Date: June 14, 2022

To: Jim Griswold - Environmental Bureau Chief
 Carl Chavez - Environmental Engineer
 1220 South St. Francis
 Santa Fe, New Mexico 87505

Re: NOTICE OF INTENT TO DISCHARGE
 WQCC 20.6.2.1201 NMAC

Dear Sirs:

I, Darr Angell, Owner, Llano Disposal, LLC, am formally notifying the New Mexico Oil Conservation Division of Llano's intent to permit a Class Ill brine well located in Lea County, New Mexico. Pursuant to the Water Quality Control Commission Regulations 0/VQCC) 20.6.2.1201.B and C. NMAC, the following information is provided:

1) The name of the person making the discharge:
 Llano Disposal, LLC, Mr. Darr Angell, owner

2) The address of the person making the discharge:
 P.O. Box 250 (783 Highway 483)
 Lovington, NM 88260

3) The location of the discharge:
 Brine Well Location: NW/4 NW/4, UL 'D', Section 26, T17S, R36E
 Proposed Brine Station Location: SW/4 SW/4, UL 'M', Section 27, T17S, R36E

4) An estimate of the concentration of water contaminants in the discharge:
 Injection Water: fresh water from nearby fresh water well with approximately 400 mg/l TDS
 Produced Brine Water: approximately 320,000 mg/l TDS

5) The quantity of the discharge:
 Estimated Instantaneous Flow Rate: 1 - 3 barrels per minute
 Estimated Monthly Total: 0 - 58,000 barrels per month
Pursuant to 20.6.2.3114 NMAC attached is Llano's check number 3308 in the amount of $100 made payable to the "Water Quality Management Fund" as filing fee for the discharge permit application. Two copies of the discharge permit application along with pertinent attachments and a completed form C108 are attached.

If OCD requires additional information concerning this notice of intent or discharge permit application, please contact me at 575-704-2777 or email darrangell@gmail.com. Thank you for your consideration of this application.

Sincerely,

Darr A

Angell

Darr Angell
Llano Disposal, LLC
575-704-2777

Attachments
Pay to the order of Water Quality Management Fund

$100.00

Water Quality Management Fund
New Mexico Oil Conservation Division
1220 South St. Francis Drive
Santa Fe, New Mexico 87505

Filing fee for Brine Well BW-35

Llano Disposal, LLC

Water Quality Management Fund

6/7/2022

100.00

Checking Account - V Filing fee for Brine Well BW-35 100.00
DISCHARGE PLAN APPLICATION FOR BRINE EXTRACTION FACILITIES
(Refer to the OCD Guidelines for assistance in completing the application)

X New ☐ Renewal

I. Facility Name: Siringo ACS State

II. Operator: Siringo ACS State

Address: P.O Box 250 (783 HWY 483), Lovington, NM 88260

Contact Person: Marvin Burrows Phone: 575-631-8067

III. Location: NW /4 NW /4 Section 26 Township 17S Range 36E

Submit large scale topographic map showing exact location.

IV. Attach the name and address of the landowner of the facility site.

V. Attach a description of the types and quantities of fluids at the facility.

VI. Attach a description of all fluid transfer and storage and fluid and solid disposal facilities.

VII. Attach a description of underground facilities (i.e. brine extraction well).

VIII. Attach a contingency plan for reporting and clean-up of spills or releases.

IX. Attach geological/hydrological evidence demonstrating that brine extraction operations will not adversely impact fresh water.

X. Attach such other information as is necessary to demonstrate compliance with any other OCD rules, regulations and/or orders.

XI. CERTIFICATION:

I hereby certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

Name: Darr Angell Title: Owner

Signature: Darr Angell Date: 6/14/22

E-mail Address: darrangell@gmail.com
Siringo ACS State #1 and Siringo Brine Station
Discharge Plan

I. Name of Facility
Provide complete name. Indicate whether this is a new or renewal application.

Answer – This is a new application. The proposed brine well name is Siringo ACS State #1 and the proposed surface facility name is Siringo Brine Station.

II. Name of Operator or Legally Responsible Party and Local Representative
Include address and telephone number.

The operator/legally responsible party name is Llano Disposal, LLC, P.O. Box 250 (783 Highway 483), Lovington, NM 88260. The operator's OGRID number is 370661. The owner of Llano Disposal, LLC is also the owner of all the surface lands that the brine well and brine station will be situated upon. Additionally, the owner's personal residence is within a mile of the proposed brine well and brine station. Llano Disposal's office will be at 783 Highway 483, Lovington, NM 88260. The local representative is Marvin Burrows at 575-631-8067.

III. Location of Facility
Give a legal description of the location (i.e. 1/4, 1/4, Section, Township, Range) and county. Use state coordinates or latitude/longitude on unsurveyed land. Submit a large scale topographic map, facility site plan, or detailed aerial photograph for use in conjunction with the written material. It should depict the location of the injection well, storage tanks, process equipment, relevant objects, facility property boundaries, and other site information required in Sections V through IX below.

Answer – The brine well was originally drilled and abandoned in 1989. It is named the Siringo ACS State #1 (API # 30-025-30701) located at 660 FNL X 660 FWL, Unit Letter 'D', Section 26, T17S, R36E, Lea County, New Mexico. It has been re-completed as a brine well in the Salado (Salt) Formation between 2063' – 3253'. The brine station is located in the SE corner of UL 'M', Section 27, T17S, R36E, Lea County, New Mexico at latitude 32.798816°, longitude -103.347123°. The water source well is located approximately 0.62 miles SW of the proposed brine well. The water source well is located in UL ‘J’, Section 27, T17S, R36E, Lea County, New Mexico at latitude 32.804305°, longitude -103.338230°. See maps, facility site plan and aerial photographs in Attachments "A" – "F" and Attachment "O".

IV. Landowners
Attach the name and address of the landowner(s) of record of the facility site.

Answer – The landowner of record for the proposed brine well, water source well and brine station location is the Angell #2 Family LP, P.O. Box 250 (783 Highway 483), Lovington, NM 88260. Mr. Darr Angell of the Angell #2 Family LP is also the principal owner of Llano Disposal, LLC, the proposed brine well owner and operator.
Siringo ACS State #1 and Siringo Brine Station
Discharge Plan

V. Type and Quantities of Fluids Stored or Used at the Facility
List all fluids stored or used at the facility (e.g. High TDS salt water, fresh water, chemicals, etc.). Include source, average daily volume produced, estimated volume stored, location, and type of containers.

Anticipated daily average volumes produced are 1500 BWPD of brine water and 1550 BWPD of fresh water. Anticipated volumes stored are 1500 bbls of brine water, 300 bbls of fresh water and 100 gallons of Baker Techni-Hib 606 corrosion chemical. An MSDS for the corrosion chemical is included in Attachment "H".

VI. Transfer, Storage and Disposal of Fluids and Solids

A. Provide sufficient information to determine what water contaminants may be discharged to the surface and subsurface within the facility. Information desired includes whether tanks, piping, and pipelines are pressurized, above ground or buried. Provide fluid flow schematics with sufficient detail to show individual units (pumps, tanks, pipelines, etc.).

1. Tankage and Chemical Storage Areas – Storage tanks for fluids other than fresh water must be bermed to contain a volume one-third more than the largest tank. If tanks are interconnected, the berm must be designed to contain a volume one-third more than the total volume of the interconnected tanks. Chemical and drum storage areas must be paved, curbed and drained such that spills or leaks from drums are contained on the pads or in lined sumps.

Answer – At the proposed brine station, there will be six interconnected 500 bbl fiberglass brine water storage tanks and one 210 bbl steel catch tank. All seven tanks will be located within a secondary containment. Each tank will have an isolation valve and will remain unpressurized. The secondary containment consists of an earthen berm with a 20 mil string reinforced LLDPE liner capable of holding a minimum of 4000 bbls. There will be a 32' X 60' concrete loading pad with a concrete sump that is situated on top of the concrete loading pad. Any fluids entering the sump will be pumped to the 210 bbl catch tank inside the lined secondary containment. At the proposed well location, there will be a poly chemical storage tank with a poly secondary containment below it capable of holding a minimum of one-third more than the size of the chemical tank. The chemical tank
Siringo ACS State #1 and Siringo Brine Station
Discharge Plan

will remain unpressurized. See schematics in Attachment "L". There will be a
buried 3" SDR-11 polyethylene fresh water pipeline between a water supply well and
the brine well location. There will also be a buried 3" SDR-11 polyethylene pipeline
between the brine well and the brine station. Both pipelines will remain
unpressurized while pumps are not running. See section E below for detailed
pipeline specifications.

2. Surface impoundments - Date built, use, type and volume of materials stored,
area, volume, depth, slope of containments, sub-grade description, liner type and
thickness, compatibility of liner and stored materials, installation methods, leak
detection methods, freeboard, run-off/run-on protection.

Answer – There are no existing surface impoundments at this facility. If permit
application is approved, a new secondary containment around storage tanks
discussed in section VI.A.1 above will be built. A berm using caliche hauled in from
an offsite pit will be used. This bermed area will then be lined with a 20 mil LLDPE
liner with UV protection. Although, storm water run-on/run-off is expected to be
minimal due to the level nature of the surrounding terrain, an earthen berm of topsoil
dirt will be installed along the western, northern and eastern boundaries of the brine
station. This storm water berm will contain or divert any storm water run-on from
entering the brine station area.

3. Leach fields - Type and volume of effluents, leach field area and design layout. If
non-sewage or mixed flow from any process units or internal drains is, or has been,
sent to the leach fields, include dates of use and disposition of septic tank sludges.

Answer – Not applicable, no leach fields are planned.

4. Solids disposal - Describe types, volumes, frequency, and location of on-site
solids dried disposal. Typical solids include sands, sludges, filters, containers, cans
and drums.

Answer – Routine domestic household type trash or other similar non-domestic
waste pursuant to 19.15.35.8 NMAC will be stored in common trash dumpsters that
are supplied and picked up routinely by the local waste management trucking
company. This waste will be disposed of at a New Mexico Environmental
Department permitted solid waste disposal facility.

B. For each of the transfer/storage/disposal methods listed above:

1. Describe the existing and proposed measures to prevent or retard seepage such
that ground water at any place of present or future use will meet the WQCC
Standards of Section 3-103, and not contain any toxic pollutant as defined in Section
1-101.UU.
Siringo ACS State #1 and Siringo Brine Station
Discharge Plan

Answer – All storage tanks at the proposed brine station will be protected by a secondary containment area lined with a 20 mil LLDPE liner. This liner is a smooth, high quality, linear low density polyethylene (LLDPE) geomembrane with excellent chemical resistance, outstanding stress crack resistance, low permeability and excellent UV radiation resistance. This secondary containment area will be capable of holding one-third more than the combination of interconnected tanks within. The 32 foot by 60 foot concrete loading pad will be curbed on the edges and sloped to a grating covered 20” wide by 55’ long by 20” deep sump which is constructed in a single pour with the concrete loading pad. This sump will catch any spills/leaks occurring on the loading pad. The sump level will be automated and excess fluids will be pumped through above-ground piping to a 500 bbl steel catch/slop tank located within the secondary containment area. All process piping at the brine station will be installed above-ground.

2. Provide the location and design of site(s) and method(s) to be available for sampling, and for measurement or calculation of flow.

Answer - Samples can be taken either at each individual tank valve, on the load lines or at the wellhead manifold. Fresh water measurement will occur at the brine well near the injection pump and at the brine station sales load line. Brine water measurement will occur at the brine wellhead and at the brine station sales load line. Electronic accumulating flow meters with an accuracy of ±1% will be utilized.

3. Describe the monitoring system existing or proposed in the plan to detect leakage or failure of any discharge system. If ground water monitoring exists or is proposed, provide information on the number, location, design, and installation of monitoring wells.

Answer – The brine station will be controlled by a SCADA system to monitor and manage pressures, flows and upset conditions. Automated alarms and shutdowns are included in this system including communication to responding personnel during unattended operations.

Upon permit approval, a ground water quality monitoring program will be initiated on three existing fresh water wells near the proposed brine well and brine station. These wells are located southeast of the brine well and brine station. These water wells were selected due to their proximity to the facilities and the southeasterly flow of the aquifer. See Attachment "C" for location of the three proposed ground water wells. Water samples from these three wells would be tested quarterly for general chemistry parameters, BTEX and TPH. This would establish the ground water quality over time.
Siringo ACS State #1 and Siringo Brine Station
Discharge Plan

C. Off-Site Disposal
If wastewaters, sludges, solids etc. are pumped or shipped off-site, indicate general composition (e.g. waste oils), method of shipment (e.g. pipeline, trucked), and final disposition (e.g. recycling plant, OCD-permitted or domestic landfill, Class II disposal well). Include name, address, and location of receiving facility. If receiving facility is a sanitary or modified domestic landfill show operator approval for disposal of the shipped wastes.

Answer - Routine domestic household type trash or other similar non-domestic waste pursuant to 19.15.35.8 NMAC will be stored in common trash dumpsters that are supplied and picked up routinely by the local waste management trucking company. This waste will be disposed of at a New Mexico Environmental Department permitted solid waste disposal facility. Liquid waste generated onsite, primarily from the sump catch tank, will be transported by third party trucking companies to an approved Class II SWD well permitted by the NMOCD. Any contaminated soil waste will be transported by third party trucking companies to an approved NMOCID surface waste management facility (i.e. Sundance, et al).

D. Proposed Modifications

1. If protection of ground water cannot be demonstrated pursuant to Section B.1. above, describe what modification (including closure) is proposed to meet the requirements of the Regulations. Describe in detail the proposed changes. Provide the information requested in A. and B. above for the proposed modified facility and a proposed time schedule for construction and completion. (Note: OCD has developed specific guidelines for lined surface impoundments that are available on request.)

Answer – This facility will be built after approval of this discharge plan and brine well application. No existing facility now exists that would require current modifications.

2. For ponds, pits, leach fields, etc. where protection of ground water cannot be demonstrated, describe the proposed closure of such units so that existing fluids are removed, and emplacement of additional fluids and run-off/run-on of precipitation are prevented. Provide a proposed time schedule for closure.

Answer - This would be a newly built facility with no ponds, pits, or leach fields in the design.

E. Underground Piping
If the facility contains underground piping, the age and specification (i.e., wall thickness, fabrication material, etc.) of said piping should be submitted. Upon evaluation of such information, mechanical integrity testing of piping may be necessary as a condition for discharge plan approval. If such testing (e.g. hydrostatic tests) has already been conducted, details of the program should be submitted.
F. Inspection, Maintenance and Reporting

1. Describe proposed routine inspection procedures for surface impoundments and other transfer, storage, or disposal units including leak detection systems. Include frequency of inspection, how records are to be maintained and OCD notification in the event of leaks.

Answer – Routine inspections of surface equipment and automation systems would occur daily by an onsite facility supervisor. Inspection logs would be documented and maintained onsite for subsequent review.

2. If ground water monitoring is used to detect leakage or failure of the surface impoundments, leach fields, or other approved transfer/storage/disposal systems provide:

 a. The frequency of sampling, and constituents to be analyzed.

Answer – Per WQCC and NMOC D requirements, the brine water would be tested for general chemistry parameters, BTEX and TPH on a quarterly basis. Three nearby ground water wells located southeast of the brine well and brine station would also be tested for the same parameters on a quarterly basis. This would establish the baseline ground water conditions over time. These wells were selected due to their proximity to the facilities and the southeasterly flow of the aquifer. See Attachment “C” for location of the three proposed ground water wells.

 b. The proposed periodic reporting of the results of the monitoring and sampling.
Answer – We propose that the periodic reporting of both the brine water quality and ground water quality occur annually in the January 31 annual report.

c. The proposed actions and procedures (including OCD notification) to be undertaken by the discharger in the event of detecting leaks or failure of the discharge system.

Answer – The NMOCD would be notified via Form C-141 upon discovery of a leak detection or failure of the discharge system. The brine well would be shut in pending evaluation and correction of the failure or leak.

3. Discuss general procedures for containment of precipitation and runoff such that water in contact with process areas does not leave the facility, or is released only after testing for hazardous constituents. Include information on curbings, drainage, disposition, notification, etc.

Answer – As discussed in section VI.A.2 above, a storm water run-on berm will be installed around the western, northern and eastern side of the brine station to protect from storm water run-on at the brine station. As for run-off, the facility will contain all precipitation that occurs inside the tankage secondary containment. Any rain water collected in this containment area will be vacuumed up and either recycled within the facility or disposed of in an NMOCD approved manner. Heavy rain on the concrete loading pad will be collected into the sump by curbing and pump transferred to the 500 bbl catch tank. Any water collected in this catch tank will be hauled to a Class II SWD well approved by the NMOCO. The well location at the brine well will be contoured so that standing water is not allowed to pond near or around the wellhead. See Attachment “O” for USGS 7.5 minute quadrangle drainage map of the impacted area.

4. Describe methods used to detect leaks and ensure integrity of above and below ground tanks, and piping. Discuss frequency of inspection and procedures to be undertaken if significant leaks are detected.

Answer – Routine visual inspections of surface equipment and automation systems would occur daily by an onsite facility supervisor. Inspection logs will be documented and maintained onsite to insure any necessary repairs are completed and for subsequent review. The buried 6600 foot SDR-11 polyethylene brine pipeline will initially be hydrostatically pressure tested upon installation to insure mechanical integrity. It will be hydrostatically retested annually as long as no leakage is suspected. If leakage is ever suspected, the pipeline would be removed from service and tested. All pipeline tests will be logged into the inspection logs onsite. Storage tanks will be visually inspected internally when emptied for maintenance. Tanks will be visually inspected externally during daily routine inspections.
Siringo ACS State #1 and Siringo Brine Station
Discharge Plan

5. Submit a general closure plan describing what actions are to be taken when the facility discontinues operations. These actions must include:

a. Removal of all fluids, contaminants and equipment.

Answer – When the facility permanently discontinues operations, all stored fluids in equipment will be removed and either sold, reused or disposed. All ground contaminants will be recovered and disposed of per State, Federal and local regulations in effect at the time of closure. All surface equipment and infrastructure will be properly removed from the site. Underground pipelines will be flushed with fresh water, capped on both ends and abandoned in place.

b. Grading of facility to as close to the original contour as is practical.

Answer – After all surface equipment and concrete is removed, the brine station surface area and the brine well location will be re-contoured to original slope and reseeded with native grasses.

c. Proper disposal of fluids, sludges and solids pursuant to rules and regulations in effect at the time of closure.

Answer – All disposal of fluids, sludges and solids will be performed per State, Federal and local regulations in effect at the time of closure.

See section X.B for additional closure plan details.

VII. Brine Extraction Well(s)
Insitu brine extraction wells must meet the requirements of Part 5 of the Water Quality Control Commission Regulations in addition to other applicable requirements of WQCC and Oil Conservation Division Rules and Regulations.

A. Drilling, Deepening, or Plug Back Operations
Before drilling, deepening, or plug back operations, the operator of the well must file the following plans, specifications, and pertinent documents with the Oil Conservation Division 90 days prior to start-up of the planned operation.

1. Form C-101 "Application for Permit to Drill, Deepen, or Plug Back" (OCD Rule 1101).

Answer – Forms C-101, C-102 and C-103 for the Siringo ACS State #1 (API #30-025-30701) were submitted to the NMOCD District 1 Office on July 9, 2015. They were approved January 19, 2016.
2. A "Notice of Intent to Discharge" in accordance with WQCC regulation 1-201 (New facilities only).

Answer – Llano submitted a formal “Notice of Intent to Discharge” attached to this discharge permit application. When the application is determined by the NMOCD to be administratively complete, the review process starts toward a final discharge permit by the NMOCD.

3. A map showing the number, name, and location of all producing oil and gas wells, injection wells, abandoned holes, surface bodies of water, watercourses, springs, mines, quarries, water wells, and other pertinent surface features within one mile from the wellbore(s).

Answer – See Attachment “D” for a map of the oil/gas wells and fresh water wells within the one mile area of review. This map also indicates the general topography of the area. The area elevation is relatively flat with a slight slope from northwest to southeast. There are no identifiable surface bodies of water, watercourses, springs, mines or quarries within the area of review.

4. Maps and cross-sections indicating the general vertical and lateral limits of all ground water having 10,000 mg/l or less TDS within one mile of the site. Show the position of such ground water within this area relative to the injection formation. Indicate the direction of water movement, where known, for each zone of ground water.

Answer – Underground aquifers in this area are the Ogallala and Quaternary Alluvium formations. The ground water in these formations is unconfined where the underlying red beds are relatively impermeable. This underlying layer prevents further vertical movement within the aquifer. Based on information reviewed, the ground water flow within the Ogallala is generally to the southeast. According to OSE records in the subject section and contiguous 8 sections, water depths range in a band at approximately 50 – 70 feet below ground level with average depth of water wells in this area being 107’. With the base of the reported red beds being at 1547’ in the proposed brine well, the nearest ground water would be a minimum vertical distance of 496’ above the proposed injection zone. The primary water bearing depth of 50 – 70 feet would be a minimum vertical distance of 1973’ above the proposed injection zone. No additional ground water zones are evident in the area.

5. List all abandoned wells/shafts or other conduits in the area of review which penetrate the injection zone. Identify those which may provide a pathway for migration of contaminant through being improperly sealed, completed or abandoned. Detail what corrective action will be taken prior to start-up of operations to prevent any movement of contaminants into ground water of less than/equal to 10,000 mg/l TDS through such conduits due to the proposed
injection activity (e.g. plugging open holes). Include completion and plugging records.

If information becomes available after operations have begun, which indicates the presence of a conduit that will require plugging then the injection pressure will be limited to avoid movement of contaminants through such a conduit into protected ground water.

Answer – See Attachment “D” for a map of all oil and gas wells within the area of review that penetrate the injection zone (2043’ – 3253’ MD). There are six plugged and abandoned wells and one permitted, but yet undrilled well in the area of review. They are listed below:

<table>
<thead>
<tr>
<th>API Well Number</th>
<th>Well Status</th>
<th>Location</th>
<th>TD</th>
<th>Plugs Near Salt</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-025-31473</td>
<td>P&A</td>
<td>G-26-17S-36E</td>
<td>11,150</td>
<td>@ 1504’, 3100’</td>
</tr>
<tr>
<td>30-025-03950</td>
<td>P&A</td>
<td>B-26-17S-36E</td>
<td>8,298</td>
<td>@ 774’, 4873’</td>
</tr>
<tr>
<td>30-025-20616</td>
<td>P&A</td>
<td>L-22-17S-36E</td>
<td>5,525</td>
<td>@ 2100’, 3300’</td>
</tr>
<tr>
<td>30-025-27108</td>
<td>P&A</td>
<td>P-23-17S-36E</td>
<td>5,140</td>
<td>@ 1900’, 3180’</td>
</tr>
<tr>
<td>30-025-20775</td>
<td>P&A</td>
<td>D-25-17S-36E</td>
<td>11,305</td>
<td>@ 950’, 4655’</td>
</tr>
<tr>
<td>30-025-30110</td>
<td>P&A</td>
<td>B-27-17S-36E</td>
<td>12,355</td>
<td>@ 2945’, 4530’</td>
</tr>
<tr>
<td>30-025-42319</td>
<td>Permitted, Not Drilled</td>
<td>L-26-17S-36E</td>
<td>Proposed 8,833 TVD</td>
<td>N/A</td>
</tr>
</tbody>
</table>

All of these plugged wells have cement plugs above and below the salt formation which should eliminate any pathway for migration. The nearest of these offset wells is located ½ mile away from the subject well. Plugging records for these offset wells within the 1 mile area of review are provided in Attachment “G”.

