporaneously during the active mining operation. Reclamation efforts will be implemented as soon as practicable in areas where activities are discontinued. This includes recontouring, scarifying/ripping, placement of topdressing or other approved growth media, followed by revegetation.

Reclamation designs for the proposed WRSP-2 and WRSP-3 are based on an inter-bench slope of 3.0H:1V, 25 foot wide terrace benches, and maximum 200-foot inter-bench slope lengths to allow for flexibility in the final

design of the terrace benches. With these designs, the overall outslope gradient from the crest to toe is generally 3.5H:1V. For WRSP-1, which is located within the OPSDA, reclamation designs are based on an inter-bench slope of 2.75H:1V, 25-foot wide terrace benches, and maximum 200-foot inter-bench slope lengths. With these designs, the overall outslope gradient from the crest to toe for WRSP-1 ranges between 3.0H:1V and 3.5H:1V. Final reclamation designs for the WRSPs will be prepared and submitted to the agencies along with CQA/CQC plans within 180 days of submission of a notice of intent to implement the reclamation plan and may adjust the overall slopes presented herein. The reclamation design criteria for the proposed WRSPs are summarized in Table E1 and the design strategy for closure of these facilities are described below. Reclamation design drawings for the facilities are presented in Attachment E2.

2.2.1 Components To Remain At Closure

The closure components and related engineering controls associated with the proposed WRSPs and stockpile areas that will be used for post-closure purposes include:

- Access for small vehicles maintained for future monitoring of the reclaimed areas.
- Groundwater monitoring wells and surface water samplers that may be required for post-closure monitoring in accordance with 20.6.7.35.B NMAC.

2.2.2 WRSP Reclamation and Closure Plan

The approach for reclamation and closure of the WRSPs is summarized below and the associated reclamation schedule and sequence is summarized in Section 4.0. The reclamation designs for the WRSPs are detailed in sheets C-007 through C-010 in Attachment E2. The approach for reclamation and closure of the WRSPs include the following:

- Grading of the proposed WRSP top surfaces to a final grade of between 1 and 5% to direct storm water to slope drainage channels.
- Grading of proposed WRSP-2 and WRSP-3 outslopes down to interbench slopes of 3.0H:1V.
- Construction of 25 foot wide terrace benches on the outslopes of proposed WRSP-2 and WRSP-3 at maximum slope lengths of 200 feet.
- Grading of proposed WRSP-1 outslopes down to interbench slopes of 2.75H:1V.
- Construction of 25 foot wide terrace benches on the outslopes of proposed WRSP-1 at maximum slope lengths of 200 feet.
- Covering of the top surfaces and outslopes of the proposed WRSPs with 36 inches of growth media.
- A portion of the stormwater conveyance channel located at the foot of WRSP-3 will be covered over as part of the push-down of WRSP-3. The portion of the conveyance channel not covered over by regrading will be reclaimed by backfilling with clean fill and consolidated. The backfilled channel will be graded to drain and the surfaces re-contoured to blend into the natural topography. The re-contoured surfaces will be ripped and covered with 6-inches of suitable cover material where unsuitable growth media exists after grading. The covered/backfilled areas will then be seeded to reestablish vegetation using a seed mix approved by the BLM and MMD.

- Construction of surface water conveyance channels on the top surfaces (as needed), terrace benches, and downslope channels to direct surface water off the covered stockpile surfaces. Surface water will be directed to the OPSDA for the top surface and interior slopes of WRSP-1, and to the exterior of the mine for WRSP-2 and WRSP-3.
- Construction of diversion swales and/or surface water conveyance channels to prevent storm water run on onto the stockpiles.
- Construction of energy-dissipation structures at channel outlets to reduce erosive velocities where necessary. Where possible channels will be constructed to incorporate existing topography, grade controls and exposed inert bedrock to promote long-term integrity of the structures.
- Grading of the disturbed areas associated with the stockpiles to provide positive drainage.
- Ripping and seeding of covered and disturbed areas to reestablish vegetation using a seed mix approved by the BLM and MMD.
- Installation, operation, and maintenance of groundwater monitoring wells that may be required for post-closure monitoring in accordance with 20.6.7.35.B NMAC.

2.3 Tailings Storage Facility (Dry Stack)

The dry stack tailings storage facility will be a lined, engineered structure designed, constructed, operated, and reclaimed in compliance with the regulations governing New Mining Operations (19.10.6 NMAC) and the New Mexico Copper Rule (20.6.7 NMAC). This section provides a general overview of the facility's layout and operation. Design details are provided in WSP's March 2025 Prefeasibility Engineering Design Copper Flat Cake Stack Tailings Facility.

The dewatered tailings will be transported from the dewatering plant to the lined TSF using an overland conveyor. The conveyor delivers the filtered tailings cake to a lined receiving area within the designated TSF footprint. The overland conveyor is planned as a continuous belt without transfer points to minimize the generation of airborne dust. The conveyor bypasses the area previously designated for the tailings cyclone plant and surge pond, which are no longer required due to the transition to dry stack tailings.

The dewatered tails will be stored on a lined pad constructed to safely receive and store tailings from the dewatering plant. Plans for the new dry stack facility are being prepared to adhere to the engineering design requirements listed in 20.6.7.22.A (4) New Tailings Impoundments and 20.6.7.22.A (5) New Dry Stack Tailings Piles.

The proposed dry stack tailings storage area remains within the boundary of the TSF footprint. The pad foundation design encompasses approximately 486 acres for dry stack tailings plus an additional 14 acres for a dry stack seepage and contact stormwater collection pond (TSF seepage pond).

The proposed TSF facility location uses the surrounding topography for protection from storm water runoff like the currently proposed plan. The stack location and proposed construction sequencing minimizes the risk of water related erosion to ensure storm water runoff does not compromise the stability of the stacked tailings.

The lined dry stack foundation will be constructed in five stages (Figure E5 through Figure E9). Construction and stacking begin at the north-western extent of the footprint as part of the stormwater management strategy.

The seepage collection pond and water return pumps will be constructed in conjunction with Stage 1. The pond and return system are located outside of the eastern, downstream extent of the life of mine (LOM) stack foundation. The seepage collection pond will be constructed in a single stage. Contact water from each stage will flow to the pond via a lined ditch. The TSF seepage pond is sized for a 100-year, 24-hour storm event (3.66 inches) plus nominal free water that may seep from the TSF. The design capacity of the TSF seepage pond is 50.3 million gallons with a three-feet freeboard. The larger passive evaporation pond, originally included in the wet tailings storage plan, is no longer required due to tailings dewatering prior to stacking.

Construction of each stage of the dry stack will begin by clearing and grubbing to remove existing vegetation. After clearing, growth media for future reclamation will be excavated and the area will be graded to smooth contours. The resulting surface will be smoothed and compacted, and liner bedding material placed. As described in the 2017 MROP, the existing starter dam and tailings from the 1982 Quintana operation will be removed and the material used in the new facility.

The TSF area identified in the 2017 MROP remains the primary source of cover material for project reclamation and closure. As grading progresses through each construction phase of the dry stack TSF, cover material will be selectively removed and stockpiled in accordance with procedures outlined in the 2017 MROP.

The under-stack liner system will be the same as the 2017 MROP for the wet tailings storage, including installation of an 80-mil high density polyethylene (HDPE) liner system, or an equivalent. The liner will be installed on a base of at least 12 inches of tailings salvaged from the existing 1982 tailings, or equivalent local material if the supply of existing tailings is exhausted. Before stacking tailings, a protective layer of drainage material will be placed above the liner, which will direct any water that may seep from the dry stack to the TSF seepage pond. Although potential seepage from the dewatered tailings stack is expected to be minimal, any seepage, as well as precipitation falling onto and running off the dry stack (direct contact water), will be captured on the liner and directed to the TSF seepage pond. The pond will be constructed and lined in compliance with Section D-3 of 20.6.7.17 NMAC, Process Water and Impacted Stormwater Long-Term Storage Impoundments, as described in the 2017 MROP.

The facility remains a zero-discharge design. Diversion ditches and swales will be constructed outside constructed TSF phases to direct clean, non-contact storm water away from the facility. Lined perimeter ditches will be constructed at the perimeter of the TSF to collect and direct contact water from the stack to the seepage collection pond. The water recovered in the seepage collection pond will be pumped via a pipeline to the process water tank for reuse in the ore recovery process. The pipeline from the seepage collection pond will be placed within a lined trench for secondary containment as described in the 2017 MROP such that any pipeline leaks that may occur are contained to prevent environmental release.

After delivery to the dry stack TSF, the filtered tailings will be spread on the lined pad in thin lifts. These lifts will then be compacted to densify the material and eliminate potential voids. This stacking method will ensure the future stability of the stack.

The dry stack will be constructed to enable concurrent reclamation during operations, as conditions allow. Outer slopes of the stack will be constructed to a 3H:1V slope with a 25-foot step-back every 60 vertical-feet, which limits the uninterrupted slope distance to 200 feet in compliance with 20.6.7.33.C.4 NMAC. At its highest point, the overall slope will be 3.4H:1V at a 200-foot vertical stack height.

Dust control on the stack will be achieved through the application of water and soil binders on active road surfaces, prohibiting traffic on inactive areas, and concurrently closing and reclaiming areas where the stacking operation is complete.

2.3.1 Components To Remain At Closure

The closure components and related engineering controls associated with the TSF area that will be used for post-closure purposes include:

- Access for small vehicles maintained for future monitoring of the reclaimed areas.
- Groundwater monitoring wells and surface water samplers that may be required for post-closure monitoring in accordance with 20.6.7.35.B NMAC.

2.3.2 TSF Reclamation and Closure Plan

The post-mining reclamation and closure plan for the Copper Flat Mine, initially provided with the 2017 Mine Operations and Reclamation Plan (MORP) and as modified for dry stack tailings with this update, conforms to the following:

- 1) Reclamation requirements described 19.10.6.602.D(15) NMAC and 19.10.6.603 NMAC (requirements established as part of the New Mexico Mining Act).
- 2) The closure requirements in the Copper Mine Rules (Subsection A of 20.6.7.18 NMAC, 20.6.7.33 NMAC, 20.6.7.34 NMAC and 20.6.7.35 NMAC).
- 3) Applicable mine reclamation regulations set forth by the Bureau of Land Management (BLM) (3809.401(b)(3) and 3809.420(b)(3)).

NMCC's objective for reclamation continues to be restoring the site to post-mining land uses consistent with pre-mining conditions and the surrounding landscape, including wildlife habitat, grazing, mining, watershed and recreation, which are all consistent with Federal and State Land Use Management Plans for the area.

Implementation of dry stack tailings storage, as described in this MORP update, does not alter NMCC's reclamation objectives, methods, or standards for the Copper Flat Mine.

Changes to the reclamation plan on file with permitting authorities are limited to aspects of the operation associated with the proposed dry stack operating plan. Reclamation plans for the open pit, waste rock stockpiles, and the overall plant site are unaffected by the revised tailings management approach and do not change.

Changes in the operating plan resulting from the new tailings management approach are:

- 1) A tailings dewatering plant is added to the plant site.
- 2) The tailings cyclone plant and surge pond is eliminated from the plan.
- 3) The wet TSF, comprised of an engineered dam, impoundment, underdrain collection pond, and future tailings seepage evaporation pond, is replaced with a more compact dry stack TSF and seepage collection pond.
- 4) The tailings slurry pipeline delivering wet tailings to the cyclone plant and the wet TSF is replaced with an overland conveyor to transport dewatered tailings to the dry stack TSF.

5) Because the tailings are dewatered and the recovered water is reused in real time, there is no requirement for an extended draindown period for the TSF or a long-term water management plan.

Table E4 presents a summary of the total reclaimed surface area in comparison to the overall area disturbed by operations at the Copper Flat Mine. Approximately 94 percent of the disturbed surface area is included in the Copper Flat reclamation plan. The remaining 74 acres correspond to open pit highwalls, which are considered inaccessible and unsafe for reclamation activities. However, the pit walls and benches are expected to become Chihuahuan Desert wildlife habitat, providing abundant rock outcroppings, which are regularly utilized by bats for day or night-roosting, or for cliff-dwelling bird species such as raptors for nesting (BLM 2019a).

Table E4: Disturbed versus Reclaimed Area

	Disturbed	Reclaimed	Difference
Ore Dumps and Stockpiles	2	2	0
Impoundments	29	29	0
Pits	165	91	-74
Tailings Disposal Facilities	486	486	0
Mills	9	9	0
Storage Areas	3	3	0
Topsoil and Top-Dressing Stockpiles	75	75	0
Waste Rock Stockpiles	305	305	0
Other Facilities or Structures	116	116	0
Total	1,191	1,117	-74

2.4 Open Pit

The open pit will be mined with pit benches ranging between 16 and 28 feet wide, creating a terraced/benched pit wall. Over the 11-year life of the proposed project, approximately 113 million tons of copper ore and 45 million tons of waste rock will be mined and removed from the open pit. The proposed mining activities will enlarge the open pit over time to a diameter of approximately 2,800 feet and an area of approximately 165 acres (including an assumed average 100 foot disturbed area at the pit perimeter). The floor of the proposed open pit will be mined to an elevation of approximately 4,650 feet above mean sea level (AMSL), which will be approximately 850 feet beneath the original surface of the Copper Flat Basin in this area.

The open pit will remain a hydrologic sink capturing groundwater flowing from all directions during operations and post-closure (JSAI 2012; JSAI 2013; JSAI 2014; JSAI 2014a; JSAI 2014b; JSAI 2015). NMCC will conduct rapid filling of the mine pit with fresh water provided from the off-site well field as the initial step in commencing reclamation/closure. The purpose of rapid filling of the pit is to provide a source of good quality water and provide a mechanism by which the mineralized rock walls of the pit will be more quickly submerged under water, thus limiting the potential for mineral oxidation. Approximately 2,200 acre-feet of water will be required for the rapid fill, which will be completed in approximately 6 months. Thereafter, pumping water for rapid fill will be discontinued and the surface elevation of the pit lake will reach an average steady-state condition of approximately 4,895 feet above MSL over the long-term. Surface water runoff from the reclaimed facilities located within the OPSDA will be

routed into the pit. Surface water conveyance channels will be constructed around the northern and eastern pit perimeter to direct surface runoff water into the pit. As noted in Section 2.1, EWRSP-1 will be reclaimed such that the western portion of the pit perimeter will be graded to drain away from the pit, into proposed toe channel TC-2 that drains to the Grayback Arroyo diversion. The reclamation design criteria for the open pit are summarized in Table E1 and the design strategy for closure of this facility are described below. Reclamation design drawings for the open pit are presented in Attachment E2.

2.4.1 Components to Remain at Closure

The closure components and related engineering controls associated with the open pit area that will be used for post-closure purposes include:

- Maintenance of existing storm water diversion structures to limit surface water run on into the open pit.
- Single vehicle access maintained on the portion of the haul road remaining following construction of the open pit conveyance channel for future monitoring within of the open pit.
- Groundwater monitoring wells in the vicinity of the open pit that may be required for post-closure monitoring in accordance with 20.6.7.35.B NMAC.

2.4.2 Mine Pit Reclamation and Closure Plan

The approach for closure of the open pit is summarized below and the associated reclamation schedule and sequence is summarized in Section 4.0. The reclamation designs for the open pit area are detailed in Sheet C-013 and Sheet C-014 in Attachment E2. The approaches for closure of the open pit area include the following:

- Rapid filling of the pit with approximately 2,200 acre-feet of water from the off-site well field over a period of approximately 6 months.
- Construction of an earthen berm around the perimeter of the open pit to limit public access and ensure that the pit area does not pose a current or future hazard to public health or safety. The berm will be constructed from local rock and soils and will be 15 to 20-foot wide at the base and 5- to 6-feet high with side slopes angled at 1.5H:1V.
- Construction of surface water conveyance channels around the perimeter of the pit (immediately upstream of the perimeter berm/security fence) to direct surface water around the pit to the newly constructed open pit conveyance channel.
- Construction of the open pit conveyance channel along the existing haul road to direct surface water flows from around the perimeter of the pit to the pit lake.
- Construction of energy-dissipation structures at channel outlets to reduce erosive velocities where necessary. Where possible the channels will be constructed to incorporate existing topography, grade controls and exposed inert bedrock, which will promote long-term integrity of the structures.
- Grading of the disturbed areas associated with the pit perimeter, perimeter channels, and safety berm construction. It is assumed there will be an approximate 100-foot-wide disturbance area around the pit. The 100-foot width is a generalized approximate average width of disturbance around the pit perimeter that occurs during mining operations. The actual width of disturbance will vary by location. In some areas there may be little or no disturbance.

- Removal of aboveground electrical systems and infrastructure, including pumps, lighting and transmission lines not necessary for post-closure site operations and maintenance.
- Installation of a security gate at the haul road entrance into the pit to allow access for operation, maintenance, and monitoring activities to authorized personnel.
- Installation of a barbed wire fence around the outside perimeter of the pit safety berm to exclude livestock and other large mammals.
- Signs will be posted at 500-ft intervals along the security fence/earthen berm and at all access points, warning of potential hazards present.
- Ripping and seeding of disturbed areas around the pit perimeter to reestablish vegetation using a seed mix approved by the BLM and MMD. and
- Installation, operation, and maintenance of groundwater monitoring wells that may be required for post-closure monitoring in accordance with 20.6.7.35.B NMAC.

2.5 Plant Area

The Copper Flat plant area will cover an area of approximately 82 acres located southeast of the existing open pit (Figure E3). The plant area includes the process area, primary crusher, concentrator area, dewatering plant, laydown yard, administration/warehouse/mine shop, water tanks, impacted stormwater impoundment A, tailings conveyor, ancillary roadways, haul roads on the northern and southern/southwestern portion of the area, parking lot, wastewater treatment facility, fuel station, truck wash, and facilities supporting the process area. Additionally, due to its physical location within the plant area, an additional 23 acres which include EWRSP-3 will be incorporated into grading and drainage reclamation plan for the plant area.

At closure, all surface facilities, equipment and buildings will be removed from the area. The foundations associated with these structures will be buried in place. The land bridge used as the entrance access road and the land bridge at the downstream Grayback culvert will be removed as shown in Drawing C-016. The culverts at each location will also be removed as part of this process. The remaining angle of repose slopes following removal of the land bridges will be graded to a slope of 3.0H:1V and covered with 36 inches of growth media. A small area in Grayback Arroyo downgradient from the easternmost land bridge was identified as potentially meeting the general wetland criteria of the Clean Water Act, although the area has not been formally delineated as such (Intera et al. 2012). The area, estimated to be 0.5 to 1.5 acres in size, will be maintained as part of the closure plan. The reclamation design criteria for the plant area are summarized in Table E1 and the approach for closure of this facility area is described below. Reclamation design drawings for the plant area are presented in Attachment E2.

2.5.1 Components To Remain At Closure

The closure components and related engineering controls associated with the plant area that will be used for post-closure purposes include:

- The Grayback Diversion Channel located along the southern perimeter of the plant area.
- Small vehicle access maintained following regrading EWRSP-3 and the access road on the western portion of the plant area for future monitoring and maintenance activities. Small vehicle access through the plant area to

the open pit and WRSPs north and west of the plant area, and for access to public and private lands north and west of the mine property.

- Groundwater monitoring wells in the vicinity of the plant area that may be required for post-closure monitoring in accordance with 20.6.7.35.B NMAC.

2.5.2 Plant Process Area Reclamation and Closure Plan

The approach for closure of the plant area summarized below and the associated reclamation schedule and sequence is summarized in Section 4.0. The reclamation designs for the plant area are detailed in sheets C-015 and C-016 in Attachment E2. The approach for closure of the plant area includes the following:

- All fuel tanks, reagent storage facilities, buildings and equipment will be removed from the site and disposed of in an approved manner according to applicable federal and state laws.
- Concrete foundations will be broken, walls toppled, backfilled, and covered with 36 inches of growth media.
- Closure of the process water reservoir and impacted storm water impoundment A as described below in Section 2.6.
- Pipelines will be removed or capped as described below in Section 2.8.
- The electrical substation and associated transmission lines will be removed once they are no longer needed as described below in Section 2.8.
- The land bridge used as the entrance access road and the land bridge at the downstream Grayback culvert will be removed. The culverts at each location will also be removed as part of this process. The remaining angle of repose slopes following removal of the land bridges will be graded to a slope of 3.0H:1V and covered with 36 inches of growth media.
- Ripping and grading of the top surfaces of the plant area to a slope of 1% or greater.
- Ripping and grading of the disturbed areas associated with the plant area following burial of concrete foundations, slabs, and footings to provide positive drainage (see Drawing C-016).
- Grading of EWRSP-3 top surface to a final grade of between 1 and 5% to direct storm water to slope drainage channels.
- Grading of the EWRSP-3 outslope down to a slope of 3.0H:1V.
- Regrading of all slopes along the perimeter of the plant area. The grading plan includes both pull back sections and pushdown sections along the perimeter of the plant area. The perimeter slopes will be graded to a slope of 3.0H:1V and covered with 36 inches of growth media.
- Covering of the top surface and outslope of the EWRSP-3 with 36 inches of growth media.
- Covering of ripped and graded disturbed areas with 6-inches of growth media.
- Construction of surface water conveyance channels to direct surface water off the covered surfaces. Surface water runoff will be directed to Grayback Arroyo.

- Construction of energy-dissipation structures at channel outlets to reduce erosive velocities where necessary. Where possible channels will be constructed to incorporate existing topography, grade controls and exposed inert bedrock, which will promote long-term integrity of the structures.
- Ripping and seeding of covered and disturbed areas to reestablish vegetation using a seed mix approved by the BLM and MMD.
- Installation, operation, and maintenance of any additional groundwater monitoring wells that may be required for post-closure monitoring in accordance with 20.6.7.35.B NMAC.

2.6 Surface Impoundments

Table E5 presents a summary of the surface impoundment list for the Copper Flat Project. There will be 4 surface impoundments present at Copper Flat at the end of mine life; 3 impacted storm water impoundments, and one Dry Stack TSF Seepage Collection Pond.

Table E5: Summary of Copper Flat Surface Impoundments

Impoundment	Surface Area ¹ (Acres)	Operating Volume ² (Gallons)
Impacted Storm Water Impoundment A	4	7,307,000
Impacted Storm Water Impoundment B	4	5,598,000
Impacted Storm Water Impoundment C	7	10,514,000
Dry Stack TSF Seepage Collection Pond	14	50,300,000
Total	29	73,719,000

Notes:

¹ –Surface impoundment areas also include disturbed areas (collection ditches, embankment, access road, etc.) associated with each impoundment.

² – Operating storage volumes does not account for 2-feet of freeboard.

Typically, the surface impoundments will be the last features to be closed at their respective locations after grading and cover placement of the adjacent facilities (e.g., WRSPs, TSF, plant area, mine pit).

2.6.1 Components to Remain at Closure

The closure components and related engineering controls associated with the surface impoundments that will be used for post-closure purposes include:

- Groundwater monitoring wells in the vicinity of the plant area that are required for post-closure monitoring in accordance with 20.6.7.35.B NMAC.

2.6.2 Surface Impoundment Reclamation and Closure Plan

All of the surface impoundments will be reclaimed after the facilities they service are reclaimed. The TSF Seepage Collection pond will continue to collect water that drains from the TSF. The Seepage pond will be constructed below the toe of the TSF to allow for passive evaporation of any residual drain down water from the TSF which is expected to be minimal given the arid climate. The evaporation pond will remain in place until drain down from the TSF facility is reduced to a point to where it is no longer required. This point in time will be determined in

collaboration with the Agencies and the pond will be reclaimed thereafter. The reclamation and closure activities for the surface impoundments consist of the following:

- Flushing of all process water pipelines to remove residual solutions and disposing of the solutions in the TSF to evaporate.
- Removing and disposing of the above-ground process pipelines in the TSF or at a nearby approved construction and debris landfill.
- Pumping of remaining water in the impoundments into the TSF to evaporate.
- Removal of all above ground impoundment electrical systems, pumps, and infrastructure, including outdoor lighting and transmission lines.
- Capping all buried process water, tailings delivery, and water delivery pipelines.
- Ripping surface impoundment HDPE liners and folding over prior to backfilling.
- Grading impoundment berms into and backfilling the impoundments with clean fill, as necessary, and consolidating the material.
- Grading the backfilled areas to drain and re-contour surfaces to blend into the natural topography.
- Covering of impoundments with 6-inches of suitable cover material where unsuitable growth media exists after grading.
- Ripping and seeding of covered and disturbed areas to reestablish vegetation using a seed mix approved by the BLM and MMD.
- Installation, operation, and maintenance of groundwater monitoring wells that may be required for post-closure monitoring in accordance with 20.6.7.35.B NMAC.

2.7 Growth Media Stockpiles

The term “growth media” as referred to within this Plan is equivalent to topdressing as defined in 19.10.1.7.T(1) NMAC. Figure E3 identifies the location of the growth media/cover material stockpiles GMSP-1, GMSP-2, and GMSP-3. GMSP-1 will be located at the southwest corner of the proposed TSF, GMSP-2 will be located north of the proposed TSF and north of Grayback Arroyo, and GMSP-3 will be located east of WRSP-3. Combined, these stockpiles will store an estimated 4.5 million cy of required growth media/cover material on a reclamation cover basis as shown in Table E6. In addition to the material stored in the stockpiles, growth media/cover material will also be salvaged as encountered during miscellaneous horizontal construction (roads, ditches, pipelines, power lines, etc.) and within the embankments constructed around the perimeter of the individual surface impoundments as also shown in Table E6.

Table E6: Required Reclamation Growth Media/Cover Material Storage

Facility	Size ¹ (Acres)	Required Material ^{2, 3} (reclamation cy)
Growth Media Stockpile 1	29.33	2,197,930
Growth Media Stockpile 2	31.55	1,826,877
Growth Media Stockpile 3	14.1	511,904
Surface Impoundment Backfill Areas	NA	320,000
Horizontal Construction Alignments ⁴	NA	20,000
Total:		4,876,711

Notes:

¹ – Includes GMSP and associated disturbance areas.² – Reclamation volumes are calculated from bank volumes and account for material swell and re-consolidation at excavation, storage, re-handle, and cover placement. See Section 3.0 for factors applied.³ – Storage capacity of the GMSPs is sufficient to store the volume required.⁴ – Provided by NMCC. Additional material will be salvaged as encountered during miscellaneous horizontal construction (roads, ditches, pipelines, power lines).

cy – Cubic yards

NA – Not applicable

The growth media stockpile material will be consumed as part of the cover systems associated with reclamation of the site. After moving this material from the stockpiles to its location of use in reclamation, there will be a need to also reclaim the area disturbed at the stockpile location. There may be a need to leave a minimum of 6 inches of growth media material in place to provide for seeding the disturbed stockpile area. The design criteria associated with reclamation of any remaining growth media stockpile material that may be present following closure of these facilities, and the disturbed areas associated with the growth media stockpiles are summarized in Table E1, and the planned approach for closure of these facilities is described below.

2.7.1 Growth Media Stockpile Reclamation and Closure Plan

The approach for closure of any residual growth media stockpile material that may be present following closure of the facilities described in Sections 2.1 through 2.6 above, and the disturbed areas associated with the growth media stockpiles includes the following:

- Grading remaining growth media material and disturbed areas to drain and re-contour surfaces to blend into the natural topography.
- Ripping of the remaining growth media and disturbed areas.
- Leave a minimum of six inches of growth media material in place, as needed, within the stockpile footprints. The only area that may require a minimum of six inches of residual stockpiled growth media to remain within the stockpile footprint is GMSP-3 which is underlain by andesitic bedrock. The other two stockpile areas (GMSP-1 and GMSP-2) are underlain by alluvial materials (suitable growth media).
- Seeding of remaining growth media and disturbed areas to reestablish vegetation using a seed mix approved by the BLM and MMD.

2.8 Ancillary Facilities and Structures

A miscellaneous group of ancillary facilities and structures will be present within the Copper Flat mine permit area including: access roads utilized during operations; HDPE pipelines and trenches; electrical power distribution system and components; storm water structures for drainage, diversion, and sediment control; equipment storage areas; and fencing. The Copper Flat project also includes several off-site facilities that are integral to the project, including an electrical substation located on 10 acres of land owned by the State of New Mexico, nine separate 5-acre mill-site claim sites associated with the fresh water production well field and an approximate 8-mile long fresh water buried pipeline contained in approximately 53 acres, 45 of which are outside of the site boundary. These facilities are considered part of the mine permit area, and all NMCC created disturbances will be reclaimed at the end of mining except for the electrical substation and the freshwater production wells.

Reclamation of the disturbed areas associated with the ancillary facilities and structures will be accomplished by burying utility and structure foundations, removing, and disposing of above-ground pipelines and power lines on-site, and removing all buildings erected by NMCC. Erosion and drainage control and revegetation of these areas will be provided as necessary. Surface disturbance at the five-acre mill sites will be reclaimed. The buried freshwater pipeline will be left in place. No reclamation will be required as the pipeline corridor contains natural vegetation consistent with the surrounding environs. The electrical substation will be the property of the service provider. It is assumed that the substation will continue to provide local infrastructure power supply to the area well beyond the time of cessation of operation of the mine. As such, no reclamation requirement is contemplated. The closure components and the closure activities for the ancillary facilities and structures are described below.

2.8.1 Components to Remain At Closure

The closure components and related engineering controls associated with the ancillary facilities and structures that will be used for post-closure purposes include:

- On-site power poles may be left in place to the extent possible as bird perching sites.
- Continued utilization of access roads for post closure access to the pit bottom and reclaimed facilities for reclamation monitoring and long-term access to public and private lands.
- Continued utilization of storm water control structures located along post-closure haul roads and access roads.
- The existing 115-kV transmission line and the electrical substation constructed on State land will be left in place. The local power utility owns these facilities and will be responsible for their continued operation and maintenance.
- Preservation of existing water supply pipeline from four fresh water production wells located off-site on BLM land. The wells will remain in a condition suitable for other uses. All roads, power lines and foundations for the production wells are in place. No additional disturbance will occur during mining operations, with the exception of occasional minor disturbance that may occur during inspection and maintenance. Such disturbances will be repaired and reclaimed as they may be needed during operations. Surface structures and equipment will be removed and the well area will be left as it currently exists after closure of the mine.

2.8.2 Ancillary Facilities and Structures Reclamation and Closure Plan

The design criteria for the ancillary facilities and structures are summarized in Table E1 and the approach for closure includes:

- Haul roads and access roads not needed for closure and post-closure access will be reclaimed. The compacted road material will be loosened by ripping to a depth of between 12 and 18 inches and covering with 6-inches of growth media where suitable growth media does not exist, and revegetated using a seed mix approved by the BLM and MMD.
- Removal of culverts not needed for post-closure storm water management and disposal of them in an approved manner.
- Closure and post-closure access roads will be reduced to a width suitable for single vehicle access. Existing roads utilized for closure and post-closure access that are wider than that required for single vehicle access will be narrowed during reclamation by ripping, grading and covering the excess width with 6-inches of suitable cover material where unsuitable growth media exists.
- Removal of overhead lines and power poles and disconnect from the 115kV line owned by Tri-State Generation and Transmission.
- Removal of pumping stations and on-site electrical substation once they are no longer needed for post-closure water management.
- Removal of residual sediments and fluids from pipelines and disposal of materials in the TSF prior to reclamation of this facility, or at an approved location.
- Removal and disposal of the above-ground pipelines in the TSF prior to reclamation of this facility, or at a nearby approved construction and debris landfill.
- Capping all buried pipelines.
- Ripping HDPE liners within corridors.
- Backfilling of pipeline corridor trenches with clean fill, as necessary, and consolidating the material.
- Grading the backfilled areas to drain and recontouring surfaces to blend into the natural topography.
- Covering of pipeline corridors with 6-inches of suitable cover material where unsuitable growth media exists after grading.
- Ripping of non-impacted disturbed areas to a depth of 12 to 18 inches.
- Seeding of ripped and covered areas to reestablish vegetation using a seed mix approved by the BLM and MMD.

2.9 Post-Mining Land Use

The NMMA Rules (MMD 1996) defines Post-Mining Land Use (PMLU) as:

“a beneficial use or multiple uses which will be established on a permit area after completion of a mining project. The PMLU may involve active management of the land. The use shall be selected by the owner of the land and approved by the Director [of MMD]. The uses, which may be approved as PMLUs, may include agriculture, commercial or ecological uses that would ensure compliance with Federal, State or local laws, regulations and standards and which are feasible.” 19.10.1.7. P (5) NMAC

The major land uses in the vicinity of the project area are mining, grazing, wildlife, watershed and recreation, particularly on federal lands. This multiple land management strategy concurs with the BLM administrative directives and resource management plans. Land use in the project area will not change from pre-mining approved purposes and the project area will continue to support these approved uses following closure. Post-closure land uses at Copper Flat will conform to the previously defined BLM Caballo Planning Unit, the 1986 White Sands Resource Management Plan (BLM, 1986) and the Sierra County Comprehensive Land Use Plan.

Grazing land, wildlife habitat, recreation, and mining are the PMLUs most consistent with the surrounding land uses of the Copper Flat site. NMCC will reclaim all disturbed areas in the permit boundary to support the multiple uses of grazing, wildlife habitat, and mining consistent with current BLM land uses. At completion of mining activities, the site will be reclaimed to a native plant community similar to surrounding undisturbed areas. Reclamation will result in the development of an early-stage grass/shrub community that will provide a locally-important increase in landscape-level (plant community) diversity. Native vegetation established on reclaimed areas at Copper Flat will result in increased erosion protection, habitat improvement, forage production, and reduced net infiltration of water into the underlying materials relative to current conditions.

The open pit area will be reclaimed to the extent practicable to a wildlife habitat. A water conveyance channel will be constructed along the existing pit haul road to direct surface water flows to the pit lake. As a rule, safety protocols will not permit regrading, covering, and revegetating narrow catch benches left in pit walls and other areas that cannot be safely accessed. These areas will be allowed to revegetate themselves through natural processes. The open pit walls and benches will become wildlife habitat providing abundant rock outcroppings and cliff habitat suitable for small mammals, reptiles and birds.

3.0 IMPLEMENTATION OF RECLAMATION AND CLOSURE PLAN

At completion of mining activities, Copper Flat will be reclaimed according to the reclamation and closure plan described in Section 2.0 and the site will be restored to conditions to meet post-mining land uses of wildlife habitat, grazing land, recreation, and mining consistent with the BLM land management plan (BLM 1986). The focus of this section is to detail regrading operations, growth media reclamation cover volumes, and placement and the revegetation plan including planting techniques and proposed seed mixes.

Throughout the Reclamation and Closure Plan, consideration of material density changes during excavation, stockpiling, and placement of cover materials have been incorporated into the available in place borrow (bank) volume, stored (stockpiled) volume, and cover (reclamation) volume estimates. Factors applied for the analyses within the reclamation plan are shown in Table E7.

Table E7: Reclamation Details

Reclamation Activity:	Shrink(+)/Swell (-) Factor Applied:	Net Change to Bank Measure at Placement:
Initial Excavation	+25%	
Storage at GMSP & Mechanically Consolidate	-10%	Volume Increases 112.5%
Excavate GMSP	+15%	
Placement at Reclamation	-5%	Volume Increases 123%

In summary, one cubic yard (cy) of bank material is equivalent to 1.125 cy of stockpiled material, and 1.23 cy of reclamation cover material.

3.1 Growth Media Placement

The use of the term “growth media” herein is synonymous with the terms “topdressing” as defined in the Mining Act regulations. The major guiding elements in developing the grading plans for the major facility areas and ancillary facilities at Copper Flat are to achieve positive drainage, facilitate constructability and the efficient conveyance of water and limit slope length and gradient to prevent soil erosion, provide a base for establishing revegetation, and eliminate long-term maintenance requirements. Prior to cover placement, top surfaces and disturbed areas will require minor grading to fill rills, enable the construction of surface water control features and ensure that the final grade is between 1 and 5 percent for reclaimed waste storage units, and graded to blend into the natural topography for other disturbed areas. More extensive grading will be required on the slopes to achieve the desired slope configuration, smooth the bed materials and accommodate surface water control features.

