From: Stuart Hyde To: <u>Chavez, Carl J, EMNRD</u> Cc: <u>Devin Hencmann</u>; <u>McCartney</u>, <u>Gregory J.</u> Subject: [EXT] RE: Question: Marathon Petroleum Company, L.P. Former Giant Bloomfield Refinery (GW-40) in San Juan County: WQCC Application Administratively Complete **Date:** Thursday, July 16, 2020 9:17:48 AM Attachments: 2020-7-15 GW-040 Corrigendum to Discharge Permit Application.pdf ### Carl. Please find attached the corrigendum with the replacement sheet and the correct reference to Appendix A. Please let me know if you need anything else regarding this issue. Thanks. Stuart Hyde, LG Project Geologist 970.385.1096 direct 970.903.1607 cell From: Chavez, Carl J, EMNRD < Carl J. Chavez@state.nm.us> **Sent:** Tuesday, July 14, 2020 3:11 PM **To:** Stuart Hyde <shyde@ltenv.com> Cc: Devin Hencmann < dhencmann@ltenv.com> Subject: RE: Question: Marathon Petroleum Company, L.P. Former Giant Bloomfield Refinery (GW- 40) in San Juan County: WQCC Application Administratively Complete ### Stuart: Hi. Just send me an e-mail with the page addendums for the admin. record. I will place them in front of the application and the page numbers should coincide with the <u>report</u>, i.e., table of contents with <u>appendix B removed</u>, pg. with <u>appendix B referenced</u>. ### Thx. Mr. Carl J. Chavez, CHMM (#13099) New Mexico Oil Conservation Division (Albuquerque Office) Energy Minerals and Natural Resources Department 5200 Oakland Avenue, NE Albuquerque, New Mexico 87113 Ph. (505) 660-7923 E-mail: CarlJ.Chavez@state.nm.us "Why not prevent pollution, minimize waste to reduce operating costs, reuse or recycle, and move forward with the rest of the Nation?" (To see how, go to: http://www.emnrd.state.nm.us/OCD and see "Publications") From: Stuart Hyde <<u>shyde@ltenv.com</u>> Sent: Tuesday, July 14, 2020 3:06 PM **To:** Chavez, Carl J, EMNRD < <u>CarlJ.Chavez@state.nm.us</u>> **Cc:** Devin Hencmann < dhencmann@ltenv.com> **Subject:** [EXT] RE: Question: Marathon Petroleum Company, L.P. Former Giant Bloomfield Refinery (GW-40) in San Juan County: WQCC Application Administratively Complete July 15, 2020 Mr. Carl Chavez New Mexico Oil Conservation Division 5200 Oakland Avenue NE Albuquerque, NM 87113 RE: Corrigendum to the May 2020 Discharge Permit Application Former Giant Bloomfield Refinery Western Refining Southwest, Inc. **Bloomfield, New Mexico** Dear Mr. Chavez: On behalf of Western Refining Southwest, Inc. (Western), LT Environmental (LTE) is submitting this corrigendum for the Former Giant Bloomfield Refinery *Discharge Permit Application* submitted to the New Mexico Oil Conservation Division (NMOCD) in May 2020. Page 14 of the *Discharge Permit Application* contains a reference to "Appendix B", which is in error and should be replaced by a reference to "Appendix A". Other references in the document to Appendix A are correct. Attached is page 14 of the *Discharge Permit Application* that includes the corrected reference. If you have any questions or comments regarding this corrigendum, please do not hesitate to contact LTE at (970) 385-1096 or via email at shyde@ltenv.com. Sincerely, LT ENVIRONMENTAL, INC. Stuart Hyde, LG Project Geologist Ashley Ager, P.G. Senior Geologist ashley L. ager cc: Greg McCartney, Western Refining Southwest, Inc. Attachments: Page 14 Replacement Sheet ### **TABLE OF CONTENTS** | 1.0 | DISCHARGE PERMIT TYPE | 1 | |------|---|----------------------------| | 2.0 | OPERATOR INFORMATION | 2 | | 3.0 | LOCATION | 3 | | 4.0 | LANDOWNER INFORMATION | 4 | | 5.0 | FACILITY DESCRIPTION | 5 | | 6.0 | STORED MATERIALS | 6 | | 7.0 | EFFLUENT SOURCES | 7 | | 8.0 | WATER COLLECTION, TREATMENT, AND DISPOSAL | 8 | | | 8.1 WATER COLLECTION 8.2 WATER TREATMENT | 8
8 | | | 8.2.1 Tank 102 | 8 | | | 8.3 WATER DISCHARGE | 8 | | 9.0 | PROPOSED MODIFICATION OF EXISTING COLLECTION, TREATMENT, AND DISPOSAL SYSTEMS | 9 | | 10.0 | INSPECTION AND MAINTENANCE PLAN | 10 | | 11.0 | SPILLS AND RELEASE CONTINGENCY PLAN | 11 | | | 11.1 SPILL AND LEAK PREVENTION AND MONITORING | 11 | | | 11.1.1 Construction Materials11.1.2 Safety and Shutdown Devices11.1.3 Secondary Containment11.1.4 Inspection11.1.5 Security | 12
12
12
12
12 | | 12.0 | GEOLOGICAL/HYDROLOGICAL INFORMATION | 13 | | | 12.1 BACKGROUND CONCENTRATIONS 12.2 FLOODING POTENTIAL | 13
14 | | 13.0 | MONITORING AND REPORTING | 15 | | 14.0 | FACILITY CLOSURE AND POST CLOSURE PLAN | 16 | i ### **TABLE OF CONTENTS (continued)** | 15.0 PERMIT RE | ENEWAL | 17 | |----------------|---|----------| | 16.0 PERMIT M | ODIFICATIONS | 18 | | 17.0 REFERENC | ES | 19 | | 18.0 CERTIFICA | TION | 20 | | | | | | | FIGURES | | | FIGURE 1 | SITE LOCATION MAP | | | FIGURE 2 | SITE MAP | | | FIGURE 3 | SIMPLIFIED REPRESENTATION OF THE GROUNDWATER RECOVERY, TREATME DISCHARGE SYSTEM | NT, AND | | FIGURE 4 | THE CARBON ADSORPTION SYSTEM | | | FIGURE 5 | INFILTRATION TRENCH DESIGN AND CONSTRUCTION SPECIFICATIONS | | | FIGURE 6 | CROSS SECTION A-A' | | | FIGURE 7 | CROSS SECTION B-B' | | | FIGURE 8 | GROUNDWATER POTENTIOMETRIC SURFACE MAP (NOVEMBER 2019) | | | | TABLES | | | TABLE 1 | 2015 INFLUENT AND EFFLUENT ANALYTICAL RESULTS | | | TABLE 2 | GROUNDWATER ELEVATIONS AND THICKNESS OF PHASE-SEPARATED HYDROCAL | RBONS | | TABLE 3 | 2010 TO 2018 – ANNUAL COMPLIANCE GROUNDWATER LABORATORY AND RESULTS | ALYTICAL | | TABLE 4 | CLOSURE AND POST CLOSURE COST ESTIMATES | | | | APPENDICES | | APPENDIX A BACKGROUND CONCENTRATIONS IN UPGRADIENT WELLS GBR-50, located hydrogeologically upgradient of the source areas at the Site (identified on Figure 2) and downgradient of the Lee Acres Landfill Superfund site. In June 2019, LTE performed a statistical analysis using ProUCL software (developed by the United States Environmental Protection Agency, or EPA) to develop "background" concentrations for the following constituents migrating onto the Site: chloride, chromium, iron, manganese, sulfate, and TDS. Table 3 presents the results of the statistical analysis and groundwater analytical results for these constituents detected between 2010 and 2018. Table 3 also presents the cleanup standards (or "remedial goals") established for the Lee Acres Landfill Superfund site in their *Remedial Investigation Report* (BLM, 1992) and *Record of Decision* (EPA, 2004). Appendix A presents the assumptions and inputs used for the statistical analysis. Appendix A also includes a letter prepared by LTE summarizing our findings that was provided to the EPA for their five-year review of the Lee Acres Landfill Superfund site (conducted in 2019). ### 12.2 FLOODING POTENTIAL The greatest threat to flooding of the Facility are the San Juan River (located less than one mile south of the site) and the unnamed arroyo located within the Site itself. History suggests flooding potential of the San Juan River is small. From 1904 until 1976, only 23 flood events (on individual streams, not concurrent on all streams) have been recorded. According to a study conducted by the New Mexico Floodplain Managers Association (2003), previous floods of the San Juan River resulted from general rainstorms, snowmelt augmented by rain, and from cloudburst storms. Rain floods usually occur during the months of September and October. This type of flood results from prolonged heavy rainfall over tributary areas and is characterized by high peak flows of moderate duration. Major floods (recurrence interval of 100 or more years) result from excessive snowmelt runoff generated in the watershed upstream from Bloomfield. Flood flows generated by snowmelt generally occur during the period from May through July. Snowmelt flooding is characterized by moderate peak flows, large volume and long duration, and marked diurnal fluctuation in flow. The refinery is elevated above the floodplain of the San Juan River, decreasing the chance of a river flood, such as the ones described above, from reaching the Facility. The flooding potential of the arroyo is predicted to be low as well. Similar arroyos have been studied in detail near Farmington and are described as ephemeral in character, flowing only during periods of heavy rainfall (New Mexico Floodplain Managers Association, 2003). Furthermore, the arroyo's influence on the Site and Facility has been decreased due to the construction of a new highway located between the arroyo and the refinery. ### GW - 40 ### UIC CLASS V WELL From: Stuart Hyde To: Chavez, Carl J, EMNRD Cc: Devin Hencmann; McCartney, Gregory J. **Subject**: [EXT] GBR UIC Forms **Date:** Tuesday, July 7, 2020 12:34:09 PM Attachments: image004_png image006.png image008.png GBR_UIC Class V Well System Forms.pdf ### Carl, Thanks for the call earlier. Attached are the forms with the revisions that we went over. Also, I spoke to Devin and looked at our old data when the system was in operation and the treatment system (GAC tanks) can treat approximately 15 to 20 gallons/minute. The infiltration gallery can handle up to 50 gallons/minute if we were to discharge treated water from holding tanks. Let me know if you have any additional information. Stuart Hyde, LG Project Geologist 970.385.1096 office 970.903.1607 cell 848 East Second Avenue Durango, CO 81301 www.ltenv.com Think before you print. Click for our email ### UNDERGROUND DISCHARGE SYSTEM (CLASS V) INVENTORY SHEET (see instructions on back) | 1. | Name of facility: Former Giant Bloomfield Refinery | | |-----
