

March 22, 2021

Mr. Carl Chavez
Environmental Bureau
New Mexico Energy, Minerals & Natural Resources Department - Oil Conservation Division
1220 South St. Francis Drive
Santa Fe, NM 87505

Re: OCD Discharge Permit Renewal Application

Class I Waste Injection Well "WDW-2"

Bloomfield Terminal

OCD Discharge Permit UICI-011

OGRD Number: 267595; API: 30-045-35747

Dear Mr. Chavez,

Western Refining Southwest, Inc. (Western) submits the enclosed application to renew OCD Discharge Permit UICI-0011 for its Bloomfield Terminal Class I Waste Injection Well, WDW-2. WDW-2 is within the property boundary of the Bloomfield Terminal located at #50 Country Road 4990 in Bloomfield, New Mexico. The Discharge Permit will expire on July 20, 2021. Pursuant to Section 20.6.2.5101.F of the New Mexico Administrative Code (NMAC), Western is required to apply for renewal of the permit no later than 120 days before the expiration date, or by March 22, 2021.

Western will publish in the Farmington Daily Times (Sunday edition) the Public Notice of the Administrative Completeness Determination and Draft Permit by ENMRD-OCD.

Western is in the process of transferring its ownership to Western Refining Terminals, LLC (WRT). WRT will apply for a new OGRD and is aware of the NMAC Section 20.6.2.3111 requirements to complete the Transfer of Discharge Permit.

If you have any questions regarding the attached OCD Discharge Permit Renewal Application, please contact me at (602) 286-1517 (MGarza4@marathonpetroleum.com) and Ed Lee, P.E., with Trinity Consultants at (504) 828-5845 (elee@trinityconsultants.com).

Sincerely,

Margaret A. Garza

Margaret A. Garza Environmental Professional

Cc: Daniel Sanchez, EMNRD – OCD, (daniel.sanchez@state.nm.us)
Kelly Robinson, Western, (KRobinson3@Marathonpetroleum.com)
Gary Russell, Western, (GFRussell@Marathonpetroleum.com)
Ed Lee, Trinity Consultants,

DISCHARGE PLAN RENEWAL APPLICATION FOR UIC CLASS I NON-HAZARDOUS INJECTION WELL

Western Refining Southwest, Inc. – Bloomfield Products
Terminal

Prepared By:

Rachel Reese, Senior Consultant Edward Lee, P.E., Managing Consultant Xavier Chavez, Associate Consultant

TRINITY CONSULTANTS

9400 Holly Avenue NE, Bldg. 3, Suite 300 Albuquerque, NM 87122 March 2021

Project 213201.0047

TABLE OF CONTENTS

- 1. INTRODUCTION
- 2. DISCHARGE PLAN APPLICATION
- 3. APPLICATION FOR AUTHORIZATION TO INJECT
- 4. ADMINISTRATIVE APPLICATION CHECKLIST
- APPENDIX A. MAPS AND DIAGRAMS
- APPENDIX B. INJECTION FLUID ANALYTICAL RESULTS
- APPENDIX C. MIT & BRADENHEAD TEST REPORTS
- APPENDIX D. GEOLOGICAL INFORMATION
- APPENDIX E. CLOSURE PLAN
- APPENDIX F. WELLS WITHIN THE VICINITY OF WDW-2
- APPENDIX G. SUMMARY OF 2020 WELL OPERATION DATA FOR WDW-2

1. INTRODUCTION

Western Refining Southwest, Inc.'s Bloomfield Products Terminal (BPT) is permitted to dispose of non-hazardous (RCRA exempt and RCRA non-exempt non-hazardous) treated wastewater into Wastewater Disposal Well #2 (WDW-2). WDW-2 (AP #30-045-29002) commenced operation in 2016 under Discharge Permit No. UICI-011, which will expire on July 20, 2021.

Pursuant to Section 20.6.2.3106.G of the New Mexico Administrative Code, an application must be submitted at least 120 days before the discharge permit expires. Therefore, an application for renewal of the permit is due by no later than March 22, 2021. BPT is herein submitting this application to renew Discharge Permit No. UICI-011.

Section 2 is the Discharge Plan Application for Renewal. The attachments for this application are included in the appendices of this application document. Section 3 includes the Application for Authorization to Inject. The attachments for the application are also in the appendices of this application document. Section 4 is the Administrative Application Checklist.

2. DISCHARGE PLAN APPLICATION

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Revised August 1, 2011

Submit Original
Plus 1 Copy
to Santa Fe
1 Copy to Appropriate
District Office

DISCHARGE PLAN APPLICATION FOR SERVICE COMPANIES, GAS PLANTS, REFINERIES, COMPRESSOR, GEOTHERMAL FACILITES AND CRUDE OIL PUMP STATIONS

(Refer to the OCD Guidelines for assistance in completing the application)

	Type: UIC Class I Non-Hazardous Injection Well (WDW #2) Operator: Western Refining Southwest, Inc.
	Address: #50 County Road 4990 (PO Box 159), Bloomfield, NM 87413
	Contact Person: Levi Sancedo, Terminal Manager Phone: 505-863-0929
3.	Location: SE /4 NE /4 Section 27 Township 29N Range 11W Submit large scale topographic map showing exact location.
4.	Attach the name, telephone number and address of the landowner of the facility site.
5.	Attach the description of the facility with a diagram indicating location of fences, pits, dikes and tanks on the facility
6.	Attach a description of all materials stored or used at the facility.
7.	Attach a description of present sources of effluent and waste solids. Average quality and daily volume of waste water must be included.
8.	Attach a description of current liquid and solid waste collection/treatment/disposal procedures.
9.	Attach a description of proposed modifications to existing collection/treatment/disposal systems.
10.	Attach a routine inspection and maintenance plan to ensure permit compliance.
11.	Attach a contingency plan for reporting and clean-up of spills or releases.
12.	Attach geological/hydrological information for the facility. Depth to and quality of ground water must be included.
13.	Attach a facility closure plan, and other information as is necessary to demonstrate compliance with any other OCD rules, regulations and/or orders.
	 CERTIFICATIONI hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.
1	Vame: Angela S. Brown Title: Vice President
S	Signature: Angela Brown Date: 3/22/2021
E	E-mail Address: asbrown@marathonpetroleum.com

From: Saucedo, Levi

To: Chavez, Carl J, EMNRD
Subject: [EXT] Levi Saucedo

Date: Tuesday, April 6, 2021 4:22:22 PM

Attachments: image001.png

Thanks,

Levi Saucedo

Terminal Manager – Bloomfield, NM

Office 505-632-4195 Cell 505-879-3908

Western Refining Southwest, Inc. - Bloomfield Products Terminal Waste Disposal Well #2 (WDW-2) Discharge Plan Application Attachments

4. Landowner of the Facility Site

San Juan Refining Company 539 South Main Street Findlay, OH 45840

5. Description of the Facility with a Diagram with Site Map

The subject facility is an UIC Class I Non-hazardous Injection Well (WDW-2) located at the Bloomfield Products Terminal, a bulk storage petroleum terminal with a total storage capacity of greater than 300,000 barrels of petroleum products. The terminal receives materials via a loading rack, pipelines, or trucks.

The purpose of WDW-2 is to dispose of excessive treated wastewater that isn't evaporated in the evaporation ponds.

WDW-2 is located within the fence line of Bloomfield Products Terminal. See the figure in Appendix A of this Discharge Plan Renewal Application.

6. Description of All Materials Stored or Used at the Facility

The injection well is not be used to for material storage.

7. Description of Present Sources of Effluent and Waste Solids

During workover (maintenance) operations, the injection well WDW-2 is used a source of wastewater and possibly waste solids. The wastewater will be re-injected into the WDW #2. The waste solids will be characterized and disposed properly.

- 8. Description of Current Liquid and Solid Waste Collection/Treatment/Disposal Procedures

 The injection well is used to dispose of non-exempt non-hazardous wastewater. An Injection Fluid Analytical is included as Appendix B of this Discharge Plan Renewal Application.
- Description of Proposed Modifications to Existing Collection/Treatment/Disposal Systems
 The current design allows treated wastewater to be injected directly into the WDW-2 or directed to the evaporation ponds before injection into WDW-2. No modifications to the existing systems are proposed.

10. Routine Inspection and Maintenance Plan to Ensure Permit Compliance

The WDW #2 surface completion and associated flanges, pumps, piping are visually inspected daily.

Mechanical Integrity Testing (MIT) is conducted pursuant to 20.6.2.5204 NMAC. At a minimum, the program includes:

- A MIT at least once every five years or every time a well workover is performed, and
- An annual Bradenhead test.

Appendix C presents the most recent MIT and Bradenhead test report.

11. Contingency Plan for Reporting and Clean-up of Spill or Releases

The Bloomfield Products Terminal has an Emergency and Facility Response Plan in place to respond to product releases, including treated wastewater. If a reportable quantity (5 bbl.) of treated wastewater is released from the injection well, NMOCD and NMED Hazardous Waste Bureau will be notified in accordance with applicable regulations. Containment, clean-up and reporting will commence as soon as practicable. A copy of the Emergency and Facility Response Plan is available at the site.

 Geological/Hydrological Information for the Facility (Include Depth to and Quality of Ground Water)

Geological and hydrological information about the injection zone is included in Appendix D of this Discharge Plan Renewal Application.

13. Facility Closure Plan and Other Information to Demonstrate Compliance with any other Rules, Regulations, and/or Orders

A Closure Plan for WDW-2 is included as Appendix E of this Discharge Plan Renewal Application. The closure plan includes an estimate for Financial Assurance.

3. APPLICATION FOR AUTHORIZATION TO INJECT

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

FORM C-108 Revised June 10, 2003

APPLICATION FOR AUTHORIZATION TO INJECT

I.	PURPOSE: Secondary Recovery Pressure Maintenance X Disposal Storage Application qualifies for administrative approval? X Yes No
II.	OPERATOR: Western Refining Southwest, Inc.
	ADDRESS: #50 County Road 4990 (PO Box 159), Bloomfield, NM 87413
	CONTACT PARTY: Margaret A. Garza PHONE: 602-286-1517

III.	WELL DATA: Complete the data required on the reverse side of this form for each well proposed for injection. Additional sheets may be attached if necessary.
IV.	Is this an expansion of an existing project? Yes X No If yes, give the Division order number authorizing the project:
V.	Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mile radius circle drawn around each proposed injection well. This circle identifies the well's area of review.
VI.	Attach a tabulation of data on all wells of public record within the area of review which penetrate the proposed injection zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of completion, and a schematic of any plugged well illustrating all plugging detail.
VII.	Attach data on the proposed operation, including:
	 Proposed average and maximum daily rate and volume of fluids to be injected; Whether the system is open or closed; Proposed average and maximum injection pressure; Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; and, If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.).
*VIII.	Attach appropriate geologic data on the injection zone including appropriate lithologic detail, geologic name, thickness, and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such sources known to be immediately underlying the injection interval.
IX.	Describe the proposed stimulation program, if any.
*X.	Attach appropriate logging and test data on the well. (If well logs have been filed with the Division, they need not be resubmitted).
*XI.	Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken.
XII.	Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water.
XIII.	Applicants must complete the "Proof of Notice" section on the reverse side of this form.
XIV.	Certification: I hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.
	NAME: Angela S. Brown TITLE: Vice President
	SIGNATURE: Angela Brown DATE: 3/22/2021
	E-MAIL ADDRESS: & brown@marathonpetroleum.com
*	If the information required under Sections VI, VIII, X, and XI above has been previously submitted, it need not be resubmitted. Please show the date and circumstances of the earlier submittal: Submitted in March 2016 when WDW#2 was applied for.

III. WELL DATA

- A. The following well data must be submitted for each injection well covered by this application. The data must be both in tabular and schematic form and shall include:
 - (1) Lease name; Well No.; Location by Section, Township and Range; and footage location within the section.
 - (2) Each casing string used with its size, setting depth, sacks of cement used, hole size, top of cement, and how such top was determined.
 - (3) A description of the tubing to be used including its size, lining material, and setting depth.
 - (4) The name, model, and setting depth of the packer used or a description of any other seal system or assembly used.

Division District Offices have supplies of Well Data Sheets which may be used or which may be used as models for this purpose. Applicants for several identical wells may submit a "typical data sheet" rather than submitting the data for each well.

- B. The following must be submitted for each injection well covered by this application. All items must be addressed for the initial well. Responses for additional wells need be shown only when different. Information shown on schematics need not be repeated.
 - (1) The name of the injection formation and, if applicable, the field or pool name.
 - (2) The injection interval and whether it is perforated or open-hole.
 - (3) State if the well was drilled for injection or, if not, the original purpose of the well.
 - (4) Give the depths of any other perforated intervals and detail on the sacks of cement or bridge plugs used to seal off such perforations.
 - (5) Give the depth to and the name of the next higher and next lower oil or gas zone in the area of the well, if any.

XIV. PROOF OF NOTICE

All applicants must furnish proof that a copy of the application has been furnished, by certified or registered mail, to the owner of the surface of the land on which the well is to be located and to each leasehold operator within one-half mile of the well location.

Where an application is subject to administrative approval, a proof of publication must be submitted. Such proof shall consist of a copy of the legal advertisement which was published in the county in which the well is located. The contents of such advertisement must include:

- (1) The name, address, phone number, and contact party for the applicant;
- (2) The intended purpose of the injection well; with the exact location of single wells or the Section, Township, and Range location of multiple wells;
- (3) The formation name and depth with expected maximum injection rates and pressures; and,
- (4) A notation that interested parties must file objections or requests for hearing with the Oil Conservation Division, 1220 South St. Francis Dr., Santa Fe, New Mexico 87505, within 15 days.

NO ACTION WILL BE TAKEN ON THE APPLICATION UNTIL PROPER PROOF OF NOTICE HAS BEEN SUBMITTED.

INJECTION WELL DATA SHEET

OPERATOR:	Weste	rn Refining Southern, Inc.			
WELL NAME & NUMBER:	Waste Disposal Well	(WDW) #2			
WELL LOCATION: 202	8' FNL & 111' FEL DTAGE LOCATION	H UNIT LETTER	27 SECTION	T29N TOWNSHIP	R11W RANGE
	SCHEMATIC		WELL C Surface	ONSTRUCTION DAT Casing	<u> [A</u>
Date Drawn:	Dec 2015 WALSH PASCADATUREDAY PASCADATUREDA	Hole Size: <u>17-1/2</u>	,	Casing Size: 13	3-3/8", 48 ppf, H40
Holz	13-34°, 483, H40 350			or 548 Method Determined	
		Top of Cementsu	Intermedia		u,
12-5/6" PIGE	6-92°, 368, 355 - 3600'	Hole Size:12-1	/4"	Casing Size: 9-5/	8", 36#, J55
	DV tool at 4000' NS			or <u>1693</u>	
		Top of Cement: Su	Productio	Method Determined n Casing	d:
	Injection String 4-1/2", 11.00, L&Q, IPC	Hole Size: <u>8-3/4'</u>	•	Casing Size:9-5/5	8", 36#, J5 <u>5</u>
	IPC F8 Packer at ~ 7205 '	Cemented with: 868	<u>sx.</u>	or <u>1692</u>	ft ³
0000	Proposed injection Zope: Embada Sandstone: 7315' - 7457	Top of Cement: Sun	rface	Method Determined	d:
8-94** Hole	7", 226, 350	Total Depth: ~ 7500'			
Prod	CS g @ 7590° 7/B		Injection	Interval	
		<u>7315`</u>	fee	t to 7483' (perforat	ted 4 spf)
		(Perforated or Open I	Hole; indicate which)	

<u>7315`</u>	feet to 7483' (perforated 4 spf)
(Perforated o	or Open Hole; indicate which)

INJECTION WELL DATA SHEET

Tub	bing Size: 4-1.2", 10.5 ppf Lining Material: Plastic Lined	
Тур	pe of Packer:	
Pac	cker Setting Depth: <u>~7265'</u>	
Oth	her Type of Tubing/Casing Seal (if applicable): Baker Model "KBH-22" Anchor tubing seal assembly, landed in packet	_
	Additional Data	
1.	Is this a new well drilled for injection? Yes X No	
	If no, for what purpose was the well originally drilled? <u>Wastewater disposal</u>	
2		
2.	Name of the Injection Formation: Entrada	
3.	Name of Field or Pool (if applicable):	
4,	Has the well ever been perforated in any other zone(s)? List all such perforated intervals and give plugging detail, i.e. sacks of cement or plug(s) usedNo	
5.	Give the name and depths of any oil or gas zones underlying or overlying the proposed injection zone in this area: Pictured Cliffs, Chacra, Mesaverde, Gallup, & Dakota	

ATTACHMENTS FOR AUTHORIZATION TO INJECT

- V. A map that identifies all wells and leases within one mile of the injection well (WDW-2) is included in Appendix F.
- VI. A tabulation of wells within the area of review are presented in Appendix F. The tabulation includes the well type, date drilled, location, depth, record of completion and status.
- VII. Operating data for WDW-2 are submitted to NMOCD on a quarterly basis. The maximum and average injection pressure for 2020 were 1391 psig and 683 psig, respectively. The maximum and average injection rate for 2020 were 37 gpm and 24 gpm, respectively. A summary of the quarterly 2020 operating reports is included in Appendix G.

2020	Injection	Pressure	Injectio	n Rate
Month	Max psig	Avg psig	Max gpm	Avg gpm
Jan	1382	753	34	28
Feb	1378	762	34	29
Mar	1391	705	34	31
Apr	1376	711	33	29
May	1384	755	31	27
Jun	1357	674	37	32
Jul	906	611	0	0
Aug	567	550	0	0
Sep	1291	635	27	22
Oct	1351	794	34	28
Nov	1376	671	29	28
Dec	813	569	35	35
2020				
Max	1391		37	
2020				·
Avg		683		24

- 1X. The description of the stimulation program was presented in the initial application (2016) for injection for WDW-2.
- XIII. Western Refining Southwest, Inc. will provide Proof of Notice (affidavit of mailing and property owner's name, proof of publication, and an affidavit of posting) to OCD after the notice is published.

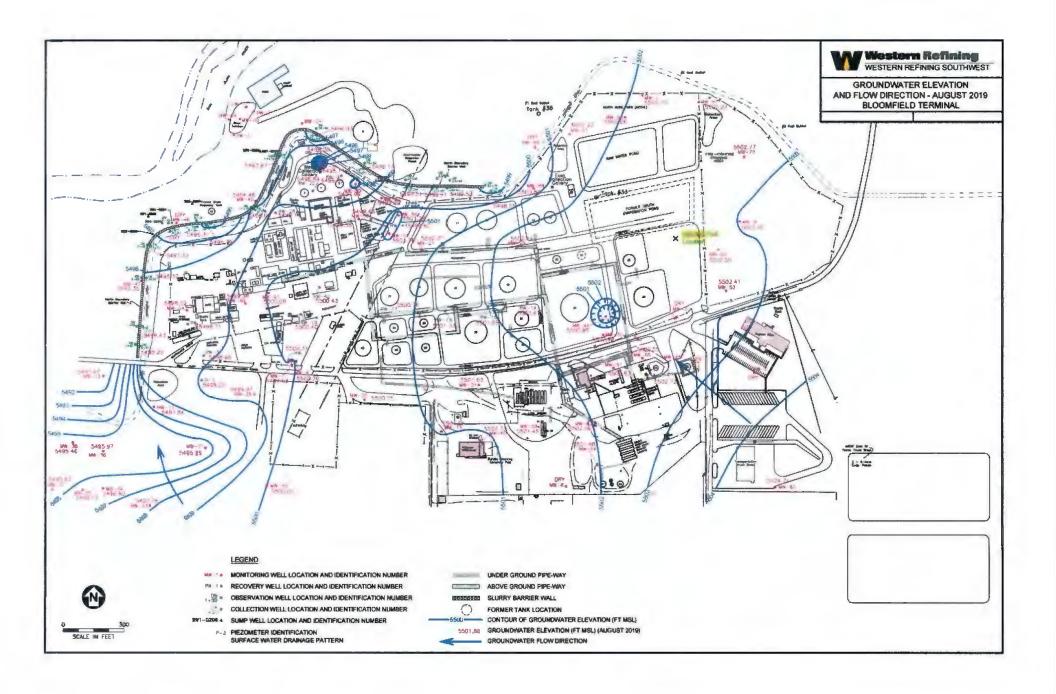
4. ADMINISTRATIVE APPLICATION CHECKLIST

				Revised March 23, 2017
RECEIVED:	REVIEWER:	TYPE:	APP NO:	· - ·
		O OIL CONSERVA cal & Engineering ancis Drive, Sant	ATION DIVISION g Bureau –	
TF	IIS CHECKLIST IS MANDATORY FOR ALI			
ll Name: <u>W</u>	Western Refining Sout	hwest, Inc.	API: <u>30</u>	Number: <u>267595</u> 00453747
ol:			Pool C	ode:
SUBMIT ACCI	JRATE AND COMPLETE INF	ORMATION REQUI		HE TYPE OF APPLICATION
A. Loco	PLICATION: Check those value of the service of the	ıltaneous Dedicat	-	D
[1] Cc	cone only for [1] or [1] mmingling – Storage – Me DHC DCTB PL iection – Disposal – Pressu WFX PMX XSV	.C.	anced Oil Recover	y Only treated wastewater is injec
3)	ON REQUIRED TO: Check to the control of the control	hose which apply ters vners, revenue ow d notice nt approval by SL nt approval by BL	rners O M	FOR OCD ONLY Notice Complete Application Content Complete
CERTIFICATI administrati understand	ON: I hereby certify that to ve approval is accurate of that no action will be take sare submitted to the Div	and complete ta t en an this applica	he best of my know	wledge. I also
	Note: Statement must be complet	ed by an individual with	managerial and/or supe	rvisory capacity.
ngela S. Brow	'n		3/23/2 Date	102/

Print or Type Name

(419) 421-2629 Phone Number

asbrown@marathonpetroleum.com


e-mail Address

APPENDIX A. MAPS AND DIAGRAMS

Figure 1 - Vicinity Aerial Map

Figure 2 - Plot Plan

APPENDIX B. INJECTION FLUID ANALYTICAL RESULTS

Attachment B - Analytical Summary

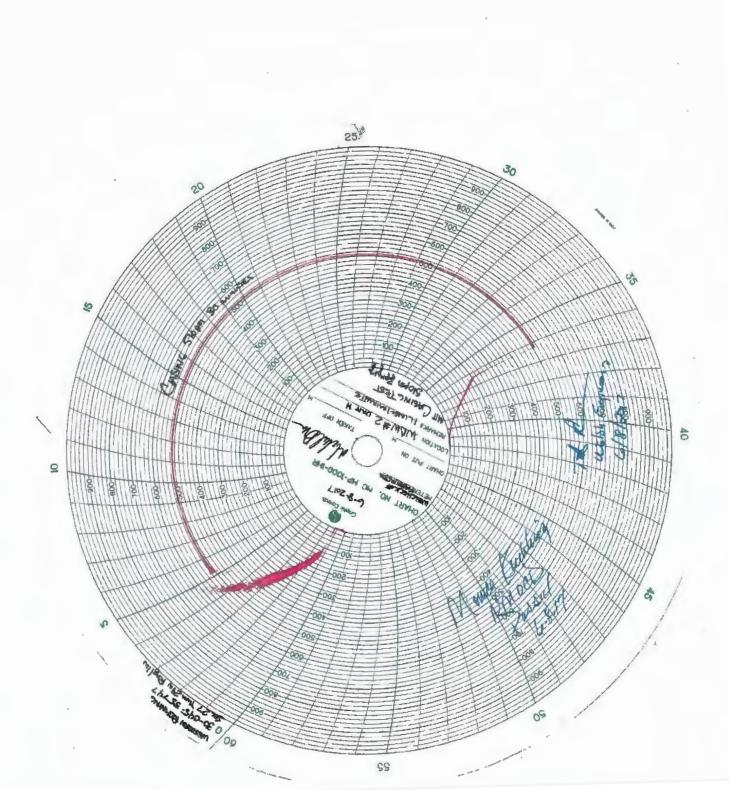
		Toxicity Characteristics (40 CFR261.24)	WQCC (20.6.2.3103 NMAC)	1st Quarter	2nd Quarter	3rd Quarter	4th Quarte
Volatile Org	anic Compounds (mg/L)	(10 01 1001.21)	(Month and 100 1111111)	3/25/2020	6/30/2020	9/18/2020	12/18/2020
D029	1,1-Dichloroethene	0.70	5	< 0.20	<0.70	<0.70	< 0.70
D028	1,2-Dichloroethane (EDC)	0.50	10	< 0.20	<0.50	< 0.50	< 0.50
D027	1.4-Dichlorobenzene	7.5		< 0.20	<7.5	<7.5	<7.5
D035	2-Butanone (MEK)	200		< 2.0	<200	<200	<200
D018	Benzene	0.50	10	< 0.50	< 0.50	< 0.50	< 0.50
D019	Carbon Tetrachloride	0.50	10	< 0.20	< 0.50	< 0.50	< 0.50
D021	Chlorobenzene	100		< 0.20	<100	<100	<100
D022	Chloroform	6.0	100	< 0.20	<6.0	<6.0	<6.0
D033	Hexachlorobutadiene	0.50		< 0.20	<5.0	<5.0	<5.0
D039	Tetrachloroethene (PCE)	0.70	20	< 0.20	< 0.70	< 0.70	< 0.70
D040	Trichloroethene (TCE)	0.50	100	< 0.20	< 0.50	< 0.50	< 0.50
D043	Vinyl chloride	0.20	1	< 0.20	< 0.20	< 0.20	< 0.20
Semi-Volatile	e Organic Compounds (mgL)						
D027	1,4-Dichlorobenzene	7.5		< 0.01	<7.5	<7.5	<7.5
D041	2,4,5-Trichlorophenol	400		< 0.01	<4000	<400	<400
D042	2,4,6-Trichlorophenol	2.0		<0.01	<20	<2.0	<2.0
D030	2.4-Dinitrotoluene	0.13		<0.01	<1.3	<1.3	<0.13
D023	2-Methylphenol (o-Cresol)	200		< 0.01	<2000	<200	<200
	3+4-Methylphenol (m, p-Cresol)	200		<0.01	<2000	<200	<200
D032	Hexachlorobenzene	0.13		<0.01	<1.3	< 0.13	<0.13
D033	Hexachlorobutadiene	0.50		<.020	<5.0	< 0.50	< 0.50
D034	Hexachloroethane	3.0		< 0.01	<30	<3.0	<3.0
D034	Nitrobenzene	2.0		<0.01	<20	<2.0	<2.0
D037	Pentachlorophenol	100		< 0.020	<1000	<100	<100
D038	Pyridine	5.0		< 0.03	<50	<5.0	<5.0
	mistry (mg/L unless otherwise stated)	2.0		NO.03	-50	0,0	٦٥.0
Statim Cat	Specific Conductance (umhos cm3)			4500	4500	3800	3400
	Bromide			4300	4.0	3.2	1.6
			250 #				
	Chloride		250 *	1200	1200	830	890
	Fluoride			<2.0	< 0.50	<0.50	< 0.50
	Nitrate + Nitrite as N			<0.50	< 0.50	<1.0	<1.0
	Phosphorus, Orthophosphate (As P)		100 4	<2.5	< 2.5	<2.5	<2.5
	Sulfate		600 *	87	78	86	72
	Total Dissolved Solids		10,000	2920	2870	2190	1950
	pH (pH Units)			7.27	7.77	7.71	7.96
	Bicarbonate (As CaCO3)			569	647.1	626.3	349.6
	Carbonate (As CaCO3)			<2.0	<2.0	<2.0	<2.0
	Total Alkalinity (as CaCO3)			569	647.1	626.3	349.6
	Oxidation-Reduction Potential (mV)			6.2	37.7	179	24
	Specific Gravity			0.993	0.9946	0.9958	0.999
l'otal Metals							
D004	Arsenic	5.0		< 0.030	< 0.030	<0.030	<5.0
D005	Barium	100		0.32	0.22	0.27	<100
D006	Cadmium	1.0	-	< 0.0020	< 0.0020	< 0.0020	<1.0
D007	Chromium	5.0		< 0.0060	< 0.0060	<0.0060	<5.0
D008	Lead	5.0		< 0.020	< 0.020	< 0.020	<5.0
D010	Selenium	1.0		< 0.050	< 0.050	< 0.050	<1.0
D011	Silver	5.0		< 0.0050	< 0.0050	<0.0050	<5.0
D009	Mercury	0.2	0.002	< 0.00020	<0.0010	< 0.00020	< 0.020
Dissolved Me	etals (mg/L)						
	Calcium		0.01	90	73	79	87
	Magnesium			53	52	43	22
	Potassium			< 20	13	13	55
	Sodium			830	910	650	500
gnitability.	Corrosivity, and Resctivity						
D003	Reactive Cyanide (mg/L)			< 0.005	< 0.005	< 0.00500	< 0.00500
D003	Reactive Sulfide (mg/L)			0.32	0.833	<0.0500	0.213
		/ 1400 F					
D001 D002	Ignitability (°F)	< 140° F	6.0	>170	>170	>170	>170
1 21 15 1 7	Corrosivity (ph Units)	<2 or ≥ 12.5	6-9	7.27	7.63	7.82	7.36
		0.00		*0 pos	40 TO	20.00	10.000
Pesticides (m	Chlordane	0.03		<0.002	<0.20	<0.30	< 0.030

APPENDIX C. MIT & BRADENHEAD TEST REPORTS

NEW MEXICO ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT

MECHANICAL INTEGRITY TEST REPORT

(IAO	N OLO
Date of Test 6-8-17 Operator West	ern Cy. Sw-ingpi # 30-0 45- 35747
Property Name Waste Dis Well Well #_	Location: Unit 4 Sec 27 Twn 29 Rge //
Land Type: State Federal Private Indian	Well Type: Water Injection Salt Water Disposal Gas Injection Producing Oil/Gas Pressure obervation
Temporarily Abandoned Well (Y/V):	TA Expires:
Casing Pres. Bradenhead Pres. Tubing Pres. Int. Casing Pres. Tog. SI Pres. Tog. Inj. Pres.	
Pressured annulus up topsi. for	mins. Test passed/failed
REMARKS: Packer Det 7230	1312-7470
dropped to 505 hild last	5 Min.
(Operator Representative)	(NMOCD)
(Position)	Revised 02-11-02


E-mail address

NEW MEXICO ENERGY, MINERALS & NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION
AZTEC DISTRICT OFFICE
1000 RIO BRAZOS ROAD
AZTEC NM 87410
(505) 334-6178 FAX: (605) 334-6170
http://emnrd.state.nm.us/ocd/District III/3distric.htm

BRADENHEAD TEST REPORT

(submit 1 copy to above address) API #30-0 45-Date of Test Operator Location: Unit # Section 77 Township 29 Range Property Name Well Status(Shut-In or Producing) Initial PSI: Tubing OPEN BRADENHEAD AND INTERMEDIATE TO ATMOSPHERE INDIVIDUALLY FOR 15 MINUTES EACH FLOW CHARACTERISTICS **PRESSURE** BRADENHEAD INTERMEDIATE Testing Bradenhead INTERM BH Int Csg Int Csg TIME DU Steady Flow 5 min Surges 10 min ... Down to Nothing 15 min. Nothing 20 min Gas 25 min Gas & Water 30 min Water If bradenhead flowed water, check all of the descriptions that apply below: SALTY SULFUR BLACK CLEAR FRESH INTERMEDIATE **5 MINUTE SHUT-IN PRESSURE** BRADENHEAL REMARKS: Witness JUBUL (Position)

Submit I Copy To Appropriate District Office	State of New Mo	exico	Form C-103
District 1 (575) 393-6161	Energy, Minerals and Natu	ral Resources	Revised July 18, 2013
1625 N. French Dr., Hobbs, NM 88240			WELL API NO.
District II (575) 748-1283 811 S. First St., Artesia, NM 88210	OIL CONSERVATION	DIVISION	30-045-35747 5. Indicate Type of Lease
District III = (505) 334-6178	1220 South St. Fran	neis Dr.	STATE FEE S
1000 Rio Brazos Rd., Aztec, NM 87410 <u>District IV</u> (505) 476-3460	Santa Fe, NM 87	7505	6. State Oil & Gas Lease No.
1220 S. St. Francis Dr., Santa Fe, NM			
(DO NOT USE THIS FORM FOR PROPO DIFFERENT RESERVOIR. USE "APPLI	ICES AND REPORTS ON WELLS SALS TO DRILL OR TO DEEPEN OR PLI CATION FOR PERMIT" (FORM C-101) FO	UG BACK TO A	7. Lease Name or Unit Agreement Name
PROPOSALS.) 1. Type of Well: Oil Well	Gas Well Other Wastewater I	Disnosal Well	8. Well Number: WDW #2
2. Name of Operator	Transfer of the state of the st	210170000	9. OGRID Number 267595
Western Refining Southwest, Inc.			
3. Address of Operator			10. Pool name or Wildcat
50 County Road 4990 (PO Box 15	9) Bloomfield, NM 87413		Entrada
4. Well Location			
Unit Letter H	: 2028 feet from the No	rth line and	<u>East</u> feet from the line
Section 27	Township 29N	Range HW	NMPM San Juan County
Securi	11. Elevation (Show whether DR		
12. Check	Appropriate Box to Indicate N	ature of Notice,	Report or Other Data
NOTICE OF IN	ITENTION TO	í cun	CCOLICIE DEPORT OF
PERFORM REMEDIAL WORK	ITENTION TO:	REMEDIAL WOR	SEQUENT REPORT OF: K
TEMPORARILY ABANDON	PLUG AND ABANDON CHANGE PLANS	COMMENCE DRI	
PULL OR ALTER CASING	MULTIPLE COMPL	CASING/CEMEN	
DOWNHOLE COMMINGLE	MOETIFEE COMPL	CASING/CEWEN	1 108
CLOSED-LOOP SYSTEM		1	
OTHER		OTHER:	Bradenhead Test Report
13. Describe proposed or comp	oleted operations. (Clearly state all		d give pertinent dates, including estimated date
of starting any proposed we	ork). SEE RULE 19.15.7.14 NMAC		mpletions: Attach wellbore diagram of
proposed completion or rec	completion.		
Pursuant to Condition 3.D.1 of th	ne Bloomfield Terminal Injection	ı Well Discharge	Permit (UICI-011), Western Refining
			ngs of WDW #2 on Friday, September 18,
2020. A representative of NMO			
·	-		
<u></u>			
Smud Datas	Dia Balana Di		
Spud Date:	Rig Release Da	ate:	
		,	
I hereby certify that the information	obatic is two and complete to the h	ant aftern knowlede	and belief
Thereby certify that the unformation	above is true and complete to the o	est of thy knowledg	e and benci,
1/11/01	₹		
SIGNATURE SIGNATURE	TITLE Enviro	onmental Superviso	DATE_09/18/2020
•			
Type or print name Kelly Robin	son E-mail address: krobins	on3@marathonpetro	oleum.com PHONE: (505) 801-5616
For State Use Only			
APPROVED BY:	character as		INATE:
Conditions of Approval (if any):	TITLE	e en anti-se an indica de dans de	DATE

OIL CONSERVATION DIVISION
AZTEC DISTRICT OFFICE
1000 RIO BRAZOS ROAD
AZTEC NM 87410
{505} 334-6178 FAX: (505) 334-6170
http://emard.state.nm.us/ocd/District ill/3distric.htm

BRADENHEAD TEST REPORT

(submit 1 copy to above address)

Date o.	f T e st_	9-11	3 - ZO		_ Орега	ator Western Refinicy Southern PI#30-045-35747
						Z Location: Unit H Section 27 Township 29 Range 11
Well S	tatus(S	Shut-In	or Produ	ıcing) Ini	tial PSI:	Tubing 650 Intermediate 6 Casing 6 Bradenhead 43
OPE	N BRA	DENH	EAD AN	D INTER	MEDIAT	TE TO ATMOSPHERE INDIVIDUALLY FOR 15 MINUTES EACH
Testing	ВН	Braden Int	PRESSU head Csg	IRE INTE	RM Csg	FLOW CHARACTERISTICS BRADENHEAD INTERMEDIATE
TIME 5 min_	Ø	Ø	Ø	Ø	ø	Steady Flow
10 min_	Ø	Ø	Ø	Ø	Ø	Surges
15 min_	Ø	Ø	0	Ø	Ø	Down to Nothing
20 min						Nothing
25 min					,	Gas
30 min_		<u> </u>				Gas & Water
(B =	Zer	0			Water
If brade	nhead	flowed w	ater, che	ck all of th	ie descrip	tions that apply below:
	CLEAR	₹	FRESH		SALTY_	SULFURBLACK off when opened after 5 minutes
			RESSUF	ε G	BRADEN	HEAD Ø INTERMEDIATE Ø
REMAR	KS:	Tha:	يد. مذ. ،	. ا ـ - ا ـ ـ ـ	\	N. K. Jankara J. Karana J. K. Jan
ـــــــــــــــــــــــــــــــــــــ						I bradenhead have not been opened prior to
. j.e. . j.e.	1115	Drai	Jennea Je	ndo	when	to Opsi in 4 seconds. Intermediate to ops had no puff after 5 minute shut-in.
1 ×	14 2	Pala	<u> </u>	· VD	<u> </u>	Witness Monica Kuchling (Via Face-Time)
		Perso		aucod	פייש	witness 1. Out a Rocking (Via Pace - Me)
_wi/	(Positio		WALL			
E-mail a	ddress \	Krobin	3 ممد	@ Mova	Houp P	etroleun. can

APPENDIX D. GEOLOGICAL INFORMATION

VIII. Geology

Underground Drinking Water Sources

The known fresh water zones for the immediate area of the injection well are the Nacimiento and Ojo Alamo Formations of the Tertiary Age. The Nacimiento occurs at the surface and is about 570 feet thick in the immediate area. The Ojo Alamo is about 165 feet thick at an approximate depth of 569 to 734 feet.