Once facilities are regraded, cover materials will be hauled from growth media stockpiles and placed on the top surface and slopes using a variety of equipment including scrapers or haul trucks. Additionally, excess material remaining following construction of TSF Evaporation Pond and associate embankment will be utilized for reclamation cover on the portions of the top surface of the TSF that have been regraded at the time of the pond construction. Bulldozers and motor graders will be used to smooth the surfaces and facilitate access for cover placement and revegetation activities. Reclamation of EWRSP-1, EWRSP-2B, a portion of EWRSP-2A and the outslope of EWRSP-4 will occur during the pre-production phase of mine operations. Suitable growth media for these existing facilities will be excavated from TSF and/or WRSP-2 and -3 borrow areas and hauled directly as part of the plans to reclamation contemporaneously during the pre-production phase of mine operations (Section 2.1).

The cover system will be designed to provide erosion control, sustain vegetation and reduce net infiltration of stormwater through the underlying materials. The soil cover will be a monolithic store and release/evapotranspiration system. Where mine wastes are present (EWRSPs, WRSPs, and TSF) soil covers will be 36 inches thick, and other disturbed areas that do not have adequate growth media already in place will be covered with 6-inches of soil. The covers will be designed to be protective of groundwater, resist erosion and

support vegetation. Growth media to construct the cover will be spread and graded in a manner to minimize compaction that would inhibit plant growth.

NMCC will construct the soil covers in single lift. However, there may be occasions during cover construction when the subsurface and surface cover materials may be placed in separate operations. In these instances, NMCC will place coarser textured growth media materials in the surface lift, particularly on outslopes. Coarser textured soils materials are expected to have better performance related to their ability to resist erosion and capture water (high infiltration capacity) during high intensity precipitation events that occur during the summer monsoons (Golder 2013).

Growth media will be placed at a depth of at least 6 inches in disturbance areas that do not contain mine waste rock. GMSP-1 and -2 are underlain by alluvial deposits that are suitable growth media. As such, the existing deposits underlying these stockpiles will simply be graded, scarified, and reseeded. Removal of growth media from GMSP-3 may expose bedrock that will require a minimum of 6 inches of stockpiled growth media to remain within the stockpile footprint prior to reseeding.

The majority of the reclamation cover, as shown in Table E6, will be stored in the GMSPs. However, some reclamation will be performed at the beginning of the mine development, which will allow a portion of the cover material to be taken directly to placement at the time of excavation (direct hauled). There will also be areas of the site where cover material will be salvaged while conducting site construction development activities. Table E8 provides an estimate of the volume of growth media required for reclamation. As shown in Table E8, approximately 0.5 million cy (reclamation volume) will be direct hauled to a location undergoing reclamation and approximately 0.3 million cy will be stored in impoundment berms or windrows at the construction sites separate from the GMSPs. The remainder, approximately 4.3 million cy (reclamation volume), will be stored in the GMSPs.

Table E8: Estimated Reclamation Cover Requirements

Facility	Regraded Surface Area ¹ (acres)	Cover Thickness (ft)	Cover Requirement (reclamation cy)	Cover Source		
				Direct Haul (cy)	Windrow/Berm Next to Facility (cy)	Growth Media Stockpiles (cy)
EWRSP-1 ²	17.5	3	84,700	84,700	0	0
EWRSP-2A ^{2,3}	8.3	0	0	0	0	0
EWRSP-2B ^{2,3}	5.1	3	24,684	24,684	0	0
EWRSP-3	19.5	3	94,574	0	0	94,574
EWRSP-4 ²	22.6	3	109,481	27,370	0	82,111
WRSP-1	41.9	3	202,796	0	0	202,796
WRSP-2 and WRSP-3	171.8	3	831,512	0	0	831,512
TSF	564.4	3	2,731,696	150,000	0	2,581,696
Plant Area (excluding EWRSP-3)	78.9	0.5	63,646	0	0	63,646

Facility	Regraded Surface Area ¹ (acres)	Cover Thickness (ft)	Cover Requirement (reclamation cy)	Cover Source		
				Direct Haul (cy)	Windrow/Berm Next to Facility (cy)	Growth Media Stockpiles (cy)
Surface Impoundments ⁴	31.3	0.5	25,249	0	0	25,249
Open Pit ⁵	165.3	0	0	0	0	0
GMSP-1	29.3	0	0	0	0	0
GMSP-2	31.6	0	0	0	0	0
GMSP-3	14.1	0.5	11,374	0	0	11,374
Ancillary Facility Areas ⁶	19.7	0.5	15,891	0	0	15,891
West Pit Buildup	6.9	15.0	166,980	166,980	0	0
Plant Area Perimeter Cover	19.9	3.0	96,316	0	0	96,316
Conveyor Corridor Cut Fill	0.7	30.0	33,880	0	0	33,880
Misc. Horizontal Construction Fill & Cover ⁷	100	0.5	80,667	0	20,000	60,667
Surface Impoundment Backfill ⁸	44.2	NA	427,000	0	320,000	107,000
Foundation Backfill ⁹	NA	NA	80,000	0	0	80,000
Total	1,393.0	-	5,080,446	453,734	340,000	4,286,711

Notes:

- ¹ - Regraded areas based on reclamation and closure designs presented in Attachment E1.
- ² - EWRSP-1, EWRSP-2B, a portion of EWRSP-2A, and the outslope of EWRSP-4 will be reclaimed during the pre-production phase of mine operations. The top surface of EWRSP-4 will be reclaimed following cessation of mining.
- ³ - The portion of the EWRSP-2A that lies within the footprint of proposed WRSP-1 and will be incorporated into this new stockpile. The portion of EWRSP-2A located outside of the OPSDA boundary will be relocated to the top of EWRSP-2B and the disturbed area will be ripped and seeded. EWRSP-2B includes 5.1 acres of waste rock stockpile that will get covered and 7.6 acres of disturbed area that will get ripped and seeded.
- ⁴ - Impacted Stormwater Impoundment A and the Process Water Reservoir cover requirements are included within the Plant Area and are excluded in the cover volume calculation. The TSF Underdrain Collection Pond gets incorporated into the TSF Evaporation Pond and is included in the 22.3-acre total TSF Evaporation Pond area.
- ⁵ - Open pit area and associated disturbed area around the pit perimeter that will get ripped and seeded.
- ⁶ - Includes ancillary facilities and structures not already included in one of the specific facilities listed. Includes haul and access roads, electrical power distribution system; storm water and sediment control structures; equipment storage areas; pipeline corridors; pump stations; tanks; explosives magazine and associated access road; and fencing.
- ⁷ - NMCC calculation for WRSP storm water ditches & miscellaneous roads, pipelines, power lines, ditches. Fill and cover. 20,000 cy stored in windrows adjacent to alignments.
- ⁸ - NMCC calculation based on water volume + 2 foot additional feet to account for freeboard volume.
- ⁹ - Foundation backfill by NMCC.

cy – Cubic yards
 Icy – Loose Cubic Yards (reclamation cover)
 NA – Not applicable

3.2 Revegetation Plan

The revegetation plan for the Copper Flat Project is designed to create a stable, self-sustaining plant community that will conform to the planned grazing and wildlife habitat PMLU for areas outside the open pit. Revegetation of the site will consist mainly of the establishment of grass, forb and shrub species characteristic of the desert grassland community. Plant species were chosen based on their ability to provide satisfactory cover, on their nutritional value and ability to support livestock production and wildlife habitat. General planting techniques and proposed seed mixtures are provided below.

3.2.1 Planting Techniques

Revegetation will be performed in a manner consistent with industry standards to minimize erosion, promote stable land surfaces, and support the post-mining land use. The general order of agronomic practices for revegetation seeding are ripping or scarification, disking, seeding (drill, broadcast or hydroseed), mulching and crimping or tackifying. These practices are discussed in more detail below.

NMCC will time seeding activities in a manner that takes advantage of summer monsoon moisture to encourage establishment of warm weather grasses to the extent practicable. After placement, the cover will be scarified (ripped 8 to 12 inches) to break up compaction and roughen the surface. The ripping operation will be implemented on the contour for sloping areas to reduce the potential for early-stage soil erosion during vegetation establishment. The roughened surface is a transient condition that provides micro-sites for seedling establishment and to reduce concentrated overland flow and erosion. Prior to seeding, the seed bed will be prepared by disk or harrowing to a depth of approximately 6 inches. If soil amendments are required, disk to prepare the seedbed will take place after applying the amendments. Ripping and other seedbed preparation procedures will be conducted when surface and subsurface soil moisture conditions are dry to avoid compaction.

Specific seeding methods to be utilized at the site are dependent on many factors including the topography, surface conditions, seed mixture, and equipment availability. Specialized rangeland drills are available for seeding native seed mixes. They are equipped with an agitator and depth bands to mix seed and ensure proper seeding depths. Alternatively, seed may be broadcast and covered using a drag or hydro-seeding may be used on steep, small areas where larger equipment cannot easily operate. In most cases, seed will be planted using a rangeland drill or similar equipment. Wherever possible, seeding will be done along the contour. When drill seeding cannot be accomplished, broadcast seeding will be employed. For broadcast seeding, the drill seeding rate will be doubled and areas will be raked with a chain- or tire-harrow to lightly cover the seed and achieve good soil-seed contact.

Following seeding, certified weed-free mulch will be uniformly spread at a rate of about 2 tons/acre. Mulch will contain a minimum of viable seeds associated with the source (i.e., barley or wheat). Long-stem mulch will be given preference over shorter materials. The mulch will then be crimped with a straight-disc harrow or similar equipment to fix it in place. On steep slopes, tackifier emulsion may be used to secure the mulch rather than crimping.

Weed control will be implemented only if necessary. Methods of weed control will be determined upon recommendations from the BLM and/or MMD.

3.2.2 Seed Mixtures

Table E9 provides the proposed interim seed mix (primarily associated with the seeding of the growth media stockpiles) and final seed mixes for the Copper Flat Project for the grazing and wildlife PMLUs. The seed mixtures

include native warm and cool season grasses, perennial shrubs and forbs. Table E10 provides the primary functions and attributes of each proposed plant species. The species selected for the reclamation seed mixtures have been successfully used in mine reclamation and range improvement projects in many parts of New Mexico and are readily available from seed suppliers. The seed mix is selected to provide early establishment of ground cover, erosion control and productivity while providing diversity in growth forms. The seed mixture used for reclamation will be native plant species to the extent possible based on availability, compatibility with the vegetation of the surrounding areas, soils and climatic conditions of the area, and by recommendations from the BLM and MMD. If possible, seeds and plants will be sourced from within the same region and vegetative community types.

The seed mixes are designed for application prior to the summer rains and the seeding will be completed shortly ahead of and during the summer monsoon season (July through September). The ratio of cool season to warm season grasses may be adjusted if the seeding is conducted after the summer rains. The overall target seed rate for final seeding is expected to vary, but will range from about 40 to 60 seeds per square foot. Interim seedings for growth media stockpiles and other temporary stabilization seedings target a seed density of 30 seeds per square foot. All seed mixes shall be certified as weed free.

NMCC may propose to adjust the seeding rates or species listed in Table E9 based on seed availability or to accommodate variations in seeding methods (e.g., broadcast, drill, hydraulic) and field conditions. A list of alternate or substitute species is included in Table E11. Based on the performance on the interim seed mix and seeding associated with the contemporaneous reclamation of the existing stockpiles, the final seed mix may be modified with approval of the MMD.

Table E9: Interim and Final Reclamation Seed Mixes

Scientific Name	Common Name	PLS/ac ¹	
		Interim	Final
Grasses – Warm Season			
<i>Bothriochloa barbinodis</i>	Cane bluestem	0.15	0.20
<i>Bouteloua curtipendula</i>	Sideoats grama	1.00	1.10
<i>Bouteloua gracilis</i>	Blue grama	0.20	0.25
<i>Pleuraphis jamesii</i>	Galleta	0.75	1.10
<i>Leptochloa dubia</i>	Green sprangletop	0.15	0.20
<i>Seteria vulpiseta</i>	Plains bristlegrass	0.20	0.30
<i>Sporobolus cryptandrus</i>	Sand dropseed	0.03	0.04
Grasses – Cool, Intermediate Season			
<i>Achnatherum hymenoides</i>	Indian ricegrass	0.60	1.30
<i>Eragrostis intermedia</i>	Plains lovegrass	0.05	0.04
<i>Hesperostipa newmexicana</i>	NM feathergrass	0.70	0.50

Scientific Name	Common Name	PLS/ac ¹	
		Interim	Final
Shrubs			
<i>Atriplex canescens</i>	Four-wing saltbush	0.30	1.75
<i>Ericamerica nauseosus</i>	Rubber rabbitbrush	0.10	0.35
<i>Fallugia paradoxa</i>	Apache plume	--	0.10
<i>Krascheninnikovia lanata</i>	Winterfat	0.15	0.70
Forbs			
<i>Dalea candida</i>	White prairie clover	0.10	0.40
<i>Linum lewisii</i>	Blue flax	0.15	0.35
<i>Ratibida columnifera</i>	Prairie coneflower	--	0.10
<i>Sphaeralcea ambigua</i>	Desert globemallow	0.10	0.40
	Total	4.73	9.18

Notes:

¹ Rate is in pounds of pure live seed (PLS) per acre; Substitutions may change seeding rates.

Table E10: Functions and Attributes of the Primary Plant Species

Species	Character ¹	Attributes and Function
<i>Cane beardgrass (Bothriochloa barbinodis)</i>	N,P,W,G	Bunch grass providing ground cover and forage
<i>Blue grama (Bouteloua gracilis)</i>	N,P,W,G	Drought resistant sod grass providing ground cover and forage
<i>Side-oats grama (Bouteloua curtipendula)</i>	N,P,W,G	Drought tolerant bunchgrass providing ground cover and forage
<i>Galleta (Pleuraphis jamesii)</i>	N,P,W,G	Bunchgrass providing erosion control and early spring/late fall forage
<i>Green sprangletop (Leptochloa dubia)</i>	N,P,W,G	Erect bunchgrass; aggressive short-lived nurse plant with forage value
<i>Plains lovegrass (Eragrostis intermedia)</i>	N,P,I,G	Bunchgrass providing ground cover and early spring forage
<i>Plains bristlegrass (Setaria vulpiseta)</i>	N,P,W,G	Palatable bunchgrass with valuable seed for upland birds and small mammals
<i>NM needlegrass (Hesperostipa neomexicana)</i>	N,P,C,G	Persistent bunch grass providing ground cover and forage
<i>Sand dropseed (Sporobolus cryptandrus)</i>	N,P,W,G	Drought tolerant bunchgrass adapted to sandy sites
<i>Indian ricegrass (Achnatherum hymenoides)</i>	N,P,C,G	Tufted grass providing forage/seed to birds and small mammals
<i>Apache plume (Fallugia pardoxa)</i>	N,P,S	Mid-height shrub providing browse, cover and erosion control
<i>Four-wing saltbush (Atriplex canescens)</i>	N,P,S	Slightly evergreen shrub providing cover/forage for wildlife and livestock
<i>Winterfat (Krascheninnikovia lanata)</i>	N,P,HS	Low shrub providing nutritious winter browse
<i>Rubber rabbitbush (Ericamerica nauseosus)</i>	N,P,S	Mid-height shrub providing cover and erosion control
<i>Desert globemallow (Sphaeralcea ambigua)</i>	N,P,F	Persistent mid-height forb providing browse for deer and antelope
<i>Prairie coneflower (Ratibida columnifera)</i>	N,P,F	Red and yellow flowered forb attracting pollinators
<i>White prairie clover (Dalea candida)</i>	N,P,F	Nitrogen-fixing forb with low water requirements providing forage and ground cover
<i>Blue flax (Linum lewisii)</i>	N,P,F	Persistent blue-flowered forb, nutritious seed for ground birds

Notes:

¹– N = Native; P = Perennial; W = Warm season; C = Cool season; I = Intermediate season; G = Grass; S = Shrub; HS = Half shrub; F = Forb

Table E11: Alternative or Substitute Plant Species for Seed Mixtures

Scientific Name	Common Name
Grasses	
<i>Andropogon saccharoides</i>	Silver bluestem
<i>Aristida purpurea</i>	Purple three-awn
<i>Bouteloua eriopoda</i>	Black grama
<i>Eragrostis curvula</i>	Weeping lovegrass
<i>Digitaria californica</i>	Arizona cottontop
<i>Hesperostipa comata</i>	Needle and thread
<i>Heterotheca contortus</i>	Tanglehead
<i>Panicum obtusum</i>	Vine mesquite
<i>Pleuraphis mutica</i>	Tabosa
<i>Sporobolus contractus</i>	Spike dropseed
Shrubs	
<i>Calliandra eriophylla</i>	Fairyduster
<i>Isocoma tenuisecta</i>	Burroweed
<i>Lycium pallidum</i>	Wolfberry
<i>Nolina microcarpa</i>	Beargrass
Forbs	
<i>Baileya multiradiata</i>	Desert marigold
<i>Coreopsis lanceolata</i>	Lanceleaf tickseed
<i>Machaeranthera tanacetifolia</i>	Prairie aster
<i>Penstemon parryi</i>	Parry's penstemon

4.0 RECLAMATION SCHEDULE AND SEQUENCE

Table E12 presents the reclamation schedule and sequence for the revised mine plan incorporating dry stack tailings. The transition to dewatered tailings and dry stack management significantly reduces the post-operation reclamation timeframe, from an estimated 25 years under the wet TSF configuration to approximately 5 years. This reduction is primarily due to the elimination of the wet TSF draindown period and process water evaporation requirements. Dry stack tailings are placed with minimal residual moisture, enabling immediate progression to grading, cover placement, and revegetation without delay. As a result, post-operational reclamation can proceed efficiently, enhancing long-term stability and aligning with expedited closure objectives.

. The proposed schedule summarizes NMCC's understanding of the near-term mine operation and longer-term mine plan projections. More specifically, the schedule is based on the following considerations:

- Practical phasing of the reclamation projects to account for the anticipated labor, equipment and other resources that will be necessary to complete these projects based on current conditions.
- Sequential closure of facilities in a phased cost-efficient manner.
- Total annual acreages that will be reclaimed over this period.
- Design, construct and operate facilities to support and facilitate future reclamation.
- Perform reclamation contemporaneous with operations where practicable.

4.1 Contemporaneous Reclamation

Design, construction, and operating aspects of Copper Flat Mine waste storage facilities continue to support contemporaneous reclamation during active mining, consistent with NMCC's 2017 plan. The following design features have been incorporated to enable progressive reclamation during operation:

- Waste rock stockpiles will be constructed in lifts, incorporating setbacks at designated elevations to accommodate erosion control ditches and facilitate final regrading to a 3H:1V interbench reclamation profile.
- The dry stack tailings facility will also be constructed in lifts with setbacks at designated elevations to accommodate erosion control ditches and facilitate final grading to a 3H:1V interbench reclamation profile.
- Top surfaces of the waste rock stockpiles and the dry stack tailings facility will be constructed to promote controlled drainage and to comply with minimum drainage gradient requirements as construction advances.

The anticipated duration for reclamation presented in Table E12 include earthwork and reseeding, but do not include vegetation success/O&M/monitoring that will be conducted throughout the post-closure monitoring period as described in Section 5. The reclamation schedule is based on the number of years from the time NMCC obtains the required Mine permits and approvals to begin operations. Contemporaneous reclamation of EWRSP-1, EWRSP-2, and portions of EWRSP-4 will begin during the initial mine pre-production period.

Table E12: Copper Flat Reclamation Schedule and Sequence

Buildout Sequence	Acres	Description	Reclamation Sequence	Acres	Description
Year 1					
Mobilize Construction	0	Other Facility or Structures			
Plant Site Grading	87	Other Facility or Structures			
TSF Dry Stack Phase 1	161	Tailings Disposal Facility			
Top Dressing Stockpile 1	29	TD Stockpiles			
Construct Mill	9	Mills			
Construct Ancillary Facilities	10	Other Facility or Structures			
Storage Areas	3	Storage Areas			
EWRSP 1	15	WRSP			
EWRSP 2A	8	WRSP			
EWRSP 2B	13	WRSP			
EWRSP 3	20	WRSP			
EWRSP 4	18	WRSP			
Mine Haul Roads	6	WRSP			
Impoundments: TSF Pond: SW A	16	Impoundments			
Collection Ditches: SW A	1	Impoundments			
Year 2					
Top Dressing Stockpile 2	32	TD Stockpiles	EWRSP 1 Grade, Cover, Seed	15	WRSP
Top Dressing Stockpile 3	4	TD Stockpiles	EWRSP 2A Grade, Cover, Seed	8	WRSP
Construct Ancillary Facilities	19	Other Facility or Structures	EWRSP 2B Grade, Cover, Seed	13	WRSP
Open Pit Pre-Production	83	Pits			
WRSP 1	4	WRSP			
WRSP 2	2	WRSP			
WRSP 3	6	WRSP			
Mine Haul Roads	11	WRSP			
EWRSP 4	5	WRSP			
Ore Stockpile	2	Ore Stockpiles			
Impoundments: SW B: SW C	7	Impoundments			
Collection Ditches: SW B: SW C	4	Impoundments			
Year 3					
Top Dressing Stockpile 3	11	TD Stockpiles			
Open Pit	66	Pits			
WRSP 1	28	WRSP			
WRSP 2	5	WRSP			
WRSP 3	18	WRSP			
Year 4					
WRSP 1	8	WRSP			
WRSP 2	20	WRSP			
WRSP 3	18	WRSP			
TSF Dry Stack Phase 2	101	Tailings Disposal Facility			
Year 5					
Open Pit	8	Pits	TSF Concurrent Cover & Seed	20	Tailings Disposal Facility
WRSP 1	15	WRSP			
WRSP 2	8	WRSP			
Year 6					
Open Pit	8	Pits			
WRSP 2	15	WRSP			
WRSP 3	8	WRSP			
TSF Dry Stack Phase 3	106	Tailings Disposal Facility			
Year 7					
WRSP 2	2	WRSP	TSF Concurrent Cover & Seed	20	Tailings Disposal Facility
WRSP 3	18	WRSP			
Year 8					
WRSP 3	18	WRSP			
TSF Dry Stack Phase 4	52	Tailings Disposal Facility			
Year 9					
WRSP 3	6	WRSP	WRSP3 Concurrent Grade	10	WRSP
			TSF Concurrent Cover & Seed	20	Tailings Disposal Facility
Year 10					
TSF Dry Stack Phase 5	67	Tailings Disposal Facility	WRSP3 Concurrent Grade	10	WRSP
Buildout Complete					
Year 11					
			WRSP3 Concurrent Grade	10	WRSP
			TSF Concurrent Cover & Seed	20	Tailings Disposal Fac
Year 12					
			WRSP3 Concurrent Grade	10	WRSP
			TSF Concurrent Cover & Seed	20	Tailings Disposal Fac
Year 13					
			WRSP3 Concurrent Grade	10	WRSP
End Mining & Processing Operation Year 14 Begin Post Operation Reclamation					
			Pit Rapid Fill	10	Pits
			WRSP 3.2.1 EWRSP4 Grade, Cov	26	WRSP
			TSF Grade Cover & Seed	60	Tailings Disposal Fac

Buildout Sequence	Acres	Description	Reclamation Sequence	Acres	Description
Year 15					
			Pit Rapid Fill	5	Pits
			Pit Area Grade	35	Pits
			WRSP 3.2.1 EWRSP4 Grade, Cov	81	WRSP
			TSF Grade Cover & Seed	100	Tailings Disposal Facility
Year 16					
			Pit Rapid Fill	5	Pits
			Pit Area Grade	36	Pits
			WRSP 3.2.1 EWRSP4 Grade, Cov	72	WRSP
			TSF Grade Cover & Seed	111	Tailings Disposal Facility
			Top Dressing Stockpile Area(s)	25	TD Stockpiles
Year 17					
			WRSP 3.2.1 EWRSP4 Grade, Cov	40	WRSP
			SW B, SW C Impoundments	12	Impoundments
			TSF Grade Cover & Seed	118	Tailings Disposal Facility
			TSF Seepage Pond	14	Impoundments
			Ore Stockpile	2	TD Stockpiles
			Process Area Demo, Grade, Cover	40	Other Facility or Structures
Year 18					
			Mills	9	Mills
			Process Area Demo, Grade, Cover	76	Other Facility or Structures
			Storage Areas	3	Storage Areas
			SW A Impoundment	4	Impoundments
			Top Dressing Stockpile Area(s)	50	TD Stockpiles
Reclamation Complete					
Total Buildout Area (acres) = 1.191			Total Reclaimed Area (acres) = 1.117		

Notes:

¹ - The reclamation schedule is based on the number of years from the time NMCC obtains all of the required Mine permits and approvals to begin operations.

² - Reclamation of the plant area will also include reclamation of EWRSP-3, the land bridges, and the haul roads running through the plant area.

³ - Reclamation of the WRSP-3 may begin contemporaneous with mining operations.

⁴ - Includes ancillary facilities and structures not already included in one of the specific facilities listed within this table. Includes haul and access roads, electrical power distribution system; storm water and sediment control structures; equipment storage areas; pipeline corridors; pump stations; tanks; explosives magazine and associated access road; and fencing.

5.0 PERFORMANCE AND RECLAMATION STANDARDS AND REQUIREMENTS

5.1 Most Appropriate Technology and Best Management Practices

The reclamation and closure plan has been designed to protect human health and safety, the environment, wildlife and domestic animals using Most Appropriate Technology (MAT) and Best Management Practices (BMPs). MAT in mine operations is understood as the selection and application of the most suitable techniques, practices, or methods of operation that have been proven effective in achieving the intended purpose or performance standard while reducing impacts to the environment (prevent, reduce or control pollution). The selection of a MAT is typically accomplished in mine feasibility studies that evaluate mining technologies, processes and operating methods relative to site-specific conditions. The Copper Flat Project is being designed and will be operated using both MAT and BMPs based on site-specific technical and economic feasibility. Mining technologies, processes and operating methods proposed by NMCC are provided in Section 2.0 of Updated Mine Operations and Reclamation Plan.

BMPs are defined as any program, technology, process, siting criteria, operating method, measure or device, which controls, prevents, removes or reduces impacts to the environment. BMPs are currently accepted, effective and practical methods including structural or engineered control devices, systems and materials as well as operational or procedural practices used to prevent or reduce environmental impacts of ground disturbing activities.

NMCC will meet or exceed applicable state and federal reclamation requirements through application of MAT and BMPs. NMCC has designed its reclamation and closure plan to use the most appropriate technology for an open pit mine operation. Structural and operational BMPs will be used to stabilize the site, limit erosion, reduce sediment, control fugitive dust, and prevent noxious weeds from existing and proposed facilities and disturbed areas during reclamation. These BMPs include:

- Surface stabilization measures – dust control, regrading, mulching, riprap, temporary and permanent revegetation/reclamation and placing growth media.
- Run-on and runoff control and conveyance measures – clean water diversions and swales, armored drainage channels, runoff diversions and berms.
- Sediment traps and barriers – check dams, grade stabilization structures, sediment detention, sediment/silt fence and straw bale barriers and sediment traps.
- Air quality – apply water to control dust on haul roads and other disturbance areas, interim seeding of growth media stockpiles and other surface disturbance areas.
- Revegetation and noxious weeds – use of certified weed-free seed and mulch, cleaning heavy equipment before entering the mine area, noxious weed monitoring and treatment.

BMPs will be employed in appropriate sites during the reclamation phase of the Project and structures will be inspected periodically, with repairs performed as needed. NMCC will limit disturbance and preserve existing vegetation to the maximum extent possible. Additional details regarding structural and operational BMPs are included in Section 4.0 of the Updated Mine Operations and Reclamation Plan.

5.2 Contemporaneous Reclamation

Contemporaneous reclamation, mining-for-closure, or “designing for closure” will reduce erosion, provide early impact mitigation, limit costs and reduce final reclamation work. NMCC is committed to maximize this type of reclamation at the Copper Flat Mine Project and has designed mine facilities to employ contemporaneous reclamation to the extent appropriate and practicable. Specific details regarding contemporaneous reclamation of the EWRSP-1, -2B and -4 and some outslopes of the proposed WRSP-3 are provided in Section 2.1 and 2.2 respectively. Other examples include, designing the waste rock stockpiles in such a way to facilitate their reclamation, building final lifts to accommodate the required reclamation slopes, and managing tails deposition while constructing the embankment to achieve the desired outslope and top surface grade.

5.3 Protection Assurance

NMCC has designed a reclamation plan to assure protection of human health and safety, the environment, wildlife and domestic animals. Mine development and operation activities will also be implemented to assure protection of human health and safety, the environment, wildlife and domestic animals. Specific details of the protection assurances associated with signs, markers, and safeguarding [603.C (1)]; wildlife protection [603.C (2)]; cultural resources [603.C (3)]; hydrologic balance [603.C (4)]; stream diversions [603.C (5)]; impoundments [603.C (6)]; mass movement minimization [603.C (7)]; riparian and wetland areas [603.C (8)]; roads [603.C (9)]; subsidence control [603.C (10)]; and explosives [603.C (11)] are provided in Section 4.3 of NMCC’s Updated Mine Operations and Reclamation Plan.

5.4 Site Stabilization and Configuration

The permit area will be stabilized, to the extent practicable, to prevent future impact to the environment and protect air and water resources. The final surface configurations for the Project are presented in Figure E4 and will be suitable to achieve the grazing, wildlife habitat, and mining PMLUs. All facilities, slopes, embankments and roads will be designed, constructed, maintained and reclaimed to achieve stable configurations within the industry’s and engineering “standard of care” design process. Specific details on the steps to be taken to stabilize and configure to minimize future impact to the environment and protect air and water resources are provided in Section 4.4 of NMCC’s Updated Mine Operations and Reclamation Plan.

5.5 Topdressing and Cover Materials

Topdressing, for the purposes of reclamation, refers to any suitable soil or geological material used as growth media or soil cover for establishing native vegetation on sites disturbed by mining activities. Reclamation suitability is based on the material’s ability to provide erosion control, sustain vegetation, and reduce net infiltration into the underlying materials.

As previously described, growth media as referred to within this Mine Reclamation and Closure Plan is equivalent to topdressing as defined in 19.10.1.7.T(1) NMAC. Growth media removal quantities have been estimated on the basis of the Supplemental Soils Investigation (Golder, 2013) and are discussed below. The majority of the cover materials required to support revegetation and reclamation efforts will be obtained from within the footprints of the proposed TSF and TSF Evaporation Pond, WRSP-2 and WRSP-3.

The proposed soil cover system for the Copper Flat Project is a monolithic store-and-release or evapotranspiration (ET) cover. A store-and-release cover system stores precipitation during wet periods and releases the moisture back to the atmosphere via evapotranspiration during dry periods, reducing net infiltration. Where mine wastes are present, soil covers will be 36 inches thick unless NMCC can demonstrate a thinner cover

can be protective of groundwater (per NMAC 20.6.7.33.F), resist erosion and support vegetation. Other reclamation units including the plant site, roads, other ancillary facilities, and disturbed areas that do not contain adequate growth media will require a minimum of 6 inches of cover. GMSP-1 and 2 which are underlain by unconsolidated alluvial materials will not require additional cover. Additional information regarding cover material requirements for reclamation are provided in Section 3.1.

5.5.1 Suitability

The suitability of topdressing/cover materials is based on the material's ability to provide erosion control, sustain vegetation, and reduce net infiltration. The ability of the materials to meet these performance objectives is primarily related to their physical properties, specifically the texture and rock fragment content of the final cover system (Golder 2013). Cover materials identified within the limits of the TSF and WRSP-2 and -3 were found to be generally suitable from a physical perspective, though many surficial soils are fine-textured (high clay and silt content) that could present challenges with respect to revegetation and soil erodibility. In general, soils and underlying colluvial and alluvial materials in the permit area are considered suitable and have no chemical limitations (salinity, pH, macro and micronutrients, lime, or specific ion toxicity) for growth of native and adapted reclamation species.

Pursuant to Paragraph (2) of Subsection F of 20.6.7.33 NMAC, the proposed soil cover system must be designed to limit net-percolation by having the capacity to store at least 95 percent of the long-term average winter (December, January and February) precipitation or at least 35% of the long-term average summer (June, July and August) precipitation, whichever is greater as determined by utilizing field or laboratory test results or published estimates of available water capacity. Long-term average annual summer precipitation totals for the Hillsboro area are 5.43 inches (35% equals 1.90 inches), and winter precipitation totals 1.96 inches (95% equals 1.86 inches) (WRCC 2016). Therefore, in order to comply with the Copper Rule, the proposed 3-foot thick soil cover system must be able to store at least 1.90 inches of water.

The available water capacity (AWC) for the salvageable growth media within the limits of the TSF and WRSP-2 and -3 were estimated as part of the Supplemental Soils Investigation at Copper Flat (see Subsection 3.3.1 and Table 3, Golder 2013). The AWC estimates were based on general relationships between water retention and soil texture (Brady and Weil 2002, USDA NRCS 2005). These estimates show an average AWC of approximately 0.9 inches of water per 1 foot of soil for the salvageable growth media within the footprint of WRSP-2 and -3, with a range of between 0.6 and 1.3 inches of water per 1 foot of soil. The AWC estimates for the salvageable growth media within the footprint of the TSF show an average AWC of approximately 1.2 inches of water per 1 foot of soil, with a range of between 0.4 and 2.2 inches of water per 1 foot of soil.

The actual water retention of the salvaged soils will vary based on the types of soil materials that are placed in the growth media stockpiles. Cover materials with varying physical properties (e.g., texture and rock fragment content) will be blended during soil salvage. Given the range of materials identified as suitable cover, the proposed cover system at Copper Flat is expected to meet the storage requirements of the Copper Rule. Soil water characteristic (retention) curve laboratory analyses will be performed to evaluate available water capacity with respect to cover design and performance to ensure that the cover material used achieves the water holding capacity required in Section 20.6.7.33 NMAC.

Additional sources of alternative sources and types of materials for use as reclamation cover may be identified as part of a growth media management plan to be developed as part of the CQA/CQC plan that will be submitted to

the agencies within 180 days of submission of a notice of intent to implement the reclamation plan and in consideration of performance objectives for the soil cover system.

5.5.2 Salvage

Where salvageable soil and alluvial materials exists, either on undisturbed or reclaimed areas, NMCC will salvage as much material as can be safely and practicably recovered. Additional suitable soils and other suitable cover materials including unconsolidated subgrade materials, colluvium and overburden will be salvaged to meet the volumetric requirements for final cover construction at closure (Section 3.1). Suitable soil materials available for reclamation from the previously mined and disturbed areas are very limited. Efforts will be made to carefully recover and stockpile these materials during the pre-production phase of the Project.

As part of the proposed operations, NMCC will salvage suitable soils and near-surface alluvial materials from within the TSF, surface impoundments, and WRSP-2 and WRSP-3 footprints, and horizontal construction alignments. These materials are part of the Santa Fe formation gravels and alluvial basin fill. The deep coarse-textured alluvial materials will be mixed with the more fine-textured surficial soils as part of the salvaging, loading and hauling operations and will create a suitable growth media for final reclamation (Golder 2013).

Large diameter trees and shrubs will be grubbed prior to soil salvage. To the extent that it doesn't interfere with soil salvage operations, small diameter woody plants and herbaceous vegetation will be salvaged and incorporated in with the stockpiled growth media to maintain organic matter content of the cover materials. However, vegetation residues from creosote-dominated vegetation will not be salvaged and incorporated in the growth media stockpiles due to creosote's allelopathic properties that may prevent seedling germination during revegetation.

The estimated volumes of salvageable cover material available are shown in Table E13. These estimates are based on the test pit data collected during the Supplemental Soils Investigation by Golder (2013). The estimate fully excludes the area with existing tailing deposits (about 60 acres) and assumes approximately 87% of the materials within the remaining TSF footprint area contains suitable growth media (Golder 2013). Assuming a 20-foot excavation, there is approximately 13,755,280 bank cy of suitable cover materials within the proposed TSF footprint.