---|--| | | Address of facility:748 Road 350 | | | | City/Town:Farmington | _ State: NM Zip Code: 87401 | | | County: San Juan Lo | cation: Northeast corner of Hwy 64 and CR350 | | | | | | | Contact Person: Greg McCartney | Phone Number: 419-421-2338 | | 2. | Name of Owner or Operator: Western Refining Southwest, Inc. | | | | Address of Owner or Operator: 539 South Main Street, Room M-7 | 081 | | | City/Town: Findlay | State:OH Zip Code:45840 | | 3. | Type & number of system(s): Drywell(s) Septic System(s Attach a schematic of the system. Attach a map or sketch of the location | s) X Other(describe): Infiltration Gallery on of the system at the facility. | | 4. | | from groundwater pumped from recovery wells | | | on the property. Recovered water is expected to be impacted by pet | roleum hydrocarbons and will be treated | | | prior to discharge using activated carbon. | | | 5. | Fluids discharged: Discharged fluids will consist of treated groundw | vater. | | | | | | | | | | 6. | Treatment before discharge: Activated carbon adsorption | | | | | | | | | | | 7 | Status of underground discharge system: X Existing Unused/Ab | pandoned D Under Construction D Proposed | | | Approved/Permitted by: NMOCD 1988 (original), 2012, 2020 (most re | | | | CERTIFICATION | Date constructed. | | tha | ertify under penalty of law that I have personally examined and am familiar with the informat, based on my inquiry of those individuals immediately responsible for obtaining the informplete. I am aware that there are significant penalties for submitting false information, incFR 144.32). | mation, I believe that the information is true, accurate, and | | | Signature: | Date: | | | Name (printed): Greg McCartney | | | | Official Title: Senior Environmental Professional | | **APPROVED** By Carl Chavez at 3:44 pm, Jul 07, 2020 Conditions of Approval: Must follow GW-40 Permit Conditions OCD UIC QA Officer ### UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 5 ### UNDERGROUND DISCHARGE SYSTEM (CLASS V) INVENTORY SHEET INSTRUCTIONS Complete one sheet for each different kind of underground discharge or drainage system (Class V well) at your facility or location. For example, several storm water drainage wells of a similar construction can all go on one sheet. Another example could be a business with a single septic system (septic tank with drainfield) that accepts fluids from a paint shop sink in one area, their vehicle maintenance garage floor drains in another area and also serves the employee kitchenette and washroom: this can all go on one form. The numbers below correspond to the numbers on the front of the sheet. - Supply the name and street address of the facility where the Class V well(s) is located. Please be sure to include the County name. If available, provide the Latitude/Longitude of the discharge system. If there is no street address for the discharge system(s), provide a description of the location and show the location on a map. Include the name and phone number of a person to contact if there are any questions regarding the underground discharge system(s) and/or the wastewaters discharged at the facility. - 2. Provide the name and mailing address of the owner of the facility or if the facility is operated by lease, the operator of the facility. - 3. Provide the number of underground discharge systems at the facility (or location) for the type of system that is described on this sheet. Please use a separate sheet for each different type of system present. If the type of system is "Other", please describe (e.g., french drain, leachfield, improved sinkhole, cesspool, etc.). - Provide a sketch, diagram or blueprints of the construction of the system including the depth below the ground surface that the fluids are released into the soil, sediment or formation. Also provide a map or sketch of the layout of the pluming or drainage system, including all the connections, and if applicable, indicate each fluid source connection (i.e., floor drains, shop sink, process tank discharge, restrooms, etc.) and any pre-treatment, etc. - 4. Describe the kind of business practice that generates the fluids being discharged into the underground system (e.g., body shop, drycleaner, carwash, print shop, restaurant, etc.), and/or if more appropriate, the source of the fluids (e.g., employee & customer restrooms, parking lot drainage, etc.). If available, include the Standard Industrial Classification (SIC) Codes for this facility. - 5. List the kinds of fluids that can enter the underground system (e.g., storm water run-off, sanitary waste, solvents, biodegradable soap wash & rinse water, snowmelt from trucks, photo developing fluids, ink, paint & thinner, non-contact cooling water, etc.). Please be as specific as you can about the kinds of fluids or products that can be drained into the system. Generally, good sources for this information are the Material Safety Data Sheets (MSDS) (copies of MSDS could be attached instead of listing all the products). If available, also attach a copy of any chemical analysis for the fluids discharged. - 6. Describe the kinds of treatment (if any) that the fluids go through before disposal. Examples of treatment are: grease trap, package plant, oil/water separator, catch basin, metal recovery unit, sand filter, grit cleanser, etc. - 7. Select the status of the underground discharge system and include the date the system was constructed. If the status is "Existing" but it is not being used, is unusable, will not be used, or is temporarily abandoned, mark the box for "Unused/Abandoned". If state or local government approval was given for construction of the system, or a permit was issued for the system, please provide the name of the approving authority. Provide an estimated date of construction if the actual date is unknown. The person signing the submittal should read the certification statement before signing and dating the sheet. If you have any questions about whether or not you may have an EPA regulated system, or about how to complete this sheet, please call (312) 886-1492. You may also try our website at www.epa.gov/r5water/uic/uic.htm for information. Please send completed sheets to: U.S. EPA Region 5 Underground Injection Control Branch ATTN: Lisa Perenchio (WU-16J) 77 W. Jackson Blvd. Chicago, IL 60604 8/02 STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT ### Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87505 FORM C-108 Revised June 10, 2003 ### **APPLICATION FOR AUTHORIZATION TO INJECT** | I. | PURPOSE:Secondary RecoveryPressure Maintenance XXDisposalStorage Application qualifies for administrative approval?YesNo | |-------|--| | II. | OPERATOR: Western Refining Southwest, Inc. | | | ADDRESS: 539 South Main Street Room M-7081, Findlay, OH 45840 | | | CONTACT PARTY: Greg McCartney PHONE: 419-421-2338 | | III. | WELL DATA: Complete the data required on the reverse side of this form for each well proposed for injection. Additional sheets may be attached if necessary. | | IV. | Is this an expansion of an existing project? XX YesNo If yes, give the Division order number authorizing the project:No | | V. | Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mile radius circle drawn around each proposed injection well. This circle identifies the well's area of review. See Attached Figure 1 | | VI. | Attach a tabulation of data on all wells of public record within the area of review which penetrate the proposed injection zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of completion, and a schematic of any plugged well illustrating all plugging detail. See Tables 1 and 2 for water and oil/gas well information | | VII. | Attach data on the proposed operation, including: | | | Proposed average and maximum daily rate and volume of fluids to be injected; See attached Section 7.0 from the Discharge Permit Whether the system is open or closed; open, See attached Section 8.0 and Figures 3, 4, and 5 from the Discharge Permit Proposed average and maximum injection pressure; System is gravity fed with a maximum 50 gallons per minute injection rate. Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; and, See attached Tables for influent and effluent analytical results. If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well,
attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.). See attached tables for groundwater analytical information. | | VIII. | VIII. Attach appropriate geologic data on the injection zone including appropriate lithologic detail, geologic name, thickness, and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such sources known to be immediately underlying the injection interval. See attached Section 12.0 from the Discharge Permit and Figure 6 and 7. | | IX. | Describe the proposed stimulation program, if any. Not applicable | | *X. | Attach appropriate logging and test data on the well. (If well logs have been filed with the Division, they need not be resubmitted). | | *XI. | Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken. See attached tables and Figure 2. | | XII. | Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water. | | XIII. | Applicants must complete the "Proof of Notice" section on the reverse side of this form. | | XIV. | Certification: I hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief. | | | NAME:Greg McCartneyTITLE:Senior Environmental Professional | | | SIGNATURE: | | * | E-MAIL ADDRESS:gjmccartney@marathonpetroleum.com If the information required under Sections VI, VIII, X, and XI above has been previously submitted, it need not be resubmitted. Please show the date and circumstances of the earlier submittal: | ### III. WELL DATA - A. The following well data must be submitted for each injection well covered by this application. The data must be both in tabular and schematic form and shall include: - (1) Lease name; Well No.; Location by Section, Township and Range; and footage location within the section. - (2) Each casing string used with its size, setting depth, sacks of cement used, hole size, top of cement, and how such top was determined. - (3) A description of the tubing to be used including its size, lining material, and setting depth. - (4) The name, model, and setting depth of the packer used or a description of any other seal system or assembly used. Division District Offices have supplies of Well Data Sheets which may be used or which may be used as models for this purpose. Applicants for several identical wells may submit a "typical data sheet" rather than submitting the data for each well. - B. The following must be submitted for each injection well covered by this application. All items must be addressed for the initial well. Responses for additional wells need be shown only when different. Information shown on schematics need not be repeated. - (1) The name of the injection formation and, if applicable, the field or pool name. - (2) The injection interval and whether it is perforated or open-hole. - (3) State if the well was drilled for injection or, if not, the original purpose of the well. - (4) Give the depths of any other perforated intervals and detail on the sacks of cement or bridge plugs used to seal off such perforations. - (5) Give the depth to and the name of the next higher and next lower oil or gas zone in the area of the well, if any. ### XIV. PROOF OF NOTICE All applicants must furnish proof that a copy of the application has been furnished, by certified or registered mail, to the owner of the surface of the land on which the well is to be located and to each leasehold operator within one-half mile of the well location. Where an application is subject to administrative approval, a proof of publication must be submitted. Such proof shall consist of a copy of the legal advertisement which was published in the county in which the well is located. The contents of such advertisement must include: - (1) The name, address, phone number, and contact party for the applicant; - (2) The intended purpose of the injection well; with the exact location of single wells or the Section, Township, and Range location of multiple wells; - (3) The formation name and depth with expected maximum injection rates and pressures; and, - (4) A notation that interested parties must file objections or requests for hearing with the Oil Conservation Division, 1220 South St. Francis Dr., Santa Fe, New Mexico 87505, within 15 days. NO ACTION WILL BE TAKEN ON THE APPLICATION UNTIL PROPER PROOF OF NOTICE HAS BEEN SUBMITTED. NOTICE: Surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date this application was mailed to them. OPERATOR: Western Refining Southwest, Inc. Casing Size: 4 inch (above ground entry) $\mathfrak{t}\mathfrak{t}^3$ $\mathfrak{t}\mathfrak{t}_3$ \mathfrak{t}^3 RANGE 12W Casing Size: 2 inch piping 2 inch WELL CONSTRUCTION DATA Method Determined: Method Determined: Method Determined: TOWNSHIP Casing Size: **29N** Intermediate Casing Production Casing Surface Casing or or orSX. NWNW 27 Hole Size: $2'(w) \times 3'(d) \times 100'(1)$ each SECTION SX. Hole Size: $2'(w) \times 3'(d) \times 100'(1)$ each 8 inch_entry point_ SX. N/AN/AN/AN/A Top of Cement: ___N/A_ 3 feet Cemented with: N/A Top of Cement: __ Top of Cement: _ Cemented with: Cemented with: Total Depth: Hole Size: pipe trench UNIT LETTER pipe trench Plastic Barrier Indigenous Soil 2" infiltration lines are designed to handle approximately 10 gai/min each with a maximum length of 100" Cross Section of a Typical Infiltration Trench consists of five horizontally placed perforated pipes that are discharged by gravity to the infiltration gallery. The gallery 36.703061, -108.093532 NAD83 infiltration pipe is designed to handle approximately 10 Infiltration Trench surrounded by crushed gravel. Each 2-inch diameter approximately 1 to 2 feet below ground surface and Description: Effluent from the treatment system is Infiltration Gallery Design FOOTAGE LOCATION 2" x 1' Gravel Pack WELLBORE SCHEMATIC A CANAL CONTRACTOR CON Trench Top View Cut Away at the Infiltration Line Depth WELL NAME & NUMBER: 2" Drain Field Pipe with 1/4" Holes on 2' Spacing WELL LOCATION: Trench (Perforated or Open Hole; indicate which) 3 feet to Injection Interval gallons/minute (system total 50 gallons/minute). 4* Water Distribution — Header 40 to 50 GPM ### **INJECTION WELL DATA SHEET** | Type of Packer:NA Packer Setting Depth:NA Other Type of Tubing/Casing Seal (if applicable):NA Additional Data 1. Is this a new well drilled for injection?XYesNo If no, for what purpose was the well originally drilled? 2. Name of the Injection Formation:quaternary alluvium 3. Name of Field or Pool (if applicable):NA 4. Has the well ever been perforated in any other zone(s)? List all such perforated intervals and give plugging detail, i.e. sacks of cement or plug(s) usedN/A, infiltration gallery 5 | Tul | bing Size: 2 inch Lining Material: PVC | |--|-----|---| | Other Type of Tubing/Casing Seal (if applicable):NA Additional Data 1. Is this a new well drilled for injection?XYesNo If no, for what purpose was the well originally drilled? 2. Name of the Injection Formation:quaternary alluvium 3. Name of Field or Pool (if applicable):NA 4. Has the well ever been perforated in any other zone(s)? List all such perforated intervals and give plugging detail, i.e. sacks of cement or plug(s) usedN/A, infiltration gallery 5Give the name and depths of any oil or gas zones underlying or overlying the proposed injection | Ty | | | Additional Data 1. Is this a new well drilled for injection? | Pac | cker Setting Depth:NA | | Is this a new well drilled for injection? | Otl | her Type of Tubing/Casing Seal (if applicable):NA | | If no, for what purpose was the well originally drilled? | | Additional Data | | Name of the Injection Formation:quaternary alluvium Name of Field or Pool (if applicable):NA Has the well ever been perforated in any other zone(s)? List all such perforated intervals and give plugging detail, i.e. sacks of cement or plug(s) usedN/A, infiltration gallery Give the name and depths of any oil or gas zones underlying or overlying the proposed injection | 1. | Is this a new well drilled for injection?XYesNo | | Name of Field or Pool (if applicable): NA Has the well ever been perforated in any other zone(s)? List all such perforated intervals and give plugging detail, i.e. sacks of cement or plug(s) used. N/A, infiltration gallery Give the name and depths of any oil or gas zones underlying or overlying the proposed injection | | If no, for what purpose was the well originally drilled? | | 4. Has the well ever been perforated in any other zone(s)? List all such perforated intervals