6. Maps and cross-sections detailing the geology and geologic structure of the local area.

Answer – See North-South and East-West cross-sections in Attachment “N”.

7. A proposed formation testing program to obtain an analysis or description of fluids in the receiving formation.

Answer – Llano Disposal proposes to obtain brine well fluid samples at the wellhead manifold quarterly. These samples will be laboratory tested for general chemistry parameters, BTEX and THP. Test results would be reported to the NMOCID during the January 31 annual report.

8. Schematic drawings of the surface and subsurface construction details.

Answer – See Attachment “L” for surface facility and subsurface schematics.
Siringo ACS State #1 and Siringo Brine Station
Discharge Plan

9. The proposed drilling, evaluation, and testing, programs. Include logging procedures, coring program, and deviation checks.

Answer – This information exists in NMOC files. See Attachment “I” for copies. Llano Disposal reports all well completion information via Form C-105 and provide new logs run. In early February, 2016, at the NMOC’s request, Llano obtained approval and drilled out the top two cement plugs in this well. This allowed a cement bond log to be obtained which indicated the well has good cement behind casing. The lower cement plugs remain in place pending approval of this discharge permit application.

10. The proposed stimulation, injection, and operation procedures (Note WQCC 5-206 limitations).

Answer – No initial stimulation is proposed. Fresh water will be injected down the tubing and circulate brine water up the tubing/casing annulus. The brine water will be transported by pipeline to a nearby brine station and stored in surface tanks for subsequent sale.

11. A plan for plugging and abandonment of the well that meets the requirements of WQCC regulations section 5-209. A plugging bond pursuant to OCD Rule 101 is required prior to commencement of any new well drilling operations.

Answer – The plugging plan includes swabbing approximately one foot of water out of the cavern, removing the tubing string, then setting a cast iron bridge plug at 10 feet above the casing shoe and filling the casing with a Class C high strength salt resistant cement. The wellhead will be cut off and a dry hole marker installed. Llano Disposal currently has single well plugging bond number RLB0016073 issued by RLI Insurance Company accepted and approved by the NMOC. However, as discussed in section X.C below, additional bonding will be required for adequate well plugging, surface restoration and surface subsidence monitoring. Llano will obtain additional bonding as outlined in section X.C.

B. Workover Operations
Before performing remedial work, altering or pulling casing, plugging or abandonment, or any other workover, approval of OCD must be obtained. Approval should be requested on OCD Form C-103 "Sundry Notices and Reports on Wells" (OCD Rule 1103-A).

Answer – Llano will file Notice of Intent C-103 prior to future workover operations.

C. Additional Information Required with Discharge Plan
In addition to all of the information required above in Part VII.A. (Drilling, Deepening, or Plug Back Operations), include the following with your discharge plan application.
Siringo ACS State #1 and Siringo Brine
Station Discharge Plan

1. Provide evaluation, completion and well workover information. Include all logs, test results, completion reports and workover descriptions.

Answer – Please see Attachment "I" for the drilling, completion and testing reports to-date by the previous operator. Llano Disposal will file C-103 NOI’s prior to and Subsequent Notice C-103s following any downhole work. Llano will also file form C-105 reports after completion operations have been performed.

2. Provide the proposed maximum and average injection pressures and injection volume. If one well is to be used for injection and extraction, fresh water must be injected down the annulus and brine must be recovered up the tubing. Reverse flow will be allowed for up to once a month for 24 hours for clean out. If an alternative operating method is desired then a written request must be submitted to the OCD which describes the proposed operating procedures and how the mechanical integrity of the casing will be guaranteed.

Answer – Llano proposes to inject fresh water down the tubing and circulate brine water up the tubing-casing annulus. Below are our proposed injection pressures and volumes which are well below the fracture gradient of 0.75 psi/ft:

- Maximum injection pressure – 408 psi
- Average injection pressure – 250 psi
- Maximum injection volume – 1900 BWPD
- Average injection volume – 1550 BWPD

3. Submit a proposed mechanical integrity testing program. OCD requires a casing pressure test isolating the casing from the formation using either a bridge plug or packer prior to start of operation, and repeated at least once every five years or during well work over. In addition, OCD requires an open hole pressure test to 500 PSI for 4 hours on an annual basis.

Answer – Llano proposes to test the casing to 300 psi using a packer or bridge plug during completion operations. Additionally, Llano proposes to pull production tubing and run a packer or bridge plug to test the casing to 300 psi at intervals of five years or less. NMOC personnel will be notified in advance for witnessing. Concerning the open hole pressure test, Llano believes 500 psi surface pressure is too much pressure to put on the well/cavern. We propose to perform this annual test at 300 psi surface pressure for 4 hours. This would minimize the intensity of sudden pressure surges and releases which may cause damage to the formation.

4. Provide an analysis of the injection fluid and brine. Include location and design of site(s) and method(s) of sampling. Analysis will be for concentrations of Total Dissolved Solids, Sodium, Calcium, Potassium, Magnesium, Bromide, Carbonate/Bicarbonate, Chloride and Sulfate.
Answer – When the brine well is in operation, fresh water and brine samples can be taken from sample ports at the wellhead or at the brine station load line. Brine samples can also be taken from these same locations. Recently Llano sampled two fresh water wells within the area of review. These tests represent the aquifer quality in the area of review. These test results are included in Attachment "J".

5. Compare volumes of fresh water injected to volume of brine to detect underground losses and specify method by which volumes are determined. After approval, submittal of a quarterly report listing, by month, the volume of fluids injected and produced will be required.

Answer – Llano proposes to measure both fresh water injected and brine water produced by installing individual electronic flow meters with totalizers on the brine well manifold. The totalizer volumes will be recorded monthly and provide the records for evaluating underground losses. If the volumes exceed a 10% tolerance, the NMOCID would be notified and the discrepancy would be investigated.

6. For renewal application for facilities in operation in excess of 15 years, provide information on the size and extent of the solution cavern and geologic / engineering data demonstrating that continued brine extraction will not cause surface subsidence of catastrophic collapse.

Answer – Llano would address this section during future renewal application processes as operational experience with the formation in this well is gathered.

VIII. Spill/Leak Prevention and Reporting Procedures (Contingency Plans)
It is necessary to include in the discharge plan submittal a contingency plan that anticipates where any leaks or spills might occur. It must describe how the discharger proposes to guard against such accidents and detect them when they have occurred. The contingency plan also must describe the steps proposed to contain and remove the spilled substance or mitigate the damage caused by the discharge such that ground water is protected, or movement into surface waters is prevented. The discharger will be required to notify the OCD Director in the event of significant leaks and spills. This commitment and proposed notification threshold levels must be included in the contingency plan.

A. Prevention
Describe how spills and leaks will be prevented at the facility. Include specifically how spillage/leakage will be prevented during truck loading and at major transfer points within the facility. Discuss general "housekeeping" procedures for areas not directly associated with the above major processes.
Siringo ACS State #1 and Siringo Brine Station
Discharge Plan

Answer – See the Emergency Contingency and Response Plan in Attachment “K” for proposed actions to spill/leak prevention and general housekeeping actions.

B. Containment and Cleanup
Describe procedures for containment and cleanup of major and minor spills at the facility. Include information as to whether areas are curbed, paved, and drained to sumps; final disposition of spill materials; etc.

Answer – Spills will be contained by secondary containments around the brine station tanks. Spills at the loading pad will be contained in the concrete sump then pumped to a catch tank located inside the lined secondary containment. The concrete loading pad will be curbed to direct flow of spills to the sump. The liquid spills recovered in the catch tank will be trucked to a Class II disposal well permitted by the NMOCD.

C. Notification
Propose a schedule for OCD notification of spills. The OCD requires the discharger to notify the director within 48 hours of the detection or suspected detection of a spill, and provide subsequent reports as required.

Answer – See Attachment “K” for the NMOCD notification plan listed within the proposed facility contingency plan.

IX. Site Characteristics

A. The following hydrologic/geologic information is required to be submitted with all discharge plan applications. Some information already may be included in this application or may be on file with OCD and can be provided to the applicant on request.

1. Provide the name, description, and location of any bodies of water, streams (indicate perennial or intermittent), or other watercourses (arroyos, canals, drains, etc.); and ground water discharges sites (seeps, springs, marshes, swamps) within one mile of the outside perimeter of the facility. For water wells, locate wells within one mile and specify use of water (e.g. public supply, domestic, stock, etc.).

Answer – Due to the flat nature of the terrain within the 1 mile area of review, there are no bodies of water, streams, arroyos, canals, drains, seeps, springs, marshes or swamps evident. Six fresh water wells have been identified on the ground and via the OSE data base. Three of them are utilized for cattle production and three are used for domestic household supply by the landowner who is also the principal owner of Llano Disposal, LLC. See Attachment "D" for location of these water wells.
2. Provide the depth to and total dissolved solids (TDS) concentration (in mg/l) of the ground water most likely to be affected by any discharge (planned or unplanned). Include the source of the information and how it was determined. Provide a recent water quality analysis of the ground water, if available, including name of analyzing laboratory and sample date.

Answer – New water samples were obtained from two water wells within the 1 mile area of review. See Attachment "J" for test results. The results for the well titled “House”, is located west of the subject brine well and used for domestic household supply by the principal owner of Llano Disposal, LLC. The results for the well titled “Windmill” is located east of the subject brine well and used for cattle production. OSE data base indicates the average depth to water in the area of review is 50 – 70 feet.

3. Provide the following information and attach or reference source information as available (e.g. driller's logs):
 a. Soil type(s) (sand, clay, loam, caliche);

 Answer – Soil types are alluvium sand, red beds and anhydrite per C-105 Formation data on wells within the 1 mile area of review.

 b. Name of aquifer(s);

 Answer – Ogallala and Quaternary Alluvium formations

 c. Composition of aquifer material (e.g. alluvium, sandstone, basalt, etc.); and

 Answer – Alluvium medium sand.

 d. Depth to rock at base of alluvium (if available).

 Answer - The aquifer is generally located at a depth of 50 – 70 feet in this area. There is an underlying impermeable red bed layer that prevents further vertical movement within the aquifer. Red beds are evident immediately below the aquifer and extend for a depth of about 1550' across the area of review.

4. Provide information on:
 a. The flooding potential at the discharge site with respect to major precipitation and/or run-off events; and

 Answer – The area of review is not listed as a Flood Plain by FEMA. Average annual rainfall for this site is 10-12” per year. There is a very slight slope northwest to southeast across the area of review. The area could be
Siringo ACS State #1 and Siringo Brine Station
Discharge Plan

occasionally inundated with locally heavy rainfall, but it is very unlikely that storm water runoff events from other areas would impact the proposed site. New Mexico Highway 483 runs north/south on the western edge of the proposed site. This highway with developed barrow ditches helps control runoff events coming from the west and northwest.

b. Flood protection measures (berms, channels, etc.), if applicable.

Answer – The brine station will have a storm water runoff berm installed on the uphill western and northern edges plus the eastern edge of the site. This berm should direct any approaching runoff events away from the station. The brine well location will be graded so that rain water will not pond around the well head.

B. Additional Information
Provide any additional information necessary to demonstrate that approval of the discharge plan will not result in concentrations in excess of the standards of WQCC Section 3-103 or the presence of any toxic pollutant (Section 1-101.UU.) at any place of withdrawal of water for present or reasonably foreseeable future use. Depending on the method and location of discharge, detailed technical information on site hydrologic and geologic conditions may be required to be submitted for discharge plan evaluation. Check with OCD before providing this information. However, if required it could include but not be limited to:

1. Stratigraphic information including formation and member names, thickness, lithologies, lateral extent, etc.

Answer – The location of the proposed brine well is near the geologic region known as the San Simon Channel of the Permian Basin. This channel separated the Central Basin Platform from the Northwestern Shelf during Leonardian and early Guadalupian times. The subsurface formations are transitional between the Northwestern Shelf, Central Basin Platform and the Midland Basin. The brine well target formation is the Salado formation of the Ochoa series. This series is part of the upper Permian Age and extends across the Delaware Basin and Central Basin Platform. It thins and finally pinches out on the eastern shelf. Layers in this series are predominately evaporates which contain strings of dolomite, shale, siltstone and sandstone. The thickness of the salt section averages around 1000'. The Triassic rock overlying the Permian formations is the Dockum group and is divisible into the Santa Rosa sandstone and Chinle formations. The Tertiary rocks are represented by the Ogallala formation and ranges in thickness from 0' to 300' within this general area. It is primarily made up of calcareous, unconsolidated sand, clay, silt and gravel. This formation is the primary ground water source within this area. See Attachment “M” for area geology and general lithology.
2. Generalized maps and cross-sections;
Answer – See a map and cross-section in Attachment “M”.

3. Potentiometric maps for aquifers potentially affected;
Answer – No potentiometric maps were found for this water basin in Lea County.

4. Porosity, hydraulic conductivity, storactivity and other hydrologic parameters of the aquifer;
Answer – No pumping tests, slug tests or constant-head tests were performed. However, values for these parameters were calculated using standard variables for an unconfined aquifer with medium sand as the aquifer material. Results are:
 - Porosity – 29-49%
 - Hydraulic Conductivity – 305 gal/day/ft²
 - Storactivity – 0.2
 - Specific Yield – 32%
 - Specific Retention – 3%

5. Specific information on the water quality of the receiving aquifer; and
Answer – The receiving formation is the Salado Formation (salt) which is not an aquifer. The Salado Formation is generally a solid formation with no in situ water evident. There are no records in the well file indicating that the Salado formation contained any water when this well was drilled.

6. Information on expected alteration of contaminants due to sorption, recipitation or chemical reaction in the unsaturated zone, and expected reactions and/or dilution in the aquifer.
Answer – The surface in the area of review is grassland utilized for cattle production. Other than animal waste, there are no contaminants or man-made agricultural chemicals utilized on this surface. The proposed brine well operation will include minimal man-made chemicals which will have secondary containment protection. Brine storage tanks will also have secondary containment protection. Infiltration of contaminants through the unsaturated or vadose zone to the aquifer is not expected during the proposed brine well operation. Additionally, no alteration of contaminants due to sorption, recipitation or chemical reaction in the unsaturated zone is expected. Finally, no reactions and/or dilution in the overlying aquifer are expected from brine operations.

X. Other Compliance Information
Attach such other information as is necessary to demonstrate compliance with any other OCD rules, regulations and/or orders. Examples include previous Division orders or letters authorizing operation of the facility or any surface impoundments at the location.
Answer – A C-108 Application to Inject has been prepared and will be submitted to the NMOCD Engineering Bureau with this proposed Discharge Plan. Additionally, new forms C-101, C-102 and C-103 for the subject well have already been approved by the NMOCD District 1 Office.

A. Surface Subsidence Monitoring
To monitor potential changes in surface conditions at the proposed brine well, Llano proposes to establish three surface subsidence monuments suitable for three dimensional surface monitoring as well as establishing an X, Y, and Z position on the proposed brine well. The monuments will be Berntsen’s 9/16” stainless steel floating sleeved rod monuments (see Attachment “P”) which are well suited for monitoring positional changes in the ground surface. The monuments are designed so that frost heave and swelling and shrinking soil conditions have no effect on the stainless steel rod on which measurements will be made. A location point on the well will be established so that the well itself will be used as a fourth subsidence monument. Rod monuments will be installed in a triangular configuration around the brine well wellhead at a maximum distance of 150 feet from the well.

1. Monument Installation Procedure
A 12" diameter hole will be augered to a depth of about 3-1/2 feet. The stainless steel rod will be manually driven into the ground, a section at a time, to a depth of 8 feet. The top of the rod would be about 6" below ground level. A finned floating sleeve (filled with NO-TOX grease) is placed over the rod and the datum point added on the rod end. A 6” diameter x 42” long PVC pipe conduit with access cover glued to top end is then placed over the finned sleeve. The inside of the PVC conduit is then filled with fine sand to a level about 3” below the top of the rod. The outside of the PVC conduit will be filled with sand to about 1 foot below ground level, then concrete will be placed from 1 foot depth to ground level.

2. Annual Subsidence Surveys
The survey contractor will use modern survey equipment to establish X, Y, Z positions on the surface subsidence monuments on an annual basis. Survey grade GPS equipment will be utilized to establish the horizontal position of each subsidence monument relative to the New Mexico Coordinate System North American Datum 1983 (2007). Using Static and Fast Static observations the expected horizontal accuracy of the GPS equipment as established by the manufacturer for the subsidence monuments is ±0.01 ft. A digital level will be utilized to establish the vertical position of the surface subsidence monuments relative to the North American Vertical Datum of 1988 (NAVD88). Using differential leveling techniques the expected vertical accuracy of the equipment as established by the manufacturer for the subsidence monuments is ±0.01 ft.
Siringo ACS State #1 and Siringo Brine Station
Discharge Plan

The initial survey will be conducted prior to first injection into the proposed brine well. This survey will establish horizontal and vertical coordinate baseline values on the three monuments and the well. Additional surveys will be performed annually in order to compare coordinate values checking for movement in the monuments and well. After cease of operations of the proposed brine well, annual surface subsidence surveys will be conducted for a minimum of five additional years. Reports of these surveys will be submitted to the NMOCD in the annual (January 31) operating report.

B. Closure Plan
Upon cease of operations and after regulatory approval, Llano will plug and abandon the brine well, remove all surface equipment, restore the surface to original contour and reseed it with native grasses. In addition, Llano will continue surface subsidence monument surveys for a minimum of 5 years after well plugging.

1. Well Plug and Abandonment
The brine well will be plugged and abandoned per WQCC regulations section 5-209 and NMOCO rules in place at that time. As discussed in Section VII.A.11 above, the plugging plan includes swabbing approximately one foot of water out of the cavern, removing the tubing string, setting a cast iron bridge plug at 10 feet above the casing shoe and filling the casing with a Class C high strength salt resistant cement. The wellhead will be cut off and a dry hole marker installed. Over time, large portions of the resulting salt cavern will re-solidify.

2. Surface Restoration
All surface equipment at the brine well location and brine station will be emptied, decommissioned and removed either through recycle, scrapping, sale or used by the owner elsewhere. The disturbed surface at the well location and brine station will be reclaimed and re-contoured to near original condition. The disturbed area will be reseeded with a BLM grass seed mixture to establish 70% minimum regrowth coverage.

3. Surface Subsidence Monitoring
The annual surface subsidence monitoring program discussed in section X.A.2 above will be continued for a minimum of 5 years following plugging and abandonment of the brine well.

C. Financial Assurance Plan
Llano currently has a single well plugging bond for the proposed brine well approved by the NMOCD in the amount of $10,450. However, Llano proposes to provide financial assurance for the Siringo Brine Well and Station via a single surety bond in the amount of $102,836 covering well plugging and abandonment, surface restoration and surface subsidence monitoring for 5 years after ceasing operations as detailed below. Upon acceptance and approval by the NMOCD/WQCC of this
Siringo ACS State #1 and Siringo Brine Station
Discharge Plan

$102,836 bond that is in place, Llano will keep it active for the duration of the well.

1. Well Plugging - $39,500
Based on recently obtained bids and experience in plugging wells, Llano proposes a well plugging bond amount of $39,500. See cost breakdown below.

<table>
<thead>
<tr>
<th>Cost</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$16,569</td>
<td>Well plugging contractor labor/equipment including cement</td>
</tr>
<tr>
<td>$8,500</td>
<td>Equipment rental (workstring, flowback tanks, BOPE, porta-john, etc)</td>
</tr>
<tr>
<td>$4,500</td>
<td>Transportation of equipment</td>
</tr>
<tr>
<td>$3,000</td>
<td>Supervision</td>
</tr>
<tr>
<td>$2,600</td>
<td>Purchase/transportation of brine and fresh water</td>
</tr>
<tr>
<td>$2,000</td>
<td>Disposal of tank fluids</td>
</tr>
<tr>
<td>$1,200</td>
<td>Excavate/cutoff wellhead and anchors; weld on flat plate and PxA marker</td>
</tr>
<tr>
<td>$1,131</td>
<td>Miscellaneous</td>
</tr>
</tbody>
</table>

2. Surface Restoration - $45,336
Based on recently obtained surface restoration cost quotes, these costs total $45,336 as detailed below:

<table>
<thead>
<tr>
<th>Cost</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$8,000</td>
<td>Equipment/Labor – washout tanks for disposal, haul fluids and solids to disposal</td>
</tr>
<tr>
<td>$2,100</td>
<td>Backhoe/Labor - 2 days to crush fiberglass tanks and PVC components at brine station</td>
</tr>
<tr>
<td>$2,400</td>
<td>35 Yd Roll-off Dumpsters - delivery, rental and hauling to landfill</td>
</tr>
<tr>
<td>$536</td>
<td>Lea County Landfill Charges - 3 ea 35 yd dumpsters = 105 cy x 300 lbs = 15.75 tons @ $34/ton</td>
</tr>
<tr>
<td>$1,800</td>
<td>Onsite Supervision</td>
</tr>
<tr>
<td>$19,100</td>
<td>Equipment/Labor – pull all fencing, remove all concrete, disassemble all metal components, re-contour land to original grade, rebuild barbed wire fence to original ranch configuration, remove underground piping, electrical conduit, wiring, high line poles, wiring and signage</td>
</tr>
<tr>
<td>$2,200</td>
<td>Trucking/Disposal – of concrete to Lea County Landfill @ $34/ton</td>
</tr>
<tr>
<td>$3,500</td>
<td>Trucking - haul metal components to Hobbs Iron & Metal for recycle</td>
</tr>
<tr>
<td>$4,500</td>
<td>Decommission buried polyethylene brine pipeline - costs include fresh water, trucking and pumping to wash pipeline clean and disposal of brine and wash water, then leave pipeline in place for ranching, fresh water sales use</td>
</tr>
<tr>
<td>$1,400</td>
<td>Reseeding BLM mix grass on estimated 2 acres at well location and brine station</td>
</tr>
</tbody>
</table>

3. Surface Subsidence Monitoring - $18,000
Based on recently obtained surface subsidence survey cost quotes, these costs total $18,000 for 5 years of follow-on subsidence monument monitoring. Cost estimate is $1200 per year per monument surveyed. Annual cost to survey three monuments is $3600 per year or $18,000 for 5 years.

D. Notification Plan
Pursuant to 20.6.2.3108 NMAC, Llano Disposal proposes the following public notice plan to be implemented within 30 days upon the department's determination that the discharge permit application is deemed administratively complete.
Siringo ACS State #1 and Siringo Brine Station Discharge Plan

1. Public Notice Onsite Signage (minimum 2’ x 3’ size) Pursuant to 20.6.2.3108.B.1 NMAC
Llano will install one (1) sign meeting the above requirements in both English and Spanish to be located on private land adjacent to the eastern right-of-way of Hwy 483 (Arkansas Jct) at the southwest corner of Section 27, T17S, 36E. This site is approximately 900 feet west of the proposed brine station location. This notice will be posted for a minimum of 30 days. The proposed text on this sign is included in Attachment “Q”.