The WRSP-2 and WRSP-3 footprint occurs on the back- and foot slopes of Animas Peak and the soils and unconsolidated materials are shallower than those found within the TSF footprint. Test pit excavations in these locations encountered andesite bedrock and were restricted to 10 feet. Additionally, soils on the steep slopes of Animas Peak are expected to be thin and salvage may not be practical. Thus, cover estimates assume that only 50% of the proposed WRSP-2 and WRSP-3 disturbance footprints will be salvageable. Assuming a 10 foot excavation depth, there is approximately 1,385,853 bank cy of suitable cover materials available within the footprints of WRSP-2 and WRSP-3. Additional suitable cover material will become available as a result of construction of the TSF Evaporation Pond. The quantity of this excess material has not been included in the current estimate of the available topdressing materials for the project.

Surficial soil materials will salvaged in association with the construction of the plant, pipeline corridor, access roads and ancillary facilities. The salvaged growth media in these locations will be windrowed for local redistribution during final reclamation of the site.

More than 15.1 million bank cy (equivalent to approximately 18.6 million cy reclamation cover) of suitable reclamation material is available for salvage as shown in Table E13. In addition to salvage ahead of TSF,

WRSP--3, and surface impoundment construction footprints, additional material will be salvaged as encountered during miscellaneous horizontal construction (roads, ditches, pipelines, power lines). Additional alternative sources of growth media for reclamation may be identified prior to construction activities and in consideration of performance objectives for the soil cover system.

Table E13: Estimated Available Reclamation Cover Materials

Facility	Reclamation Cover Salvage Area (acres)	Estimated Available Reclamation Cover Materials (bank volume cy) ³	Estimated Available Topdressing Materials (reclamation volume cy) ³
Tailings Storage Facility Area ¹	490	13,755,280	16,905,000
WRSP-2 and WRSP-3 Areas ²	86	1,385,853	1,703,000
Horizontal Construction Alignments	NA	16,000	20,000
Total	576	15,157,133	18,628,000

Note:

¹ - Surface area excludes 60 acres of existing tailing deposits and assumes that 87% of the salvage area has suitable material.

² - Surface area excludes steep slopes and existing waste rock pile, it is assumed that 50% of the WRSP footprint areas will be salvageable.

³ – Bank volumes are associated with the in-place volume of the material. Reclamation volumes are calculated from bank volumes and account for the material swell and re-consolidation at excavation, storage, re-handle, and cover placement. See Section 3.0 for factors applied.

Oversight and coordination will be required to handle suitable growth media during salvage operations. Specific borrow areas will be developed within the TSF and WRSP footprints for growth media and engineering materials. The procedures to segregate suitable and unsuitable materials will be further defined in a materials handling plan once final engineering specifications are determined.

5.5.3 Stockpiling

Salvaged growth media will be stored in the three GMSPs shown in Figure E4, windrows along the horizontal construction alignments, and embankments surrounding the surface impoundments. A total of approximately 5.08 million cy of cover material is required for reclamation at Copper Flat (Table E8). Of this total, approximately 4.29 million cy will be sourced from the three GMSPs, 0.45 million cy will be directly hauled from the borrow source (footprint of the TSF and/or the WRSP-2 and -3 borrow areas, and TSF evaporation pond footprint), and 0.34 million cy will be stored in windrows along horizontal construction alignments and within the pond embankments.

GMSPs are located so as not to be disturbed or impacted by mining operations. The surfaces of the stockpile will be shaped after construction with overall slopes of 3H:1V or shallower to minimize soil loss. To further minimize erosion and the establishment of undesirable weeds, growth media stockpiles will be seeded with the interim seed mix listed in Table E9. Interim seeding will be conducted prior to growing season. Diversion ditches will be constructed upgradient of the stockpiles, where necessary, to prevent run-on erosion. Additionally, berms will be constructed around the crest of stockpiles, as needed, to prevent outslope erosion from overland flow. BMPs such as silt fences or staked straw bales will be used as necessary to capture sediment and reduce soil loss.

5.5.4 Re-Distribution

Details regarding growth media's redistribution and application on regraded areas ready for reclamation are discussed in the Reclamation Plan (Section 3).

5.5.5 Stabilization

Cover materials will be stabilized after redistribution with seedbed preparation including scarification and disking along the contour and by seeding and mulching operations as described in the Reclamation Plan (Section 3).

5.5.6 Soil Fertility

Native soils in the project area, like most semi-arid soils in the region, have inherently low fertility in the upper horizons. In particular, site soils have relatively thin and poorly developed horizons with low nitrogen and phosphorus levels and low to moderate organic matter content (Section 6, BDR; Golder 2013). Further, most semi-arid native plants have adapted to low to moderate soil fertility conditions and are relatively unresponsive to increased soil fertility compared to crop plants (Chapin 1980). Fertilizer additions have been shown to also have negative impacts in reclamation including increases in weedy annuals, shifts in species composition and decreases in drought, disease and pest resistance. Based on the performance of interim seeding and concurrent reclamation efforts, NMCC will evaluate potential soil amendment requirements for redistributed topdressing materials through soil testing relative to native plant nutrient requirements.

5.6 Erosion Control

Reclamation activities described in Section 2.0 will stabilize disturbed areas to a condition that protects against erosion. All disturbed areas will be regraded and shaped to a final contour that achieves positive drainage, reconstructs slopes with lengths and gradients that will provide long-term stability and seeded and mulched to establish a vegetative cover. Stormwater will be diverted away from facilities. Drainage channels will be designed to regulate the velocity of water and minimize the potential for channel erosion. BMPs for stormwater diversions, drainage and other water conveyance channels may include lining the channel with rock, riprap, vegetation or other geotechnical materials.

NMCC will routinely inspect and maintain all reclaimed areas, drainage channels, diversion structures, retention impoundments and auxiliary erosion control features in accordance with professionally recognized standards such as Natural Resources Conservation Service. Post-construction/reclamation inspection schedules will be developed to include provisions for periodic (annual or semi-annual) and extreme event monitoring as appropriate for individual facilities.

5.7 Revegetation Success

The MMD rules require reclamation to a self-sustaining ecosystem (SSE) appropriate for the life zone of the surrounding area following closure. Revegetation success will be determined in conformance with Section 19.10.603.G of the Mining Act rules.

To summarize the revegetation success standards specified in Section 603.G, to obtain the release of financial assurance, revegetated lands under the grazing and wildlife habitat PMLU will meet the following:

- Total herbaceous cover and productivity shall be equal to 90 percent of the reference area within a 90 percent statistical confidence.

- The diversity of plant life forms (woody plants, grasses and forbs) shall determine what is reasonable given the physical environment of the reclamation.
- Woody plant species shall be established to an approved density with an 80 percent statistical confidence, or
- Other reasonable, attainable standards approved by the Director.

To establish revegetation success standards, NMCC will work with the MMD and BLM to develop the appropriate, reasonable, and attainable success standards for the site. They may include use of a reference area to develop technical standards from the analysis of vegetation data collected in native plant communities, the performance of areas reclaimed in the pre-production phase, interpretation of the ecological site potential and the anticipated differences in community structure among the reference area and reclaimed lands, or other reasonable means. NMCC will work with the MMD to develop a Test-Plot Study Work Plan utilizing the reclaimed EWRSP areas in the program in conjunction with reference areas to evaluate erosion resistance and the ability to adequately establish vegetation. The revegetation success standards agreed to will not be applied to the open pit area.

At the time of monitoring for financial assurance release, vegetation in reclaimed areas will likely represent an early-serial stage, grass-shrub community whereas the reference area will be representative of a mature plant community. The selection of the reference area and establishment of any technical achievable revegetation success standards for reclaimed areas will be developed in coordination with the MMD and/or the BLM.

Vegetation sampling techniques and statistical protocols for data analysis and hypothesis testing will also be developed in consultation with the agencies. The limitations associated with sampling and statistical analyses of vegetation data from heterogeneous semi-arid plant communities (i.e., minor components are often not represented in monitoring data) will be considered in selecting these appropriate sampling and analysis protocols. Standard plant ecology field methods and agency technical guidance will be used to create a robust and defensible vegetation monitoring program.

Revegetation success will be determined by monitoring the vegetation parameters in the final two years of the financial assurance period (years 11 and 12 following final reclamation). Data collection will be performed using the same methods and techniques on both reference and reclaimed areas. Vegetation success monitoring will be conducted once per year in the early fall after the tenth growing season. Two years of achieving the revegetation criteria will be considered a demonstration of success of the revegetation program.

5.8 Perpetual Care

The Reclamation and Closure Plan for the Copper Flat facility is designed to meet, without perpetual care, all applicable environmental requirements for post-mining, reclaimed sites and support an SSE. Details regarding perpetual care are provided in Section 4.8 of the Updated Mine Operations and Reclamation Plan.

6.0 REFERENCES

BLM. 1986. White Sands Resource Area, Resource Management Plan. Las Cruces, New Mexico. October 1986.

Brady NC and Weil RR. 2002. The Nature and Properties of Soils. 13th Edition. Prentice Hall. New Jersey.

Chapin FS. 1980. The mineral nutrition of wild plants. *Ann. Rev. Ecol. Syst.* 11:233-260.

Golder (Golder Associates Inc.). 2013. Supplemental Soils Investigation Copper Flat. Submitted to THEMAC Resources Group Ltd. July 8, 2013.

Golder. 2015. Feasibility Level Design, 30,000 TPD Tailings Storage Facility, Copper Flat Project, Sierra County, New Mexico. Submitted to New Mexico Copper Corporation THEMAC Resources Group Ltd. November 30, 2015.

Intera et al. Baseline Data Characterization Report for Copper Flat Mine, Sierra County, New Mexico, June 2012.

JSAI (John Shoemaker and Associates Inc.). 2012. Conceptual Model of Groundwater Flow in the Animas Uplift and Palomas Basin, Copper Flat Project, Sierra County, New Mexico

JSAI. 2013. Model Projections – Operating Scenarios Considered for Copper Flat EIS, Technical Memorandum.

JSAI. 2014. Model of Groundwater Flow in the Animas Uplift and Palomas Basin, Copper Flat Project, Sierra County, New Mexico. Prepared for the New Mexico Copper Corporation.

JSAI. 2014b. E-mail from Mike Jones to Lee Wilson regarding RE: PDEIS model, transmitting EIS Alt 2 modeling results. August 1, 2014.

JSAI. 2014c. E-mail from Mike Jones to Katie Emmer, Dave Henney, Lee Wilson, and others regarding RE: Copper Flat EIS, transmitting EIS Alt 0 and EIS Alt 1 modeling results. August 15, 2014.

JSAI. 2015. Technical Memorandum, Subject: Model Projections – Operating Scenarios Considered for Copper Flat EIS, August 11, 2015. 18pp.

SRK Consulting 2013b. Geochemical Characterization Report for the Copper Flat Project, New Mexico. May 2013.

USDA (U.S. Department of Agriculture). Natural Resources Conservation Service (NRCS), 2005. National Soil Survey Handbook, title 430-VI. Soil Properties and Qualities (Part 618), Available Water Capacity (618.05).

WRCC (Western Regional Climate Center). 2016. Climate Summary for Hillsboro, New Mexico (NCDC #294009). <http://www.wrcc.dri.edu/>. Accessed October 2016.

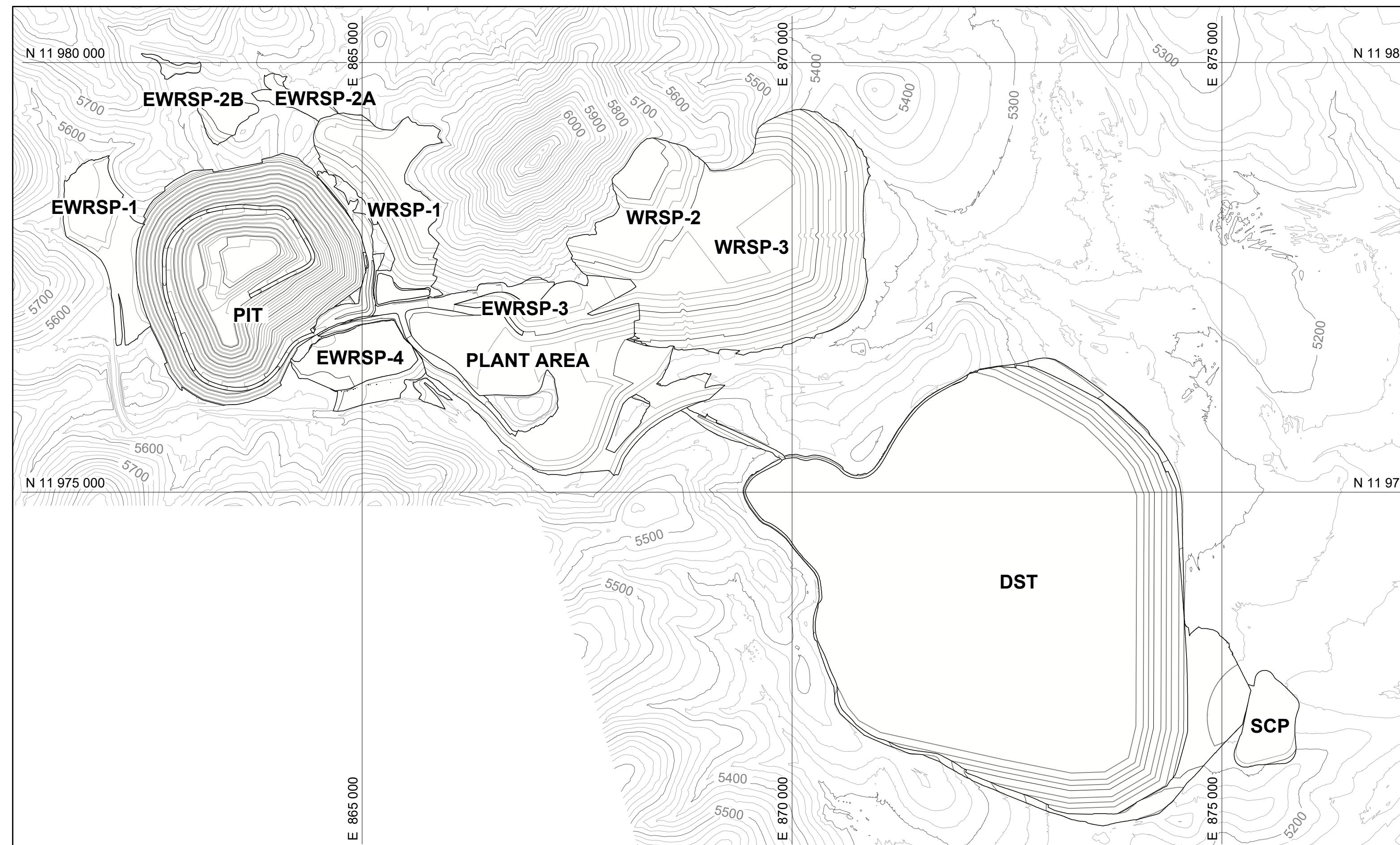
Signature Page

WSP USA Inc.

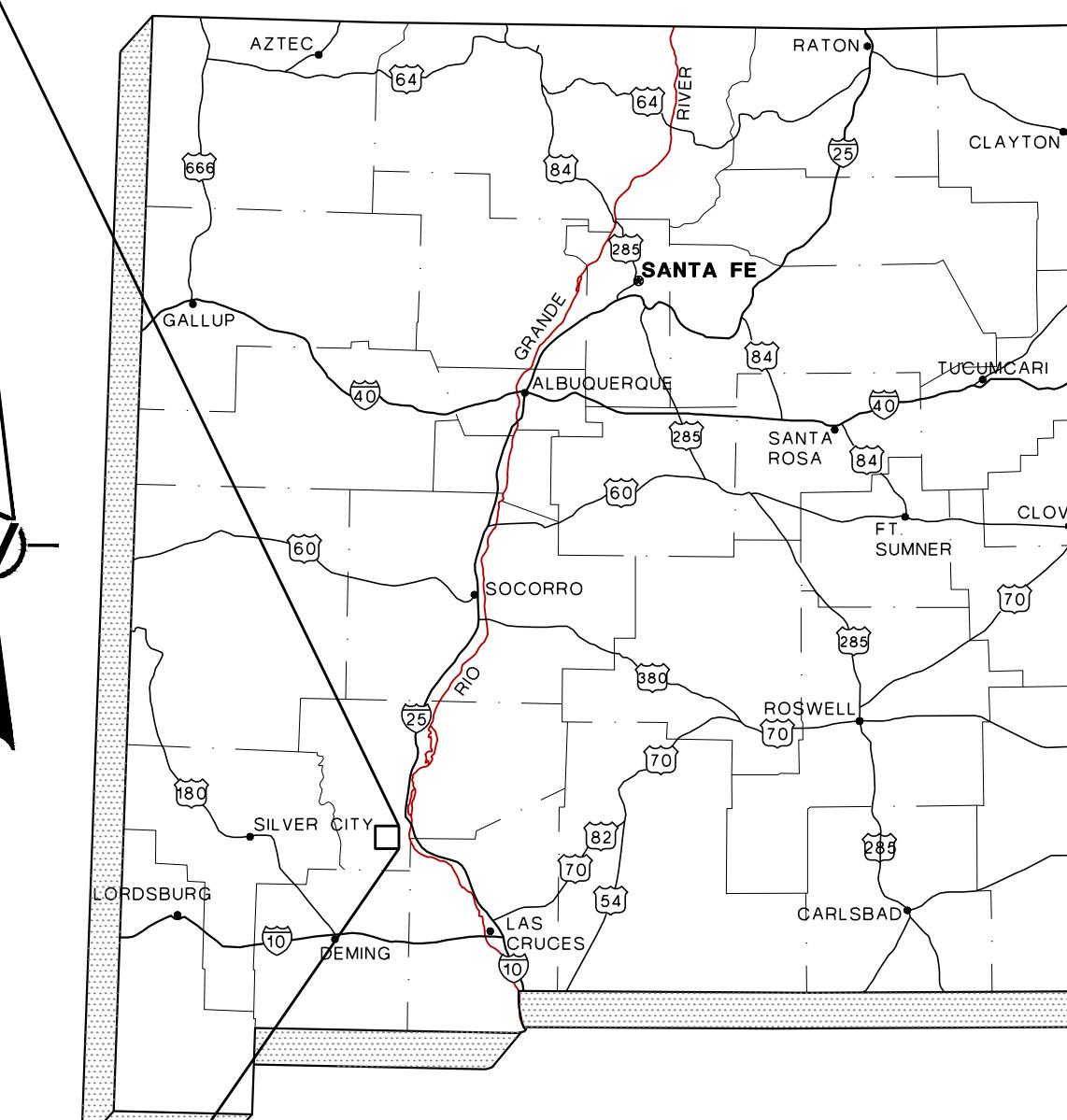
Michael Pegnam, PE, PG
Senior Vice President

Rajiv Srivastava, PhD, PE
Project Manager

ATTACHMENT E1


Figures

NEW
MEXICO
COPPER
CORPORATION


Environmentally Responsible. Community-Minded. Local Opportunities.

COPPER FLAT PROJECT MINE RECLAMATION AND CLOSURE PLAN - DST SIERRA COUNTY, NEW MEXICO AUGUST 12th, 2025

LOCATION MAP

0 1000 2000
1" = 1000' FEET

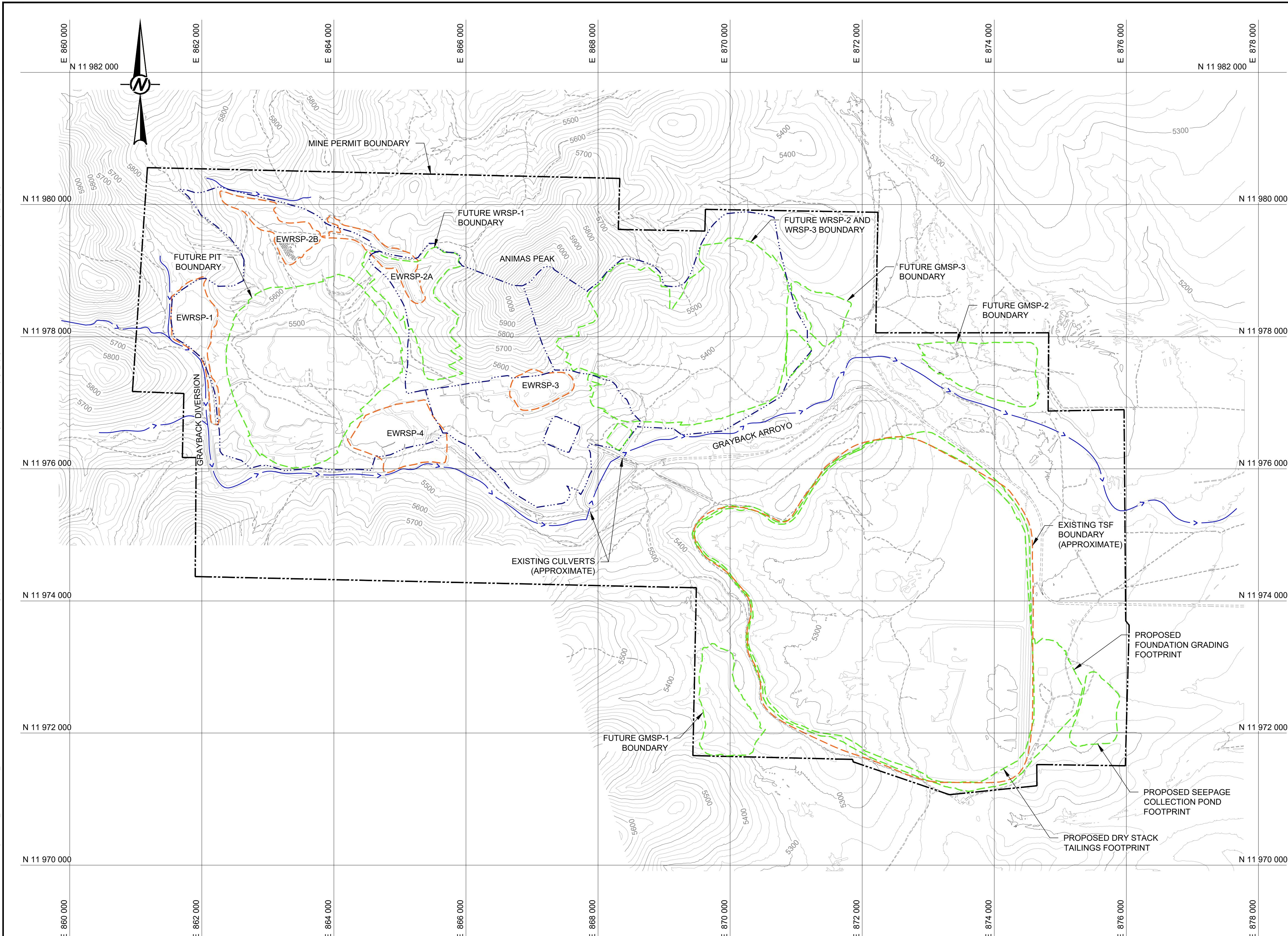
0	2025-08-12	ISSUED FOR MOPR 2025 DST UPDATE	HNL	WYV	JS	SC
B	2025-06-30	ISSUED FOR CLIENT REVIEW	HNL	WYV	JS	SC
A	2025-06-24	ISSUED FOR INTERNAL REVIEW	HNL	WYV	JS	SC
REV. YYYY-MM-DD		DESCRIPTION				
DESIGNED PREPARED REVIEWED APPROVED						

SEAL

CLIENT

CONSULTANT

TUCSON
177 N CHURCH AVE., SUITE 1105
TUCSON, AZ 85071
USA
[+1] (520) 888 8818

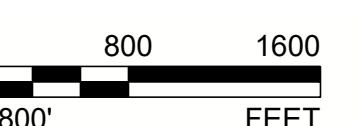

PROJECT
COPPER FLAT PROJECT
MINE RECLAMATION AND CLOSURE PLAN - DST

TITLE
COPPER FLAT PROJECT LOCATION

PROJECT NO.
US0035412.9417

REV.
0

DRAWING
E1


	EXISTING GROUND CONTOURS - 20 ft INTERVAL (ft-MSL)
	EXISTING ROAD
	MINE PERMIT BOUNDARY
	EXISTING FACILITY BOUNDARY (APPROXIMATE)
	PROPOSED FACILITY BOUNDARY
	WATERSHED BOUNDARY (BY OTHERS)
	EXISTING DIVERSION OR ARROYO
WRSP	WASTE ROCK STOCKPILE
EWRSP	EXISTING WASTE ROCK STOCKPILE
TSF	TAILING STORAGE FACILITY
GMSP	GROWTH MEDIA STOCKPILE

NOTE(S)

1. COORDINATE SYSTEM IS IN UTM NAD83 DATUM, ZONE 13, U.S. FOOT.
2. FINAL BUILDOUT TOPOGRAPHY FOR THE PIT AND WRSPs WAS DEVELOPED BY OTHERS AND PROVIDED BY NMCC.
3. FINAL BUILDOUT TOPOGRAPHY FOR THE DST WAS DEVELOPED BY WSP AS PART OF PRE-FEASIBILITY STUDY (2025).

REFERENCE(S)

1. BASE TOPOGRAPHY PROVIDED BY NEW MEXICO COPPER CORPORATION (AUGUST, 2024). REPRESENTS EXISTING CONDITIONS AS OF JUNE, 2011.

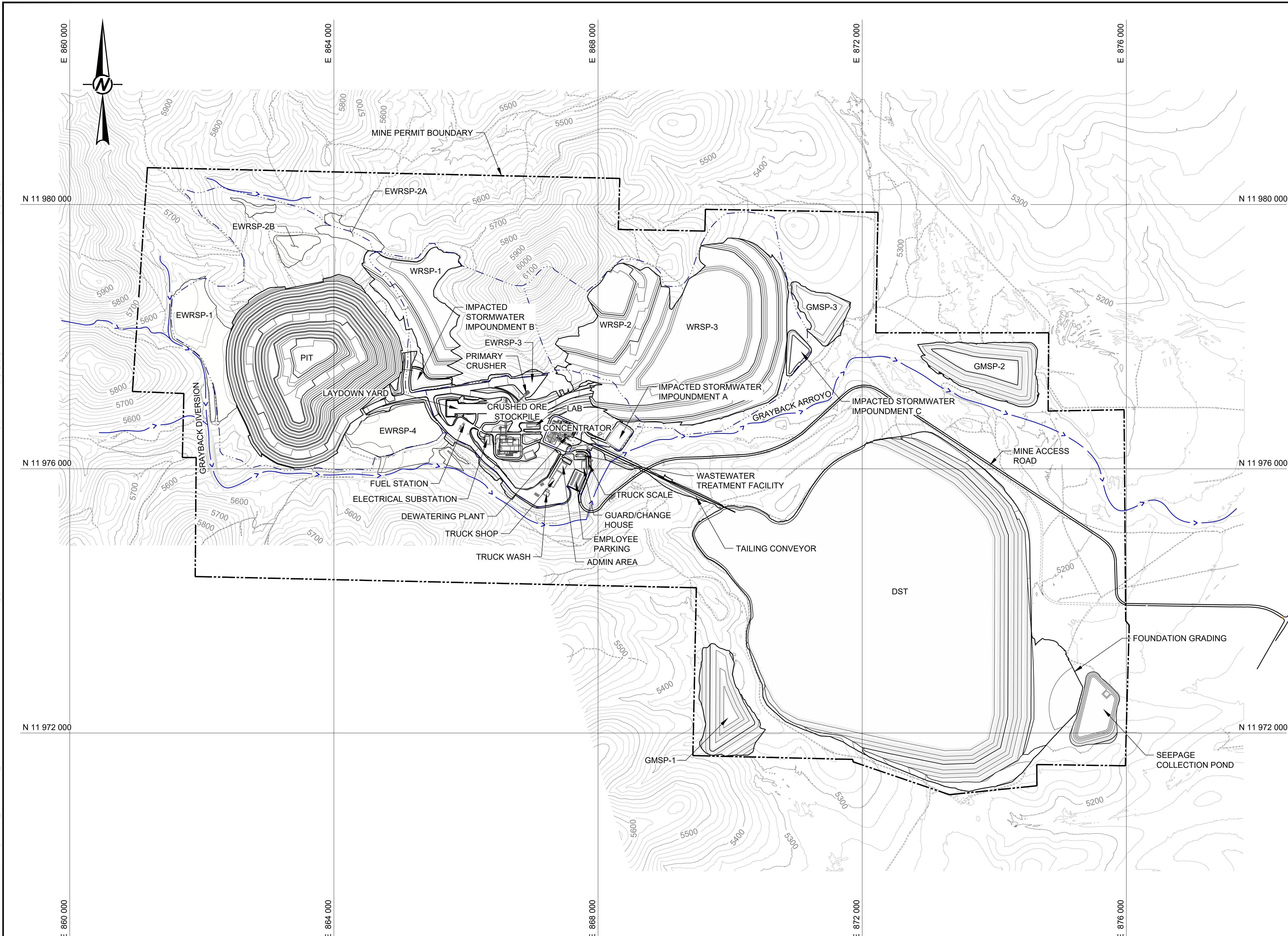


SEAL

CLIENT

CONSULTANT

TUCSON
177 N CHURCH AVE., SUITE 1105
TUCSON, AZ 85071
USA
[+1] (520) 888 8818

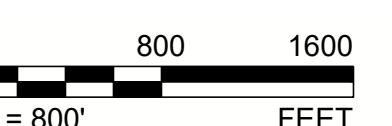

PROJECT
COPPER FLAT PROJECT
MINE RECLAMATION AND CLOSURE PLAN - DST

TITLE
GENERAL ARRANGEMENT
EXISTING SITE CONDITIONS

PROJECT NO.
US0035412.9417

REV.
0

DRAWING
E2

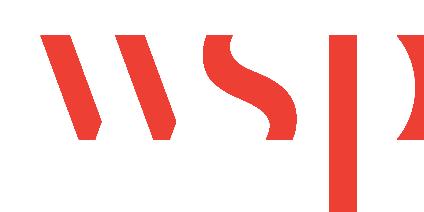

LEGEND	
5500	EXISTING GROUND CONTOURS - 5 ft INTERVAL (ft-MSL)
5500	PROPOSED DESIGN CONTOURS - 5 ft INTERVAL (ft-MSL)
=====	EXISTING ROAD
-----	MINE PERMIT BOUNDARY
-----	WATERSHED BOUNDARY (BY OTHERS)
—>	EXISTING DIVERSION OR ARROYO
WRSP	WASTE ROCK STOCKPILE
EWRSP	EXISTING WASTE ROCK STOCKPILE
DST	DRY STACK TAILS
GMSP	GROWTH MEDIA STOCKPILE

NOTE(S)

1. COORDINATE SYSTEM IS IN UTM NAD83 DATUM, ZONE 13, U.S. FOOT.
2. FINAL BUILDOUT TOPOGRAPHY FOR THE PIT AND WRSPs WAS DEVELOPED BY OTHERS AND PROVIDED BY NMCC.
3. FINAL BUILDOUT TOPOGRAPHY FOR THE DST WAS DEVELOPED BY WSP AS PART OF PRE-FEASIBILITY STUDY (2025).

REFERENCE(S)

1. BASE TOPOGRAPHY PROVIDED BY NEW MEXICO COPPER CORPORATION (AUGUST, 2024). REPRESENTS EXISTING CONDITIONS AS OF JUNE, 2011.



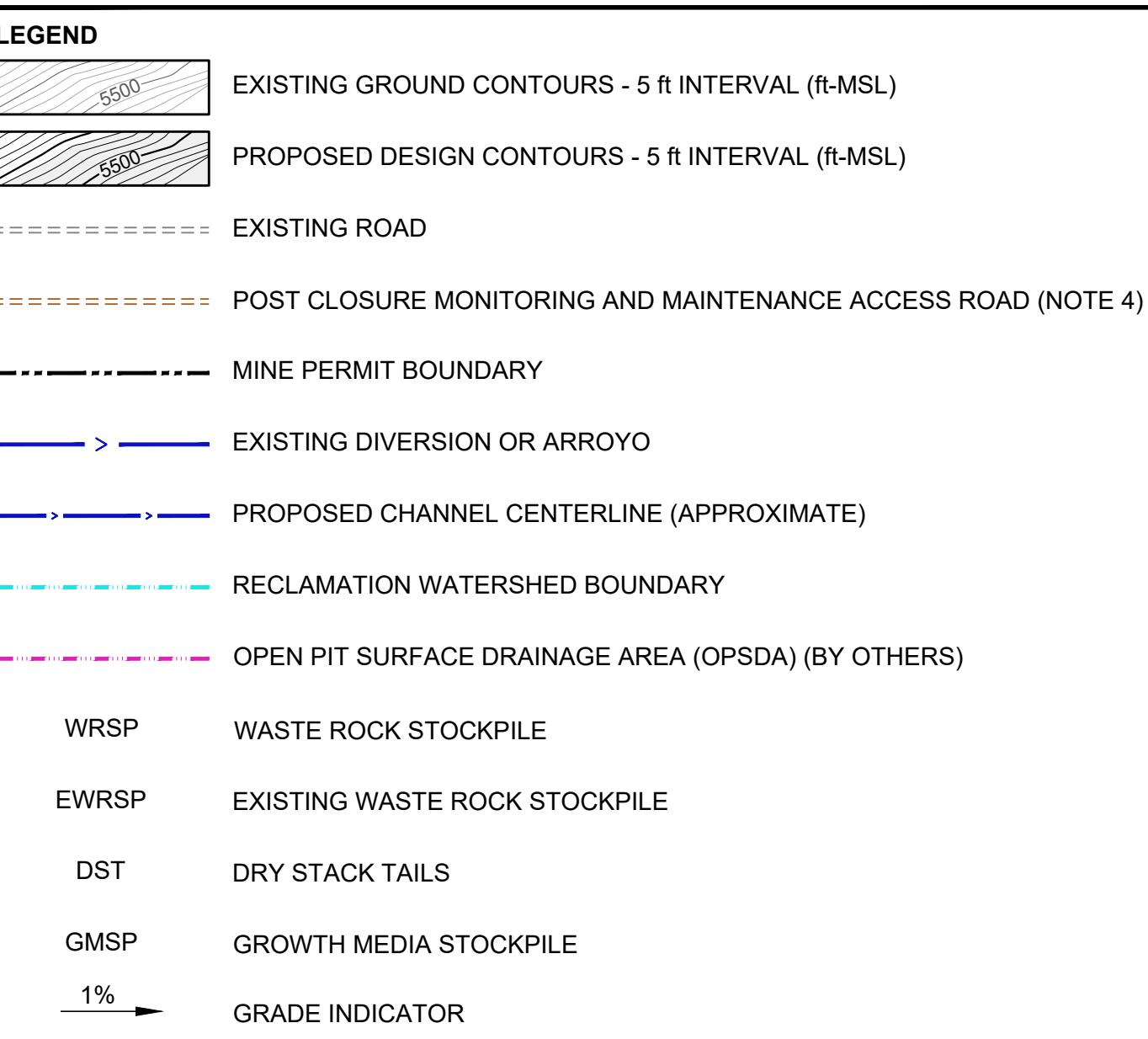
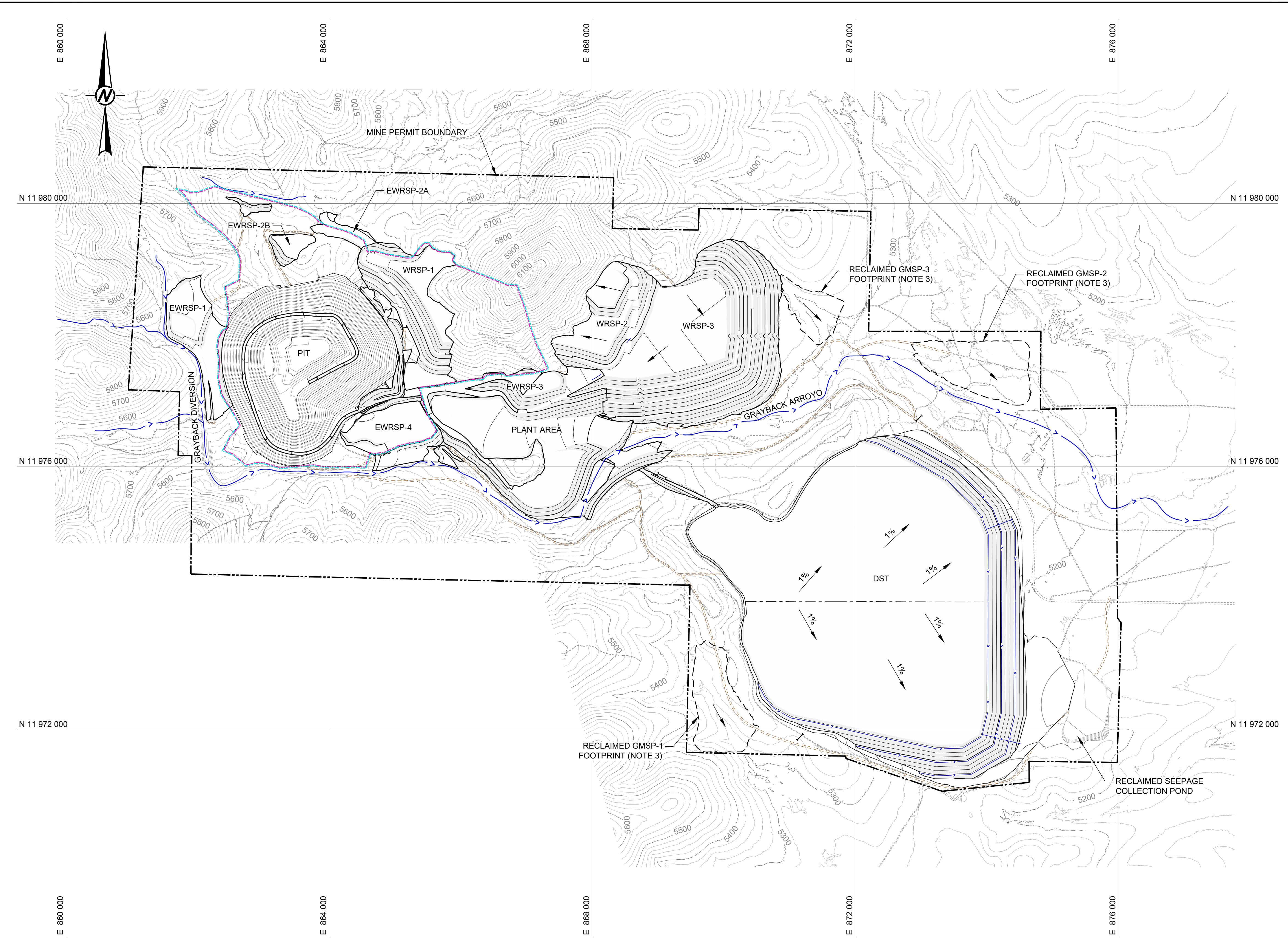
SEAL

CLIENT

CONSULTANT

TUCSON
177 N CHURCH AVE., SUITE 1105
TUCSON, AZ 85071
USA
[+1] (520) 888 8818

PROJECT
COPPER FLAT PROJECT
MINE RECLAMATION AND CLOSURE PLAN - DST

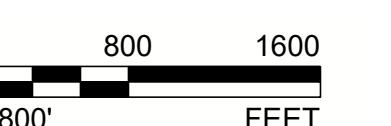


TITLE
GENERAL ARRANGEMENT
AT FINAL BUILDOUT

PROJECT NO.
US0035412.9417

REV.
0

DRAWING
E3

0	2025-08-12	ISSUED FOR MOPR 2025 DST UPDATE	HNL	WYV	JS	SC
B	2025-06-30	ISSUED FOR CLIENT REVIEW	HNL	WYV	JS	SC
A	2025-06-24	ISSUED FOR INTERNAL REVIEW	HNL	WYV	JS	SC
REV. YYYY-MM-DD		DESCRIPTION	DESIGNED	PREPARED	REVIEWED	APPROVED



NOTE(S)

1. COORDINATE SYSTEM IS IN UTM NAD83 DATUM, ZONE 13, U.S. FOOT.
2. PROPOSED DESIGN CONTOURS REPRESENT THE RECLAMATION SUBGRADE, PRE-COVER PLACEMENT TOPOGRAPHY.
3. FOOTPRINT OF RECLAIMED GROWTH MEDIA STOCKPILES WILL BE GRADED TO APPROXIMATE SURROUNDING TOPOGRAPHY, RIPPED AND REVEGETATED.
4. POST CLOSURE MONITORING AND MAINTENANCE ACCESS ROAD LOCATIONS ARE APPROXIMATE AND WILL BE FIELD FIT TO MINIMIZE EROSION AND ACCOMMODATE OTHER FIELD CONDITIONS.