Most of the water wells in the surrounding area are concentrated along the San Juan River flood plain and terraces north of the river and Bloomfield Terminal. These wells are completed in the Quaternary sand and gravels at depth of approximately 25 to 75 feet. These sand and gravels rest upon the Nacimiento.

One well (POD# SJ 02148) in the SE quarter of Section 27, T29N, R11W was drilled to a depth of 305 feet intersecting a water bearing sand within the Nacimiento at 225 to 285 feet with an estimated yield of 10gpm. The surface elevation is approximately 20 feet above the surface at proposed injection well location. The total depth of the well is at an approximate elevation of 5,250 feet. This is the deepest water well drilled in the study area according to the NM State Engineer's Office online records. The Point of Diversion Summary for the well is included (below).

.

New Mexico Office of the State Engineer **Point of Diversion Summary**

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

POD Number

Q64 Q16 Q4 Sec Tws Rng

X

SJ 02148

4 27 29N 11W

234448 4065184*

Driller License: 847

Driller Name:

SAVAGE, BOB

Drill Start Date: 10/20/1987

Drill Finish Date:

11/16/1987

Plug Date:

Source:

Shallow

Log File Date: **Pump Type:**

11/19/1987

PCW Rcv Date:

Pipe Discharge Size:

Estimated Yield: 10 GPM

Casing Size:

7.00

Depth Well:

305 feet

Depth Water:

186 feet

Water Bearing Stratifications:

Top Bottom Description

285 Sandstone/Gravel/Conglomerate

Casing Perforations:

Top Bottom

225

266 305

2/9/16 9:29 PM

Page 1 of 1

POD SUMMARY - SJ 02148

Injection Zone

The Entrada Sandstone formation is Jurassic in age and is described as a wind blown deposit with fine to coarse-grained sandstone particles, clean and well sorted. Generally, the Entrada Sandstone formation is 200 to 280 ft thick throughout the San Juan Basin. Natural fractures are few to nonexistent. The overlaying formation is the Todilto Limestone. Cores from the oil bearing portion of the Entrada formation indicate high porosities and permeability's with averages ranging from 22 – 26 percent and 150 – 450 millidarcies respectively.

The Bluff Sandstone maybe considered as a future injection zone and is not part of this application.

The geologic prognosis and a cross section showing the regional thickness and log characteristics are included (below).

Waste Disposal Well (WDW) #2

Geologic Prognosis

Entrada & Bluff WDW, San Juan County

Geologic Prognosis
Header
Well Name & Number: Waste Disposal Wall (WDW) #2
API: Pending Latitude (NAD 83):
Sec. 27 Fletit: Baein
Surface Localion Foolage: 1980 FNA, 330 FEL
Bettom Male Localion Foolage: Same as Surface
5538
Surface Owner:
Type: Programme Programme Programme
Expiration Date:

36.688499 Objective: Entrada & Bluff FM Water Disposal Longitude (NAD 63): -187.971156 Location: TWP: 28 N - Range: 11 W -

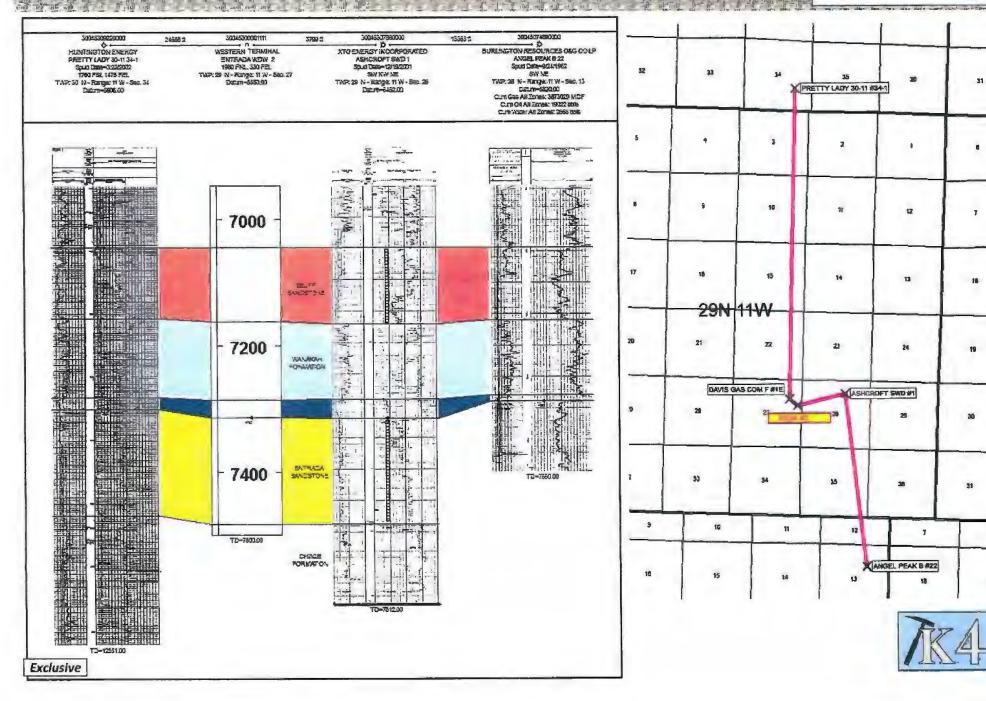
County; State:

San Juan New Moxico Lease:

GL Elevation:

KB Elevation:

5650 7500


Proposed TD: Proposed Plughack: November 25, 2015 Geologist: Pelar Kondtat Depth:

Formation Tops	Top MD (KB)	Top Subsee (KB)	Thickness (FT)	Rock Type	Orlilling Notes	Depositional Environment
Quaternary Alluvium	0	5550	10	Unconsolidated Gravels	Boulders, water, lost	Continental Rivers
Naciemento FM	10	5540	505	Shale & Sandalone	Water, gas	Continental Rivers
Ojo Alamo Sandatone	515	5035	110	Sandstone & Shale	Water, gas	Continental Rivers
Kirtland Shale	625	4925	578	Interbeddded Shale, sandstone	Water, gas	Coasial to Alluvini Plain
Fruithand FM	1203	4347	515	interbeddded Shale, sandstone &	Coalbed methens	Constat Plain
Pickeed Cliffs Sandstone	1718	3832	162	Sandelona	Gas, water	Regressive Marine Beach
Lewis Shale	1880	3670	780	Shale, litin limestones	Gas	Offshore Marine
Huerfanilo Gentonila Bed	2680	2890	28	Allerted volcanic ash, bentonite	Swelling clay	Volcanic Ash Leyers
Chacra FM	2688	2862	189	Sandatone, silisione	Ges, Welct	Offshore Marine Sands
Lower Lewis Shale	2577	2673	458	Shale, thin limestones	Gaa, Waler	Offshore Marine
Caff House Sandalone	3338	2215	59	Sandatone	Gas, Water, Oil	Transgrassive Marine Beach
Manatas Member	3394	2156	643	interbeddded Shale, sandstone &	Gas, Water, Oil	Coastal Plain
Point Lookbut Sandslone	4037	1513	386	Sandstone	Gas, Water, Oil	Regressive Marine Beach
Mancos Shale	4425	1127	869	Shale, thin sandstones &	Gas, Water, Oil	Offshore Marine
Niobrara A	5282	268	102	Interbeddded Shale, sandalone	Oil, Gas, Weler	Offshore Marine Sands
Niebrara B	5394	156	123	Interbeddded Shale, sandstone	Oll, Gas, Water	Offshore Marine Sends
Niobrara C	5517	33	82	interbeddded Shale, sandstone	Oll, Gas, Water	Offshore Marine Sends
Gallup FM	5599	-49	243	interbeddded Shale, sandstona	Olt, Gas, Water	Regressive Marine to
Juana Lopez FM	5842	-292	123	Shate, thin ilmestones	Oli, Gas, Water	Offshore Marine
Caulife Shale	5965	-415	96	Shale, thin limestones	Oil, Gas, Water	Offshore Marins
Greenhorn Limestone	6000	-610	58	Limestone	Oll, Gas, Water	Offshore Marine
Graneros Shale	6118	-556	33	Shale	Oli, Gas, Water	Offshore Merine
Dakota FM	8148	-509	216	Sandstone, shale & coals	Oli, Gas, Water	Transgressive Coastal
Burro Canyon FM	6365	-815	48	Sandatones, some conglomerate	Oil, Gas, Water	Braided Fluvtel Fill
Morrison PM	8411	-861	535	A mudelone Mudelones, sendalone	Oil, Gas, Water	Continental Rivers
Bluff Sandstone (aka Junction Creek Sandstone), Morrison FM Member		-1496	118	Sandstone	Oll, Gas, Weter	Alluvial Plain and Sollan
Wenskah FM	7164	-1814	123	Silistone, Sandulone	Oil, Gas, Weler	Alluvisi Plain and Eolian
Todillo Limestone & Anhydrite	7287	-1737	28	Interpedded Limestone &	Oil, Gas, Water, Anyhydrile	Alluviet Pieln and Eollan
Entrada Sandstone	7318	-1765	168	Sandatone	Oli, Gae, Water	Eoilan Sand Dunes
Ghinie FM	7483	-1903	17	Interbeddded Shale, sandstone	Oll, Gas, Water	Continental Rivers
Proposed TD	7500	-1950	-	TD designed for complete log o	overgage over Entrada Sand	Istone.

Notes: Any significant flow rates, abnormal pressures, lost circulation, sticking, fluid loss or gain immediately notify company man, drilling superintendent and/or drilling engineer.

Regional Bluff & Entrada Sandstones Cross-Section

- IX. After the well is drilled, cased and perforated an injectivity test will be performed. If the injection rate is less than 6 BPM prior to parting pressure, the well will be stimulated w/ approximately 222,000 lbs of 20/40 white sand in 110,000 gals of 30# cross linked gel at 50 bpm. Note: actual job design (if needed) will be based on actual results of the injectivity test.
- X. All open hole and cased hole logs will be filed with NMOCD once the well is drilled and completed.
- XII. Available geologic and engineering data has been examined and no evidence of open faults or any other hydrological connection between the disposal zone, the Entrada Formation, and any underground sources of drinking water, the Nacimiento Formation.
- XIII. Based on the information available online as well as information from the "Four Corners Geological Society" there are no known faults located in the area of the proposed well. Natural fractures are few to nonexistent in the Entrada formation. The overlaying formation is the relatively impermeable Todilto Limestone. The closest off set is the Ashcroft SWD #1 (API# 30-045-30788) located approximately % of mile to the east of the proposed injection well. The Ashcroft SWD #1 is a SWD well operated by XTO Energy and is completed in the Bluff and Entrada formations and has no evidence of water migrating out of the injection zones.
- XIII. Public Notice will follow NMOCD review of this application.

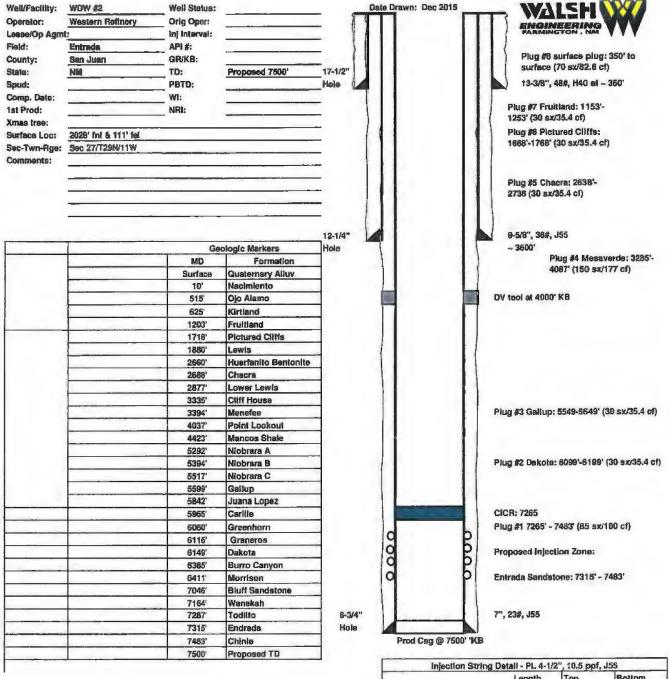
APPENDIX E. CLOSURE PLAN

Western Refinery Southwest Inc. Bloomfield Terminal Waste Disposal Well (WDW) #2

Closure Plan

In accordance with Rule 19.15.25 NMAC the following information describes the possible closure plan which would entail plugging and abandoning the proposed well bore and reclaiming the surface location to pre-drill status. This is Western's standard closure procedure.

All closure activities will include proper documentation and be available for review upon request. All required paperwork (sundry notices) will be submitted to NMOCD for approval prior to any field work taking place. All plug and abandon activities are intended to protect fresh water, public health and the environment.


General Plan

- 1. Notify NMOCD
- 2. Note: verify all cement volumes based on actual slurry to be pumped.
- 3. Review any COA's from NMOCD

Procedure

- 1 Move-in, rig up pulling unit. Pump & pit. Half tank for cement returns.
- 2 Hold safety meeting with rig crew and related personnel explaining the procedure and outlining potential hazards.
- 3 ND WH & NU BOP
- 4 TIH w/ CICR & set at ~ 7265'.
- 5 Load hole and circulate clean with fresh water.
- 6 Load tubing and pressure test tubing to 1000 psi.
- 7 Pull stinger out of CICR enough to load hole w/ water and circulate clean. Test casing to 500 ps).
- 8 Ptug #1 (7265'-7483'). Mix & pump 85 sx (100 cf) of Class B neat cement. Sting out of retainer leaving 50' of cement on top of retainer. Note. Cement volumes will be adjusted if alternate but comparable cement is used (based on vendor selection). Volumes estimated using 100% excess.
- 9 Pull up hole.
- 10 Spot plug #2 in a balanced plug. Plug #2 Dakota: (6099'-6199'). Mix & pump 30 sx (35.4 cf) of Class B neat cement. Calculated cement volumes to include extra 50' of cement.

- 11 Pull up hole & WOC. TIH & tag TOC.
- 12 Spot plug #3 in a balanced plug. Plug #3 Gallup (5549'-5649'). Mix & pump 30 sx (35.4 cf) of Class B neat cement. Calculated cement volumes to include extra 50' of cement.
- 13 Pull up hole & WOC. TIH & tag TOC.
- 14 Spot plug #4 in a balanced plug. Plug #4 Mesaverde (3285'-4087'). Mix & pump 150 sx (177 cf) of Class B neat cement. Calculated cement volumes to include extra 50' of cement.
- 15 Pull up hole & WOC. TIH & tag TOC.
- 16 Spot plug #5 in a balanced plug. Plug #5 Chacra (2638'-2738'). Mix & pump 30 sx (35.4 cf) of Class B neat cement. Calculated cement volumes to include extra 50' of cement.
- 17 Pull up hole & WOC. TIH & tag TOC.
- 18 Spot plug #6 in a balanced plug. Plug #6 Pictured Cliffs (1668'-1768'). Mix & pump 30 sx (35.4 cf) of Class B neat cement. Calculated cement volumes to include extra 50' of cement.
- 19 Pull up hole & WOC. TIH & tag TOC.
- 20 Spot plug #7 in a balanced plug. Plug #7 Fruitland (1153'-11253'). Mix & pump 30 sx (35.4 cf) of Class B neat cement. Calculated cement volumes to include extra 50' of cement.
- 21 Pull up hole & WOC, TIH & tag TOC.
- 22 Spot plug #8 in a balanced plug. Plug #8 Surface Plug (350'-surface). Mix & pump 66 sx (77.9 cf) of Class B neat cement.
- 23 Fill up inside of casing w/ additional cement as needed to top off.
- 24 ND BOP & cut off well head.
- 25 Install P&A marker and cut off anchors.
- 26 RD & release rig and related equipment.
- 27 Remove all surface/production equipment.
- 28 Re-contour and re-claim surface/location as per NMOCD approved Reclamation plan.

		Boltom
15.00	0	15.00
	15.00	15.00
	15.00	

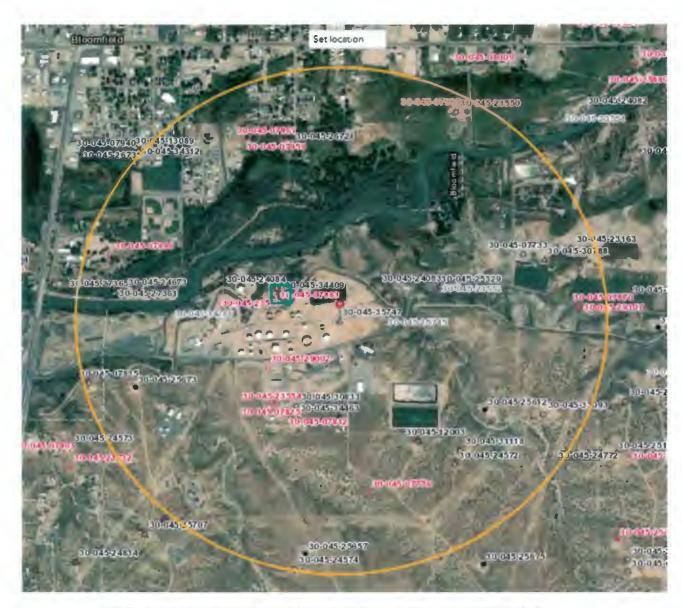
WALSH ENGINEERING & PRODUCTION CORP.

Workover Cost Estimate

Western Refinery Southwest, Inc. AUTHORITY FOR EXPENDITURE

Well Name: WDW #2
Location: Sec 27, T29N, R11W, San Juan, NM Objective: Permanently P&A Wellbore

	Tangible	intangible	Total
I. Workover Costs			
Anchors, and Misc.			
Completion Rig (18 hrs @ \$250/hr, includes Mob-de-Mob, crew travel)		29,500	29,500
Completion Fluids/Water hauling (pump truck)			
Cased Hole Services (Including CICR)		7,200	7,200
Cement		24,650	24,650
Tubing Head and Well Connection Fittings			
Tubing (480 ft @ 3.30 \$/ft.)			
Sucker Rods (50 rods @ 60 \$/rod)			
Down hole pump			
Pumping equipment (Polish rod, tbg anchor, ect)			
Rentals (tanks, etc)		1,720	1,720
Trucking		5,100	5,100
Surface Facility Installation			
Restore Location			
Well Site Supervision		4,100	4,100
Engineering		1,000	1,000
Bits			
Labor & Trucking to remove surface equipment			
Pipelines and Installation			
Tank and Fittings			
Disposal Costs		1,250	1,250
Meter			•
Surface Reclamation		5,125	5,126
P&A marker		135	135
Workover Costs	0	79,780	79,780
10% Contingency	0	7,978	7,978
Total Workover Costs	Ŏ		
		87,758	87,758


Prepared By: John C. Thompson

Date: 2/2/2016

Working Interest Owners

ESTIMATED COSTS ONLY--Each participating Owner to pay Proportionate Share of Actual Well Costs Subject to Operating Agreement

APPENDIX F. WELLS WITHIN THE VICINITY OF WDW-2

Wells within One-Mile Radius of Bloomfield Terminal Disposal Well WDW-2

Western Refining Southwest, Inc. Bloomfield Terminal Waste Disposal Well (WDW) #2 Well List for 1 Mile Area of Review (AOR)

Name	API#	Well Type	Date Drilled	Location (Lat, Long)	Depth(FT)	Record of Completion
PREONGARD WELL #1	30-045-25745	GAS	N/A	36.6985, -107.9679	0	Never Drilled
JACOUE #002	30-045-34409	GAS	9/7/2007	36,6998,-107,9735	1897	Active
PRE-ONGARD WELL #001	30-045-23553	GAS	N/A	36,6998,-107,9738	0	Never Drilled
DAVIS GAS COM F #001E	30-045-24084	GAS	9/7/1980	36,7000,-107,9737	6392	Active
PRE-ONGARD WELL #002	30-045-07883	GAS	N/A	36,7001,-107,9738	0	Never Drilled
DISPOSAL #001	30-045-29002	Salt Water Disposal	12/17/1993	36.6964,-107.9742	3601	Plugged, Site Released
DAVIS GAS COM F #001R	30-045-30833	GAS	11/28/2001	36.6946,-107.9726	6700	Active
DAVIS GAS COM J #001	30-045-25329	GAS	10/29/1982	36.7001,-107.9650	4331	Active
PRE-ONGARD WELL #1	30-045-23552	GAS	N/A	36.7001,-107.9650	0	Never Drilled
SULLIVAN GAS COM D #001E	30-045-24083	GAS	01/19/1980	36.7001,-107.9648	6329	Active
DAVIS GAS COM F #001	30-045-07825	GAS	10/4/1960	36.6948,-107.9740	6365	Plugged, Site Released
DAVIS GAS COM G #001	30-045-23554	GAS	10/11/1979	36.6947,-107.9738	2951	Plugged, Site Released
JACQUE #001	30-045-34463	GAS	10/31/2007	36.6941,-107.9727	1890	Active
PRE-ONGARD WELL #001	30-0 4 5-07812	GAS	12/10/1952	36.6943,-107.9733	1804	Plugged, Site Released
CALVIN #001	30-045-12003	GAS	10/24/1962	36.6930,-107.9660	6450	Active
MANGUM #001S	30-045-34266	GAS	N/A	36.6985,-107.9796	0	Never Orilled
CALVIN #003	30-045-25612	ÖIL	4/29/1983	36.6945,-107.9624	5970	Active
CALVIN #100	30-045-31118	GAS	1/8/2003	36.6926,-107.9637	1970	Active
PRE-ONGARD WELL #001	30-045-07776	GA5	N/A	36,6907,-107.9688	0	Plugged, Site Released
NANCY HARTMAN #002	30-045-26721	GAS	7/26/1986	36.7066,-107.9729	2824	Active
CONGRESS #009	30-045-24572	GAS	3/1/1981	36.6920,-107.9640	2960	Active
SULLIVAN GAS COM D #001	30-045-07733	GAS	11/10/1964	36.7016,-107.9603	6260	Active
HARTMAN #001	30-045-07961	GAS	03/03/1960	36.7068, 107.9734	6310	Plugged, Site Released
GRACE PEARCE #001	30-045-07959	GA5	06/19/1958	36.7068,-107.9756	1620	Plugged, Site Released
ASHCROFT SWD #001	30-045-30788	Salt Water Disposal	12/19/2001	36.7014,-107.9592	7512	Active
CONGRESS #018	30-045-25673	OIL	5/7/1983	36.6955,-107.9815	6150	Active
MANGUM #001E	30-045-24673	GAS	2/27/1981	36.6999,-107.9821	6240	Active
CALVIN #001F	30-045-33093	GAS	10/2/2005	36.6943,-107.9593	6525	Active
MARIAN S #001	30-045-27365	GAS	9/16/1989	36.6998,-107.9826	2840	Active
LAUREN KELLY #001	30-045-27361	GAS	9/14/1989	36.7000 _c -107.9826	1500	Active
PRE-ONGARD WELL #001X	30-045-29107	GAS	11/1/1953	36.6991,-107.9573	0	Plugged, Site Released
PRE-ONGARD WELL #00X	30-045-07870	GAS	6/14/1953	36.6992,-107.9573	1442	Plugged, Site Released
PRE-ONGARD WELL #001	30-045-07896	GAS	N/A	36.7016,-107.9828	0	Never Drilled
EARL B SULLIVAN #001	30-045-23163	GAS	12/23/1978	36.7019,-107.9577	2861	Active
CONGRESS #016	30-045-25657	OİL	5/7/1983	36.6879,-107.9721	6200	Active
STATE GAS COM BS #001	30-045-23550	GAS	11/11/1979	36.7081,-107.9640	2954	Active
PEARCE GAS COM #001	30-045-07985	GAS	06/19/1965	36.7082,-107.9639	6274	Plugged, Site Released
MANGUM #001	30-045-07835	GAS	12/6/1962	36.6957,-107.9840	6350	Active
MARY JANE #001	30-045-26731	GAS	08/26/1986	36.7057,-107.9815	2845	Active
SUMMIT #009	30-045-24574	GAS	11/06/1980	36.6872,-107.9727	2985	Active
ROYAL FLUSH #001	30-045-34312	GAS	06/12/2007	36.7059,-107.9814	2045	Active

APPENDIX G. SUMMARY OF 2020 WELL OPERATION DATA FOR WDW-2

ATTACHMENT A

WESTERN REFINING SOUTHWEST, INC. - BLOOMFIELD TERMINAL P.O. BOX 159 BLOOMFIELD, NEW MEXICO 87413

QUARTERLY INJECTION WELL REPORT DISCHARGE PERMIT UICI-011 (WDW #2) U.L: H, SEC 27, T29N, R11W

API #: 30-045-35747

	AMOUNT OF WATER	AMOUNT FROM WWTP	TOTALIZER AMOUNT	DOWN-	91	VIECTION PRESSUR	E		ANNULAR PRESSUR	E		ON-LINE FLOW RATES	
PERIOD	FROM RIVER		INJECTED	TIME	MAX	MIN	AVG	MAX	MIN	AVG	MAX	MIN	AVG
2020	(GALLONS)	(GALLONS)	(GALLONS)	(HRS)	(PSIA)	(PSIA)	(PSIA)	(PSIA)	(PSIA)	(PSIA)	(GPM)	(GPM)	(GPM)
JAN	0	1,262,000	282,210	576	1,382	514	753	92	<-3	61	34	23	28
FEB	0	888,000	171,612	600	1,378	601	762	65	<-6	34	34	26	29
MAR	0	1,134,000	83,244	699	1,391	597	705	55	<-6	29	34	28	31
APR	0	1,149,000	109,368	658	1,376	702	711	44	<-6	23	33	25	29
MAY	0	1,472,000	179,634	633	1,384	595	755	65	<-6	40	31	24	27
JUN	0	1,689,000	76,230	681	1,357	596	674	73	<-6	42	37	4	32
		-								_,			
JŲL	0	2,068,000	0	745	906	5 67	611	94	<-6	64	0	0	0
AUG	64,554	1,962,000	0	745	567	536	550	115	93	105	0	O	0
SEP	76,062	1,908,000	99,792	648	1,291	524	635	119	<-6	84	27	20	22
ост	0	1,985,000	274,925	581	1,351	589	794	85	<-6	50	34	25	28
NOV	0	1,636,000	20,923	709	1,376	591	671	110	<-6	70	29	25	28
DEC	0	1,220,000	588	744	813	550	569	114	22	108	35	35	35

The total amount injected in 2020 is:

1,298,526

gallons

CERTIFICATION: Kally Robinson

DATE:

2/15/2021

Note: Well officially brought on-line full time March 8, 2017.

Mr. Jim Griswold, Bureau Chief NM Oil Conservation Division (OCD) Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Discharge Plan Application for UIC Class I Non-Hazardous Injection Well

Proposed Waste Disposal Well (WDW) #2

Bloomfield Terminal

Western Refining Southwest, Inc. (Western)

Bloomfield, New Mexico

Dear Mr. Griswold:

The enclosed *Discharge Plan Application for UIC Class I Non-Hazardous Injection Well* revised pursuant to the conference call with the OCD staff on January 22nd, 2016. The purpose of the application for Waste Disposal Well #2 is to replace Disposal #1 (API # 30-045-29002) which was abandoned in 2015. The fluids to be disposed in the proposed injection well will be waste water system effluent, evaporation pond contact storm water and injection well stimulation/maintenance liquids.

Western appreciates your assistance with this urgent matter. If there are any questions regarding the enclosed Discharge Plan Application, please contact Mr. Randy Schmaltz at (505) 632-4171.

Sincerely.

Mr. Mark Smith

President

Western Refining Southwest, Inc.

cc Carl Chavez NMOCD

Brandon Powell, NMOCD Phillip Goetze, NMOCD District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Revised August 1, 2011

Submit Original

Plus 1 Copy
to Santa Fe
1 Copy to Appropriate
District Office

DISCHARGE PLAN APPLICATION FOR SERVICE COMPANIES, GAS PLANTS, REFINERIES, COMPRESSOR, GEOTHERMAL FACILITES AND CRUDE OIL PUMP STATIONS

(Refer to the OCD Guidelines for assistance in completing the application)

	X New Renewal Modification
1.	Type: UIC Class I Non-Hazardous Injection Well (WDW #2)
2.	Operator: Western Refining Southwest, Inc.
	Address: #50 County Road 4990 (PO Box 159), Bloomfield, NM 87413
	Contact Person: Class I Non-Hazardous Injection Well Phone: 505-632-8013
3.	Location: SE /4 NE /4 Section 27 Township 29N Range 11W Submit large scale topographic map showing exact location.
4.	Attach the name, telephone number and address of the landowner of the facility site.
5.	Attach the description of the facility with a diagram indicating location of fences, pits, dikes and tanks on the facility
6.	Attach a description of all materials stored or used at the facility.
7.	Attach a description of present sources of effluent and waste solids. Average quality and daily volume of waste wate must be included.
8.	Attach a description of current liquid and solid waste collection/treatment/disposal procedures.
9.	Attach a description of proposed modifications to existing collection/treatment/disposal systems.
10	. Attach a routine inspection and maintenance plan to ensure permit compliance.
11	. Attach a contingency plan for reporting and clean-up of spills or releases.
12	. Attach geological/hydrological information for the facility. Depth to and quality of ground water must be included.
13	. Attach a facility closure plan, and other information as is necessary to demonstrate compliance with any other OCD rules, regulations and/or orders.
	14. CERTIFICATIONI hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.
	Name: Bruce D. Davis Title: Director
	Signature: <u>Bruce</u> D. <u>P</u> Date: <u>3-2-16</u>
	E-mail Address: bruce. davis @ WNR. com

Western Refining Southwest, Inc. Bloomfield Terminal Waste Disposal Well #2 (WDW #2) Discharge Plan Application Attachment

4. Landowner of facility site.

San Juan Refining Company Attn: Western Refining Southwest, Inc. 1250 W. Washington St. Suite 101 Tempe, AZ 85281 Ron Weaver 505-632-8013

5. Description of the facility.

The proposed facility is an UIC Class I Non-hazardous Injection Well (WDW #2).

Purpose |

The purpose of WDW #2 is to replace Disposal #1 (API# 30-045-29002) which was abandoned in 2015.

Location

The proposed well location is within the fence line of Bloomfield Terminal. See the figure and survey in Appendix A of this Discharge Plan Application.

Application for Permit to Drill

The Application for Permit to Drill (Form C-101) is included as Appendix A of this Discharge Plan Application. Form C-101 is also typically submitted under the Oil and Gas regulations, the format presents information also common for Class I injection wells under the Water Quality regulations. The Form C-101 includes general well data, well location survey (Form C-102), well design information including cement slurry details and a well drilling program.