2. Public Notice Offsite Pursuant to 20.6.2.3108.B.1 NMAC
Llano will post a notice of the discharge application in English and Spanish on a public bulletin board in the Lea County Courthouse. This notice will be posted for a minimum of 30 days. The proposed text of this notice is included in Attachment “R”.

3. Notice to Adjoining Property Owners Pursuant to 20.6.2.3108.B.2 NMAC
Llano will provide written notice of the discharge application in English by certified mail, return receipt requested, to owners of record of all properties adjacent to the property owned by the discharger. There are seven adjacent property owners identified in property tax records. The proposed text of these notices, attachments and a listing of the owners are included in Attachment “S”.

4. Notice to the Property Owner of the Discharge Site Pursuant to 20.6.2.3108.B.3 NMAC
Notice to the landowner is not required since the owner of Llano is also the owner of the discharge site surface property. Although the surface ownership is private land, the mineral ownership is State of New Mexico owned. Llano will provide written notice in English by certified mail, return receipt requested, to the New Mexico State Land Office, the mineral owner of the discharge site. In addition, Llano will notice the current mineral lessee of the State owned minerals since there are no offset wells within 1/3 mile of the proposed class III brine well. As of April 20, 2016, the State mineral lessee of record is Devon Energy Production Co, LP. Llano will provide written notice in English to Devon by certified mail, return receipt requested. Text of both of these letters is included in Attachment “S”.

5. Public Notice Newspaper Display Ad (minimum 3” x 4”) Pursuant to 20.6.2.3108.B.4 NMAC
Llano will publish one (1) newspaper advertisement meeting the above requirements in both English and Spanish in the “Lovington Leader”, a
newspaper of general circulation nearest the location of the proposed discharge. The proposed text of these newspaper advertisement notices is included in Attachment "T".

6. Proof of Notice Pursuant to 20.6.2.3108.D NMAC
Within 15 days of completion of public notice requirements listed above, Llano will submit to the department proof of notice, including an affidavit of mailings and the list of property owners, proof of publication in the newspaper, and an affidavit of public posting onsite the discharge location and offsite in the Lea County Courthouse.
<table>
<thead>
<tr>
<th>Attachment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Overview Map of General Area</td>
</tr>
<tr>
<td>B</td>
<td>USGS Topo Map of Area</td>
</tr>
<tr>
<td>C</td>
<td>Aerial Photo with Ground Water Monitor Wells</td>
</tr>
<tr>
<td>D</td>
<td>1 Mile Area of Review with Oil/Gas Wells and Fresh Water Wells</td>
</tr>
<tr>
<td>E</td>
<td>Brine Well Location Site Plan</td>
</tr>
<tr>
<td>F</td>
<td>Brine Station Site Plan</td>
</tr>
<tr>
<td>G</td>
<td>Plugging Records for Offset Wells Within the 1 Mile Area of Review</td>
</tr>
<tr>
<td>H</td>
<td>MSDS for Corrosion Inhibitor Utilized on Brine Well Location</td>
</tr>
<tr>
<td>I</td>
<td>NMOCGD Drilling, Comp, P&A Records for Siringo ACS State #1</td>
</tr>
<tr>
<td>J</td>
<td>Water Analysis Test Results on Area Fresh Water Wells</td>
</tr>
<tr>
<td>K</td>
<td>Siringo Emergency Contingency and Response Plan</td>
</tr>
<tr>
<td>L</td>
<td>Schematics for Brine Station, Brine Well Location and Brine Well</td>
</tr>
<tr>
<td>M</td>
<td>Area Geology Map and General Lithology</td>
</tr>
<tr>
<td>N</td>
<td>Cross-sections of Geologic Structure at Siringo ACS State #1</td>
</tr>
<tr>
<td>O</td>
<td>USGS Drainage Map of Project Area</td>
</tr>
<tr>
<td>P</td>
<td>Subsidence Monument Design and Installation Procedure</td>
</tr>
<tr>
<td>Q</td>
<td>Public Notice for Onsite Sign Posting</td>
</tr>
<tr>
<td>R</td>
<td>Public Notice for Offsite Posting (Lea County Courthouse)</td>
</tr>
<tr>
<td>S</td>
<td>Public Notice Letters to Adjoining Property Owners, SLO, Mineral Lessee</td>
</tr>
<tr>
<td>T</td>
<td>Public Notice in Lovington Leader Newspaper</td>
</tr>
</tbody>
</table>
Siringo ACS State #1
API # 30-025-30701
Discharge Plan Attachments
Attachment B – Area USGS Topo Map

T17S, R36E, NMPM
Lea County, New Mexico
Siringo ACS State #1
API # 30-025-30701
Discharge Plan Attachments
Attachment C – Aerial Photo with Ground Water Monitoring Wells

T17S, R36E, NMPM
Lea County, New Mexico
Siringo ACS State #1
API # 30-025-30701
Discharge Plan Attachments

Attachment D – 1 Mile AOR with Oil/Gas Wells and Fresh Water Wells

30-025-20616
P&A

30-025-03950
P&A

30-025-27108
P&A

30-025-20775
P&A

30-025-30110
P&A

30-025-30701
Proposed Brine Well

Proposed Fresh Water Supply Well

30-025-42319
Never Drilled

Fresh Water Wells

T17S, R36E, NMPM
Lea County, New Mexico
Attachment F – Brine Station Site Plan

Surface Owner - Angell #2 Family LP
P. O. Box 190, Lovington, NM 88260
Drawing Not to Scale
OIL CONSERVATION DIVISION
P.O. Box 2088
Santa Fe, New Mexico 87504-2088

WELL API NO.
30-025-31473

State of New Mexico
Energy, Minerals and Natural Resources Department

SUNDAY NOTICES AND REPORTS ON WELLS

I DO NOT USE THIS FORM FOR PROPOSALS TO DRILL OR TO DEEPEN OR PLUG BACK TO A DIFFERENT RESERVOIR. USE "APPLICATION FOR PERMIT" (FORM C-101) FOR SUCH PROPOSALS.

Type of Well
GAS WELLS
WELL X
OTHER

Name of Operator
Mariano, Inc.

Address of Operator
P.O. Box 831, Midland, TX 79702

Well Location

Section 26 Township 176 Range 36E

Foot From The East Line and 1960 Feet From The North Line

Check Appropriate Box to Indicate Nature of Notice, Report, or Other Data

PERFORM REMEDIAL WORK
PLUG AND ABANDON
REMEDIAL WORK
ALTERING CASINGS
TEMPORARILY ABANDON
CHANGE PLANS
COMMENCE DRILLING OPNS.
PLUG AND ABANDONMENT
PULL OR ALTER CASING
CASING TEST AND CEMENT JOB
OTHER

Describe Proposed or Completed Operations (Clearly state all pertinent details, and give pertinent dates, including estimated date of starting any proposed work) SEE RULE 1103.

2-3-93 Pump a GTH w/ 15° at thg CTHP 240,000'. Mix & circ 10° mud laden fluid. Jack Griffin, ODD on location.

2-4-93 Pump w/ 2 7/8 in. to 2512'. Load hole w/10° mud laden fluid. Mix & pump 25 sx Cl. "C" bbls 10° mud. RI wt. Set CTHP 240,000' & dump 35° on top of plug. GTH w/ 2 7/8 in. to 4000'. Load & circ hole w/10° mud laden fluid. Pull thg up to 4500'.

2-5-93 Pump 25 sx Cl. "C" bbls 10° mud laden fluid. RI wt. GTH w/ 2 7/8 in. to 3172'. TTV 1 1/2 bbls. GTH w/ 10° mud. Pump 50 sx Cl. "C" bbls 50° at 50' out. Wash hill, ODD witnessed last plug.

2-8-93 GTH w/20 in. 2 7/8 in. Thg CTHP 3078'. ODD on ok. Pumped 50 sx Cl. "C" bbls 10° mud laden fluid. TTV 10 in singles. Pumped 50 sx Cl. "C" bbls 50° at 50' out. Wash hill, ODD witnessed last plug.

I hereby certify that the information above is true and complete to the best of my knowledge and belief.

SIGNATURE
DATE
February 16, 1993

TYPE OR PRINT NAME
Telephone No. 915-682-74411

APPROVED BY
DATE
March 25, 1993

Page 1 of 7

ATTACHMENT "G"
ATTACHMENT "G"

NEW MEXICO OIL CONSERVATION COMMISSION
MISCELLANEOUS REPORTS ON WELLS
(Submit to appropriate District Office as per Commission Rule 1106)

COMPANY: Monsanto Chemical Company
(Address)

LEASE STATE NO. WELL NO. 1 UNIT B S 26 T 17 S R 36 E
DATE WORK PERFORMED: 9-13-57 POOL: Undesignated

This is a Report of: (Check appropriate block)

- Results of Test of Casing Shut-off
- Remedial Work
- Other Drill Stem Test

Detailed account of work done, nature and quantity of materials used and results obtained:
9-13-57 DST #3 8141 to 8298, recovered 4050′ Breslau Sulfur Water, DP 125#-1995#, SIP (30 min) 2225#.

9-13-57 Plugged and abandoned well - cement plugs as follows:

- 8162-8298 w/40 mm, total depth 8298
- 6062-6190 w/10 mm
- 5175-5365 w/60 mm
- 4073-4923 w/20 mm, bottom of 9-5/8″ casing @ 4930′
- 729-779 w/30 mm, Rec. 75th 9-5/8″ casing T/Salt @ 2130′
- 291-311 w/10 mm, bottom of 3-3/8″ casing @ 316′
- 0-30 w/30 mm

A ¾″ pipe marker extending 1′ above ground w/location description and name was placed in top of well.

FILL IN BELOW FOR REMEDIAL WORK REPORTS ONLY

Original Well Data:

DF Elev. TD PRD Prod. Int. Compl Date

Tbng. Dia Tbng Depth Oil String Dia Oil String Depth

Peri Interval Open Interval Producing Formation

RESULTS OF WORKOVER:

Date of Test
Oil Production, bbls. per day
Gas Production, Mcf per day
Water Production, bbls. per day
Gas-Oil Ratio, cu. ft. per bbl.
Gas Well Potential, Mcf per day

Witnessed by T. H. Foster, Prod. Foreman

Monsanto Chemical Company

OIL CONSERVATION COMMISSION

I hereby certify that the information given above is true and complete to the best of
NEW MEXICO OIL CONSERVATION COMMISSION
FORM C-103
MISCELLANEOUS REPORTS ON WELLS
(Submit to appropriate District Office as per Commission Rule 1106)

Name of Company: Campana Petroleum Company
Address: P.O. Box 1652, Midland, Texas

Lease: Humble - State
Well No.: 1
Unit Letter: I
Section: 22
Township: 17-B
Range: 36-E
Pool: Wildcat
County: Lee

Date Work Performed: July 1, 1964

THIS IS A REPORT OF: (Check appropriate block)
☐ Beginning Drilling Operations
☐ Casing, Test and Current Job
☐ Other (Explain)
☐ Plugging
☐ Remedial Work

Detailed account of work done, nature and quantity of materials used, and results obtained.

T. D. 5525 Dalomita.
Plugged and abandoned well as follows:

- Spotted 40 sack plug 5300 to T. D. across San Andres.
- Spotted 25 sack plug 3300 to 3400 across base of Salt.
- Spotted 25 sack plug 2400 to 2100 across top of Salt.
- Spotted 25 sack plug 230 to 350 in and out of surface casing.
- Spotted 10 sack plug at surface, installed proper dry hole marker.
- Spotted drilling mud between all plugs and back filled pits and cleaned up location.

This work was performed by Dowell, Hobbs, New Mexico Office.

Witnessed by:

A. D. Ball

Position: Partner
Company: Campana Petroleum Company

FILL IN BELOW FOR REMEDIAL WORK REPORTS ONLY

ORIGINAL WELL DATA

DF Elev. TD PTD Producing Interval Completion Date

Tubing Diameter Tubing Depth Oil String Diameter Oil String Depth

Perforated Interval(s)

Open Hole Interval Producing Formation(s)

RESULTS OF WORKOVER

Test Date of Producing Gas Production Water Production GOR Gas Well Potential

Before Workover RPD MCFPD RPD MCFPD

After Workover

OIL CONSERVATION COMMISSION

Approved by

(A. D. Ball)

Title: Partner

Company: Campana Petroleum Company

ATCHEMENT "G"
NOTICE OF INTENTION TO:

1. Shut down or completions (Clearly state all pertinent details, and give pertinent dates, including estimated date of starting any proposed work). See Rule 3103.

 (1) Set CIBP @ 3180' and cap with 5 sxs.
 (2) Spot the following neat cement plugs: 1900'-2000' 20 sxs.; surface 10 sxs.
 (3) Erect P&A Marker, clear and level location.

THIS WELL WAS PLUGGED ON MAY 1, 1982.

18. I hereby certify that the information above is true and complete to the best of my knowledge and belief.

SIGNED ________________________________

Production Engineer

Title: Production Engineer

Date: June 15, 1982

ATTACHMENT "G"
12-1-72 - The following procedure was approved by OCC Office in Hobbs, N.M., before work was done: Cleaned out to 7226' - Straddle Tested from 6845-7010 and 6645-6845. No Oil or Gas recovered.

Spotted the following cement plugs:
40 sacks from 6600-6455; 40 sacks from 5600-5465; 40 sacks in bottom of 8 5/8" 4790-4655.

Pulled 8 5/8" casing from approximately 1020', set 50 sacks from 1050-950'; 50 sacks in bottom of 13 3/8" from 240-240; 10 sack plug in top of 13 3/8" casing.

Welded plat in top of 13 3/8" casing.

Erected dry hole marker.

Work completed 12-1-72.
STATE OF NEW MEXICO

OIL CONSERVATION DIVISION

P.O. Box 2088
Santa Fe, New Mexico 87504-2088

SUNNY NOTICES AND REPORTS ON WELLS

DO NOT USE THIS FORM FOR PROPOSALS TO DRILL OR TO DEEPEN OR PLUG BACK TO A DIFFERENT RESERVOIR. USE "APPLICATION FOR PERMIT" (FORM C-101) FOR SUCH PROPOSALS.

1. Type of Well:
 OIL WELL
 GAS WELL
 OTHER

2. Name of Operator:
 Tom Schneider

3. Address of Operator:
 505 N Big Spring St., Suite 204
 Energy So. Midland, TX

4. Well Location:
 Unit Letter: B
 Foot from the North: 1300
 Range: 3E
 Township: 17S
 Section: 27
 Range: 3E
 Township: 17S
 Section: 27
 County: Lea

5. Indicate Type of Lease
 STATE:
 FEE:

6. State Oil & Gas Lease No.
 V-1567

7. Lease Name or Unit Agreement Name
 Marathon State

8. Well No.
 Wildcat

9. Pool Name or Wildcat
 Wildcat

10. Elevation (Show whether DP, RKB, RT, CR, etc.)
 3856.8 G

11. Check Appropriate Box to Indicate Nature of Notice, Report, or Other Data

 PERFORMANCE OF REMEDIAL WORK
 PLUG AND ABANDON
 REMEDIAL WORK
 ALTERNATING Casing
 TEMPORARILY ABANDON
 CHANGE PLANS
 COMMENCE DRILLING OPNS.
 PLUG AND ABANDONMENT
 PULL OR ALTER CASING
 GAS TEST AND CEMENT JOB
 OTHER

12. Describe Proposed or Completed Operations (Clearly state all pertinent details and give pertinent dates including estimated date of starting any proposed work) SEE RULE 1103.

 6/25/90...Laid down rods and pump. Pumped 25 sx. of C cement at 5169 feet. Pulled up and HUC.

 6/26/90...Trip into hole with tubing and tagged plug at 4,936. Circulated hole and mixed mud. Pumped 25 sx. of C cement at 4,530. Cut and pulled 2,994 feet of 5 1/2" casing. Trip into hole, circulate and mix mud, pumped 40 sx. of C cement at 3,145 feet. SIFN.

 6/27/90...Trip into hole with tubing and tagged plug at 2,945 feet. Pulled to surface and set 10 sx. of C cement at Surface.

 Ray Smith with Commission witness all operations. Cementing by Triple "N" Services, Inc. Midland, Texas.

I hereby certify that the information above is true and correct to the best of my knowledge and belief.

THOMAS SCHNEIDER

TITLE: OPERATOR REPRESENTATIVE

DATE: 7/17/90

PHONE NUMBER: 915-682-631

ATTACHMENT "G"
Verbal approval received from Jerry Sexton for P & A procedure on 12-31-87.

1-1-88: RIH open-ended. Set Plug #1 from 12,353'-12,235' w/50 sxs Class "H" Neat, Set Plug #2 from 11,910'-11,777' w/50 sxs Class "H" Neat, Set Plug #3 from 10,270'-10,162' w/50 sxs Class "H", Set Plug #4 from 7100'-6992' w/50 sxs Class "H" Neat, Set Plug #5 from 5285'-5045' w/100 sxs Class "H" Neat, Set Plug #6 from 4525'-4387' w/50 sxs Class "H" Neat, Set Plug #7 from 2070'-1932' w/50 sxs Class "H" Neat, & Plug #8 from 30'-0' w/20 sxs Class "H" Neat.

1-2-88 ND BOPE & install dry-hole marker.
TECHNI-HIB™ 606 Corrosion Inhibitor

Product Information

Description

TECHNI-HIB 606 corrosion inhibitor is a water-soluble combination of a cationic filming corrosion inhibitor and sulfite-based oxygen scavenger.

Uses

TECHNI-HIB 606 corrosion inhibitor has been developed for use as a packer fluid inhibitor, hydrostatic test inhibitor and general purpose filming corrosion inhibitor for water injection systems, water disposal operations, power water pumping systems and high water/oil ratio producing oil wells where a small amount of oxygen is present.

Application

TECHNI-HIB 606 corrosion inhibitor can be injected continuously into a system at a rate of 60 to 120 ppm (1 to 2 quarts per 100 barrels of water). When used as a packer fluid inhibitor, 2500 to 5000 ppm (10 to 20 gallons per 100 barrels of water) is required. When used as a hydrostatic test fluid inhibitor, TECHNI-HIB 606 corrosion inhibitor injected at a rate of 500 to 3500 ppm is typically recommended dependent on conditions.

Technical Data

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Gravity @ 60°F</td>
<td>0.991 - 1.027</td>
</tr>
<tr>
<td>Pounds Per Gallon @ 60°F</td>
<td>8.26 - 8.58</td>
</tr>
<tr>
<td>Freeze Point</td>
<td>-5°F</td>
</tr>
<tr>
<td>Flash Point(TCC)</td>
<td>98°F</td>
</tr>
<tr>
<td>pH</td>
<td>6 - 6.5</td>
</tr>
<tr>
<td>Appearance</td>
<td>Dark Brown Liquid</td>
</tr>
</tbody>
</table>

SOLUBILITIES:
- Fresh Water: Soluble
- 2% Brine: Soluble
- 15% Brine: Soluble
- Crude Oil: Insoluble

Safety Precautions

WARNING! FLAMMABLE. Keep away from heat, sparks, and open flame. Keep container closed when not in use. Do not breathe vapors, use with adequate ventilation. Avoid contact with eyes, skin, and clothing.

References

TECHNI-HIB 606 corrosion inhibitor is available in 55-gallon drums and bulk quantities. Refer to Material Safety Data Sheet for additional information and first aid.

ATTACHMENT "H"

The above features and data are supplied solely for informational purposes and B&J Services Company makes no guarantee or warranty, either expressed or implied, with respect to their accuracy or use. All product warranties and guarantees shall be governed by the B&J Services Company standard at the time of sale or delivery of service. Actual product performance or availability depends on the timing and location of the job, the type of job and the particular characteristics of each job. This document is controlled by the reference date. To ensure that this is the current version, please reference the relevant section of the B&J Services Website (www.bjservices.com) or ask your B&J representative.

January 12, 2005
MATERIAL SAFETY DATA SHEET

Product Name: Techni-Hib 606

BJ CHEMICAL SERVICES
MATERIAL SAFETY DATA SHEET

Section: 01 PRODUCT IDENTIFICATION

BJ CHEMICAL SERVICES
707 N. LEECH
ROBB'S, NM 88241-1499
TELEPHONE: (505) 393-7751

Emergency Telephone: CHEMTREC (800) 424-9300
Previous Version Date: 5/20/03
Date Prepared: 10/30/03
Version: 0000009

Product Name: TECHNI-HIB 606
Trade Name: Filler Fluid Inhibitor
Chemical Description: Combination oxygen scavenger/corrosion inhibitor

Section: 02 HAZARDOUS INGREDIENTS

Component Name | CAS# | % Range
methanol | 000067-56-1 | < 15%
isopropanol | 000067-63-0 | < 10%
ammonium bisulfite | 010192-30-0 | < 10%

Section: 03 PHYSICAL DATA

Freezing Point: - 5 Deg.F.
Boiling Point, 760 mm Hg: approx. 200 Deg.F.
Specific Gravity (H(2)O = 1): 1.009
Appearance and Odor: Dark brown liquid; pungent odor.

Section: 04 FIRE AND EXPLOSION HAZARD DATA

Flash Point (Test Method): 98 Deg.F TCC
Extinguishing Media: CO2, dry chemical, water spray or fog, or foam. Use water to keep containers cool. Isolate "fuel" supply from fire. Contain fire fighting liquids for proper disposal.
Special Fire Fighting Procedures: Do not enter confined fire space without proper personal protective equipment including NIOSH approved self-contained breathing apparatus with full facepiece operated in the positive pressure demand mode. Do not inject a solid stream of water or foam into hot, burning pools; this may cause splattering and increase fire intensity. Evacuate personnel to a safe area. Keep unnecessary people away.

Unusual Fire and Explosion Hazards: This material may be volatile and readily gives off vapors that may travel along the ground or be moved by ventilation and ignited by pilot lights, other flames, sparks, heaters, arc light motors, static discharge, or other ignition sources at locations distant from material handling point. Never use welding or cutting torch on or near drum (even empty) because product (even just residues) can ignite explosively. Containers may explode from internal pressure if confined to fire. Keep containers cool. Keep unnecessary people away.

Section: 05 HEALTH HAZARD DATA

Effects of Overexposure: Eye Contact: causes moderate to severe conjunctival irritation, including burning sensation, tearing, redness or swelling, corneal injury and iritis. Corneal injury may be marked, extensive, and if not promptly treated, may possibly lead to permanent impairment of vision.
Skin Contact: causes local redness, swelling and chemical burns. May cause immediate skin irritation, blistering and/or dermatitis in some individuals. Prolonged or widespread exposure may result in the absorption of potentially harmful amounts of material.
Inhalation: vapors are irritating and may cause excessive tear formation, intoxication, burning sensation of the nose.