and give plugging detail, i.e. sacks of cement or plug(s) used. N/A, infiltration gallery 5. Give the name and depths of any oil or gas zones underlying or overlying the proposed injection | 2. | Name of the Injection Formation:quaternary alluvium | | intervals and give plugging detail, i.e. sacks of cement or plug(s) usedN/A, infiltration gallery | 3. | Name of Field or Pool (if applicable): NA | | 5. Give the name and depths of any oil or gas zones underlying or overlying the proposed injection | 4. | Has the well ever been perforated in any other zone(s)? List all such perforated | | 5. Give the name and depths of any oil or gas zones underlying or overlying the proposed injection | | | | | 5. | | | | | Give the name and depths of any oil or gas zones underlying or overlying the proposed injection zone in this area: NA | | | | | | | | | ### DISCHARGE PERMIT APPLICATION FORMER GIANT BLOOMFIELD REFINERY BLOOMFIELD, NEW MEXICO **MAY 2020** Prepared for: WESTERN REFINING SOUTHWEST, INC. 111 COUNTY ROAD 4990 BLOOMFIELD, NEW MEXICO 87413 Prepared by: LT ENVIRONMENTAL, INC. 848 East Second Avenue Durango, Colorado 81301 970.385.1096 ### 7.0 EFFLUENT SOURCES The effluent will be derived from groundwater pumped from a series of recovery wells at the Site. Groundwater in several areas of the Site is impacted by petroleum hydrocarbons. However, the recovered water will be treated prior to discharge (see Section 8.0). Table 1 presents the analytical results of the influent and effluent water in 2015 prior to shut-down of the remediation system. Up to 420,000 gallons of water was previously treated and discharged per month. ### 8.0 WATER COLLECTION, TREATMENT, AND DISPOSAL ### 8.1 WATER COLLECTION At the Facility, petroleum hydrocarbon-impacted groundwater and phase-separated hydrocarbons (PSH) may be pumped from the shallow aquifer through a series of recovery wells located within the formerly defined contaminant plume associated with the Site. Locations of previously used recovery wells are shown in Figure 2 and are identified by the acronym GRW (Giant Recovery Well), followed by a numerical designation. There may be solid filters in each recovery well enclosure to control deposition of solid contaminants in the system. Flow meters will be installed to monitor volumes of groundwater recovered. ### 8.2 WATER TREATMENT Recovered water exhibiting dissolved phase contaminants and/or PSH above New Mexico Water Quality Control Commission (NMWQCC) regulatory standards require treatment to within applicable guidelines prior to discharge. A carbon adsorption process formerly was utilized for water treatment prior to discharge and is available for future use, if appropriate. This process removes contaminants from the groundwater by forcing it through tanks containing activated carbon treated to attract the contaminants. Figure 3 presents a simplified representation of the groundwater recovery and treatment system at the Site. Figure 4 details the carbon adsorption tank and associated piping used at the refinery. ### 8.2.1 Tank 102 Depending on the volume recovered, Tank 102 (capacity of 500 barrels, or 21,000 gallons) may be used as an intermediate storage tank for the water treatment system. The tank can store water before it is treated. ### 8.3 WATER DISCHARGE Once treated, water can be discharged to an infiltration trench located within the Site boundary. Infiltration trenches consist of subsurface distribution systems placed within gravel packs. Water infiltrates into the surrounding strata and eventually makes its way to the shallow aquifer. Figure 5 illustrates a typical infiltration gallery. The return of treated water to the aquifer serves to recharge the aquifer. ### 12.0 GEOLOGICAL/HYDROLOGICAL INFORMATION The Facility and Site are located on weathered outcrops of Nacimiento Formation, which is comprised of shales, sandstones and siltstones of Cretaceous-Tertiary age. Immediately to the west of the Facility and on Western's property is a large unnamed arroyo, which is underlain by 30 to 60 feet of Quaternary alluvial sediments. Older Quaternary terrace deposits of cobbles and boulders are observed on the interfluvial ridges adjacent to the arroyo. These terrace deposits may have been utilized as fill on the refinery site. The San Juan River Valley is located south of the site and contains up to several hundred feet of alluvial fill The uppermost zone of ground water in the refinery area is unconfined to partially confined water table unit, which is hosted by the weathered, locally porous sandstones and shales of the Nacimiento Formation and arroyo alluvium. These units merge hydrologically with the San Juan River alluvium to the south. Figures 6 and 7 present generalized cross sections through the refinery site showing the relationship of the arroyo alluvium to bedrock. Major hydrogeologic features of the site are: - An interconnected water table aquifer hosted by both valley and arroyo fill and the upper parts of the Nacimiento Formation; - Ground water at a depth of 30 to 70 feet beneath the land surface; - An upper water table surface generally conforming to topography, with ground water flow from north or northeast to south (towards the San Juan River) through the refinery area; - Minor, local zones of perched ground water lying 5 to 10 feet above the water table. Water levels and floating product thicknesses were measured in all wells at the Site during 2019. A record of these measurements is shown in Table 2. A groundwater contour map was prepared based on the static water levels of all the wells at the Site in November 2019 (Figure 8). This map is representative of static conditions of the aquifer because pumping currently is not being performed on wells at the Site. Where floating product was encountered, the product thickness has been multiplied by 0.8 and added to the measured water elevation. This calculation corrects for the difference in density between floating product and water. ### 12.1 BACKGROUND CONCENTRATIONS As discussed in the *Stage 1 Abatement Plan* prepared for the Site (LTE, 2020), several constituents are present at the Site at concentrations exceeding NMWQCC standards. However, based on concentrations detected in wells hydrogeologically upgradient of the Site, elevated concentrations of several constituents are present due to the offsite migration of contaminants originating from the Lee Acres Landfill Superfund site. Specifically, chloride, chromium, iron, sulfate, and TDS concentrations are present in groundwater at and downgradient of the Lee Acres Landfill at concentrations above NMWQCC standards; however, these constituents were not considered during the remediation-selection process outlined in the *Record of Decision* for the Superfund site (EPA, 2004). In addition to these constituents, manganese (considered a COC for the Lee Acres Landfill Superfund site) also is found at concentrations above NMWQCC standards. These constituents have long been detected at the Site in upgradient wells GBR-32, GBR-48, GBR-49, and GBR-50, located hydrogeologically upgradient of the source areas at the Site (identified on Figure 2) and downgradient of the Lee Acres Landfill Superfund site. In June 2019, LTE performed a statistical analysis using ProUCL software (developed by the United States Environmental Protection Agency, or EPA) to develop "background" concentrations for the following constituents migrating onto the Site: chloride, chromium, iron, manganese, sulfate, and TDS. Table 3 presents the results of the statistical analysis and groundwater analytical results for these constituents detected between 2010 and 2018. Table 3 also presents the cleanup standards (or "remedial goals") established for the Lee Acres Landfill Superfund site in their *Remedial Investigation Report* (BLM, 1992) and *Record of Decision* (EPA, 2004). Appendix B presents the assumptions and inputs used for the statistical analysis. Appendix B also includes a letter prepared by LTE summarizing our findings that was provided to the EPA for their five-year review of the Lee Acres Landfill Superfund site (conducted in 2019). ### 12.2 FLOODING POTENTIAL The greatest threat to flooding of the Facility are the San Juan River (located less than one mile south of the site) and the unnamed arroyo located within the Site itself. History suggests flooding potential of the San Juan River is small. From 1904 until 1976, only 23 flood events (on individual streams, not concurrent on all streams) have been recorded. According to a study conducted by the New Mexico Floodplain Managers Association (2003), previous floods of the San Juan River resulted from general rainstorms, snowmelt augmented by rain, and from cloudburst storms. Rain floods usually occur during the months of September and October. This type of flood results from prolonged heavy rainfall over tributary areas and is characterized by high peak flows of moderate duration. Major floods (recurrence interval of 100 or more years) result from excessive snowmelt runoff generated in the watershed upstream from Bloomfield. Flood flows generated by snowmelt generally occur during the period from May through July. Snowmelt flooding is characterized by moderate peak flows, large volume and long duration, and marked diurnal fluctuation in flow. The refinery is elevated above the floodplain of the San Juan River, decreasing the chance of a river flood, such as the ones described above, from reaching the Facility. The flooding potential of the arroyo is predicted to be low as well. Similar arroyos have been studied in detail near Farmington and are described as ephemeral in character, flowing only during periods of heavy rainfall (New Mexico Floodplain Managers Association, 2003). Furthermore, the arroyo's influence on the Site and Facility has been decreased due to the construction of a new highway located between the arroyo and the refinery. ### FIGURE