REFERENCE(S)

1. BASE TOPOGRAPHY PROVIDED BY NEW MEXICO COPPER CORPORATION (AUGUST, 2024). REPRESENTS EXISTING CONDITIONS AS OF JUNE, 2011.

SEAL

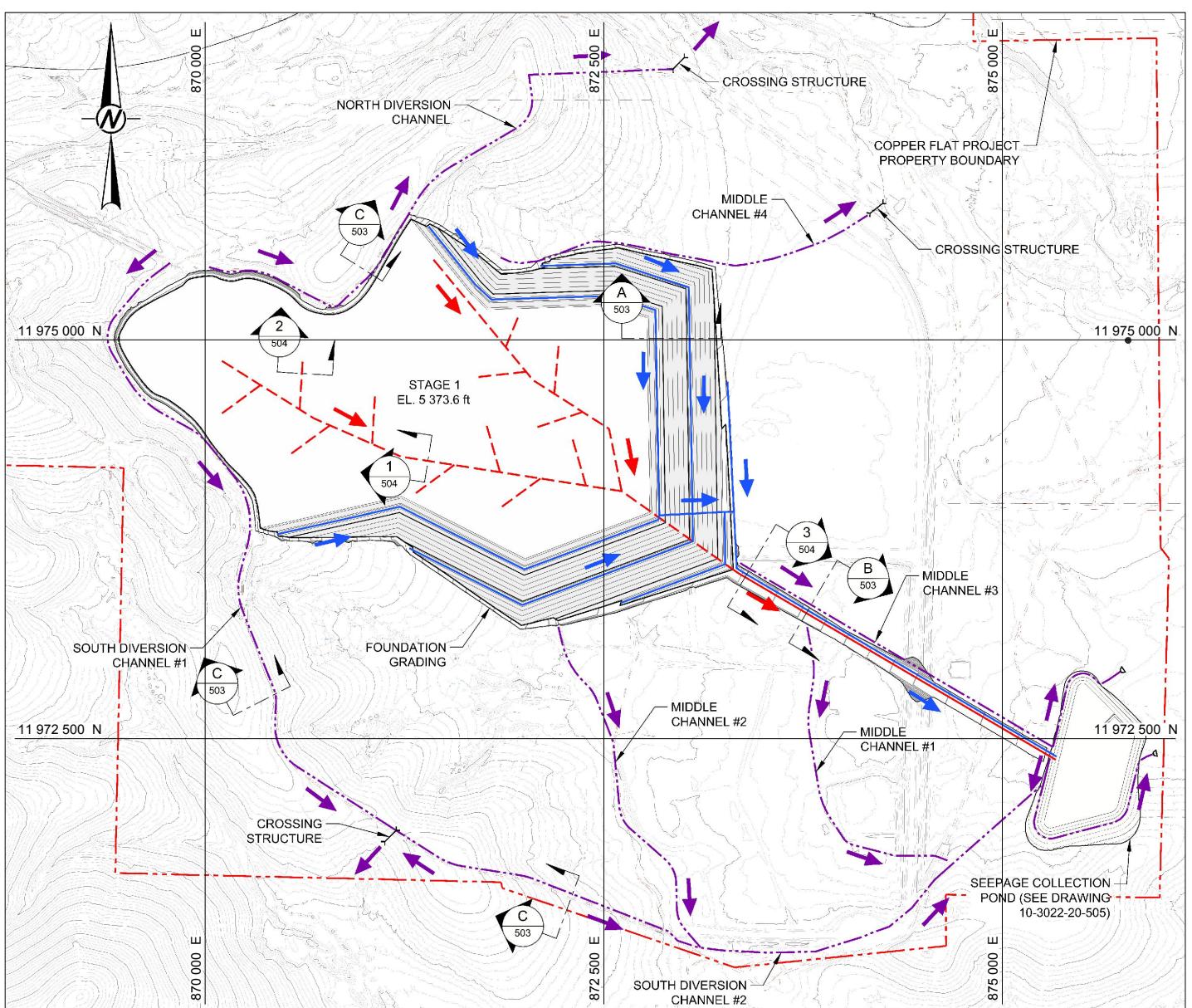
CLIENT

NEW MEXICO
COPPER

CONSULTANT

WSP

TUCSON
177 N CHURCH AVE., SUITE 1105
TUCSON, AZ 85071
USA
[+1] (520) 888 8818


PROJECT
COPPER FLAT PROJECT
MINE RECLAMATION AND CLOSURE PLAN - DST

TITLE
GENERAL ARRANGEMENT
FINAL RECLAMATION TOPOGRAPHY

PROJECT NO.
US0035412.9417

REV.
0

DRAWING
E4

WATER MANAGEMENT STAGE 1 - PLAN

SCALE 1" = 1000'

LEGEND

PROPOSED GROUND

EXISTING GROUND

EXISTING BUILDINGS

COPPER FLAT PROJECT PROPERTY BOUNDARY

EXISTING ROAD

EXISTING DRAINAGE

CONTACT DIVERSION CHANNELS

NON CONTACT DIVERSION CHANNELS

SUBDRAINAGE PERFORATED PIPELINE

SUBDRAINAGE NON-PERFORATED PIPELINE

CROSSING STRUCTURE

DISCHARGE STRUCTURE

ISSUED FOR AGENCY REVIEW

0 500 1000
1" = 1000' FEET

Last Edited By: ghd_wynga Date: 2025-03-18 Time: 07:02:34 PM | Printed By: ghd_wynga Date: 2025-03-18 Time: 07:31:59 PM Path: C:\Projects\ACC\Docs\WSP\LATAM\projects\AMER\PE\NMOC-GPA\10\Project\Rev1\WIP\GDD\WIP\PM\SKC0000000000022311 | File Name: 24898457-B-2231-GG-SKC-00008.dwg

CLIENT

PROJECT

COPPER FLAT - CAKE STACK TAILINGS

CONSULTANT

YYYY-MM-DD 2025-03-17

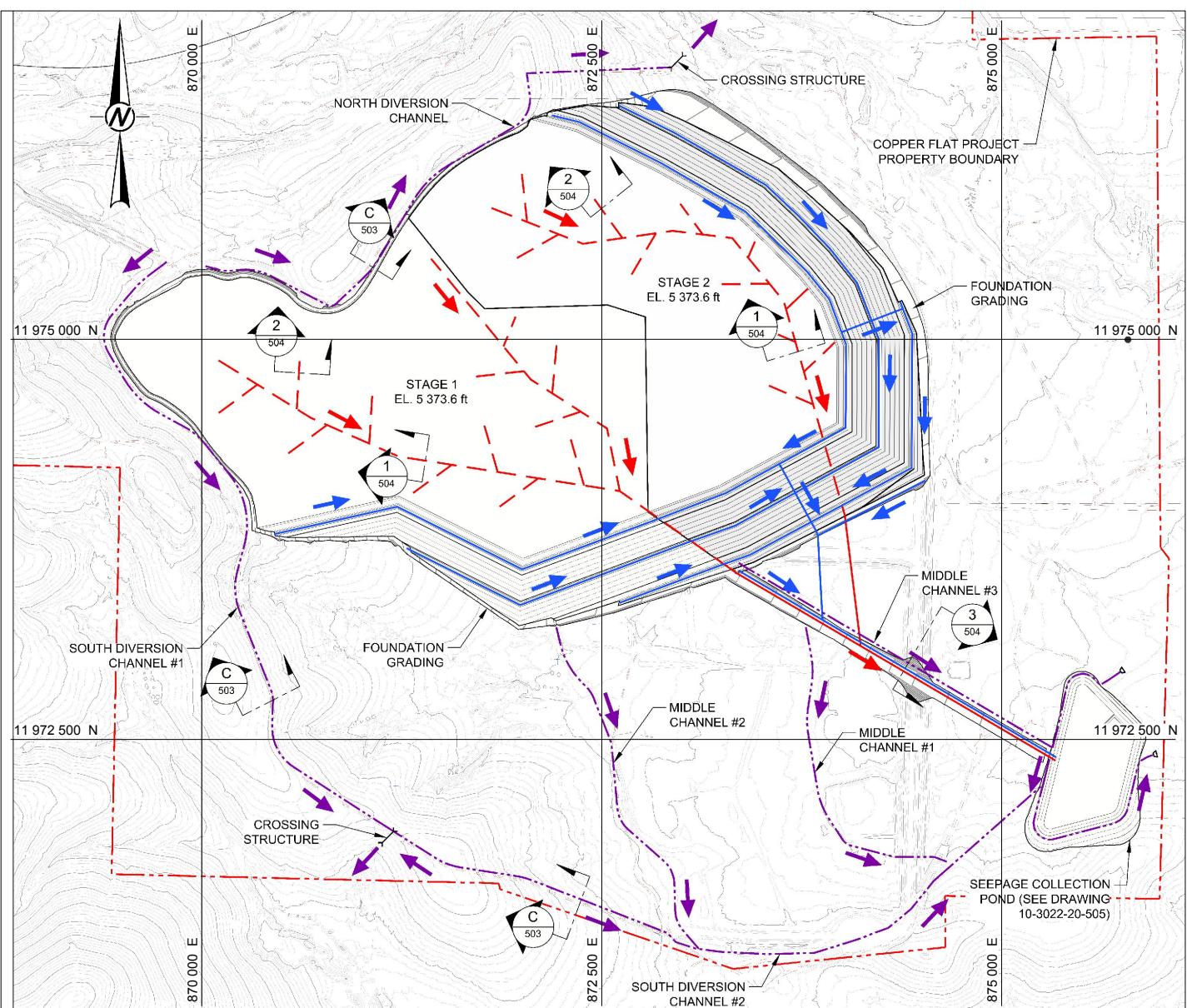
DESIGNED CVR

PREPARED WYV

REVIEWED RLG

APPROVED RS

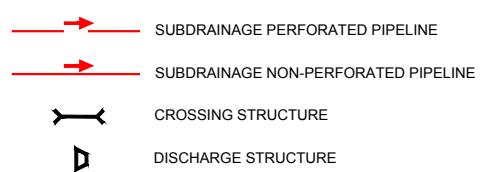
TITLE


DRY STACK TAILINGS STORAGE FACILITY STAGE 1

PROJECT NO. US0035412.9417

REV. 0

FIGURE NO. E5


1 in IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MODIFIED FROM: ANSI A

WATER MANAGEMENT STAGE 2 - PLAN

SCALE 1" = 1000'

LEGEND	
	PROPOSED GROUND
	EXISTING GROUND
	EXISTING BUILDINGS
	COPPER FLAT PROJECT PROPERTY BOUNDARY
	EXISTING ROAD
	EXISTING DRAINAGE
	CONTACT DIVERSION CHANNELS
	NON CONTACT DIVERSION CHANNELS

ISSUED FOR AGENCY REVIEW

CLIENT

PROJECT
COPPER FLAT - CAKE STACK TAILINGS

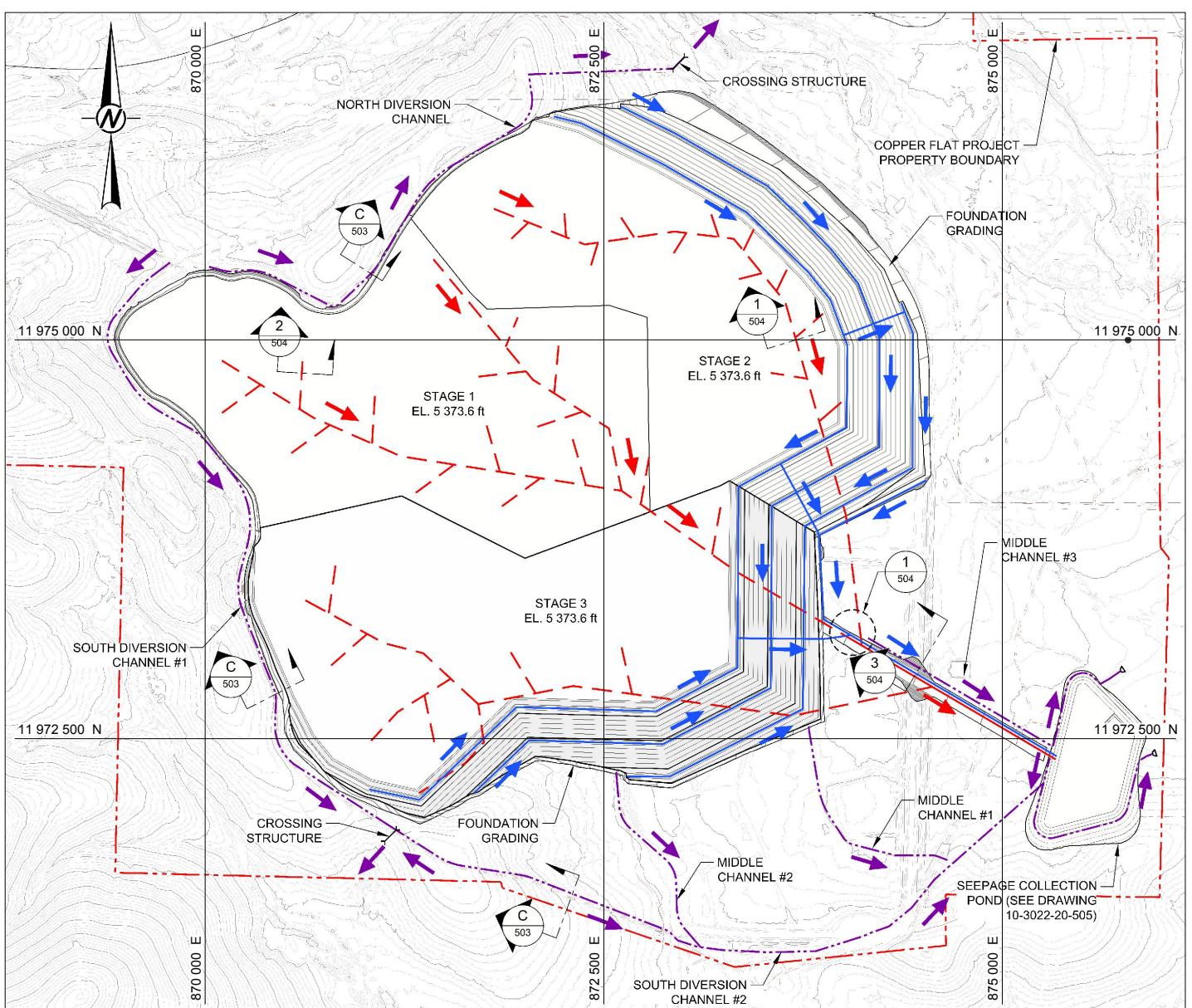
CONSULTANT

YYYY-MM-DD 2025-03-17

DESIGNED CVR

PREPARED WYV

REVIEWED RLG


APPROVED RS

TITLE
DRY STACK TAILINGS STORAGE FACILITY STAGE 2

PROJECT NO.
US0035412.9417

REV.
0

FIGURE NO.
E6

WATER MANAGEMENT STAGE 3 - PLAN

SCALE 1" = 1000'

LEGEND

PROPOSED GROUND

EXISTING GROUND

EXISTING BUILDINGS

COPPER FLAT PROJECT PROPERTY BOUNDARY

EXISTING ROAD

EXISTING DRAINAGE

CONTACT DIVERSION CHANNELS

NON CONTACT DIVERSION CHANNELS

SUBDRAINAGE PERFORATED PIPELINE

SUBDRAINAGE NON-PERFORATED PIPELINE

CROSSING STRUCTURE

DISCHARGE STRUCTURE

ISSUED FOR AGENCY REVIEW

0 500 1000
1" = 1000' FEET

CLIENT

NEW MEXICO COPPER

CONSULTANT

WSP

YYYY-MM-DD 2025-03-17

DESIGNED CVR

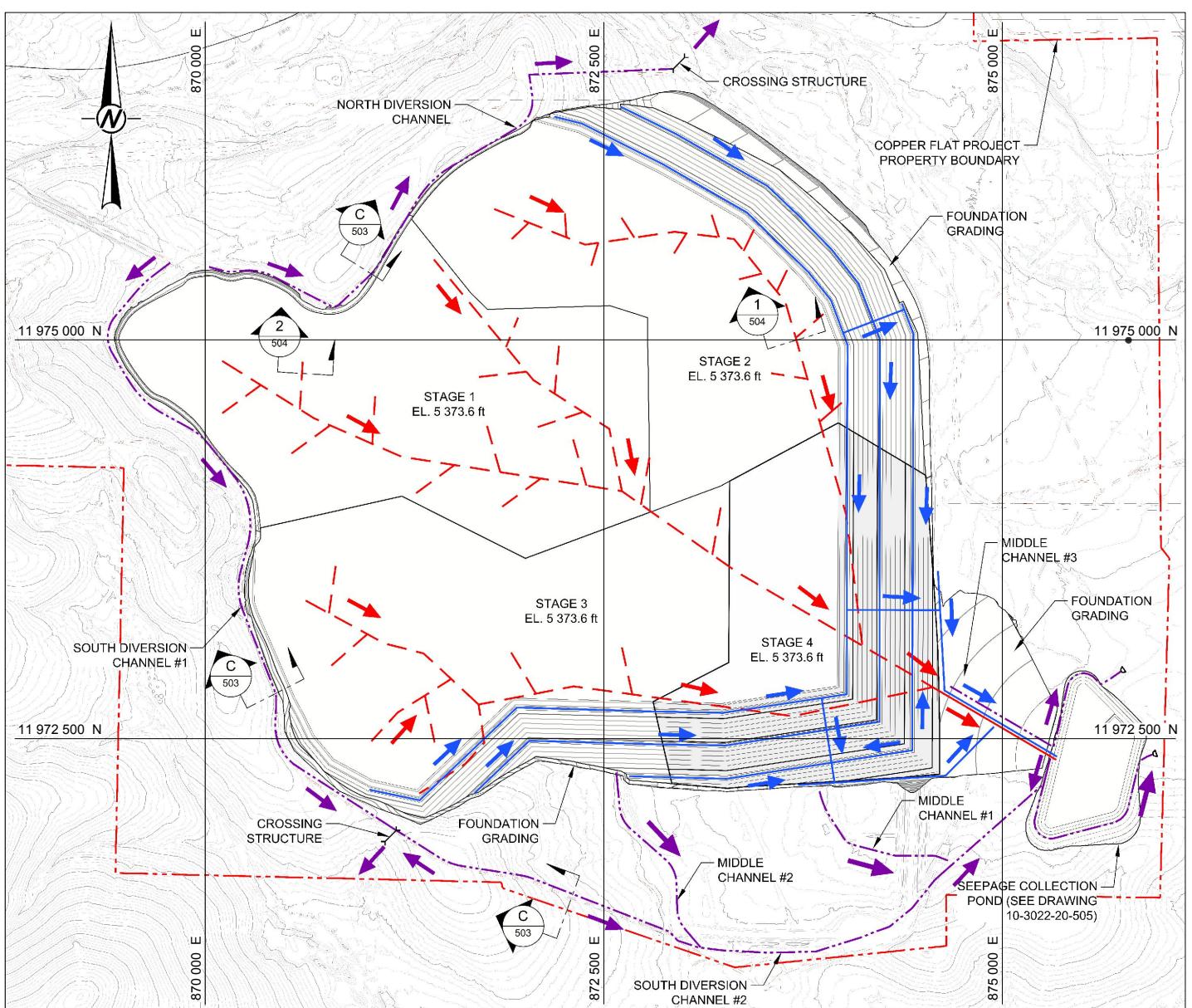
PREPARED WYV

REVIEWED RLG

APPROVED RS

PROJECT

COPPER FLAT - CAKE STACK TAILINGS


TITLE

DRY STACK TAILINGS STORAGE FACILITY STAGE 3

PROJECT NO. US0035412.9417

REV. 0

FIGURE NO. E7

WATER MANAGEMENT STAGE 4 - PLAN

SCALE 1" = 1000'

LEGEND

	PROPOSED GROUND		SUBDRAINAGE PERFORATED PIPELINE
	EXISTING GROUND		SUBDRAINAGE NON-PERFORATED PIPELINE
	EXISTING BUILDINGS		CROSSING STRUCTURE
	COPPER FLAT PROJECT PROPERTY BOUNDARY		DISCHARGE STRUCTURE
	EXISTING ROAD		
	EXISTING DRAINAGE		
	CONTACT DIVERSION CHANNELS		
	NON CONTACT DIVERSION CHANNELS		

ISSUED FOR AGENCY REVIEW

CLIENT

PROJECT

COPPER FLAT - CAKE STACK TAILINGS

CONSULTANT

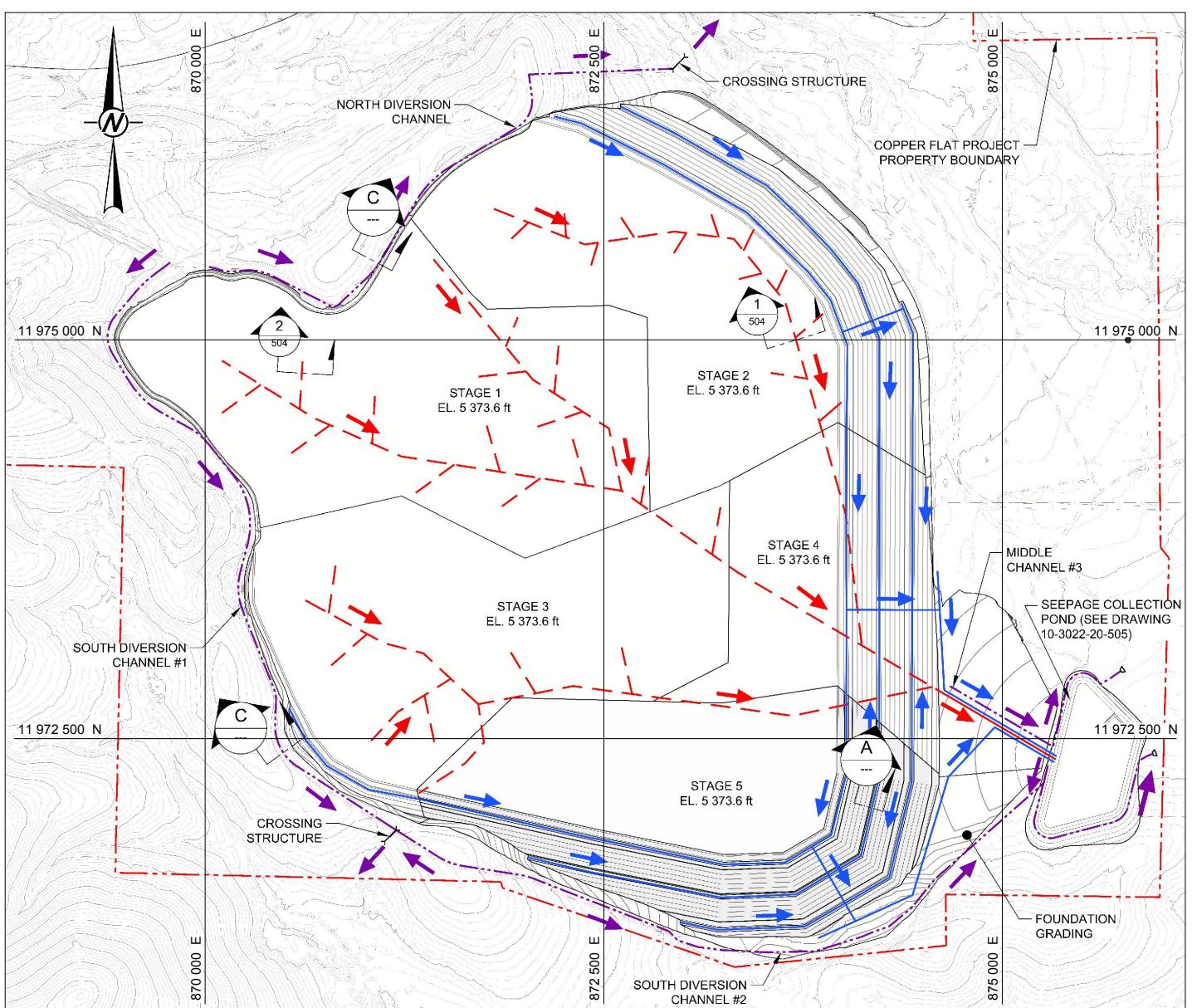
YYYY-MM-DD 2025-03-17

DESIGNED CVR

PREPARED WYV

REVIEWED RLG

APPROVED RS


TITLE

DRY STACK TAILINGS STORAGE FACILITY STAGE 4

PROJECT NO. US0035412.9417

REV. 0

FIGURE NO. E8

WATER MANAGEMENT STAGE 5 - PLAN

SCALE 1" = 1000'

LEGEND

	PROPOSED GROUND		SUBDRAINAGE PERFORATED PIPELINE
	EXISTING GROUND		SUBDRAINAGE NON-PERFORATED PIPELINE
	EXISTING BUILDINGS		CROSSING STRUCTURE
	COPPER FLAT PROJECT PROPERTY BOUNDARY		DISCHARGE STRUCTURE
	EXISTING ROAD		
	EXISTING DRAINAGE		
	CONTACT DIVERSION CHANNELS		
	NON CONTACT DIVERSION CHANNELS		

ISSUED FOR AGENCY REVIEW

CLIENT

PROJECT

COPPER FLAT - CAKE STACK TAILINGS

CONSULTANT

YYYY-MM-DD 2025-03-17

DESIGNED CVR

PREPARED WYV

REVIEWED RLG

APPROVED RS

TITLE

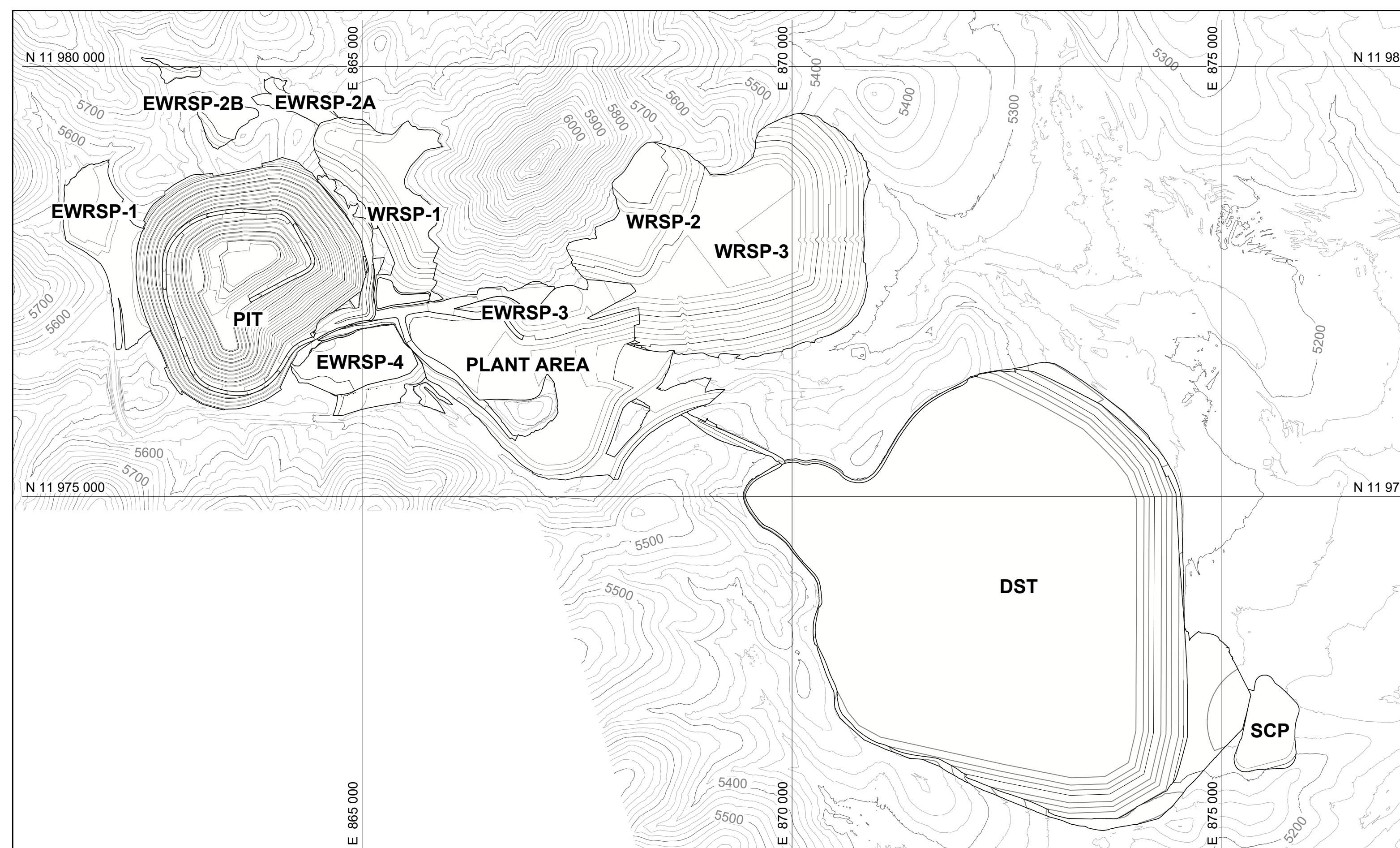
DRY STACK TAILINGS STORAGE FACILITY STAGE 5

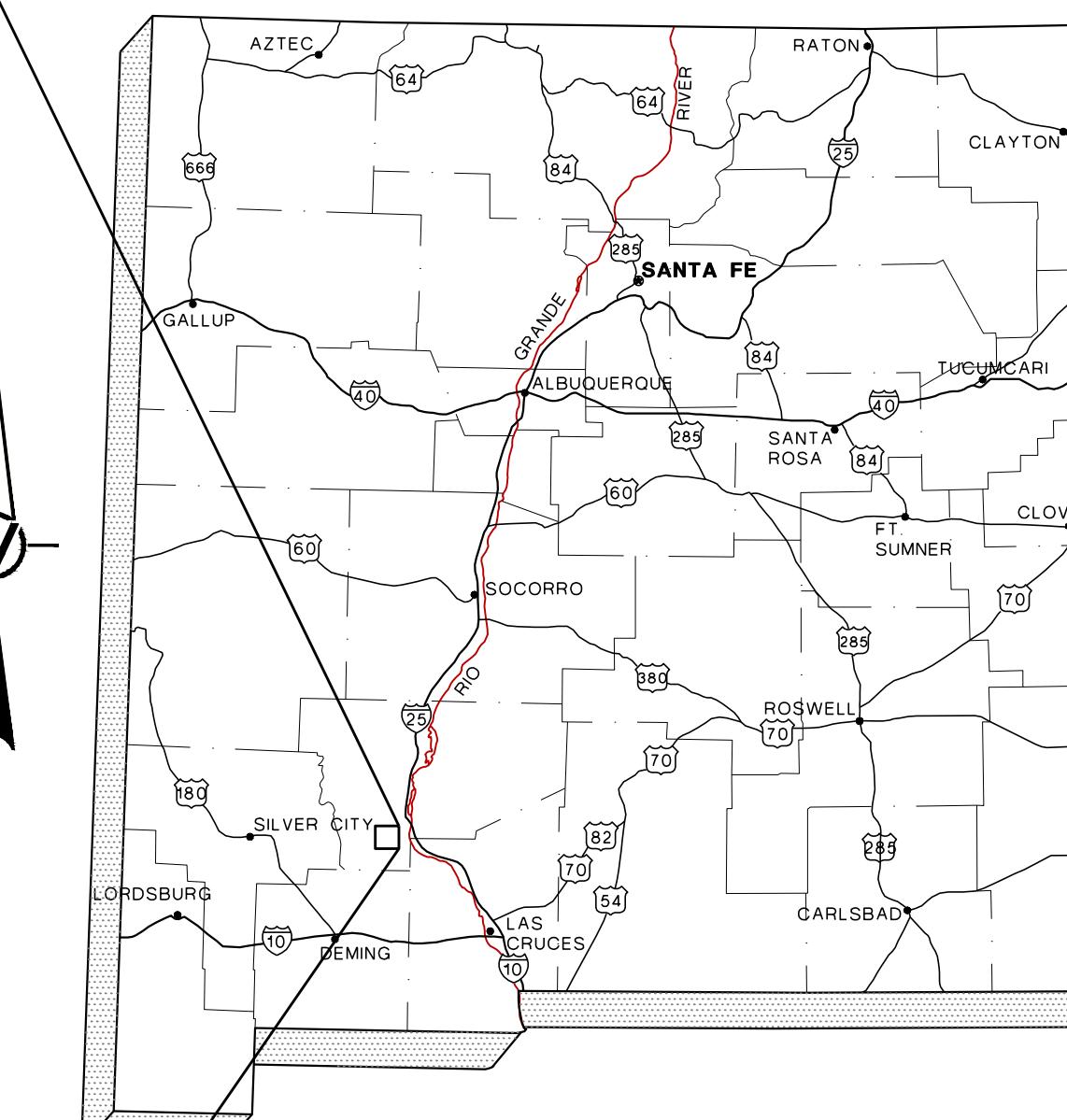
PROJECT NO. US0035412.9417

REV. 0

FIGURE NO. E9

ATTACHMENT E2


Mine Reclamation and Closure Plan


Environmentally Responsible. Community-Minded. Local Opportunities.