ATTACHMENT "H"
and throat, coughing, wheezing, shortness of breath, nausea, vomiting, headache, dizziness, narcosis, unconsciousness, cardiac depression or coma. May also cause symptoms of lack of oxygen leading to collapse and possible death. Extremely high vapor concentrations may cause lung damage. Some individuals may develop asthma. Repeated exposure may cause liver and kidney injury.

Ingestion: may cause blindness, narcosis, nausea, vomiting, throat and abdominal pain, acidosis, diarrhea, dizziness, weakness, thirst, collapse and possible coma or death. The nature and severity of these signs and symptoms will be dependent on the amount swallowed.

Additional Information: methanol is a component of this product. It can be highly toxic, even lethal, in inhalation exposures, but most of the literature on methanol poisoning deals with accidental or intentional ingestions. There are three stages of toxicity from acute exposures (either by inhalation or ingestion) to methanol: (1) a rapid narcotic effect involving drowsiness or fatigue with mild irritation of the eyes and mucous membranes, (2) a latent period of 10-15 hours, followed by (3) more severe CNS effects including nausea, vomiting, dizziness, headache, failing eyesight, visual disturbance, metabolic acidosis, and deep respiration. The last stage is thought to be due to the formation of toxic metabolite(s) of methanol. Permanent toxic effects can be produced from a single exposure. The effects include damage to both central and motor nerves and blindness due to damage to the optic nerve. Other symptoms to exposure to methanol include roaring in the ears, insomnia, rapid eye movements, tremor, dizziness, loss of coordination, dilated pupils, itching of the skin, skin irritation, and dermatitis caused by removal of skin oils. As little as 15mL can cause blindness and 30-250mL can be fatal.

Methanol can be absorbed through the skin in toxic amounts. Since it is eliminated slowly from the body, it can have cumulative toxic effects from daily exposures. Subacute ingestion of methanol has caused liver damage in laboratory animals. It has shown to be a teratogen and a fetotoxic in tests on laboratory animals. It has shown some genetic effects in laboratory tests.

Target Organs: eyes, skin, lungs, CNS, liver and kidneys.

Emergency and First Aid Procedures

SKIN
Wash with soap and water. Remove contaminated clothing and launder contaminated clothing before reuse. Get medical attention if redness or irritation develops.

EYES
Flush eyes immediately with large amounts of water for at least 15 minutes. Lift lower and upper lids occasionally. Get medical attention.

INHALATION
Remove victim to fresh air. Give artificial respiration if not breathing. If breathing is difficult, administer oxygen. Keep person warm, quiet and get medical attention.

INGESTION
Call a physician immediately. Give victim a glass of water. Do NOT induce vomiting unless instructed by a physician or poison control center. Never give anything by mouth to an unconscious person.

Section: 06 REACTIVITY DATA

Stable (Y=Yes/N=No): Y
Stability -- Conditions to Avoid
None known.

Incompatibility (Materials to Avoid)
Avoid contact with strong oxidizing agents, strong alkalies, and strong mineral acids.

Hazardous Decomposition Products
Smoke, carbon dioxide, carbon monoxide, oxides of nitrogen.

Hazardous Polymerization May Occur (Y=Yes/N=No): N
Hazardous Polymerization -- Conditions to Avoid
None

ATTACHMENT "H"
MATERIAL SAFETY DATA SHEET

Product Name: Techni-Hib 606

Section: 07 SPILL OR LEAK PROCEDURES

Steps to be Taken if Material is Released or Spilled
Eliminate sources of ignition. Persons not wearing suitable personal protective equipment should be excluded from area of spill until clean-up has been completed. Shut off source of spill if possible to do so without hazard. Prevent material from entering sewers or watercourses. Provide adequate ventilation. Contain spilled materials with sand or earth. Recover undamaged and minimally contaminated material for reuse or reclamation. Place all collected material and spill absorbents into DOT approved containers.
Advise authorities. If this product is an EPA hazardous substance (see Section 10), notify the U.S. EPA and/or the National Response Center. Additional notification pursuant to SARA Section 302/304 (40 CFR 355) may also be required.

Waste Disposal Method
Treatment, storage, transportation and disposal must be in accordance with EPA or State regulations under authority of the Resource Conservation and Recovery Act (40 CFR 260-271).
If product requires disposal, ignitability (D001) would be applicable.

Section: 08 SPECIAL PROTECTIVE INFORMATION

Respiratory Protection
If workplace exposure limit(s) of product or any component is exceeded, an NIOSH/MSHA approved air supplied respirator is advised in absence of proper environmental control. OSHA regulations also permit other NIOSH/MSHA respirators (negative pressure organic vapor type) under specified conditions. Engineering or administrative controls should be implemented to reduce exposure.

Ventilation
The use of mechanical dilution ventilation is recommended whenever this product is used in confined spaces, is heated above ambient temperatures or is agitated. When applicable, sufficient local ventilation should be provided to maintain employee exposures below safe working limits (TWA's).

Protective Gloves
Neoprene, nitrile, polyvinyl alcohol (PVA), polyvinyl chloride (PVC)

Eye Protection
Chemical splash goggles or face shield in compliance with OSHA regulations is advised; however, OSHA regulations also permits safety glasses under certain conditions. The use of contact lenses is not recommended.

Other Protective Equipment
Eye wash and safety shower

Section: 09 SPECIAL PRECAUTIONS

Precautions to be Taken in Handling and Storing
Avoid contact with eyes, skin or clothing. Avoid breathing vapors or mist. Keep away from heat, sparks, and open flames and never use a cutting torch on or near container (even empty) or explosion may result. Vapors may travel to areas away from the work site and ignite.

Other Precautions
Containers of this material may be hazardous when emptied. Since emptied containers retain product residues (vapor, liquid, and/or solid), all hazard precautions given in the data sheet must be observed. Do not transfer to improperly marked container. Do not use pressure to empty container. Do not heat, weld, or expose contents to flame or other sources of ignition. Keep container closed. Use with adequate ventilation. Wash thoroughly after handling. Containers should be grounded and bonded to receiving container(s) when being emptied. Containers should not be washed out and used for other purposes.

FOR INDUSTRIAL USE ONLY

Section: 10 REGULATORY INFORMATION

Superfund Amendments and Reauthorization Act of 1986 (SARA) Title III
Section 302/304—Extremely Hazardous Substances (40 CFR 355)

ATTACHMENT "H"
MATERIAL SAFETY DATA SHEET

Product Name: Techni-Hib 606

SARA requires emergency planning based on Threshold Planning Quantities (TPQs) and release reporting based on Reportable Quantities (RQs) in 40 CFR 355 (used for SARA 302, 304, 311 and 312). These values are subject to change and the regulations should be consulted to verify current statutory requirements.

Components present in this product at a level which could require reporting under the statute are:

Component Name	RQ	TPQ	% Range
NONE

Section 311/312 Chemical Inventory Reporting Requirements (40 CFR 370)
The Superfund Amendments and Reauthorization Act (SARA) may require submission of reports (chemical list, MSDS, Tier I & Tier II) to the State Emergency Response Commission, Local Emergency Response Committee and the local fire department. The SARA physical and health hazards related to this product are:

X Acute Health Hazard Sudden Release of Pressure X Fire
X Chronic Health Hazard Reactive

Section 313-List of Toxic Chemicals (40 CFR 372)
This product contains the following toxic chemicals subject to the reporting requirements of Section 313 of the Emergency Planning and Community Right-to-Know Act of 1986 (40 CFR 372). This information should be included in all MSDSs that are copied and distributed for this material.

Component Name	CAS #	% Range
methanol | 000067-56-1 | < 1%

CERCLA, 40 CFR 261 AND 302,
The Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) requires notification of the National Response Center 1-800-424-8802 of any release of a Hazardous Substances equal to or greater than the reportable quantities (RQs) listed in 40CFR 302.4. Values are given in pounds for the component and not the mixture, if applicable. (These values are subject to change and the regulations should be consulted to verify current statutory levels.)

Component Name	CAS #	CERCLA RQ
methanol | 000067-56-1 | 5000
ammonium bisulfite | 010192-30-0 | 3000

OSHA Exposure Limits

Component Name
methanol
TWA ppm: 200.0 TWA MG/M3: 260.0 STEL ppm: 250.0 STEL MG/M3: 325.0 Skin: X
isopropyl alcohol
TWA ppm: 400.0 TWA MG/M3: 980.0 STEL ppm: 500.0 STEL MG/M3: 1225.0

National Fire Protection Agency
2 Health
0 Reactive
Other

Department of Transportation Shipping Information
Proper Shipping Name: Flammable liquids, n.o.s.
Hazard Class: 3
Identification: UN1993
Packaging Group: PG III
Contains: methanol, isopropyl alcohol
Hazardous Substance RQ: 33333# Emergency Response Guide Number: 128
Labels: Flammable liquid

Toxic Substances Control Act (TSCA), 40 CFR 261
This product, or components if product is a mixture, is/are listed on the Toxic Substances Control Act (TSCA) inventory.

Section 10 information is to remain attached to the material safety data sheet for this product.

While BJ CHEMICAL SERVICES believes that the above data is correct, BJ CHEMICAL SERVICES expressly disclaims liability for any loss or injury arising out of the use of this information or the use of any materials designated.

END OF MSDS

ATTACHMENT "H"
State of New Mexico

OIL CONSERVATION DIVISION

P.O. Box 2088
Santa Fe, New Mexico 87504-2088

APPLICATION FOR PERMIT TO DRILL, DEEPEN, OR PLUG BACK

1. **Type of Work:**
 - [] DRILL
 - [] RE-ENTER
 - [] DEEPEN
 - [] PLUG BACK

2. **Type of Well:**
 - [] OIL WELL
 - [] GAS WELL
 - [] OTHER

3. **Name of Operator:**
 - Yates Petroleum Corporation

4. **Address of Operator:**
 - 105 South Fourth Street, Artesia, NM 88210

5. **Well Location:**
 - Unit Letter: [] 660
 - Feet From The North: 660
 - Line and: 560
 - Feet From The West: L

6. **Proposed Depth:**
 - 5500

7. **Formation:**
 - San Andres

8. **Rotary or C.T.:**
 - Rotary

9. **Kind & Status Plug, Bond Blanket:**
 - Undesignated

10. **Proposed casing and cement program:**

<table>
<thead>
<tr>
<th>Size of Hole</th>
<th>Size of Casing</th>
<th>Weight Per Foot</th>
<th>Setting Depth</th>
<th>Sacks of Cement</th>
<th>Est. Top</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 1/4"</td>
<td>8 5/8"</td>
<td>32# 3-55</td>
<td>250'</td>
<td>300 SX</td>
<td>Circulate</td>
</tr>
<tr>
<td>7 7/8"</td>
<td>5 5/8"</td>
<td>12 54 1-55</td>
<td>73</td>
<td>400 SX-AS</td>
<td>Warranted</td>
</tr>
</tbody>
</table>

MUD PROGRAM:
FW Gel/LCM to 350', Brine to TD

BOP PROGRAM:
BOP's will be installed on 8 5/8" casing and test daily for operational.

IN ABOVE SPACE DESCRIBE PROPOSED PROGRAM: If proposal is to deepen or plug back, give data on present productive zone and proposed new productive zone. Give blowout preventer program, if any.

I hereby certify that the information above is true and complete to the best of my knowledge and belief.

Signature:
Clifton R. May

Title:
Permit Agent

Date:
10-11-89

Telephone No.:
748-1471

OCT 12, 1989

ATTACHMENT "I"

(This space for State Use)

ORIGINAL SIGNED BY JERRY SEXTON

District I Supervisor

Title:

Date:

CONFIDENTIALITY NOTICE:

This document contains confidential information. The recipient is advised to keep this document confidential and not to disclose any information contained herein to any third party without the prior written consent of the sender.
State of New Mexico
Energy, Minerals and Natural Resources Dep't

OIL CONSERVATION DIVISION
P.O. Box 2088
Santa Fe, New Mexico 87504-2088

WELL LOCATION AND ACREAGE DEDICATION PLAT

All Distances must be from the outer-boundaries of the section

<table>
<thead>
<tr>
<th>Yates Petroleum Corporation</th>
<th>Siringo "ACE" State</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 North 17 South 36 East</td>
<td>Lea</td>
</tr>
</tbody>
</table>

Acad Footage Location of Well:

<table>
<thead>
<tr>
<th>North 660</th>
<th>West 660</th>
</tr>
</thead>
<tbody>
<tr>
<td>3830.6</td>
<td></td>
</tr>
</tbody>
</table>

1. Complete the section dedicated to the subject well by central point or hundred marks on the plan below.

2. If more than one lease is dedicated to the well, enter each and identify for each separately (both to working interest and royalty).

3. If complete, the lease of dedication is dedicated to the well, note the intention of all owners hereon.

4. Yes: No: If necessary, is "yes" type of dedication.

If necessary to "no" but the owner and have a record or which have entirely been consummated. (This unless side of this form necessary).

No dedication will be assigned to the well until all interests have been consummated (by communication, assignment, lease-purchase, or otherwise) or until a non-renewal unit, eliminating such interests, has been approved by the Division.

Operator Certification

I hereby certify that the well recurrence shown on this plat was plotted from field notes of actual surveys made by me or under my supervision, and that owner to be used and to the best of my knowledge and belief.

Signed:

Clifton R. May

Date:

10-11-89

Surveyor Certification

I hereby certify that the well recurrence shown on this plat was plotted from field notes of actual surveys made by me or under my supervision, and that owner to be used and to the best of my knowledge and belief.

Signed:

Date:

10/6/89

ATTACHMENT "I"
STATE OF NEW MEXICO
Energy, Minerals and Natural Resources Department

OIL CONSERVATION DIVISION
P.O. Box 2083
Santa Fe, New Mexico 87504-2088

SUNDAY NOTICES AND REPORTS ON WELLS
(Do not use this form for proposals to drill or to deepen or plug back to a
TWO: RESERVOIR. USE "APPLICATION FOR PERMIT"
(FORM C-101) FOR SUCH PROPOSALS.)

1. Type of Well:
 - OIL WELL
 - GAS WELL
 - OTHER

2. Name of Operator:
 YATES PETROLEUM CORPORATION

3. Address of Operator:
 145 South Fourth Street

4. Well Location:
 - Unit Letter: D
 - Feet From The North: 600
 - Line and 600 Feet From The East: Line
 - Section: 26
 - Township: 17 South
 - Range: 36 East
 - M.P.M.: Lea County

5. Indicate Type of Lease:
 - STATE:
 - FEE

6. State Oil & Gas Lease No.:
 1G-7270

7. Lease Name or Unit Agreement Name:
 SIRINGO "ACS" STATE

8. Well No.:
 1

9. Pool Name or Wildcat:
 SPENCER SAN ANDRES

11. Check Appropriate Box to Indicate Nature of Notice, Report, or Other Data:

 - PERFORM REMEDIAL WORK
 - PLUG AND ABANDON
 - REMEDIAL WORK
 - ALTERING CASING
 - TEMPORARILY ABANDON
 - CHANGE PLANS
 - COMMENCE DRILLING OPNS.
 - PLUG AND ABANDONMENT
 - PULL OR ALTER CASING
 - CASING TEST AND CEMENT JOB
 - OTHER:

12. Describe Proposed or Completed Operations (Clearly state all pertinent details, and give pertinent dates, including estimated date of starting any proposed work). SEE RULE 1103.

Yates Petroleum Corporation request permission to extend the cementing depth of the 8 5/8" casing from 336' to 2125'. The cement will be circulated to surface. Tim Russell with Yates discussed this with Paul Kortz of the OCD.

I hereby certify that the information above is true and complete to the best of my knowledge and belief.

Signature: ___________________________ Title: Permit Agent

Date: 10-23-89

TYPE OR PRINT NAME: Clifton E. May

TELEPHONE NO. (505) 748-1477

OCT 25 1989

ATTACHMENT "I"

Note: Notified Eddie Seay, OCD, Hobbs, NM, to witness surface casing, did not witness.
November 22, 1989

Yates Petroleum Corporation
105 South Fourth Street
Artesia, NM 88210

Re: Siringo ACS State #1
660' FNL & 660' FWL
Sec. 26, T17S, R36E
Lea County, New Mexico

Gentlemen:

The following is a Deviation Survey for the above captioned well.

<table>
<thead>
<tr>
<th>Depth</th>
<th>Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>465'</td>
<td>1/2°</td>
</tr>
<tr>
<td>970'</td>
<td>1/4°</td>
</tr>
<tr>
<td>1470'</td>
<td>1/2°</td>
</tr>
<tr>
<td>1939'</td>
<td>1/2°</td>
</tr>
<tr>
<td>2043'</td>
<td>3/4°</td>
</tr>
<tr>
<td>2655'</td>
<td>1/2°</td>
</tr>
<tr>
<td>3150'</td>
<td>1°</td>
</tr>
<tr>
<td>3650'</td>
<td>2°</td>
</tr>
<tr>
<td>4190'</td>
<td>1 1/2°</td>
</tr>
<tr>
<td>4456'</td>
<td>1 1/2°</td>
</tr>
<tr>
<td>4980'</td>
<td>1 1/4°</td>
</tr>
<tr>
<td>5450'</td>
<td>1 3/4°</td>
</tr>
</tbody>
</table>

Very truly yours,

B. N. Muncy Jr.
Secretary

STATE OF NEW MEXICO

COUNTY OF EDDY

The foregoing was acknowledged before me this 22nd day of November, 1989.

ATTACHMENT "I"
Sundry Notices and Reports on Wells

(Do not use this form for proposals to drill or to deepen or plug back to a different reservoir. Use *Application for Permit* (FORM C-101) for such proposals.)

<table>
<thead>
<tr>
<th>1. Type of Well:</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil Well</td>
<td>Gas Well</td>
<td>Other</td>
<td>P&A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Name of Operator</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yates Petroleum Corporation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Address of Operator</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>105 South 4th St., Artesia, NM 88210</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Well Location</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Letter</td>
<td>D : 660 Feet From The North Line and 660 Feet From The West Line</td>
</tr>
<tr>
<td>Section</td>
<td>26</td>
</tr>
<tr>
<td>Township</td>
<td>17S</td>
</tr>
<tr>
<td>Range</td>
<td>36E</td>
</tr>
<tr>
<td>NAPM</td>
<td></td>
</tr>
<tr>
<td>Lea County</td>
<td></td>
</tr>
<tr>
<td>Elev. Above Sea Level</td>
<td>3830.6' GR</td>
</tr>
</tbody>
</table>

Check Appropriate Box to Indicate Nature of Notice, Report, or Other Data

Notice of Intention To:

- Perform Remedial Work
- Temporarily Abandon
- Pull or Alter Casing
- Other:

Subsequent Report of:

- Plug and Abandon
- Change Plans
- Remedial Work
- Commence Drilling Ops.
- Casing Test and Cement Job
- Altering Casings
- Other:

12. Describe Proposed or Completed Operations (Clearly state all pertinent details, and give pertinent dates, including estimated date of starting any proposed work) SEE RULE 1103.

TD 5450. Reached TD 11-10-89.

Received verbal permission from Eddie Seay, NMOCF, Hobbs, NM, to plug well as follows:

- Plug #1 5350-5450' w/25 sx Class C Neat
- Plug #2 4514-4614' w/35 sx Class C Neat
- Plug #3 3253-3353' w/55 sx Class C Neat
- Plug #4 1933-2093' w/30 sx Class C Neat
- Plug #5 Surface-63' w/25 sx Class C Neat

Cement yield 1.32, weight 14.8. Last plug down at 3:45 AM 11-16-89. Installed dry hole marker. Released rig 4:00 AM 11-16-89.

I hereby certify that the information above is true and complete to the best of my knowledge and belief.

Signature: [Signature]

Title: Production Supervisor

Date: 11-21-89

Type or Print Name: Juanita Goodlett

Telephone No.: 505/748-14

OIL & GAS INDUSTRY ATTACHMENT "I"

Page 47 of 113
WRS COMPLETION REPORT

COMPLETIONS
SEC 26 TWP 17S RGE 36E
P1# 30-I-0011 12/08/89 30-025-30701-0000

<table>
<thead>
<tr>
<th>WELL</th>
<th>NAME</th>
<th>API</th>
<th>FORM VERT</th>
<th>DEPTH</th>
<th>DRILLER</th>
<th>SUB</th>
<th>LOCATION DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRX</td>
<td>LEA</td>
<td>660FN</td>
<td>660FW</td>
<td>NW NW</td>
<td>YATES P</td>
<td>3889 KB</td>
<td>3881 GR</td>
</tr>
</tbody>
</table>

API 30-025-30701-0000

5500 SN ANDRS ARTESIA FSHG TOOL 2 RIG SUB 7

TD 5450

Casing/Liner Data

<table>
<thead>
<tr>
<th>CSG</th>
<th>20</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSG</td>
<td>8 5/8</td>
<td>2043 W/ 1100 SACKS</td>
</tr>
<tr>
<td>CMT PLUGS</td>
<td>5350-5450 W/25 SX, 4514-4614 W/15 SX, 3253-3353 W/55 SX, 1933-2093 W/30 SX, SURF-63 W/25 SX</td>
<td></td>
</tr>
</tbody>
</table>

Formation Lth Top Depth/Sub Bse Depth/Sub

<table>
<thead>
<tr>
<th>LOG</th>
<th>RUSTLER</th>
<th>2052</th>
<th>1837</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOG</td>
<td>Yates</td>
<td>3353</td>
<td>536</td>
</tr>
<tr>
<td>LOG</td>
<td>Queen</td>
<td>4392</td>
<td>503</td>
</tr>
<tr>
<td>LOG</td>
<td>Grayburg</td>
<td>4614</td>
<td>-725</td>
</tr>
<tr>
<td>LOG</td>
<td>SN Andrs</td>
<td>5210</td>
<td>-1321</td>
</tr>
</tbody>
</table>

Subsea Measurements from KB

Formation Test Data

<table>
<thead>
<tr>
<th>DST</th>
<th>5298-5450 SN Andrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>REC</td>
<td>2914.0 FT O&G&MWC</td>
</tr>
<tr>
<td>REC</td>
<td>80.0 CC OIL 1340.0 CC FWTR</td>
</tr>
<tr>
<td>INIT OP</td>
<td>20M IFP 244 FFP 621 OP W/GD BLOW</td>
</tr>
<tr>
<td>FINAL OP</td>
<td>1H FIP 658 FFP 1402 GD BLOW</td>
</tr>
<tr>
<td>ISIP</td>
<td>1825 3H ISIP 1825 3H</td>
</tr>
<tr>
<td>SPL CHAM PRESS</td>
<td>FINAL 30</td>
</tr>
<tr>
<td>WS</td>
<td>33000 PPH CL</td>
</tr>
<tr>
<td>OP W/GD BLOW ON BTM OF BUCKET, INCR TO 2.5 PSI IN 10</td>
<td></td>
</tr>
</tbody>
</table>