5 INFILTRATION TRENCH DESIGN AND CONSTRUCTION SPECIFICATIONS FORMER GIANT BLOOMFIELD REFINERY SW SEC 22 & NW SEC 27 T29N R12W SAN JUAN COUNTY, NEW MEXICO WESTERN REFINING SOUTHWEST, INC. ### Trench Top View Cut Away at the Infiltration Line Depth ### Cross Section of a Typical Infiltration Trench 2" infiltration lines are designed to handle approximately 10 gal/min each with a maximum length of 100" HORIZONTAL SCALE 1" = 10 FEET VERTICAL SCALE 1" = 90 FEET FIGURE 7 CROSS SECTION B-B' FORMER GIANT BLOOMFIELD REFINERY SWSW SEC 22 &WNW SEC 27 T29N R12W WESTERN REFINING SOUTHWEST, INC. GROUNDWATER ELEVATION OCTOBER 2017 BELOW GROUND SURFACE TOTAL DEPTH IN FEET BGS NACIMIENTO SANDSTONE SAND ## TABLE 1 2015 INFUENT AND EFFLUENT ANALYTICAL RESULTS ### FORMER GIANT BLOOMFIELD REFINERY WESTERN REFINING SOUTHWEST, INC. SAN JUAN COUNTY, NEW MEXICO | | NMWOCC | | Influent | Fffluent | Influent | Fffluent | Influent | Fffluent | Influent | Fffluent | |--------------------------------|----------|------|----------|----------|----------|----------|----------|----------|----------|----------| | Analyte | Standard | Unit | 27-Jan | 27-Jan | 8-Apr | 8-Apr | 24-Jul | 24-Jul | 3-Aug | 3-Aug | | USEPA Method 8260B: Volatiles | | | | | | | | | | | | benzene | 10 | ng/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | toluene | 750 | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | ethylbenzene | 750 | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | methyl tert-butyl ether (MTBE) | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | 1,2,4-trimethylbenzene | 620 | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | 1,3,5-trimethylbenzene | NE | µg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | 1,2-dichloroethane (EDC) | 10 | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | 1,2-dibromoethane (EDB) | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | naphthalene | NE | hg/L | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | | 1-methylnaphthalene | NE | hg/L | <4.0 | <4.0 | <4.0 | <4.0 | <4.0 | <4.0 | <4.0 | <4.0 | | 2-methylnaphthalene | NE | hg/L | <4.0 | <4.0 | <4.0 | <4.0 | <4.0 | <4.0 | <4.0 | <4.0 | | acetone | NE | hg/L | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | | bromobenzene | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | bromodichloromethane | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | bromoform | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | bromomethane | NE | hg/L | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | | 2-butanone | NE | hg/L | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | | carbon disulfide | NE | hg/L | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | | carbon tetrachloride | 10 | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | chlorobenzene | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | chloroethane | NE | hg/L | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | | chloroform | 100 | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | chloromethane | NE | hg/L | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | | 2-chlorotoluene | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | 4-chlorotoluene | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | cis-1,2-DCE | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | cis-1,3-dichloropropene | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | 1,2-dibromo-3-chloropropane | NE | µg/L | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | | dibromochloromethane | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | dibromomethane | NE | µg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | 1,2-dichlorobenzene | NE | µg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | 1,3-dichlorobenzene | NE | µg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | 1,4-dichlorobenzene | NE | µg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | dichlorodifluoromethane | NE | µg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | 1,1-dichloroethane | 25 | µg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | 1,1-dichloroethene | 2 | µg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | 1,2-dichloropropane | NE | µg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | 1,3-dichloropropane | NE | µg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | 2,2-dichloropropane | NE | µg/L | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | | 1,1-dichloropropene | NE | µg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | ## 2015 INFUENT AND EFFLUENT ANALYTICAL RESULTS ### FORMER GIANT BLOOMFIELD REFINERY WESTERN REFINING SOUTHWEST, INC. SAN JUAN COUNTY, NEW MEXICO | 4-1-0-1-V | NMWQCC | 11 | Influent | Effluent | Influent | Effluent | Influent | Effluent | Influent | Effluent | |---------------------------|----------|-------|----------|----------|----------|----------|----------|----------|----------|----------| | Analyte | Standard | ONIC | 27-Jan | 27-Jan | 8-Apr | 8-Apr | 24-Jul | 24-Jul | 3-Aug | 3-Aug | | hexachlorobutadiene | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | 2-hexanone | NE | hg/L | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | | isopropylbenzene | NE | ng/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | 4-isopropytoluene | NE | ng/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | 4-methyl-2-pentanone | NE | hg/L | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | | methylen e chloride | 100 | hg/L | 0.6> | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | | n-butylbenzene | NE | hg/L | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | | n-propylbenzene | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | sec-butylbenzene | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | styrene | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | tert-butylbenzene | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | 1,1,1,2-tetrachloroethane | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | 1,1,2,2-tetrachloroethane | 10 | hg/L | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | | tetrachloroethene (PCE) | 20 | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | trans-1,2-DCE | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | trans-1,3-dichloropropene | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | 1,2,3-trichlorobenzene | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | 1,2,4-trichlorobenzene | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | 1,1,1-trichloroethane | 09 | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | 1,1,2-trichloroethane | 10 | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | trichloroethene (TCE) | 100 | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | trichlorofluoromethane | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | 1,2,3-trichloropropane | NE | T/Brl | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | | vinyl chloride | 1 | 1/8rl | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | xylenes, total | 620 | hg/L | <1.5 | <1.5 | <1.5 | <1.5 | <1.5 | <1.5 | <1.5 | <1.5 | $\ensuremath{\text{BOLD}}$ - indicates concentration exceeds the NMWQCC standard mg/L militares contained and mg/L militares per liter ME - not established NMWQCC - New Mexico Water Quality Control Commission NT - not tested ug/L - micrograms per liter USEPA - United States Environmental Protection Agency # TABLE 1 2019 ANNUAL COMPLIANCE - GROUNDWATER LABORATORY ANALYTICAL RESULTS ### FORMER GIANT BLOOMFIELD REFINERY WESTERN REFINING SOUTHWEST, INC. SAN JUAN COUNTRY, NEW MEXICO | | 0000000 | | 2 74.00 | 2,74,00 | CBB 47 | 240 | 00 000 | 200 24 | 2000 | 0000 | 07 000 | 02 000 | 52 000 | 0 3113 | |--------------------------------|----------|------|---------|---------|--------|-------|--------|--------|-------|-------|--------|--------|--------|--------| | Analyte | Standard | Unit | 7-Nov | 7-Nov | 5-Nov | 6-Nov | 6-Nov | 7-Nov | 5-Nov | 5-Nov | 5-Nov | 5-Nov | 5-Nov | 5-Nov | | USEPA Method 8260B - Volatiles | | | | | | | | | | | | | | | | benzene | 10 | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <2.5 | | toluene | 750 | µg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | ethylbenzene | 750 | Hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | 18 | | methyl tert-butyl ether (MTBE) | R | HB/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | 1,2,4-trimethylbenzene | 620 | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | 1,3,5-trimethylbenzene | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | 1,2-dichloroethane (EDC) | 10 | hg/L | <1.0 | <1.0 | <1.0 | 1.6 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | 1,2-dibromoethane (EDB) | NE. | µg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | naphthalene | NE | hg/L | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <10 | | 1-methylnaphthalene | R | Hg/L | <4.0 | <4.0 | <4.0 | <4.0 | <4.0 | <4.0 | <4.0 | <4.0 | <4.0 | <4.0 | <4.0 | <20 | | 2-methylnaphthalene | N | Hg/L | <4.0 | <4.0 | <4.0 | <4.0 | <4.0 | <4.0 | <4.0 | <4.0 | <4.0 | <4.0 | <4.0 | <20 | | acetone | NE | µg/L | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <50 | | bromobenzene | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0