Application for Authorization to Inject

The Application for Authorization to Inject (Form C-108) is included as Appendix B of this Discharge Plan Application. Although Form C-108 is typically submitted under the Oil and Gas regulations, the format presents information also common for Class I injection wells under the Water Quality regulations. The Form C-108 includes general well data, area of review information, proposed operation information, geologic data on the injection zone, the proposed stimulation program and other information.

6. Description of stored materials stored and used.

The proposed injection well will not be used to for material storage.

Western Refining Southwest, Inc. Bloomfield Terminal Waste Disposal Well #2 (WDW #2) Discharge Plan Application Attachment

7. Description of present sources of effluent and waste solids.

During workover (maintenance) operations, the proposed injection well WDW #2 will be a source of waste water and possibly waste solids. The waste water will be re-injected into the WDW #2. The waste solids will be characterized and disposed properly.

8. Current liquid and solid waste collection/treatment/disposal procedures.

The proposed injection well will be used to dispose of non-exempt non-hazardous waste water. A Injection Fluid Analytical is included as Appendix C of this Discharge Plan Application.

9. Description of proposed modifications to the existing collection/treatment/disposal systems.

The pumps and piping to injection well WDW #2 will be redesigned as needed to meet the pressure and flow demands determined during the injectivity testing. This redesign will allow treated waste water to be injected directly into the WDW #2 or directed to the evaporation ponds before injection into WDW #2.

10. Routine inspection and maintenance plan

The WDW #2 surface completion and associated flanges/pumps/piping will be visually inspected daily.

Mechanical Integrity Testing (MIT) will be conducted pursuant to 20.6.2.5204 NMAC. At a minimum, the program will include:

- A MIT at least once every five years or every time a well workover is performed, and
- An annual Bradenhead test.

11. Contingency Plan for Reporting and clean-up of Spills or releases.

The Bloomfield Terminal has an Emergency and Facility Response Plans in place respond releases including treated waste water. If a reportable quantity (5 bbl.) of treated waste water is released from the injection well, NMOCD and NMED Hazardous Waste Bureau will notified in accordance with applicable regulations. Containment, clean-up and reporting will commence as soon as practicable.

12. Geologic/Hydrological information.

Geologic information about the injection zone is included in Appendix B of this Discharge Plan Application.

Western Refining Southwest, Inc. Bloomfield Terminal Waste Disposal Well #2 (WDW #2) Discharge Plan Application Attachment

13. Facility Closure Plan.

A Closure Plan for WDW #2 is included as Appendix D of this Discharge Plan Application. The closure plan includes an estimate for Financial Assurance.

Appendix A Application for Permit to Drill

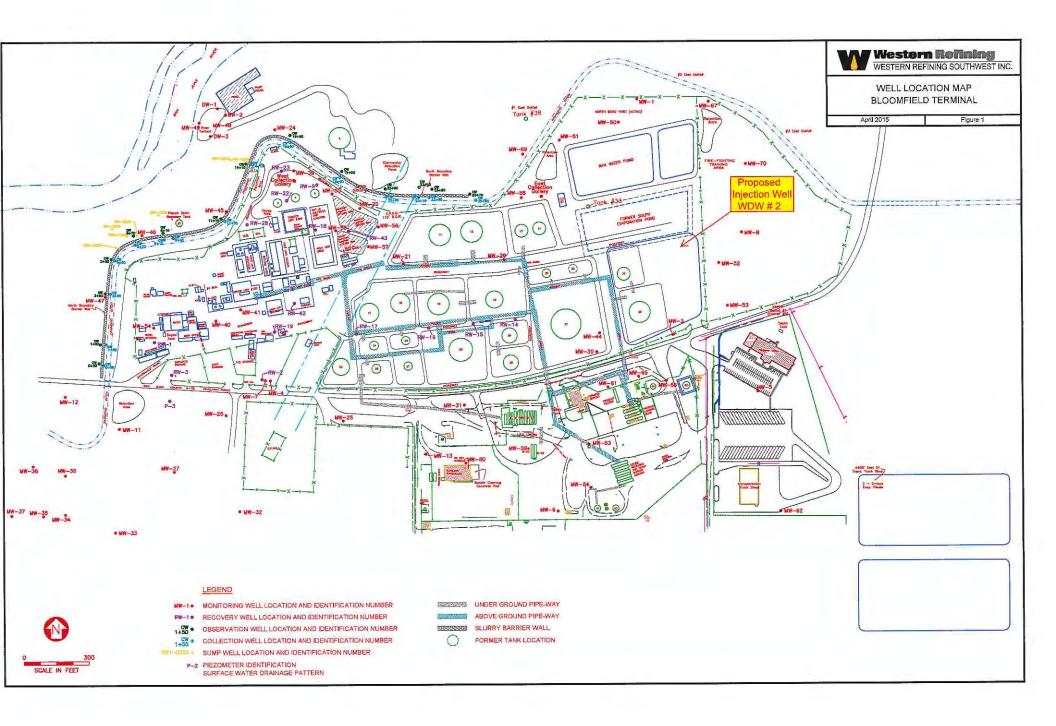
<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170

District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico

Form C-101 Revised July 18, 2013

Energy Minerals and Natural Resources


Oil Conservation Division

1220 South St. Francis Dr.

Santa Fe, NM 87505

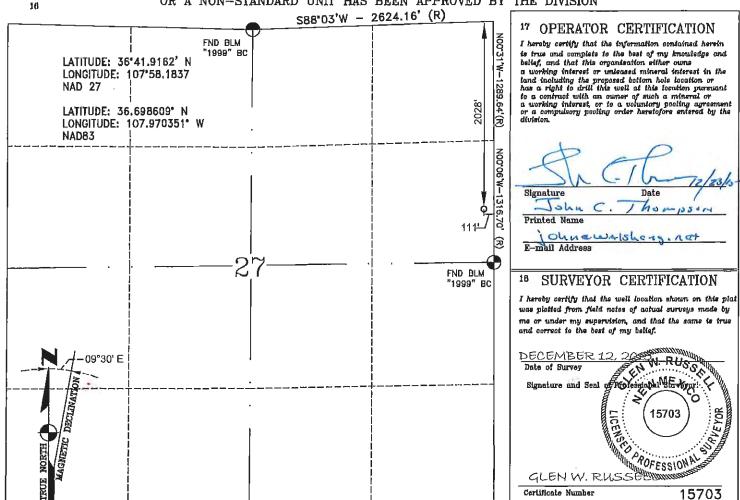
☐AMENDED REPORT

1 1 1 1 1 1	CATIO		· Operator Name as	nd Address					² OGRID N	umber
		West	ern Refining So unty Road 4990 Bloomfield, NM	outhwest, Inc	50)				267595	
		#30 C0	Bloomfield, N	M 87413	<i>))</i>		-		3. API Nun	nber
* Property Code 3. Property Waste Disposal						ne II (WDW)			(^{o.} Well No. #2
					urface Loca					
UL - Lot	Section	Township	Range	Lot Idn	Feet from		1	Feet From	E/W Line	County San Juan
H	27	29N	11W	8 Duonos	2028'	North Hole Location		111'	East	San Juan
UL - Lot	Section	Township	Range	Lot Idn	Feet from		· · · · · · · · · · · · · · · · · · ·	Feet From	E/W Line	e County
		:					ļ			
	<u> </u>	<u> </u>		9. P 0	ool Informa	ation				
				Pool	Name					Pool Code
				A .J.J.4.5 o. w	nal Well Inf	Foundian				
	огк Туре		12. Well Type	Addition	13. Cable/Rota			аѕе Туре	15.	Ground Level Elevation 5535' GL
	N fultiple		S 17. Proposed Depth		R 18. Formation	n		ontractor		²⁰ . Spud Date
ľ	VO		~ 7500'	NO ~7500' Entra					TBD Est Marc	
Depth to Ground water Distance from nearest fresh water					C -1	.11		Distance	to mooraat our	face wester
-	ess than 50°		Distan	ace from nearest 660 °				Distance	to nearest sur 1334°	face water
L	ess than 50°	a cool-besol		660 1		ell		Distance		face water
L	ess than 50°	elosed-loop s	ystem in lieu of	660 ³			ım	Distance		face water
Le We will t	pe using a	elosed-loop s	ystem in lieu of	660 ³	asing and C	Cement Progra		Distance Sacks of 6	1334'	face water Estimated TOC
L	ess than 50° oe using a Hole	-	ystem in lieu of	660 states	asing and C	Cement Progra	oth		1334° Cernent	
Le We will t	ess than 50° De using a General Hole 17-	e Size	ystem in lieu of 21. 7 Casing Size	lined pits Proposed Casing We	asing and C	Cement Progra	oth	Sacks of 6	1334° Cement SX	Estimated TOC
We will to Type Surf	ess than 50° De using a G Holo 17- 12-	e Size 1/2"	Casing Size 13-3/8"	lined pits Proposed Ca Casing Wo 48 ppf -	asing and C eight/ft - H40 - J55	Cement Progra Setting Dep ~ 300°	oth ,	Sacks of 6	1334° Cement SX SX	Estimated TOC Surface
Type Surf Int	ess than 50° De using a G Holo 17- 12-	e Size 1/2" 1/4"	Casing Size 13-3/8" 9-5/8"	Casing Words 48 ppf - 36 ppf - 26 ppf -	asing and C eight/ft - H40 - J55 - L80	Setting Dep ~ 300° ~ 3600	oth ,	Sacks of 6 464 857	1334° Cement SX SX	Estimated TOC Surface Surface
Type Surf Int Prod	Holo 17- 12- 8-3	2 Size 1/2" 1/4" 3/4"	Casing Size 13-3/8" 9-5/8"	lined pits Proposed Casing W 48 ppf - 36 ppf - 26 ppf - g/Cement Pr	asing and C eight/ft - H40 - J55 - L80 rogram: Ad	Setting Dep ~ 300° ~ 3600 ~ 7500 Iditional Com	oth ,	Sacks of 6 464 857	1334° Cement SX SX	Estimated TOC Surface Surface
Type Surf Int Prod	Holo 17- 12- 8-3	2 Size 1/2" 1/4" 3/4"	Casing Size 13-3/8" 9-5/8" 7" Casing Size	lined pits Proposed Casing W 48 ppf - 36 ppf - 26 ppf - g/Cement Pr	nsing and C eight/ft - H40 - J55 - L80 rogram: Ad	Setting Dep ~ 300° ~ 3600 ~ 7500 Iditional Com	, , ments	Sacks of 6 464 857	1334° Cement SX SX	Estimated TOC Surface Surface
Type Surf Int Prod	Holo 17- 12- 8-3	2 Size 1/2" 1/4" 3/4"	Casing Size 13-3/8" 9-5/8" 7" Casing job on the 7"	lined pits Proposed Casing W 48 ppf - 36 ppf - 26 ppf - g/Cement Pr	asing and C eight/ft - H40 - J55 - L80 rogram: Ad DV tool at	Setting Dep ~ 300' ~ 3600 ~ 7500 Iditional Com ~ 4000' Vention Progra	, , ments	Sacks of 6 464 857 850	1334° Cement SX SX	Estimated TOC Surface Surface Surface Manufacturer
Type Surf Int Prod	Holo 17-12-8-3	2 Size 1/2" 1/4" 3/4"	Casing Size 13-3/8" 9-5/8" 7" Casing job on the 7"	Casing W 48 ppf 36 ppf 26 ppf y casing w/ I	asing and C eight/ft - H40 - J55 - L80 rogram: Ad DV tool at	Setting Dep ~ 300° ~ 3600 ~ 7500 Iditional Com ~ 4000° rention Progra	ments	Sacks of 6 464 857 850	1334° Cement SX SX	Estimated TOC Surface Surface Surface
Type Surf Int Prod	Holo 17- 12- 8-3 ze a 2 sta Type 2M	e Size 1/2" 1/4" 3/4" ge cement	Casing Size 13-3/8" 9-5/8" 7" Casing job on the 7"	lined pits Proposed Casing Working Pressure 2000 psi	asing and C eight/ft - H40 - J55 - L80 rogram: Ad DV tool at owout Prev	Setting Dep ~ 300° ~ 3600 ~ 7500 Iditional Com ~ 4000° rention Progra	ments am	Sacks of 6 464 857 850	1334° Cement SX SX	Estimated TOC Surface Surface Surface Manufacturer
Type Surf Int Prod Will utili:	Hole 17- 12- 8-3 Type 2M certify that ti	e Size 1/2" 1/4" 3/4" ge cement	Casing Size 13-3/8" 9-5/8" 7" Casing job on the 7"	lined pits Proposed Casing Working Pressure 2000 psi	asing and C eight/ft - H40 - J55 - L80 rogram: Ad DV tool at owout Prev	Setting Dep ~ 300° ~ 3600 ~ 7500 Iditional Com ~ 4000° rention Progra	ments am st Pressure	Sacks of 6 464 857 850	1334° Cement SX SX	Estimated TOC Surface Surface Surface Manufacturer Schaffer
Type Surf Int Prod Will utili: 3. Thereby costs of my k	Hole 17- 12- 8-3 Type 2M certify that the nowledge arrify that I	e Size 1/2" 1/4" 3/4" ge cement ne information d belief.	Casing Size 13-3/8" 9-5/8" 7" Casing job on the 7" 22.] We a given above is true d with 19.15.14.9	Casing Working Pressur Proposed Ca Casing Working Pressur 26 ppf - 26 ppf - 26 casing w/ I Proposed Bloworking Pressur 2000 psi	nsing and C eight/ft H40 J55 L80 rogram: Ad DV tool at owout Prev e	Setting Dep ~ 300° ~ 3600 ~ 7500 Iditional Com ~ 4000° rention Progra	ments am st Pressure	Sacks of 6 464 857 850	1334° Cement SX SX SX	Estimated TOC Surface Surface Surface Manufacturer Schaffer
Type Surf Int Prod Will utili: 3. Thereby coest of my k further ce 19.15.14.9 (Gignature:	Hole 17- 12- 8-3 Ze a 2 sta Type 2M certify that the nowledge ar retify that I B) NMAC [e Size 1/2" 1/4" 3/4" ge cement ne information d belief. have complie], if applica	Casing Size 13-3/8" 9-5/8" 7" Casing job on the 7" 22. I	lined pits Proposed Ca Casing Wa 48 ppf - 36 ppf - 26 ppf - g/Cement Pr Casing w/ I Proposed Bla Vorking Pressure 2000 psi The and complete (A) NMAC	asing and C eight/ft H40 J55 L80 rogram: Ad DV tool at owout Prev e e to the and/or	Setting Dep ~ 300' ~ 3600 ~ 7500 Iditional Com ~ 4000' rention Progr. Te 20 Approved By:	ments am st Pressure	Sacks of 6 464 857 850	1334° Cement SX SX SX	Estimated TOC Surface Surface Surface Manufacturer Schaffer
Type Surf Int Prod Will utili: 3. I hereby content of my k I further ce 19.15.14.9 (Signature:	Holo 17- 12- 8-3 Ze a 2 sta Type 2M Pertify that the nowledge arrify that I B) NMAC [E: []	e Size 1/2" 1/4" 3/4" ge cement ne information d belief. have complie , if applica	Casing Size 13-3/8" 9-5/8" 7" Casing job on the 7" 22. I W In given above is tri d with 19.15.14.9 ble.	lined pits Proposed Ca Casing Wa 48 ppf - 36 ppf - 26 ppf - g/Cement Pr Casing w/ I Proposed Bla Vorking Pressure 2000 psi The and complete (A) NMAC	asing and C eight/ft - H40 - J55 - L80 rogram: Ad DV tool at owout Prev e e to the and/or	Setting Dep ~ 300° ~ 3600 ~ 7500 Iditional Com ~ 4000° Te 20 Approved By: Title:	ments am st Pressure	Sacks of 6 464 857 850 DNSERVA	1334° Cement SX SX SX	Estimated TOC Surface Surface Surface Manufacturer Schaffer
Type Surf Int Prod Will utili:	Hole 17- 12- 8-3 Ze a 2 sta Type 2M certify that I B) NMAC [e Size 1/2" 1/4" 3/4" ge cement me information and belief. have complie , if applica	Casing Size 13-3/8" 9-5/8" 7" Casing job on the 7" 22. I W In given above is tri d with 19.15.14.9 ble.	Casing Working Pressure 2000 psi	nsing and C eight/ft H40 J55 L80 rogram: Ad DV tool at owout Prev e e to the and/or	Setting Dep ~ 300' ~ 3600 ~ 7500 Iditional Com ~ 4000' rention Progr. Te 20 Approved By:	ments am st Pressure	Sacks of 6 464 857 850 DNSERVA	1334° Cement SX SX SX	Estimated TOC Surface Surface Surface Manufacturer Schaffer

DISTRICT I
1626 N. French Dr., Hobbs, N.M. 88240
Phone: (676) 393-8161 Fax: (676) 393-0780
DISTRICT II
011 S. First St., Arteria, N.M. 88210
Phone: (676) 748-1283 Fax: (675) 748-0720
DISTRICT II
1000 Rlo Branos Rd., Arter, N.M. 07410
Phone: (606) 384-8178 Fax: (506) 334-8170
DISTRICT IV
1220 S. St. Francis Dr., Sants Fs., NM 87805
Phone: (606) 478-3469 Fax: (506) 478-3482

State of New Mexico Energy, Minerals & Natural Resources Department

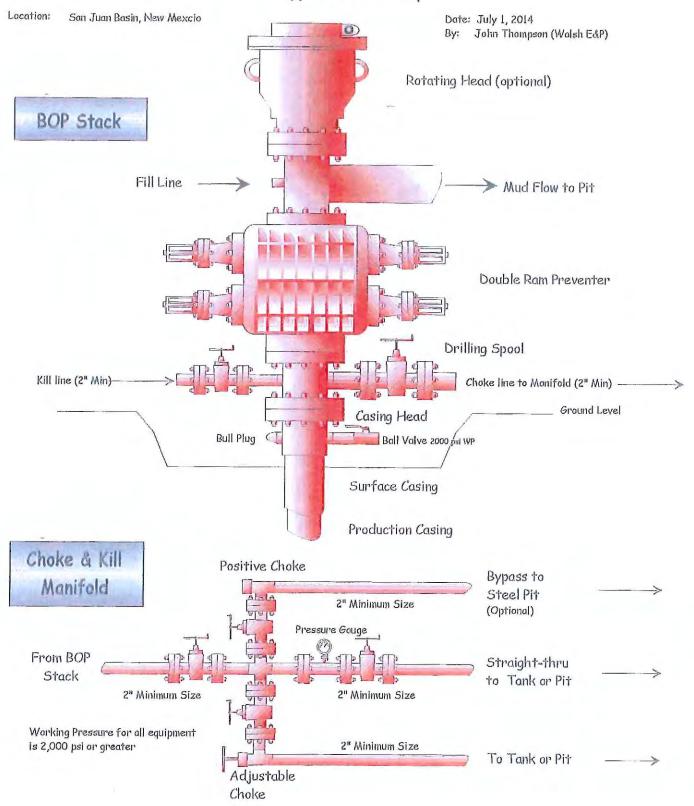
OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505


Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

☐ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

\ ¹API	Number		*Pool Code *Pool Name						
⁴ Property C	ode	⁵ Property Name							Well Number
				V	/aste Disposal \	Well (WDW)			2
OGRID No					**Operator	Name			^o Elevation
267595	5			Western	n Refining S	outhwest, Inc			5535'
	-	·			¹⁰ Surface	Location			
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
н	27	29-N	11-W		2028'	NORTH	<u>1</u> 11'	EAST	ŞAN JUAN
			11 Botte	om Hole	Location I	f Different Fr	om Surface		
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
Dedicated Acre	\$I		18 Joint or	Infill	14 Consolidation (Zode	¹⁵ Order No.		


NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION

Well Control Equipment Schematic for 2M Service

Attachment to Drilling Technical Program

Exhibit #1 Typical BOP setup

Western Refining Southwest, Inc. - WDW #2

Cement Slurry Details (Attachment for NMOCD – APD)

Note: Actual Slurry Design will vary depending upon vendor selection and actual hole conditions.

17-1/2" Hole - 13-3/8", 40 ppf, J55 casing at ~ 300 ft

394 (548 cf) sacks Type III Cement, 2% bwoc Calcium Chloride, 0.25 lbs/sack Cello Flake, 59.2% Fresh Water

Yield:1.39 cf/sx Slurry wt 14.60 ppg

12-1/4" Hole - 9-5/8", 36 ppf, J55 casing at ~ 3600 ft

Lead:

806 sacks (1621 cf) (20:80) poz L:Type III cement w/ 0.1 gps FP-6L, 0.25 lbs/sack Cello Flake, 0.3% bwoc CD-32, 5 lbs/sx Kol-Seal, 0.5 % bwoc Sodium Metasilicate, 0.35% bwoc MPA-170, 5 lbs/sx CSE-2, 102.5% Fresh Water

Yield: 2.01 cf/sx Slurry wt: 12.50 ppg

Tail:

50 sacks (70.5 cf) Type III Cement, 2.25% bwoc Calcium Chloride, 0.25 lbs/sack Cello Flake, 0.02% gps FP-6L, 60.4% Fresh Water

Yield: 1.41 cf/sx Slurry Wt: 14.5 ppg

8-3/4" Hole - 7", 26 ppf, L80 casing at ~ 7500 ft

Stage Tool (DV) at ~ 4000'

Stage no. 1

Lead:

224 sacks (450 cf) (20:80) poz L:Type III cement w/ 0.1 gps FP-6L, 0.25 lbs/sack Cello Flake, 0.3% bwoc CD-32, 5 lbs/sx Kol-Seal, 0.5 % bwoc Sodium Metasilicate, 0.35% bwoc MPA-170, 5 lbs/sx CSE-2, 102.5% Fresh Water

Yield: 2.01 cf/sx Slurry wt: 12.50 ppg

Tail:

180 sacks (338 cf) (10:90) Poz L:Type III Cement, 0.25% bwoc Calcium Chloride, 0.3% bwoc CD-32, 0.02 gps FP-6L, 0.5% bwoc Sodium Metasilicate, 0.35% bwoc MPA-170, 5 lbs/sx CSE-2, 5 lbs/sx Kol-Seal, 87.8% Fresh Water

Yield: 1.88 cf/sx Slurry Wt: 13.0 ppg

Stage no. 2

Lead:

414 sacks (832 cf) (20:80) poz L:Type III cement w/ 0.1 gps FP-6L, 0.25 lbs/sack Cello Flake, 0.3% bwoc CD-32, 5 lbs/sx Kol-Seal, 0.5 % bwoc Sodium Metasilicate, 0.35% bwoc MPA-170, 5 lbs/sx CSE-2, 102.5% Fresh Water

Yield: 2.01 cf/sx Slurry wt: 12.50 ppg

Tail:

50 sacks (70.5 cf) Type III Cement, 2.25% bwoc Calcium Chloride, 0.25 lbs/sack Cello Flake, 0.02% gps FP-6L, 60.4% Fresh Water

Yield: 1.41 cf/sx Slurry Wt: 14.5 ppg

DRILLING PROGRAM

Western Refining Southwest, Inc. Waste Disposal Well (WDW) #2 San Juan County, NM

Surface Location 2028' FNL & 111' FEL Section 27, T29N, R11W Graded Elevation 5535' SHL Geographical Coordinates (NAD-83)

Latitude 36.698609° N Longitude 107.970351° W

Bottom Hole Location (Vertical Well)

Same as Surface

DIRECTIONS TO Western Refining - WDW #2

- > From Bloomfield NM, go on South on HWY 550 to CR 4990
- > Turn left and go easterly on CR 4990 for ~ 1.0 mi.
- > Turn left (north) for 0.1 miles to new location.

Pre-Spud

- Identify Safe Briefing Areas on location. Prevailing wind is NW to SE. Attempt to locate briefing
 areas upwind in the corners of location. Note location of access road and provide for alternate exit if
 not up wind.
- Conduct rig inspection and pre-spud. Record "Rig-On-Daywork" and the Time & Date of well spud on both the Daily Drilling Report and the IADC Daily Drilling Report.
- Ensure regulatory notifications are made Notify the NMOCD, 24 hours prior to spudding the well, testing BOPE, casing, and cement jobs. The following information must be included: well name, legal location, permit number, drilling contractor, company representative, date & time of spud.
- Contact NMOCD Field Inspector Supervisor Brandon Powell 505-320-0200. Record time & date of notification on reports.
- Review and post NMOCD permits and conditions of approval. Ensure 100% compliance with all regulations and conditions.

Well Plan

- Drill 17-1/2" surface hole from 0' to 350'.
- Drill surface with a fresh water gel mud system.
- 8.3 -9.4 ppg, 32-75 vis, NC fluid loss, <5% LGS.
- Perform a deviation surveys at 100', 250' and TD.

- Control deviation as necessary.
- Run and cement 13-3/8" casing and cement to the surface.
- Contact NMOCD if cement is not circulated to surface to get remediation approved prior to 1" cement.
 If cement is below 200' from surface, a CBL may have to be run to determine cement top.
- Nipple up BOP and test BOPE
- Ensure all drill pipe has casing friendly hardbanding.
- Install ditch magnets and measure metal cuttings in a vis cup every tour.
- Drill 12-1/4" intermediate to ~ 3600' with a fresh water LSND mud.
- Short trip to surface casing to prepare hole for 9-5/8" casing.
- Run 9-5/8", 36 ppf J-55 casing to Intermediate TD (Clean threads & drift casing once it's on location, prior to running).
- Cement 9-5/8" casing in single stage. Calculate cement volumes to circulate cement to surface.
- Drill 8-3/4" to ~ 7500' w/ fresh water LSND mud.
- Short trip to intermediate to prepare hole for logs and 7" casing.
- · Run triple combo open hole logs.
- Run 7", 26 ppf, L80 casing to TD (clean threads & drift casing once it's on location prior to running)
- Nipple down BOP, clean mud tanks.
- Release rig.

Geology

MD —	Formation
Surface	Quatermary Alluvium
	
10'	Nacimiento
515'	Ojo Alamo
625'	Kirtland
1718'	Pictured Cliffs
1880'	Lewis
2688'	Chacra
3335'	Cliffhouse
3394'	Menefee
4037'	Point Lookout
4423'	Mancos Shale
55991	Gallup
6060'	Greenhorn
6149'	Dakota
6365'	Burre Canyon
6411'	Morrison
7287'	Todilto
7315'	Entrada
7483'	Chinle

Casing Program:

Casing & Hole Size	Weight	Grade	Coupling	Setting Depth (MD)	Top of Cement
13-3/8" (17-1/2")	48 ppf	H-40	LT&C	0-350 ft	To surface
9-5/8" (12-1/4")	36 ppf	J-55	LT&C	0-3600 ft	To surface
7" (8-3/4")	26 ppf	L-80	LT&C	0-7500	To surface

Mud logging:

Commences at 300', 30-ft samples to TD, or as required to pick formation tops to

TD

Open-Hole Logs:

Triple Combo

Cased-Hole Logs:

CBL

Rig-up

During rig-up, ensure that the following items are properly rigged up:

- Hydraulic remote choke and control panel (ensure that the choke manifold is configured properly to NMOCD standards)
- Trip tank (including piping, valves, etc.)
- Reliable wet-system bulk barite hopper (ensure that it is rigged up so that barite can be
 mixed prior to the suction tank and also so that barite can be mixed in the pre-mix tank)

Rig items to be taken care of the following issues prior to spud:

- Change seats and valves in mud pumps, redress relief valves, check pre-charge pressures of pulsation dampeners
- Repair all suction valves, etc., in mud tanks as required
- Check all centrifugal pumps, including charger pumps, mud mixing pumps, desander/desilter pumps, etc.

17 1/2" Surface Hole

MIRU During rig-up and while drilling surface hole, ensure that the following items are properly rigged up:.

Conduct rig inspection and pre-spud. Record "Rig-On-Daywork" and well spud time/date on Daily Report and on IADC Daily Drilling Report.

 Ensure regulatory notifications are made – NMOCD, 24 hours prior to spudding the well, testing BOPE, casing, and cement jobs. The following information must be included: well name, legal location, permit number, drilling contractor, company representative, date & time of spud. Contact NMOCD Field Inspector. Record name of government personnel contacted and time & date of notification on reports.

Procedure

Bottom-Hole Assembly (BHA) is to consist of the following:

- 1. PU 17-1/2" BHA
 - 17-1/2" surface hole bit
 - Bit sub (ported for float) 7-5/8" reg x 6-5/8" reg
 - Shock Sub
 - 4 ea. 8" DC's
 - Cross over 6-5/8" x 4-1/2"
 - 8 ea. 6" DC's
- 2. Drill 17-1/2" surface hole from 0' to 350'.
- 3. Drill surface with fresh water gel mud system. Drill surface with a fresh water gel mud system containing fresh water gel, poly-plus RD, detergent and 2% KCL
- 4. 8.3 -9.4 ppg, 32-75 vis, NC fluid loss, <5% LGS
- 5. Control deviation as necessary by varying RPM & WOB.
- 6. Install ditch magnets and measure metal cuttings in a vis cup every tour.
 - a. Take survey at 100', if the hole is straight take a second survey halfway to TD and at 13-3/8" casing point.
- 7. Ensure that all rig solids control equipment are working properly.

Target mud properties:

MW (PPG)	Funnel Viscosity Sec	PV	YP	Gels 10s/10m	мвт	Са	CI-	LGS
8.3 - 9.4	38 - 45	<12	8 - 18	1/2	<15 ppb	800-1200 mg/l	<1200 mg/l	ALAP

- 8. Drill to a minimum of 350-ft RKB. Adjust TD depth as required to fit the casing to the hole. Circulate and pump high viscosity sweeps as required. Make a wiper trip if any drag coming off bottom, otherwise continue POOH to run pipe.
- 9. RU and run 13-3/8" 48# H-40 LT&C casing.
 - a. Clean, visually inspect, and drift the casing on the rack.
 - Test slurries with actual mix water in advance. Ensure that Cement Company provides pumping time data from lab tests based on actual mix water and bulk cement as loaded for the job.
 - c. Run casing as follows:
 - Float Shoe
 - One (1) joint of 9-5/8" 36# J-55 LT&C casing
 - Float Collar
 - 13-3/8" 48# H-40 LT&C casing to surface.
 - d. Thread-lock the float shoe and float collar with equivalent thread-lock compound. Make up remaining joints with API modified thread compound. Ensure the float equipment is PDC friendly. Run 5 bow-spring centralizers with one 10-ft from the shoe, then on every jt to surface.
 - e. Fill the pipe as it is run.
 - f. Follow Wellhead Recommended Installation Procedure.
- 10. With the 13-3/8" casing run to bottom, circulate a minimum of one complete hole volume (casing volume + annular volume) before cementing as follows:

- a. Pump schedule (based on 125% excess)
 - 10-bbls Freshwater spacer
 - 394 sx (548 cf) 15.6 ppg
 - Drop top plug
 - Displace with surface drilling mud
- b. Bump the plug with 500 psi over final circulating pressure. Release pressure and then check the integrity of the float equipment.

Note: Pressure test casing to 1500 psi for 30 minutes. Pressure test the casing when pressure testing the BOPE.

- c. Ensure that 13-3/8" landing joint is centered in rotary table when Casing Head is landed.
- d. Report the following on the daily drilling report:
 - Spacer and cement slurry volumes, compositions, and properties (density, yield, etc.)
 - Displacement volume, fluid type, and density
 - Circulating pressure before bumping the plug and pressure that plug was bumped
 - · Volume of fluid bled back and whether float equipment held or not
 - Whether cement was returned to surface and estimated volume of cement returns
 - Any other pertinent information about the cement job.
- e. If the cement falls back or does not return to surface, perform a top job with 1" tubing. Top Job Cement Slurry to consist of Class "G" Premium w/ 2% CaCl₂ (or similar cement).
- f. REGULATORY APPROVAL MUST BE GIVEN PRIOR TO PUMPING TOP JOB.
- g. WOC for a minimum 12 hours before drilling out.
- h. While waiting on cement, remove landing joint, nipple up BOPE,
- 11. Follow Wellhead Recommended Wellhead Installation Procedure for 13-5/8" 3,000 psi wellhead. The technician should remove plugs from side outlets, install side outlet valves, and confirm proper installation of entire 3M wellhead assembly equipment prior to pressure testing BOPE.
- 12. Nipple up 13-5/8" 3M BOPE, :
 - a. See attachment showing 2M BOPE (NOTE: Will test per NMOCD specs for 2M System as per APD)
- 14. Ensure that third party pressure test company personnel perform function and accumulator draw down tests by shutting off air and electric power to accumulator.
 - Check nitrogen pre-charge pressure for each accumulator bottle.
 - Record initial accumulator manifold pressure, open and shut all BOP equipment and hydraulic valves, and record final accumulator manifold pressure.
 - Ensure that results of function and accumulator draw down tests and any equipment deficiencies
 are noted on the Daily Drilling Report and the IADC Daily Drilling Report. Third party pressure
 test company personnel should provide report of accumulator unit inspection, including nitrogen
 pre-charge pressures for each accumulator bottle, to the rig supervisor.
- 15. Set 13-5/8" 3M BOP test plug (C22) in Casing Head bowl and open lower valve on Casing Head.
 - **Note:** Ensure that third party pressure test company personnel test all BOP equipment, choke manifold, and all surface equipment to low pressure of 250 psi and rated working pressure (2000 psi) for 10 minutes each test.
 - Note: Third party pressure test personnel should record and annotate all BOPE pressure tests on calibrated chart recorder with appropriate scale for test

pressures. One set of pressure recorder charts should be left onsite with drilling foreman and another set of pressure recorder charts should be submitted to the State Inspectors.

16. Remove 3M BOP test plug. Install retrievable long bowl protector (wear bushing) as required.

12-1/4" Section

Important Notes:

- This interval will be drilled with fresh water-base mud (WBM) LSND system. Weight up as required, 8.5 – 9.4 ppg, 42-60 sec/qt vis, 4-6cc WL, YP 8-18, maintain less than 2% LGS, pH 9.0-9.8.
- No mud materials should be mixed without explicit instructions from the mud engineer. Also
 ensure that good housekeeping is practiced on the top of the mud tanks to minimize the
 possibility of paper, plastic, or some other foreign object being dropped into the mud tanks, which
 could interfere with the pumps or be pumped down the hole.
- Wiper trip to surface to prepare for casing run.
- Adjust mud weight and LCM as necessary to prevent losses and gains.