Continued

Petroleum Information

ATTACHMENT "I"
YATES PET

SIRINGO "ACS" STATE

FORMATION TEST DATA

MINS
RE-OP W/GD BLOW, INCR TO 2.25 PSI IN 30 MINS
DST 2 - SN ANDRS MISRUN

DST 3 5054-5084 SN ANDRS
REC 150.0 FT FLUD 2600.0 CC FLUD
INIT OP 30M IFP 83 FFP 95 OP/4K BLOW
FINAL OP 1H IFP 95 FFP 95 WK BLOW
ISIP 95 1H 1HP 2808 FHP 2808
SPL CHAM PRESS FINAL 60
OP W/4K BLOW, DECR TO V-WK BLOW IN 30 MINS
RE-OP ON 2ND FLOW W/4K BLOW, DIED IN 5 MINS
RE-OP ON 3RD FLOW W/4K BLOW, DIED IN 5 MINS
OP 30 MINS SI 1 HR; OP 1 HR SI 3 HRS; OP 1 HR
IFP 82-95, 95-95, 95-95
ISIP 95, 95

DST 4 5269-5362 SN ANDRS S
REC 570.0 FT 06GCW 2100.0 CC 06GCW
REC .3 CFT GAS
INIT OP 30M IFP 69 FFP 120 OP/FAIR BLOW
FINAL OP 1H IFP 188 FFP 222 FAIR BLOW
ISIP 1436 1H FSIP 1604 2H 1HP 2819 FHP 2853
SPL CHAM PRESS FINAL 220
OP W/FAIR BLOW, INCR TO BTM OF BUCKET IX 8 MINS, INCR TO 13 OZ IN 30 MINS
RE-OP W/FAIR BLOW, INCR TO 7.25 OZ IN 1 HR
SPL REC 2100 CC 06GCDFLUD +.34 CFT GAS
DP REC 570 FT 06GCDFLUD
WS 115000 PPM CL @ TOP OF SPL

LOGS AND SURVEYS /INTERVAL, TYPE/

LOGS CNL FDK DLL
LOGS MSFL

DRILLING PROGRESS DETAILS

YATES PET

CONTINUED

ATTACHMENT "I"
YATES PET
STRINGO "ACS" STATE

DRILLING PROGRESS DETAILS

105 S 4TH ST
ARTESIA, NM 88210
505-746-1471

10/12
LOC/1989/

10/31
DRLG SURF

11/03
DRLG 2231

11/06
DRLG 2375

11/15
5450 TD, HOLDING FOR DATA

11/15
DEVIATION SURVEYS @ 465 (1/2 DEG), 470 (1/4 DEG), 1470 (1/2 DEG), 1439 (1/2 DEG), 2643 (3/4 DEG), 2655 (1/2 DEG), 3150 (1 DEG), 3650 (2 DEG), 4190 (4 1/2 DEG), 4456 (1 1/2 DEG), 4980 (1 1/4 DEG), 5450 (1 3/4 DEG)

TD REACHED 11/10/89 RIG REL 11/16/89

12/05
5450 TD

COMP 11/16/89, D&A

NO CORES, FOUR DSTS RPTD

ATTACHMENT "I"
June 06, 2022

ELIZABETH PICKEREL
LLANO DISPOSAL, LLC
125 W. ST. ANNE
HOBBSS, NM 88240

RE: SIRINGO ACS STATE #1

Enclosed are the results of analyses for samples received by the laboratory on 05/20/22 14:27.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-21-14. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accredited through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Total Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Cardinal Laboratories is accredited through the State of New Mexico Environment Department for:

Method SM 9223-B Total Coliform and E. coli (Colliert MMO-MUG)
Method EPA 524.2 Regulated VOCs and Total Trihalomethanes (TTHM)
Method EPA 552.2 Total Haloacetic Acids (HAA-5)

Accreditation applies to public drinking water matrices for State of Colorado and New Mexico.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

[Signature]

Celey D. Keene
Lab Director/Quality Manager
Analytical Results For:

LLANO DISPOSAL, LLC
125 W. ST. ANNE
HOBBS NM, 88240

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Laboratory ID</th>
<th>Matrix</th>
<th>Date Sampled</th>
<th>Date Received</th>
</tr>
</thead>
<tbody>
<tr>
<td>U - BAR BRINE</td>
<td>H222168-01</td>
<td>Water</td>
<td>20-May-22 06:32</td>
<td>20-May-22 14:27</td>
</tr>
<tr>
<td>U - BAR FRESH</td>
<td>H222168-02</td>
<td>Water</td>
<td>20-May-22 06:40</td>
<td>20-May-22 14:27</td>
</tr>
<tr>
<td>U - BAR MONITOR WELL</td>
<td>H222168-03</td>
<td>Water</td>
<td>20-May-22 06:42</td>
<td>20-May-22 14:27</td>
</tr>
</tbody>
</table>

Project: SIRINGO ACS STATE #1
Project Number: U BAR BRINE STATION D-26-17S
Project Manager: ELIZABETH PICKEREL
Fax To: NONE

Reported: 06-Jun-22 10:57

Cardinal Laboratories
*Accredited Analyte

Cardinal Laboratories

PLEASE NOTE: Liability and Damages. Cardinal’s liability and client’s exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence or any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene, Lab Director/Quality Manager
Analytical Results For:

LLANO DISPOSAL, LLC
125 W. ST. ANNE
HOBBS NM, 88240

Project: SIRINGO ACS STATE #1
Project Number: U BAR BRINE STATION D-26-17S-
Project Manager: ELIZABETH PICKEREL
Fax To: NONE

Reported: 06-Jun-22 10:57

U - BAR BRINE
H222168-01 (Water)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>MDL</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Dilution</th>
<th>Batch</th>
<th>Analyst</th>
<th>Analyzed</th>
<th>Method</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic Compounds</td>
<td></td>
</tr>
<tr>
<td>Chloride*</td>
<td>180000</td>
<td>4.00</td>
<td>mg/L</td>
<td>1</td>
<td>2051801</td>
<td>AC</td>
<td>23-May-22</td>
<td>4500-CI-B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH*</td>
<td>1.04</td>
<td>0.100</td>
<td>pH Units</td>
<td>1</td>
<td>2052039</td>
<td>GM</td>
<td>20-May-22</td>
<td>150.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature °C</td>
<td>20.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Gravity @ 60° F</td>
<td>1.194</td>
<td>0.000</td>
<td>(blank)</td>
<td>1</td>
<td>2052301</td>
<td>GM</td>
<td>23-May-22</td>
<td>SM 2710F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDS*</td>
<td>305000</td>
<td>5.00</td>
<td>mg/L</td>
<td>1</td>
<td>2051303</td>
<td>GM</td>
<td>24-May-22</td>
<td>160.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Green Analytical Laboratories

Total Recoverable Metals by ICP (E200.7)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>MDL</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Batch</th>
<th>Analyst</th>
<th>Analyzed</th>
<th>Method</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium*</td>
<td>107000</td>
<td>500</td>
<td>mg/L</td>
<td>500</td>
<td>B221383</td>
<td>AES</td>
<td>31-May-22</td>
<td>EPA200.7</td>
<td></td>
</tr>
</tbody>
</table>

Cardinal Laboratories

=Accredited Analyte

Celey D. Keene, Lab Director/Quality Manager
Analytical Results For:

LLANO DISPOSAL, LLC
125 W. ST. ANNE
HOBBS NM, 88240

Project: SIRINGO ACS STATE #1
Project Number: U BAR BRINE STATION D-26-17S
Project Manager: ELIZABETH PICKEREL
Fax To: NONE

U - BAR FRESH
H222168-02 (Water)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>MDL</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Dilution</th>
<th>Batch</th>
<th>Analyst</th>
<th>Analyzed</th>
<th>Method</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic Compounds</td>
<td></td>
</tr>
<tr>
<td>Chloride*</td>
<td>96.0</td>
<td>4.00</td>
<td>mg/L</td>
<td>1</td>
<td>2051801</td>
<td>AC</td>
<td>23-May-22</td>
<td>4500-CI-B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH*</td>
<td>7.65</td>
<td>0.100</td>
<td>pH Units</td>
<td>1</td>
<td>2052039</td>
<td>GM</td>
<td>20-May-22</td>
<td>150.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature °C</td>
<td>20.3</td>
<td></td>
<td>pH Units</td>
<td>1</td>
<td>2052039</td>
<td>GM</td>
<td>20-May-22</td>
<td>150.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Gravity @ 60° F</td>
<td>0.9991</td>
<td>0.000</td>
<td>[blank]</td>
<td>1</td>
<td>2052301</td>
<td>GM</td>
<td>23-May-22</td>
<td>SM 2710F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDS*</td>
<td>449</td>
<td>5.00</td>
<td>mg/L</td>
<td>1</td>
<td>2051303</td>
<td>GM</td>
<td>25-May-22</td>
<td>160.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cardinal Laboratories
=Accredited Analyte

PLEASE NOTE: Liability and Dammages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analysis. All claims, including those for negligence or any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of this service hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene, Lab Director/Quality Manager
Analytical Results For:

LLANO DISPOSAL, LLC
125 W. ST. ANNE
HOBBS NM, 88240

Project: SIRINGO ACS STATE #1
Project Number: U BAR BRINE STATION D-26-17S
Project Manager: ELIZABETH PICKEREL
Fax To: NONE

Reported: 06-Jun-22 10:57

U - BAR MONITOR WELL
H222168-03 (Water)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>MDL</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Dilution</th>
<th>Batch</th>
<th>Analyst</th>
<th>Analyzed</th>
<th>Method</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic Compounds</td>
<td></td>
</tr>
<tr>
<td>Chloride*</td>
<td>92.0</td>
<td>4.00</td>
<td>mg/L</td>
<td>1</td>
<td>2051801</td>
<td>AC</td>
<td>23-May-22</td>
<td>4500-Ci-B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH*</td>
<td>7.61</td>
<td>0.100</td>
<td>pH Units</td>
<td>1</td>
<td>2052039</td>
<td>GM</td>
<td>20-May-22</td>
<td>150.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature °C</td>
<td>20.3</td>
<td></td>
<td>pH Units</td>
<td>1</td>
<td>2052039</td>
<td>GM</td>
<td>20-May-22</td>
<td>150.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Gravity @ 60° F</td>
<td>0.9998</td>
<td>0.000</td>
<td>[blank]</td>
<td>1</td>
<td>2052301</td>
<td>GM</td>
<td>23-May-22</td>
<td>SM 2710F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDS*</td>
<td>429</td>
<td>5.00</td>
<td>mg/L</td>
<td>1</td>
<td>2051303</td>
<td>GM</td>
<td>25-May-22</td>
<td>160.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cardinal Laboratories

--

Cardinal Laboratories

* = Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client’s exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence or any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of this services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene, Lab Director/Quality Manager
Analytical Results For:

LLANO DISPOSAL, LLC
125 W. ST. ANNE
HOBBS NM, 88240
Project: SIRINGO ACS STATE #1
Project Number: U BAR BRINE STATION D-26-17S
Project Manager: ELIZABETH PICKEREL
Fax To: NONE
Reported: 06-Jun-22 10:57

Inorganic Compounds - Quality Control

Cardinal Laboratories

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source</th>
<th>Source Result</th>
<th>%REC Limits</th>
<th>RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch 2051303 - Filtration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (2051303-BL.K1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDS</td>
<td>ND</td>
<td>5.00</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (2051303-BS1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDS</td>
<td>492</td>
<td>500</td>
<td>mg/L</td>
<td>98.4</td>
<td>80-120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duplicate (2051303-DUP1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDS</td>
<td>1930</td>
<td>5.00</td>
<td>mg/L</td>
<td>1980</td>
<td>2.56</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Batch 2051801 - General Prep - Wet Chem</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (2051801-BL.K1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td>ND</td>
<td>4.00</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (2051801-BS1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td>104</td>
<td>4.00</td>
<td>mg/L</td>
<td>100</td>
<td>104</td>
<td>80-120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS Dup (2051801-BSD1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td>104</td>
<td>4.00</td>
<td>mg/L</td>
<td>100</td>
<td>104</td>
<td>80-120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duplicate (2051801-DUP1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td>3500</td>
<td>4.00</td>
<td>mg/L</td>
<td>3300</td>
<td>5.88</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix Spike (2051801-MS1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td>5800</td>
<td>4.00</td>
<td>mg/L</td>
<td>2500</td>
<td>3300</td>
<td>100</td>
<td>80-120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Batch 2052039 - General Prep - Wet Chem</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (2052039-BS1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>2.06</td>
<td>pH Units</td>
<td>2.00</td>
<td>103</td>
<td>90-110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cardinal Laboratories

Please Note: Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence or any other cause, whether in writing or otherwise, made by Cardinal shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of this services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene, Lab Director/Quality Manager
Analytical Results For:

LLANO DISPOSAL, LLC
125 W. ST. ANNE
HOBBS NM, 88240

Project: SIRINGO ACS STATE #1
Project Number: U BAR BRINE STATION D-26-17S-
Project Manager: ELIZABETH PICKEREL
Fax To: NONE
Reported: 06-Jun-22 10:57

Inorganic Compounds - Quality Control

Cardinal Laboratories

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Reporting Limit</th>
<th>Spike Units</th>
<th>Source</th>
<th>%REC Limits</th>
<th>RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>1.06</td>
<td>0.100 pH Units</td>
<td>1.04</td>
<td></td>
<td>1.90</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Temperature °C</td>
<td>20.1</td>
<td>pH Units</td>
<td>20.0</td>
<td></td>
<td>0.499</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

Batch 2052039 - General Prep - Wet Chem

Duplicate (2052039-DUP1)
Source: H222168-01
Prepared & Analyzed: 20-May-22

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Reporting Limit</th>
<th>Spike Units</th>
<th>Source</th>
<th>%REC Limits</th>
<th>RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>1.06</td>
<td>0.100 pH Units</td>
<td>1.04</td>
<td></td>
<td>1.90</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Temperature °C</td>
<td>20.1</td>
<td>pH Units</td>
<td>20.0</td>
<td></td>
<td>0.499</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

Batch 2052301 - General Prep - Wet Chem

Duplicate (2052301-DUP1)
Source: H222168-01
Prepared & Analyzed: 23-May-22

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Reporting Limit</th>
<th>Spike Units</th>
<th>Source</th>
<th>%REC Limits</th>
<th>RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Gravity @ 60° F</td>
<td>1.199</td>
<td>0.000 [blank]</td>
<td>1.194</td>
<td></td>
<td>0.392</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Cardinal Laboratories

PLEASE NOTE: Liability and Damages. Cardinal’s liability and client’s exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence or any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of this services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene, Lab Director/Quality Manager

* = Accredited Analyte
Analytical Results For:

LLANO DISPOSAL, LLC
125 W. ST. ANNE
HOBBS NM, 88240

Project: SIRINGO ACS STATE #1
Project Number: U BAR BRINE STATION D-26-17S-
Project Manager: ELIZABETH PICKEREL
Fax To: NONE

Reported: 06-Jun-22 10:57

Total Recoverable Metals by ICP (E200.7) - Quality Control

Green Analytical Laboratories

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>%REC Limits</th>
<th>RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch B221383 - Total Recoverable by ICP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (B221383-BL1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Prepared: 26-May-22 Analyzed: 31-May-22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>ND</td>
<td>1.00</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (B221383-BS1)</td>
<td>1.72</td>
<td>1.00</td>
<td>mg/L</td>
<td>1.62</td>
<td>106</td>
<td>85-115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS Dup (B221383-BSD1)</td>
<td>1.64</td>
<td>1.00</td>
<td>mg/L</td>
<td>1.62</td>
<td>101</td>
<td>85-115</td>
<td>4.92</td>
<td>20</td>
</tr>
</tbody>
</table>

Cardinal Laboratories

*Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal’s liability and client’s exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence or any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereinfor by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene, Lab Director/Quality Manager

Page 8 of 10
Notes and Definitions

ND: Analyte NOT DETECTED at or above the reporting limit

RPD: Relative Percent Difference

**: Samples not received at proper temperature of 6°C or below.

**: Insufficient time to reach temperature.

- Chloride by SM4500CI-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report
Location of Facilities:
Both the Siringo ACS State Brine Well #1 and the Siringo Brine Station are located approximately 8.6 miles south of Lovington, New Mexico via SH 483 (Arkansas Jct) then east on dirt roads. See attached map.

<table>
<thead>
<tr>
<th>Facility</th>
<th>Latitude</th>
<th>Longitude</th>
<th>UL, S, T, N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siringo ACS State #1</td>
<td>32.811503°</td>
<td>-103.331634°</td>
<td>D-26-17S-36E</td>
</tr>
<tr>
<td>Siringo Brine Station</td>
<td>32.798816°</td>
<td>-103.347123°</td>
<td>M-27-17S-36E</td>
</tr>
</tbody>
</table>

Emergency Response Agencies

<table>
<thead>
<tr>
<th>Agency</th>
<th>Emergency</th>
<th>Direct Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lovington Fire and EMS</td>
<td>911</td>
<td>575-396-2359</td>
</tr>
<tr>
<td>Hobbs Fire and EMS</td>
<td>911</td>
<td>575-397-9308</td>
</tr>
<tr>
<td>Lea County Sheriff's Dept</td>
<td>911</td>
<td>575-396-3611</td>
</tr>
<tr>
<td>New Mexico State Police</td>
<td>911</td>
<td>575-382-5588</td>
</tr>
</tbody>
</table>

Llano Responder

<table>
<thead>
<tr>
<th>Name</th>
<th>Cell Phone</th>
<th>Home Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marvin Burrows - Fac. Operator</td>
<td>575-631-8067</td>
<td>575-392-4384</td>
</tr>
<tr>
<td>Darr Angell - Owner</td>
<td>575-704-2777</td>
<td>575-396-4418</td>
</tr>
</tbody>
</table>

Reporting Agencies

<table>
<thead>
<tr>
<th>Agency</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMOCD – Santa Fe</td>
<td>505-476-3440</td>
</tr>
<tr>
<td>NMOCD – Hobbs (Emergency Cell)</td>
<td>575-370-3186</td>
</tr>
<tr>
<td>National Response Center</td>
<td>800-424-8802</td>
</tr>
<tr>
<td>EPA Region 6 Emergency Response</td>
<td>214-665-6428</td>
</tr>
<tr>
<td>Chemtrec</td>
<td>800-424-9300</td>
</tr>
</tbody>
</table>

Materials Stored or Transferred Onsite

<table>
<thead>
<tr>
<th>Description</th>
<th>Location of Anticipated Leaks/Spills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh and brine water (Non-hazardous)</td>
<td>Brine station inside secondary containment, concrete loading pad, pipelines, and at brine well</td>
</tr>
<tr>
<td>Corrosion Chemical (Combustible, Oxidizer)</td>
<td>At poly storage tank on brine well location</td>
</tr>
<tr>
<td>Contaminated Soil (Non-hazardous)</td>
<td>Sealed drums at brine station</td>
</tr>
<tr>
<td>Trash (Non-hazardous)</td>
<td>Trash bins at brine station</td>
</tr>
</tbody>
</table>

Leak/Spill Prevention Actions

- Brine water storage tanks have a synthetic liner secondary containment and level controls
- Corrosion chemical tank has a poly secondary containment
- Concrete loading pad has curbs and an automated concrete sump
- Buried brine polyethylene pipeline will be pressure tested annually to insure mechanical integrity

Containment and Clean up Actions

1) Incidental drips, leaks and spills will be picked up routinely and placed back into the system or in waste containers by the facility operator.
2) Releases of more than 5 bbls of brine water or 1 bbl of chemical or 1 bbl of waste outside secondary containment will be handled per the Emergency Procedures/Notification listed below.

Emergency Procedures and Notification

1) Assess the situation (if it is safe to do so) and notify Llano Supervisor for assistance and additional personnel, if needed. Stop the leak/spill as directed by the Llano Supervisor (if it is safe to do so).
2) Notify one of the Emergency Response Agencies noted above if there is a life threatening situation.
3) Provide assistance to Emergency Responders and/or Llano Supervisor.
4) Barricade any spill area to protect the public, if necessary and if it is safe to do so.
5) Llano Supervisor will direct all available resources to stop, contain and mitigate the emergency situation.
6) Llano Supervisor will notify NMOCD District Office by phone and subsequent form C-141 for brine spills <25 bbls or chemical spills <1 bbl.
7) Llano Supervisor will verbally notify NMOCD Director (Santa Fe) for brine spill >25 bbls or chemical spills >1 bbl.
Siringo ACS State #1

Siringo Brine Station

SH 483 (Arkansas Jct)

Hwy 50 (Buckeye Rd)

US Hwy 62

Attachment K

Posted Date - ____________________________
Siringo ACS State # 1
API # 30-025-30701
Discharge Plan Attachments

Attachment L—Brine Station Schematic

Drawing not to scale
Siringo ACS State #1
API # 30-025-30701
Discharge Plan

Attachment L - Well Location Schematic

Siringo ACS State #1 Wellhead

Fresh Water Injection Line (Buried)

Chemical tank with secondary containment

Triplex Injection Pump with Motor

500 BBL Steel Tank Fresh Water

Pipeline to Brine Station (Buried)

Fresh Water Line from Water Well (Buried)

Drawing Not to Scale
PROPOSED WELLBORE
Configured for Brine Well
Llano Disposal, LLC
Siringo ACS State #1
API # 30-025-30701
660' FNL x 660' FWL, UL 'D', Sec 26, T17S, R36E, Lea County, NM

Surface Fill 0 - 40'
Red Beds / Anhydrite 40' - 1040'
Red Beds / Anhydrite / Salt 1040' - 1330'
Red Beds / Anhydrite 1330' - 1547'
Anhydrite 1547' - 2043'
Anhdydrite / Salt 2043' - 2600'
Salt 2600' - 3034'
Salt / Anhydrite 3034' - 3500'
Anhydrite / Dolomite 3500' - 3651'
Anhydrite / Dolomite / Shale 3651' - 3890'
Dolomite / Shale 3890' - 4100'

3-1/2" Injection Tubing
20" Casing set @ 40'
Groundwater 50' - 70'
8-5/8" Casing set @ 2043'
TLA 3100'
7-7/8" OH
55 sks Plug 3253' - 3353'
T Yates 3353'
35 sks Plug 4514' - 4614'
25 sks Plug 5350' - 5450'
T Gbg 4514'
TD 5450'

Attachment L
Drawing Not to Scale
Siringo ACS State #1
API # 30-025-30701
Discharge Plan Attachments

Attachment M – Area Geology

Siringo ACS State #1

BROADHEAD and SPEER
<table>
<thead>
<tr>
<th>Monument Design</th>
<th>Monument Installation Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLEEVED ROD MONUMENT WITH FLOATING SLEEVE</td>
<td>A 12 inch (300 mm) hole is augered to a depth of about 3 1/2 feet (1050 mm).</td>
</tr>
<tr>
<td></td>
<td>The rod monument is driven into the ground, a section at a time, to refusal. The top of the last rod should be about 6 inches (150 mm) below the surface. *See page 15</td>
</tr>
<tr>
<td></td>
<td>The finned sleeve (filled with grease) is placed over the rod and the datum point added (or filed onto the rod end).</td>
</tr>
<tr>
<td></td>
<td>A 6 inch (150 mm) diameter PVC pipe 3 feet (315 mm) long, with access cover glued on, is placed over the finned sleeve (pipe should not touch the fins). Back-fill (INSIDE the PVC Pipe) with sand.</td>
</tr>
<tr>
<td></td>
<td>The hole and pipe are carefully back-filled with sand. The top 12 inches (300 mm) of the hole (OUTSIDE of the PVC Pipe) are back-filled with concrete.</td>
</tr>
<tr>
<td></td>
<td>The finished mark - a well protected first-order benchmark.</td>
</tr>
</tbody>
</table>
Public Notice

Legal notification for 2' X 3' (min) signage per Water Quality Control Commission Regulations 20.6.2.3108.B.1 NMAC

Llano Disposal, LLC, 763 highway 483, Lovington, NM 88260, Mr. Darr Angell has filed an application with the New Mexico Oil Conservation Division (OCD) to install and operate a Class III brine well and brine station.