 <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | bromodichloromethane | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | bromoform | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | bromomethane | NE | hg/L | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <15 | | 2-butanone | R | µg/L | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <50 | | carbon disulfide | NE | Hg/L | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <50 | | carbon tetrachloride | 10 | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | chlorobenzene | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | chloroethane | NE | hg/L | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <10 | | chloroform | 100 | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | chloromethane | NE | hg/L | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <15 | | 2-chlorotoluene | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | 4-chlorotoluene | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | cis-1,2-DCE | NE. | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | cis-1,3-dichloropropene | NE. | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | 1,2-dibromo-3-chloropropane | NE | √g/l | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <10 | | dibromochloromethane | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | dibromomethane | Ä | µg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | 1,2-dichlorobenzene | NE. | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | 1,3-dichlorobenzene | NE. | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | 1,4-dichlorobenzene | N. | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | dichlorodifluoromethane | NE. | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | 1,1-dichloroethane | 25 | µg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | 1,1-dichloroethene | 2 | µg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | 1,2-dichloropropane | NE | µg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | 1,3-dichloropropane | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | 2,2-dichloropropane | NE | µg/L | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <10 | | | | | | | | | | | | | | | | | Table 3 Page 1 of 4 # TABLE 1 2019 ANNUAL COMPLIANCE - GROUNDWATER LABORATORY ANALYTICAL RESULTS ## FORMER GIANT BLOOMFIELD REFINERY WESTERN REFINING SOUTHWEST, INC. SAN JUAN COUNTRY, NEW MEXICO | | NMWOCC | | GRW-3 | GRW-6 | GBR-17 | GBR-24D | GBR-30 | GBR-31 | GBR-32 | GBR-48 | GBR-49 | GBR-50 | GBR-52 | SHS-9 | |---|------------------|------|-------|-------|--------|---------|--------|--------|--------|--------|--------|--------|---------------|-------| | Analyte | Standard | Unit | 7-Nov | 7-Nov | 5-Nov | 6-Nov | 6-Nov | 7-Nov | 5-Nov | 5-Nov | 5-Nov | 5-Nov | 5-Nov | 5-Nov | | 1,1-dichloropropene | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | hexachlorobutadiene | NE | µg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | 2-hexanone | R | µg/L | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <50 | | isopropylbenzene | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | 6.1 | | 4-isopropytoluene | R | Hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | 4-methyl-2-pentanone | R | HB/L | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <50 | | methylene chloride | 100 | hg/L | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <15 | | n-butylbenzene | NE | µg/L | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <3.0 | <15 | | n-propylbenzene | NE. | Hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | 8.1 | | sec-butylbenzene | R | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | styrene | R | Hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | tert-butylbenzene | R | Hg/L | 2.7 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | 1,1,1,2-tetrachloroethane | R | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | 1,1,2,2-tetrachloroethane | 10 | Hg/L | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <10 | | tetrachloroethene (PCE) | 20 | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | trans-1,2-DCE | R | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | trans-1,3-dichloropropene | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | 1,2,3-trichlorobenzene | NE. | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | 1,2,4-trichlorobenzene | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | 1,1,1-trichloroethane | 09 | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | 1,1,2-trichloroethane | 10 | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | trichloroethene (TCE) | 100 | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | trichlorofluoromethane | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | 1,2,3-trichloropropane | NE | hg/L | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <10 | | vinyl chloride | 1 | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <5.0 | | xylenes, total | 620 | hg/L | <1.5 | <1.5 | <1.5 | <1.5 | <1.5 | <1.5 | <1.5 | <1.5 | <1.5 | <1.5 | <1.5 | <7.5 | | USEPA Method 8270C: Polycylic Aromatic Hydrocarbons | natic Hydrocarbo | su | | | | | | | | | | | | | | naphthalene | 30 | η/βη | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | IN | LN | IN | LN | LN | LN | | 1-methylnaphthalene | J. | η/βη | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | LN | NT | LN | LN | TN | LN | | 2-methylnaphthalene | NE | hg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | LN | L | LN | LN | LN | LN | | acenaphthylene | PE | hg/L | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | LN | LN | LN | LN | LN | L | | acenaphthene | J. | hg/L | 0.98 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | LN | NT | LN | LN | LN | L | | fluorene | NE | hg/L | 4.3 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | L | N | LN | LN | LN | L | | phenanthrene | J. | hg/L | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | LN | NT | TN | LN | LN | LN | | anthracene | NE | hg/L | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | N | NT | LN | LN | LN | L | | fluoranthene | NE | hg/L | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | L | LN | LN | LN | LN | LN | | pyrene | NE | hg/L | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | LN | NT | LN | LN | LN | L | | benz(a)anthracene | NE | hg/L | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | LN | LN | LN | L | LN | Ł | | chrysene | NE | hg/L | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | L | L | LN | L | LN | L | Table 3 Page 2 of 4 TABLE 1 2019 ANNUAL COMPLIANCE - GROUNDWATER LABORATORY ANALYTICAL RESULTS ## FORMER GIANT BLOOMFIELD REFINERY WESTERN REFINING SOUTHWEST, INC. SAN JUAN COUNTRY, NEW MEXICO | | NMWQCC | : | GRW-3 | GRW-6 | GBR-17 | GBR-24D | GBR-30 | GBR-31 | GBR-32 | GBR-48 | GBR-49 | GBR-50 | GBR-52 | 6-SHS | |-----------------------------------|----------|------|-------|-------|--------|---------|--------|--------|-----------|----------|-----------|----------|--------|-------| | Analyte | Standard | OUIC | 7-Nov | 7-Nov | 5-Nov | 6-Nov | 6-Nov | 7-Nov | 5-Nov | 5-Nov | 5-Nov | 5-Nov | 5-Nov | 5-Nov | | benzo(b)fluoranthene | NE | hg/L | <0.50 | <0.50 | <0.50 | 05.0> | <0.50 | <0.50 | LN | LN | LN | LN | LN | LN | | benzo(k)fluoranthene | NE. | hg/L | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | LN | LN | LN | LN | LN | LN | | benzo(a)pyrene | 0.7 | hg/L | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | LN | LN | LN | LN | LN | LN | | dibenz(a,h)anthracene | NE. | hg/L | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | LN | LN | LN | LN | LN | LN | | benzo(g,h,i)perylene | N. | hg/L | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | LN | LN | LN | LN | LN | LN | | indeno(1,2,3-cd)pyrene | NE. | hg/L | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | LN | LN | LN | LN | LN | LN | | USEPA Method 300.0: Anions | | | | | | | | | | | | | | | | bromide | NE | mg/L | 0.53 | <0.50 | <0.50 | <0.50 | <0.50 | 0.98 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | 0.78 | | chloride | 250 | mg/L | 100 | 94 | 55 | 170 | 280 | 290 | 190 | 270 | 97 | 69 | 09 | 130 | | sulfate | 009 | mg/L | 450 | 1,200 | 1,200 | 2,100 | 1,700 | 1,600 | 1,700 | 2,000 | 1,500 | 1,700 | 1,500 | 35 | | fluoride | 1.6 | mg/L | <0.50 | 09:0 | <0.50 | 0.58 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | 0.70 | |