NEW
MEXICO
COPPER
CORPORATION

COPPER FLAT PROJECT MINE RECLAMATION AND CLOSURE PLAN - DST SIERRA COUNTY, NEW MEXICO AUGUST 12th, 2025

LOCATION MAP

STATE OF NEW MEXICO

NOT TO SCALE

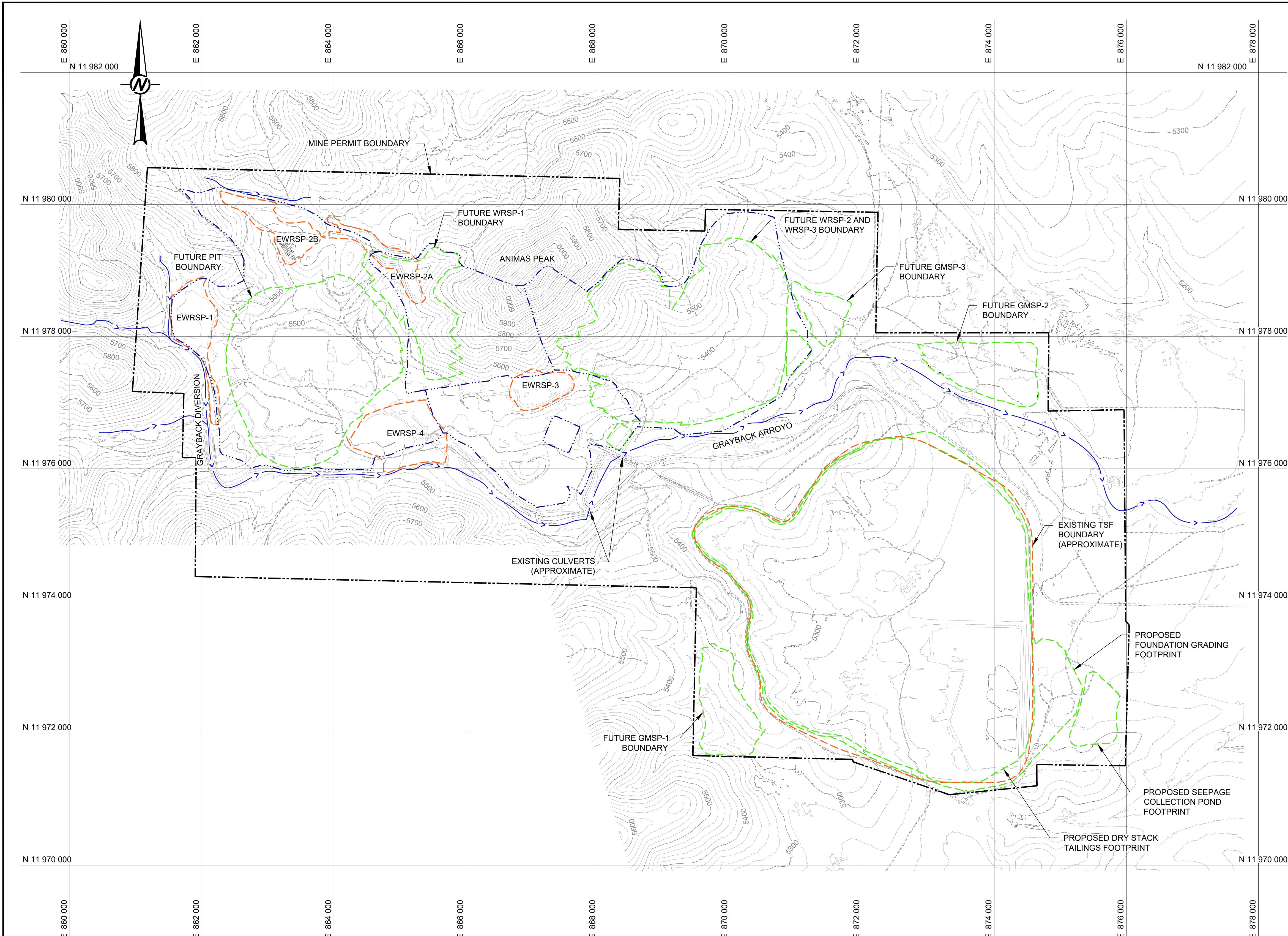
LIST OF DRAWINGS	
DRAWING NUMBER	DRAWING TITLE
G-001	TITLE SHEET
G-002	GENERAL ARRANGEMENT EXISTING SITE CONDITIONS
G-003	GENERAL ARRANGEMENT AT FINAL BUILDOUT
G-004	GENERAL ARRANGEMENT FINAL RECLAMATION TOPOGRAPHY
C-001	EWRSP-1 EXISTING FACILITY LAYOUT
C-002	EWRSP-1 REGRADE AND DRAINAGE PLAN
C-003	EWRSP-2B EXISTING FACILITY LAYOUT
C-004	EWRSP-2B REGRADE AND DRAINAGE PLAN
C-005	EWRSP-4 EXISTING FACILITY LAYOUT
C-006	EWRSP-4 REGRADE AND DRAINAGE PLAN
C-007	WRSP-1 AT FINAL BUILDOUT
C-008	WRSP-1 REGRADE AND DRAINAGE PLAN
C-009	WRSP-2 and WRSP-3 AT FINAL BUILDOUT
C-010	WRSP-2 and WRSP-3 REGRADE AND DRAINAGE PLAN
C-011	DST AT FINAL BUILDOUT
C-012	DST RECLAMATION AND DRAINAGE PLAN
C-013	PIT AT FINAL BUILDOUT
C-014	PIT RECLAMATION AND DRAINAGE PLAN
C-015	PLANT AREA AT FINAL BUILDOUT
C-016	PLANT AREA RECLAMATION AND DRAINAGE PLAN
C-017	EWRSP RECLAMATION SECTIONS
C-018	WRSP RECLAMATION SECTIONS
C-019	DST, PIT AND PLANT RECLAMATION SECTIONS
C-020	TYPICAL SECTIONS AND DETAILS (1 OF 2)
C-021	TYPICAL SECTIONS AND DETAILS (2 OF 2)

0	2025-08-12	ISSUED FOR MOPR 2025 DST UPDATE	HNL	WYV	JS	SC
B	2025-06-30	ISSUED FOR CLIENT REVIEW	HNL	WYV	JS	SC
A	2025-06-24	ISSUED FOR INTERNAL REVIEW	HNL	WYV	JS	SC
REV. YYYY-MM-DD		DESCRIPTION	DESIGNED	PREPARED	REVIEWED	APPROVED

SEAL

CLIENT

CONSULTANT

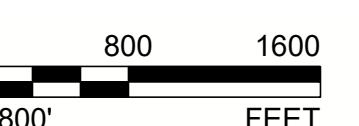

TUCSON
177 N CHURCH AVE., SUITE 1105
TUCSON, AZ 85071
USA
[+1] (520) 888 8818

PROJECT
COPPER FLAT PROJECT
MINE RECLAMATION AND CLOSURE PLAN - DST

TITLE
TITLE SHEET

PROJECT NO.
US0035412.9417

REV.
0
DRAWING
G-001



NOTE(S)

- COORDINATE SYSTEM IS IN UTM NAD83 DATUM, ZONE 13, U.S. FOOT.
- FINAL BUILDOUT TOPOGRAPHY FOR THE PIT AND WRSPs WAS DEVELOPED BY OTHERS AND PROVIDED BY NMCC.
- FINAL BUILDOUT TOPOGRAPHY FOR THE DST WAS DEVELOPED BY WSP AS PART OF PRE-FEASIBILITY STUDY (2025).

REFERENCE(S)

- BASE TOPOGRAPHY PROVIDED BY NEW MEXICO COPPER CORPORATION (AUGUST, 2024). REPRESENTS EXISTING CONDITIONS AS OF JUNE, 2011.

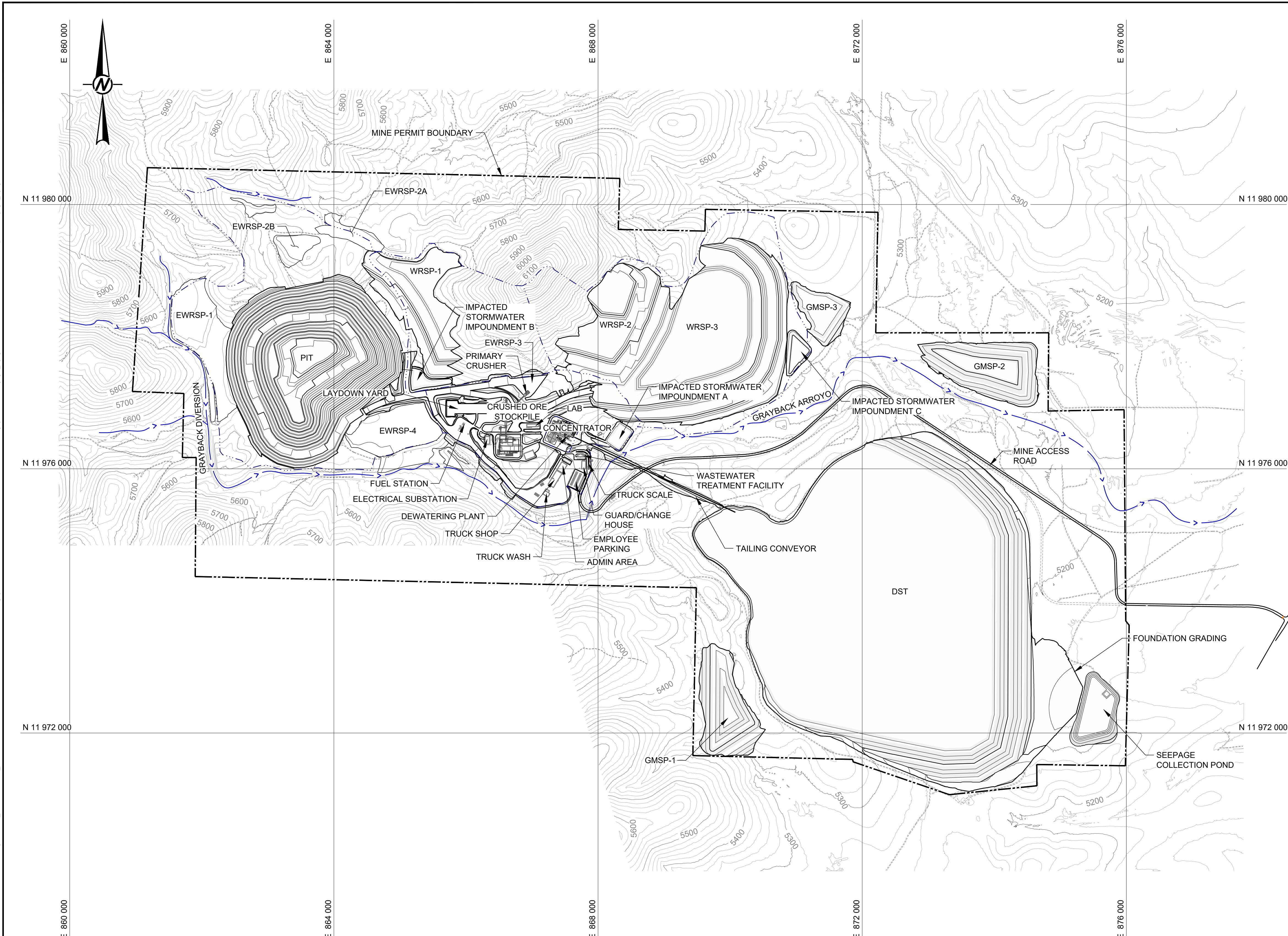
SEAL

CLIENT

NEW MEXICO
COPPER

CONSULTANT

WSP

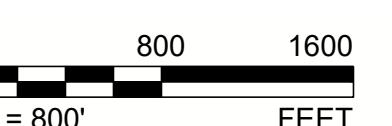

TUCSON
177 N CHURCH AVE., SUITE 1105
TUCSON, AZ 85071
USA
[+1] (520) 888 8818

PROJECT
COPPER FLAT PROJECT
MINE RECLAMATION AND CLOSURE PLAN - DST

TITLE
GENERAL ARRANGEMENT
EXISTING SITE CONDITIONS

PROJECT NO. US0035412.9417 REV. 0 DRAWING G-002

0	2025-08-12	ISSUED FOR MOPR 2025 DST UPDATE	HNL	WYV	JS	SC
B	2025-06-30	ISSUED FOR CLIENT REVIEW	HNL	WYV	JS	SC
A	2025-06-24	ISSUED FOR INTERNAL REVIEW	HNL	WYV	JS	SC
REV. YYYY-MM-DD		DESCRIPTION	DESIGNED	PREPARED	REVIEWED	APPROVED

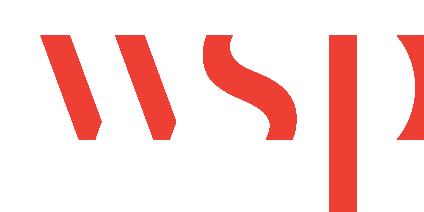

LEGEND	
5500	EXISTING GROUND CONTOURS - 5 ft INTERVAL (ft-MSL)
5500	PROPOSED DESIGN CONTOURS - 5 ft INTERVAL (ft-MSL)
=====	EXISTING ROAD
-----	MINE PERMIT BOUNDARY
-----	WATERSHED BOUNDARY (BY OTHERS)
—>	EXISTING DIVERSION OR ARROYO
WRSP	WASTE ROCK STOCKPILE
EWRSP	EXISTING WASTE ROCK STOCKPILE
DST	DRY STACK TAILS
GMSP	GROWTH MEDIA STOCKPILE

NOTE(S)

1. COORDINATE SYSTEM IS IN UTM NAD83 DATUM, ZONE 13, U.S. FOOT.
2. FINAL BUILDOUT TOPOGRAPHY FOR THE PIT AND WRSPs WAS DEVELOPED BY OTHERS AND PROVIDED BY NMCC.
3. FINAL BUILDOUT TOPOGRAPHY FOR THE DST WAS DEVELOPED BY WSP AS PART OF PRE-FEASIBILITY STUDY (2025).

REFERENCE(S)

1. BASE TOPOGRAPHY PROVIDED BY NEW MEXICO COPPER CORPORATION (AUGUST, 2024). REPRESENTS EXISTING CONDITIONS AS OF JUNE, 2011.



SEAL

CLIENT

CONSULTANT

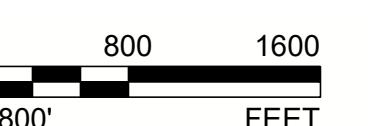
TUCSON
177 N CHURCH AVE., SUITE 1105
TUCSON, AZ 85071
USA
[+1] (520) 888 8818

PROJECT
COPPER FLAT PROJECT
MINE RECLAMATION AND CLOSURE PLAN - DST

TITLE
GENERAL ARRANGEMENT
AT FINAL BUILDOUT

PROJECT NO. US0035412.9417 REV. 0 DRAWING G-003

0	2025-08-12	ISSUED FOR MOPR 2025 DST UPDATE	HNL	WYV	JS	SC
B	2025-06-30	ISSUED FOR CLIENT REVIEW	HNL	WYV	JS	SC
A	2025-06-24	ISSUED FOR INTERNAL REVIEW	HNL	WYV	JS	SC
REV. YYYY-MM-DD		DESCRIPTION	DESIGNED	PREPARED	REVIEWED	APPROVED



NOTE(S)

1. COORDINATE SYSTEM IS IN UTM NAD83 DATUM, ZONE 13, U.S. FOOT.
2. PROPOSED DESIGN CONTOURS REPRESENT THE RECLAMATION SUBGRADE, PRE-COVER PLACEMENT TOPOGRAPHY.
3. FOOTPRINT OF RECLAIMED GROWTH MEDIA STOCKPILES WILL BE GRADED TO APPROXIMATE SURROUNDING TOPOGRAPHY, RIPPED AND REVEGETATED.
4. POST CLOSURE MONITORING AND MAINTENANCE ACCESS ROAD LOCATIONS ARE APPROXIMATE AND WILL BE FIELD FIT TO MINIMIZE EROSION AND ACCOMMODATE OTHER FIELD CONDITIONS.

REFERENCE(S)

1. BASE TOPOGRAPHY PROVIDED BY NEW MEXICO COPPER CORPORATION (AUGUST, 2024). REPRESENTS EXISTING CONDITIONS AS OF JUNE, 2011.

PROJECT
COPPER FLAT PROJECT
MINE RECLAMATION AND CLOSURE PLAN - DST

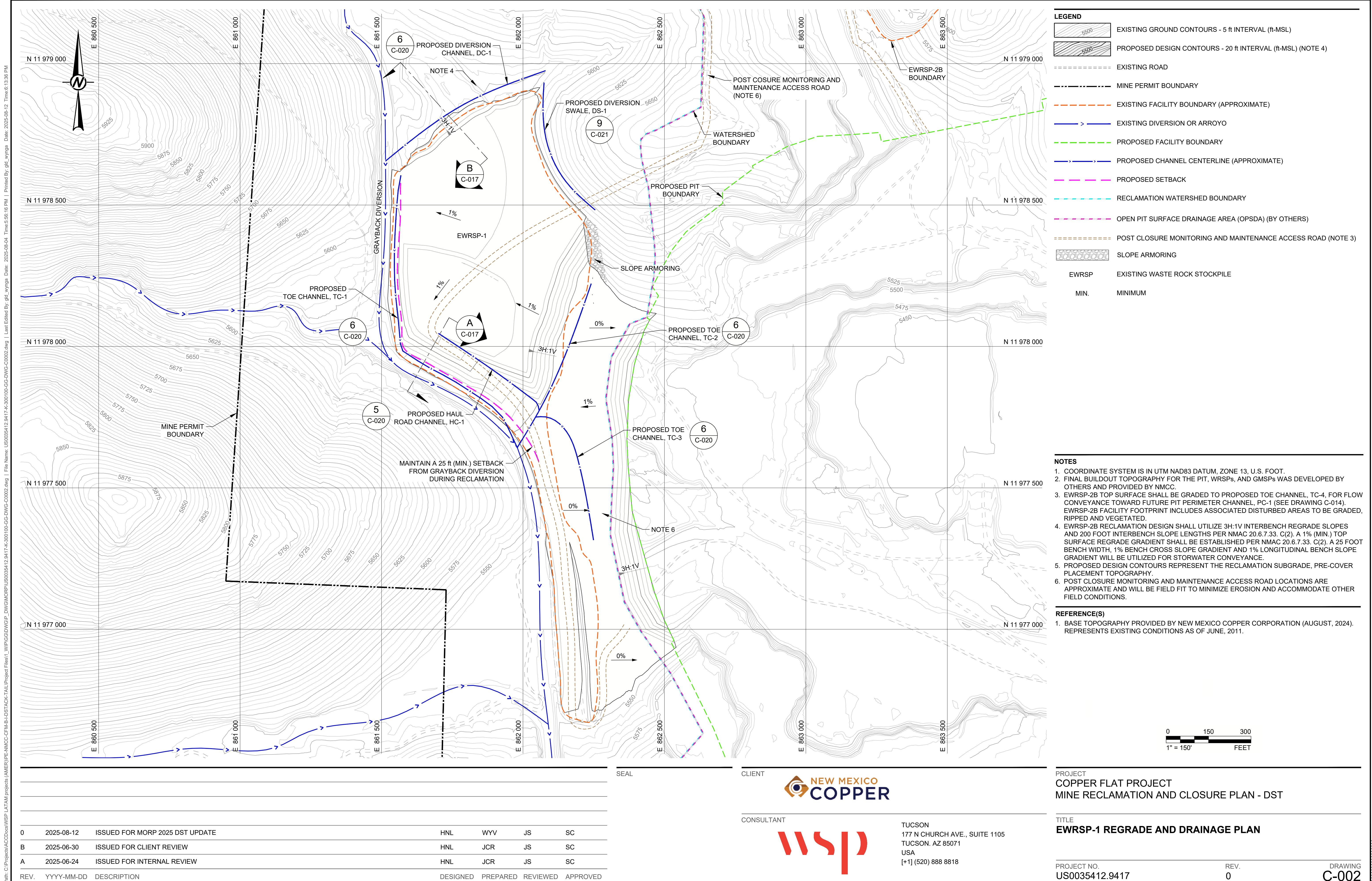
TITLE
GENERAL ARRANGEMENT
FINAL RECLAMATION TOPOGRAPHY

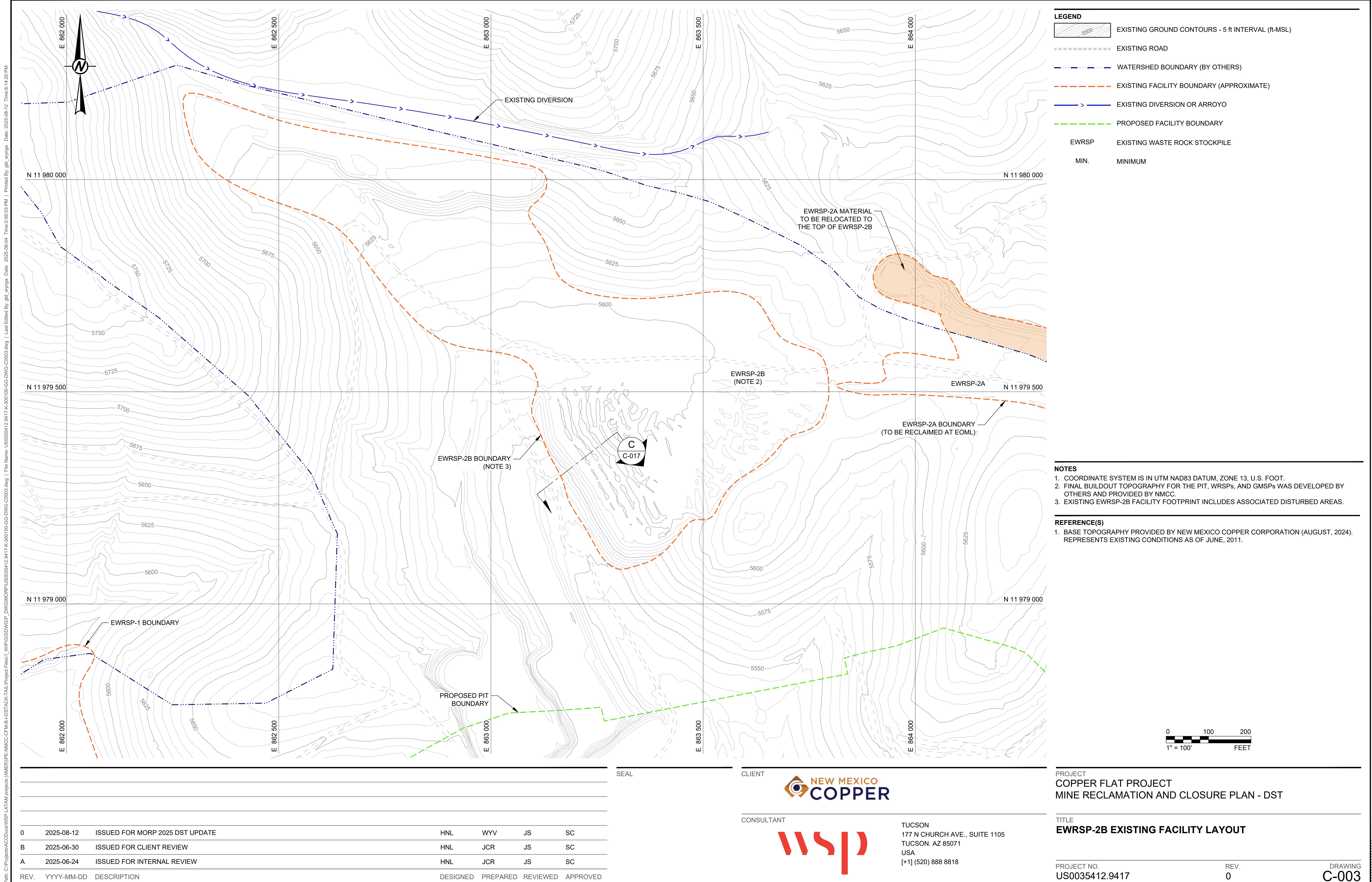
PROJECT NO. US0035412.9417 REV. 0 DRAWING G-004

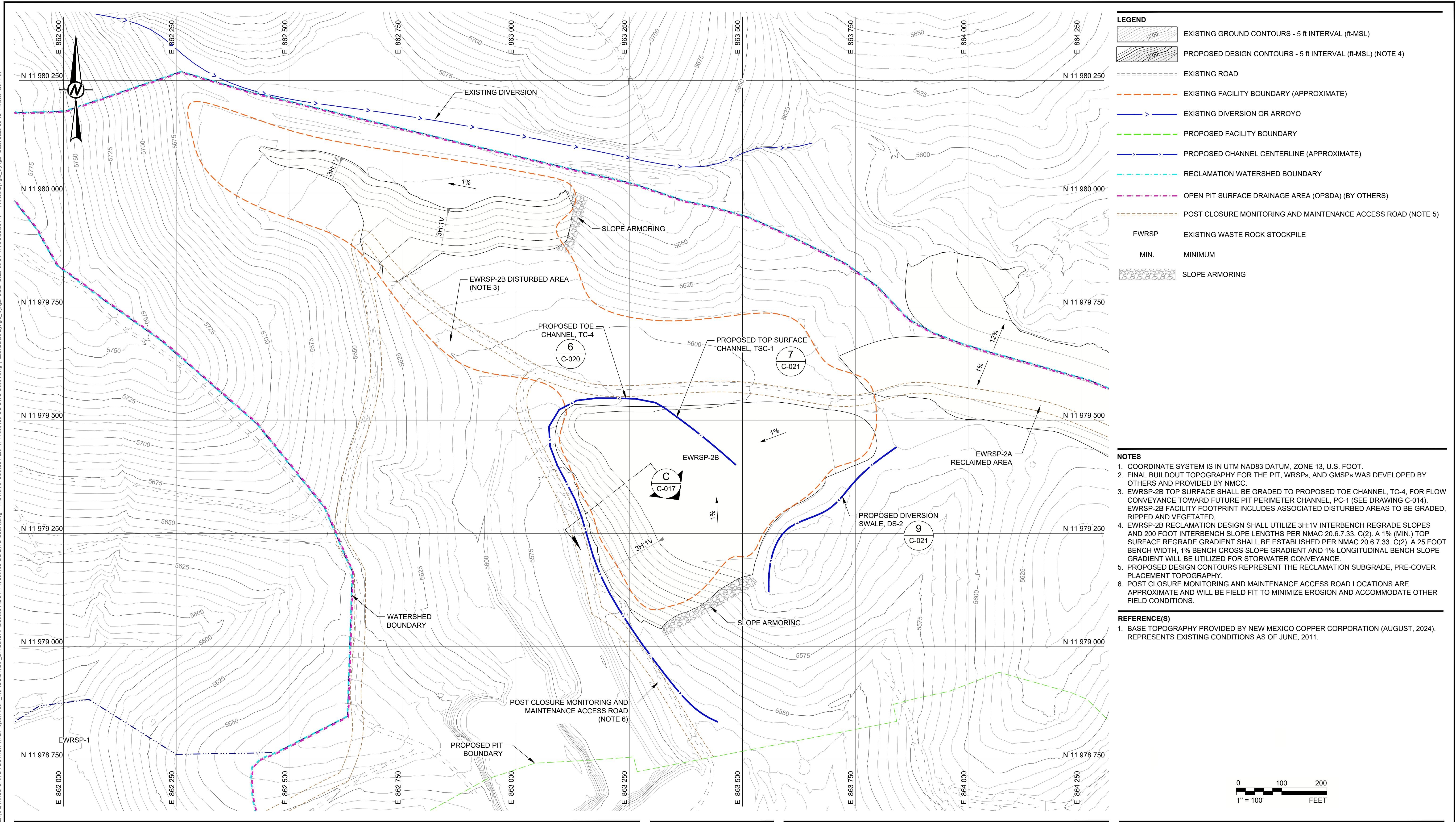
SEAL

CLIENT

CONSULTANT


TUCSON
177 N CHURCH AVE., SUITE 1105
TUCSON, AZ 85071
USA
[+1] (520) 888 8818


0	2025-08-12	ISSUED FOR MOPR 2025 DST UPDATE	HNL	WYV	JS	SC
B	2025-06-30	ISSUED FOR CLIENT REVIEW	HNL	JCR	JS	SC
A	2025-06-24	ISSUED FOR INTERNAL REVIEW	HNL	JCR	JS	SC


REV. YYYY-MM-DD DESCRIPTION

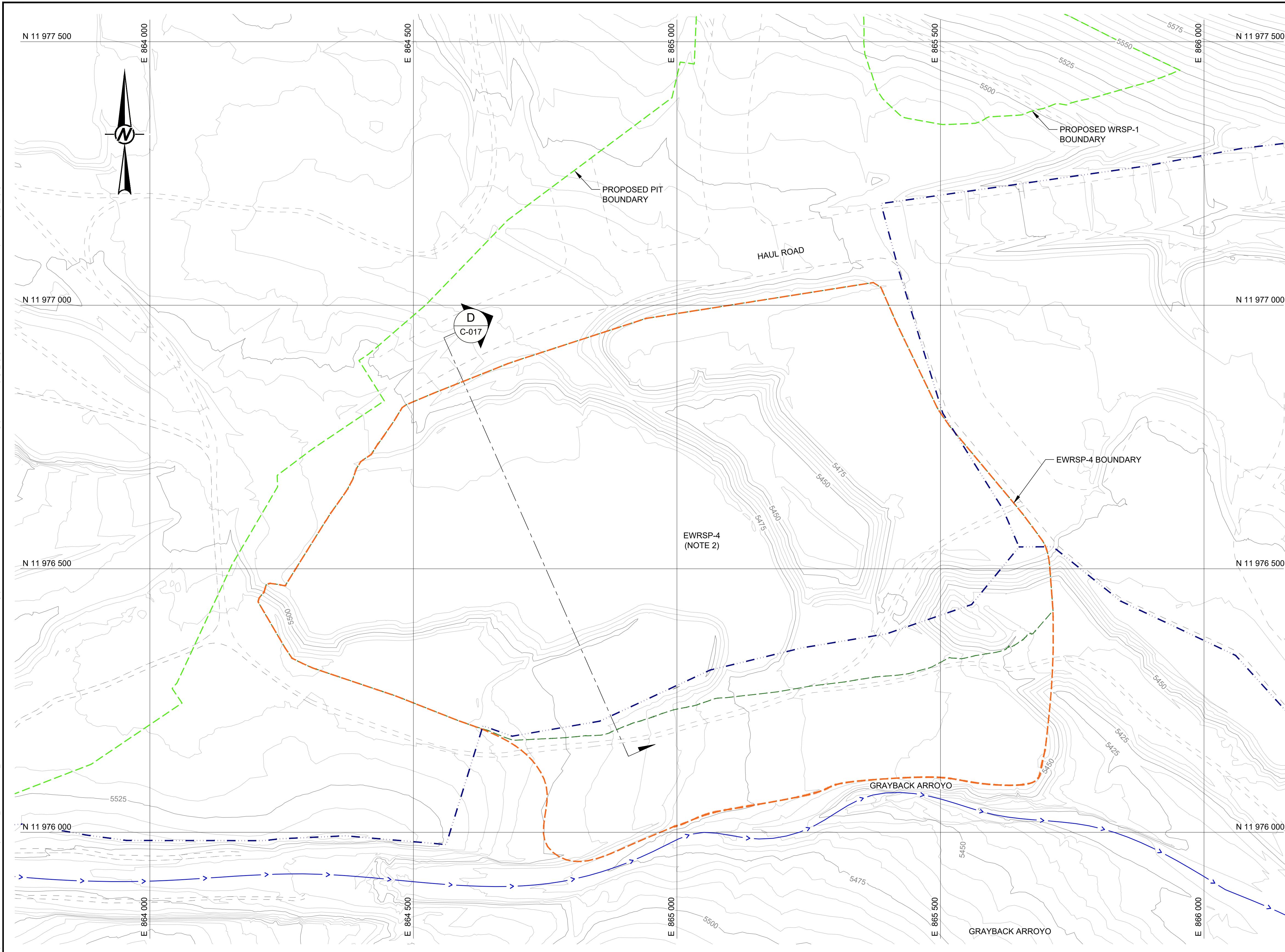
DESIGNED PREPARED REVIEWED APPROVED

REV.	YYYY-MM-DD	DESCRIPTION
0	2025-08-12	ISSUED FOR MORP 2025 DST UPDAT
B	2025-06-30	ISSUED FOR CLIENT REVIEW
A	2025-06-24	ISSUED FOR INTERNAL REVIEW

	HNL	WYV	JS	SC
	HNL	JCR	JS	SC
	HNL	JCR	JS	SC
	DESIGNED	PREPARED	REVIEWED	APPROVED

CONSULTANT

TUCSON
177 N CHURCH AVE., SUITE 1105
TUCSON. AZ 85071
USA
[+1] (520) 988-9818

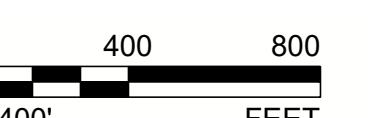

**PROJECT
COPPER FLAT PROJECT
MINE RECLAMATION AND CLOSURE PLAN - DST**

TITLE
EWRSP-2B REGRADE AND DRAINAGE PLAN

PROJECT NO. REV. DRAWING
US0035412.9417 0 C-004

LEGEND

- EXISTING GROUND CONTOURS - 5 ft INTERVAL (ft-MSL)
- ===== EXISTING ROAD
- WATERSHED BOUNDARY (BY OTHERS)
- EXISTING FACILITY BOUNDARY (APPROXIMATE)
- > EXISTING DIVERSION OR ARROYO
- PROPOSED FACILITY BOUNDARY
- EWRSP EXISTING WASTE ROCK STOCKPILE
- MIN. MINIMUM


NOTE

1. COORDINATE SYSTEM IS IN UTM NAD83 DATUM, ZONE 13, U.S. FOOT.
2. FINAL BUILDOUT TOPOGRAPHY FOR THE PIT, WRSPs, AND GMSPs WAS DEVELOPED BY OTHERS AND PROVIDED BY NMCC.

REFERENCE(S)

1. BASE TOPOGRAPHY PROVIDED BY NEW MEXICO COPPER CORPORATION (AUGUST, 2024).
REPRESENTS EXISTING CONDITIONS AS OF JUNE, 2011.