The new brine station will be located approximately 900 feet east of this sign. A detailed description and map of the proposed facilities are hereby attached below.

Brine wells are wells completed into salt formations for the purpose of solution mining the salt to create brine water. Fresh water is pumped into deep salt zones thereby producing concentrated salt water called “brine water”. This brine water is used in the oilfield primarily for drilling and completion operations. It is anticipated that brine water will be produced at a rate of less than 1900 barrels per day with a total dissolved concentration of 320,000 mg/l (primarily NaCl). Groundwater in this area is present at depths of approximately 40 – 80 feet. The concentration of total dissolved solids in this groundwater is generally about 400 mg/l. The permit requires that the brine well and associated operations must be constructed and operated in a matter that will not adversely affect groundwater quality.

The New Mexico Oil Conservation Division (OCD) will accept comments and statements of interest regarding this application and will create a facility-specific mailing list for persons who wish to receive future notices. Interested persons may contact:

Environmental Bureau Chief
Oil Conservation Division (OCD)
1220 South Saint Francis Drive
Santa Fe, New Mexico 87505
Telephone: 505-476-3440
Laminated Attachments (8-1/2" x 11" ea) Posted to Bottom of Sign

Page 1 of Detailed Notification

Liano Disposal, LLC (Ali: Day/Agency): 7839 Highway 483, Laxton, GA 31754 has submitted an application to the Georgia Department of Environmental Protection for approval of a Class V deep well injection facility located in the City of Laxton, Dougherty County, in Dougherty County. The DWR&RC has concluded that the application is complete and is qualified for review.

The application proposes to produce fresh water from an existing water source located in Dougherty County and transport it to the proposed deep well injection facility via a new pipeline. The fresh water will be transported via a new pipeline to the injection well, which is located approximately 3.5 miles from Laxton. The well will inject fresh water into the aquifer at a rate of approximately 450 gpm. The well will have a maximum capacity of 700 gpm and will operate at a pressure of 500 psi.

The proposed well would be constructed in accordance with the Georgia Water Quality Control Act (GWQCA) regulations. The well will be equipped with a well screen, a gravel pack, and a production casing. The well will be tested for integrity and operated in accordance with the GWQCA regulations.

The proposed well would have a maximum capacity of 700 gpm and would operate at a pressure of 500 psi. The well will be tested for integrity and operated in accordance with the GWQCA regulations.

Page 2 of Detailed Notification

Liano Disposal, LLC: 7839 Highway 483, Laxton, GA 31754 has submitted an application to the Georgia Department of Environmental Protection for approval of a Class V deep well injection facility located in the City of Laxton, Dougherty County, in Dougherty County. The DWR&RC has concluded that the application is complete and is qualified for review.

The application proposes to produce fresh water from an existing water source located in Dougherty County and transport it to the proposed deep well injection facility via a new pipeline. The fresh water will be transported via a new pipeline to the injection well, which is located approximately 3.5 miles from Laxton. The well will inject fresh water into the aquifer at a rate of approximately 450 gpm. The well will have a maximum capacity of 700 gpm and will operate at a pressure of 500 psi.

The proposed well would be constructed in accordance with the Georgia Water Quality Control Act (GWQCA) regulations. The well will be equipped with a well screen, a gravel pack, and a production casing. The well will be tested for integrity and operated in accordance with the GWQCA regulations.

The well will have a maximum capacity of 700 gpm and will operate at a pressure of 500 psi. The well will be tested for integrity and operated in accordance with the GWQCA regulations.

Map of Area of Review

Siringo State BW and Facility

The proposed deep well injection facility would have a capacity of 700 gpm and would operate at a pressure of 500 psi. The well will be tested for integrity and operated in accordance with the GWQCA regulations.

The well will have a maximum capacity of 700 gpm and will operate at a pressure of 500 psi. The well will be tested for integrity and operated in accordance with the GWQCA regulations.

Environmental Review

Environmental Review

The proposed deep well injection facility would have a capacity of 700 gpm and would operate at a pressure of 500 psi. The well will be tested for integrity and operated in accordance with the GWQCA regulations.

The well will have a maximum capacity of 700 gpm and will operate at a pressure of 500 psi. The well will be tested for integrity and operated in accordance with the GWQCA regulations.

The proposed deep well injection facility would have a capacity of 700 gpm and would operate at a pressure of 500 psi. The well will be tested for integrity and operated in accordance with the GWQCA regulations.

The well will have a maximum capacity of 700 gpm and will operate at a pressure of 500 psi. The well will be tested for integrity and operated in accordance with the GWQCA regulations.

The proposed deep well injection facility would have a capacity of 700 gpm and would operate at a pressure of 500 psi. The well will be tested for integrity and operated in accordance with the GWQCA regulations.

The well will have a maximum capacity of 700 gpm and will operate at a pressure of 500 psi. The well will be tested for integrity and operated in accordance with the GWQCA regulations.

The proposed deep well injection facility would have a capacity of 700 gpm and would operate at a pressure of 500 psi. The well will be tested for integrity and operated in accordance with the GWQCA regulations.

The well will have a maximum capacity of 700 gpm and will operate at a pressure of 500 psi. The well will be tested for integrity and operated in accordance with the GWQCA regulations.

The proposed deep well injection facility would have a capacity of 700 gpm and would operate at a pressure of 500 psi. The well will be tested for integrity and operated in accordance with the GWQCA regulations.

The well will have a maximum capacity of 700 gpm and will operate at a pressure of 500 psi. The well will be tested for integrity and operated in accordance with the GWQCA regulations.

The proposed deep well injection facility would have a capacity of 700 gpm and would operate at a pressure of 500 psi. The well will be tested for integrity and operated in accordance with the GWQCA regulations.

The well will have a maximum capacity of 700 gpm and will operate at a pressure of 500 psi. The well will be tested for integrity and operated in accordance with the GWQCA regulations.
Notificación Aviso

Notificación legal de 2' X 3' (min) señalización por Reglamento de Comisión de Control de Calidad de Agua
20.6.2.3108.B.1 NMAC

Llano Disposal, LLC, 783 Highway 483, Lovington, NM 88260, Sr. Darr Angell ha presentado una solicitud con el División de Conservación de Petróleo de Nuevo México para instalar y operar así una salmuera de clase III y estación de la salmuera.

La nueva estación de salmuera será situados aproximadamente 900 pies al este de este signo. Una descripción detallada y un mapa de las instalaciones propuestas por este medio se unen por debajo.

Pozos de salmuera son pozos completados en formaciones de sal con el propósito de la solución de minería de la sal para crear agua de la salmuera. Agua dulce es bombeado en zonas profundas sal tal modo produciendo concentrado agua salada llamado "agua de la salmuera". Esta agua de la salmuera se utiliza en el campo petrolífero principalmente para operaciones de perforación y terminación. Se prevé que se producirán salmuera agua a una velocidad de menos de 1900 barriles por día con una concentración disuelta total de 320.000 mg/l (principalmente NaCl). Agua subterránea en esta área está presente en aproximadamente 40 a 80 pies de profundidad. La concentración de sólidos totales disueltos en esta agua subterránea es generalmente cerca de 400 mg/l. El permiso requiere que la salmuera bien y asociados las operaciones deben ser construidas y operadas en un asunto que no afectará negativamente la calidad de las aguas subterráneas.

El División de Conservación de Petróleo de Nuevo México se aceptan comentarios y declaraciones de interés respecto a esta aplicación y creará una lista de correo de instalaciones específicas para las personas que deseen recibir futuras notificaciones. Las personas interesadas podrán en contacto con:

Jefe de la Oficina Ambiental
División de Conservación de Petróleo de Nuevo México
1220 South Saint Francis Drive
Santa Fe, New México 87505
Teléfono: 505-476-3440
Laminado los archivos adjuntos (8-1/2 "x 11") publicado a parte inferior de la señal

Página 1 de notificación detallada

UJua Diopstral, L.L.C. (Sr. Dave Angel, 7904 hwy 490, LaVergne, TN 37086) ha presentado una solicitud para el Distrito de Conservación de Petróleo de Louisiana (Louisiana Oil and Gas Commission) para la instalación y operación de una nueva cantera de asfalto en la localidad de Pointe Coupee. La cantera se localiza aproximadamente 2.5 millas al noreste de LaVergne, Louisiana, y 1.1 millas al este del río Mississippi, en la zona básica de la cantera que se encuentra en la sección 27, municipio de 17 sur, paraje 34 Chouteau FL 72.919409, Lon. -101.399733.

La cantera de asfalto se localiza en un área de tierra elevada a una altura de 50 metros por encima del nivel del suelo. No hay presencia de agua subterránea en la corteza superior a una profundidad de 25 metros. La cantera se encuentra en una zona libre de accidentes y riesgos naturales. El terreno es estable y no presenta problemas de geología subterránea.

El plan de relojamento prevé la instalación de una cubierta protex para proteger la cantera de las precipitaciones. La cubierta está prevista para ser instalada antes de la temporada de lluvias para evitar daños en la cantera. La ubicación de la cantera se encuentra en una zona libre de actividades industriales o agrícolas que puedan causar contaminación del suelo o del agua subterránea.

La cantera se ha diseñado para minimizar el impacto ambiental, con medidas de protección contra los fenómenos naturales y las actividades humanas que puedan afectar la calidad del agua y el suelo. El plan de relojamento prevé la instalación de una cubierta protex para proteger la cantera de las precipitaciones. La ubicación de la cantera se encuentra en una zona libre de actividades industriales o agrícolas que puedan causar contaminación del suelo o del agua subterránea.

Ha sido revisado por expertos en el campo de la conservación del medio ambiente y se han tomado medidas para asegurar que la cantera se mantenga en buenas condiciones y que no se produzcan daños en el ambiente.

Página 2 de notificación detallada

La cantera de asfalto se encuentra en una zona libre de accidentes y riesgos naturales. El terreno es estable y no presenta problemas de geología subterránea. El terreno se encuentra en una zona libre de actividades industriales o agrícolas que puedan causar contaminación del suelo o del agua subterránea.

La cantera se ha diseñado para minimizar el impacto ambiental, con medidas de protección contra los fenómenos naturales y las actividades humanas que puedan afectar la calidad del agua y el suelo. El plan de relojamento prevé la instalación de una cubierta protex para proteger la cantera de las precipitaciones. La ubicación de la cantera se encuentra en una zona libre de actividades industriales o agrícolas que puedan causar contaminación del suelo o del agua subterránea.

Ha sido revisado por expertos en el campo de la conservación del medio ambiente y se han tomado medidas para asegurar que la cantera se mantenga en buenas condiciones y que no se produzcan daños en el ambiente.

Mapa del área de revisión

Siringo State BW and Facility

Llano Diopstral, L.L.C.
722 Highway 492
LaVergne, TN 37086

Comentarios y consultas sobre la solicitud pueden ser dirigidas a Siringo State BW and Facility.

La División de Conservación de Petróleo de Nueve Llanuras se encarga de revisar las solicitudes de actividades que puedan afectar el ambiente y las actividades humanas en la zona. La División tiene la capacidad de tomar decisiones de intercambio con otras agencias y autoridades, en coordinación con la Comisión de Conservación de Petróleo de Nueve Llanuras.

La División de Conservación de Petróleo de Nueve Llanuras se encarga de revisar las solicitudes de actividades que puedan afectar el ambiente y las actividades humanas en la zona. La División tiene la capacidad de tomar decisiones de intercambio con otras agencias y autoridades, en coordinación con la Comisión de Conservación de Petróleo de Nueve Llanuras.

Jefe de la División de Conservación de Petróleo de Nueve Llanuras
1220 South St. Francis Drive
Santa Fe, NM 87505
Teléfono: 505-416-7400

La División de Conservación de Petróleo de Nueve Llanuras se encarga de revisar las solicitudes de actividades que puedan afectar el ambiente y las actividades humanas en la zona. La División tiene la capacidad de tomar decisiones de intercambio con otras agencias y autoridades, en coordinación con la Comisión de Conservación de Petróleo de Nueve Llanuras.

La División de Conservación de Petróleo de Nueve Llanuras se encarga de revisar las solicitudes de actividades que puedan afectar el ambiente y las actividades humanas en la zona. La División tiene la capacidad de tomar decisiones de intercambio con otras agencias y autoridades, en coordinación con la Comisión de Conservación de Petróleo de Nueve Llanuras.

La División de Conservación de Petróleo de Nueve Llanuras se encarga de revisar las solicitudes de actividades que puedan afectar el ambiente y las actividades humanas en la zona. La División tiene la capacidad de tomar decisiones de intercambio con otras agencias y autoridades, en coordinación con la Comisión de Conservación de Petróleo de Nueve Llanuras.

La División de Conservación de Petróleo de Nueve Llanuras se encarga de revisar las solicitudes de actividades que puedan afectar el ambiente y las actividades humanas en la zona. La División tiene la capacidad de tomar decisiones de intercambio con otras agencias y autoridades, en coordinación con la Comisión de Conservación de Petróleo de Nueve Llanuras.
Siringo ACS State #1
API #30-025-30701
Discharge Plan Attachments - Attachment R

Public Notice

Legal notification for offsite Public Notice per Water Quality Control Commission Regulations 20.6.2.3108.B.1 NMAC

Llano Disposal, L.L.C. (Mr. Darr Angell), 783 Highway 483, Lovington, NM 88260 has submitted an application to the New Mexico Oil Conservation Division (NMOCD) for installation and operation of a Class III brine well to be located in Unit Letter D of Section 26, Township 17 South, Range 36 East (Lat. 32.8115005°, Long. -103.3317795°), Lea County, New Mexico. The brine injection well is located approximately 8.3 miles south of Lovington, New Mexico or 1.1 miles east of the intersection of State Hwy 483 (Arkansas Jct.) and County Road 50 (Buckeye Rd).

The application proposes to produce fresh water from an existing water source well located in Unit Letter J of Section 27, Township 17 South, Range 36 East (Lat. 32.804305°, Long. -103.338230°), Lea County, New Mexico. This fresh water would be transported via a buried polyethylene pipeline approximately 3250 feet northeast to a 500 barrel steel water tank located at the brine well location detailed above. From time to time when brine is needed, the fresh water in this tank would be pumped down the tubing within the proposed brine well casing to an approximate depth of 2043 feet to 3253 feet below ground level at a rate of approximately 40 - 120 GPM and a normal operating pressure of 200 to 250 psi. The maximum allowable surface injection pressure would be 410 psig. Dissolution brine water (NaCl) would then be produced up the well casing backed by cement to surface. This “normal flow” routine fluid flow process is required by the NMOCD to maintain proper salt cavern configuration and development over the operational life of the brine well.

The produced brine water would be metered then transported via a second buried polyethylene pipeline approximately 6600 feet southwest to six, 500 barrel fiberglass storage tanks at the proposed Siringo Brine Station located in Unit Letter M of Section 27, Township 17 South, Range 36 East (Lat. 32.798816°, Long. -103.347123°), Lea County, New Mexico. This brine station is located approximately 9.3 miles south of Lovington, New Mexico or 1 mile south-south-east of the intersection of State Hwy 483 (Arkansas Jct.) and County Road 50 (Buckeye Rd) and ¼ mile east of SH 483. The brine water would be transferred/sold by delivery into water trucks on a concrete loading pad with containment curbing and a sump to prevent spills. There would be a synthetic liner and secondary containment underneath the brine storage tanks. All of the above listed infrastructure is located on private land owned by the applicant.

Brine water is used in the oil and gas industry to supply concentrated salt water (i.e., brine water) with a total dissolved concentration of approximately 320,000 mg/l and a density that is 20% higher than fresh water. Typical brine water is 10 pounds per gallon (ppg) with the increased weight due to dissolved NaCl. Heavy brine water is essential in preventing blow-outs in high pressure gas wells and prevents loss of circulation when drilling through salt zones typically found in southeastern New Mexico.

The brine well will be designed to produce approximately 13 million barrels of brine water over a 20 year life period. The anticipated cavern radius will not exceed 150 feet. The well has been located on private land and provides a minimum of 2000 feet separation from any significant features, such as houses, roads, utilities, pipelines, water supplies, buildings, schools, businesses, etc.
Groundwater possibly affected by an unintentional spill or leak is located at a depth of approximately 40–80 feet below ground level. Typical groundwater in this area has a total dissolved solids concentration of approximately 400 mg/l. According to the Office of the State Engineer, average water well depths in the area are 107 feet below ground level. The brine facility will be designed and permitted to have no intentional water contaminants discharged to the surface or subsurface for the protection of groundwater. The brine station will have a concrete loading pad for trucks and will have a synthetic liner underneath tanks areas to prevent any spills or leaks from reaching the ground surface. The brine well will have cemented casing and tubing strings to protect groundwater.

The owner and operator of the proposed facility will be:

Llano Disposal, LLC
783 Highway 483
Lovingston, NM 88260

Comments and inquiries about the application may be directed to Llano Disposal, LLC c/o Mr. Marvin Burrows 575–631–8067 or email ch2o.fresh@gmail.com. Mr. Burrows is a consultant to Llano Disposal providing assistance with this project.

The New Mexico Oil Conservation Division (OCD) will accept comments and statements of interest regarding this application and will create a facility-specific mailing list for persons who wish to receive future notices. Persons interested in obtaining further information, submitting comments or requesting to be on a facility-specific mailing list for future notices may contact:

Environmental Bureau Chief
New Mexico Oil Conservation Division
1220 South Saint Francis Drive
Santa Fe, New Mexico 87505
Telephone: 505-476-3440
Aviso Público

Legal notificación para fuera del sitio aviso público por Reglamento de Comisión de Control de Calidad de Agua 20.6.2.3108.B.1 NMAC

Llano Disposal, L.L.C. (Sr. Darr Ángeli), 783 Highway 483, Lovington, NM 88260 ha presentado una solicitud para La División de Conservación de Petróleo de Nuevo Méixceno (NMOC) para la instalación y operación de una clase III de salmuera bien que se encuentra en la unidad letra D de la sección 26, municipio de 17 sur, gama 36 Oriente (Lat. 32.8115005°, Long. -103.3317795°), Condado Lea, Nuevo México. La inyección de salmuera es bien situado aproximadamente 8,3 millas al sur de Lovington, Nuevo México o 1,1 millas al este de la intersección de estado Hwy 483 (Jct de Arkansas) y County Road 50 (Buckeye Rd).

La aplicación propone producir agua fresca de una fuente existente de agua bien ubicada en unidad letra J de la sección 27, municipio de 17 sur, gama 36 Oriente (Lat. 32.804305°, Long. -103.338230°), Condado Lea, Nuevo México. Este agua dulce transportarse a través de una tubería de polietileno enterrada aproximadamente 3250 pies al noreste para un tanque de agua 500 barril de acero situado en la salmuera bien ubicación detailada anteriormente. De vez en cuando se necesita salmuera, el agua en este tanque se bombee hacia abajo de la tubería dentro de la salmuera propuesta entubado del pozo a una profundidad aproximada de pies 2043 a 3253 pies debajo de nivel del suelo a una tasa de aproximadamente 40-120 GPM y una presión normal de 200 a 250 psi. La presión de inyección superficial permisible máxima sería 410 psig. Agua de disolución salmuera (NaCl) entonces se produciría hasta la carcasa bien respaldada por el cemento a superficie. Este proceso de flujo rutinario “flujo normal” es requerido por la NMOC para mantener la configuración de cavera de sal adecuada y desarrollo durante la vida operativa de la salmuera bien.

El agua de la salmuera producida se mide entonces transportado por una tubería de polietileno enterrada segundo aproximadamente 6600 pies sudoeste cuatro barril 500 tanques de almacenamiento de fibra de vidrio en la estación de salmuera Siringo propuesto ubicado en unidad letra M de la sección 27, municipio de 17 sur, gama 36 Oriente (Lat. 32.798816°, Long. -103.347123°). Condado Lea, Nuevo México. Esta estación de salmuera está situados aproximadamente 9,3 millas al sur de Lovington, Nuevo México o 1 milla sur-sureste de la intersección de estado Hwy 483 (Jct de Arkansas) y County Road 50 (Buckeye Rd) y ½ milla al este de 483 SH. El agua de la salmuera sería transferido/venido por entrega en camiones de agua sobre una almohadilla con frenar de contención de carga de cemento y un colector de aceite para evitar derrames. Habría un forro sintético y contención secundaria debajo de los tanques de almacenamiento de la salmuera. Toda la infraestructura lista anterior se encuentra en terrenos privados propiedad de la demandante.

Agua de la salmuera se utiliza en el aceite y la industria del gas para suministrar concentrado sal agua (es decir, salmuera) con una concentración disuelta total de aproximadamente 320,000 mg/l y una densidad que es 20% mayor de agua dulce. Salmuera típica está 10 libras por galón con el aumento de peso debido a NaCl disuelto. Agua de salmuera pesada es esencial en la prevención de salidas de golpe en pozos de gas de alta presión y previene la pérdida de circulación durante la perforación a través de zonas de sal suelen encontradas en el sureste de nuevo México.
Bien la salmuera se diseñará para producir aproximadamente 13 millones de barriles de salmuera durante un período de vida de 20 años. El radio caverna anticipada no excederá de 150 pies. El pozo se ha situado en terrenos privados y un mínimo de 2000 pies de separación de las características importantes, tales como casas, caminos, utilidades, tuberías, suministro de agua, edificios, escuelas, empresas, etc.

Agua subterránea posiblemente afectado por un derrame accidental o escape se encuentra a una profundidad de aproximadamente 40 – 80 pies debajo de nivel del suelo. Típico agua subterránea en esta área tiene una concentración de sólidos disueltos totales de aproximadamente 400 mg/l. Según la oficina del ingeniero de estado, profundidades bien media del agua en la zona son 107 pies debajo de nivel del suelo. La instalación de la salmuera será diseñada y puede no tener contaminantes intencional de agua descargadas a la superficie o subsuperficie para la protección de las aguas subterráneas. La estación de salmuera tendrá una plataforma de carga de cemento para camiones y tendrá un revestimiento sintético debajo de áreas de depósitos para evitar cualquier vertido o derrame accidental de llegar a la superficie de la tierra. La salmuera bien habremos cementado carcasa y tubos cadenas para proteger las aguas subterráneas.

El propietario y operador de la instalación propuesta será:

Llano Disposal, LLC
783 Highway 483
Lovington, NM 88260

Comentarios y consultas sobre la aplicación pueden ser dirigidas a disposición Llano, LLC c/o Sr. Marvin Burrows en 575-631-8067 o por correo electrónico ch2o.lresh@gmail.com. El Sr. Burrows es consultor para proporcionar asistencia de Llano Disposal obtener los permisos reglamentarios para este proyecto.