Procedure

- 1. PU 12-1/4" BHA
 - 12-1/4" NOV
 - NOV Mud Motor 7/8 5.0 .28 Revs per gallon
 - 3 pt String IBS (Stabilizer)
 - 2 ea. 6-1/2" DC's
 - 3 pt String IBS (Stabilizer)
 - 12 ea. 6-1/2" DC's
 - 4 ea. 4-1/2" HWDP
 - 4 ½" DP to surface
- 2. TIH and drill out float equipment
- 3. Drill 12-1/4" intermediate hole to TD ~ 3600'
 - Record all pressure tests on chart or Pason.
 - Drill out with fresh water based mud system as described above
 - Perform a deviation surveys every 500'
- 4. Continue to drill ahead with 12-1/4" PDC bit.
 - a. The 12-1/4" hole will be drilled with LSND WBM (reference mud program).
 - b. Record bit on bottom hours and record mud motor hours daily in remarks section of morning report.
- 5. Drill to Intermediate TD of ~3600'
- 6. Circulate hole clean and Strap Out of Hole.
- 7. While circulating prior to POOH, work pipe to assist in solids removal.
- 8. POOH to Surface Casing Point. If there is any drag, make wiper trip back to bottom and circulate and condition hole before POOH again.

- 9. Run 9-5/8", 36#, J55 LT&C casing.
 - Casing Running Order:
 - One (1) Float Shoe
 - One (1) joint 9-5/8", 36#, J55 LT&C casing
 - One (1) Float Collar
 - 9-5/8", 36#, J55 LT&C casing
 - If necessary run DV tool to ensure cement to surface (Note: verify DV tool placement with Engineer prior to running casing)
 - 9-5/8", 36#, J55 LT&C casing, as required, to surface
 - Centralizers:
 - One Bow Spring centralizer on bottom 10 jts.
 - One Bow Spring centralizer on each 4th joint of casing to surface casing
 - Two Bow Spring centralizers above and below each DV tool
 - Clean threads, drift & visually inspect the casing on the rack.
 - Torque each joint of casing to optimum make-up torque.
 - Thread-lock the float collar and float shoe with thread lock compound.
 - Use API modified pipe dope for remaining casing joints.
 - Utilize a safety clamp (dog collar) on approximately first 10 joints of casing until enough
 weight is run to ensure casing slips are engaging properly. Upon reaching surface casing
 shoe, swap out elevators for minimum of 250-ton slip-type elevators and ensure
 circulating swage is ready to be picked up in the event difficulty is encountered running
 casing through open hole.
- 10. Wash casing down as required. Space out and land casing in wellhead with mandrel-type casing hanger.

Note: Record weight that casing is landed in bowl with mandrel-type casing hanger in Daily Drilling Report.

- 11. Once casing is landed, circulate a <u>minimum</u> of two full bottoms-up or until hole cleans up, whichever is greater, before cementing. Gradually stage pump rate up to 8-10 bpm while circulating to ensure that cavings and/or shale fragments are circulated out of the hole to minimize risk of packing off during the cement operations. Carefully monitor hole for losses while circulating.
- 12. Cement casing in single stage (if heavy losses or hole conditions dictate install DV tool as needed) Note: verify cement volumes with Engineer prior to ordering cement. Refer to vendor Cement Recommendations for cement details.
 - a. Pump schedule:
 - Pump 10-bbls fresh water to fill lines and prime pumps
 - Pressure test lines to 2,000 psi
 - Pump 5 bbls of fresh water then 10 bbls of mud clean prior to pumping cement.
 - Mix and pump 12.5 ppg lead cement slurry: 806 sx (1621 cf)
 - Mix and pump 14.5 ppg tail cement slurry: 50 sx (70.5 cf)
 - b. Displace with drilling fluid at 6-8 bpm. Carefully observe well for losses, and adjust displacement rate if required. Bump the plug with 500 psi over final circulating pressure.
 - c. Release pressure and check pressure integrity of the float equipment. NDBOPE. Lift stack.

- 13. Set slips on 9-5/8" casing. Energize slips with jam bolts.
- 14. LD 13-5/8" BOPE
- 15. NUBOPE (9-5/8"*2,000 psi)
- 16. Test BOPE
 - a. Test rams, HCR, manual valves and wellhead to 250 psi low and 2,000 psi high
 - b. Test manual chokes to 250 psi low and 2,000 psi high
 - c. Test kill line, choke line, choke manifold and all surface tools (TIW's, inside bop, etc) to 250 psi low and 2,000 psi high
 - d. Test 9-5/8" casing to 2,000 psi / 20 minutes.
 - e. Install wear bushing.

8 3/4" Section

Important Notes:

- This interval will be drilled with fresh water-base mud (WBM) LSND system. Weight up as required, 8.5 – 9.4 ppg, 42-60 sec/qt vis, 4-6cc WL, YP 8-18, maintain less than 2% LGS, pH 9.0-9.8.
- No mud materials should be mixed without explicit instructions from the mud engineer. Also
 ensure that good housekeeping is practiced on the top of the mud tanks to minimize the
 possibility of paper, plastic, or some other foreign object being dropped into the mud tanks, which
 could interfere with the pumps or be pumped down the hole.
- Wiper trip to Intermediate to prepare for casing run.
- Adjust mud weight and LCM as necessary to prevent losses and gains.

Procedure

- 13. PU 8 ¾" BHA
 - 8 ¾" NOV DSHI516G-G2
 - NOV Mud Motor 7/8 5.0 .28 Revs per gallon
 - 3 pt String IBS (Stabilizer)
 - 2 ea. 6-1/2" DC's
 - 3 pt String IBS (Stabilizer)
 - 12 ea. 6-1/2" DC's
 - 4 ea. 4-1/2" HWDP
 - 4 ½" DP to surface
- 14. TIH and drill out float equipment
- 15. Drill 8-3/4" hole
 - Record all pressure tests on chart or Pason.
 - Drill out with fresh water based mud system as described above
 - Perform a deviation surveys every 500'
- Continue to drill ahead with 8 ¾" PDC bit to a TD of ~ 7500'.
 - c. The 8 3/4" hole will be drilled with LSND WBM (reference mud program).

- d. Record bit on bottom hours and record mud motor hours daily in remarks section of morning report.
- 17. Plan on bit trip at or near top of Dakota formation. Change out bit to 8-3/4" SKHI616D-D2 and fresh mud motor.
- 18. Continue drilling to TD of ~7500' (10' to 15' into Chinle Formation)
- 19. Circulate hole clean and Strap Out of Hole.
- 20. While circulating prior to POOH, work pipe to assist in solids removal.
- 21. POOH to Intermediate Casing Point. If there is any drag, make wiper trip back to bottom and circulate and condition hole before POOH again.
- 22. TOH & Run Open Hole Logs
- 23. TIH to TD, circulate & condition hole as necessary. TOH, LDDP & DC's
- 24. Run 7" 26# L-80 LT&C casing.
 - Casing Running Order:
 - One (1) Float Shoe
 - One (1) joint 7" 26# L-80 LT&C casing
 - One (1) Float Collar
 - 7" 26# L80 LT&C casing
 - Place DV tool at 4000' (Note: verify DV tool placement with Engineer prior to running casing)
 - 7" 26# N80 LT&C casing, as required, to surface
 - Centralizers:
 - One Bow Spring centralizer on bottom 10 jts.
 - One Bow Spring centralizer on each 4th joint of casing to surface casing
 - Two Bow Spring centralizers above and below each DV tool
 - Clean threads, drift & visually inspect the casing on the rack.
 - Torque each joint of casing to optimum make-up torque.
 - Thread-lock the float collar and float shoe with thread lock compound.
 - Use API modified pipe dope for remaining casing joints.
 - Utilize a safety clamp (dog collar) on approximately first 10 joints of casing until enough
 weight is run to ensure casing slips are engaging properly. Upon reaching surface casing
 shoe, swap out elevators for minimum of 250-ton slip-type elevators and ensure
 circulating swage is ready to be picked up in the event difficulty is encountered running
 casing through open hole.
- 25. Wash casing down as required. Space out and land casing in wellhead with mandrel-type casing hanger.

Note: Record weight that casing is landed in bowl with mandrel-type casing hanger in Daily Drilling Report.

26. Once casing is landed, circulate a <u>minimum</u> of two full bottoms-up or until hole cleans up, whichever is greater, before cementing. Gradually stage pump rate up to 8-10 bpm while circulating to ensure that cavings and/or shale fragments are circulated out of the hole to minimize risk of packing off during the cement operations. Carefully monitor hole for losses while circulating.

27. Cement casing in 2 stages as follows: (Note: verify cement volumes with Engineer prior to ordering cement). Refer to vendor Cement Recommendations for cement details.

First Stage:

- f. Pump schedule:
 - Pump 10-bbls fresh water to fill lines and prime pumps
 - Pressure test lines to 2,000 psi
 - Pump 5 bbls of fresh water then 10 bbls of mud clean prior to pumping cement.
 - Mix and pump 12.5 ppg lead cement slurry: 224 sx (450 cf)
 - Mix and pump 13.0 ppg tail cement slurry: 180 sx (338 cf)
 - Drop first-stage shutoff plug (top plug)
 - Pump 10-bbls fresh water
 - Displace with drilling fluid at 6-8 bpm. Carefully observe well for losses, and adjust displacement rate if required. Be sure to slow down displacement rate to 3 bpm or less for 15-20 bbl before and for 15-20 bbl after the first-stage shutoff plug reaches the DV tool at approximately 4,000'.
- g. Bump the plug with 500 psi over final circulating pressure.
- h. Release pressure and check pressure integrity of the float equipment.
- Drop opening plug.
- j. Wait required time for opening plug to fall inside casing to top of 2nd DV tool. This time will likely be required to put the cap back on the cement head after dropping the opening plug.
- k. Pressure up to required pressure to open 1st stage tool.
- I. Break circulation and continue to circulate while WOC. Carefully bring up pump rate and monitor returns for losses. Record volume of cement returned to surface. Circulate and WOC for 4 hours or longer before pumping second stage cement slurry, if samples indicate additional WOC time would be beneficial.

Second Stage:

- a. Pump schedule:
 - Pump 20-bbls water-based spacer mixed at 8.4 lb/gal.
 - Mix and pump 12.5 ppg lead cement slurry: 414 sx (832 cf).
 - Mix and pump 14.5 ppg tail cement slurry: 50 sx (70.5 cf)
 - Drop closing plug
 - Pump 10-bbls freshwater
 - Displace with drilling fluid at 6-8 bpm then slow down displacement rate to 3 bpm before bumping plug.
- b. Bump the plug with 500 psi over final circulating pressure, then slowly bring pressure up to closing pressure, which will be approximately the final circulating pressure plus required pressure to close 1st DV tool. Release pressure and check for flow back to ensure that the 1st stage tool is closed.
- c. Report the estimated volume of cement returns.
- m. Release pressure and check pressure integrity of the float equipment.
- 28. Lay down landing joint. Install the mandrel pack-off using a stand of HWDP and test pack-off seals to 2000 psi.
- 29. ND 11" 3M BOP Stack. NU 7-1/16" 5M x 4-1/16" Tubing Head Assembly. Be sure that bowl of Tubing Head Assembly is well greased to prevent corrosion while waiting on workover rig to complete well for SWD disposal.

- 30. NU 4-1/16" 5M Gate Valve, in order to secure well.
- 31. Release and RD drilling rig.

John Thompson Engineer

Appendix B Application for Authorization to Inject

DATE IN	SUSPENSE	ENGINEER	LOGGED IN	TYPE	APP NO.

ABOVE THIS LINE FOR DIVISION USE ONLY

NEW MEXICO OIL CONSERVATION DIVISION

- Engineering Bureau -

1220 South St. Francis Drive, Santa Fe, NM 87505

ADMINISTRATIVE APPLICATION CHECKLIST

THIS CHECKLIST IS MANDATORY FOR ALL ADMINISTRATIVE APPLICATIONS FOR EXCEPTIONS TO DIVISION RULES AND REGULATIONS WHICH REQUIRE PROCESSING AT THE DIVISION LEVEL IN SANTA FE **Application Acronyms:** [NSL-Non-Standard Location] [NSP-Non-Standard Proration Unit] [SD-Simultaneous Dedication] [DHC-Downhole Commingling] [CTB-Lease Commingling] [PLC-Pool/Lease Commingling] [PC-Pool Commingling] [OLS - Off-Lease Storage] [OLM-Off-Lease Measurement] [WFX-Waterflood Expansion] [PMX-Pressure Maintenance Expansion] [SWD-Salt Water Disposal] [IPI-Injection Pressure Increase] [EOR-Qualified Enhanced Oil Recovery Certification] [PPR-Positive Production Response] [1] **TYPE OF APPLICATION** - Check Those Which Apply for [A] Location - Spacing Unit - Simultaneous Dedication \square NSL \square NSP \square SD Check One Only for [B] or [C] Commingling - Storage - Measurement \square DHC \square CTB \square PLC \square PC \square OLS \square OLM Injection - Disposal - Pressure Increase - Enhanced Oil Recovery [C] WFX PMX SWD IPI EOR PPR Other: Specify Class I Non-hazardous Injection Well [D]NOTIFICATION REQUIRED TO: - Check Those Which Apply, or Does Not Apply [2] A Working, Royalty or Overriding Royalty Interest Owners X Offset Operators, Leaseholders or Surface Owner [B] [C]X Application is One Which Requires Published Legal Notice Notification and/or Concurrent Approval by BLM or SLO [D]U.S. Bureau of Land Management - Commissioner of Public Lands, State Land Office For all of the above, Proof of Notification or Publication is Attached, and/or, E \mathbf{F} Waivers are Attached SUBMIT ACCURATE AND COMPLETE INFORMATION REQUIRED TO PROCESS THE TYPE [3] OF APPLICATION INDICATED ABOVE. **CERTIFICATION:** I hereby certify that the information submitted with this application for administrative approval is accurate and complete to the best of my knowledge. I also understand that no action will be taken on this application until the required information and notifications are submitted to the Division. Note: Statement must be completed by an individual with managerial and/or supervisory capacity. Print or Type Name

Signature

Director

Title

3-2-16

Date bruce. davis @ WNR. com

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

FORM C-108 Revised June 10, 2003

APPLICATION FOR AUTHORIZATION TO INJECT

I.	PURPOSE: Secondary Recovery Pressure Maintenance X Disposal Storage Application qualifies for administrative approval? Yes No
П.	OPERATOR: Western Refining Southwest, Inc.
	ADDRESS: #50 County Road 4990 (PO Box 159), Bloomfield, NM 87413
	CONTACT PARTY: Ron Weaver PHONE: 505-632-8013
m.	WELL DATA: Complete the data required on the reverse side of this form for each well proposed for injection. Additional sheets may be attached if necessary.
IV.	Is this an expansion of an existing project? Yes X No If yes, give the Division order number authorizing the project:
V.	Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mile radius circle drawn around each proposed injection well. This circle identifies the well's area of review.
VI.	Attach a tabulation of data on all wells of public record within the area of review which penetrate the proposed injection zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of completion, and a schematic of any plugged well illustrating all plugging detail.
VII.	Attach data on the proposed operation, including:
	 Proposed average and maximum daily rate and volume of fluids to be injected; Whether the system is open or closed; Proposed average and maximum injection pressure; Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; and, If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.).
*VIII.	Attach appropriate geologic data on the injection zone including appropriate lithologic detail, geologic name, thickness, and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such sources known to be immediately underlying the injection interval.
IX.	Describe the proposed stimulation program, if any.
*X.	Attach appropriate logging and test data on the well. (If well logs have been filed with the Division, they need not be resubmitted).
*XI.	Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken.
XII.	Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water.
XIΠ.	Applicants must complete the "Proof of Notice" section on the reverse side of this form.
	Certification: I hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.
	NAME: Bruce D. Davis TITLE: Director
	SIGNATURE: DATE: 3-2-16
*	NAME: Scuce D. Davis SIGNATURE: DATE: DATE: 3-2-16 E-MAIL ADDRESS: Druce. davis @ WNR. Com If the information required under Sections VI, VIII, X, and XI above has been previously submitted, it need not be resubmitted. Please show the date and circumstances of the earlier submittal:

III. WELL DATA

- A. The following well data must be submitted for each injection well covered by this application. The data must be both in tabular and schematic form and shall include:
 - (1) Lease name; Well No.; Location by Section, Township and Range; and footage location within the section.
 - (2) Each casing string used with its size, setting depth, sacks of cement used, hole size, top of cement, and how such top was determined.
 - (3) A description of the tubing to be used including its size, lining material, and setting depth.
 - (4) The name, model, and setting depth of the packer used or a description of any other seal system or assembly used.

Division District Offices have supplies of Well Data Sheets which may be used or which may be used as models for this purpose. Applicants for several identical wells may submit a "typical data sheet" rather than submitting the data for each well.

- B. The following must be submitted for each injection well covered by this application. All items must be addressed for the initial well. Responses for additional wells need be shown only when different. Information shown on schematics need not be repeated.
 - (1) The name of the injection formation and, if applicable, the field or pool name.
 - (2) The injection interval and whether it is perforated or open-hole.
 - (3) State if the well was drilled for injection or, if not, the original purpose of the well.
 - (4) Give the depths of any other perforated intervals and detail on the sacks of cement or bridge plugs used to seal off such perforations.
 - (5) Give the depth to and the name of the next higher and uext lower oil or gas zone in the area of the well, if any.

XIV. PROOF OF NOTICE

All applicants must furnish proof that a copy of the application has been furnished, by certified or registered mail, to the owner of the surface of the land on which the well is to be located and to each leasehold operator within one-half mile of the well location.

Where an application is subject to administrative approval, a proof of publication must be submitted. Such proof shall consist of a copy of the legal advertisement which was published in the county in which the well is located. The contents of such advertisement must include:

- (1) The name, address, phone number, and contact party for the applicant;
- (2) The intended purpose of the injection well; with the exact location of single wells or the Sectiou, Township, and Range location of multiple wells;
- (3) The formation name and depth with expected maximum injection rates and pressures; and,
- (4) A notation that interested parties must file objections or requests for hearing with the Oil Conservation Division, 1220 South St. Francis Dr., Santa Fe, New Mexico 87505, within 15 days.

NO ACTION WILL BE TAKEN ON THE APPLICATION UNTIL PROPER PROOF OF NOTICE HAS BEEN SUBMITTED.

NOTICE: Surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date this application was mailed to them.

INJECTION WELL DATA SHEET

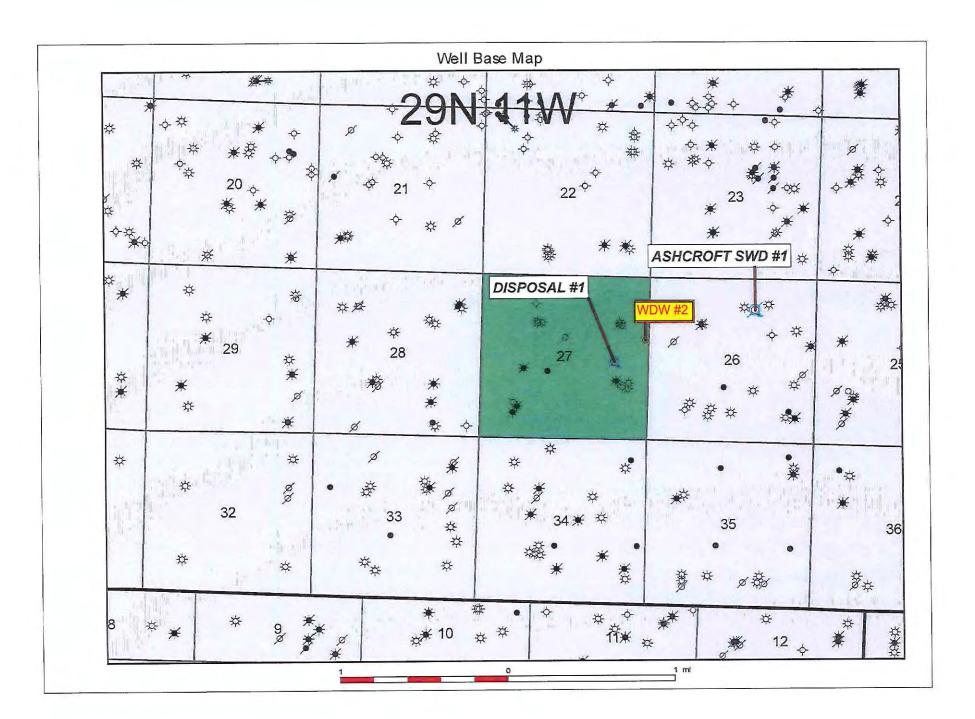
OPERATOR:	Western Refining Southwest, Inc.				
WELL NAME &	NUMBER:Waste Disposal Well (WDW)	#2			
WELL LOCATION	ON: <u>2028' FNL & 111' FEL</u> FOOTAGE LOCATION	H INIT I ETTED	27 SECTION	T29N TOWNSHIP	
	VELLBORE SCHEMATIC	UNII LEITER		ONSTRUCTION DATA	
Date Drawn: Dec 2015	ENGINEERING WALLSH	Hole Size:	17-1/2"	Casing Size: 13-3	/8, 48 ppf, H40
17-1/2" Hole	13-3/8", 48#, H40 - 350	Cemented with:	<u>394</u> sx.	or <u>548</u>	ft ³
		Top of Cement:	Surface	Method Determined:	
			Intermedia	ate Casing	
		Hole Size:1	2-1/4"	Casing Size: 9-5/8	3", 36#, J55
12-1/4" Hole	9-5/8", 36%, J55	Cemented with: _	857 sx	or <u>1693</u>	ft ³
	DV tool at 4000' KB	Top of Cement: _	Surface	Method Determined:	
			Productio	n Casing	
		Hole Size:	8-3/4"	Casing Size: 7",	26 ppf, L80
	Injection String 4-1/2*, 11.68, L30, IPC	Cemented with: _	868 sx.	or1692_	ft ³
2		Top of Cement:	Surface	Method Determined:	
	IPC FB Packer at ~ 7265 '	Total Depth:	~ 7500'		
0000	Proposed Injection Zone: Entrada Sandstone: 7315' - 7480'		Injection Inter	val (Proposed)	
8-3/4" Hole	7", 23#, J55		315' fee	et to <u>7483' (perf</u>	orated 4 spf)
Prod Csg @ 750	TO YES		(Parforated or Open I	Hole: indicate which)	

(Perforated or Open Hole; indicate which)

INJECTION WELL DATA SHEET

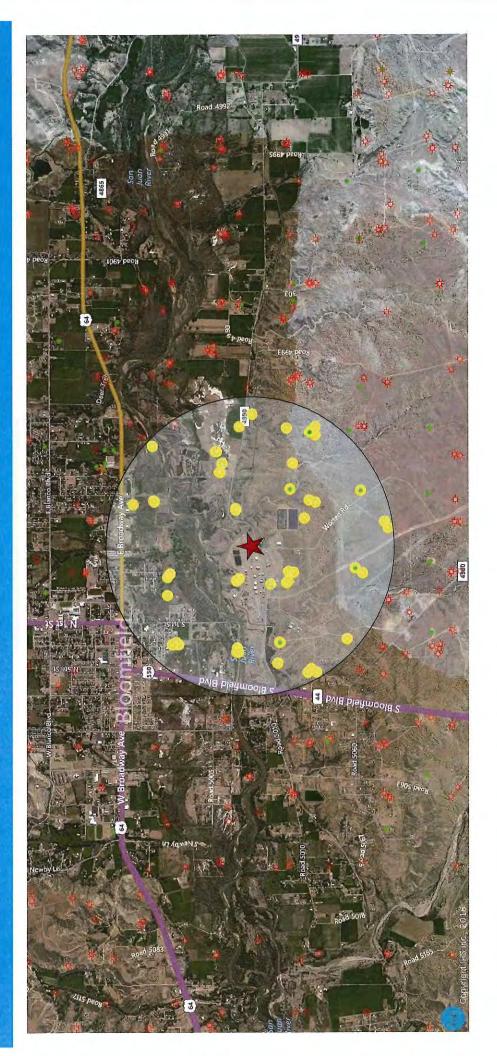
Tu	bing Size: 4-1/2", 10.5 ppf Lining Material: Plastic Lined
Тур	De of Packer:
Pac	ker Setting Depth: ~ 7265'
Oth	er Type of Tubing/Casing Seal (if applicable):Baker Model "KBH-22" Anchor tubing seal assembly, landed in packer
	Additional Data
1.	Is this a new well drilled for injection?XYesNo
	If no, for what purpose was the well originally drilled?
2.	Name of the Injection Formation: <u>Entrada</u>
3.	Name of Field or Pool (if applicable):
4.	Has the well ever been perforated in any other zone(s)? List all such perforated intervals and give plugging detail, i.e. sacks of cement or plug(s) used.
5.	Give the name and depths of any oil or gas zones underlying or overlying the proposed injection zone in this area: Pictured Cliffs, Chacra, Mesaverde, Gallup, Dakota

Western Refining Southwest, Inc.


Waste Disposal Well (WDW) #2

C-108 Data Sheet

V. Maps identifying all wells within 2 ½ miles of proposed injection well and Area of Review (AOR) of 1-mile radius.


The maps are below.

8	0	n .	2 44	ά ,	S. H.	Fi # 10 10 10 10 10 10 10 10 10 10 10 10 10	* 7.0	p##	* # 22	A 18	
	64	* *	* 0	g a	D#80 1 1	* *	8 0 0 %	0 0 W	\$ 0 0 m	* *	
8	80	***	\$ a b	, a	N * *	P * *	A A			78 z z z z z z z z z z z z z z z z z z z	
5	*	000 000	* #	** *	"	* **	* * * * * * * * * * * * * * * * * * *	ó	*	7° *N	
e ci	*	***	9 4 B	** **	* *	** "	b " o #	at W		* * *	
Ł	o 10	* **	0 04 Mas	0 * 00 m	* *	** **	* . *	*	**	9 A	
	0 0	* * *	0 B	00000	** *	9 o		8 0 × 0	* \$.0	8 0	
H	*	** **	****	. ** **	* * *	* **	* * * * * * * * * * * * * * * * * * *	0 0	6 5 60	* *	
	0 0	* **	0 W 044	* 0 %		8 4 A	*	-	## # ##	\$ \$ \$	
98	*	0 N	* 51 /	* * * **	* 40 + 4	* **	S	4 W:	* * * *	* " "	i i
-	11 34 21	0 00	10k 3/K	00 W	* * * * * * * * * * * * * * * * * * *	0 0 4	.01.	12 4	when it	* * *	Ē
9	ETTY LADY 30 75 34 75	* *	+ × ×	3 . **	** * * * * * * * * * * * * * * * * * *	8.0	. я.	*		*	"
	PRET	, p o	A SIND HILL	2 4	ASHCR	MDW #	% an	**	****	* *	
	***	* * * *	10 to	10 to 6	A 4 4	SAL #	* * *	*	0 0 %	**	N
L .		DISPOSAL #	*	*	7.	Odsid	* * * *	* *	*±±±	\$.w. *	
3	no	4 Osseo	4 *8	# ** **	TON TO	# ** # # # # # # # # # # # # # # # # #	a.	* **	* *	8 N	-
	*	* *	P # 4 #	0 0	* * *	* * *	· 10 00	N. N	de Yes	28N °	
2	No	** **	\$ \$	o * 1	****	* ***	E NO O	o/A	* *	* * #	0
	*	# * # #	AND D W	a * *	* 0.0	**	0 4	*	0 p b*		
))).	** %	B 00 8 #	* *	* 0,0		0 0	00	# # # #	8	
	a *	*; "	* #	***	A 4	4 0	s * " 4	· · · ·	4 ot 9	** **	
	0	* 4 ° 2	A		** *		e 8	1	A 80	2 × *	
	0	* " "	* * * *	00 0 # 00	* **	* *	8 * *	*	4 0 0 9	,	
	àt.	* * *	** **) " ×	b	* *	* *	12	2 *	* * *	
		* * **	* * *	* * * *	ESAL BRZ	# # o	# # # # # # # # # # # # # # # # # # #	*	tra de	*** }	
	*	E W	*		# # Z	*	*	*	*	12 × × ×	
	*	* * *	* 1,0	* * * * * *	5. *N	* 5	* * *	4		A A A	
	*	4 6	4 N H		Service Control	*	4 41	\$±	GOS CANYON 4220	ZZ ZZ ZZ	*
	T		4 x 4 4 4	# 4V	V **	* *	* A **	*	# # # #	28N 12W	
	The same	# 84		6 B	0 4	* * *	4 0	A	7788	* \Z	4
	n	o 10		# C	15 p	* 8	* *	on ***	4 ¥	л д ж ж	**

Western Refining Southwest Inc.

Area of Review 1 mile radius

VI. Tabulation of data of all wells of public record within the AOR which penetrate the proposed injection zone.

The only well that penetrates the proposed injection zone is the Ashcroft 5WD #1 (API#30-045-30788) located approximately 3/4 miles to the east. The Ashcroft is a SWD well operated by XTO Energy Resources and is completed in the Entrada and Bluff formations.

Tabulation of wells within the 1-mile AOR is below.

Western Refining Southwest, Inc. Bloomfield Terminal Waste Disposal Well (WDW) #2 Well List for 1-Mile Area of Review (AOR)