**PROJECT
COPPER FLAT PROJECT
MINE RECLAMATION AND CLOSURE PLAN - DST**

TITLE

EWRSP-4 EXISTING FACILITY LAYOUT

PROJECT NO.
US0035412 9417

REV.
0

DRAWING G-005

0 2025-08-12 ISSUED FOR MORP 2025 DST UPDATE

B 2025-06-30 ISSUED FOR CLIENT REVIEW

A 2025-06-24 ISSUED FOR INTERNAL REVIEW

REV. XXXX-MM-DD DESCRIPTION

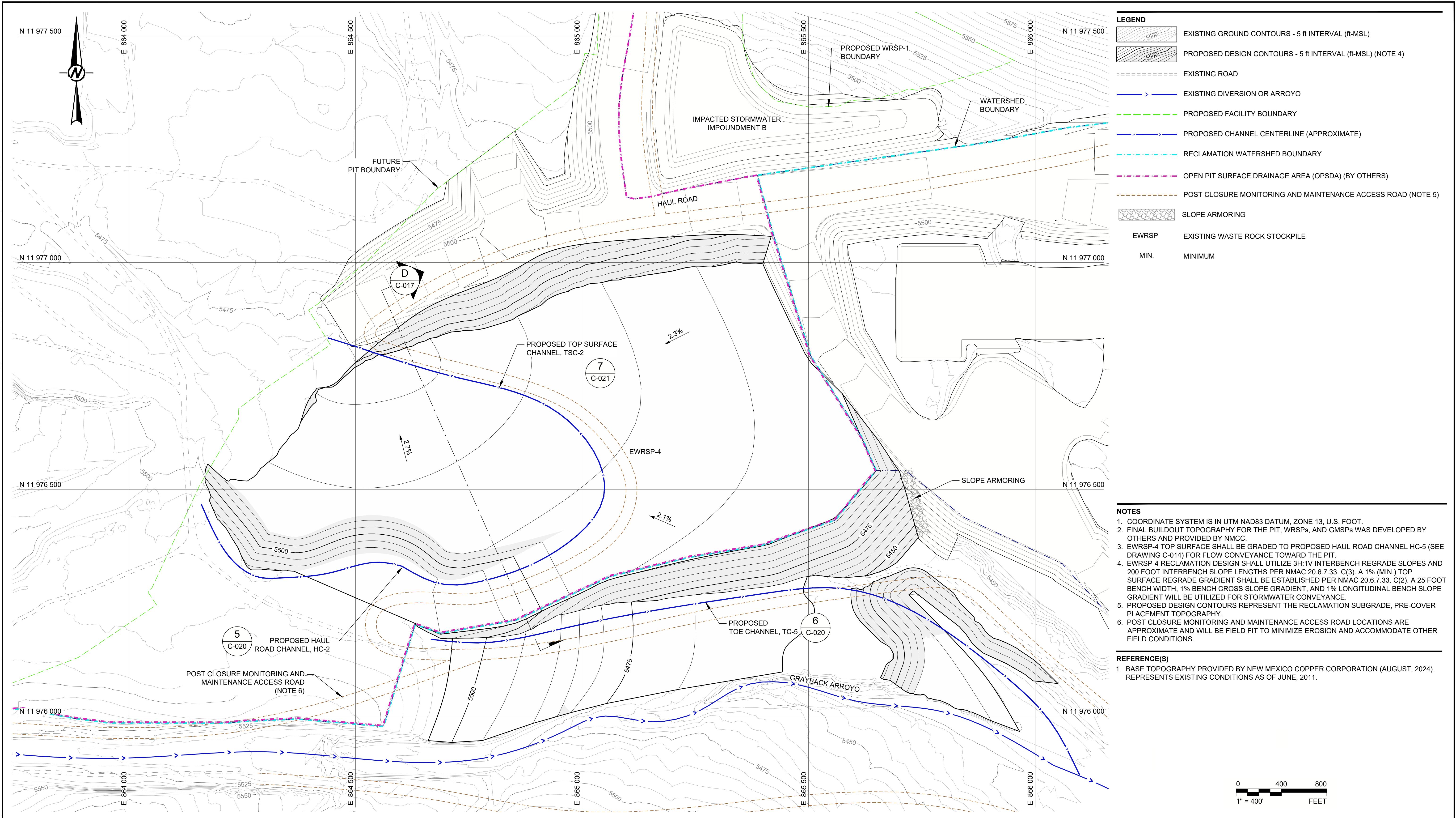
HNW WYW JS SC

HNJ JCR JS SC

HNI ICR IS SC

DESIGNED PREPARED REVIEWED APPROVED

10


100

NEW MEXICO
COPPE

CONSULT

The logo for WPSI (Wright, Pfeifer, Sauer, Inc.) is displayed. It features a stylized, blocky letter 'W' composed of four red vertical bars of varying heights. To the right of the 'W' is a red vertical bar, and further to the right is a red semi-circle.

9

111

The logo for New Mexico Copper, featuring a stylized orange and blue diamond shape to the left of the company name "NEW MEXICO COPPER" in blue capital letters.

2025-08-12 ISSUED FOR MORP 2025 DST UPDATES

HNW WXY IS

2025-06-30 ISSUED FOR CLIENT REVIEW

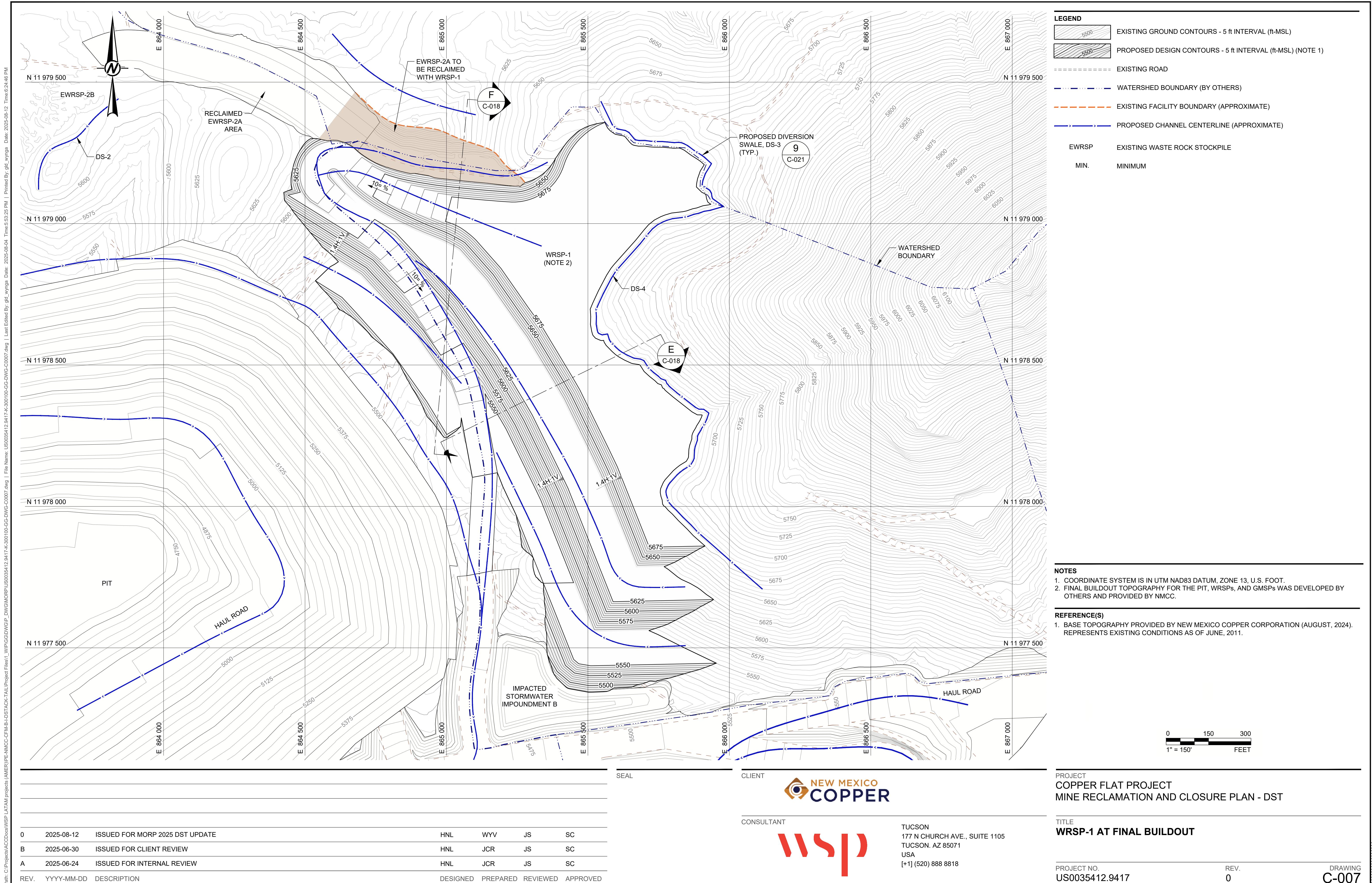
HNJ ICR JS

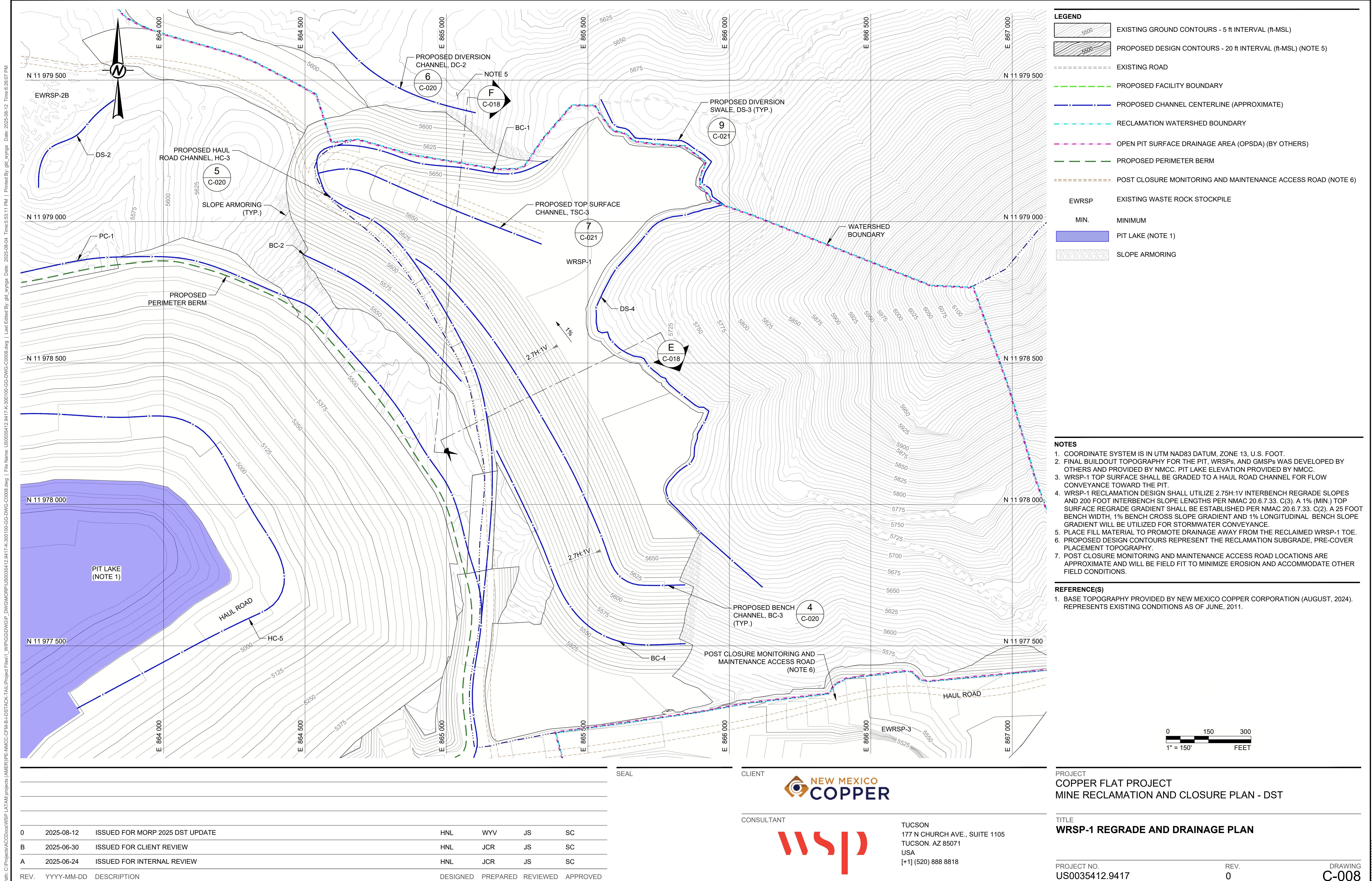
2025-06-24 ISSUED FOR

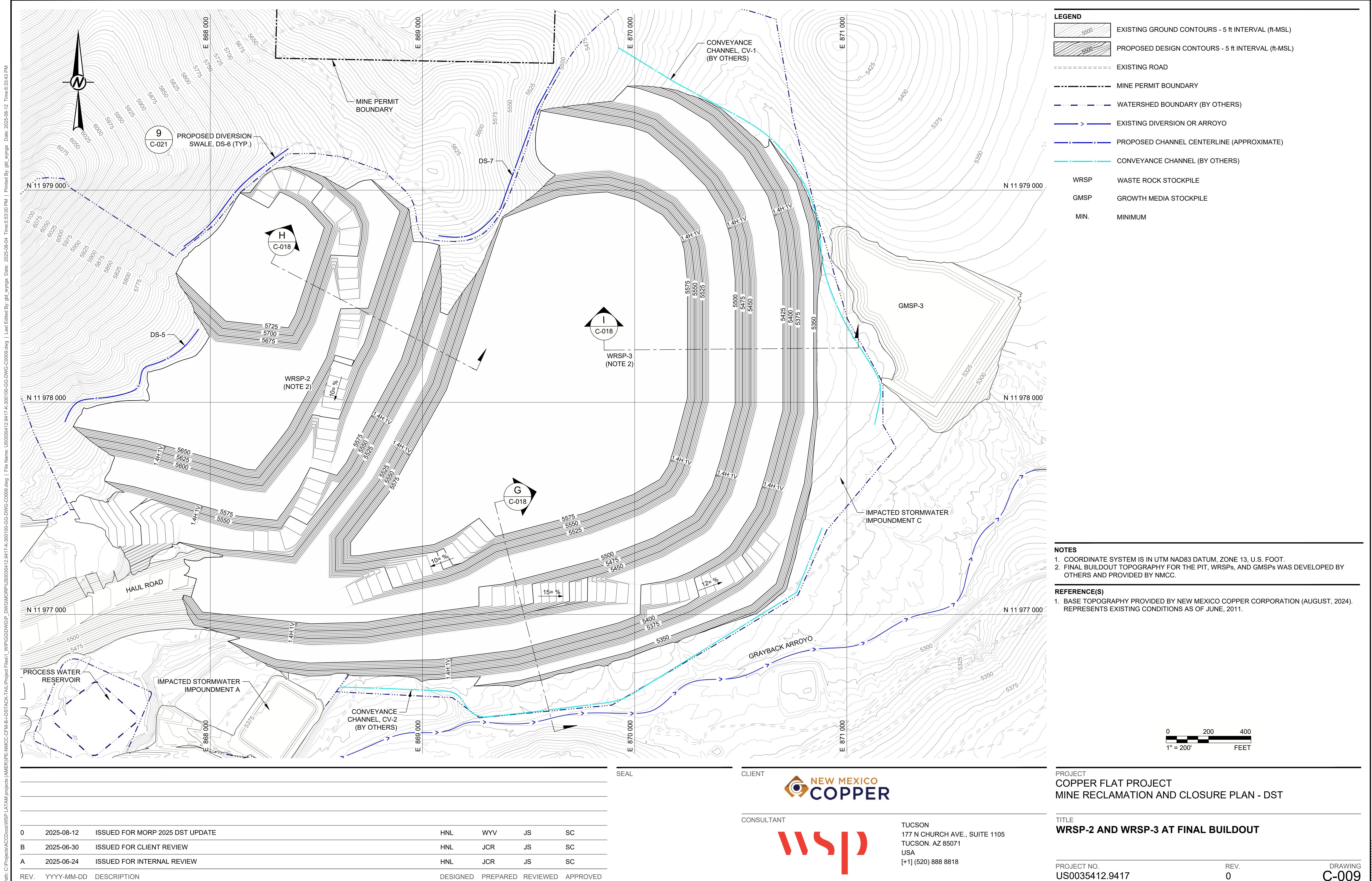
HNJ JCR JS SC

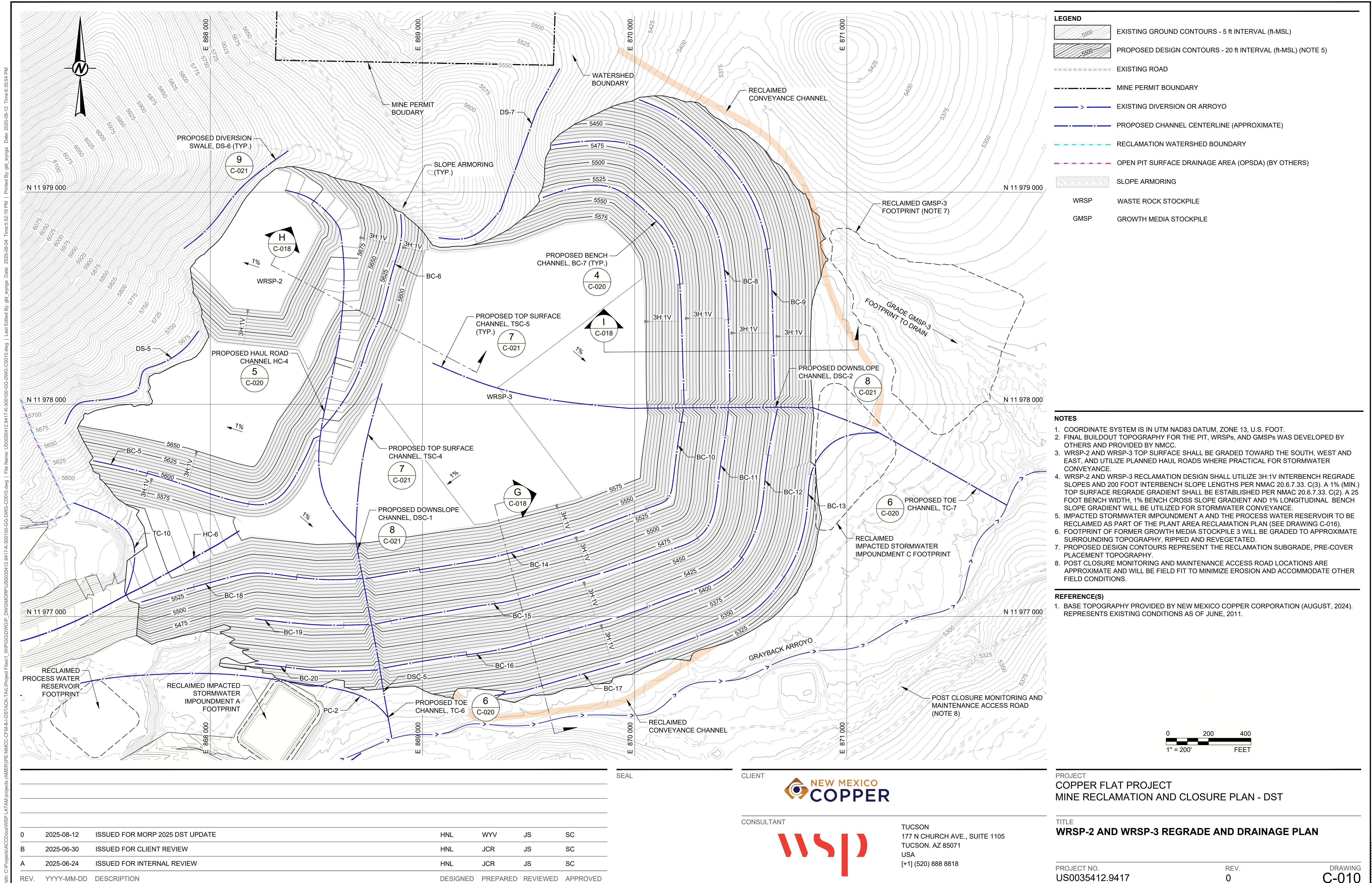
TUCSON
177 N CHURCH AVE., SUITE 1105
TUCSON, AZ 85071
USA
[+1] (520) 888 8818