nitrate + nitrite as N | NE | mg/L | <0.50 | <0.50 | 5.2 | <1.0 | 1.4 | <0.50 | <1.0 | 1.9 | <1.0 | 6.9 | 6.9 | <1.0 | | phosphorus, orthophosphate (As P) | NE | mg/L | <2.5 | <2.5 | <2.5 | <2.5 | <2.5 | <2.5 | <2.5 | <2.5 | <2.5 | <2.5 | <2.5 | <2.5 | | USEPA Method 200.7: Total Metals | | | | | | | | | | | | | | | | barium | NE | mg/L | IN | LN | LN | LN | LN | LN | 0.034 | 0.31 | 0.021 | 0.018 | LN | LN | | beryllium | NE | mg/L | IN | LN | NT | LN | N | L | <0.010 | 0.0038 | <0.0020 | <0.0020 | LN | LN | | cadmium | 0.01 | mg/L | IN | LN | NT | LN | N | N | <0.010 | <0.0020 | <0.0020 | <0.0020 | LN | LN | | calcium | NE | mg/L | 180 | 370 | 450 | 470 | 540 | 230 | 470 | 220 | 400 | 530 | 470 | 150 | | chromium | 0.05 | mg/L | LN | LN | NT | LN | L | LN | 0.097 | 0.23 | 0.10 | 0.039 | LN | LN | | iron | 1.0 | mg/L | 2.3 | 8.0 | 120 | 8.3 | 43 | 15 | 3.6 | 48 | 1.4 | 2.2 | 1.4 | 74 | | magnesium | NE | mg/L | 53 | 68 | 53 | 40 | 25 | 49 | 48 | 85 | 37 | 68 | 98 | 36 | | manganese | 0.2 | mg/L | 1.4 | 5.9 | 3.8 | 1.4 | 4.2 | 2.7 | 2.1 | 1.8 | 0.87 | 0.14 | 0.026 | 0.91 | | nickel | 0.2 | mg/L | LN | LN | NT | IN | LN | LN | 0.074 | 860'0 | 0.12 | 0.055 | LN | LN | | potassium | N. | mg/L | <5.0 | 2.1 | 9.4 | 7.0 | 7.0 | 3.4 | <5.0 | 10 | 2.9 | 2.3 | 1.2 | 4.7 | | silver | 0.05 | mg/L | LN | LN | LN | LN | N | LN | <0.025 | <0.0050 | 0.0063 | 0.0079 | LN | LN | | sodium | NE | mg/L | 480 | 380 | 240 | 7.0 | 490 | 430 | 480 | 260 | 410 | 330 | 310 | 450 | | zinc | 10 | mg/L | NT | LN | NT | LN | LN | LN | <0.050 | 0.097 | 0.013 | <0.010 | LN | LN | | USEPA Method 200.8: Total Metals | | | | | | | | | | | | | | | | antimony | JN | mg/L | LN | LN | LN | LN | LN | LN | <0.0050 | <0.0010 | <0.0010 | <0.0010 | LN | LN | | arsenic | 0.1 | mg/L | LN | LN | NT | LN | LN | LN | <0.0010 | 9/00.0 | <0.0010 | <0.0010 | LN | LN | | copper | 1.0 | mg/L | IN | LN | NT | LN | L | LN | 0.0085 | 0.048 | 0.0043 | 0.0024 | LN | LN | | lead | 0.05 | mg/L | LN | LN | NT | LN | LN | LN | 0.0012 | 0.031 | 0.00083 | 96000'0 | LN | LN | | selenium | 0.05 | mg/L | LN | LN | NT | IN | LN | LN | 0.0029 | 0.018 | 0.0011 | 0.0083 | LN | LN | | thallium | NE | mg/L | NT | LN | NT | LN | LN | LN | <0.00050 | 0.00053 | <0.00050 | 05000.0> | LN | LN | | USEPA Method 245.1: Mercury | | | | | | | | | | | | | | | | mercury | 0.002 | mg/L | LN | LN | NT | LN | LN | LN | <0.000020 | <0.00020 | <0.000020 | <0.00020 | LN | LN | Table 3 Page 3 of 4 # TABLE 1 2019 ANNUAL COMPLIANCE - GROUNDWATER LABORATORY ANALYTICAL RESULTS ### FORMER GIANT BLOOMFIELD REFINERY WESTERN REFINING SOUTHWEST, INC. SAN JUAN COUNTRY, NEW MEXICO | | NMMGCC | 4 1 1 | GRW-3 | GRW-6 | GBR-17 | GBR-24D | GBR-30 | GBR-31 | GBR-32 | GBR-48 | GBR-49 | GBR-50 | GBR-52 | 6-SHS | |---|------------------|------------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------| | Analyte | Standard | Onic | 7-Nov | 7-Nov | 5-Nov | - Nov | -Nov | 7-Nov | 5-Nov | 5-Nov | 5-Nov | 5-Nov | 5-Nov | 5-Nov | | SM 2340B: Hardness | | | | | | | | | | | | | | | | hardness (as CaCO3) | NE | mg/L | 089 | 1,100 | 1,300 | 1,300 | 1,600 | 1,500 | 1,400 | 1,600 | 1,200 | 1,500 | 1,300 | 520 | | USEPA Method SM 2320B: Alkalinity | | | | | | | | | | | | | | | | alkalinity, total (As CaCO3) | NE | mg/L CaCO3 | 1,083 | 342.8 | 208.8 | 238.8 | 259.1 | 300.8 | 267.7 | 272.6 | 244.2 | 195.3 | 210.1 | 1128 | | carbonate | NE | mg/L CaCO3 | <2.000 | <2.000 | <2.000 | <2.000 | <2.000 | <2.000 | <2.000 | <2.000 | <2.000 | <2.000 | <2.000 | <5.000 | | bicarbonate | NE | mg/L CaCO3 | 1,083 | 342.8 | 208.8 | 238.8 | 259.1 | 300.8 | 267.7 | 272.6 | 244.2 | 195.3 | 210.1 | 1128 | | USEPA Method 120.1: Specific Conductance | ctance | | | | | | | | | | | | | | | specific conductance | NE | mp/soyum | 2,900 | 3,100 | 2,700 | 4,300 | 4,000 | 4,000 | 3,900 | 4,400 | 3,400 | 3,400 | 3,100 | 2,500 | | USEPA Method SM4500-H+B: pH | | | | | | | | | | | | | | | | Hd | 6-9 | pH units | 7.89 | 7.97 | 7.75 | 78.7 | 7.76 | 7.75 | 7.73 | 99'. | 7.58 | 7.65 | 7.83 | 7.91 | | USEPA Method SM2540C Modified: Total Dissolved Solids | otal Dissolved S | solids | | | | | | | | | | | | | | total dissolved solids | 1,000 | mg/L | 1,990 | 2,470 | 2,150 | 3,420 | 3,040 | 3,220 | 3,200 | 3,450 | 2,710 | 2,910 | 2,600 | 1,470 | Notes: µg/L - micrograms per liter BOLD - indicates concentration exceeds the NMWQCC standard mg/L - milligrams per liter NE - not established NMWQCC - New Mexico Water Quality Control Commission NT - not tested USEPA - United States Environmental Protection Agency Page 4 of 4 | Oil/Gas Well ID | API Number | SPUD Date | Plug Date | Effective Date | Last Produced | Last Inspection | |----------------------------------|--------------|------------|------------|----------------|---------------|-----------------| | GALLEGOS CANYON UNIT #153 | 30-045-07908 | 1964-03-16 | 1996-09-24 | 2000-01-01 | 1995-03-31 | 2000-08-15 | | GALLEGOS CANYON UNIT #510 | 30-045-28311 | 1991-01-22 | 2015-12-22 | 2003-02-18 | 2015-06-01 | 2013-11-26 | | PRE-ONGARD WELL #069 | 30-045-07906 | 1954-09-14 | 2013-11-12 | 2000-01-01 | 1999-12-31 | 2013-11-08 | | PRE-ONGARD WELL #001 | 30-045-07843 | 1999-12-31 | 1944-05-20 | 1940-07-10 | 1999-12-31 | 1999-12-31 | | GALLEGOS CANYON UNIT #150 | 30-045-07951 | 1964-03-25 | 1994-02-23 | 2000-01-01 | 1989-03-31 | 2006-01-24 | | GALLEGOS CANYON UNIT #154E | 30-045-24168 | 1980-03-11 | 1999-12-31 | 2020-04-02 | 2020-04-01 | 2020-03-03 | | GALLEGOS CANYON UNIT #542 | 30-045-29309 | 1996-10-08 | 2011-12-07 | 1996-10-04 | 2010-10-01 | 2016-11-15 | | GALLEGOS CANYON UNIT #598 | 30-045-31600 | 2003-06-07 | 1999-12-31 | 2020-04-02 | 2020-04-01 | 2019-01-29 | | GALLEGOS CANYON UNIT #533 | 30-045-28733 | 1992-10-06 | 1999-12-31 | 2020-06-30 | 2017-11-01 | 2019-01-29 | | GALLEGOS CANYON UNIT #578 | 30-045-30678 | 2001-09-04 | 2004-07-06 | 2001-06-21 | 2002-08-01 | 2004-03-05 | | | | | | | | | | Well Type | Well Status | OGRID | OGRID Name | OCD District
Code | OCD District Office County FIPS Code | County FIPS Code | |-----------|-------------------------|--------|-------------------------------|----------------------|--------------------------------------|------------------| | Gas | Plugged (site released) | 778 | BP AMERICA PRODUCTION COMPANY | 8 | Aztec | 45 | | Gas | Plugged (site released) | 778 | BP AMERICA PRODUCTION COMPANY | 3 | Aztec | 45 | | Gas | Plugged (site released) | 214263 | PRE-ONGARD WELL OPERATOR | 3 | Aztec | 45 | | Gas | Plugged (site released) | 214263 | PRE-ONGARD WELL OPERATOR | 8 | Aztec | 45 | | Gas | Plugged (site released) | 778 | BP AMERICA PRODUCTION COMPANY | 3 | Aztec | 45 | | Gas | Active | 329736 | SIMCOE LLC | 3 | Aztec | 45 | | Gas | Plugged (site released) | 778 | BP AMERICA PRODUCTION COMPANY | 3 | Aztec | 45 | | Gas | Active | 329736 | SIMCOE LLC | 3 | Aztec | 45 | | Gas | Active | 329736 | SIMCOE LLC | 3 | Aztec | 45 | | Gas | Plugged (site released) | 778 | BP AMERICA PRODUCTION COMPANY | 8 | Aztec | 45 | | PLSS Location
(ULSTR) | tion Y-Coordinate
) (Latitude) | X-Coordinate
(Longitude) | Datum | Well Bore
Direction | *not used* | Lease Type | |--------------------------|-----------------------------------|-----------------------------|-------|------------------------|------------|------------| | B-28-29N-12W | 12W 36.7020035 | -108.1014709 | NAD83 | > | No Data | Federal | | B-28-29N-12W | 12W 36.7019768 | -108.1012802 | NAD83 | > | No Data | Federal | | A-28-29N-12W | 12W 36.7021446 | -108.0990982 | NAD83 | > | No Data | Federal | | I-28-29N-12W | 12W 36.6966934 | -108.0967407 | NAD83 | No Data | No Data | Private | | M-22-29N-12W | 12W 36.7071228 | -108.092926 | NAD83 | > | No Data | Private | | E-27-29N-12W | 12W 36.7003708 | -108.0928497 | NAD83 | > | No Data | Private | | E-27-29N-12W | 12W 36.7005348 | -108.0928345 | NAD83 | > | No Data | Private | | M-22-29N-12W | 12W 36.7072868 | -108.0928574 | NAD83 | > | No Data | Private | | L-22-29N-12W | 12W 36.7097511 | -108.0915909 | NAD83 | > | No Data | Federal | | B-27-29N-12W | 12W 36.7024193 | -108.0851288 | NAD83 | > | No Data | Federal | | | | | | | | | | Associated Pools | [71599] BASIN DAKOTA (PRORATED GAS) | [79680] KUTZ PICTURED CLIFFS, WEST (GAS); [82920] PINON FRUITLAND SAND, NORTH (GAS) | [79680] KUTZ PICTURED CLIFFS, WEST (GAS) | No Data | [71599] BASIN DAKOTA (PRORATED GAS) | [71599] BASIN DAKOTA (PRORATED GAS) | [79680] KUTZ PICTURED CLIFFS, WEST (GAS) | [82329] OTERO CHACRA (GAS) | [79680] KUTZ PICTURED CLIFFS, WEST (GAS) | [71629] BASIN FRUITLAND COAL (GAS) | |------------------|-------------------------------------|---|--|---------|-------------------------------------|-------------------------------------|--|----------------------------|--|------------------------------------| | Vertical Depth | 6021 | 1456 | 1372 | No Data | 6113 | 6106 | 1600 | 2673 | 1700 | 1620 | | Measured Depth | No Data | 1456 | 1372 | No Data | 66666 | 6106 | 1600 | 2673 | 1700 | 1620 | ### **Link to Well Details** https://wwwapps.emnrd.state.nm.us/ocd/ocdpermitting/Data/WellDetails.aspx?api=30-045-07908&GISReferenceSource=ArcGISOnline https://wwwapps.emnrd.state.nm.us/ocd/ocdpermitting/Data/WellDetails.aspx?api=30-045-28311&GISReferenceSource=ArcGISOnline https://wwwapps.emnrd.state.nm.us/ocd/ocdpermitting/Data/WellDetails.aspx?api=30-045-07906&GISReferenceSource=ArcGISOnline https://wwwapps.emnrd.state.nm.us/ocd/ocdpermitting/Data/WellDetails.aspx?api=30-045-07843&GISReferenceSource=ArcGISOnline https://wwwapps.emnrd.state.nm.us/ocd/ocdpermitting/Data/WellDetails.aspx?api=30-045-07951&GISReferenceSource=ArcGISOnline