ap Symbol	Production ID	Primary API	Lease Name	Well Num	Operator Name	Location	Latitude	Longitude	Field Name	County Name	Slatus Nome	Prod Zone Name	Lease Code	Oll Cum	Gas Cum	Wir Cum	TD
	1300430452519502290	30045251950000	CALVIN	2	BURLINGTON RESOURCES O&G CO LP	29N 11W 26P NW SE SE	36.69244745	-107.9548384	ARMENTA	SAN JUAN	ACTIVE	GALLUP /SD/	006883	56,157	714,731	1,291	5,95
	1300430452561202290	30045256120000	CALVIN	3	BURLINGTON RESOURCES O&G CO LP	29N 11W 26K SE NE SW	36.69445794	-107,9618893	ARMENTA	SAN JUAN	ACTIVE	GALLUP /SD/	006883	65,478	602,470	1,472	5,97
	1300430452565702290	30045256570000	CONGRESS	15	BURLINGTON RESOURCES D&G CO LP	29N 11W 34A C NE NE	36.68790014	-107.9716743	ARMENTA	SAN JUAN	ACTIVE	GALLUP /SD/	006918	36,820	464,380	1,283	6,20
	1300430452567302290	30045256730000	CONGRESS	18	BURLINGTON RESOURCES D&G CO LP	29N 11W 27K NW NE SW	36.69549308	-107.9808835	ARMENTA	SANJUAN	ACTIVE	GALLUP /SD/	006918	63,095	318,931	1,964	6,15
	1300430452567377200	30045256730001	CONGRESS	18	BURLINGTON RESOURCES O&G CO LP	29N 11W 27K NW NE SW	36.69549308	-107.9808835	FULCHER KUTZ	SAN JUAN	ACTIVE	PICTURED CLIFFS			95,176	1,056	
	1300430452567502290	30045256750000	CONGRESS	15	BURLINGTON RESOURCES O&G CO LP	29N 11W 35C 5E NE NW	36.6874019	-107.9620229	ARMENTA	SAN JUAN	ACTIVE	GALLUP /SD/	006918	7,534	255,800	1,172	6,03
	1300430452900296160	30045290020000	DISPOSAL	1	SAN JUAN REFINING COMPANY	29N 11W 27I NW NE SE	36.69640689	-107.9736785	SWD	SAN JUAN	ACTIVE	MESAVERDE					_
	1300430453078896162	30045307880D00	ASHCROFT SWD	1	XTO ENERGY INCORPORATED	29N 11W 26B 5W NW NE	36.70129353	-107.9586723	SWD	SAN JUAN	ACTIVE	MORROW					
	2300430450773371599	30045077330000	SULLIVAN GAS COM D	1	XTO ENERGY INCORPORATED	29N 11W 26B SW NW NE	36,70149705	-107.9598183	BASIN	SAN JUAN	ACTIVE	DAKOTA	022839	22,497	2,820,296	4,546	6,26
	2300430450782571599	30045078250000	DAVIS GAS COM F	1	BP AMERICA PRODUCTION COMPANY	29N 11W 27I SW NE SE	36,69478221	-107.973479	BASIN	SAN JUAN	INACTIVE	DAKOTA	000410	16,714	2,573,971	211	6,36
	2300430450783571599	30045078350000	MANGUM	1	BURLINGTON RESOURCES D&G CO LP	29N 11W 27L NE NW 5W	36,69567609	-107,9834613	BASIN	SAN JUAN	INACTIVE	DAKOTA	007282	15,187	2,646,060		6,35
- 6	2300430450783571629	30045078350001	MANGUM	1	BURLINGTON RESOURCES O&G CO LP	29N 11W 27L NE NW SW	36.69567609	-107.9834613		SAN JUAN	ACTIVE	FRUITLAND COAL		-	189,125	25,920	
	2300430450786871200	30045078680000	SULLIVAN	2	HOLCOMB OIL & GAS INCORPORATED	29N 11W 26H NW SE NE	36.69953096	-107.954173		SAN JUAN	INACTIVE	FRUITLAND	015829		368,487	716	
	2300430450790377200	30045079030000	GARLAND B	1	SOUTHERN UNION PRODUCTION COMPA		36,69234828	-107.9841025		SANJUAN	INACTIVE	PICTURED CUFFS	251550	10	355,978		1,74
	2300430450794071599	30045079400000	соок	1	MANANA GAS INCORPORATED	29N 11W 22N SW SE 5W	36,70608404	-107.981140		SAN JUAN	ACTIVE	DAKOTA	006258	41,071	4,343,480	6,176	
	2300430450795971200	30045079590000	GRACE PEARCE		PICKETT JOHN C	29N 11W 22O NE SW SE	36.70664386	-107.975019		SAN JUAN	INACTIVE	FRUITLAND	009267		804.069		1,62
	2300430450796171599	30045079610000	HARTMAN		MANANA GAS INCORPORATED	29N 11W 22P SE SE	36.70664763	-107.97276		SAN JUAN	INACTIVE	DAKOTA	006262	45,556	5,456,777	9,059	
	2300430450798571200	30045080090000	PAN AMERICAN STATE COM		COOK ROY L	29N 11W 23K NE SW	36.71005755	-107.963728		SAN JUAN	INACTIVE	FRUITLAND	570540	13,555	31,853	5,000	1,52
_	2300430450798571599	30045079850000	PEARCE GAS COM		BP AMERICA PRODUCTION COMPANY	29N 11W 23K NE SW	36.70802867	-107.963336		SAN JUAN	INACTIVE	DAKOTA	000949	12,630	1,695,598	2,187	6,27
_	2300430451200371599	30045120030000	CALVIN		BURUNGTON RESOURCES O&G CO LP	29N 11W 26M SW 5W	36,6929968	-107.965504		SAN JUAN	ACTIVE	DAKOTA	006883	25,759	3,648,517	7,941	
_	2300430451308971200	30045130890000	COOK	2	MANANA GAS INCORPORATED	29N 11W 22N SE SW	36.70619366	-107.98114		SAN JUAN	ACTIVE	FRUITLAND	006258	20,700	845,491	650	
	2300430451306571200	30045207520000	LEA ANN	-	CHAPARRAL DIL & GAS COMPANY	29N 11W 35E NE SW NW	36.58464683			SAN JUAN	INACTIVE	PICTURED CLIFFS	002529		266,925	030	1,9
	2300430452145782329	30045214570000	DELO		SOUTHLAND ROYALTY COMPANY LLC	29N 11W 26I SW NE SE	36.69480938	-107.954321	4	SAN JUAN	ACTIVE	CHACRA	021202		966,707	80	_
	2300430452173277200	30045217320000	GARLAND B		BURLINGTON RESOURCES O&G CO LP	29N 11W 27M NE SW SW	36.69179563		FULCHER KUTZ	SAN JUAN	INACTIVE	PICTURED CUFFS	007039	10	863,208	553	
	2300430452263965627	30045226390000	DELO	11	GENERAL MINERALS CORPORATION	29N 11W 26P NW SE SE	36.69189786			SAN JUAN	INACTIVE	FARMINGTON	004502	162	124	110	1,9
	2300430452316382329	30045231630000	EARL B SULLIVAN		XTO ENERGY INCORPORATED	29N 11W 26B SE NW NE	36.70182344	-107,957226		SAN JUAN	ACTIVE	CHACRA	022841	102	745,746	966	
_	2300430452316382329	30045235500001	STATE GAS COM BS	1	HOLCOMB OIL & GAS INCORPORATED	29N 11W 23K SW NE SW	36.7079731	-107.963404		SAN JUAN	ACTIVE	FRUITLAND COAL	DZZB41		672,850	2.934	2.95
_	2300430452355082329	30045235500001	STATE GAS COM BS	1	HOLCOMB OIL & GAS INCORPORATED	29N 11W 23K SW NE SW	36.7079731	-107,963404		SANJUAN	INACTIVE	CHACRA	022826	505	550,835	3,326	
	2300430452355082329	30045235500000	DAVIS GAS COM G		XTO ENERGY INCORPORATED	29N 11W 23K SW NE SW	36.69465987	-107,963404		SAN JUAN	INACTIVE	CHACRA	022685	503	337,989	747	2,9
_		30045240820000	PEARCE GAS COM G		XTO ENERGY INCORPORATED	29N 11W 23J SE NW SE	36.70815961	-107,956582		SANJUAN	ACTIVE	DAKOTA	022629	3,328	474,351	5,412	6,3
	2300430452408271599	30045240820000				29N 11W 26F NW 5E NW	36.69993082	-107,956382		SAN JUAN	ACTIVE	DAKOTA	022839	6,902	1,458,755	7,940	
_	2300430452408371599	30045240830000	SULLIVAN GAS COM D DAVIS GAS COM F	1E	XTO ENERGY INCORPORATED	29N 11W 26F NW SE NW	36.69983513	-107.964288		SAN JUAN	ACTIVE	DAKOTA	023416	4,252	905,546	8,033	
	The state of the s		Contract to the second		XTO ENERGY INCORPORATED					SAN JUAN	ACTIVE	CHACRA	023416	4,252	451,277	2,457	
	2300430452408482329	30045240840000	DAVIS GAS COM F	1E	XTO ENERGY INCORPORATED	29N 11W 27H NW SE NE	36.69983513	-107,973190									
	2300430452457282329	30045245720000	CONGRESS	9	SOUTHLAND ROYALTY COMPANY LLC	29N 11W 26N NW SE SW	36.69192545	-107.963548		SAN JUAN	ACTIVE	CHACRA	021193		233,679	1,485	
_	2300430452457382329	30045245730000	GARLAND	3	SOUTHLAND ROYALTY COMPANY LLC	29N 11W 27M NE SW SW	36.69270239	-107,984495	777777	SAN JUAN	ACTIVE	CHACRA	021914		305,435	1,140	
	2300430452457482329	30045245740000	SUMMIT	9	BURLINGTON RESOURCES 0&G CO LP	29N 11W 34A SW NE NE	35,687182	-107,972265		SANJUAN	ACTIVE	CHACRA	007557		350,082	1,220	
_	2300430452467371599	30045246730000		1E	BURLINGTON RESOURCES O&G CO LP	29N 11W 27F NW SE NW	36.69973724	-107.981539		SAN JUAN	ACTIVE	DAKOTA	007282	4,630	474,439	2,506	
	2300430452477271599	30045247720000		1E	BURLINGTON RESOURCES O&G CO LP	29N 11W 26P NW SE SE	36.69192559	-107.955145		SAN JUAN	ACTIVE	DAKOTA	006883	2,986	1,095,534	8,346	
_	2300430452483771599	30045248370000	CONGRESS	4E	BURLINGTON RESOURCES O&G CO LP	29N 11W 35E NE SW NW	36.6849902	-107.965940		SAN JUAN	ACTIVE	DAKOTA	006918	370	160,434	1,661	
	2300430452483782329	30045248370000	CONGRESS	4E	BURLINGTON RESOURCES O&G CO LP	29N 11W 35E NE SW NW	36.6849902	-107.965940		SANJUAN	ACTIVE	CHACRA	006918		152,025	2,536	
	2300430452532971629	30045253290000	DAVIS GAS COM J	1	HOLCOMB OIL & GAS INCORPORATED	29N 11W 26F NW SE NW	36.69991548	-107.964458		SAN JUAN	ACTIVE	FRUITLAND COAL	No.		330,236	27,028	
	2300430452532972319	30045253290000	DAVIS GAS COM J	1	BP AMERICA PRODUCTION COMPANY	29N 11W 26F NW SE NW	36.69991548	-107.964458		SANJUAN	INACTIVE	MESAVERDE	000412	150	619	1,390	
	2300430452532982329	30045253290000		1	XTO ENERGY INCORPORATED	29N 11W 26F NW 5E NW	36,69991548	-107.964458		SAN JUAN	INACTIVE	CHACRA	022601		181,392	893	
	2300430452562102290	30045256210000		2	HOLCOMB OIL & GAS INCORPORATED	29N 11W 26H SE SE NE	35,69824062	-107.952589		SANJUAN	INACTIVE	GALLUP /SD/	022841	2,426	73,691	657	
	2300430452562171629	30045256210001	EARL B SULLIVAN	2	HOLCOMB OIL & GAS INCORPORATED	29N 11W 26H SE SE NE	36.59824062	-107.952589		SAN JUAN	ACTIVE	FRUITLAND COAL			320,803	2,137	
	2300430452570702290	30045257070000	SUMMIT	15	SOUTHLAND ROYALTY COMPANY LLC	29N 11W 34C NE NE NW	36,58874761	-107.980404	2 ARMENTA	SAN JUAN	ACTIVE	GALLUP /SD/	021407	5,765	142,149	1,247	
	2300430452672182329	30045267210000	NANCY HARTMAN	2	MANANA GAS INCORPORATED	29N 11W 22P NW SE SE	36.70637919	-107.972324	5 OTERO	SAN JUAN	ACTIVE	CHACRA	006264		325,500	1,244	
	2300430452673182329	30045267310000	MARY JANE	1	MANANA GAS INCORPORATED	29N 11W 22N SW SE SW	36.70553482	-107.981070	1 OTERO	SANJUAN	ACTIVE	CHACRA	006270		434,028	1,556	
	2300430452736171200	30045273610000	LAUREN KELLY	1	MANANA GAS INCORPORATED	29N 11W 27F NW SE NW	36.69985569	-107.982055	7 AZTEC	SAN JUAN	ACTIVE	FRUITLAND	006268		151,744	1,120	
	2300430452736582329	30045273650000	MARIAN S	1	MANANA GAS INCORPORATED	29N 11W 27F NW SE NW	36.69966343	-107.982056	3 OTERO	SAN JUAN	ACTIVE	CHACRA.	006269		166,541	1,900	2,8
	2300430453078896436	30045307880000	ASHCROFT SWD	1	XTO ENERGY INCORPORATED	29N 11W 268 SW NW NE	36.70129353	-107.958672	2 SWD	SANJUAN	ACTIVE	ENTRADA					
	2300430453083302290	30045308330001	DAVIS GAS COM F	1R	XTO ENERGY INCORPORATED	29N 11W 27I SW NE SE	36.69461272	-107.972132	5 ARMENTA	SAN JUAN	ACTIVE	GALLUP /SD/		3,866	46,691	8,653	
	2300430453083371599	30045308330000	DAVIS GAS COM F	1R	XTO ENERGY INCORPORATED	29N 11W 27I SW NE SE	36.69461272	-107.972132	5 BASIN	SAN JUAN	ACTIVE	DAKOTA		823	226,581	107,818	
	2300430453111871629	30045311180000	CALVIN		BURLINGTON RESOURCES O&G CO LP	29N 11W 26N NW SE SW	36.69257114	-107.963220		SAN JUAN	ACTIVE	FRUITLAND COAL			200,914	9,116	
	2300430453309371599	30045330930000	CALVIN	1F	BURLINGTON RESOURCES D&G CO LP	29N 11W 26J SW NW SE	36.6942192	-107.958709		SAN JUAN	ACTIVE	DAKOTA		2,529	300,103	15,352	6,5
	2300430453431271629	30045343120000	ROYAL FLUSH	1	MANANA GAS INCORPORATED	29N 11W 22N W2 SE SW	36.70572753	-107.980815		SAN JUAN	ACTIVE	FRUITLAND COAL			115,412	6,720	1,8
	2300430453440971629	30045344090000	JACQUE	2	HOLCOMB OIL & GAS INCORPORATED	29N 11W 27H NW 5E NE	36.69957456	-107.972969	1000000	SAN JUAN	ACTIVE	FRUITLAND COAL			62,853	3,225	
-	2300430453446371629	30045344630000	JACQUE	14	HOLCOMB OIL & GAS INCORPORATED	29N 11W 27L	36.69410423	-107.972185		SANJUAN	ACTIVE	FRUITLAND COAL			75,123		1,8

VII. Operation Data

- 1. A. Average Daily Injection Rate = 3,500 bbls.
 - B. Maximum Daily Injection Rate = 8,500 bbls.
- 2. The system is closed (water will be collected onsite as part of the Bloomfield Terminal's process and pumped over to the injection well).

3. Proposed pressures

- A. The average and maximum injection pressures will be determined from a step rate test run after the well is completed. The anticipated injection pressures are ~ 2000 psi.
- 4. The fluid to be disposed in the proposed injection well will be Waste Water Treatment System effluent, Evaporation Ponds contact storm water and Injection Well Stimulation and Maintenance fluids. Table 1 contains information about the injection fluid including source, waste type, frequency and discharge volume. Table 2 contains information about the sources on Waste Water Treatment Plant influent. An Analytical Summary of the fluids disposed in Disposal #1 2014 Annual report is presented in Table 3. This summary best characterizes the fluid to be disposed.

Bloomfield Terminal Western Refining Southwest, Inc. Proposed Waste Disposal Well (WDW) #2 Sources of Injection Fluids Table 1

Waste Water Source	Description	Waste Type	Frequency	Discharge Volume
Waste Water Treatment System Effluent	The waste water treatment system processes waste water from terminal. The system consists of three stages: an API Separator, Benzene Strippers and Aeration Lagoons (aka. Aggressive Biological Treatment). 12	Non-Exempt		October to April - 20 to 50 GPM April to October - 50 to 100 GPM
Contact Storm Water - Evaporation Ponds	Precipitation (storm water) that falls into the evaporation ponds is contained and discharged directly to the WDW #2 injection well.	Non-Exempt	Non-Routine	Dependent on Precipitation
Injection Well Stimulation and Maintenance	Fluids produced from the injection well during stimulation and maintenance operations.	Non-Exempt	Non-Routine	Dependent on scope of work

^{1.} Final waste water treatment consists of Aggressive Biological Treatment (ABT).

^{2.} Process Sewer System conveys waste water from various collection points to the waste water treatment system.

Bloomfield Terminal Western Refining Southwest, Inc. Proposed Waste Disposal Well (WDW) #2 Waste Water Treatment Plant Influent Table 2

Waste Water Source	Description	Waste Type	Frequency	Discharge Volume
Recovered Ground Water	Ground water remediation efforts includes pump and treat remedies. Hydrocarbon impacted water is recovered from multiple recovery wells and the Hammond Ditch French Drain Recovery System. Recovered water containing trace hydrocarbons is discharged to the process sewer system. 1.2	Non-Exempt	Routine	October to April - 15 to 45 GPM April to October - 30 to 90 GPM
Boiler	Boiler blowdown waste water containing dissolved solids is discharged to the terminal process sewer system.	Non-Exempt	Routine	1,200 gallons per day
Heater Treater at Terminals	Steam is used to separate water from crude oil. Waste water containing trace hydrocarbons and dissolved solids is discharged to process sewer system.	Non-Exempt ³	Routine	150 gallons per day
Boiler Feed Water Treatment System	Raw water is treated by this system to remove impurities before being supplied as feed water to the boiler system. Waste water from water softening units containing dissolved solids is routinely discharged to the process sewer system.	Non-Exempt	Routine	280 gallons per day
Storage Tanks	Crude and product storage tanks are occasionally drained of bottom/decanted water. Waste water containing trace hydrocarbons and dissolved solids is discharged to the process sewer system.	Non-Exempt ³	Non-Routine	Dependent on Crude/Product Quality
Recoverable Material	The recoverable material is processed by the API Separator to recover the oil from water.	Non-Exempt ³	Non-Routine	Dependent of Water Fraction
Process Equipment Cleaning	Wash water used in maintenance of process equipment. Waste water containing trace hydrocarbons and dissolved solids is discharged to the process sewer system.	Non-Exempt	Non-Routine	Dependent on Maintenance Scope and Schedule
Hydrotest Water	Water used for Mechanical Integrity Testing (MIT) of equipment such as Tanks, piping, etc. Waste water containing trace hydrocarbons and dissolved solids is discharged to the process sewer system.	Non-Exempt ³	Non-Routine	Dependent of MIT Scope and Schedule
Contact Storm Water	Storm water exposed to contaminants by contact with process equipment is contained and discharged to the process sewer system. Contact storm water may contain trace hydrocarbons and dissolved solids.	Non-Exempt	Non-Routine	Dependent on Precipitation

- 1. Process Sewer System conveys waste water from various collection points to the waste water treatment system.
- 2. The River Tetrace recovered groundwater is treated using a Granular Activated Carbon (GAC) System. The GAC effluent is recycled in the terminal process water system.
- 3. Bloomfield Terminal is a transportation facility. The exemption of oil and gas exploration and production wastes does not apply to transportation facilities.

Table 3

Injection Well
2014 Quarterly Analytical Summary

Volatile Organic Compounds (ug/L)	Toxicity Characteristics	1st Quarter 1/23/2014	2nd Quarter	3rd Quarter 7/28/2014	4th Quarter 10/1/2014
1,1,1,2-Tetrachloroethane		<10	na	< 2.0	< 5.0
1,1,1-Trichloroethane		< 10	na	< 2.0	< 5.0
1,1,2,2-Tetrachloroethane		< 20	na	< 4.0	< 10
1,1,2-Trichloroethane		< 10	na	< 2.0	< 5.0
1,1-Dichloroethane		< 10	na	< 2.0	< 5,0
1,1-Dichloroethene		< 10	na	< 2.0	< 5.0
1,1-Dichloropropene		< 10	na	< 2.0	< 5.0
1,2,3-Trichlorobenzene		< 10	na	< 2.0	< 5.0
1,2,3-Trichloropropane		< 20	na	< 4.0	< 10
1,2,4-Trichlorobenzene		< 10	na	< 2.0	< 5.0
1,2,4-Trimethylbenzene		< 10	na	< 2.0	< 5.0
1,2-Dibromo-3-chloropropane		< 20	na	< 4.0	< 10
1,2-Dibromoethane (EDB)		< 10	na	< 2.0	< 5.0
1,2-Dichlorobenzene		< 10	na	< 2.0	< 5.0
1,2-Dichloroethane (EDC)	500	< 10	na	< 2.0	< 5.0
1,2-Diehloropropane		< 10	na	< 2.0	< 5.0
1,3,5-Trimethylbenzene		< 10	na	< 2.0	< 5.0
1,3-Dichlorobenzene		< 10	na	< 2.0	< 5.0
1,3-Dichloropropane	7500	< 10	na	< 2.0	< 5.0
1,4-Dichlorobenzene	7500	<10 <40	na	< 2.0 < 8.0	< 5.0 < 20
1-Methylnaphthalene 2,2-Dichloropropane		< 20	па	< 4.0	< 10
2,2-Dichloropropane 2-Butanone		200	na	< 20	< 50
2-Bulanone 2-Chlorotoluene		<10	па	< 2.0	< 5.0
2-Hexanone		<100	na	< 20	< 50
2-Hexanone 2-Methylnaphthalene		< 40	na na	< 8.0	< 20
4-Chlorotoluene		< 10	na	< 2.0	< 5.0
4-Isopropyltoluene		< 10	na	< 2.0	< 5.0
4-Methyl-2-pentanone	-	<100	na	< 20	< 50
Acetone		1400	па	85	120
Benzene	500	< 10	na	< 2.0	< 5.0
Bromobenzene	300	< 10	па	< 2.0	< 5.0
Bromodichloromethane		< 10	па	< 2.0	< 5.0
Bromoform		< 10	na	< 2.0	< 5.0
Bromomethane		< 30	na	< 6.0	< 15
Carbon disulfide	111111111111111111111111111111111111111	< 100	na	< 20	< 50
Carbon Tetrachloride	500	< 10	na	< 2.0	< 5.0
Chlorobenzene	100000	< 10	na	< 2.0	< 5.0
Chloroethane		< 20	na	< 4.0	< 10
Chloroform	6000	< 10	na	< 2.0	< 5.0
Chloromethane		< 30	na	< 6.0	< 15
cis-1,2-DCE		< 10	na	< 2.0	< 5.0
cis-1,3-Dichloropropene		<10	na	< 2.0	< 5.0
Dibromochloromethane		< 10	na	< 2.0	< 5.0
Dibromomethane		< 10	na	< 2.0	< 5.0
Dichlorodifluoromethane		< 10	na	< 2.0	< 5.0
Ethylbenzene	- Later management	< 10	na	< 2.0	< 5.0
Hexachlorobutadiene	500	< 10	na	< 2.0	< 5.0
Isopropylbenzene		< 10	na	< 2.0	< 5.0
Methyl tert-butyl ether (MTBE)		< 10	na	< 2.0	< 5.0
Methylene Chloride		< 30	na	< 6.0	< 15
Naphthalene		< 30	na	< 4.0	< 10
n-Butylbenzene		< 10	na	< 6.0	< 15
n-Propylhenzene		< 20	na	< 2.0	< 5.0
sec-Butylbenzene		< 10	na	< 2.0	< 5.0
Styrene		< 10	na	< 2.0	< 5.0
tert-Butylbenzene		< 10	na	< 2.0	< 5.0
Tetrachloroethene (PCE)	- mmmmin	< 10	na	< 2.0	< 5.0
Toluene		< 10	na	<2.0	< 5.0
trans-1,2-DCE		< 10	na	< 2.0	< 5.0
trans-1,3-Dichloropropene	_	< 10	na	< 2.0	< 5.0 < 5.0
Trichloroethene (TCE)	_	< 10 < 10	na	< 2.0 < 2.0	< 5.0 < 5.0
Trichlorofluoromethane Vinyl chloride	200	< 10	na	< 2.0	< 5.0
Xylenes, Total	200	< 15	na na	< 3.0	< 7.5

Table 3

Injection Well
2014 Quarterly Analytical Summary

ni-Volatile Organic Compounds (ug/	Toxicity Characteristics	1st Quarter	2nd Quarter	3rd Quarter	4th Quart
1.2.4-Trichlorobenzene		< 50	na	< 100	< 10
1,2-Dichlorobenzene		< 50	na	< 100	<10
1,3-Dichlorobenzene		< 50	na	< 100	< 10
1.4-Dichlorobenzene	7500	< 50	па	< 100	< 10
1-Methylnaphthalene		< 50	na	< 100	< 10
2,4,5-Trichlorophenol	I million to the factor of the	< 50	па	< 100	< 10
2,4,6-Trichlorophenol	2000	< 50	na	< 100	< 10
2,4-Dichlorophenol		<100	na	< 200	< 20
2,4-Dimethylphenol	and the same of th	< 50	na	< 100	< 10
2,4-Dinitrophenol		< 100	na	< 200	< 20
2,4-Dinitrotoluene	130	< 50	na	< 100	< 10
2,6-Dinitrotoluene		< 50	na	< 100	< 10
2-Chloronaphthalene		< 50	na	< 100	< 10
2-Chlorophenol		< 50	na	< 100	< 10
2-Methylnaphthalene		< 50	na	< 100	< 10
2-Methylphenol	- instrumentalisment	< 50	na	< 200	< 20
2-Nitroaniline		< 50	na	< 100	< 10
2-Nitrophenol		< 50	na	<100	< 10
3,3'-Dichlorobenzidine		< 50	na	210	< 10
3+4-Methylphenol		< 50	na	< 100	< 10
3-Nitroaniline		< 50	na	< 100 < 200	<10 <20
4,6-Dinitro-2-methylphenol		< 100 < 50	na	< 100	< 10
4-Bromophenyl phenyl ether		<50	na	<100	<10
4-Chloro-3-methylphenol 4-Chloroaniline		<50	na	<100	< 10
4-Chlorophenyl phenyl ether		< 50	na na	< 100	< 10
4-Nitroaniline		<50	na	< 100	< 10
4-Nitrophenol	- tempiles	< 50	na	< 100	< 10
Acenaphthene		<50	па	< 100	< 10
Acenaphthylene		< 50	na	< 100	< 10
Aniline		< 50	na	< 100	<10
Anthracene		< 50	na	< 100	< 10
Azobenzene	INC.	< 50	па	< 100	< 10
Benz(a)anthracene		< 50	na	< 100	< 10
Benzo(a)pyrene		< 50	na	< 100	< 10
Benzo(b)fluoranthene		< 50	na	< 100	< 10
Benzo(g,h,i)perylene		< 50	na	< 100	< 10
Benzo(k)fluoranthene	110411111	< 50	na	< 100	< 10
Benzoic acid		< 100	na	< 200	< 40
Benzyl alcohol		< 50	па	< 100	< 10
Bis(2-chloroethoxy)methane		< 50	na	< 100	< 10
Bis(2-chloroethyl)ether		< 50	па	< 100	< 10
Bis(2-chloroisopropyl)ether		< 50	na	< 100	< 10
Bis(2-ethylhexyl)phthalate		< 50	па	< 100	< 10
Butyl benzyl phthalate		< 50	na	< 100	< 10
Carbazole		< 50	na	< 100	< 10
Chrysene		< 50	na	< 100	< 10
Dibenz(a,h)anthracene		< 50	na	< 100	< 10
Dibenzofuran		< 50	na	< 100	< 10
Diethyl phthalate		< 50	na	< 100	<10 <10
Dimethyl phthalate		< 50 < 50	na	< 100 < 100	< 10
Di-n-butyl phthalate		< 50	na na	< 100	< 20
Di-n-octyl phthalate		< 50	na	< 100	< 10
Fluoranthene Fluorene		<50	na	< 100	< 10
Hexachlorobenzene	130	< 50	na	< 100	< 10
Hexachlorobutadiene	500	< 50	na	<100	< 10
Hexachlorocyclopentadiene	200	< 50	na	< 100	< 10
Hexachloroethane	3000	< 50	na	<100	< 10
Indeno(1,2,3-cd)pyrene	3000	< 50	na	<100	< 10
Isophorone		< 50	na	< 100	< 10
Naphthalene	1647	< 50	na	< 100	< 10
Nitrobenzene	2000	< 50	na	< 100	< 10
N-Nitrosodimethylamine		< 50	na	<100	< 10
N-Nitrosodi-n-propylamine	- Porton	< 50	na	< 100	<10
N-Nitrosodiphenylamine		< 50	na	< 100	< 10
Pentachlorophenol	100000	< 100	па	< 200	< 20
Phenanthrene	and the state of t	< 50	na	< 100	< 10
Phenol		< 50	па	< 100	< 10
Pyrene		< 50	na	< 100	< 10
Pyridine	5000	< 50	na	< 100	< 10

Injection Well 2014 Quarterly Analytical Summary

	Toxicity Characteristics	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
General Chemistry (mg/L unless otherwi		101 Quarter			
Specific Conductance (umhos/cm)		7100	na	1900	1100
Chloride		2400	na	510	220
Sulfate		35	па	41	26
Total Dissolved Solids		5240	na	1380	742
pH (pH Units)		6.25	па	7.10	7.08
Bicarbonate (As CaCO3)		380	па	220	150
Carbonate (As CaCO3)		<2.0	na	<2.0	<2.0
Calcium		490	na	480	110
Magnesium		75	na	99	23
Potassium		37	na	36	8.2
Sodium	i and the second	1000	na	1100	220
Total Alkalinity (as CaCO3)		380	na	220	150
Total Metals (mg/L)					
Arsenic	5.0	< 0.020	na	< 0.020	< 0.020
Barium	100.0	0,56	ла	0.63	0.20
Cadmium	1.0	< 0.0020	na	< 0.0020	< 0.0020
Chromium	5.0	< 0.0060	па	< 0.0060	< 0.0060
Lead	5	< 0.0050	na	< 0.0050	< 0.0050
Selenium	1	< 0.050	na	< 0.050	< 0.050
Silver	5	< 0.0050	na	< 0.0050	< 0.0050
Mercury	0.2	< 0.0010	na	< 0.00020	< 0.00020
Ignitability, Corrosivity, and Reactivity					
Reactive Cyanide (mg/L)		<1.0	na	<1.0	<1.0
Reactive Sulfide (mg/kg)		1.6	na	<1.0	3.0
Ignitability (°F)	< 140° F	>200	na	>200	>200
Corrosivity (ph Units)	< 2 or > 12.5	6.25	na	7.44	6.82

Notes:
na = A water sample was not collected during the 2nd quarter of 2014 because the well was not operational.

5. A water sample and corresponding water analysis will be provided once the well is perforated and a water sample can be obtained. The closest off set is the Ashcroft SWD #1 (API# 30-045-30788) located approximately 3/4 miles to the east. The Ashcroft is a SWD well operated by XTO Energy Resources and is completed in the Entrada and Bluff formations. The NMOCD records did not containing any data regarding the in-situ water quality found in the Ashcroft SWD #1 prior to injection.

VIII. Geology

Underground Drinking Water Sources

The known fresh water zones for the immediate area of the injection well are the Nacimiento and Ojo Alamo Formations of the Tertiary Age. The Nacimiento occurs at the surface and is about 570 feet thick in the immediate area. The Ojo Alamo is about 165 feet thick at an approximate depth of 569 to 734 feet.

Most of the water wells in the surrounding area are concentrated along the San Juan River flood plain and terraces north of the river and Bloomfield Terminal. These wells are completed in the Quaternary sand and gravels at depth of approximately 25 to 75 feet. These sand and gravels rest upon the Nacimiento.

One well (POD# SJ 02148) in the SE quarter of Section 27, T29N, R11W was drilled to a depth of 305 feet intersecting a water bearing sand within the Nacimiento at 225 to 285 feet with an estimated yield of 10gpm. The surface elevation is approximately 20 feet above the surface at proposed injection well location. The total depth of the well is at an approximate elevation of 5,250 feet. This is the deepest water well drilled in the study area according to the NM State Engineer's Office online records. The Point of Diversion Summary for the well is included (below).

New Mexico Office of the State Engineer **Point of Diversion Summary**

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

POD Number

Q64 Q16 Q4 Sec Tws Rng

X

SJ 02148

2 4 27 29N 11W

234448 4065184*

Driller License: 847

Driller Name:

SAVAGE, BOB

Drill Start Date:

10/20/1987

Drill Finish Date:

11/16/1987

Plug Date:

Log File Date:

11/19/1987

PCW Rcv Date:

Source: Shallow

Pump Type:

Pipe Discharge Size:

Estimated Yield: 10 GPM

Casing Size:

7.00

Depth Well:

305 feet

Depth Water:

186 feet

Water Bearing Stratifications:

Top Bottom Description

225

285 Sandstone/Gravel/Conglomerate

Casing Perforations:

Top Bottom

266

305

*UTM location was derived from PLSS - see Help

Injection Zone

The Entrada Sandstone formation is Jurassic in age and is described as a wind blown deposit with fine to coarse-grained sandstone particles, clean and well sorted. Generally, the Entrada Sandstone formation is 200 to 280 ft thick throughout the San Juan Basin. Natural fractures are few to nonexistent. The overlaying formation is the Todilto Limestone. Cores from the oil bearing portion of the Entrada formation indicate high porosities and permeability's with averages ranging from 22 – 26 percent and 150 – 450 millidarcies respectively. The geologic prognosis and a cross section showing the regional thickness and log characteristics are included (below).

Injection Zone

The Entrada Sandstone formation is Jurassic in age and is described as a wind blown deposit with fine to coarse-grained sandstone particles, clean and well sorted. Generally, the Entrada Sandstone formation is 200 to 280 ft thick throughout the San Juan Basin. Natural fractures are few to nonexistent. The overlaying formation is the Todilto Limestone. Cores from the oil bearing portion of the Entrada formation indicate high porosities and permeability's with averages ranging from 22 – 26 percent and 150 – 450 millidarcies respectively.

The Bluff Sandstone maybe considered as a future injection zone and is not part of this application.

The geologic prognosis and a cross section showing the regional thickness and log characteristics are included (below).

Waste Disposal Well (WDW) #2

Geologic Prognosis Entrada & Bluff WDW, San Juan County

<u>Header</u> Well Name & Number: Waste Disposal Well (WDW) #2

36.698499 Objective: Entrada & Bluff FM Water Disposal Longitude (NAD 83): -107.971156 Location: TWP: 29 N - Range: 11 W -API: Pending Latitude (NAD 83):

Field: Sec. 27

Basin

County: State:

Sec. 27 Feet. Page Surface Location Footage: 1980 FNL, 330 FEL Bottom Hole Location Footage: Same as Surface 5538

San Juan New Mexico Lease;

GL Elevation:

Surface Owner:

KB Elevation:

5550 7500

November 25, 2015

Expiration Date:

Proposed TD

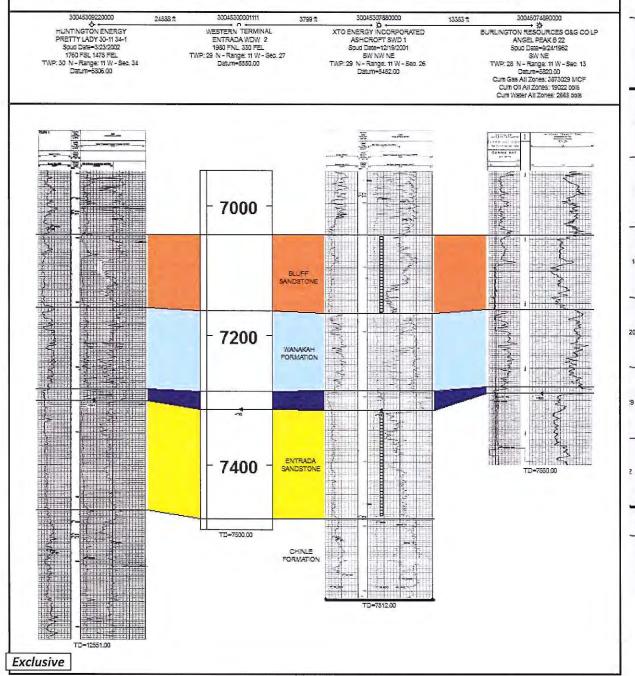
Proposed TD:
Proposed Plugback:

Geologist: Peter Kondrat Depth:

TD designed for complete log covergage over Entrada Sandstone.