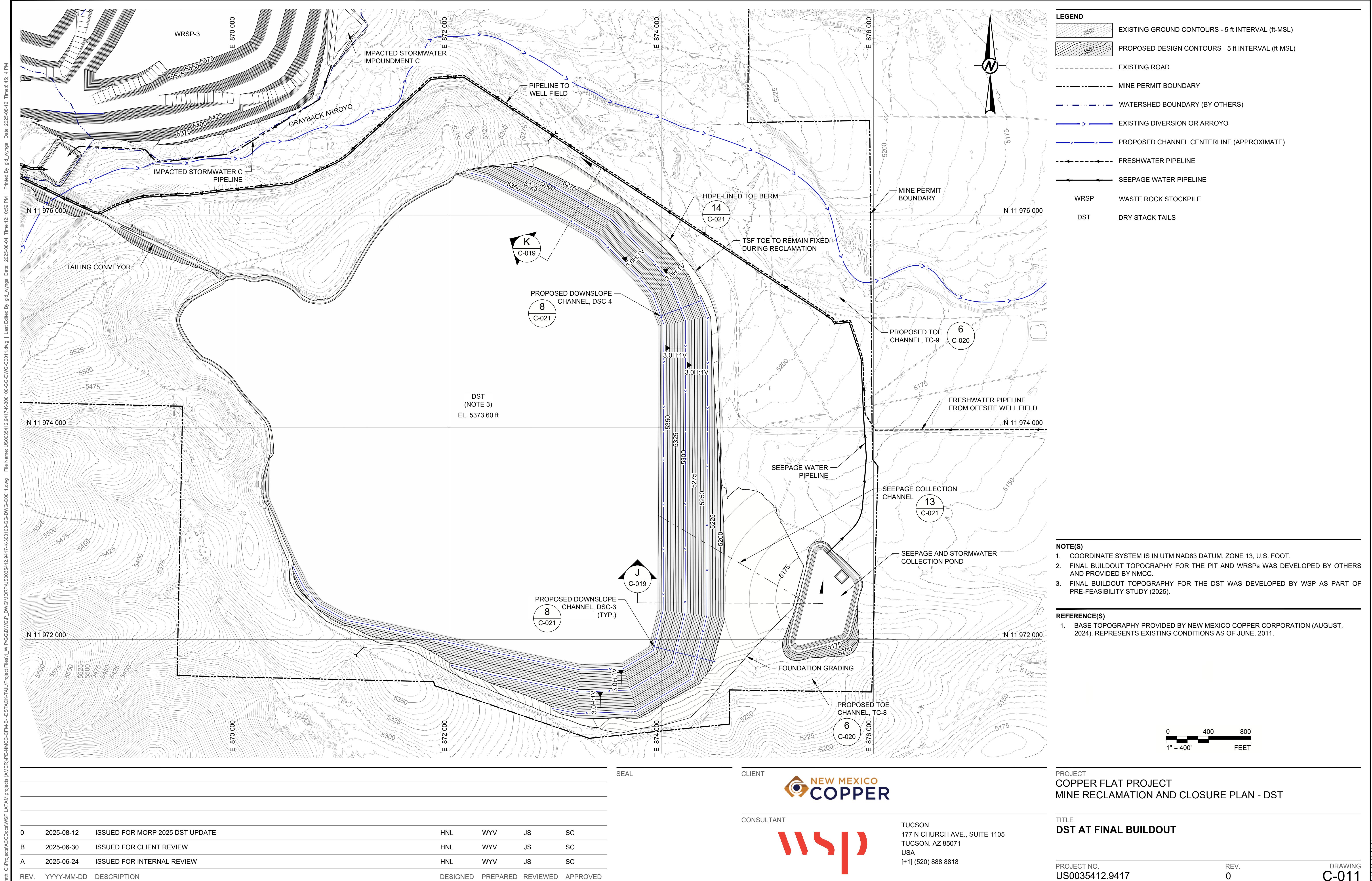
CONSULTANT

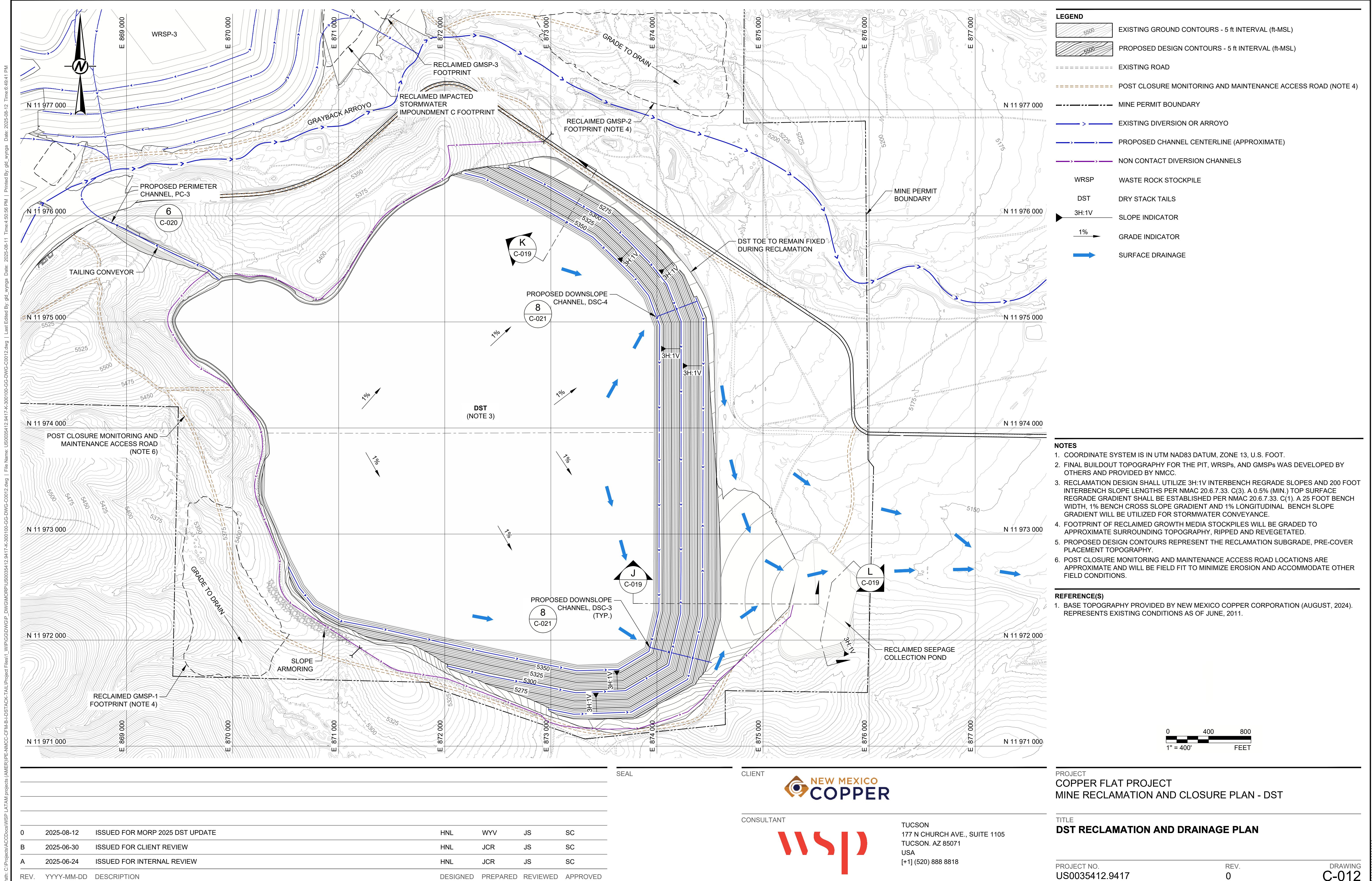

PROJECT
COPPER FLAT PROJECT
MINE RECLAMATION AND CLOSURE PLAN - DST

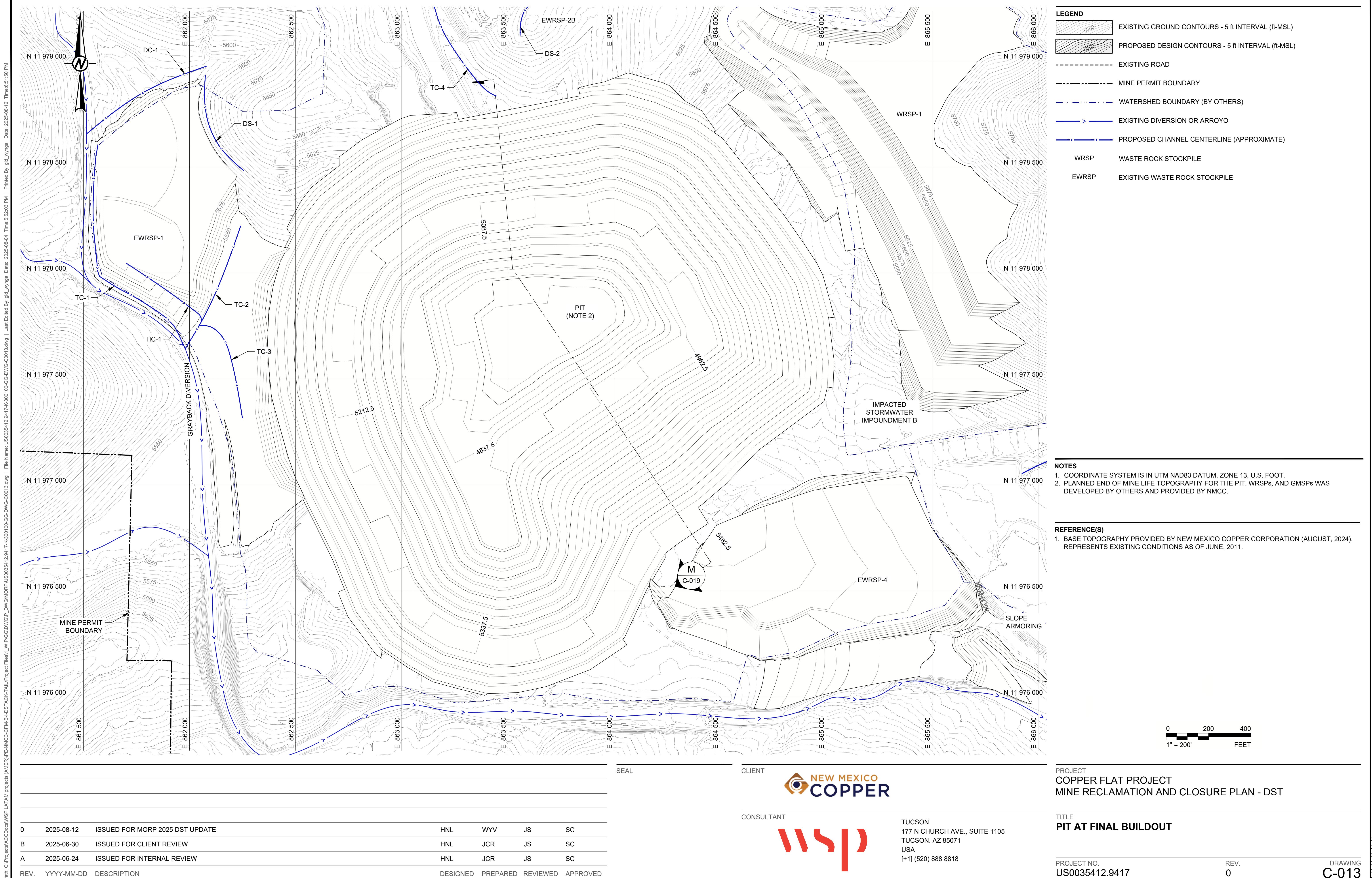


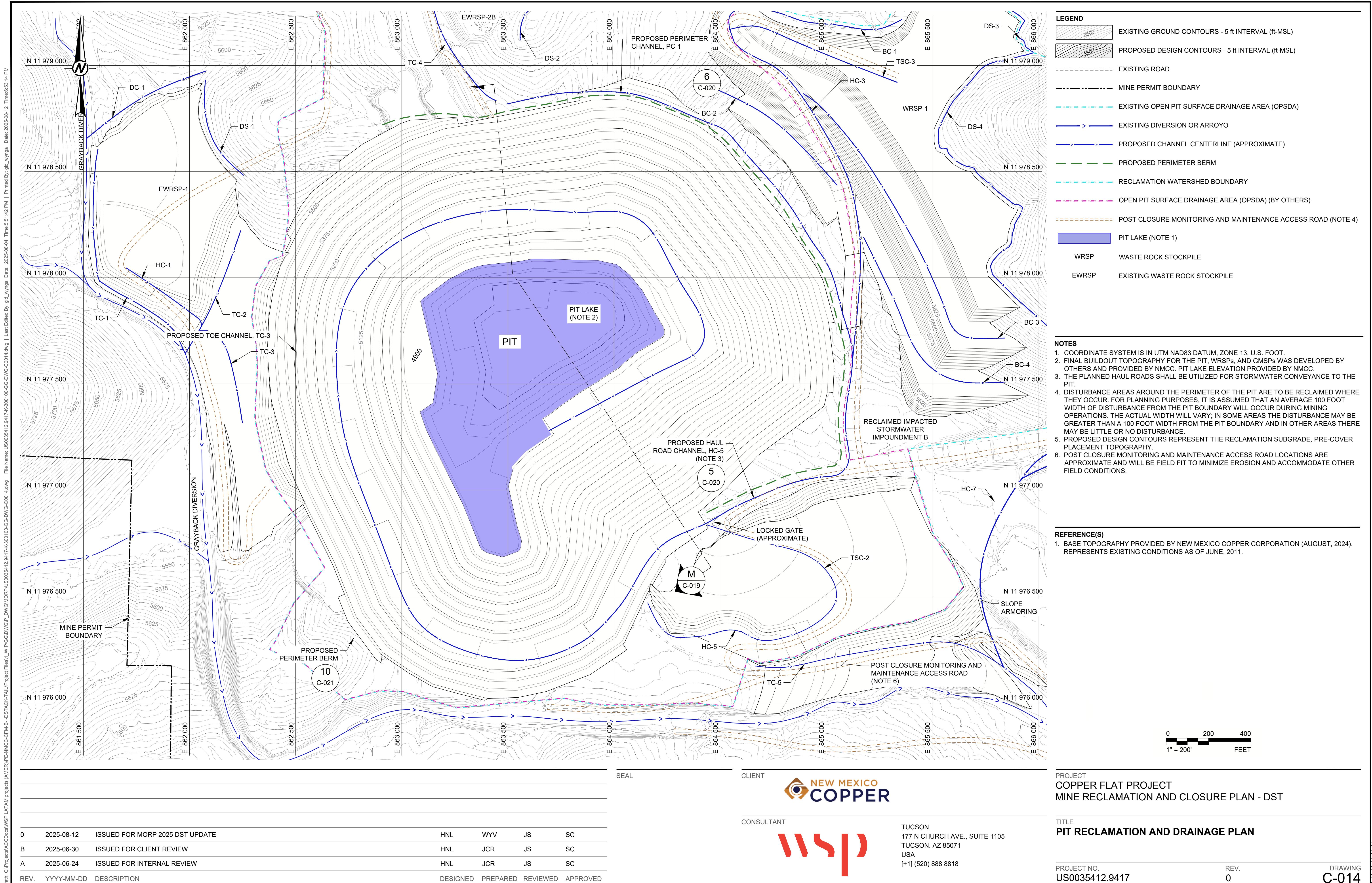

TITLE
EWRSP-4 REGRADE AND DRAINAGE PLAN

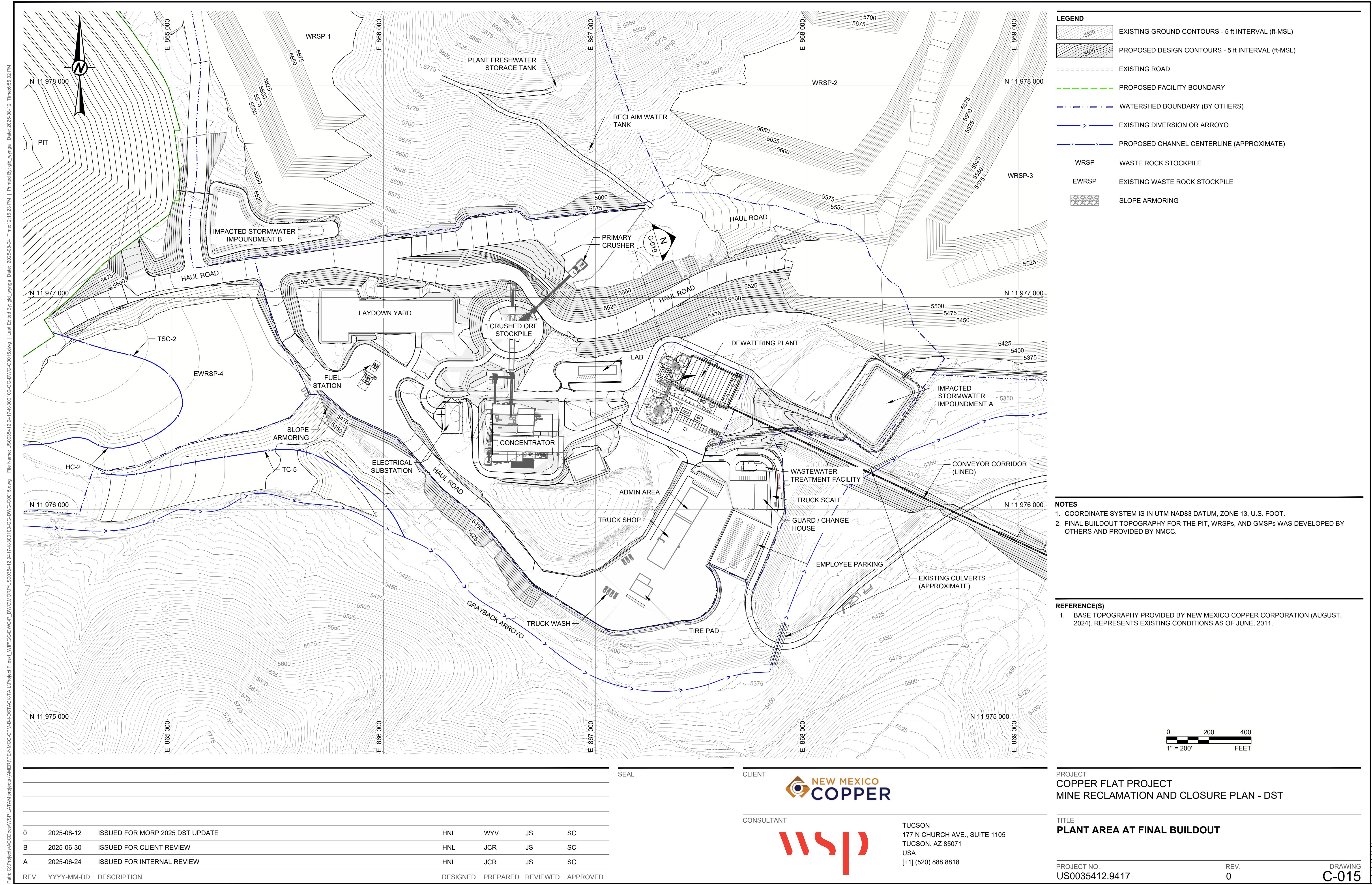


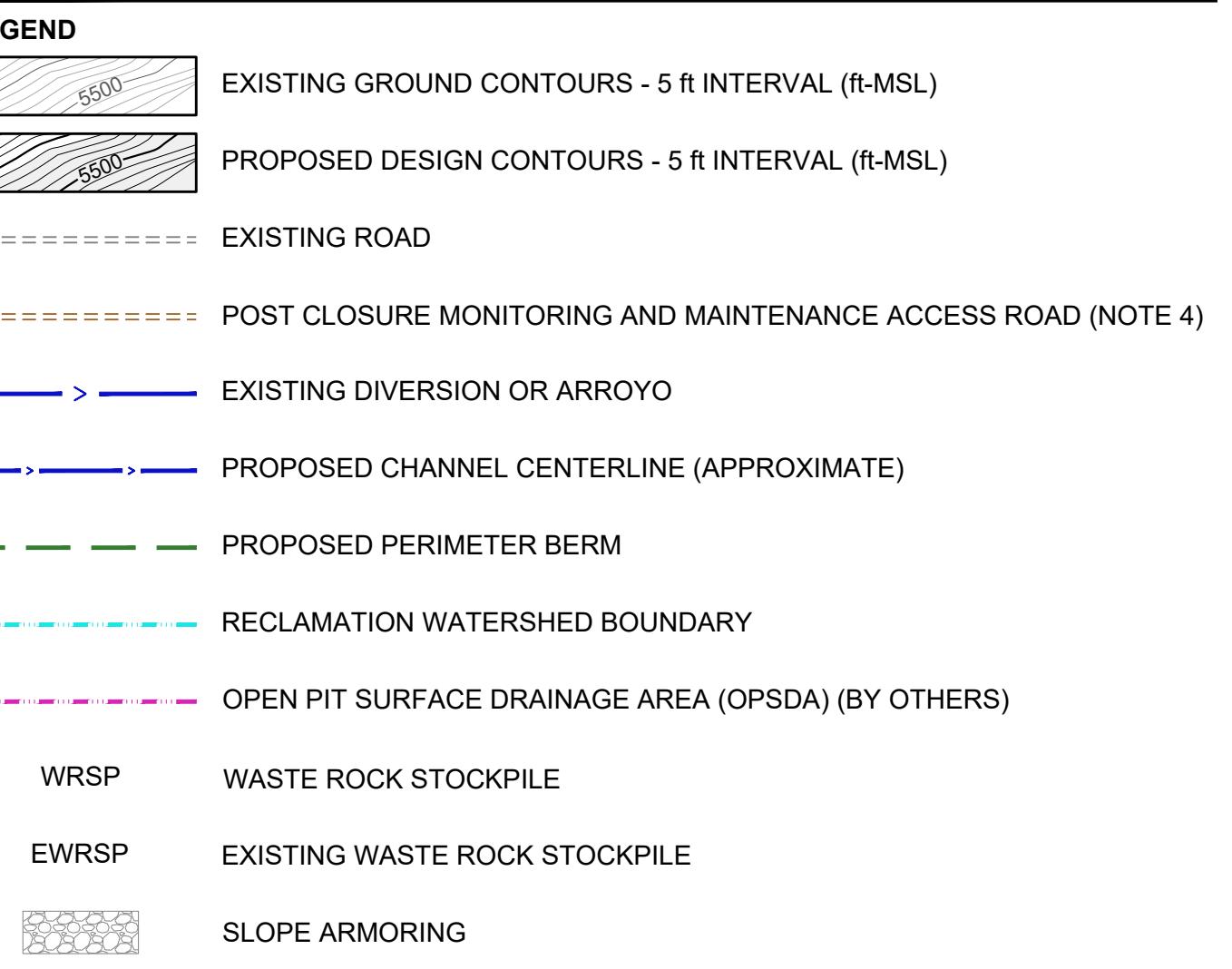
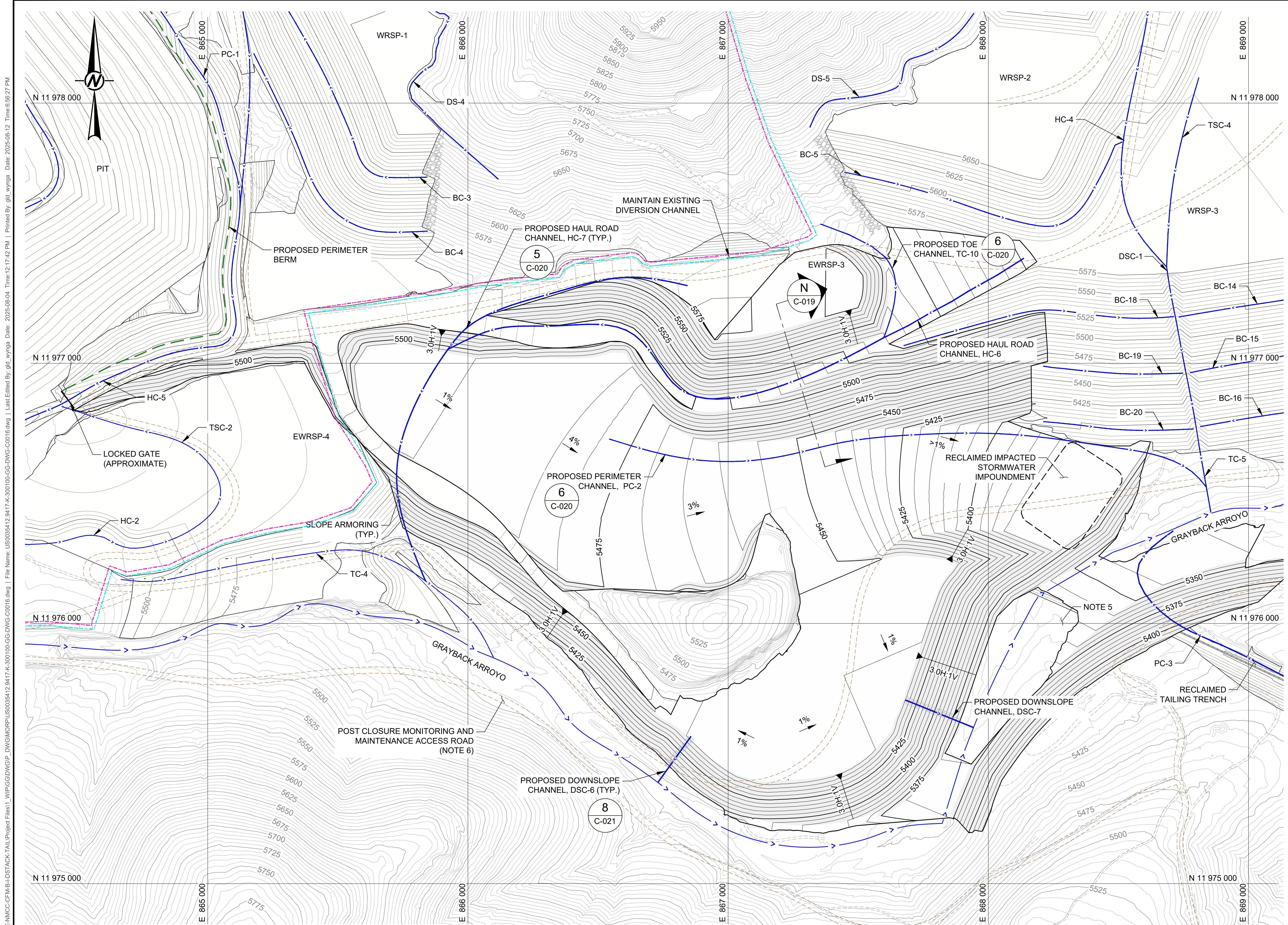

PROJECT NO. REV. DRAWING
US0035412.9417 0 C-006









NOTES

1. COORDINATE SYSTEM IS IN UTM NAD83 DATUM, ZONE 13, U.S. FOOT.
2. FINAL BUILDOUT TOPOGRAPHY FOR THE PIT, WRSPs, AND GMSPs WAS DEVELOPED BY OTHERS AND PROVIDED BY NMCC.
3. PLANNED HAUL ROADS WILL BE UTILIZED FOR STORMWATER CONVEYANCE TO THE PIT.
4. PROPOSED DESIGN CONTOURS REPRESENT THE RECLAMATION SUBGRADE, PRE-COVER PLACEMENT TOPOGRAPHY.
5. EXISTING VEGETATION CONDITIONS TO BE MAINTAINED.
6. POST CLOSURE MONITORING AND MAINTENANCE ACCESS ROAD LOCATIONS ARE APPROXIMATE AND WILL BE FIELD FIT TO MINIMIZE EROSION AND ACCOMMODATE OTHER FIELD CONDITIONS.

REFERENCE(S)

1. BASE TOPOGRAPHY PROVIDED BY NEW MEXICO COPPER CORPORATION (AUGUST, 2024). REPRESENTS EXISTING CONDITIONS AS OF JUNE, 2011.



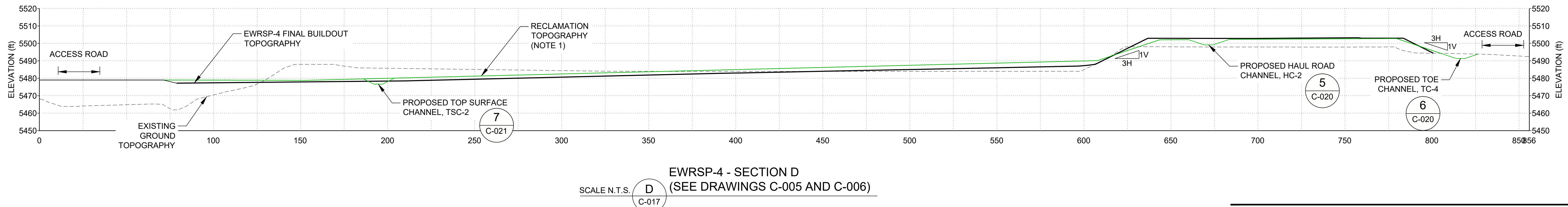
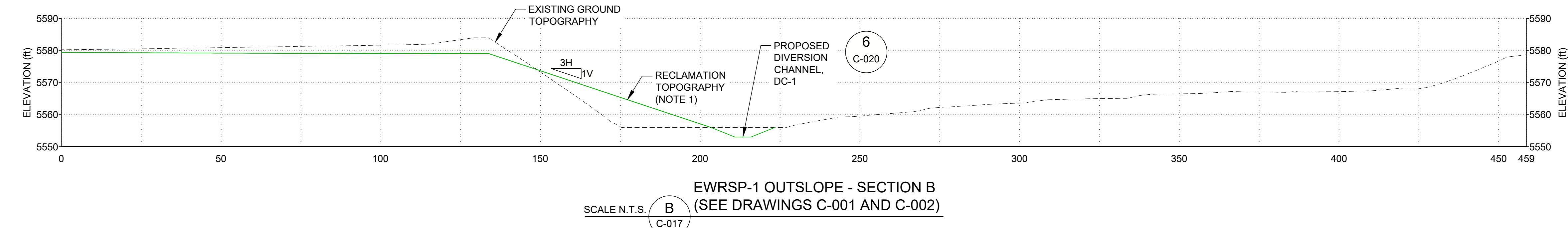
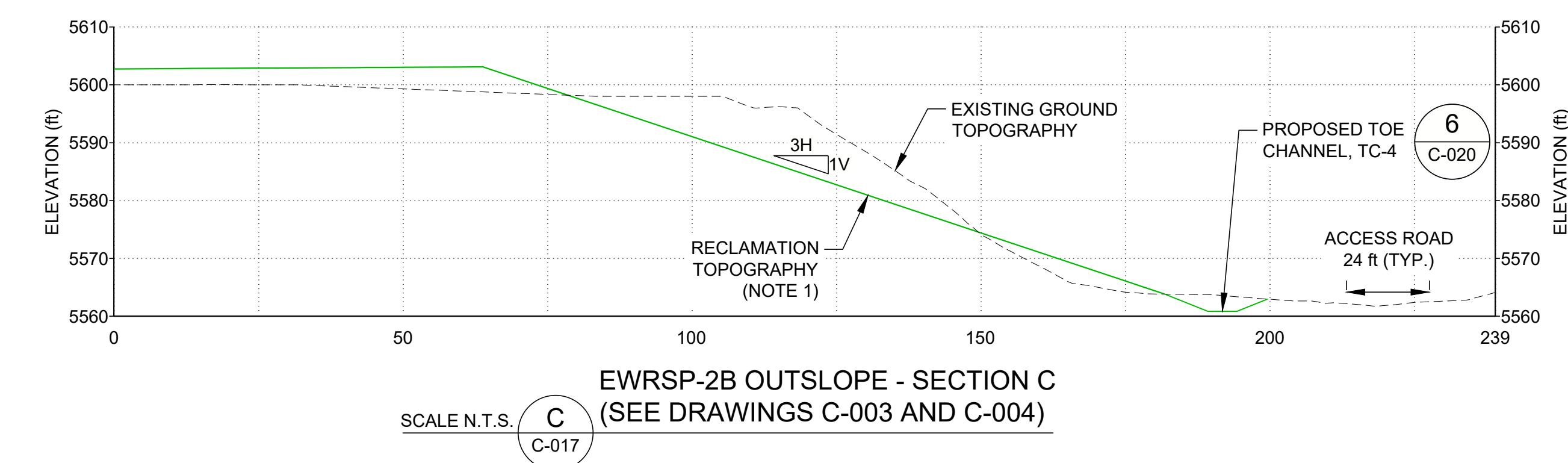
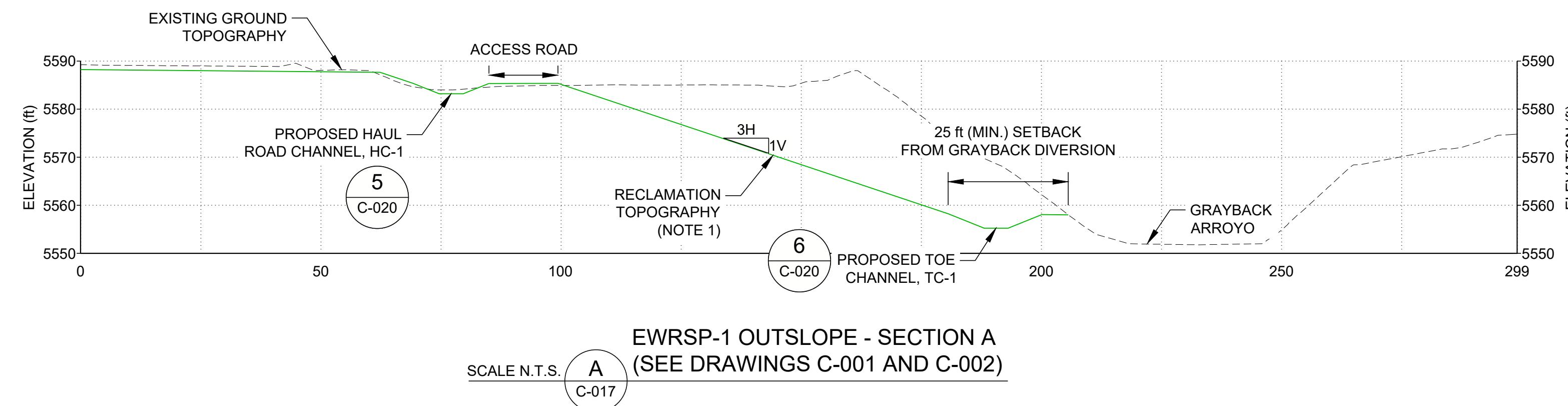
SEAL

CLIENT

CONSULTANT

TUCSON
177 N CHURCH AVE., SUITE 1105
TUCSON, AZ 85071
USA
[+1] (520) 888 8818

PROJECT
COPPER FLAT PROJECT
MINE RECLAMATION AND CLOSURE PLAN - DST





TITLE
PLANT AREA RECLAMATION AND DRAINAGE PLAN

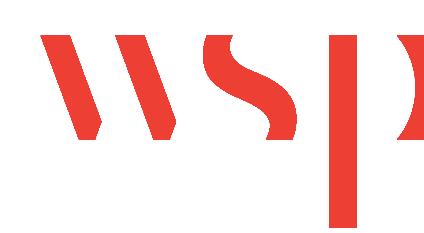
PROJECT NO.
US0035412.9417

REV.
0

DRAWING
C-016

0	2025-08-12	ISSUED FOR MOPR 2025 DST UPDATE	HNL	WYV	JS	SC
B	2025-06-30	ISSUED FOR CLIENT REVIEW	HNL	JCR	JS	SC
A	2025-06-24	ISSUED FOR INTERNAL REVIEW	HNL	JCR	JS	SC
REV.	YYYY-MM-DD	DESCRIPTION	DESIGNED	PREPARED	REVIEWED	APPROVED

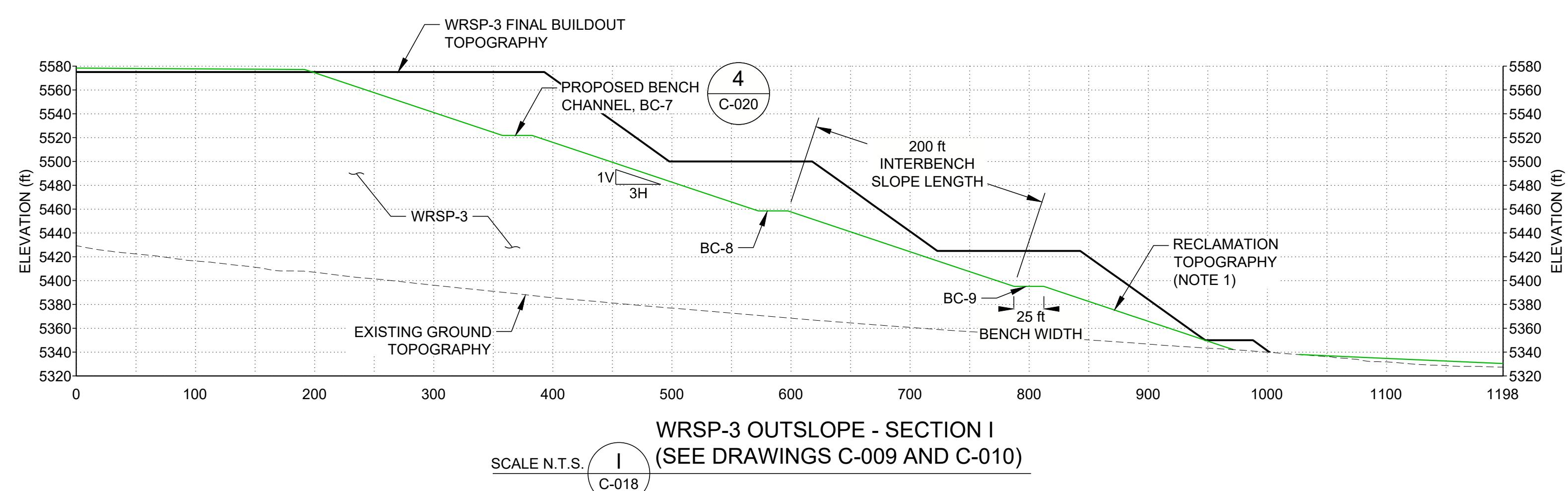
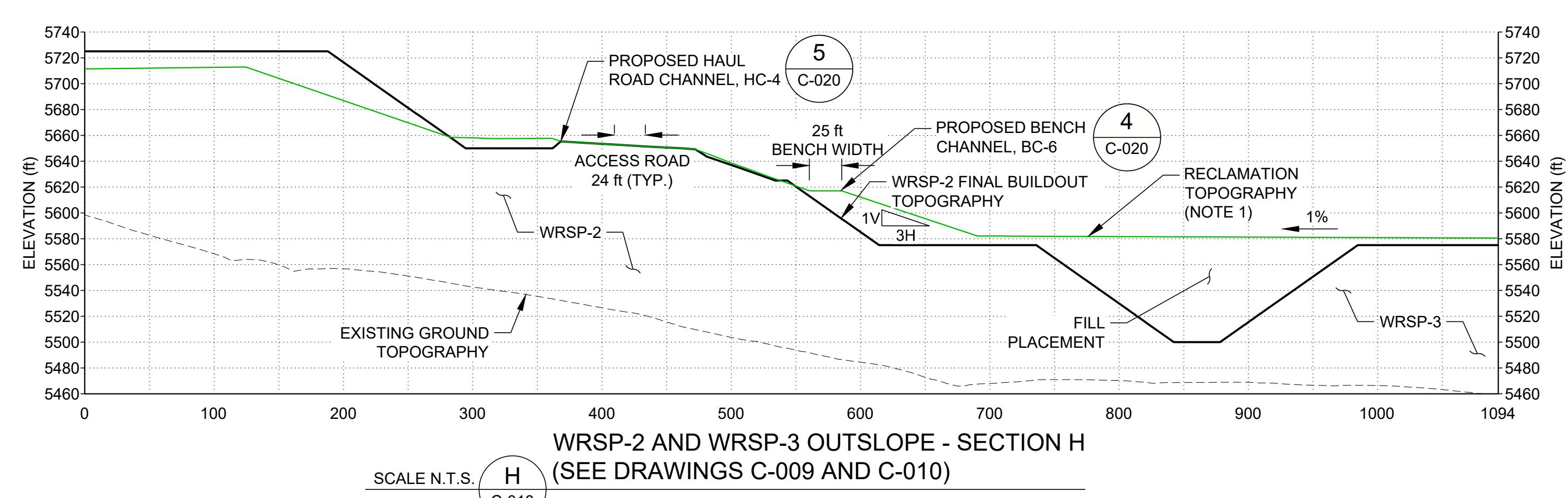
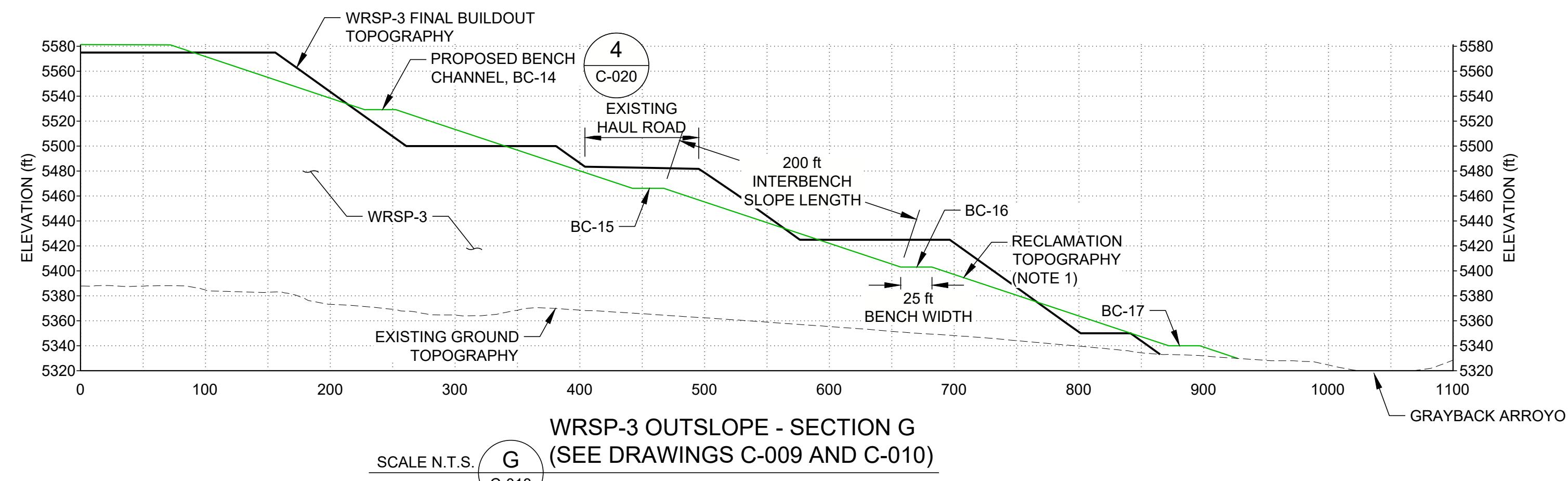
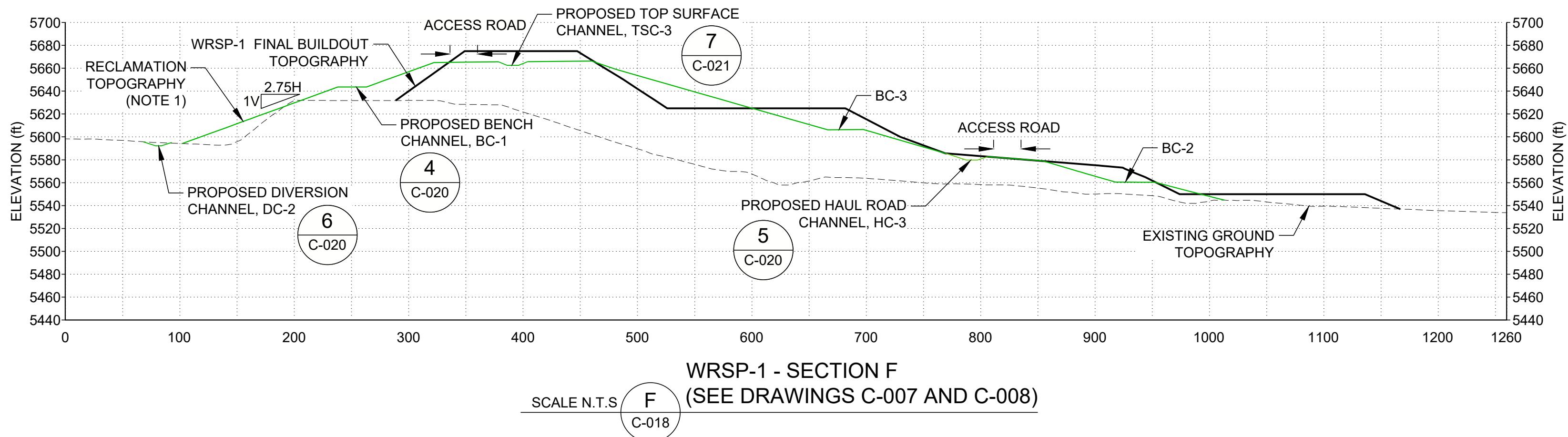
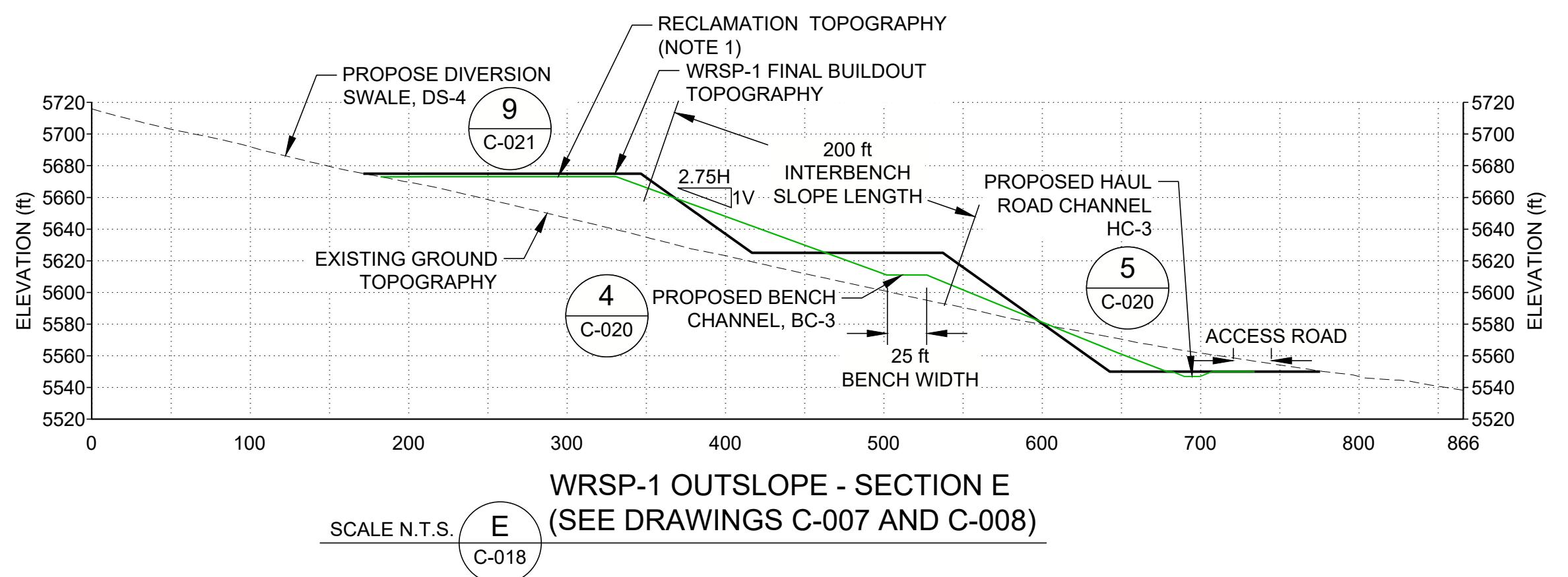
NOTE
1. PROPOSED DESIGN CONTOURS REPRESENT THE RECLAMATION SUBGRADE, PRE-COVER PLACEMENT TOPOGRAPHY.