La División de Conservación de Petróleo de Nuevo Mecixano se aceptan comentarios y declaraciones de interés respecto a esta aplicación y creará una lista de correo de instalaciones específicas para las personas que deseen recibir futuras notificaciones. Puede contactar a las personas interesadas en obtener más información, enviar comentarios o solicitar estar en una lista de correo de instalaciones específicas para futuros avisos:

Jefe de la Oficina Ambiental
División de Conservación de Petróleo de Nuevo Mecixano
1220 South Saint Francis Drive
Santa Fe, New Mexico 87505
Teléfono: 505-476-3440
Public Notice Letter

Certified Mail

Date: ________________

Property Owner of Record

Name: ____________________________

Address: __________________________

City/State: ________________________

Public Notice

Legal notification per Water Quality Control Commission Regulations 20.6.2.3108.B.2 NMAC to property owner(s) of record that adjoin the property owned by the applicant.

Llano Disposal, LLC, 783 Highway 483, Lovington, NM 88260, Mr. Darr Angell has filed an application with the New Mexico Oil Conservation Division (OCD) to operate a Class III brine well to be located in Unit Letter D of Section 26, Township 17 South, Range 36 East (Lat. 32.8115005°, Long. -103.3317795°), Lea County, New Mexico. The brine well is located on the Angell Ranch approximately 8.3 miles south of Lovington, New Mexico or 1.1 miles east of the intersection of State Hwy 483 (Arkansas Jct) and County Road 50 (Buckeye Rd).

The application proposes to produce fresh water from an existing water source well located in Unit Letter J of Section 27, Township 17 South, Range 36 East (Lat. 32.804305°, Long. -103.338230°), Lea County, New Mexico. This fresh water would be transported from the well via a buried polyethylene pipeline approximately 3250 feet northeast to a 500 barrel steel water tank located at the brine well location detailed above. From time to time when brine was needed, the fresh water in this tank would be pumped down the tubing within the proposed brine well casing to an approximate depth of 2043 feet to 3253 feet below ground level at a rate of approximately 40 - 120 GPM and a normal operating pressure of 200 to 250 psi. The maximum allowable surface injection pressure would be 410 psig. Dissolution brine water (NaCl) is then produced up the well casing backed by cement to surface. This "normal flow" routine fluid flow process is required by the NMOCD to maintain proper salt cavern configuration and development over the operational life of the brine well.

The produced brine water would be metered then transported via another buried polyethylene pipeline approximately 6600 feet southwest to six 500 barrel fiberglass storage tanks at the proposed Siringo Brine Station located in Unit Letter M of Section 27, Township 17 South, Range 36 East (Lat. 32.798816°, Long. -103.347123°), Lea County, New Mexico. This brine station is located approximately 9.3 miles south of Lovington, New Mexico or 1 mile south-south-east of the intersection of State Hwy 483 (Arkansas Jct) and County Road 50 (Buckeye Rd) and ¼ mile east of SH 483. The brine water would be transferred/sold by delivery into water trucks on a concrete loading pad with containment curbing and a sump to prevent spills. There would be a synthetic liner and secondary containment underneath the brine storage tanks. All of the above listed infrastructure is located on private land owned by the applicant.
Brine water is used in the oil and gas industry to supply concentrated salt water (i.e. brine water) with a total dissolved concentration of approximately 320,000 mg/I and a density that is 20% higher than fresh water. Typical brine water is 10 pounds per gallon (ppg) with the increased weight due to dissolved NaCl. Heavy brine water is essential in preventing blow-outs in high pressure gas wells and prevents loss of circulation when drilling through salt zones typically found in southeastern New Mexico.

The brine well will be designed to produce approximately 13 million barrels of brine water over a 20 year life period. The anticipated cavern radius will not exceed 150 feet. The well has been located on private land to provide a minimum of 2000 feet separation from any significant features, such as houses, roads, utilities, pipelines, water supplies, buildings, schools, businesses, etc.

Groundwater possibly affected by an unintentional spill or leak is at a depth of approximately 40 – 80 feet below ground level with a total dissolved solids concentration of approximately 400 mg/I. According to the Office of the State Engineer, average water well depths in the area are 107 feet below ground level. This brine facility will be designed and permitted to have no intentional water contaminants discharged to the surface or subsurface for the protection of groundwater. The brine station will have a concrete loading pad and synthetic liner underneath tanks areas to prevent any spills or leaks from reaching the ground surface. The brine well will have cemented casing and tubing strings to protect groundwater.

The owner and operator of the proposed facility will be:

Llano Disposal, LLC
783 Highway 483
Lovington, NM 88260

Comments or inquiries about this application may be directed to Llano Disposal, LLC c/o Mr. Marvin Burrows at 575-631-8067 or email ch2o.fresh@gmail.com Mr. Burrows is a consultant to Llano Disposal providing assistance with this project.

The New Mexico Oil Conservation Division (NMOCD) will accept comments and statements of interest regarding this application and will create a facility-specific mailing list for persons who wish to receive future notices. Persons interested in obtaining further information, submitting comments or requesting to be on a facility-specific mailing list for future notices may contact:

Environmental Bureau Chief
Oil Conservation Division
1220 South Saint Francis Drive
Santa Fe, New Mexico 87505
Telephone: 505-476-3440

Sincerely,

Marvin Burrows
Agent for Llano Disposal, LLC

Attachment (map of area)
Siringo ACS State #1 Brine Well
Adjoining Property Owners

Proposed Site of Brine Well and Station

- Angell #2 Family LP
- State of New Mexico
- Lea County
- Goff Properties, LLC
- City of Lovington
- Chevron USA Inc.
- Angell Land and Cattle, LLC
- Graham Ranch, LLC
Siringo ACS State #1
API # 30-025-30701
Discharge Plan Attachments - Attachment S

NOTIFICATION LIST - ADJOINING PROPERTY OWNERS

<table>
<thead>
<tr>
<th>#</th>
<th>NAME</th>
<th>ADDRESS</th>
<th>CITY STATE ZIP</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Angell #2 Family LP, c/o Mr. Darr Angell</td>
<td>P. O. Box 250</td>
<td>Lovington, NM 88260</td>
<td>Surface Owner</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th>NAME</th>
<th>ADDRESS</th>
<th>CITY STATE ZIP</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>State of New Mexico, Commissioner of Public Land</td>
<td>P. O. Box 1148</td>
<td>Santa Fe, NM 87504</td>
<td>Adjoining Property Owner</td>
</tr>
<tr>
<td>3</td>
<td>Lea County</td>
<td>100 N. Main St.</td>
<td>Lovington, NM 88260</td>
<td>Adjoining Property Owner</td>
</tr>
<tr>
<td>4</td>
<td>Goff Properties, LLC</td>
<td>9800 W. Goff Road</td>
<td>Hobbs, NM 88242</td>
<td>Adjoining Property Owner</td>
</tr>
<tr>
<td>5</td>
<td>City of Lovington</td>
<td>P. O. Box 1268</td>
<td>Lovington, NM 88260</td>
<td>Adjoining Property Owner</td>
</tr>
<tr>
<td>6</td>
<td>Chevron USA Inc.</td>
<td>P. O. Box 285</td>
<td>Houston, TX 77001</td>
<td>Adjoining Property Owner</td>
</tr>
<tr>
<td>7</td>
<td>Angel Land and Cattle, LLC</td>
<td>P. O. Box 250</td>
<td>Lovington, NM 88260</td>
<td>Adjoining Property Owner</td>
</tr>
<tr>
<td>8</td>
<td>Graham Ranch, LLC</td>
<td>P. O. Box 1117</td>
<td>Lovington, NM 88260</td>
<td>Adjoining Property Owner</td>
</tr>
</tbody>
</table>

NOTIFICATION LIST - MINERAL OWNER AND LESSEE

<table>
<thead>
<tr>
<th>#</th>
<th>NAME</th>
<th>ADDRESS</th>
<th>CITY STATE ZIP</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Devon Energy Production Co, LP</td>
<td>333 W. Sheridan Ave.</td>
<td>Oklahoma City, OK 73102</td>
<td>Mineral Lessee</td>
</tr>
</tbody>
</table>
Llano Disposal, L.L.C. (Mr. Darr Angell), 783 Highway 483, Lovington, NM 88260 has submitted an application to the New Mexico Oil Conservation Division (NMOCD) for installation and operation of a Class III brine well to be located in Unit Letter D of Section 26, Township 17 South, Range 36 East (Lat. 32.8115005°, Long. -103.3317795°), Lea County, New Mexico. The brine injection well is located approximately 8.3 miles south of Lovington, New Mexico or 1.1 miles east of the intersection of State Hwy 483 (Arkansas Jct.) and County Road 50 (Buckeye Rd).

The application proposes to produce fresh water from an existing water source well located in Unit Letter J of Section 27, Township 17 South, Range 36 East (Lat. 32.804305°, Long. -103.338230°), Lea County, New Mexico. This fresh water would be transported via a buried polyethylene pipeline approximately 3250 feet northeast to a 500 barrel steel water tank located at the brine well location detailed above. From time to time when brine is needed, the fresh water in this tank would be pumped down the tubing within the proposed brine well casing to an approximate depth of 2043 feet to 3253 feet below ground level at a rate of approximately 40 - 120 GPM and a normal operating pressure of 200 to 250 psi. The maximum allowable surface injection pressure would be 410 psig. Dissolution brine water (NaCl) would then be produced up the well casing backed by cement to surface. This “normal flow” routine fluid flow process is required by the NMOCD to maintain proper salt cavern configuration and development over the operational life of the brine well.

The produced brine water would be metered then transported via a second buried polyethylene pipeline approximately 6600 feet southwest to four 500 barrel fiberglass storage tanks at the proposed Siringo Brine Station located in Unit Letter M of Section 27, Township 17 South, Range 36 East (Lat. 32.798816°, Long. -103.347123°), Lea County, New Mexico. This brine station is located approximately 9.3 miles south of Lovington, New Mexico or 1 mile south-south-east of the intersection of State Hwy 483 (Arkansas Jct.) and County Road 50 (Buckeye Rd) and ¼ mile east of SH 483. The brine water would be transferred/sold by delivery into water trucks on a concrete loading pad with containment curbing and a sump to prevent spills. There would be a synthetic liner and secondary containment underneath the brine storage tanks. All of the above listed infrastructure is located on private land owned by the applicant.

Brine water is used in the oil and gas industry to supply concentrated salt water (i.e. brine water) with a total dissolved concentration of approximately 320,000 mg/l and a density that is 20% higher than fresh water. Typical brine water is 10 pounds per gallon (ppg) with the increased weight due to dissolved NaCl. Heavy brine water is essential in preventing blow-outs in high pressure gas wells and prevents loss of circulation when drilling through salt zones typically found in southeastern New Mexico.

The brine well will be designed to produce approximately 13 million barrels of brine water over a 20 year life period. The anticipated cavern radius will not exceed 150 feet. The well has been located on private land and provides a minimum of 2000 feet separation from any significant features, such as houses, roads, utilities, pipelines, water supplies, buildings, schools, businesses, etc.
Groundwater possibly affected by an unintentional spill or leak is located at a depth of approximately 40 – 80 feet below ground level. Typical groundwater in this area has a total dissolved solids concentration of approximately 400 mg/l. According to the Office of the State Engineer, average water well depths in the area are 107 feet below ground level. The brine facility will be designed and permitted to have no intentional water contaminants discharged to the surface or subsurface for the protection of groundwater. The brine station will have a concrete loading pad for trucks and will have a synthetic liner underneath tanks areas to prevent any spills or leaks from reaching the ground surface. The brine well will have cemented casing and tubing strings to protect groundwater.

The owner and operator of the proposed facility will be:

Llano Disposal, LLC
783 Highway 483
Lovington, NM 88260

Comments and inquiries about the application may be directed to Llano Disposal, LLC c/o Mr. Marvin Burrows at 575-631-8067 or email ch2o.fresh@gmail.com. Mr. Burrows is a consultant to Llano Disposal providing assistance for this project.

The New Mexico Oil Conservation Division (OCD) will accept comments and statements of interest regarding this application and will create a facility-specific mailing list for persons who wish to receive future notices. Persons interested in obtaining further information, submitting comments or requesting to be on a facility-specific mailing list for future notices may contact:

Environmental Bureau Chief
New Mexico Oil Conservation Division
1220 South Saint Francis Drive
Santa Fe, New Mexico 87505
Telephone: 505-476-3440
Siringo ACS State #1
API # 30-025-30701
Discharge Plan Attachments - Attachment T

Anuncios de Pantalla de Aviso Público

Notificación legal de 3" X 4" (min) anuncio de la exhibición del periódico por Reglamento de Comisión de Control de Calidad de Agua
20.6.2.3108.B.4 NMAC

Llano Disposal, L.L.C. (Sr. Darr Angell), 783 Highway 483, Lovington, NM 88260 ha presentado una solicitud para La División de Conservación de Petróleo de Nuevo Méjico (NMOCD) para la instalación y operación de una clase III de la salmuera bien que se encuentra en la unidad letra D de la sección 26, municipio de 17 sur, gama 36 Oriente (Lat. 32.8115005°, Long. -103.3317795°), Condado Lea, Nuevo México. La inyección de salmuera es bien situados aproximadamente 8,3 millas al sur de Lovington, Nuevo México o 1,1 millas al este de la intersección de estado Hwy 483 (Jct de Arkansas) y County Road 50 (Buckeye Rd).

La aplicación propone producir agua fresca de una fuente existente de agua bien ubicada en unidad letra J de la sección 27, municipio de 17 sur, gama 36 Oriente (Lat. 32.804305°, Long. -103.338230°), Condado Lea, Nuevo México. Este agua dulce transportarse a través de una tubería de polietileno enterrada aproximadamente 3250 pies al noreste para un tanque de agua 500 barril de acero situado en la salmuera bien ubicación detallada anteriormente. De vez en cuando se necesita salmuera, el agua en este tanque se bombee hacia abajo de la tubería dentro de la salmuera propuesta entubado del pozo a una profundidad aproximada de pies 2043 a 3253 pies debajo de nivel del suelo a una tasa de aproximadamente 40-120 GPM y una presión normal de 200 a 250 psi. La presión de inyección superficial permisible máxima sería 410 psig. Agua de disolución salmuera (NaCl) entonces se produciría hasta la carcasa bien respaldada por el cemento a superficie. Este proceso de flujo rutinario “flujo normal” es requerido por la NMOCD para mantener la configuración de caverna de sal adecuada y desarrollo durante la vida operativa de la salmuera bien.

El agua de la salmuera producida se mide entonces transportado por una tubería de polietileno enterrada segundo aproximadamente 6600 pies sudoeste cuatro barril 500 tanques de almacenamiento de fibra de vidrio en la estación de salmuera Siringo propuesto ubicado en unidad letra M de la sección 27, municipio de 17 sur, gama 36 Oriente (Lat. 32.798816°, Long. -103.347123°), Condado Lea, Nuevo México. Esta estación de salmuera está situados aproximadamente 9,3 millas al sur de Lovington, Nuevo México o 1 milla sur-sureste de la intersección de estado Hwy 483 (Jct de Arkansas) y County Road 50 (Buckeye Rd) y ¾ milla al este de 483 SH. El agua de la salmuera sería transferido/vendido por entrega en camiones de agua sobre una almohadilla con frenar de contención de carga de cemento y un colector de aceite para evitar derrames. Habría un forro sintético y contención secundaria debajo de los tanques de almacenamiento de la salmuera. Toda la infraestructura lista anterior se encuentra en terrenos privados propiedad de la demandante.

Agua de la salmuera se utiliza en el aceite y la industria del gas para suministrar concentrado sal agua (es decir, salmuera) con una concentración disuelta total de aproximadamente 320,000 mg/l y una densidad que es 20% mayor de agua dulce. Salmuera típica está 10 libras por galón con el aumento de peso debido a NaCl disuelto. Agua de salmuera pesada es esencial en la prevención de salidas de golpe
en pozos de gas de alta presión y previene la pérdida de circulación durante la perforación a través de zonas de sal suelen encontradas en el sureste de nuevo México.

Bien la salmuera se diseñará para producir aproximadamente 13 millones de barriles de salmuera durante un período de vida de 20 años. El radio caverna anticipada no excederá de 150 pies. El pozo se ha situado en terrenos privados y un mínimo de 2000 pies de separación de las características importantes, tales como casas, caminos, utilidades, tuberías, suministro de agua, edificios, escuelas, empresas, etc.

Agua subterránea posiblemente afectada por un derrame accidental o escape se encuentra a una profundidad de aproximadamente 40 – 80 pies debajo de nivel del suelo. Típico agua subterránea en esta área tiene una concentración de sólidos disueltos totales de aproximadamente 400 mg/l. Según la oficina del ingeniero de estado, profundidades bien media del agua en la zona son 107 pies debajo de nivel del suelo. La instalación de la salmuera será diseñada y puede no tener contaminantes intencional de agua descargadas a la superficie o subsuperficie para la protección de las aguas subterráneas. La estación de salmuera tendrá una plataforma de carga de cemento para camiones y tendrá un revestimiento sintético debajo de áreas de depósitos para evitar cualquier vertido o derrame accidental de llegar a la superficie de la tierra. La salmuera bien habremos cementado carcasa y tubos cadenas para proteger las aguas subterráneas.

El propietario y operador de la instalación propuesta será:

Llano Disposal, LLC
783 Highway 483
Lovington, NM 88260

Comentarios y consultas sobre la aplicación pueden ser dirigidas a disposición Llano, LLC c/o Sr. Marvin Burrows en 575-631-8067 o por correo electrónico ch2o.fresh@gmail.com. El Sr. Burrows es consultor para proporcionar asistencia de Llano Disposal obtener los permisos reglamentarios para este proyecto.

La División de Conservación de Petróleo de Nuevo Méjico se aceptan comentarios y declaraciones de interés respecto a esta aplicación y creará una lista de correo de instalaciones específicas para las personas que deseen recibir futuras notificaciones. Puede contactar a las personas interesadas en obtener más información, enviar comentarios o solicitar estar en una lista de correo de instalaciones específicas para futuros avisos:

Jefe de la Oficina Ambiental
División de Conservación de Petróleo de Nuevo Méjico
1220 South Saint Francis Drive
Santa Fe, New Mexico 87505
Teléfono: 505-476-3440
Per the rules and regulations of the New Mexico Oil Conservation Division, please find enclosed a copy of NMOCID form C108.

Llano Disposal, LLC, P. O. Box 190, Lovington, NM 88260 has filed form C108 (Application for Authorization to Inject) with the New Mexico Oil Conservation Division seeking administrative approval to convert the Siringo ACS State #1, API 30-025-30701, 660 FNL x 660 FWL, Unit Letter “D”, Section 26, T17S, R36E, Lea County, New Mexico to a commercial brine production well. The proposed production interval would be the Salado formation through open hole completion between 2043’ – 3253’. Injection fluid will be fresh water from nearby water wells. Anticipated average daily injection volume is 1550 BWPD with a maximum daily injection volume of 1900 BWPD. Anticipated average injection pressure is 250 psi with a maximum injection pressure of 408 psi. The well is located approximately 8.6 miles south of Lovington, New Mexico.

No notices of this C108 application were made since WQCC rules concerning the notifications required for the Discharge Permit Application will apply.

Sincerely,

Danny J. Holcomb
Agent for Llano Disposal,
LLC Email: danny@pwllc.net

www.pwllc.net
Llano Disposal, L.L.C.
Siringo ACS State #1
API # 30-025-30701
660 FNL x 660 FWL
Unit Letter 'D', Section 26, T17S, R36E
Lea County, New Mexico
C108 Application for Authorization to Inject

I.
The purpose of this application is seeking administrative approval for the conversion of the Siringo ACS State #1 from a plugged and abandoned well to a commercial brine production well.

II.
Operator: Llano Disposal, L.L.C. OGRID: 370661
Address: P. O. Box 190 (783 Highway 483), Lovington, NM 88260
Contact Party: Marvin Burrows 575-361-8067 email: burrowsmarvin@gmail.com

III.
Please see Exhibit “A” for proposed well data.

IV.
This is not an expansion of an existing project.

V.
Please see Exhibit “B” of lease map.

VI.
There are 6 P&A wells identified within the 1 mile Area of Review that penetrate the proposed injection interval. There is also 1 new drill permitted, but not yet drilled. Please see Exhibit “C” for offset well data and wellbore diagrams.

VII.
1. Anticipated daily injection volume of 1,550 BWPD with a maximum daily injection volume of 1,900 BWPD.
2. System will be closed. It will include a fresh water supply well, fresh water pipeline, brine pipeline and a brine station. Fresh water will be produced from the supply well and pumped into the injection well for salt solution mining. Brine water will be produced from the injection well and transported to the brine station via a brine pipeline. Brine will be commercially sold from the brine station.
3. Anticipated injection pressure: Average 250 psig, Maximum 408 psig.
4. Please see Exhibit “D” for analysis of fresh water injected for brine production.

VIII.

<table>
<thead>
<tr>
<th>Formation</th>
<th>Anticipated Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. Rustler</td>
<td>2052</td>
</tr>
<tr>
<td>T. Salt</td>
<td>2043</td>
</tr>
<tr>
<td>B. Salt</td>
<td>3034</td>
</tr>
<tr>
<td>T. Yates</td>
<td>3353</td>
</tr>
<tr>
<td>T. Grayburg</td>
<td>4614</td>
</tr>
<tr>
<td>Proposed injection zone</td>
<td>2043 – 3253</td>
</tr>
</tbody>
</table>

The proposed well is not located within the Capitan Reef Area.

www.pwllc.net
Page 1 of 2
After drilling out cement plug #5 and the top 67’ of plug #4, the hole will be circulated clean and a cement bond log obtained. If good cement is found behind casing, discharge permit application will be submitted. Upon approval, the remaining portion of plug #4 would be drilled out and wellbore cleaned out to top of plug #3 at 3253’. No additional completion work is planned.

Any additional logs performed will be submitted after completion.

NM OSE records indicate there are 6 fresh water wells within the 1 mile Area of Review and 10 fresh water wells identified in the 9 square line area of review. Fresh water is contained in the Alluvial fill to top of the Red Beds.

Available geological and engineering data have been examined and no evidence of open faults or hydrological connection between the disposal zone and any underground sources of drinking water has been found.

No notice of this Cl08 application will be made since WQCC rules provide for required notifications of the Discharge Plan. See Exhibit “F” for a map indicating mineral owners and lessees.

Danny J. Holcomb
Agent for Llano Disposal, LLC

Date: 4/27/2016
Spudded 10/27/1989 as test of San Andres formation

20" casing was set in 26" hole at 40ft. Cemented with Redi-Mix to surface

8 5/8" 24# casing was set in 12 1/4" hole at 2043ft. Cemented with 1100 sks as follows;
900 sks Pacesetter Lite with 5 #/sks Hyseal, ½ # Celloseal & 3% CaCL
200 sks Class “C” with 2% CaCL
Cement circulated to surface.