Depositional Environment Drilling Notes Top Subsea (KB) Thickness (FT) Rock Type Formation Tops Top MD (KB) Boulders, water, lost

Quaternary Alluvium	0	5550	10	Unconsolidated Gravels	Boulders, water, lost	Continental Rivers
Naciemento FM	10	5540	505	Shale & Sandstone	Water, gas	Continental Rivers
Ojo Alamo Sandstone	515	5035	110	Sandstone & Shale	Water, gas	Continental Rivers
Kirtland Shale	625	4925	578	Interbeddded Shale, sandstone	Water, gas	Coastal to Alluvial Plain
Fruitland FM	1203	4347	515	Interbeddded Shale, sandstone &	Coalbed methane	Coastal Plain
Pictured Cliffs Sandstone	1718	3832	162	Sandstone	Gas, water	Regressive Marine Beach
Lewis Shale	1880	3670	780	Shale, thin limestones	Gas	Offshore Marine
Huerfanito Bentonile Bed	2660	2890	28	Alterted volcanic ash, bentonite	Swelling clay	Volcanic Ash Layers
Chacra FM	2688	2862	189	Sandstone, sillstone	Gas, Waler	Offshore Marine Sands
Lower Lewis Shale	2877	2673	458	Shale, thin limestones	Gas, Water	Offshore Marine
Cliff House Sandstone	3335	2215	59	Sandstone	Gas, Water, Oil	Transgressive Marine Beach
Menefee Member	3394	2156	643	Interbeddded Shale, sandstone &	Gas, Water, Oil	Coastal Plain
Point Lookout Sandstone	4037	1513	386	Sandstone	Gas, Water, Oil	Regressive Marine Beach
Mancos Shale	4423	1127	869	Shale, thin sandstones &	Gas, Water, Oil	Offshore Marine
Niobrara A	5292	258	102	Interbeddded Shale, sandstone	Oll, Gas, Water	Offshore Marine Sands
Niobrara B	5394	156	123	interbeddded Shale, sandstone	Oil, Gas, Water	Offshore Marine Sands
Nlobrara C	5517	33	82	Interbeddded Shale, sandstone	Oil, Gas, Water	Offshore Marine Sands
Gallup FM	5599	-49	243	Interbeddded Shale, sandstone	Oil, Gas, Water	Regressive Marine to
Juana Lopez FM	5842	-292	123	Shale, thin limestones	Oil, Gas, Waler	Offshore Marine
Carlile Shale	5965	-415	95	Shate, thin limestones	Oil, Gas, Water	Offshore Marine
Greenhorn Limestone	6060	-510	56	Limestone	Oil, Gas, Water	Offshore Marine
Graneros Shale	6116	-566	33	Shale	Oll, Gas, Water	Offshore Marine
Dakola FM	6149	-599	216	Sandstone, shale & coals	Oil, Gas, Water	Transgressive Coastal Plain to Marine
Burro Canyon FM	6365	-815	46	Sandstones, some conglomerate	Oll, Gas, Water	Braided Fluvial Fill
Morrison FM	6411	-861	635	Mudstones, sandstone	Oil, Gas, Water	Continental Rivers
Bluff Sandstone (aka Junction Creek Sandstone), Morrison FM Member	7046	-1496	118	Sandstone	Oil, Gas, Water	Ailuviঝ Plain and Eolian
Wanakah FM	7164	-1614	123	Sillstone, Sandstone	Oil, Gas, Waler	Alluvial Plain and Eolian
Todiito Limestone & Anhydrite	7287	-1737	28	Interbedded Limestone &	Oil, Gas, Waler, Anyhydrite	Alluvial Plain and Eolian
Entrada Sandstone	7315	-1765	168	Sandstone	Oil, Gas, Water	Eolian Sand Dunes
Chinle FM	7483	-1933	17	Interbeddded Shale, sandstone	Oil, Gas, Water	Continental Rivers
					 	


Notes: Any significant flow rates, abnormal pressures, lost circulation, sticking, fiuld loss or gain immediately notify company man, drilling superintendent and/or drilling engineer.

-1950

7500

Regional Bluff & Entrada Sandstones Cross-Section

- IX. After the well is drilled, cased and perforated an injectivity test will be performed. If the injection rate is less than 6 BPM prior to parting pressure, the well will be stimulated w/ approximately 222,000 lbs of 20/40 white sand in 110,000 gals of 30# cross linked gel at 50 bpm. Note: actual job design (if needed) will be based on actual results of the injectivity test.
- X. All open hole and cased hole logs will be filed with NMOCD once the well is drilled and completed.
- XII. Available geologic and engineering data has been examined and no evidence of open faults or any other hydrological connection between the disposal zone, the Entrada Formation, and any underground sources of drinking water, the Nacimiento Formation.
- XIII. Based on the information available online as well as information from the "Four Corners Geological Society" there are no known faults located in the area of the proposed well. Natural fractures are few to nonexistent in the Entrada formation. The overlaying formation is the relatively impermeable Todilto Limestone. The closest off set is the Ashcroft SWD #1 (API# 30-045-30788) located approximately ¾ of mile to the east of the proposed injection well. The Ashcroft SWD #1 is a SWD well operated by XTO Energy and is completed in the Bluff and Entrada formations and has no evidence of water migrating out of the injection zones.
- XIII. Public Notice will follow NMOCD review of this application.

Appendix C Injection Fluid Analytical

Injection Well 2014 Quarterly Analytical Summary

1/10/10/10/10	Toxicity Characteristics	1st Quarter	2nd Quarter	3rd Quarter	4th Quarte
olatile Organic Compounds (ug/L)	4	1/23/2014		7/28/2014	10/1/2014
1,1,1,2-Tetrachloroethane		<10	na	< 2.0	< 5.0
1,1,1-Trichloroethane		< 10	na	< 2.0	< 5.0
1,1,2,2-Tetrachloroethane		< 20	na	< 4.0	< 10
1,1,2-Trichloroethane		< 10	na	< 2.0	< 5.0
1,1-Dichloroethane		< 10	na	< 2.0	< 5.0
1,1-Dichloroethene		< 10	na	< 2.0	< 5.0
1,1-Dichloropropene		< 10	na	< 2.0	< 5.0
1,2,3-Trichlorobenzene		< 10	па	< 2.0	< 5.0
1,2,3-Trichloropropane		< 20	na	< 4.0	< 10
1,2,4-Trichlorobenzene		<10	na	< 2.0	< 5.0
1,2,4-Trimethylbenzene		< 10	па	< 2.0	< 5.0
1,2-Dibromo-3-chloropropane		< 20	na	<4.0	< 10 < 5.0
1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	4	<10	na	< 2.0	< 5.0
	ron	<10	па	< 2.0	< 5.0
1,2-Dichloroethane (EDC)	500	< 10	na	< 2.0	
1,2-Dichloropropane		< 10	па	< 2.0	< 5.0
1,3,5-Trimethylbenzene		< 10	na	< 2.0	< 5.0
1,3-Dichlorobenzene		< 10	па	< 2.0	< 5.0
1,3-Dichloropropane	7700	< 10	na	< 2.0	< 5.0
1,4-Dichlorobenzene	7500	< 10	па	< 2.0	< 5.0
1-Methylnaphthalene		< 40	na	< 8.0	< 20
2,2-Dichloropropane		< 20	na	< 4.0	< 10
2-Butanone		200	na	< 20	< 50
2-Chlorotoluene		< 10	na	< 2.0	< 5.0
2-Hexanone		< 100	na	< 20	< 50
2-Methylnaphthalene		< 40	na	< 8.0	< 20
4-Chlorotoluene	no opinione	<10	na	< 2.0	< 5.0
4-Isopropyltoluene		< 10	na	< 2.0	< 5.0
4-Methyl-2-pentanone		< 100	na	< 20	< 50
Acetone	700	1400	na	85	120
Benzene	500	< 10	na	< 2.0	< 5.0
Bromobenzene	-	< 10	na	< 2.0	< 5.0
Bromodichloromethane Bromoform	_	< 10 < 10	na	< 2.0 < 2.0	< 5.0 < 5.0
The state of the s	-	< 30	na	< 6.0	< 15
Bromomethene			na	< 20	< 50
Carbon disulfide Carbon Tetrachloride	500	< 100 < 10	na	< 2.0	< 5.0
Chlorobenzene	100000	< 10	па	< 2.0	< 5.0
Chloroethane	100000	< 20	na	< 4.0	< 10
Chloroform	6000	< 10	па	< 2.0	< 5.0
Chloromethane	6000	<30	na	< 6.0	< 15
cis-1,2-DCE		< 10	па	< 2.0	< 5.0
cis-1,3-Dichloropropene		<10	na	< 2.0	< 5.0
Dibromochloromethane	-	< 10	па	< 2.0	< 5.0
A contrade contrade for contrade the contrade of the department of the contrade of the contrad		< 10	na		< 5.0
Dibromomethane Dichlorodifluoromethane	-	<10	na	< 2.0 < 2.0	< 5.0
Ethylbenzene		< 10	na	< 2.0	< 5.0
Hexachlorobutadiene	500	< 10	па	< 2.0	< 5.0
Isopropylbenzene	300	<10	na	< 2.0	< 5.0
Methyl tert-butyl ether (MTBE)		< 10	па	< 2.0	< 5.0
Methylene Chloride		<30	na	< 6.0	< 15
Naphthalene	-	<30	na na	< 4.0	<10
n-Butylbenzene		<10	na na	< 6.0	< 15
n-Propylbenzene		<20	na	< 2.0	< 5.0
sec-Butylbenzene		< 10	na	< 2.0	< 5.0
Styrene		< 10		< 2.0	< 5.0
tert-Butylbenzene	- June più C	<10	na na	< 2.0	< 5.0
Tetrachloroethene (PCE)		< 10		< 2.0	< 5.0
Toluene		< 10	na	< 2.0	< 5.0
trans-1,2-DCE		< 10	na	< 2.0	< 5.0
trans-1,3-Dichloropropene		<10	па	< 2.0	< 5.0
Trichloroethene (TCE)		< 10	na	< 2.0	< 5.0
Trichlorofluoromethane		< 10	na	< 2.0	< 5.0
Vinyl chloride	200	<10	na	< 2.0	< 5.0
Y HITT CHIOTIGE	200	~10	па	~ 4.U	< 7.5

Injection Well 2014 Quarterly Analytical Summary

	Toxicity Characteristics	1st Quarter	2nd Quarter	3rd Quarter	4th Quarte
mi-Volatile Organic Compounds (ug/L)		00%			
1,2,4-Trichlorohenzene		< 50	na	< 100	< 10
1,2-Dichlorobenzene		< 50	na	< 100	< 10
1,3-Dichlorobenzene	7700	< 50	na	<100	< 10 < 10
1,4-Dichlorobenzene	7500	< 50	na	< 100 < 100	<10
1-Methylnaphthalene	Annual (< 50 < 50	na	< 100	<10
2,4,5-Trichlorophenol	2000	< 50	na na	< 100	< 10
2,4,6-Trichlorophenol 2,4-Dichlorophenol	2000	< 100	na	< 200	< 20
2,4-Dimethylphenol		< 50	na	< 100	< 10
2,4-Dinitrophenol		< 100	na	< 200	< 20
2,4-Dinitrotoluene	130	< 50	na	< 100	< 10
2,6-Dinitrotoluene		< 50	па	< 100	< 10
2-Chloronaphthalene		< 50	na	< 100	< 10
2-Chlorophenol	- Automi	< 50	na	< 100	< 10
2-Methylnaphthalene		< 50	na	< 100	< 10
2-Methylphenol		< 50	na	< 200	< 20
2-Nitroaniline		< 50	na	< 100	< 10
2-Nitrophenol		< 50	na	< 100	< 10
3,3'-Dichlorobenzidine	inio-Pitro	< 50	na	210	< 10
3+4-Methylphenol		< 50	na	< 100	< 10
3-Nitroaniline		< 50	па	< 100	< 10
4,6-Dinitro-2-methylphenol		< 100	na	< 200	< 20
4-Bromophenyl phenyl ether		< 50	na	< 100	< 10
4-Chloro-3-methylphenol		< 50	па	< 100	< 10
4-Chloroaniline		< 50	na	<100 <100	< 10
4-Chlorophenyl phenyl ether		< 50	na	- Internative of the Sales	< 10 < 10
4-Nitroaniline		< 50	na	< 100 < 100	< 10
4-Nitrophenol		< 50 < 50	na	< 100	< 10
Acenaphthene		< 50	na na	<100	<10
Acenaphthylene Aniline		< 50	na	<100	<10
Anthracene		< 50	na	<100	< 10
Azobenzene		< 50	na	< 100	< 10
Benz(a)anthracene	at at a table	< 50	na	< 100	< 10
Benzo(a)pyrene		< 50	па	< 100	< 10
Benzo(b)fluoranthene		< 50	na	< 100	< 10
Benzo(g,h,i)perylene		< 50	na	< 100	< 10
Benzo(k)fluoranthene		< 50	na	< 100	< 10
Benzoic acid		< 100	па	< 200	< 40
Benzyl alcohol		< 50	па	< 100	< 10
Bis(2-chloroethoxy)methane		< 50	na	< 100	< 10
Bis(2-chloroethyl)ether		< 50	na	< 100	< 10
Bis(2-chloroisopropyl)ether		< 50	na	< 100	< 10
Bis(2-ethylhexyl)phthalate	- AND WHAT -	< 50	na	< 100	< 10
Butyl benzyl phthalate		< 50	na	< 100	< 10
Carbazole		< 50	na	< 100	< 10
Chrysene		< 50	na	< 100	< 10
Dibenz(a,h)anthracene		< 50	na	< 100	< 10
Dibenzofuran	Samue	< 50	na	< 100	< 10
Diethyl phthalate	n. m.m.er	< 50	па	<100	< 10
Dimethyl phthalate		< 50	na	< 100	< 10
Di-n-butyl phthalate		< 50	па	<100	< 10
Di-n-octyl phthalate		< 50	na	<100	< 20 < 10
Fluoranthene		< 50	na	<100	< 10
Fluorene	120	< 50	na	< 100 < 100	<10
Hexachlorobenzene	130	< 50 < 50	na	< 100	< 10
Hexachlorobutadiene	500	< 50	na	< 100	<10
Hexachlorocyclopentadiene	3000	< 50	na na	<100	<10
Hexachloroethane Indeno(1,2,3-ed)pyrene	3000	< 50	па	< 100	<10
Isophorone		< 50	na	< 100	< 10
Naphthalene		< 50	na	< 100	< 10
Nitrobenzene	2000	< 50	na	< 100	< 10
N-Nitrosodimethylamine	2000	< 50	na	< 100	< 10
N-Nitrosodi-n-propylamine		< 50	na	< 100	< 10
N-Nitrosodiphenylamine		< 50	na	< 100	< 10
Pentachlorophenol	100000	< 100	na	< 200	< 20
Phenanthrene		< 50	па	< 100	< 10
Phenol		< 50	па	< 100	< 10
Pyrene		< 50	па	< 100	< 10
Pyridine	5000	< 50	na	< 100	< 10

Injection Well 2014 Quarterly Analytical Summary

	Toxicity Characteristics	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
General Chemistry (mg/L unless otherwi	se stated)				
Specific Conductance (umhos/cm)		7100	na	1900	1100
Chloride		2400	na	510	220
Sulfate		35	па	41	26
Total Dissolved Solids		5240	na	1380	742
pH (pH Units)		6.25	па	7.10	7.08
Bicarbonate (As CaCO3)		380	na	220	150
Carbonate (As CaCO3)		<2.0	na	<2.0	<2.0
Calcium		490	па	480	110
Magnesium		75	na	99	23
Potassium		37	na	36	8.2
Sodium		1000	na	1100	220
Total Alkalinity (as CaCO3)		380	na	220	150
otal Metals (mg/L)					
Arsenic	5.0	< 0.020	na	< 0.020	< 0.020
Barium	100.0	0.56	na	0.63	0,20
Cadmium	1.0	< 0,0020	na	< 0.0020	< 0.0020
Chromium	5.0	< 0.0060	na	< 0.0060	< 0.0060
Lead	5	< 0,0050	na	< 0.0050	< 0.0050
Selenium	1	< 0.050	na	< 0.050	< 0.050
Silver	5	< 0.0050	па	< 0.0050	< 0.0050
Mercury	0,2	< 0.0010	na	< 0.00020	< 0.00020
gnitability, Corrosivity, and Reactivity					
Reactive Cyanide (mg/L)		<1.0	na	<1.0	<1.0
Reactive Sulfide (mg/kg)		1.6	na	<1.0	3.0
Ignitability ("F)	< 140° F	>200	na	>200	>200
Corrosivity (ph Units)	<2 or > 12.5	6.25	na	7.44	6.82

Notes: na = A water sample was not collected during the 2nd quarter of 2014 because the well was not operational.

Hall Environmental Analysis Laboratory
4901 Hawkins NE
Albuquerque, NM 87109
TEL: 505-345-3975 FAX: 505-345-4107
Website: www.hallenvironmental.com

February 13, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4135 FAX (505) 632-3911

RE: Injection Well 1-23-2014 OrderNo.: 1401A07

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 1/24/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order 1401A07

Date Reported: 2/13/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Injection Well 1-23-2014 Project: 1401A07-001

Lab ID:

Matrix: AQUEOUS

Collection Date: 1/23/2014 8:35:00 AM Received Date: 1/24/2014 10:15:00 AM

Client Sample ID: Injection Well

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: JRR
Chloride	2400	100	mg/L	200	1/27/2014 7:14:18 PM	R16337
Sulfate	35	5.0	mg/L	10	1/24/2014 8:01:43 PM	R16313
EPA METHOD 7470: MERCURY					Analyst	: DBD
Mercury	ND	0.0010	mg/L	5	1/30/2014 1:52:43 PM	11463
EPA 6010B: TOTAL RECOVERABLE	METALS				Analyst	: ELS
Arsenic	ND	0.020	mg/L	1	1/29/2014 11:20:46 AM	11432
Barium	0.56	0.020	mg/L	1	1/29/2014 11:20:46 AM	11432
Cadmium	ND	0.0020	mg/L	1	1/29/2014 11:20:46 AM	11432
Calcium	490	5.0	mg/L	5	1/29/2014 11;22:17 AM	11432
Chromium	ND	0.0060	mg/L	1	1/29/2014 11:20:46 AM	11432
Lead	ND	0.0050	mg/L	1	1/29/2014 11:20:46 AM	11432
Magnesium	75	1.0	mg/L	1	1/29/2014 11:20:46 AM	11432
Potassium	37	1.0	mg/L	1	1/29/2014 11:20:46 AM	11432
Selenium	ND	0.050	mg/L	1	1/29/2014 11:20:46 AM	11432
Silver	ND	0.0050	mg/L	1	1/29/2014 11:20:46 AM	11432
Sodium	1000	20	mg/L	20	1/29/2014 11:50:27 AM	11432
EPA METHOD 8270C: SEMIVOLATIL	_ES		_		Analyst	: DAM
Acenaphthene	ND	50	ug/L	1	1/30/2014 7:14:30 PM	11420
Acenaphthylene	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Aniline	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Anthracene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Azobenzene	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Benz(a)anthracene	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Benzo(a)pyrene	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Benzo(b)fluoranthene	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Benzo(g,h,i)perylene	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Benzo(k)fluoranthene	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Benzoic acid	ND	100	μg/L	1	1/30/2014 7:14:30 PM	11420
Benzyl alcohol	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Bis(2-chloroethoxy)methane	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Bis(2-chloroethyl)ether	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Bis(2-chloroisopropyl)ether	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Bis(2-ethylhexyl)phthalate	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
4-Bromophenyl phenyl ether	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Butyl benzyl phthalate	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Carbazole	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
4-Chioro-3-methylphenol	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
4-Chloroaniline	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit

Page 1 of 17

- P Sample pH greater than 2.
- Reporting Detection Limit

Lab Order 1401A07

Date Reported: 2/13/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: Injection Well 1-23-2014

Lab ID: 1401A07-001

Client Sample ID: Injection Well

Collection Date: 1/23/2014 8:35:00 AM

Received Date: 1/24/2014 10:15:00 AM

Analyses	Resnlt	RL Qu	al Units	DF Date Analyzed	Batcl
EPA METHOD 8270C: SEMIVOLA	TILES	1.1	"	Analys	t: DAM
2-Chloronaphthalene	ND	50	μg/L	1 1/30/2014 7:14:30 PM	11420
2-Chlorophenol	ND	50	μg/L	1 1/30/2014 7:14:30 PM	11420
4-Chlorophenyl phenyl ether	ND	50	μg/L	1 1/30/2014 7:14:30 PM	11420
Chrysene	ND	50	μg/L	1 1/30/2014 7:14:30 PM	11420
Di-n-butyl phthalate	ND	50	μg/L	1 1/30/2014 7:14:30 PM	11420
Di-n-octyl phthalate	ND	50	μg/L	1 1/30/2014 7:14:30 PM	11420
Dibenz(a,h)anthracene	ND	50	μg/L	1 1/30/2014 7:14:30 PM	1142
Dibenzofuran	ND	50	μg/L	1 1/30/2014 7:14:30 PM	1142
1,2-Dichlorobenzene	ND	50	μg/L	1 1/30/2014 7:14:30 PM	1142
1,3-Dichlorobenzene	ND	50	μg/L	1 1/30/2014 7:14:30 PM	1142
1,4-Dichlorobenzene	ND	50	μg/L	1 1/30/2014 7:14:30 PM	1142
3,3'-Dichlorobenzidine	ND	50	μg/L	1 1/30/2014 7:14:30 PM	1142
Diethyl phthalate	ND	50	μg/L	1 1/30/2014 7:14:30 PM	1142
Dimethyl phthalate	ND	50	μg/L	1 1/30/2014 7:14:30 PM	1142
2,4-Dichlorophenol	ND	100	μg/L	1 1/30/2014 7:14:30 PM	1142
2,4-Dimethylphenol	ND	50	μg/L	1 1/30/2014 7:14:30 PM	1142
4,6-Dinitro-2-methylphenol	ND	100	μg/L	1 1/30/2014 7:14:30 PM	1142
2,4-Dinitrophenol	ND	100	μg/L	1 1/30/2014 7:14:30 PM	1142
2,4-Dinitrotoluene	ND	50	μg/L	1 1/30/2014 7:14:30 PM	1142
2,6-Dinitrotoluene	ND	50	μg/L	1 1/30/2014 7:14:30 PM	1142
Fluoranthene	ND	50	μg/L	1 1/30/2014 7:14:30 PM	1142
Fluorene	ND	50	μg/L	1 1/30/2014 7:14:30 PM	1142
Hexachlorobenzene	ND	50	μg/L	1 1/30/2014 7:14:30 PM	1142
Hexachlorobutadiene	ND	50	μg/L	1 1/30/2014 7:14:30 PM	1142
Hexachiorocyclopentadiene	ND	50	μg/L	1 1/30/2014 7:14:30 PM	1142
Hexachloroethane	ND	50	μg/L	1 1/30/2014 7:14:30 PM	1142
Indeno(1,2,3-cd)pyrene	ND	50	μg/L	1 1/30/2014 7:14:30 PM	1142
Isophorone	ND	50	μg/L	1 1/30/2014 7:14:30 PM	1142
1-Methylnaphthalene	ND	50	μg/L	1 1/30/2014 7:14:30 PM	1142
2-Methylnaphthalene	ND	50	μg/L	1 1/30/2014 7:14:30 PM	1142
2-Methylphenol	ND	50	μg/L	1 1/30/2014 7:14:30 PM	1142
3+4-Methylphenoi	ND	50	μg/L	1 1/30/2014 7:14:30 PM	1142
N-Nitrosodi-n-propylamine	ND	50	μg/L	1 1/30/2014 7:14:30 PM	1142
N-Nitrosodimethylamine	ND	50	μg/L	1 1/30/2014 7:14:30 PM	1142
N-Nitrosodiphenylamine	ND	50	μg/L	1 1/30/2014 7:14:30 PM	1142
Naphthalene	ND	50	μg/L	1 1/30/2014 7:14:30 PM	1142
2-Nitroaniline	ND	50	μg/L	1 1/30/2014 7:14:30 PM	1142
3-Nitroaniline	ND	50	μg/L	1 1/30/2014 7:14:30 PM	1142
4-Nitroaniline	ND	50	μg/L	1 1/30/2014 7:14:30 PM	1142

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSD limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 17

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order 1401A07

Date Reported: 2/13/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: Injection Well 1-23-2014

Lab ID: 1401A07-001

Client Sample ID: Injection Well

Collection Date: 1/23/2014 8:35:00 AM

Received Date: 1/24/2014 10:15:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILI	ES				Analyst	: DAM
Nitrobenzene	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
2-Nitrophenol	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
4-Nitrophenoi	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Pentachiorophenol	ND	100	μg/L	1	1/30/2014 7:14:30 PM	11420
Phenanthrene	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Phenol	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Pyrene	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Pyridine	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
1,2,4-Trichlorobenzene	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
2,4,5-Trichlorophenol	ПD	50	μg/L	1	1/30/2014 7:14:30 PM	11420
2,4,6-Trichlorophenol	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Surr: 2-Fluorophenol	66.2	22.7-98	%RE	C 1	1/30/2014 7:14:30 PM	11420
Surr: Phenol-d5	54.5	23.4-74.9	%RE	<u>C</u> 1	1/30/2014 7:14:30 PM	11420
Surr: 2,4,6-Tribromophenol	97.6	23.3-111	%RE	C 1	1/30/2014 7:14:30 PM	11420
Surr: Nitrobenzene-d5	86.5	36.8-111	%RE	EC 1	1/30/2014 7:14:30 PM	11420
Surr: 2-Fluorobiphenyl	86.4	38.3-110	%RE	EC 1	1/30/2014 7:14:30 PM	11420
Surr: 4-Terphenyl-d14	73.7	52.1-116	%RE	EC 1	1/30/2014 7:14:30 PM	11420
EPA METHOD 8260B: VOLATILES					Analys	t: DJF
Benzene	ND	10	μg/L	. 10	1/31/2014 3:25:28 PM	R1644
Toluene	ND	10	μg/L	. 10	1/31/2014 3:25:28 PM	R1644
Ethylbenzene	ND	10	μg/L	. 10	1/31/2014 3:25:28 PM	R1644
Methyl tert-butyl ether (MTBE)	ND	10	μg/L	. 10	1/31/2014 3:25:28 PM	R1644
1,2,4-Trimethylbenzene	ND	10			1/31/2014 3:25:28 PM	R1644
1,3,5-Trimethylbenzene	ND	10			1/31/2014 3:25:28 PM	R1644
1,2-Dichloroethane (EDC)	ND	10	μg/L	. 10	1/31/2014 3:25:28 PM	R1644
1,2-Dibromoethane (EDB)	ND	10	μg/L	. 10	1/31/2014 3:25:28 PM	R1644
Naphthalene	ND	20	μg/L	. 10	1/31/2014 3:25:28 PM	R1644
1-Methylnaphthalene	МD	40	μg/L	. 10	1/31/2014 3:25:28 PM	R1644
2-Methylnaphthalene	ND	40	μg/L	. 10	1/31/2014 3:25:28 PM	R1644
Acetone	1400	100	μg/L	. 10	1/31/2014 3:25:28 PM	R1644
Bromobenzene	ND	10	μg/L	. 10	1/31/2014 3:25:28 PM	R1644
Bromodichloromethane	ND	10	μg/L	_ 10	1/31/2014 3:25:28 PM	R1644
Bromoform	ПD	10	μg/Ł	. 10	1/31/2014 3:25:28 PM	R1644
Bromomethane	ND	30) μg/L	_ 10	1/31/2014 3:25:28 PM	R1644
2-Butanone	200	100	μg/L	_ 10	1/31/2014 3:25:28 PM	R1644
Carbon disulfide	ND	100	ı μg/L	_ 10	1/31/2014 3:25:28 PM	R1644
Carbon Tetrachloride	ND	10) µg/L	_ 10	1/31/2014 3:25:28 PM	R1644
Chlorobenzene	ND	10) μg/l	_ 10	1/31/2014 3:25:28 PM	R1644
Chloroethane	ND	20) 1/31/2014 3:25:28 PM	R1644

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - Detected at the Reporting Limit Page 3 of 17
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order 1401A07

Date Reported: 2/13/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Injection Well

 Project:
 Injection Well 1-23-2014
 Collection Date: 1/23/2014 8:35:00 AM

 Lab ID:
 1401A07-001
 Matrix: AQUEOUS
 Received Date: 1/24/2014 10:15:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	DJF
Chloroform	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R16441
Chloromethane	ND	30	μg/L	10	1/31/2014 3:25:28 PM	R16441
2-Chlorotoluene	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R16441
4-Chlorotoluene	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R16441
cis-1,2-DCE	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R1644
cis-1,3-Dichloropropene	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R1644
1,2-Dibromo-3-chioropropane	ND	20	μg/L	10	1/31/2014 3:25:28 PM	R1644
Dibromochloromethane	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R1644
Dibromomethane	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R1644
1,2-Dichlorobenzene	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R1644
1,3-Dichlorobenzene	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R1644
1,4-Dichlorobenzene	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R1644
Dichlorodifluoromethane	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R1644
1,1-Dichloroethane	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R1644
1,1-Dichloroethene	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R1644
1,2-Dichloropropane	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R1644
1,3-Dichloropropane	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R1644
2,2-Dichloropropane	ND	20	μg/L	10	1/31/2014 3:25:28 PM	R1644
1,1-Dichloropropene	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R1644
Hexachlorobutadiene	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R1644
2-Hexanone	ND	100	μg/L	10	1/31/2014 3:25:28 PM	R1644
Isopropylbenzene	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R1644
4-isopropyitoluene	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R1644
4-Methyl-2-pentanone	ND	100	μg/L	10	1/31/2014 3:25:28 PM	R1644
Methylene Chloride	ND	30	μg/L	10	1/31/2014 3:25:28 PM	R1644
n-Butylbenzene	ND	30	μg/L	10	1/31/2014 3:25:28 PM	R1644
n-Propylbenzene	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R1644
sec-Butylbenzene	ND	10	μց/∟	10	1/31/2014 3:25:28 PM	R1644
Styrene	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R1644
tert-Butylbenzene	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R1644
1,1,1,2-Tetrachioroethane	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R1644
1,1,2,2-Tetrachloroethane	ND	20	μg/L	10	1/31/2014 3:25:28 PM	R1644
Tetrachloroethene (PCE)	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R1644
trans-1,2-DCE	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R1644
trans-1,3-Dichloropropene	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R1644
1,2,3-Trichlorobenzene	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R1644
1,2,4-Trichlorobenzene	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R1644
1,1,1-Trichloroethane	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R1644
1,1,2-Trichloroethane	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R1644

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 4 of 17

- $P \hspace{0.5cm} \hbox{Sample pH greater than 2.} \\$
- RL Reporting Detection Limit

Lab Order 1401A07

Date Reported: 2/13/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Injection Well

Project: Injection Well 1-23-2014

Collection Date: 1/23/2014 8:35:00 AM

Lab ID: 1401A07-001

Matrix: AQUEOUS

Received Date: 1/24/2014 10:15:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES						Analyst	DJF
Trichloroethene (TCE)	ND	10		μg/L	10	1/31/2014 3:25:28 PM	R16441
Trichlorofluoromethane	ND	10		μg/L	10	1/31/2014 3:25:28 PM	R16441
1,2,3-Trichloropropane	ND	20		μg/L	10	1/31/2014 3:25:28 PM	R16441
Vinyl chloride	ND	10		μg/L	10	1/31/2014 3:25:28 PM	R16441
Xylenes, Total	ND	15		µg/L	10	1/31/2014 3:25:28 PM	R16441
Surr: 1,2-Dichloroethane-d4	100	70-130		%REC	10	1/31/2014 3:25:28 PM	R16441
Surr: 4-Bromofluorobenzene	86.4	70-130		%REC	10	1/31/2014 3:25:28 PM	R16441
Surr: Dibromofluoromethane	98.8	70-130		%REC	10	1/31/2014 3:25:28 PM	R16441
Surr: Toluene-d8	101	70-130		%REC	10	1/31/2014 3:25:28 PM	R16441
SM2510B: SPECIFIC CONDUCTANCE						Analyst	SRM
Conductivity	7100	0.010		µmhos/cm	1	1/24/2014 5:53:17 PM	R16304
SM4500-H+B: PH						Analyst	SRM
рН	6.25	1.68	Н	pH units	1	1/24/2014 5:53:17 PM	R16304
SM2320B: ALKALINITY						Analyst	SRM
Bicarbonate (As CaCO3)	380	20		mg/L. CaCO3	1	1/24/2014 5:53:17 PM	R16304
Carbonate (As CaCO3)	ND	2.0		mg/L CaCO3	1	1/24/2014 5:53:17 PM	R16304
Total Alkalinity (as CaCO3)	380	20		mg/L CaCO3	1	1/24/2014 5:53:17 PM	R16304
SM2540C MOD: TOTAL DISSOLVED SO	LIDS					Analyst	KS
Total Dissolved Solids	5240	100	*	mg/L	1	1/28/2014 5:33:00 PM	11406

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 5 of 17

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

140128036

Address:

4901 HAWKINS NE SUITE D

Project Name:

1401A07

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Analytical Results Report

Sample Number	140128036-001	Sampling Date 1	1/23/2014	Date/Time Received 1/28/2014 12	2:18 PM
Client Sample ID	1401A07-001E / INJE	CTION WELL		Sampling Time 8:35 AM	
Matrix	Water	Sample Location			

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide (reactive)	ND	mg/L	1	2/12/2014	CRW	SW846 CH7	
Flashpoint	>200	°F		2/4/2014	KFG	EPA 1010	
pH	5.89	ph Units		1/31/2014	AJT	EPA 150.1	
Reactive sulfide	1.57	mg/L	1	1/29/2014	AJT	SW846 CH7	

Authorized Signature

John Coddington, Lab Manager

MCL

EPA's Maximum Contaminant Level

ND

Not Detected

POL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory.

The results reported relate only to the samples indicated.

Soli/solid results are reported on a dry-weight basis unless otherwise noted.

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#:

1401A07 13-Feb-14

Client:

Western Refining Southwest, Inc.

Analysis Date: 1/27/2014

0.50

Result

4.6

Project:	Injection Well 1-23-20	14							
Sample ID ME	SampType	:: MBLK	Test	Code: EF	A Method	300.0: Anions	}		
Client ID: PB	N Batch ID	: R16313	Ri	unNo: 1 6	5313				
Prep Date:	Analysis Date	1/24/2014	Si	eqNo: 47	70380	Units: mg/L			
Analyte Sulfate		QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sample ID LC	S SampType	ELCS	Test	Code: EF	PA Method	300.0: Anions	3		
Client ID: LC	SW Batch ID	: R16313	Rı	unNo: 1 6	6313				
Prep Date:	Analysis Date	1/24/2014	Si	eqNo: 47	70381	Units: mg/L			
Analyte	Result F	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sulfate	9.6	0.50 10.00	0	96.0	90	110			
Sample ID MB	SampType	: MBLK	Test	Code: EF	PA Method	300.0: Anions	3		
Client ID: PB	N Batch ID	: R16337	Rı	unNo: 16	337				
Prep Date:	Analysis Date	1/27/2014	Si	eqNo: 47	71000	Units: mg/L			
Analyte	Result F	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	ND	0.50							
Sample ID LC	SampType	ECS	Test	Code: EF	PA Method	300.0: Anions	5		
Client ID: LC	SW Batch ID	: R16337	_	unNo: 16					

SPK value SPK Ref Val

0

5.000

Qualifiers:

Prep Date:

Analyte

Chloride

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range Е
- Analyte detected below quantitation limits J
- O RSD is greater than RSDImit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

SeqNo: 471001

LowLimit

%REC

92,6

Units: mg/L

HighLimit

110

- P Sample pH greater than 2.
- RLReporting Detection Limit

Page 6 of 17

RPDLimit

%RPD

Qual

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#:

1401A07

13-Feb-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1-23-2014

Sample ID 5ml rb	SampT	ype: M	BLK	TestCode: EPA Method 8260B: VOLATILES						
Client ID: PBW	Batch	n ID: R 1	6441	RunNo: 16441						
Prep Date:	Analysis D	ate: 1.	/31/2014	8	SeqNo: 4	74209	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzane	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichtoropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochioromethane	ND	1.0								
	ND ND	1.0								
Dibromomethane										
1,2-Dichlorobenzene	ND ND	1.0								
1,3-Dichlorobenzene	ND ND	1.0								
1,4-Dichlorobenzene	ND ND	1.0								
Dichlorodifluoromethane	ND ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 7 of 17

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#:

1401A07

13-Feb-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1-23-2014

Sample ID 5ml rb	SampType: MBLK TestCode: EPA Method 8260B: VOLATILES									
Client ID: PBW	Batch	1D: R1	6441	RunNo: 16441						·
Prep Date:	Analysis D	ate: 1/	31/2014	S	eqNo: 4	74209	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	10		10.00		101	70	130			
Surr: 4-Bromofluorobenzene	8.4		10.00		84.4	70	130			
Surr: Dibromofluoromethane	9.3		10.00		93.4	70	130			
Surr: Toluene-d8	9.3		10.00		93.0	70	130			
Sample ID 100ng Ics	Samp	Type: I C	· c	Tes	tCode: E	PA Method	8260B: VOL	ATILES		

Sample ID 100ng Ics	SampT	ype: LC	s	Test	TestCode: EPA Method 8260B: VOLATILES						
Client ID: LCSW	Batch	ID: R1	6441	R	turiNo: 10	6441					
Prep Date:	Analysis D	ate: 1/	31/2014	S	SeqNo: 4	74213	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	21	1.0	20.00	0	107	70	130				
Toluene	20	1.0	20.00	0	101	82.2	124				
Chlorobenzene	18	1.0	20.00	0	92.5	70	130				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSD limit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - ecteu at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 8 of 17

Hall Environmental Analysis Laboratory, Inc.