0	2025-08-12	ISSUED FOR MOPR 2025 DST UPDATE	HNL	WYV	JS	SC
B	2025-06-30	ISSUED FOR CLIENT REVIEW	HNL	JCR	JS	SC
A	2025-06-24	ISSUED FOR INTERNAL REVIEW	HNL	JCR	JS	SC
REV. YYYY-MM-DD		DESCRIPTION	DESIGNED	PREPARED	REVIEWED	APPROVED

SEAL

CLIENT

CONSULTANT

PROJECT
COPPER FLAT PROJECT
MINE RECLAMATION AND CLOSURE PLAN - DST

TITLE
EWRSP RECLAMATION SECTIONS

PROJECT NO.
US0035412.9417

REV.
0
DRAWING
C-017

NOTE

I. PROPOSED DESIGN CONTOURS REPRESENT THE RECLAMATION SUBGRADE, PRE-COVER PLACEMENT TOPOGRAPHY

REV.	ISSUED FOR	DESCRIPTION	DESIGNED	PREPARED	REVIEWED	APPROVED
0	2025-08-12	ISSUED FOR MORP 2025 DST UPDATE	HNL	WYV	JS	SC
B	2025-06-30	ISSUED FOR CLIENT REVIEW	HNL	JCR	JS	SC
A	2025-06-24	ISSUED FOR INTERNAL REVIEW	HNL	JCR	JS	SC

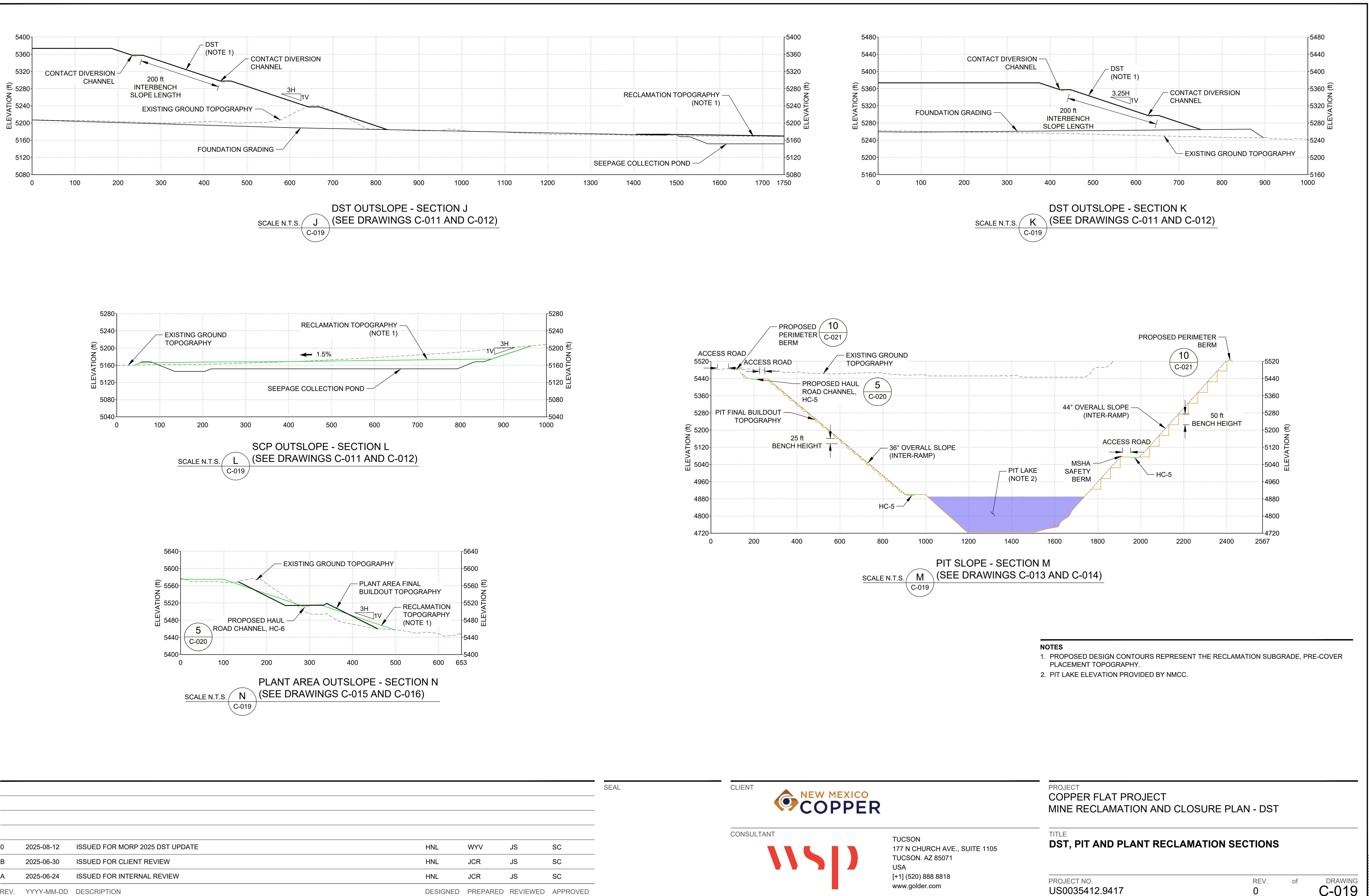
SEAI

CLIENT

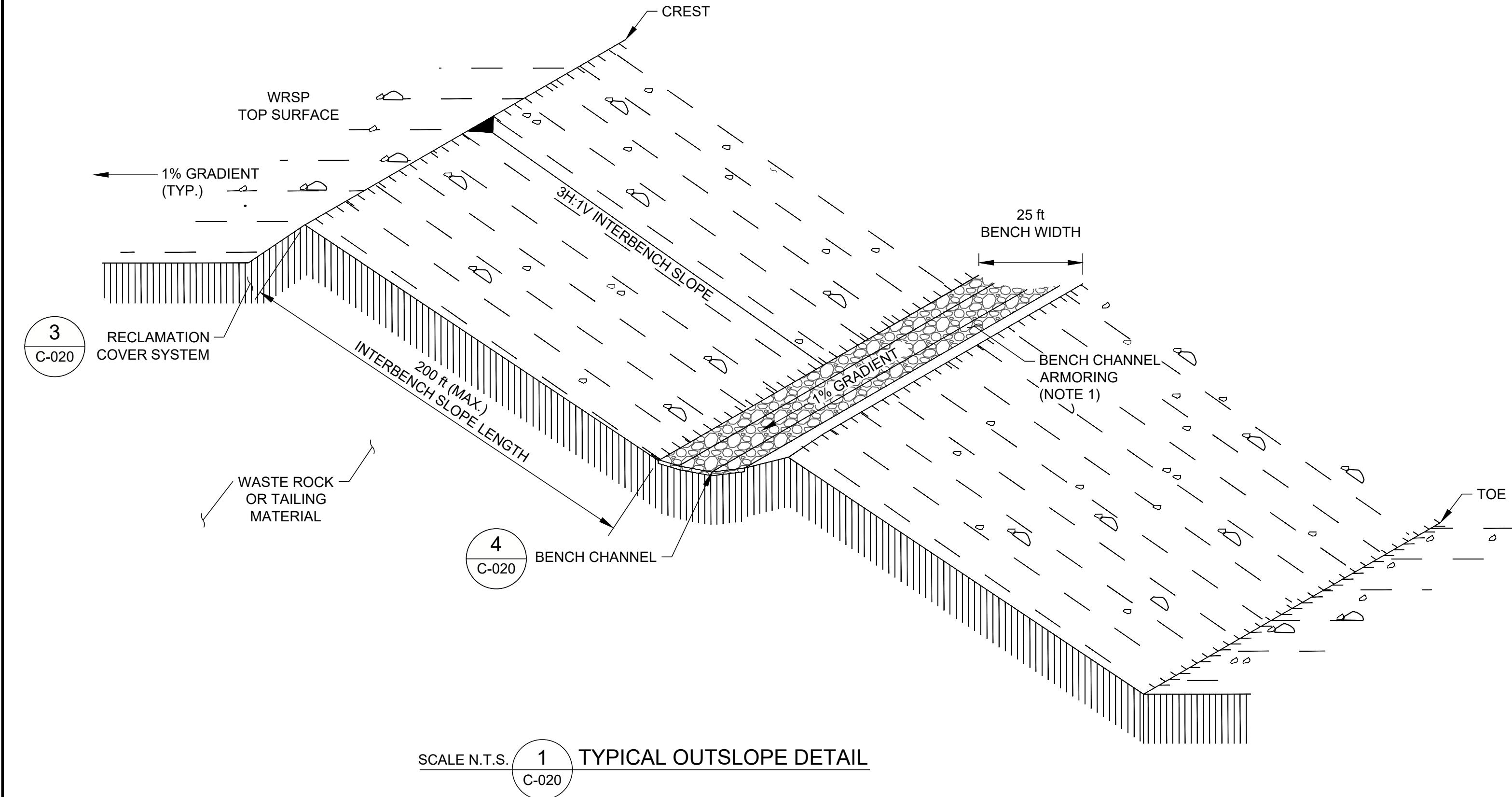
TUCSON
177 N CHURCH AVE., SUITE 1105
TUCSON. AZ 85071
USA
[+1] (520) 888-8818

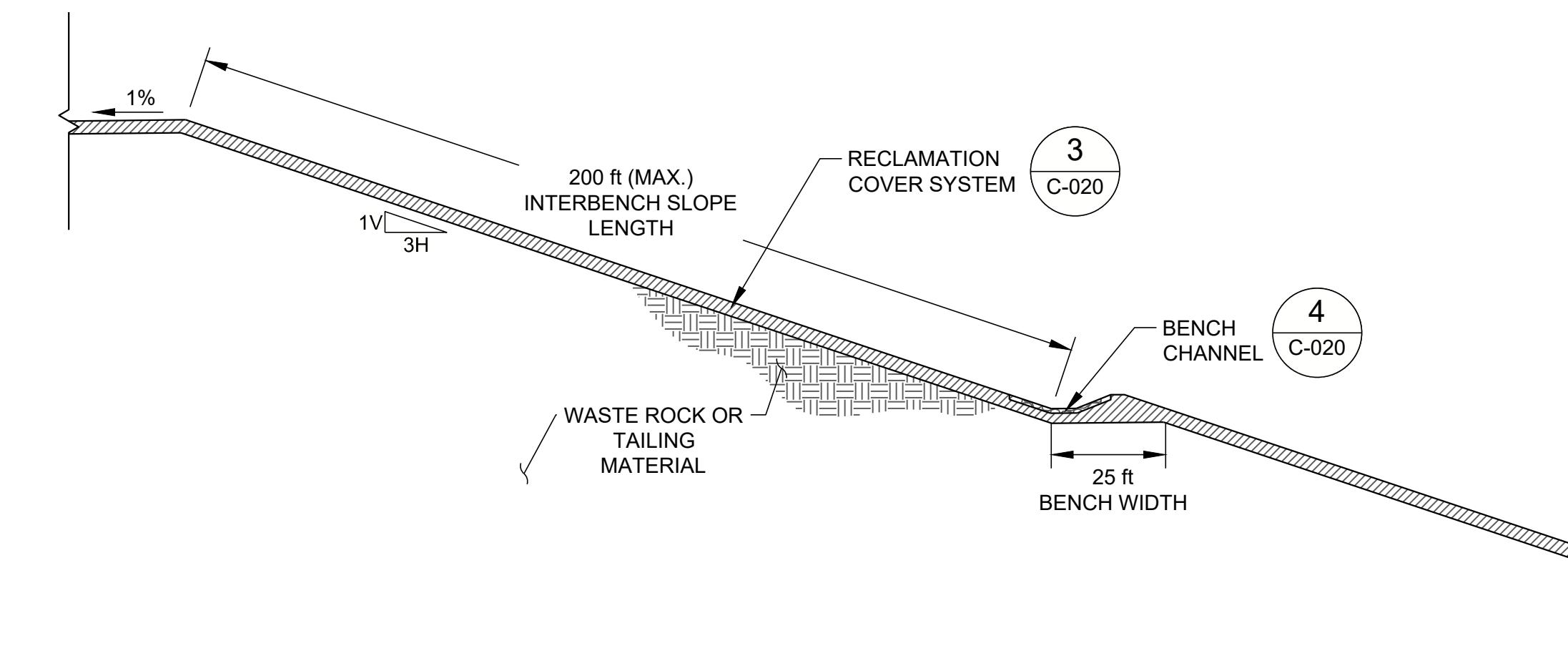
PROJECT COPPER FLAT PROJECT MINE RECLAMATION AND CLOSURE PLAN - DST

TITLE

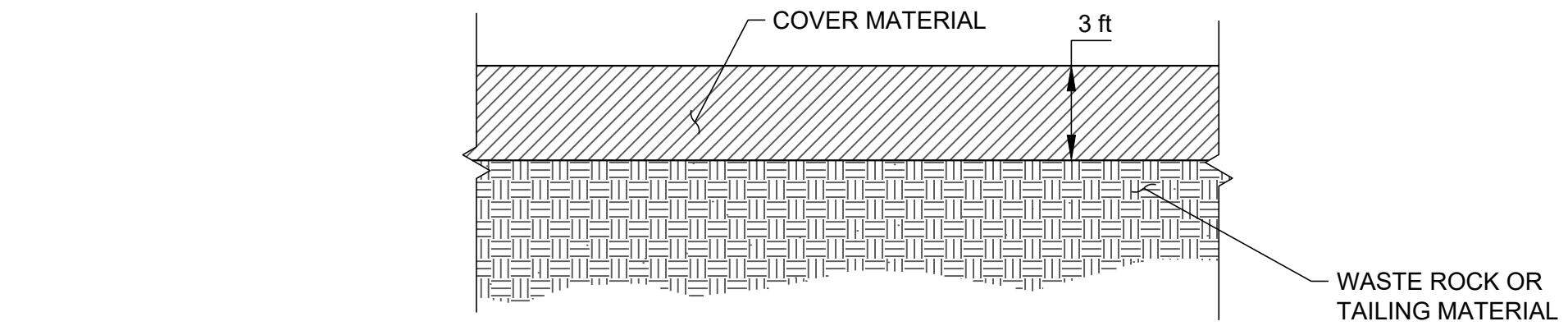

WRSP RECLAMATION SECTIONS

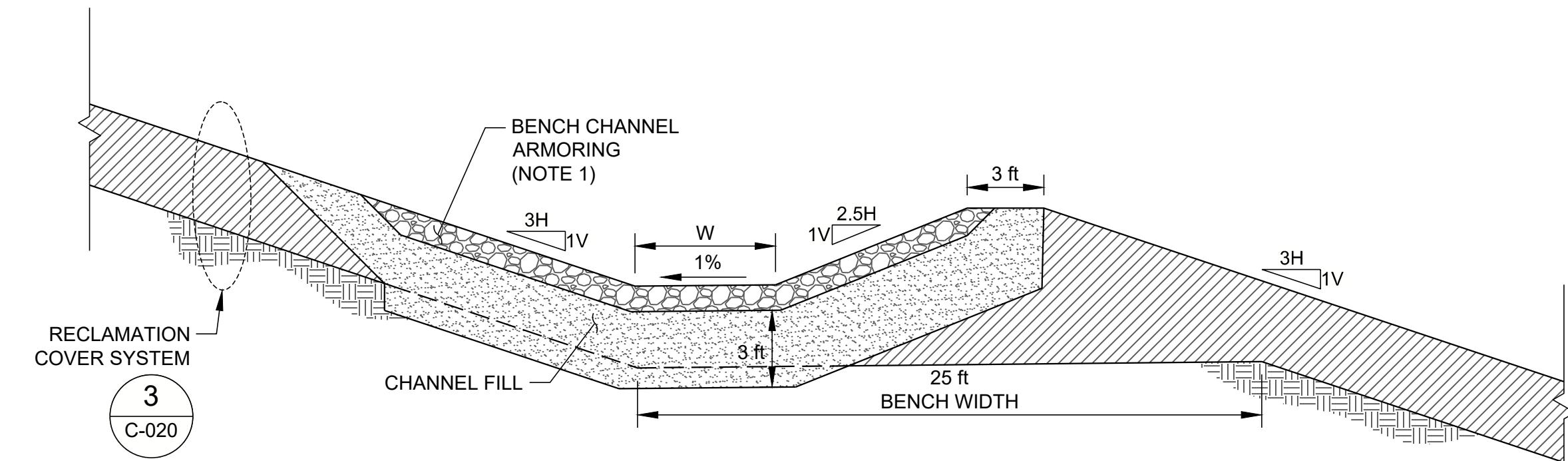
PROJECT NO.
US0035412.9417


EV.

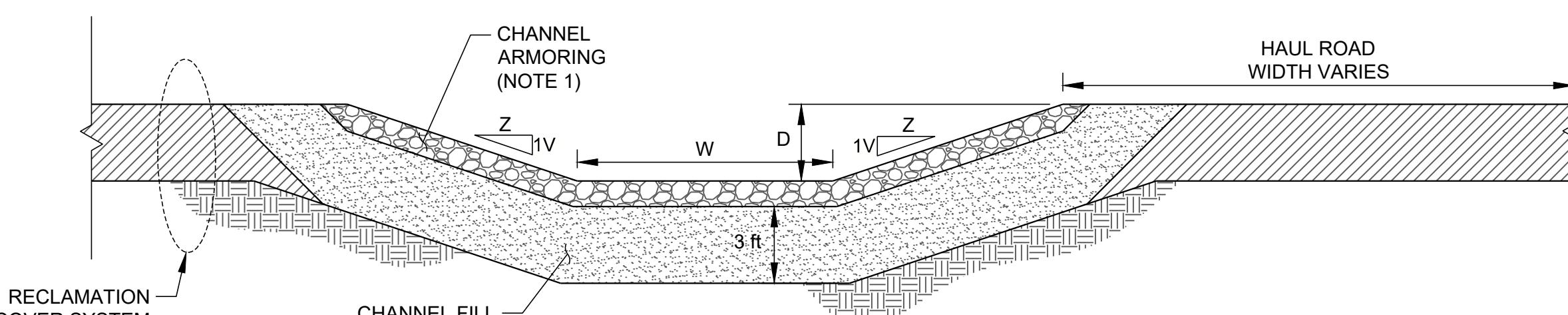

DRAWING
C-018

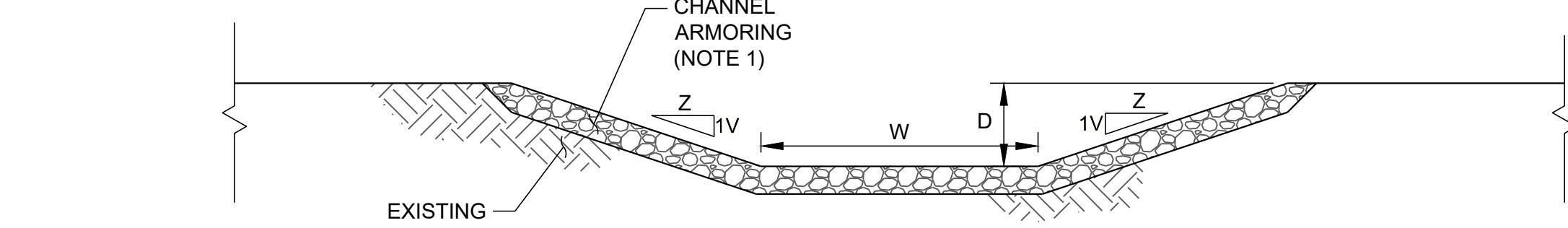
1 in IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MODIFIED FROM: ANSI D


SCALE N.T.S. 1 C-020 TYPICAL OUTSLOPE DETAIL


SCALE N.T.S. 2 C-020 TYPICAL OUTSLOPE SECTION

NOTE


1. SEE CHANNEL SCHEDULE FOR DIMENSION AND ARMORING REQUIREMENTS. MINIMUM RIPRAP THICKNESS SHALL BE $2 \times D_{50}$. MINIMUM BEDDING THICKNESS IS 6 in.


SCALE N.T.S. 3 C-020 COVER SYSTEM DETAIL

SCALE N.T.S. 4 C-020 TYPICAL BENCH CHANNEL SECTION

SCALE N.T.S. 5 C-020 TYPICAL HAUL ROAD CHANNEL SECTION

SCALE N.T.S. 6 C-020 TYPICAL DIVERSION, TOE, AND PERIMETER CHANNEL

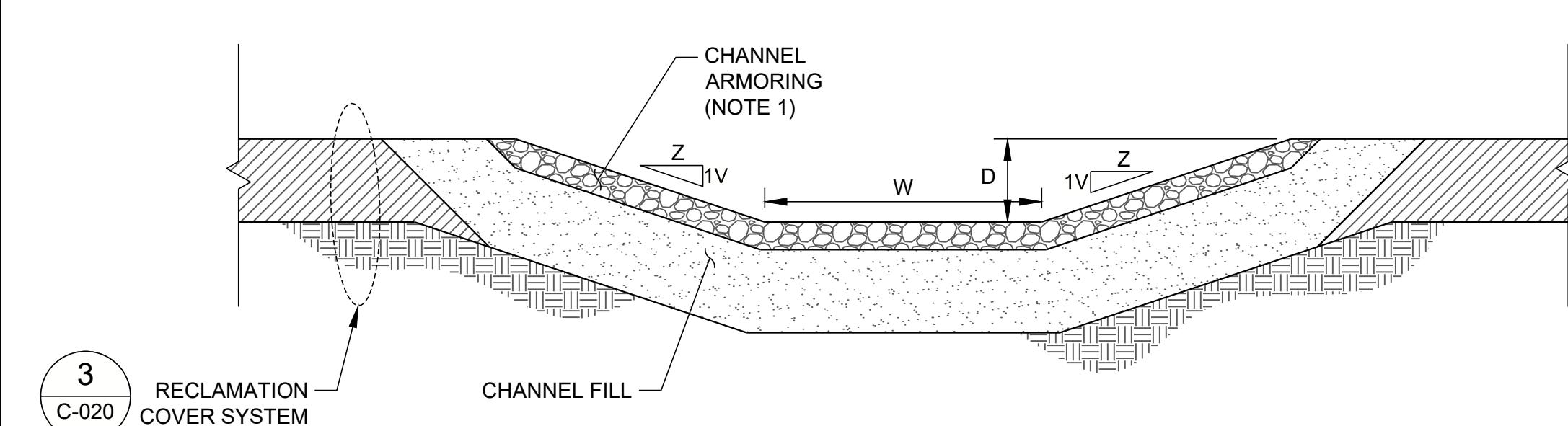
0	2025-08-12	ISSUED FOR MOPR 2025 DST UPDATE	HNL	WYV	JS	SC
B	2025-06-30	ISSUED FOR CLIENT REVIEW	HNL	JCR	JS	SC
A	2025-06-24	ISSUED FOR INTERNAL REVIEW	HNL	JCR	JS	SC

REV. YYYY-MM-DD DESCRIPTION

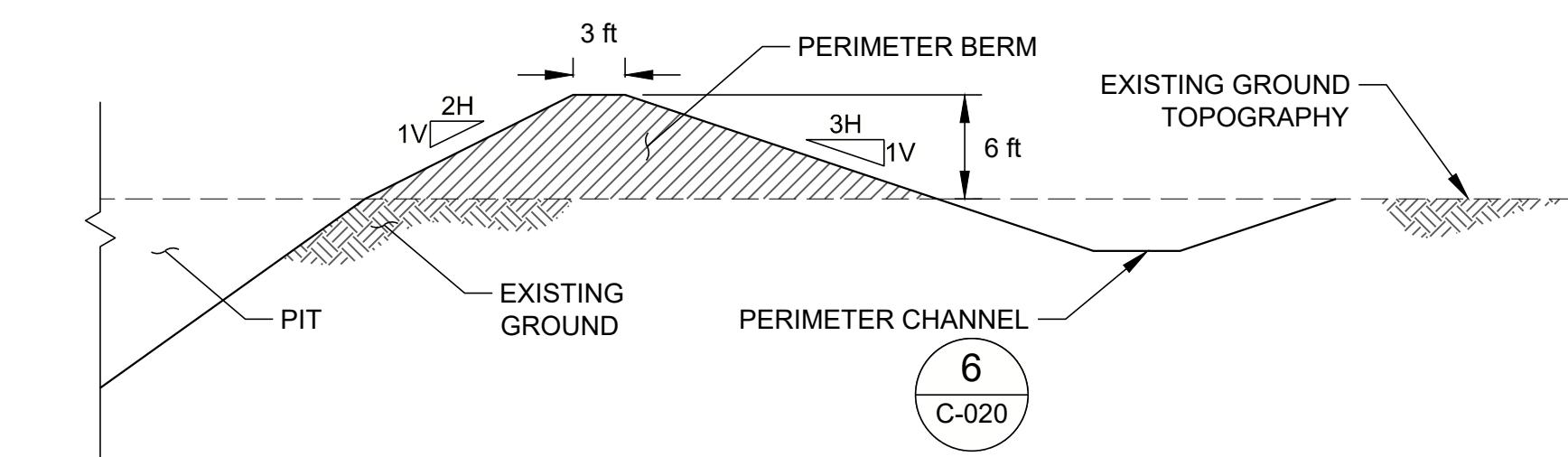
SEAL

CLIENT

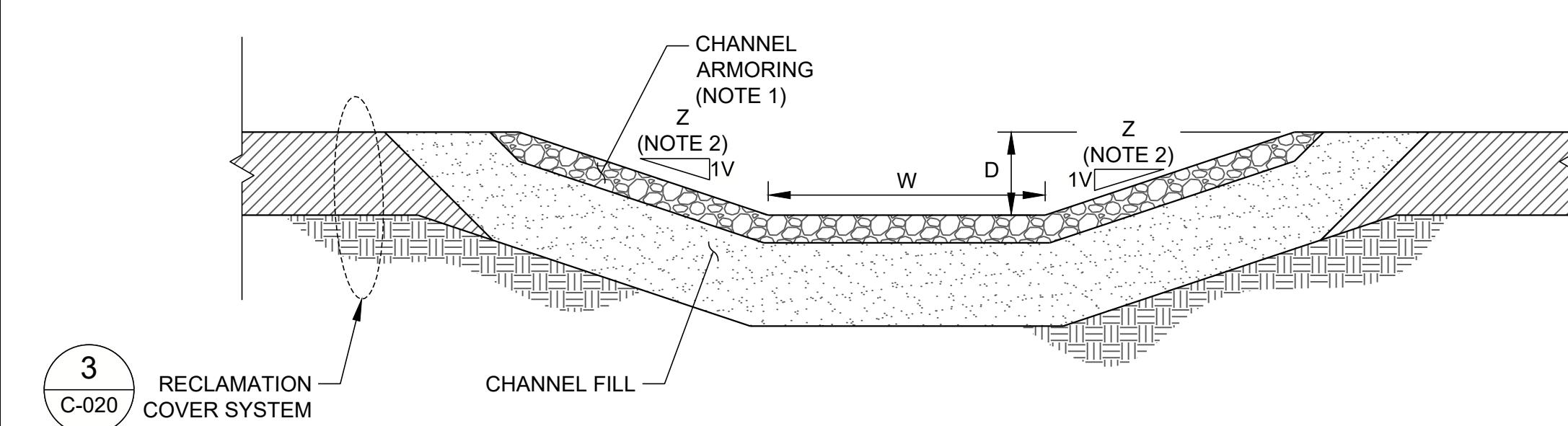
CONSULTANT

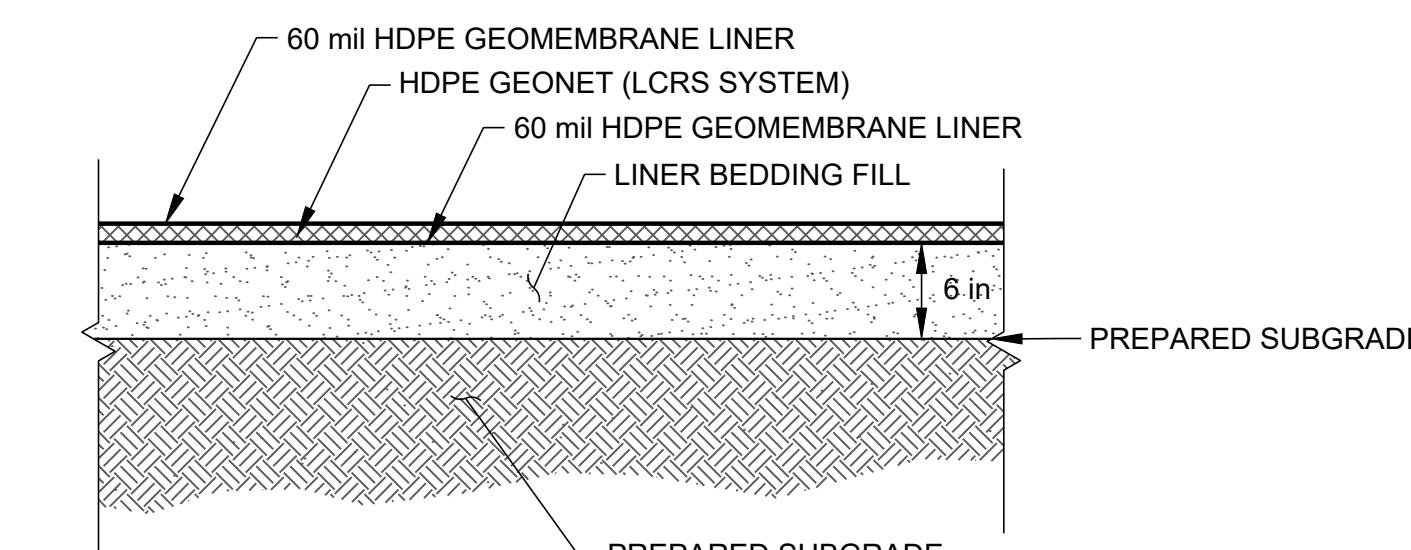

PROJECT
COPPER FLAT PROJECT
MINE RECLAMATION AND CLOSURE PLAN - DST

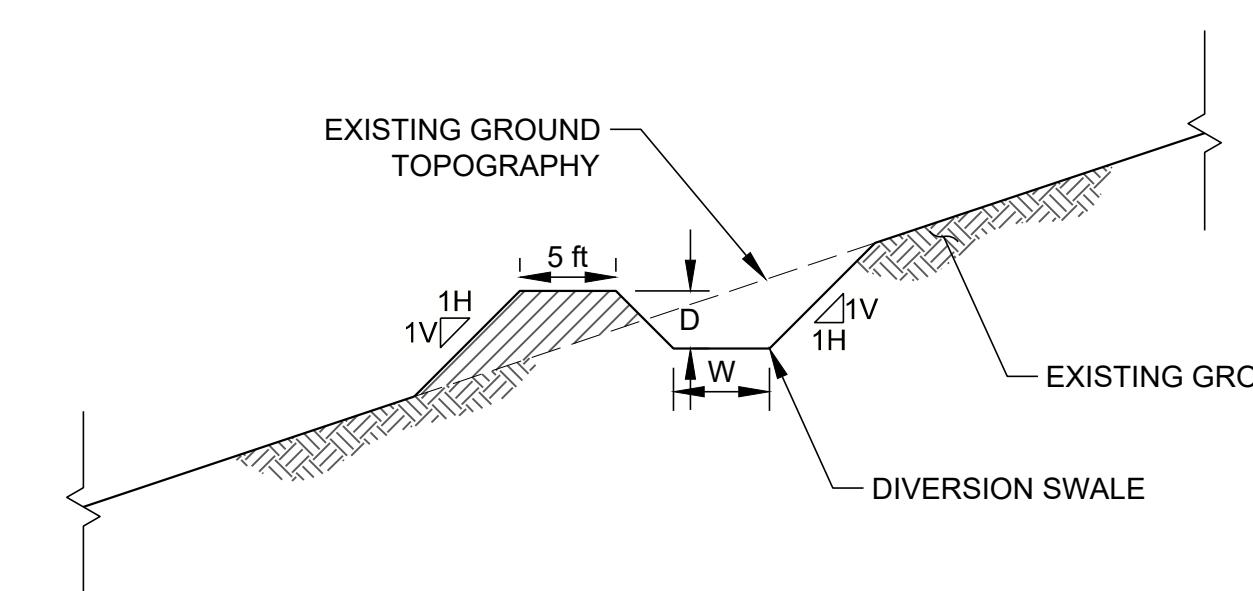
TITLE
TYPICAL SECTIONS AND DETAILS (1 OF 2)

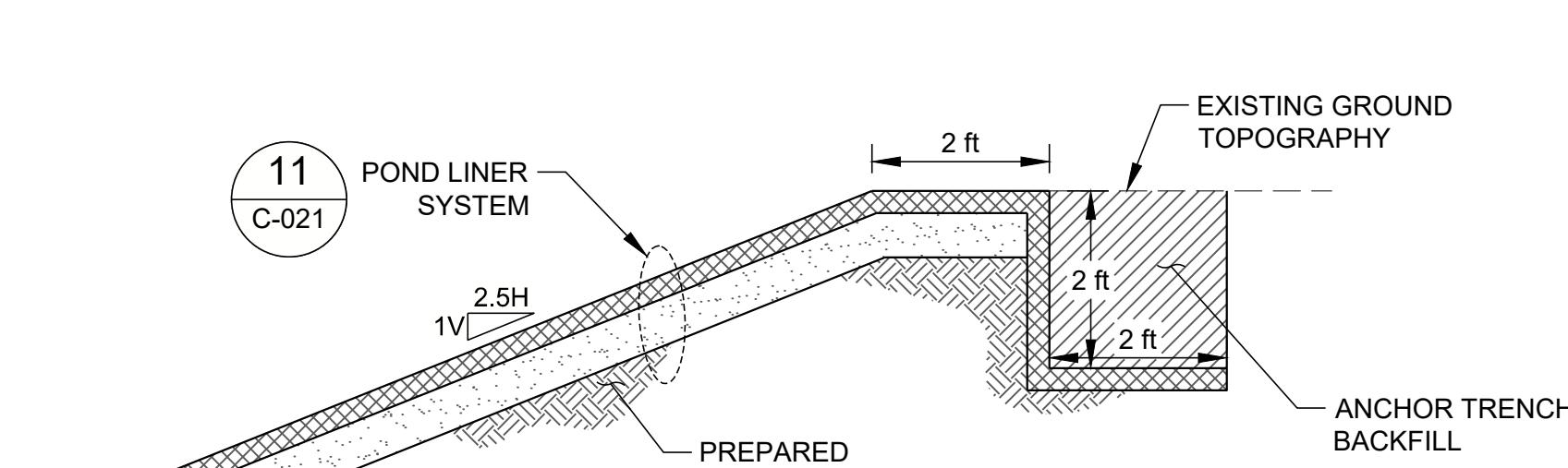

PROJECT NO.
US0035412.9417

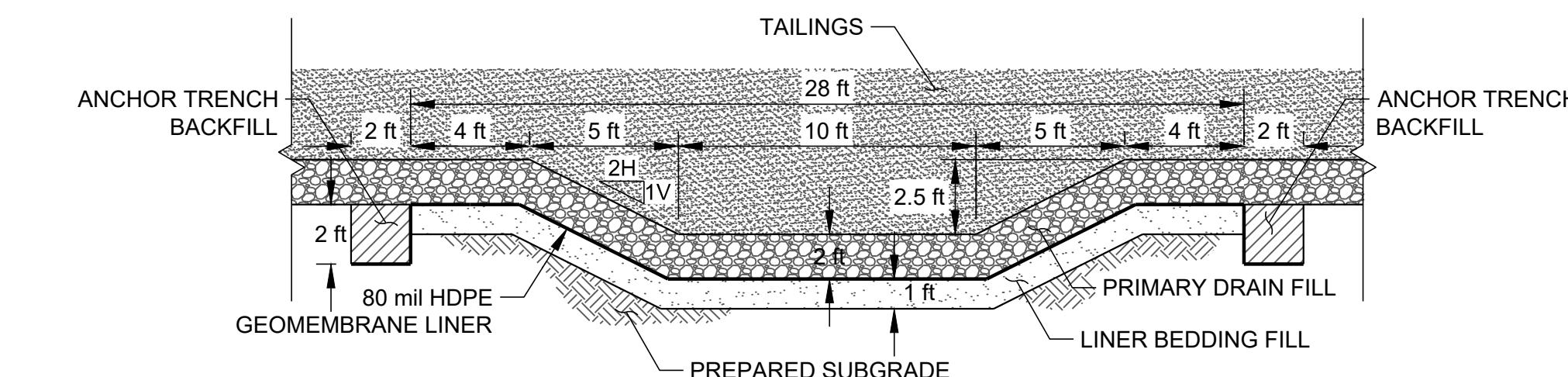
REV.
0

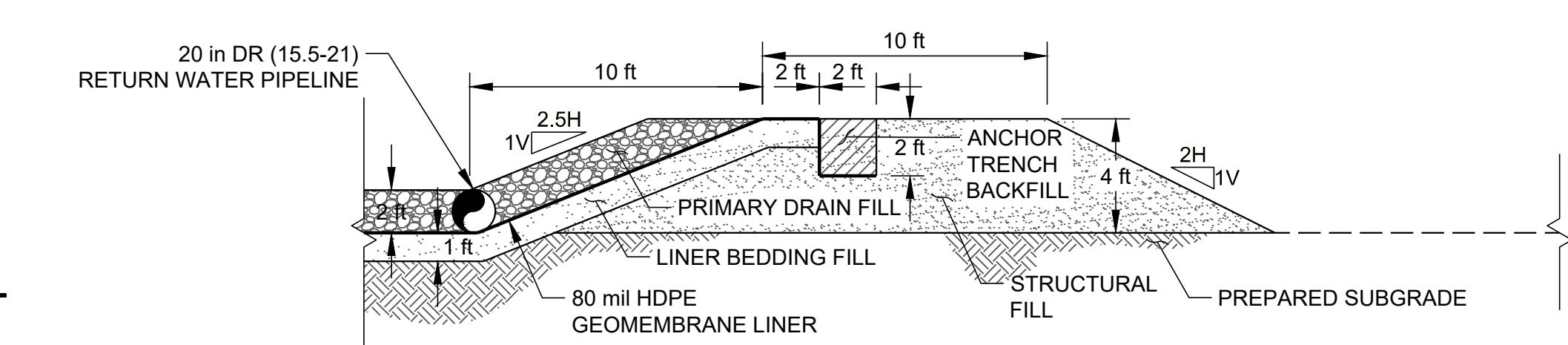

DRAWING
C-020


SCALE N.T.S. 7 C-021 TYPICAL TOP SURFACE CHANNEL SECTION


SCALE N.T.S. 10 C-021 PERIMETER BERM DETAIL


SCALE N.T.S. 8 C-021 TYPICAL DOWNSLOPE CHANNEL SECTION


SCALE N.T.S. 11 C-021 EVAPORATION POND LINER SYSTEM


SCALE N.T.S. 9 C-021 TYPICAL DIVERSION SWALE DETAIL

SCALE N.T.S. 12 C-021 EVAPORATION POND LINER SYSTEM ANCHOR TRENCH

SCALE N.T.S. 13 C-021 SEEPAGE COLLECTION CHANNEL

SCALE N.T.S. 14 C-021 FINAL TOE BERM

0	2025-08-12	ISSUED FOR MOPR 2025 DST UPDATE	HNL	WYV	JS	SC
B	2025-06-30	ISSUED FOR CLIENT REVIEW	HNL	JCR	JS	SC
A	2025-06-24	ISSUED FOR INTERNAL REVIEW	HNL	JCR	JS	SC
REV. YYYY-MM-DD		DESCRIPTION				
DESIGNED PREPARED REVIEWED APPROVED						

SEAL

CLIENT

NEW MEXICO
COPPER

CONSULTANT

WSP

PROJECT
COPPER FLAT PROJECT
MINE RECLAMATION AND CLOSURE PLAN - DST

TITLE
TYPICAL SECTIONS AND DETAILS (2 OF 2)

PROJECT NO. US0035412.9417 REV. 0 DRAWING C-021