7 7/8" hole drilled to TD 5450ft.

Plugged and abandoned 11/16/1989

Plug #1 5350-5450' w/25 sx Class C Neat
#2 4514-4614' w/35 sx Class C Neat
#3 3253-3353' w/55 sx Class C Neat
#4 1933-2093' w/30 sx Class C Neat
#5 Surface-63' w/25 sx Class C Neat

Exhibit “A”
EXHIBIT A

OPEN HOLE
2043'-5450'

NOT TO SCALE

PLUG #1 5350'-5450' 25 SX

PLUG #2 4514'-4614' 35 SX

PLUG #3 3253'-3353' 55 SX

PLUG #4 1933'-2093' 30 SX

10'' SURFACE
0'-40' CIRC.

PLUG #5 63'0' 25 SX

SIRINGO "ACS" #1
ULD-S26-T175-R36E
API 30-025-30701
20" Casing set 40 feet Cemented to surface

8 5/8" 24# CSA 2043' in 12 1/4" hole
Cmt w/ 1100 sks Cmt
Cement circulated to surface

2043' x 0.2 = 408.6
Max Pressure

TLA 3100'

7 7/8" Open Hole

55 sks Plug 3253-3353'

35 sks Plug 4514-4614'

25 sks Plug 5350-5450'

EXHIBIT A
<table>
<thead>
<tr>
<th>API</th>
<th>Well Name</th>
<th>Well#</th>
<th>Type</th>
<th>Lease</th>
<th>Status</th>
<th>UL</th>
<th>Sec</th>
<th>TS</th>
<th>RG</th>
<th>TD</th>
<th>Current Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-025-31473</td>
<td>PERSEUS 26 STATE</td>
<td>#001</td>
<td>Oil State</td>
<td>PA</td>
<td>G</td>
<td>26</td>
<td>17S</td>
<td>36E</td>
<td>11150</td>
<td>MARALO LLC</td>
<td></td>
</tr>
<tr>
<td>30-025-03950</td>
<td>PRE-ONGARD WELL</td>
<td>#001</td>
<td>Oil State</td>
<td>PA</td>
<td>B</td>
<td>26</td>
<td>17S</td>
<td>36E</td>
<td>8298</td>
<td>PRE-ONGARD WELL OPERATOR</td>
<td></td>
</tr>
<tr>
<td>30-025-20616</td>
<td>PRE-ONGARD WELL</td>
<td>#001</td>
<td>Oil State</td>
<td>PA</td>
<td>P</td>
<td>23</td>
<td>17S</td>
<td>36E</td>
<td>7425</td>
<td>PRE-ONGARD WELL OPERATOR</td>
<td></td>
</tr>
<tr>
<td>30-025-27108</td>
<td>PRE-ONGARD WELL</td>
<td>#001</td>
<td>Oil State</td>
<td>PA</td>
<td>D</td>
<td>25</td>
<td>17S</td>
<td>36E</td>
<td>11305</td>
<td>PRE-ONGARD WELL OPERATOR</td>
<td></td>
</tr>
<tr>
<td>30-025-20775</td>
<td>PRE-ONGARD WELL</td>
<td>#001</td>
<td>Oil State</td>
<td>PA</td>
<td>B</td>
<td>27</td>
<td>17S</td>
<td>36E</td>
<td>1225</td>
<td>PRE-ONGARD WELL OPERATOR</td>
<td></td>
</tr>
</tbody>
</table>

Exhibit "C"
50 SACKS 12.55 TO TD (12.335).

50 SACKS TO 11.777
50 SACKS TO 10.162
50 SACKS TO 9.992

60 SACKS 5288
25 SACK PLUG TO 5169

25 SACK PLUG TO 4520

9 5/8" CASING AT 4479 (CIRC)
6 1/2" STUB 3050 - 2945
40 SACKS IN AND OUT

9 5/8" CASING AT 2294
6 1/2" CASING FREE POINT

12 3/8" CASING AT 417 (CIRC)

EXHIBIT C

ULB-S2Z1T175-R33E
API 30-029-30110
MARATHON A-1687 ST. #1

TOM SCHMIDT
New Mexico Office of the State Engineer
Water Column/Average Depth to Water

(A CLW### in the POD suffix indicates the POD has been replaced. Orphaned, closed, or no longer serves a water right file.
(R=POD has been replaced, POD has been replaced O=orphaned, and file is closed)
(NAD83 UTM in meters)

<table>
<thead>
<tr>
<th>POD Number</th>
<th>Code basin</th>
<th>County</th>
<th>6</th>
<th>16</th>
<th>4</th>
<th>35</th>
<th>36</th>
<th>X</th>
<th>Y</th>
<th>Depth Water Column</th>
</tr>
</thead>
<tbody>
<tr>
<td>L LE 3 1 35 17S 36E</td>
<td>656116</td>
<td>3629884</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L LE 1 3 3 34 17S 36E</td>
<td>654537</td>
<td>3628843</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L LE 4 2 3 31 27 17S 36E</td>
<td>654478</td>
<td>3630879</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L LE 1 3 3 27 17S 36E</td>
<td>654487</td>
<td>3631269</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L LE 3 3 25 17S 36E</td>
<td>657723</td>
<td>3630314</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L LE 1 1 27 17S 36E</td>
<td>657804</td>
<td>3631628</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L LE 4 3 25 17S 36E</td>
<td>658227</td>
<td>3630422</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L LE 2 6 17S 36E</td>
<td>656813</td>
<td>3630992</td>
<td>160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L LE 2 4 24 17S 36E</td>
<td>659002</td>
<td>3632453</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L LE 1 4 25 17S 36E</td>
<td>658980</td>
<td>3630480</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Average Depth to Water: **59 feet**
Minimum Depth: **40 feet**
Maximum Depth: **107 feet**

PLSS Search:
- Section 22, 23, 24, 25, 26, 27, 34, 35, 36
- Township 17S
- Range 36E

UTM location was derived from PLSS - see Help

The data is furnished by the NMOS/EISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.
Analytical Results For:

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Laboratory ID</th>
<th>Matrix</th>
<th>Date Sampled</th>
<th>Date Received</th>
</tr>
</thead>
<tbody>
<tr>
<td>WINDMILL</td>
<td>H401846-01</td>
<td>Water</td>
<td>18-Jun-14 12:00</td>
<td>18-Jun-14 12:50</td>
</tr>
<tr>
<td>HOUSE</td>
<td>H401846-02</td>
<td>Water</td>
<td>18-Jun-14 12:30</td>
<td>18-Jun-14 12:50</td>
</tr>
</tbody>
</table>

Cardinal Laboratories

"="Accredited Analyte

Coley D. Keene, Lab Director/Quality Manager

Page 2 of 10
Analytical Results For:

LLANO DISPOSAL, LLC
125 W. ST. ANNE
HOBBS NM, 88240

Project: BRINE PROJECT
Project Number: NONE GIVEN
Project Manager: MARVIN BURROWS
Fax To: NONE

Reported: 30-Jun-14 12:02

WINDMILL
H401846-01 (Water)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>MDL</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Dilution</th>
<th>Batch</th>
<th>Analyst</th>
<th>Analyzed</th>
<th>Method</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic Compounds</td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Bicarbonate</td>
<td>224</td>
<td>5.00</td>
<td>mg/L</td>
<td>1</td>
<td></td>
<td>4062305</td>
<td>AP</td>
<td>21-Jun-14</td>
<td>310.1</td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Carbonate</td>
<td>ND</td>
<td>0.00</td>
<td>mg/L</td>
<td>1</td>
<td></td>
<td>4062305</td>
<td>AP</td>
<td>21-Jun-14</td>
<td>310.1</td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td>32.0</td>
<td>4.00</td>
<td>mg/L</td>
<td>1</td>
<td></td>
<td>4002003</td>
<td>HM</td>
<td>20-Jun-14</td>
<td>4504C-B</td>
<td></td>
</tr>
<tr>
<td>Conductivity*</td>
<td>495</td>
<td>1.00</td>
<td>uS/cm</td>
<td>1</td>
<td></td>
<td>4063609</td>
<td>AP</td>
<td>23-Jun-14</td>
<td>120.1</td>
<td></td>
</tr>
<tr>
<td>pH*</td>
<td>7.84</td>
<td>0.10</td>
<td>pH Units</td>
<td>1</td>
<td></td>
<td>4062610</td>
<td>AP</td>
<td>19-Jun-14</td>
<td>150.1</td>
<td></td>
</tr>
<tr>
<td>Sulfate*</td>
<td>73.3</td>
<td>10.0</td>
<td>mg/L</td>
<td>1</td>
<td></td>
<td>4062404</td>
<td>AP</td>
<td>23-Jun-14</td>
<td>375.4</td>
<td></td>
</tr>
<tr>
<td>TDS*</td>
<td>348</td>
<td>5.00</td>
<td>mg/L</td>
<td>1</td>
<td></td>
<td>4062906</td>
<td>AP</td>
<td>23-Jun-14</td>
<td>150.1</td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Total*</td>
<td>184</td>
<td>4.03</td>
<td>mg/L</td>
<td>1</td>
<td></td>
<td>4062305</td>
<td>AP</td>
<td>21-Jun-14</td>
<td>310.1</td>
<td></td>
</tr>
</tbody>
</table>

Green Analytical Laboratories

Total Recoverable Metals by ICP (K280.7)										
Calcium*	89.2	1.00	mg/L	1		8406205	JGS	25-Jun-14	EPA260.7	
Magnesium*	12.0	1.00	mg/L	1		8406205	JGS	25-Jun-14	EPA260.7	
Potassium*	2.45	1.00	mg/L	1		8406205	JGS	25-Jun-14	EPA260.7	
Sodium*	34.4	1.00	mg/L	1		8406205	JGS	25-Jun-14	EPA260.7	

Cardinal Laboratories

*Accredited Analyte

Celedy D. Keene, Lab Director/Quality Manager

Page 3 of 10
Analytical Results For:

LLANO DISPOSAL, LLC
125 W. ST. ANNE
HOBBS NM, 88240

Project: BRINE PROJECT
Project Number: NONE GIVEN
Project Manager: MARVIN BURROWS
Fax To: NONE
Reported: 30-Jun-14 12:02

WINDMILL
H401846-01 (Water)

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Result</th>
<th>MDL</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Dilution</th>
<th>Back</th>
<th>Analyst</th>
<th>Analyzed</th>
<th>Method</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic Compounds</td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Bicarbonate</td>
<td>22.4</td>
<td></td>
<td>5.00 mg/L</td>
<td>1</td>
<td>AP</td>
<td>310.1</td>
<td>29-Jun-14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Carbonate</td>
<td>ND</td>
<td></td>
<td>0.00 mg/L</td>
<td>1</td>
<td>AP</td>
<td>310.1</td>
<td>29-Jun-14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td>32.0</td>
<td></td>
<td>4.00 mg/L</td>
<td>1</td>
<td>AP</td>
<td>4500-C1-B</td>
<td>29-Jun-14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conductivity</td>
<td>495</td>
<td></td>
<td>1.00 ohms</td>
<td>1</td>
<td>AP</td>
<td>310.1</td>
<td>29-Jun-14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>7.84</td>
<td></td>
<td>0.10 pH Units</td>
<td>1</td>
<td>AP</td>
<td>310.1</td>
<td>29-Jun-14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td>73.3</td>
<td></td>
<td>10.0 mg/L</td>
<td>1</td>
<td>AP</td>
<td>310.1</td>
<td>29-Jun-14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDS</td>
<td>348</td>
<td></td>
<td>5.00 mg/L</td>
<td>1</td>
<td>AP</td>
<td>310.1</td>
<td>29-Jun-14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Total*</td>
<td>184</td>
<td></td>
<td>4.00 mg/L</td>
<td>1</td>
<td>AP</td>
<td>310.1</td>
<td>29-Jun-14</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cardinal Laboratories

Green Analytical Laboratories

Total Recoverable Metals by ICP (E1089.7)

<table>
<thead>
<tr>
<th>Cations</th>
<th>Result</th>
<th>MDL</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Dilution</th>
<th>Back</th>
<th>Analyst</th>
<th>Analyzed</th>
<th>Method</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>89.2</td>
<td></td>
<td>1.00 mg/L</td>
<td>1</td>
<td>AP</td>
<td>JGS</td>
<td>25-Jun-14</td>
<td>EPA206.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>12.0</td>
<td></td>
<td>1.00 mg/L</td>
<td>1</td>
<td>AP</td>
<td>JGS</td>
<td>25-Jun-14</td>
<td>EPA206.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>2.45</td>
<td></td>
<td>1.00 mg/L</td>
<td>1</td>
<td>AP</td>
<td>JGS</td>
<td>25-Jun-14</td>
<td>EPA206.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>34.4</td>
<td></td>
<td>1.00 mg/L</td>
<td>1</td>
<td>AP</td>
<td>JGS</td>
<td>25-Jun-14</td>
<td>EPA206.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cardinal Laboratories

"="Accredited Analyst

Cardinal Laboratories

Cely D. Keene, Lab Director/Quality Manager

Page 3 of 10
Analytical Results For:

<table>
<thead>
<tr>
<th>LLANO DISPOSAL, LLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>125 W. ST. ANNE</td>
</tr>
<tr>
<td>HOBBES NM, 88240</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project: BRINE PROJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Number: NONE GIVEN</td>
</tr>
<tr>
<td>Project Manager: MARVIN BURROWS</td>
</tr>
<tr>
<td>Fax To: NONE</td>
</tr>
</tbody>
</table>

HOUSE
H401846-02 (Water)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>MDL</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Dilution</th>
<th>Batch</th>
<th>Analyte</th>
<th>Analyzed</th>
<th>Method</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic Compounds</td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Bicarbonate</td>
<td>273</td>
<td>5.00</td>
<td>1</td>
<td>mg/L</td>
<td>4002305</td>
<td>AP</td>
<td>23-Jun-14</td>
<td>310.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Carbonate</td>
<td>ND</td>
<td>0.00</td>
<td>1</td>
<td>mg/L</td>
<td>4002305</td>
<td>AP</td>
<td>23-Jun-14</td>
<td>310.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td>60.0</td>
<td>4.00</td>
<td>1</td>
<td>mg/L</td>
<td>4022003</td>
<td>HM</td>
<td>26-Jun-14</td>
<td>4990-Cl-B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conductivity</td>
<td>862</td>
<td>1.00</td>
<td>1</td>
<td>uS/cm</td>
<td>4022003</td>
<td>AP</td>
<td>26-Jun-14</td>
<td>120.1</td>
<td>100.1</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>7.45</td>
<td>0.10</td>
<td>1</td>
<td>pH</td>
<td>4022010</td>
<td>AP</td>
<td>25-Jun-14</td>
<td>150.1</td>
<td>150.1</td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td>144</td>
<td>25.0</td>
<td>1</td>
<td>mg/L</td>
<td>4022004</td>
<td>AP</td>
<td>25-Jun-14</td>
<td>75.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDS</td>
<td>620</td>
<td>5.00</td>
<td>1</td>
<td>mg/L</td>
<td>4022006</td>
<td>AP</td>
<td>23-Jun-14</td>
<td>100.1</td>
<td>100.1</td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Total</td>
<td>224</td>
<td>4.00</td>
<td>1</td>
<td>mg/L</td>
<td>4022005</td>
<td>AP</td>
<td>23-Jun-14</td>
<td>310.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cardinal Laboratories

Green Analytical Laboratories

<table>
<thead>
<tr>
<th>Total Recoverable Metals by ICP (EPA6.7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium*</td>
</tr>
<tr>
<td>Magnesium*</td>
</tr>
<tr>
<td>Potassium*</td>
</tr>
<tr>
<td>Sodium*</td>
</tr>
</tbody>
</table>

Cardinal Laboratories

*Accredited Analyte

Celey D. Keene, Lab Director/Quality Manager

Page 4 of 10
Analytical Results For:

LLANO DISPOSAL, LLC
125 W. ST. ANNE
HOBBS, NM, 88240

Project: BRINE PROJECT
Project Number: NONE GIVEN
Project Manager: MARVIN BURROWS
Fax To: NONE

Reported: 30-Jun-14 12:02

Inorganic Compounds - Quality Control

Cardinal Laboratories

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source</th>
<th>%REC</th>
<th>%REC Limits</th>
<th>RPD</th>
<th>RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank (40629903-BLK1)</td>
<td>ND</td>
<td>4.00</td>
<td>mg/L</td>
<td>Pre & Analyzed: 20-Jun-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td></td>
</tr>
<tr>
<td>LCS (40629903-BSI1)</td>
<td>104</td>
<td>4.00</td>
<td>mg/L</td>
<td>100</td>
<td>104</td>
<td>80-120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td></td>
</tr>
<tr>
<td>LCS Dup (40629903-BSD1)</td>
<td>100</td>
<td>4.00</td>
<td>mg/L</td>
<td>100</td>
<td>100</td>
<td>80-120</td>
<td>3.92</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Batch 40629906 - Filtration</td>
<td></td>
</tr>
<tr>
<td>Blank (40629906-BLK1)</td>
<td>ND</td>
<td>5.00</td>
<td>mg/L</td>
<td>Pre & Analyzed: 23-Jun-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDS</td>
<td></td>
</tr>
<tr>
<td>LCS (40629906-BSI1)</td>
<td>332</td>
<td>5.00</td>
<td>mg/L</td>
<td>327</td>
<td>101</td>
<td>80-120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDS</td>
<td></td>
</tr>
<tr>
<td>TDS</td>
<td>13500</td>
<td>5.00</td>
<td>mg/L</td>
<td>12600</td>
<td>0.430</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Batch 40629905 - General Prep - Wet Chem</td>
<td></td>
</tr>
<tr>
<td>Blank (40629905-BLK1)</td>
<td>ND</td>
<td>0.00</td>
<td>mg/L</td>
<td>Pre & Analyzed: 23-Jun-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Carbonate</td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Bicarbonate</td>
<td>ND</td>
<td>5.00</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Total</td>
<td>4.00</td>
<td>4.00</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cardinal Laboratories

*Accredited Analyte

Page 5 of 10
Analytical Results For:

LLANO DISPOSAL, LLC
125 W. ST. ANNE
HOBBS NM, 88240

Project:
BRINE PROJECT

Project Number:
NONE GIVEN

Project Manager:
MARVIN BURROWS

Fax To:
NONE

Reported:
30-Jun-14 12:02

Inorganic Compounds - Quality Control

Cardinal Laboratories

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Reporting Result</th>
<th>Limit</th>
<th>Spike Level</th>
<th>Source</th>
<th>%REC</th>
<th>RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
</table>
| **Batch 4962305 - General Prep - Wet Chem**
| Alkalinity, Carbonate | ND | 0.00 mg/L | Prepared & Analyzed: 23-Jun-14 | | | | |
| | Alkalinity, Bicarbonate | 126 | 5.00 mg/L | |
| | Alkalinity, Total | 104 | 4.00 mg/L | 100 | 100 | 80-120 | |
| **LCS 4962305-BSI1** | |
| Alkalinity, Carbonate | ND | 0.00 mg/L | 80-120 |
| | Alkalinity, Bicarbonate | 126 | 5.00 mg/L | 80-120 |
| | Alkalinity, Total | 104 | 4.00 mg/L | 100 | 100 | 80-120 |
| **LCS Dup (4962305-BSI1)** | |
| Alkalinity, Carbonate | ND | 0.00 mg/L | 80-120 |
| | Alkalinity, Total | 104 | 4.00 mg/L | 100 | 100 | 80-120 |

| **Batch 4962404 - General Prep - Wet Chem**
Blank (4962404-BLK1)	ND	10.0 mg/L	Prepared: 24-Jun-14 Analyzed: 23-Jun-14				
LCS 4962404-BSI1							
Sulfate	17.1	10.0 mg/L	20.0	58.6	80-120		
LCS Dup (4962404-BSI1)							
Sulfate	17.5	10.0 mg/L	20.0	57.4	80-120	2.02	20

| **Batch 4962591 - General Prep - Wet Chem**
LCS 4962591-BSI1					
Conductivity	481	uS/cm	500	58.3	80-120
Duplicate (4962591-DUP1)					
Conductivity	65000	1.00 uS/cm	61360	5.96	20

Cardinal Laboratories

=Accredited Analyte

Celestia Keene, Lab Director/Quality Manager
Analytical Results For:

LLANO DISPOSAL, LLC
125 W. ST. ANNE
HOBBS NM, 88240

Project: BRINE PROJECT
Project Number: NONE GIVEN
Project Manager: MARVIN BURROWS
Fax To: NONE

Reported: 30-Jun-14 12:02

Inorganic Compounds - Quality Control
Cardinal Laboratories

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Reporting Limit</th>
<th>Units</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>%REC Limits</th>
<th>RPD Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch 4862610 - NO PREP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (4862610-BS1)</td>
<td>7.10</td>
<td>pH Units</td>
<td>7.60</td>
<td>101</td>
<td>90-110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duplicate (4862610-DUP1)</td>
<td>8.87</td>
<td>pH Units</td>
<td>9.85</td>
<td>6.203</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cardinal Laboratories

*Accredited Analyte

Cardinal Laboratories

Cecily D. Keene, Lab Director/Quality Manager

PAGE 7 OF 10
Analytical Results For:

LLANO DISPOSAL, LLC
125 W. ST. ANNE
HOBBS NM, 88240

Project: BRINE PROJECT
Project Number: NONE GIVEN
Project Manager: MARVIN BURROWS
Fax To: NONE

Reported: 30-Jun-14 12:02

Total Recoverable Metals by ICP (E200.7) - Quality Control

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Result</th>
<th>Reporting Limit</th>
<th>Spike Level</th>
<th>Source Result</th>
<th>%REC</th>
<th>%REC Limits</th>
<th>RPD</th>
<th>Limit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnesium</td>
<td>ND</td>
<td>1.00 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>ND</td>
<td>1.00 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>ND</td>
<td>1.00 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>ND</td>
<td>1.00 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICS (B406205-BS1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>23.4</td>
<td>1.00 mg/L</td>
<td>25.0</td>
<td>93.3</td>
<td>85-115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>9.42</td>
<td>1.00 mg/L</td>
<td>10.0</td>
<td>91.4</td>
<td>85-115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>7.38</td>
<td>1.00 mg/L</td>
<td>8.10</td>
<td>90.1</td>
<td>85-115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>4.47</td>
<td>1.00 mg/L</td>
<td>5.00</td>
<td>86.4</td>
<td>85-115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS Dup (B406205-BSD1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>23.3</td>
<td>1.00 mg/L</td>
<td>25.0</td>
<td>94.2</td>
<td>85-115</td>
<td>0.40</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>9.14</td>
<td>1.00 mg/L</td>
<td>10.0</td>
<td>91.4</td>
<td>85-115</td>
<td>3.05</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>7.16</td>
<td>1.00 mg/L</td>
<td>8.10</td>
<td>90.2</td>
<td>85-115</td>
<td>1.08</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>4.44</td>
<td>1.00 mg/L</td>
<td>5.00</td>
<td>89.9</td>
<td>85-115</td>
<td>0.484</td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*=Accredited Analyte

Cardinal Laboratories

Page 8 of 10