https://wwwapps.emnrd.state.nm.us/ocd/ocdpermitting/Data/WellDetails.aspx?api=30-045-24168&GISReferenceSource=ArcGISOnline https://wwwapps.emnrd.state.nm.us/ocd/ocdpermitting/Data/WellDetails.aspx?api=30-045-31600&GISReferenceSource=ArcGISOnline https://wwwapps.emnrd.state.nm.us/ocd/ocdpermitting/Data/WellDetails.aspx?api=30-045-28733&GISReferenceSource=ArcGISOnline https://wwwapps.emnrd.state.nm.us/ocd/ocdpermitting/Data/WellDetails.aspx?api=30-045-30678&GISReferenceSource=ArcGISOnline https://wwwapps.emnrd.state.nm.us/ocd/ocdpermitting/Data/WellDetails.aspx?api=30-045-29309&GISReferenceSource=ArcGISOnline | | Subdivision Name | SUBURBAN HEIGHTS | LEE ACRES #2 | N/A | LEE ACRES | LEE ACRES | N/A | F. L. LEE NO. 2 | SUBURBAN HEIGHTS | SUBURBAN HEIGHTS | SUBURBAN | SUBURBAN HEIGHTS | N/A | N/A | SUBURBAN HEIGHTS | SUBURBAN HEIGHTS | LEE ACRES | SUBURBAN HEIGHTS | SUBURBAN HEIGHTS | SUBURBAN HEIGHTS | LEE ACRES #2 | N/A | N/A | N/A | N/A | N/A | |------------------------|-------------------------|------------------|--------------|------------|--------------------|------------|----------|-----------------|------------------|------------------|----------|------------------|------------------|------------------|--------------------|------------------|-------------|----------|------------------|------------------|-----------|------------------|------------------|------------------|--------------|----------|-----------------|-----------------|------------|------------| | | Use of Well | DOMESTIC | DOMESTIC | DOMESTIC | DOMESTIC/LIVESTOCK | DOMESTIC DOMESTIC/LIVESTOCK | DOMESTIC | IRRIGATION | DOMESTIC COMMERCIAL | COMMERCIAL | COMMERCIAL | COMMERCIAL | | Estimated Yield | (gallons per
minute) | 10 | 20 | 0 | 15 | 20 | 0 | 0 | 8 | 20 | 0 | 0 | 40 | 20 | 30 | 12 | 0 | 0 | 10 | 0 | 0 | 7 | 10 | 15 | 7 | 0 | 0 | 0 | 20 | 9 | | | Depth to Water | 48 | 11 | 28 | 14 | 10 | N/A | N/A | 30 | 20 | N/A | N/A | 17 | 24 | 25 | 30 | N/A | N/A | 30 | N/A | N/A | 30 | 32 | 31 | 9 | N/A | N/A | N/A | N/A | N/A | | | Well Depth | 87 | 25 | 35 | 32 | 25 | N/A | 20 | 55 | 51 | N/A | N/A | 35 | 39 | 45 | 41 | N/A | N/A | 63 | N/A | N/A | 20 | 62 | 41 | 29 | N/A | N/A | N/A | 400 | 80 | | | Installation Date | 1983-05-07 | 1983-05-25 | 1978-03-01 | 1979-04-01 | 1983-04-02 | N/A | N/A | 1978-10-29 | 1979-07-05 | N/A | N/A | 1978-06-03 | 1998-11-07 | 1984-05-03 | 2003-07-20 | N/A | N/A | 1982-06-20 | N/A | N/A | 1978-07-22 | 1995-07-30 | 2004-02-08 | 1987-06-17 | N/A | N/A | N/A | N/A | N/A | | | Water Well ID | SJ-01700 | SJ-01728 | SJ-00572 | SJ-00904 | SJ-01690 | SJ-00663 | SJ-02864 | SJ-00827 | SJ-01008 | SJ-01622 | SJ-02125 | SJ-00666 | SJ-02870 | SJ-01828 | SJ-03384 | SP-01915-AB | SJ-02202 | SJ-01590 | SJ-00647 | SJ-02229 | SJ-00726 | SJ-02654 | SJ-03422 | SJ-02118 | SJ-00502 | SJ-02131-EXPL 2 | SJ-02131-EXPL 1 | SJ-02131-S | SJ-02131 | | Water Well ID | Casing Size | UTM
Zone | Easting | Northing | Datum | UTM Source | Groundwater Basin | |-----------------|-------------|-------------|----------|-----------|-------|------------|-------------------| | SJ-01700 | 6.63 | 13 | 223627.0 | 4065598.0 | NAD83 | ŋ | San Juan | | SJ-01728 | 00.9 | 13 | 223627.0 | 4065598.0 | NAD83 | ŋ | San Juan | | SJ-00572 | 0.00 | 13 | 223627.0 | 4065598.0 | NAD83 | ŋ | San Juan | | SJ-00904 | 6.63 | 13 | 223526.0 | 4065697.0 | NAD83 | ŋ | San Juan | | SJ-01690 | 00.9 | 13 | 223526.0 | 4065697.0 | NAD83 | ŋ | San Juan | | SJ-00663 | 0.00 | 13 | 223323.0 | 4065711.0 | NAD83 | ŋ | San Juan | | SJ-02864 | 00.9 | 13 | 223323.0 | 4065711.0 | NAD83 | ŋ | San Juan | | SJ-00827 | 6.63 | 13 | 223537.0 | 4065905.0 | NAD83 | ŋ | San Juan | | SJ-01008 | 00.9 | 13 | 223537.0 | 4065905.0 | NAD83 | ŋ | San Juan | | SJ-01622 | 0.00 | 13 | 223737.0 | 4065905.0 | NAD83 | ŋ | San Juan | | SJ-02125 | 0.00 | 13 | 223737.0 | 4065905.0 | NAD83 | ŋ | San Juan | | SJ-00666 | 0.00 | 13 | 223737.0 | 4065905.0 | NAD83 | ŋ | San Juan | | SJ-02870 | 00.9 | 13 | 223737.0 | 4065905.0 | NAD83 | ŋ | San Juan | | SJ-01828 | 00.9 | 13 | 223737.0 | 4065905.0 | NAD83 | ŋ | San Juan | | SJ-03384 | 00.9 | 13 | 223737.0 | 4065905.0 | NAD83 | ŋ | San Juan | | SP-01915-AB | 0.00 | 13 | 224039.0 | 4065988.0 | NAD83 | ŋ | San Juan | | SJ-02202 | 0.00 | 13 | 224039.0 | 4065988.0 | NAD83 | ŋ | San Juan | | SJ-01590 | 00.9 | 13 | 223638.0 | 4066006.0 | NAD83 | ŋ | San Juan | | SJ-00647 | 0.00 | 13 | 223638.0 | 4066006.0 | NAD83 | ŋ | San Juan | | SJ-02229 | 0.00 | 13 | 223638.0 | 4066006.0 | NAD83 | ŋ | San Juan | | SJ-00726 | 6.63 | 13 | 223537.0 | 4066105.0 | NAD83 | ŋ | San Juan | | SJ-02654 | 9009 | 13 | 223537.0 | 4066105.0 | NAD83 | ŋ | San Juan | | SJ-03422 | 00.9 | 13 | 223737.0 | 4066105.0 | NAD83 | ŋ | San Juan | | SJ-02118 | 7.00 | 13 | 223839.0 | 4066207.0 | NAD83 | ŋ | San Juan | | SJ-00502 | 0.00 | 13 | 224052.0 | 4066393.0 | NAD83 | ŋ | San Juan | | SJ-02131-EXPL 2 | 0.00 | 13 | 223651.0 | 4066408.0 | NAD83 | ŋ | San Juan | | SJ-02131-EXPL 1 | 0.00 | 13 | 223651.0 | 4066408.0 | NAD83 | ŋ | San Juan | | SJ-02131-S | 8.63 | 13 | 223762.0 | 4066908.0 | NAD83 | ŋ | San Juan | | SJ-02131 | 00.9 | 13 | 223762.0 | 4066908.0 | NAD83 | ŋ | San Juan | | | | | | | | | | | Zip | 87401 | 87401 | 87401 | 87401 | 87401 | 87401 | 87401 | 87401 | 87401 | 87401 | 87401 | 87401 | 87401 | 87401 | 87402 | 87401 | 87499 | 87401 | 87415 | 87410 | 87401 | 87401 | 87401 | 87499 | 87413 | 85020 | 85020 | 85020 | 85020 | |---------------|--------------|------------|------------|-----------------|----------------|----------------------|--------------|------------------------------|---------------|--------------------------|-----------------------|---------------|----------------|---------------------|-----------------------|--------------------|----------------|----------------|--------------------|-----------------|-----------------|----------------|------------|----------------|------------|----------------------------|----------------------------|----------------------------|----------------------------| | State | Σ | Z | ΑZ | AZ | AZ | AZ | | City | FARMINGTON FLORA VISTA | FARMINGTON | FARMINGTON | FARMINGTON | FARMINGTON | FARMINGTON | BLOOMFIELD | PHOENIX | PHOENIX | PHOENIX | PHOENIX | | Address | CPO BOX 7142 | CPO 7120 | BOX 120-T | RT. 3, BOX 126K | P. O. BOX 7134 | ST. RT. 3, BOX 119-B | 30 ROAD 5474 | 1220 FAIRGROUNDS RD., SP. 58 | P. O. BOX 215 | LEE ACRES CPO - BOX 7131 | C.P.O. 7043 LEE HERES | 517 N. DUSTIN | P. O. BOX 5631 | ROUTE 3, BOX 525-10 | 4304 KNOLLCREST DRIVE | 5803 US HIGHWAY 64 | P. O. BOX 5075 | RT. 3, BOX 536 | BOX 672 | C.P.O. BOX 7222 | RT. 3, BOX 125C | P. O. BOX 3468 | 9B CR 5467 | P. O. BOX 2193 | BOX 1214 | 7227 N 16TH STREET BLDG. A | | First Name | DOUGLAS A. | CHARLIE W. | JOE | REYNALDO W. | DORIS | RAYMOND M. | ALBINO | ALFONSO J. | CHARLES | KENNETH | MICHAEL & LAURETTE | RICHARD | LAURETTE | ALLEN M. | EDWARD | TYLER W | RALPH | DANIEL | EDWARD | KENNETH | RONALD | BONNIE R. | GILBERT | THORNTON L. | DON O. | | | | | | Last Name | HARMON | PALMER | BENCOMO | ORELLANO | CLARK | STALLINGS | BARELA | CHACON | KAISER | HILL | KESTER | TORRES | KESTER | PALMER | MONTOYA | OFFERLE | HUNTER | BUSTOS | MONTOYA | VAUGHT | REYNOLDS | MONTOYA | TORRES | ASHBROOK | HIGGINS | GIANT INDUSTRIES INC. | GIANT INDUSTRIES INC. | GIANT INDUSTRIES INC. | GIANT INDUSTRIES INC. | | Water Well ID | SJ-01700 | SJ-01728 | SJ-00572 | SJ-00904 | SJ-01690 | SJ-00663 | SJ-02864 | SJ-00827 | SJ-01008 | SJ-01622 | SJ-02125 | SJ-00666 | SJ-02870 | SJ-01828 | SJ-03384 | SP-01915-AB | SJ-02202 | SJ-01590 | SJ-00647 | SJ-02229 | SJ-00726 | SJ-02654 | SJ-03422 | SJ-02118 | SJ-00502 | SJ-02131-EXPL 2 | SJ-02131-EXPL 1 | SJ-02131-S | SJ-02131 | nmwrrs_wrs Water Well ID