WO#:

1401A07 13-Feb-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1-23-2014

Sample ID 100ng Ics	SampT	ype: LC	S	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	n ID: R1	6441	F	RunNo: 1	6441				
Prep Date:	Analysis D	Date: 1/	31/2014	9	SeqNo: 4	74213	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloroethene	24	1.0	20.00	0	119	83.5	155			
Trichloroethene (TCE)	19	1.0	20.00	0	93.4	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		100	70	130			
Surr: 4-Bromofluorobenzene	8.8		10.00		88.1	70	130			
Surr: Dibromofluoromethane	8.1		10.00		80.7	70	130			
Surr: Toluene-d8	10		10.00		101	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 9 of 17

Hall Environmental Analysis Laboratory, Inc.

WO#:

1401A07

13-Feb-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1-23-2014

Sample ID mb-11420	SampT	уре: МЕ	BLK	Tes	tCode: Ei	PA Method	8270C; Semi	volatiles		
Client ID: PBW	Batch	ID: 11	420	F	ในกNo: 1	6402				
Prep Date: 1/27/2014	Analysis D				SeqNo: 4		Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	ND	10								
Acenaphthylene	ND	10								
Aniline	ND	10								
Anthracene	ND	10								
Azobenzene	ND	10								
Benz(a)anthracene	ND	10								
Benzo(a)pyrene	ND	10								
Benzo(b)fluoranthene	ND	10								
Benzo(g,h,i)perylene	ND	10								
Benzo(k)fluoranthene	ND	10								
Benzoic acid	ND	20								
Benzyl alcohol	ND	10								
Bis(2-chloroethoxy)methane	ND	10								
Bis(2-chloroethyl)ether	ND	10								
Bis(2-chloroisopropyl)ether	ND	10								
Bis(2-ethylhexyl)phthalate	ND	10								
4-Bromophenyl phenyl ether	ND	10								
Butyl benzyl phthalate	ND	10								
Carbazole	ND	10								
4-Chloro-3-methylphenol	ND	10								
4-Chloroaniline	ND	10								
2-Chloronaphthalene	ND	10								
2-Chlorophenol	ND	10								
4-Chlorophenyl phenyl ether	ND	10								
Chrysene	ND	10								
Di-n-butyl phthalate	ND	10								
Di-n-octyl phthalate	ND	10								
Dibenz(a,h)anthracene	ND	10								
Dibenzofuran	ND	10								
1,2-Dichlorobenzene	ND	10								
1,3-Dichlorobenzene	ND	10								
1,4-Dichlorobenzene	ND	10								
3,3'-Dichlorobenzidine	ND	10								
Diethyl phthalate	ND	10								
Dimethyl phthalate	ND	10								
2,4-Dichlorophenol	ND	20								
2,4-Dimethylphenol	ND	10								
4,6-Dinitro-2-methylphenol	ND	20								
2,4-Dinitrophenol	ND	20								
с _э т миниорлопот	ND	20								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 10 of 17

Hall Environmental Analysis Laboratory, Inc.

WO#:

1401A07

13-Feb-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1-23-2014

Sample ID mb-11420	SampTy	pe: MB	LK	Test	Code: El	PA Method	8270C: Semi	volatiles		
Client ID: PBW	Batch	ID: 114	120	R	unNo: 10	6402				
Prep Date: 1/27/2014	Analysis Da	ate: 1/3	30/2014	S	eqNo: 4	73422	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2,4-Dinitrotoluene	ND	10								
2,6-Dinitrotoluene	ND	10								
Fluoranthene	ND	10								
Fluorene	ND	10								
Hexachlorobenzene	ND	10								
Hexachlorobutadiene	ND	10								
Hexachlorocyclopentadiene	ND	10								
Hexachloroethane	ND	10								
Indeno(1,2,3-cd)pyrene	ND	10								
Isophorone	ND	10								
1-Methylnaphthalene	ND	10								
2-Methylnaphthalene	ND	10								
2-Methylphenol	ND	10								
3+4-Methylphenol	ND	10								
N-Nitrosodi-n-propylamine	ND	10								
N-Nitrosodimethylamine	ND	10								
N-Nitrosodiphenylamine	ND	10								
Naphthalene	ND	10								
2-Nitroaniline	ND	10								
3-Nitroaniline	ND	10								
4-Nitroaniline	ND	10								
Nitrobenzene	ND	10								
2-Nitrophenol	ND	10								
4-Nitrophenol	ND	10								
Pentachlorophenol	ND	20								
Phenanthrene	ND	10								
Phenol	ND	10								
Pyrene	ND	10								
Pyridîne	ND	10								
1,2,4-Trichlorobenzene	ND	10								
2,4,5-Trichlorophenol	ND	10								
2,4,6-Trichlorophenol	ND	10								
Surr: 2-Fluorophenol	120		200.0		60.4	22.7	98			
Surr: Phenol-d5	91		200.0		45.4	23.4	74.9			
Surr: 2,4,6-Tribromophenol	150		200.0		74.9	23.3	111			
Surr: Nitrobenzene-d5	81		100.0		80.7	36.8	111			
Surr: 2-Fluorobiphenyl	77		100.0		76.6	38.3	110			
Surr: 4-Terphenyl-d14	74		100.0		73.9	52.1	116			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range
- Analyte detected below quantitation limits J
- RSD is greater than RSDlimit 0
- RPD outside accepted recovery limits R
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded \mathbf{H}
- Not Detected at the Reporting Limit ND

Reporting Detection Limit

- Sample pH greater than 2.

Page 11 of 17

Hall Environmental Analysis Laboratory, Inc.

WO#:

1401A07

13-Feb-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1-23-2014

Sample ID Ics-11420	SampT	ype: LC	s	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: LCSW	Batch	ID: 11	420	F	RunNo: 1	6402				
Prep Date: 1/27/2014	Analysis D	ate: 1/	30/2014	S	SeqNo: 4	73423	Units: μg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	72	10	100.0	0	72.4	48	101			
4-Chloro-3-methylphenol	130	10	200.0	0	67.2	4 7.9	109			
2-Chlorophenol	70	10	200.0	0	35.0	40	105			S
1,4-Dichlorobenzene	60	10	100.0	0	60.3	40.8	94.3			
2,4-Dinitrotoluene	63	10	100.0	0	63.2	28.3	131			
N-Nitrosodi-n-propylamine	80	10	100.0	0	79.7	46.2	119			
4-Nitrophenoi	16	10	200.0	0	8.02	10.5	67.9			S
Pentachlorophenol	31	20	200.0	0	15.5	22.4	81.1			S
Phenol	67	10	200.0	0	33.4	21.4	72.9			
Pyrene	66	10	100.0	0	65,9	46.9	109			
1,2,4-Trichlorobenzene	68	10	100.0	0	67.8	43.1	98.4			
Surr: 2-Fluorophenol	36		200.0		18.0	22.7	98			S
Surr: Phenol-d5	65		200.0		32.3	23.4	74.9			
Surr: 2,4,6-Tribromophenol	72		200.0		36.2	23.3	111			
Surr: Nitrobenzene-d5	74		100.0		73.5	36.8	111			
Surr: 2-Fluorobiphenyl	74		100.0		73.9	38.3	110			
Surr: 4-Terphenyl-d14	80		100.0		80.0	52.1	116			

Sample ID mb-11513	SampT	ype: MI	BLK	Tes	tCode: E	PA Method	8270C: Sem	ivolatiles		
Client ID: PBW	Batch	iD: 11	513	F	RunNo: 1	6496				
Prep Date: 1/31/2014	Analysis D	ate: 2	/3/2014	S	SeqNo: 4	75097	Units: %RE	С		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 2-Fluorophenol	110		200,0		54.9	22.7	98			
Surr: Phenol-d5	93		200,0		46.5	23.4	74.9			
Surr: 2,4,6-Tribromophenol	130		200.0		65.6	23.3	111			
Surr: Nitrobenzene-d5	77		100.0		77.3	36.8	111			
Surr: 2-Fluorobiphenyl	71		100.0		70.6	38.3	110			
Surr: 4-Terphenyl-d14	72		100.0		71.6	52.1	116			

Sample ID Ics-11513	SampT	ype: LC	s	Tes	tCode: El	PA Method	8270C; Semi	ivolatiles		
Client ID: LCSW	Batch	ID: 11	513	F	RunNo: 1	6496				
Prep Date: 1/31/2014	Analysis D	ate: 2/	3/2014	S	SegNo: 4	75098	Units: %RE	С		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 2-Fluorophenol	100	-	200.0		49.8	22.7	98			
Surr: Phenol-d5	85		200.0		42.3	23.4	74.9			
Surr: 2,4,6-Tribromophenol	150		200.0		77.3	23.3	111			
Surr: Nitrobenzene-d5	82		100.0		81.7	36.8	111			
Surr: 2-Fluorobiphenyl	79		100.0		78.7	38.3	110			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range E
- Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- RPD outside accepted recovery limits R
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Η Holding times for preparation or analysis exceeded
- NDNot Detected at the Reporting Limit
- Sample pH greater than 2. Reporting Detection Limit

Page 12 of 17

Hall Environmental Analysis Laboratory, Inc.

WO#:

1401A07

13-Feb-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well I-23-2014

Result

61

Sample ID Ics-11513

SampType: LCS

TestCode: EPA Method 8270C: Semivolatiles

LowLimit

52,1

Client ID: LCSW

Batch ID: 11513

RunNo: 16496

116

%RPD

Prep Date: 1/31/2014

Analysis Date: 2/3/2014

SeqNo: 475098 %REC

61.4

Units: %REC HighLimit

RPDLimit

Qual

Analyte Surr: 4-Terphenyl-d14

SampType: LCSD

TestCode: EPA Method 8270C: Semivolatiles

Sample ID Icsd-11513 Client ID: LCSS02

Batch ID: 11513

RunNo: 16496

Prep Date: 1/31/2014	Analysis D	ate: 2/	3/2014	S	eqNo: 4	75099	Units: %RE	C		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 2-Fluorophenol	110		200,0		54.1	22,7	98	0	0	
Surr: Phenol-d5	90		200.0		44.9	23.4	74.9	0	0	
Surr: 2,4,6-Tribromophenol	160		200.0		79.0	23.3	111	0	0	
Surr: Nitrobenzene-d5	89		100.0		88.8	36.8	111	0	0	
Surr: 2-Fluorobiphenyl	83		100.0		83.1	38.3	110	0	0	
Surr: 4-Terphenyl-d14	70		100.0		70.1	52.1	116	0	0	

SPK value SPK Ref Val

100.0

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- RSD is greater than RSDlimit 0
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit
- Sample pH greater than 2. Ρ RLReporting Detection Limit

Page 13 of 17

Hall Environmental Analysis Laboratory, Inc.

WO#:

1401A07

13-Feb-14

Client:

Western Refining Southwest, Inc.

Project:

Client ID:

Injection Well 1-23-2014

Sample ID MB-11463

SampType: MBLK

TestCode: EPA Method 7470: Mercury

PBW

Batch ID: 11463

PQL

RunNo: 16401

Prep Date: 1/29/2014

Analysis Date: 1/30/2014

SeqNo: 473049

Units: mg/L

Analyte

Result

SPK value SPK Ref Val

%REC LowLimit

HighLimit

%RPD **RPDLimit** Qual

Mercury

Client ID:

ND 0.00020

Sample ID LCS-11463

Prep Date: 1/29/2014

LCSW

SampType: LCS Batch ID: 11463 Analysis Date: 1/30/2014

TestCode: EPA Method 7470: Mercury

RunNo: 16401 SeqNo: 473050

Units: mg/L

RPDLimit

Qual

Analyte Mercury

Result PQL 0.0047 0.00020

SPK value SPK Ref Val 0.005000

SPK value SPK Ref Val

%REC 94.3

LowLimit

HighLimit %RPD 120

Sample ID 1401A07-001CMS

SampType: MS

Result

0.0046

0.0045

PQL

0.0010

TestCode: EPA Method 7470: Mercury RunNo: 16401

75

125

Prep Date:

Client ID: Injection Well 1/29/2014

Batch ID: 11463

Analysis Date: 1/30/2014

0.005000

0.005000

SegNo: 473069 %REC

91.0

Units: mg/L HighLimit

RPDLimit

Qual

Analyte Mercury

SampType: MSD

TestCode: EPA Method 7470: Mercury

Client ID: Injection Well

Sample ID 1401A07-001CMSD

Batch ID: 11463

RunNo: 16401

Prep Date:

1/29/2014

Analysis Date: 1/30/2014

SeqNo: 473070

Units: mg/L

RPDLimit Qual

Analyte Mercury

SPK value SPK Ref Val Result PQL 0.0010

%REC 90.1

0

LowLimit 75

LowLimit

HighLimit 125

1.02

%RPD

%RPD

20

Qualifiers:

Value exceeds Maximum Contaminant Level.

Ε Value above quantitation range

Analyte detected below quantitation limits J

 \cap RSD is greater than RSDlimit RPD outside accepted recovery limits R

Spike Recovery outside accepted recovery limits S

Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded Η

Not Detected at the Reporting Limit ND

Page 14 of 17

Ρ Sample pH greater than 2.

Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#:

1401A07

13-Feb-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1-23-2014

Sample ID MB-11432	Samp [*]	Гуре: МЕ	BLK	Tes	tCode: El	PA 6010B:	Total Recove	rable Meta	ıls	
Client ID: PBW	Batc	h ID: 11	432	F	RunNo: 10	6372				
Prep Date: 1/28/2014	Analysis [Date: 1 /	29/2014	8	SeqNo: 4	72096	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	ND	0.020								
Barium	ND	0.020								
Cadmium	ND	0.0020								
Calcium	ND	1.0								
Chromium	ND	0.0060								
Lead	ND	0.0050								
Magnesium	ND	1.0								
Potassium	ND	1.0								
Selenium	ND	0.050								
Silver	ND	0.0050								
Sodium	ND	1.0								

Sample ID LCS-11432	Samp	Type: LC	s	Test	tCode: El	PA 6010B: 1	Total Recover	able Meta	als	
Client ID: LCSW	Bato	h ID: 114	432	R	RunNo: 1	6372				
Prep Date: 1/28/2014	Analysis I	Date: 1/	29/2014	S	SeqNo: 4	72097	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	0.43	0.020	0.5000	0	85.6	80	120			
Barium	0.43	0.020	0.5000	0	85.5	80	120			
Cadmium	0.42	0.0020	0.5000	0	84.3	80	120			
Calcium	45	1.0	50.00	0	89.1	80	120			
Chromium	0.43	0.0060	0.5000	0	85.3	80	120			
Lead	0.42	0.0050	0.5000	0	84.4	80	120			
Magnesium	45	1.0	50.00	0	90.0	80	120			
Potassium	44	1.0	50.00	0	88.6	80	120			
Selenium	0.42	0.050	0.5000	0	83.4	80	120			
Silver	0.089	0.0050	0.1000	0	88.7	80	120			
Sodium	45	1.0	50.00	0	89.3	80	120			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 15 of 17

Hall Environmental Analysis Laboratory, Inc.

WO#:

1401A07

13-Feb-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1-23-2014

Sample ID mb-1

SampType: MBLK

TestCode: SM2320B: Alkalinity

TestCode: SM2320B: Alkalinity

PBW Client ID:

Batch ID: R16304

RunNo: 16304

Prep Date:

Analysis Date: 1/24/2014

SeqNo: 470197

Units: mg/L CaCO3

Analyte

SPK value SPK Ref Val

%REC

LowLimit HighLimit

RPDLimit %RPD

Qual

PQL ND 20

Total Alkalinity (as CaCO3)

Sample ID Ics-1 Client ID: LCSW SampType: LCS Batch ID: R16304

RunNo: 16304

Prep Date:

Analysis Date: 1/24/2014

SeqNo: 470198

Units: mg/L CaCO3

Analyte

Result

SPK value SPK Ref Val %REC 0

LowLimit 103

HighLimit

%RPD **RPDLimit** Quai

Total Alkalinity (as CaCO3)

82

90

110

Qualifiers:

S

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- Analyte detected below quantitation limits ſ
- RSD is greater than RSDlimit 0
- RPD outside accepted recovery limits R

Spike Recovery outside accepted recovery limits

- Holding times for preparation or analysis exceeded Н
- Not Detected at the Reporting Limit ND
- Sample pH greater than 2. P
- Reporting Detection Limit

Analyte detected in the associated Method Blank В

Page 16 of 17

Hall Environmental Analysis Laboratory, Inc.

WO#:

1401A07

13-Feb-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 1-23-2014

Sample ID MB-11406

SampType: MBLK

TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW

Batch ID: 11406

RunNo: 16349

SPK value SPK Ref Val %REC LowLimit

%RPD

Prep Date: 1/27/2014

Analysis Date: 1/28/2014

20.0

SeqNo: 471302

Units: mg/L HighLimit

RPDLimit

Qual

Analyte Total Dissolved Solids Result ND

SampType: LCS

TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW

Sample ID LCS-11406

Prep Date: 1/27/2014

Batch ID: 11406 Analysis Date: 1/28/2014 RunNo: 16349

SeqNo: 471303

Units: mg/L

Analyte

Result 1010

SPK value SPK Ref Val %REC LowLimit **PQL**

101

80

HighLimit

RPDLimit

Qual

Total Dissolved Solids

20.0

1000

120

%RPD

Qualifiers:

S

Value exceeds Maximum Contaminant Level.

Spike Recovery outside accepted recovery limits

Е Value above quantitation range

Analyte detected below quantitation limits

RSD is greater than RSDlimit 0

RPD outside accepted recovery limits R

Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Sample pH greater than 2.

Reporting Detection Limit RL

Page 17 of 17

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuguerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: Western Re	efining Southw	Work Order N	lumber: 1401.	A07			RoptNo:	1
Received by/date: LA	<u> </u>	1/24/14			•			
Logged By: Michelle G	Garcia	1/24/2014 10:1	5:00 AM		Milal	ь Ga	rue	
Completed By: Michelle G		1/24/2014 12:54	4:49 PM		Mihu Mihu	ι Co	nue)	j
Reviewed By:	TO1127114	1			,	,		
Chain of Custody	T VI OF							
1. Custody seals intact on s	ample bottles?		Yes	1.1	No	j	Not Present 🔀	
2. Is Chain of Custody comp	olete?		Yes		Nο	; [Not Present	
3. How was the sample deli-	vered?		Cou	ier				
<u>Log In</u>								
4. Was an attempt made to	cool the samples?	,	Yes	V	No		NA □	
5. Were all samples receive	ed at a temperature	of >0° C to 6.0°	C Yes	· 🔽	No		na 🗆	
6. Sample(s) in proper cont	ainer(s)?		Yes	V	No			
7. Sufficient sample volume	for indicated test(s	s)?	Yes	Ž	No			
8. Are samples (except VOA	A and ONG) proper	ly preserved?	Yes		No			
9. Was preservative added	to bottles?		Yes		No		NA 🗀	
10.VOA vials have zero head	dspace?		Yes	[]	No		No VOA Vials	
11. Were any sample contain	ners received broke	en?	Yes		No	Z	# of purcound	
				FI		;·1	# of preserved bottles checked	1
12. Does paperwork match b (Note discrepancies on c			Yes		No	l_,i	for pH:	or (12 unless noted)
13. Are matrices correctly ide		Custody?	Yes	Y	No		Adjusted	JAO 1
14. is it clear what analyses	were requested?		Yes	~	No	j		
15. Were all holding times ab			Yes	¥	No		Checked by:	
Special Handling (if ap	píicable)							
16. Was client notified of all of	 -	this order?	Yes		No		na 🗹	
Person Notified:	ganana dan manasa sa anama	ADDWEED OF THE BY	Date:		THE STREET	warm.		
By Whom:		MINISTER STREET		ail î l	Phone !	Fax	in Person	
Regarding:	The state of the s			****				
Client Instructions:								4
17. Additional remarks:	,							
18. <u>Cooler Information</u>	englisten den betre en	سامية دين علام د د					ı	
Cooler No Temp *C	Condition S Good Yes		No Seal D	ate.	Signed B	ly		
T . C	GOOD 1791	J	L		annering on Agraphanianian			

			stody Record	I urn-Around	ime:					H	A	LL	ΕI	NY	IR	ĮO.	NP	1E	NT	ΓA	L	
Client:	Weste	rn Refin	ing ·	X Standard	·					A	N,	AL	YS	IS	L	AE	30	R/	\T	OF	Υ	
				Project Name	e: Injection	Well					www	v.hal	lenv	ironi	nent	tal.co	mc					
Mailing	Address	: 50 CR	4990	1	1-23-6	3014		49	01 H	iawk	ins M	NE -	Alt	uqu	erqu	e, N	M 87	7109	1			
-	Bloom	rfield, N	M 87413	Project #:				Τe	el. 50)5-34	15-3	975	[Fax	505	-345	-4 10	17				
		632-413										A	naly		Req	⊔est						
email o	r Fax#:			Project Mana	ager:		ᅙ	J.	MRO)		գ		\mathbf{x}	304)	က္		1	· [. 1	
QA/QC	Package:						(8021)	sas (<u>~</u>	တ္ထ	Back-up	~	S.	0,0	PCB's							
X Stan			Level 4 (Full Validation)	2 2 2 3 3 7	7.6		B's	TPH (Gas only)	R	H		NE SE	Mg, Na,	P.20	82				≥		ଷ_	
☐ Othe	r (Type)			Sampler: 5	₩b NyYes	□ No	ļ	₽ 1	ò	4	4.40	270	Ca	3, N	/ 8082		ब		Corrosivity	k,	a Z	:
X LDD	(Type)			Sample Tem		1.7	H	띪	9	4	9	or 8	tals	Ň	ides	क्र	Ş		ĕ	SO4, Alk,	ع لجر	-
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservativ e Type	HEAL No. 1401 A07	BTEX + MTBE	BTEX + MTBE	TPH 8015B (GRO / DRO /	TPH (Method 418.1) TDS	EDB (Method 504.1)	PAH (8310 or 8270SIMS)	RCRA 8 Metals	Anions (F,CI,NO3,NO2,PO4,SO4)	8081 Pesticides	8260B (VOA)	8270 (Semi-VOA)	Ignitability	Reactivity, (Ec, pH, SO,	Sulfates Sulfides	1317777
1-23-4	8:35	H ₂ 0	Injection Well	5-VOA	HCI	-001				•		_				x					多	Ī
1	i	H ₂ 0	Injection Well	1 - liter	Amber	- 001	·										х				≨ ○	_
		H ₂ 0	Injection Well	1-500 ml	Amber	-001				x							\Box	х				
		H ₂ 0	Injection Well	1-500 ml	Amber	-001						-								x		
		H ₂ 0	Injection Well	1-250 ml	H ₂ SO ₄	-001	Γ				x											
		H ₂ 0	Injection Well	1-500 ml	HNO ₃	-001							x									_
		H ₂ 0	Injection Well	1-500 ml	Na OH	-0.1													х			`
		H ₂ 0	Injection Well	1-500 ml	Zn Acutate	-081							· · · · · · · · · · · · · · · · · · ·								x	_
Date:	Time:	Relinquish		Received by:		Date Time		nark	(S:													
1-23-14	ISID.	Relinquist	ut Krakow	Received by:	unalt	23/14 /510 Date Time	1															
Date:	Time:	Reinquist		received py:		01/24/14/1015																
	necessary,		mitted to Hall Environmental may be sul	ocontracted to other			nis pos	sibility	. Any	зир-с	ontrac	ted da	la Will	be de	arly no	tated	on the	analy	rtical m	≥port.		_

Hall Environmental Analysis Laboratory
4901 Hawkins NE
Albuquerque, NM 87109
TEL: 505-345-3975 FAX: 505-345-4107
Website: www.hallenvironmental.com

August 15, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4166 FAX (505) 632-3911

RE: Injection Well 7-28-14 3rd QTR OrderNo.: 1407D12

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 7/29/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

Only

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order 1407D12

Date Reported: 8/15/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Injection Well

Project: Injection Well 7-28-14 3rd QTR

Collection Date: 7/28/2014 9:30:00 AM

Lab ID: 1407D12-001

Matrix: AQUEOUS

Received Date: 7/29/2014 7:55:00 AM

Analyses	Result	RL Qu	ıal Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	t: LGP
Chloride	510	25	mg/L	50	8/4/2014 5:04:09 PM	R20363
Sulfate	41	2.5	mg/L	5	7/29/2014 4:17:43 PM	R20236
EPA METHOD 7470: MERCURY					Analys	t: MMD
Mercury	ND	0.00020	mg/L	1	8/4/2014 2:43:32 PM	14571
EPA 6010B: TOTAL RECOVERABLE	METALS				Analys	t: ELS
Arsenic	ND	0.020	mg/L	1	8/2/2014 2:09:02 PM	14549
Barium	0.63	0.020	mg/L	1	8/2/2014 2:09:02 PM	14549
Cadmium	ND	0.0020	mg/L	1	8/2/2014 2:09:02 PM	14549
Calcium	480	5.0	mg/L	5	8/2/2014 2:10:49 PM	14549
Chromium	ND	0.0060	mg/L	1	8/2/2014 2:09:02 PM	14549
Lead	ND	0.0050	mg/L	1	8/2/2014 2:09:02 PM	14549
Magnesium	99	1.0	mg/L	1	8/2/2014 2:09:02 PM	14549
Potassium	36	1.0	mg/L	1	8/2/2014 2:09:02 PM	14549
Selenium	ND	0.050	mg/L	1	8/2/2014 2:09:02 PM	14549
Silver	ND	0.0050	mg/L	1	8/2/2014 2:09:02 PM	14549
Sodium	1100	20	mg/L	20	8/2/2014 3:24:50 PM	14549
EPA METHOD 8270C: SEMIVOLATIL	.ES		-		Analys	t: DAM
Acenaphthene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Acenaphthylene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Aniline	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Anthracene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Azobenzene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Benz(a)anthracene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Benzo(a)pyrene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Benzo(b)fluoranthene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Benzo(g,h,i)perylene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Benzo(k)fluoranthene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Benzoic acid	ND	200	μg/L	1	7/31/2014 8:37:47 PM	14520
Benzyl alcohol	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Bis(2-chloroethoxy)methane	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Bis(2-chloroethyl)ether	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Bis(2-chloroisopropyl)ether	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Bis(2-ethylhexyl)phthalate	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
4-Bromophenyl phenyl ether	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Butyl benzyl phthalate	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Carbazole	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
4-Chloro-3-methylphenol	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
4-Chloroaniline	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 20

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order 1407D12

Date Reported: 8/15/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Injection Well

Project: Injection Well 7-28-14 3rd QTR Collection Date: 7/28/2014 9:30:00 AM

Lab ID: 1407D12-001 Matrix: AQUEOUS Received Date: 7/29/2014 7:55:00 AM

Analyses	Result	RL Qu	al Units	DF Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLA	TILES			Analys	: DAM
2-Chloronaphthalene	ND	100	μg/L	1 7/31/2014 8:37:47 PM	14520
2-Chlorophenol	ND	100	μg/L	1 7/31/2014 8:37:47 PM	14520
4-Chlorophenyl phenyl ether	ND	100	μg/L	1 7/31/2014 8:37:47 PM	14520
Chrysene	ND	100	μg/L	1 7/31/2014 8:37:47 PM	14520
Di-n-butyl phthalate	ND	100	μg/L	1 7/31/2014 8:37:47 PM	14520
Di-n-octyl phthalate	ND	100	μg/L	1 7/31/2014 8:37:47 PM	14520
Dibenz(a,h)anthracene	ND	100	μg/L	1 7/31/2014 8:37:47 PM	14520
Dibenzofuran	ND	100	μg/L	1 7/31/2014 8:37:47 PM	14520
1,2-Dichlorobenzene	ND	100	μg/L	1 7/31/2014 8:37:47 PM	14520
1,3-Dichlorobenzene	ND	100	μg/L	1 7/31/2014 8:37:47 PM	14520
1,4-Dichlorobenzene	ND	100	μg/L	1 7/31/2014 8:37:47 PM	14520
3,3'-Dichlorobenzidine	ND	100	μg/L	1 7/31/2014 8:37:47 PM	14520
Diethyl phthalate	ND	100	μg/L	1 7/31/2014 8:37:47 PM	14520
Dimethyl phthalate	ND	100	μg/L	1 7/31/2014 8:37:47 PM	14520
2,4-Dichlorophenol	ND	200	μg/L	1 7/31/2014 8:37:47 PM	14520
2,4-Dimethylphenol	ND	100	μg/L	1 7/31/2014 8:37:47 PM	14520
4,6-Dinitro-2-methylphenol	ND	200	μg/L	1 7/31/2014 8:37:47 PM	14520
2,4-Dinitrophenol	ND	200	μg/L	1 7/31/2014 8:37:47 PM	14520
2,4-Dinitrotoluene	ND	100	μg/L	1 7/31/2014 8:37:47 PM	14520
2,6-Dinitrotoluene	ND	100	μg/L	1 7/31/2014 8:37:47 PM	14520
Fluoranthene	ND	100	μg/L	1 7/31/2014 8:37:47 PM	14520
Fluorene	ND	100	μg/L	1 7/31/2014 8:37:47 PM	14520
Hexachiorobenzene	ND	100	μg/L	1 7/31/2014 8:37:47 PM	14520
Hexachlorobutadiene	ND	100	μg/L	1 7/31/2014 8:37:47 PM	14520
Hexachlorocyclopentadiene	ND	100	μg/L	1 7/31/2014 8:37:47 PM	14520
Hexachloroethane	ND	100	μg/L	1 7/31/2014 8:37:47 PM	14520
Indeno(1,2,3-cd)pyrene	ND	100	μg/L	1 7/31/2014 8:37:47 PM	14520
Isophorone	ND	100	µg/L	1 7/31/2014 8:37:47 PM	14520
1-Methylnaphthalene	ND	100	μg/L	1 7/31/2014 8:37:47 PM	14520
2-Methylnaphthalene	ND	100	μg/L	1 7/31/2014 8:37:47 PM	14520
2-Methylphenol	ND	200	μg/L	1 7/31/2014 8:37:47 PM	14520
3+4-Methylphenol	210	100	μg/L	1 7/31/2014 8:37:47 PM	14520
N-Nitrosodi-n-propylamine	ND	100	μg/L	1 7/31/2014 8:37:47 PM	14520
N-Nitrosodimethylamine	ND	100	μg/L	1 7/31/2014 8:37:47 PM	14520
N-Nitrosodiphenylamine	ND	100	μg/L	1 7/31/2014 8:37:47 PM	14520
Naphthalene	ND	100	μg/L	1 7/31/2014 8:37:47 PM	14520
2-Nitroaniline	ND	100	μg/L	1 7/31/2014 8:37:47 PM	14520
3-Nitroaniline	ND	100	μg/L	1 7/31/2014 8:37:47 PM	14520
4-Nitroaniline	ND	100	μg/L	1 7/31/2014 8:37:47 PM	14520

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDImit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 20

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order 1407D12

Date Reported: 8/15/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Injection Well 7-28-14 3rd QTR

Project: 1407D12-001 Lab ID:

Matrix: AQUEOUS

Collection Date: 7/28/2014 9:30:00 AM

Client Sample ID: Injection Well

Received Date: 7/29/2014 7:55:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLAT	TLES					Analyst	DAM
Nitrobenzene	ND	100		μg/L	1	7/31/2014 8:37:47 PM	14520
2-Nitrophenol	ND	100		μg/L	1	7/31/2014 8:37:47 PM	14520
4-Nitrophenol	ND	100		μg/L	1	7/31/2014 8:37:47 PM	14520
Pentachlorophenol	ND	200		μg/L	1	7/31/2014 8:37:47 PM	14520
Phenanthrene	ND	100		μg/L	1	7/31/2014 8:37:47 PM	14520
Phenol	ND	100		μg/L	1	7/31/2014 8:37:47 PM	14520
Pyrene	ND	100		μg/L	1	7/31/2014 8:37:47 PM	14520
Pyridine	ND	100		μg/L	1	7/31/2014 8:37:47 PM	14520
1,2,4-Trichlorobenzene	ND	100		μg/L	1	7/31/2014 8:37:47 PM	14520
2,4,5-Trichlorophenol	ND	100		μg/L	1	7/31/2014 8:37:47 PM	14520
2,4,6-Trichlorophenol	ND	100		μg/L	1	7/31/2014 8:37:47 PM	14520
Surr: 2-Fluorophenol	0	12,1-85.8	s	%REC	1	7/31/2014 8:37:47 PM	14520
Surr: Phenol-d5	0	17.7-65.8	S	%REC	1	7/31/2014 8:37:47 PM	14520
Surr: 2,4,6-Tribromophenol	0	26-138	S	%REC	1	7/31/2014 8:37:47 PM	14520
Surr: Nitrobenzene-d5	0	47.5-119	s	%REC	1	7/31/2014 8:37:47 PM	14520
Surr: 2-Fluorobiphenyl	0	48.1-106	s	%REC	1	7/31/2014 8:37:47 PM	14520
Surr: 4-Terphenyl-d14	0	44-113	s	%REC	1	7/31/2014 8:37:47 PM	14520
EPA METHOD 8260B: VOLATILES	6					Analyst	: DJF
Benzene	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R2029
Toluene	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R2029
Ethylbenzene	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R2029
Methyl tert-butyl ether (MTBE)	ND	2.0)	μg/L	2	7/31/2014 1:41:17 PM	R2029
1,2,4-Trimethylbenzene	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R2029
1,3,5-Trimethylbenzene	ND	2.0	1	μg/L	2	7/31/2014 1:41:17 PM	R2029
1,2-Dichloroethane (EDC)	ND	2,0	ı	μg/L	2	7/31/2014 1:41:17 PM	R2029
1,2-Dibromoethane (EDB)	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R2029
Naphthalene	ND	4.0)	μg/L	2	7/31/2014 1:41:17 PM	R2029
1-Methylnaphthalene	ND	8.0)	μg/L	2	7/31/2014 1:41:17 PM	R2029
2-Methylnaphthalene	ND	8.0		μg/L	2	7/31/2014 1:41:17 PM	R2029
Acetone	85	20		μg/L	2	7/31/2014 1:41:17 PM	R2029
Bromobenzene	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R2029
Bromodichloromethane	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R2029
Bromoform	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R2029
Bromomethane	ND	6.0		μg/L	2	7/31/2014 1:41:17 PM	R2029
2-Butanone	ND	20		μg/L	2	7/31/2014 1:41:17 PM	R2029
Carbon disulfide	ND	20		μg/L	2	7/31/2014 1:41:17 PM	R2029
Carbon Tetrachloride	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R2029
Chlorobenzene	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R2029
Chloroethane	ND	4.0		μg/L	2	7/31/2014 1:41:17 PM	R2029

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range Е
- Analyte detected below quantitation limits
- RSD is greater than RSDlimit О
- RPD outside accepted recovery limits R
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit
- Page 3 of 20
- P Sample pH greater than 2.
- RLReporting Detection Limit

Lab Order 1407D12

Date Reported: 8/15/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: Injection Well 7-28-14 3rd QTR

Lab ID: 1407D12-001

Client Sample ID: Injection Well

Collection Date: 7/28/2014 9:30:00 AM

Received Date: 7/29/2014 7:55:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	DJF
Chloroform	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
Chloromethane	ND	6.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
2-Chlorotoluene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
4-Chlorotoluene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
cis-1,2-DCE	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
cis-1,3-Dichloropropene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
1,2-Dibromo-3-chloropropane	ND	4.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
Dibromochloromethane	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
Dibromomethane	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
1,2-Dichlorobenzene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
1,3-Dichlorobenzene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
1,4-Dichlorobenzene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
Dichlorodifluoromethane	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
1,1-Dichloroethane	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
1,1-Dichloroethene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
1,2-Dichloropropane	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
1,3-Dichloropropane	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
2,2-Dichloropropane	ND	4.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
1,1-Dichloropropene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
Hexachlorobutadiene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R202
2-Hexanone	ND	20	μg/L	2	7/31/2014 1:41:17 PM	R202
Isopropylbenzene	ND	2,0	μg/L	2	7/31/2014 1:41:17 PM	R2029
4-Isopropyltoluene	ND	2,0	μg/L	2	7/31/2014 1:41:17 PM	R202
4-Methyl-2-pentanone	ND	20	μg/L	2	7/31/2014 1:41:17 PM	R202
Methylene Chloride	ND	6.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
n-Butylbenzene	ND	6.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
n-Propylbenzene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
sec-Butylbenzene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R202
Styrene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R202
tert-Butylbenzene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R202
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R202
1,1,2,2-Tetrachloroethane	ND	4.0	μg/L	2	7/31/2014 1:41:17 PM	R202
Tetrachloroethene (PCE)	ND	2.0	µg/∟	2	7/31/2014 1:41:17 PM	R202
trans-1,2-DCE	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R202
trans-1,3-Dichloropropene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R202
1,2,3-Trichlorobenzene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R202
1,2,4-Trichlorobenzene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R202
1,1,1-Trichloroethane	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R202
1,1,2-Trichioroethane	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R202

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 4 of 20

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order 1407D12

Date Reported: 8/15/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Injection Well 7-28-14 3rd QTR

Lab ID: 140

Project:

1407D12-001

Client Sample ID: Injection Well

Collection Date: 7/28/2014 9:30:00 AM

Received Date: 7/29/2014 7:55:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES	1000	•				Analyst	: DJF
Trichloroethene (TCE)	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
Trichlorofluoromethane	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
1,2,3-Trichloropropane	ND	4.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
Vinyl chloride	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
Xylenes, Total	ND	3.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
Surr: 1,2-Dichloroethane-d4	92.4	70-130		%REC	2	7/31/2014 1:41:17 PM	R20298
Surr: 4-Bromofluorobenzene	95.4	70-130		%REC	2	7/31/2014 1:41:17 PM	R20298
Surr: Dibromofluoromethane	100	70-130		%REC	2	7/31/2014 1:41:17 PM	R20298
Surr: Toluene-d8	93.6	70-130		%REC	2	7/31/2014 1:41:17 PM	R20298
SM2510B: SPECIFIC CONDUCTANCE						Analyst	: JRR
Conductivity	1900	0.010		µmhos/cm	1	7/29/2014 12:08:01 PM	R20245
SM4500-H+B: PH						Analyst	:: JRR
pН	7.10	1.68	Н	pH units	1	7/29/2014 12:08:01 PM	R20245
SM2320B: ALKALINITY						Analyst	:: JRR
Bicarbonate (As CaCO3)	220	20		mg/L CaCO3	1	7/29/2014 12:08:01 PM	R20245
Carbonate (As CaCO3)	ND	2.0		mg/L CaCO3	1	7/29/2014 12:08:01 PM	1 R20245
Total Alkalinity (as CaCO3)	220	20		mg/L CaCO3	1	7/29/2014 12:08:01 PM	1 R20245
SM2540C MOD: TOTAL DISSOLVED S	OLIDS					Analys	t: KS
Total Dissolved Solids	1380	200	*	mg/L	1	7/30/2014 5:19:00 PM	14475

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 5 of 20

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D · Spokane WA 99202 · (509) 838-3999 · Fax (509) 838-4433 · email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

140730036

Address:

4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109

Project Name:

1407D12

Attn:

ANDY FREEMAN

Analytical Results Report

Sample Number

140730036-001

Sampling Date 7/28/2014

Date/Time Received 7/30/2014

12:25 PM

Client Sample ID

1407D12-001E / INJECTION WELL

Sampling Time 9:30 AM

Matrix

Water

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide (reactive)	ND	mg/L	1	8/12/2014	CRW	SW846 CH7	
Flashpoint	>200	°F		8/5/2014	KFG	EPA 1010	
pΗ	7.44	ph Units		8/5/2014	A J T	SM 4500pH-B	
Reactive sulfide	ND	mg/L	1	8/1/2014	TLA	SW846 CH7	

Authorized Signature

John Coddington, Lab Manager

MCL

EPA's Maximum Coπtaminant Level

ND

Not Detected

PQL

Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated.

Soil/soild results are reported on a dry-weight basis unless otherwise noted.

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

140730036

Address:

4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109 Project Name:

1407D12

Attn:

ANDY FREEMAN

Analytical Results Report

Quality Control Data

Lab Control San	nple										
Parameter		LCS Result	Units	LCS	Spike	%Rec	AR	%Rec	Prap	Date .	Analysis Date
Reactive sulfide		0.16	mg/L	(0.2	80.0	70	-130	8/1/2	2014	8/1/2014
Cyanide (reactive)		0.505	mg/L	(0.5	101.0	80	-120	8/12/	2014	8/12/2014
Lab Control San	nple Duplicate			1.605				AR	,		
Parameter		LCSD Result	Units	LCSD Spike	%Rec	%RP	D 9	AR ARPD	Prep D	ate A	knalysis Date
Reactive suifide		0.18	mg/L	0.2	90.0	11.8	3	0-25	8/1/20	014	8/1/2014
Matrix Spike			Sample	MS		,	MS		AR		
Sample Number	Parameter		Result	Result	Unit	ts S	Spike	%Rec	%Rec	Prep Date	Analysis Date
	Reactive sulfide		ND	0.22	mg/	Լ	0.2	110.0	70-130	8/1/2014	8/1/2014
140730036-001	Cyanide (reactive)		ND	0.919	mg/	L	1	91,9	80-120	8/12/2014	8/12/2014
Matrix Spike Du	plicate	, AUDITOR OF THE STATE OF THE S			·						
- · · · · · ·		. MSD	Units	MSD Spike	0 <u>/</u> .c	Rec 9	6RPD	AR %RPI	n Pre	p Date	Analysis Date
Parameter Cyanide (reactive)		Result 0.906	mg/L	1	90		1.4	0-25	_	2/2014	8/12/2014
Method Blank											
Parameter			Re	sult	U	nits		PQL	P	rep Date	Analysis Date
Cyanide (reactive)			٨	ID	T	ıg/L		1	8/	2/2014	8/12/2014
Reactive sulfide			N	I D	П	ng/L		1	8/	1/2014	8/1/2014

AR

Acceptable Range

ND

Not Detected

PQL RPD Practical Quantitation Limit Relative Percentage Difference

Comments:

Client:

Hall Environmental Analysis Laboratory, Inc.

Western Refining Southwest, Inc.

Analysis Date: 8/4/2014

SampType: LCS
Batch ID: R20363

Analysis Date: 8/4/2014

PQL

0.50

PQL

0.50

Result

ND

4.7

WO#: 1407D12

15-Aug-14

Project:	Injection Well 7-28-14 3rd QTR		
Sample ID MB	SampType: MBLK	TestCode: EPA Method 300.0: Anions	
Client ID: PBW	Batch ID: R20236	RunNo: 20236	
Prep Date:	Analysis Date: 7/29/2014	SeqNo: 588153 Units: mg/L	
Analyte	Result PQL SPK value	e SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qu	ual
Sulfate	ND 0.50		
Sample ID LCS	SampType: LCS	TestCode: EPA Method 300.0: Anions	
Client ID: LCSV	V Batch ID: R20236	RunNo: 20236	
Prep Date:	Analysis Date: 7/29/2014	SeqNo: 588154 Units: mg/L	
Analyte	Result PQL SPK value	e SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qu	ual
Sulfate	9.7 0.50 10.00	0 97.4 90 110	
Sample ID MB	SampType: MBLK	TestCode: EPA Method 300.0: Anions	
Client ID: PBW	Batch ID: R20236	RunNo: 20236	
Prep Date:	Analysis Date: 7/29/2014	SeqNo: 588211 Units: mg/L	
Analyte	Result PQL SPK value	e SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qu	ual
Sulfate	ND 0.50		
Sample ID LCS	SampType: LCS	TestCode: EPA Method 300.0: Anions	
Client ID: LCSV	V Batch ID: R20236	RunNo: 20236	
Prep Date:	Analysis Date: 7/29/2014	SeqNo: 588212 Units: mg/L	
Analyte	Result PQL SPK value	e SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qu	ual
Sulfate	9.6 0.50 10.00	0 95.6 90 110	
Sample ID MB	SampType: MBLK	TestCode: EPA Method 300.0: Anions	
Client ID: PBW	Batch iD: R20363	RunNo: 20363	

Qualifiers:

Prep Date:

Sample ID LCS

LCSW

Cilent ID:

Prep Date:

Analyte

Chloride

Analyte Chloride

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDImit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

Units: mg/L

HighLimit

Units: mg/L

HighLimit

110

%RPD

%RPD

RPDLimit

RPDLimit

Qual

Qual

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

SeqNo: 592146

RunNo: 20363

SeqNo: 592147

94.2

TestCode: EPA Method 300.0: Anions

LowLimit

90

SPK value SPK Ref Val %REC LowLimit

SPK value SPK Ref Val %REC

5.000

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 6 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#:

1407D12

15-Aug-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-28-14 3rd QTR

Sample ID MB

SampType: MBLK

TestCode: EPA Method 300.0: Anions

Client ID: PBW

Sample ID LCS

Batch ID: R20363

RunNo: 20363

Prep Date:

Analysis Date: 8/5/2014

SeqNo: 592208

Units: mg/L

Qual

Analyte

PQL Result

SPK value SPK Ref Val %REC

SPK value SPK Ref Val %REC LowLimit

TestCode: EPA Method 300.0: Anions

LowLimit

HighLimit %RPD **RPDLimit**

Chloride

ND 0.50

SampType: LCS Batch ID: R20363

PQL

0.50

RunNo: 20363

Client ID: LCSW Prep Date:

Analysis Date: 8/5/2014

SeqNo: 592209

Units: mg/L HighLimit

RPDLimit

Analyte Chloride

Result 4.7

5.000

93.8

90 110 %RPD

Qual

Qualifiers:

Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

Analyte detected below quantitation limits

RSD is greater than RSDlimit 0

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits S

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Н

ND Not Detected at the Reporting Limit

Reporting Detection Limit

Sample pH greater than 2.

RL

Page 7 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#:

1407D12

15-Aug-14

Client: Project: Western Refining Southwest, Inc. Injection Well 7-28-14 3rd QTR

Sample ID 5mL rb	SampType: MBLK			Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	ı ID: R2	:0230	F	RunNo: 2	0230				
Prep Date:	Analysis D	ate: 7/	29/2014	S	SeqNo: 5	87928	Units: %RE	С		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	9.1		10.00		91.3	70	130			
Surr: 4-Bromofluorobenzene	9.3		10.00		93.2	70	130			
Surr: Dibromofluoromethane	10		10.00		102	70	130			
Surr: Toluene-d8	9.7		10.00		96.7	70	130			

Sample ID 100ng Ics	s SampType: LCS TestCode: EPA Method 8260B:					8260B: VOL	ATILES			
Client (D: LCSW	Batch	ı ID: R2	0230	F	RunNo: 2	0230				
Prep Date:	Analysis D	ate: 7/	29/2014	S	SeqNo: 5	87930	Units: %RE	С		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	9.9		10.00		98.6	70	130			
Surr: 4-Bromofluorobenzene	9.5		10.00		95.4	70	130			
Surr; Dibromofluoromethane	11		10.00		107	70	130			
Surr: Toluene-d8	9.4		10.00		94.3	7 D	130			

Sample ID 5ml rb	SampT	ype: ME	BLK	Tes	PA Method	8260B: VOL	ATILES			
Client ID: PBW	Batch	ID: R2	0298	F	RunNo: 2	20298				
Prep Date:	Analysis D	ate: 7/	31/2014	S	SeqNo: {	589943	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- RPD outside accepted recovery limits R
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- Not Detected at the Reporting Limit ND
- Sample pH greater than 2. RLReporting Detection Limit

Page 8 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#:

1407D12

15-Aug-14

Client: Project:

Western Refining Southwest, Inc. Injection Well 7-28-14 3rd QTR

Sample ID 5ml rb

Client ID: PBW

SampType: MBLK Batch ID: R20298 TestCode: EPA Method 8260B: VOLATILES

RunNo: 20298

Prep Date: Analysis Date: 7/31/2014 SegNo: 589943 Units: µg/L

LowLimit	HighLimit	%RPD	RPDLimit	Qual

Analyte	Result	PQL	SPK value	SPK Ref Val	%REC
Chloroethane	ND	2.0			
Chloroform	ND	1.0			
Chloromethane	ND	3.0			
2-Chlorotoluene	ND	1.0			
4-Chlorotoluene	ND	1.0			
cis-1,2-DCE	ND	1.0			
cis-1,3-Dichloropropene	ND	1.0			
1,2-Dibromo-3-chloropropane	ND	2.0			
Dibromochloromethane	ND	1.0			
Dibromomethane	ND	1.0			
1,2-Dichlorobenzene	ND	1.0			
1,3-Dichlorobenzene	ND	1.0			
1,4-Dichlorobenzene	ND	1.0			
Dichlorodifluoromethane	ND	1.0			
1,1-Dichloroethane	ND	1.0			
1,1-Dichloroethene	ND	1.0			
1,2-Dichloropropane	ND	1.0			
1,3-Dichloropropane	ND	1.0			
2,2-Dichloropropane	ND	2.0			
1,1-Dichloropropene	ND	1.0			
Hexachlorobutadiene	ND	1.0			
2-Hexanone	ND	10			
isopropylbenzene	ND	1.0			
4-isopropyitaluene	ND	1.0			
4-Methyl-2-pentanone	ND	10			
Methylene Chloride	ND	3.0			
n-Butylbenzene	ND	3.0			
n-Propylbenzene	ND	1.0			
sec-Butylbenzene	ND	1.0			
Styrene	ND	1.0			
tert-Butylbenzene	ND	1.0			
1,1,1,2-Tetrachloroethane	ND	1.0			
1,1,2,2-Tetrachloroethane	ND	2.0			
Tetrachloroethene (PCE)	ND	1.0			
trans-1,2-DCE	ND	1.0			
trans-1,3-Dichloropropene	ND	1.0			
1,2,3-Trichlorobenzene	ND	1.0			
1,2,4-Trichlorobenzene	ND	1.0			
1,1,1-Trichloroethane	ND	1.0			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- Not Detected at the Reporting Limit ND

Reporting Detection Limit

Sample pH greater than 2.

RL

Page 9 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#:

1407D12

15-Aug-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-28-14 3rd QTR

Sample ID 5ml rb	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	ı ID: R2	0298	R	tunNo: 2	0298				
Prep Date:	Analysis D	ate: 7/	31/2014	S	eqNo: 5	89943	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	8.8		10.00		88.2	70	130			
Surr: 4-Bromofluorobenzene	9.9		10.00		98.9	70	130			
Surr: Dibromofluoromethane	10		10.00		102	70	130			
Surr: Toluene-d8	9,9		10.00		98,9	70	130			

Sample ID 100ng ics	SampT	ype: LC	s	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	ı ID: R2	0298	F	RunNo: 2	0298				
Prep Date:	Analysis D	ate: 7/	31/2014	S	SeqNo: 5	89945	Units: µg/L			
 Analyte	Result	PQL	SPK value	SPK value SPK Ref Val %REC LowLimit H				%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	102	70	130			
Toluene	21	1.0	20.00	0	107	80	120			
Chlorobenzene	20	1.0	20.00	0	99,3	70	130			
1,1-Dichloroethene	22	1.0	20.00	0	110	82.6	131			
Trichloroethene (TCE)	21	1.0	20.00	0	103	70	130			
Surr: 1,2-Dichloroethane-d4	9.2		10.00		91.6	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		100	70	130			
Surr: Dibromofluoromethane	10		10.00	101 70			130			
Surr: Toluene-d8	9.4		10.00	94.3 70			130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 10 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#: 140

1407D12 15-Aug-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-28-14 3rd QTR

Sample ID mb-14520	SampTy	pe: MBL	.K	Tes	Code: El	PA Method	8270C; Semi	volatiles		'
Client ID: PBW	Batch	ID: 1452	20	F	tunNo: 2	0300				
Prep Date: 7/31/2014	Analysis Da	te: 7/3 1	1/2014	5	SegNo: 5	90031	Units: µg/L			•
Analyte	Result			SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	ND	10								
Acenaphthylene	ND	10								
Aniline	ND	10								
Anthracene	ND	10								
Azobenzene	ND	10								
Benz(a)anthracene	ND	10								
Benzo(a)pyrene	ND	10								
Benzo(b)fluoranthene	ND	10								
Benzo(g,h,i)perylene	ND	10								
Benzo(k)fluoranthene	ND	10								
Benzoic acid	ND	20								
Benzyl alcohol	ND	10								
Bis(2-chloroethoxy)methane	ND	10								
Bis(2-chloroethyi)ether	ND	10								
Bis(2-chloroisopropyl)ether	ND	10								
Bis(2-elhylhexyl)phthalate	ND	10								
4-Bromophenyl phenyl ether	ND	10								
Butyl benzyl phthalate	ND	10								
Carbazole	ND	10								
4-Chloro-3-methylphenol	ND	10								
4-Chloroaniline	ND	10								
2-Chloronaphthalene	ND	10								
2-Chlorophenol	ND	10								
4-Chlorophenyl phenyl ethar	ND	10								
Chrysene	ND	10								
Di-n-butyl phthalate	ND	10								
Di-n-octyl phthalate	ND	10								
Dibenz(a,h)anthracene	ND	10								
Dibenzofuran	ND	10								
1,2-Dichlorobenzene	ND	10								
1,3-Dichlorobenzene	ND	10								
1,4-Dichlorobenzene	ND	10								
3,3'-Dichlorobenzidine	ND	10								
Diethyl phthalate	ND	10								
Dimethyl phthalate	ND	10								
2,4-Dichlorophenol	ND	20								
2,4-Dimethylphenol	ND	10								
4,6-Dinitro-2-methylphenol	ND	20								
2,4-Dinitrophenol	ND	20								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 11 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#:

1407D12

15-Aug-14

...

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-28-14 3rd QTR

Sample ID mb-14520	SampTy	ype: MBL	K	Tes	tCode: EF	A Method	8270C: Semi	/olatiles		
Client ID: PBW	Batch	ID: 1452	:0	F	RunNo: 20	300				
Prep Date: 7/31/2014	Analysis Da	ate: 7/31	1/2014	5	SegNo: 5 9	90031	Units: µg/L			
Analyte	Result			SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2.4-Dinitrotoluene	ND	10								
2,6-Dinitrotoluene	ND	10								
Fluoranthene	ND	10								
Fluorene	ND	10								
Hexachlorobenzene	ND	10								
Hexachlorobutadiene	ND	10								
Hexachlorocyclopentadiene	ND	10								
Hexechloroethane	ND	10								
Indeno(1,2,3-od)pyrene	ND	10								
Isophorone	ND	10								
1-Methylnaphthelene	ND	10								
2-Methylnaphthalene	ND	10								
2-Methylphenol	ND	20								
3+4-Methylphenol	ND	10								
N-Nitrosodi-n-propylamine	ND	10								
N-Nitrosodimethylamine	ND	10								
N-Nitrosodiphenylamine	ND	10								
Naphthalene	ND	10								
2-Nitroaniline	ND	10								
3-Nitroaniline	ND	10								
4-Nitroaniline	ND	10								
Nitrobenzene	ND	10								
2-Nitrophenol	ND	10								
4-Nitrophenol	ND	10								
Pentachlorophenol	ND	20								
Phenenthrene	ND	10								
Phenol	ND	10								
Pyrene	ND	10								
Pyridine	ND	10								
1,2,4-Trichlorobenzene	ND	10								
2,4,5-Trichlorophenol	ND	10								
2,4,6-Trichlorophenol	ND	10					e =			
Surr: 2-Fluorophenol	130		200.0		66.7	12.1	85.8			
Surr: Phenol-d5	95		200.0		47.4	17.7				
Surr: 2,4,6-Tribromophenol	170		200.0		86.4	26				
Surr: Nitrobenzene-d5	84		100.0		83.6	47.5				
Surr: 2-Fluorobiphenyl	84		100.0		83.7	48.1				
Surr: 4-Terphenyl-d14	94		100.0		94.5	44	113			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 12 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#:

1407D12

15-Aug-14

Client: Project:

Western Refining Southwest, Inc. Injection Well 7-28-14 3rd QTR

Sample ID Ics-14520 SampType: LCS TestCode: EPA Method 8270C: Semivolatiles Client ID: LCSW Batch ID: 14520 RunNo: 20300 Prep Date: 7/31/2014 Analysis Date: 7/31/2014 SeqNo: 590032 Units: µg/L PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result 0 87.0 50,3 109 87 10 100.0 Acenaphthene 0 4-Chloro-3-methylphenol 200 10 200.0 99.0 51,2 113 48.5 104 2-Chlorophenol 190 10 200.0 0 94.9 80 10 100.0 0 79.5 39,5 106 1,4-Dichlorobenzene 2.4-Dinitrotoluene 82 10 100.0 0 82.3 45.4 107 91 10 100.0 0 91.0 50.4 119 N-Nitrosodi-n-propylamine 200.0 0 53.6 62.2 4-Nitrophenol 110 10 15.5 20 200.0 72.7 23.5 93.5 Pentachlorophenol 150 0 65.6 10 200,0 n 54.8 26.8 Phenol 110 Ругеле 96 10 100.0 0 95.5 54.4 108 78 10 100.0 78.0 39.9 106 1,2,4-Trichlorobenzene 85.8 72.4 Surr: 2-Fluorophenol 140 200.0 12.1 100 200.0 52.5 17.7 65.8 Surr: Phenol-d5 87.0 138 Surr: 2,4,6-Tribromophenol 170 200.0 26 Surr: Nitrobenzene-d5 100 100.0 101 47.5 119 Surr: 2-Fluorobiphenyl 96 100.0 96.0 48.1 106 Surr: 4-Terphenyl-d14 91 100.0 90.9 44 113

Sample ID Icsd-14520	SampType: LCSD TestCode: EPA Method 8270C: Semivolatiles												
Client ID: LCSS02	Batch	1D: 14 5	520	R	tunNo: 20	0300							
Prep Date: 7/31/2014	Analysis D	ate: 7 /:	31/2014	S	SeqNo: 5 9	90033	Units: µg/L						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Acenaphthene	77	10	100.0	0	76.5	50.3	109	12.8	27.2				
4-Chloro-3-methylphenol	190	10	200.0	0	93.8	51.2	113	5.37	25.9				
2-Chlorophenol	170	10	200.0	0	84.4	48.5	104	11.7	22.5				
1,4-Dichlorobenzene	73	10	100.0	0	73.3	39.5	106	8.19	24.6				
2,4-Dinitrotoluene	73	10	100.0	0	73.1	45.4	107	11.9	25.3				
N-Nitrosodi-n-propylamine	85	10	100.0	0	84.9	50.4	119	6.98	23.6				
4-Nitrophenol	110	10	200.0	0	52.7	15.5	62.2	1.69	34.7				
Pentachlorophenol	150	20	200.0	0	72.9	23.5	93.5	0.275	32.8				
Phenol	100	10	200.0	0	51.6	26.8	65.6	6.05	25.5				
Pyrene	89	10	100.0	0	8.88	54.4	108	7.31	31.4				
1,2,4-Trichlorobenzene	68	10	100.0	0	68.4	39.9	106	13.1	25.9				
Surr: 2-Fluorophenol	140		200.0		68.8	12.1	85.8	0	0				
Surr: Phenol-d5	110		200.0		53.9	17.7	65.8	0	0				
Surr: 2,4,6-Tribromophenol	170		200.0		86.5	26	138	0	0				
Surr: Nitrobenzene-d5	88		100.0		47.5	119	0	0					
Surr: 2-Fluorobiphenyl	90		100.0		89.9	48.1	106	0	0				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 13 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#:

1407D12

15-Aug-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-28-14 3rd QTR

Sample ID Icsd-14520

SampType: LCSD

TestCode: EPA Method 8270C: Semivolatiles

Client ID: LCSS02

Batch ID: 14520

RunNo: 20300

Prep Date: 7/31/2014

Analysis Date: 7/31/2014

SeqNo: 590033

Analyte

Result

SPK value SPK Ref Val %REC **PQL**

Units: µg/L

RPDLimit

Qual

100.0

44

HighLimit

%RPD 0

Surr: 4-Terphenyl-d14

90

90.0

LowLimit

113

Qualifiers: Value exceeds Maximum Contaminant Level.

Value above quantitation range Е

Analyte detected below quantitation limits J

RSD is greater than RSDlimit 0

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded Н

Not Detected at the Reporting Limit ND

Sample pH greater than 2.

Reporting Detection Limit

P

Page 14 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#: 1407D12

15-Aug-14

Client: Project:

Western Refining Southwest, Inc. Injection Well 7-28-14 3rd QTR

Sample ID 1407d12-001b dup

SampType: DUP

TestCode: SM2510B: Specific Conductance

Client ID: Injection Well Batch ID: R20245

RunNo: 20245 SeqNo: 588403

Units: µmhos/cm

Prep Date:

Analysis Date: 7/29/2014

SPK value SPK Ref Val %REC LowLimit

%RPD

HighLimit

RPDLimit

4.30

Qual 20

Conductivity

Result **PQL**

Analyte

0.010 1800

Qualifiers:

Value exceeds Maximum Contaminant Level.

Value above quantitation range E

Analyte detected below quantitation limits

O RSD is greater than RSDlimit

RPD outside accepted recovery limits R

Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Sample pH greater than 2.

RLReporting Detection Limit Page 15 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#:

1407D12 15-Aug-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-28-14 3rd QTR

Sample ID MB-14571

SampType: MBLK

TestCode: EPA Method 7470: Mercury

Client ID: PBW

Prep Date:

Client ID:

Prep Date:

8/4/2014

Batch ID: 14571 Analysis Date: 8/4/2014 RunNo: 20345

SeqNo: 591482

Units: mg/L

SPK value SPK Ref Val %REC LowLimit

HighLimit

RPDLimit

Qual

Analyte Mercury

Result PQL ND 0.00020

Sample ID LCS-14571

LCSW

8/4/2014

SampType: LCS Batch ID: 14571

Analysis Date: 8/4/2014

RunNo: 20345

%REC

TestCode: EPA Method 7470: Mercury

SeqNo: 591483

Units: mg/L

%RPD **RPDLimit**

Qual

0.005000

98.9

LowLimit 80 HighLimit 120

PQL

Analyte

%RPD

Mercury

SPK value SPK Ref Val 0.0049 0.00020

Qualifiers:

R

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- Analyte detected below quantitation limits J
- RSD is greater than RSDlimit O
- RPD outside accepted recovery limits Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Η
- ND
- Ρ Sample pH greater than 2. Reporting Detection Limit
- Not Detected at the Reporting Limit

Page 16 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#: 1

1407D12

15-Aug-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-28-14 3rd QTR

Sample ID MB-14549	Samp	Туре: М Е	BLK	Tes	tCode: El	PA 6010B:	Total Recove	rable Meta	als	
Client ID: PBW	Bato	h ID: 14	549	F	RunNo: 2	0323				
Prep Date: 8/1/2014	Analysis	Date: 8 /	2/2014	5	SeqNo: 5	90696	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	ND	0.020								
Barium	ND	0.020								
Cadmium	ND	0.0020								
Calcium	ND	1.0								
Chromium	ND	0.0060								
Lead	ND	0.0050								
Magnesium	ND	1.0								
Potassium	ND	1.0								
Selenium	ND	0.050								
Silver	ND	0.0050								
Sodium	ND	1.0								

Sample ID LCS-14549	Samp	Type: LC	S	Tes	tCode: El	PA 6010B:	Total Recove	rable Meta	als	
Client ID: LCSW	Bato	h ID: 14	549	F	RunNo: 2	0323				
Prep Date: 8/1/2014	Analysis	Date: 8/	2/2014	5	SeqNo: 5	90697	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	0.50	0.020	0.5000	0	101	80	120			
Barium	0.50	0.020	0.5000	0	99.7	80	120			
Cadmium	0.50	0.0020	0.5000	0	99.7	80	120			
Calcium	ND	1.0	50.00	0	0	80	120			S
Chromium	0.50	0.0060	0.5000	0	100	80	120			
Lead	0.50	0.0050	0.5000	0	99.5	80	120			
Magnesium	ND	1.0	50.00	0	0	80	120			S
Potassium	ND	1.0	50.00	0	0	80	120			S
Selenium	0.52	0.050	0.5000	0	105	80	120			
Silver	0.085	0.0050	0.1000	0	84.9	80	120			
Sodium	ND	1.0	50.00	0	0	80	120			S

Sample ID LCS Cat-14549	SampT	ype: LC	s	Tes	PA 6010B:	DB: Total Recoverable Metals									
Client ID: LCSW	Batch	Batch ID: 14549 RunNo: 20323													
Prep Date: 8/1/2014	Analysis D	ate: 8/	2/2014	8	SeqNo: 5	90698	Units: mg/L								
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual					
Calcium	51	1.0	50.00	0	102	80	120								
Magnesium	51	1.0	50.00	0	101	80	120								
Potassium	4 9	1.0	50.00	0	97.3	80	120								
Sodium	50	1.0	50.00	0	101	80	120								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 17 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#: 1407D12

15-Aug-14

Client: Project: Western Refining Southwest, Inc. Injection Well 7-28-14 3rd QTR

Sample ID 1407d12-001b dup

SampType: DUP

TestCode: SM4500-H+B: pH

Client ID:

Injection Well

Batch ID: R20245

PQL

RunNo: 20245

Prep Date:

Analysis Date: 7/29/2014

SeqNo: 588388

Units: pH units

Analyte

Result

SPK value SPK Ref Val %REC LowLimit

HighLimit

%RPD **RPDLimit** Qual Η

рΗ

7.11 1.68

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- Analyte detected below quantitation limits J
- RSD is greater than RSDlimit 0
- RPD outside accepted recovery limits R
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Ρ Sample pH greater than 2.
- RLReporting Detection Limit

Page 18 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#: 1407D12

15-Aug-14

Client:	Western Refining Southwest, Inc.			
Project:	Injection Well 7-28-14 3rd QTR			
Sample ID mb-1	SampType: MBLK	TestCode: SM2320B: Alk	calinity	
Client ID: PBW	Batch ID: R20245	RunNo: 20245		
Prep Date:	Analysis Date: 7/29/2014	SeqNo: 588355	Units: mg/L CaCO3	
Analyte		SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
otal Alkalinity (as Cat	OO3) ND 20			
Sample ID lcs-1	SampType: LCS	TestCode: SM2320B: Ail	calinity	
Client ID: LCSV	N Batch ID: R20245	RunNo: 20245		
Prep Date:	Analysis Date: 7/29/2014	SeqNo: 588356	Units: mg/L CaCO3	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
otal Alkalinity (as Ca	003) 80 20 80.00	0 100 90	110	
Sample ID mb-2	SampType: MBLK	TestCode: SM2320B; All	calinity	
Cilent ID: PBW	Batch ID: R20245	RunNo: 20245		
Prep Date:	Anal y sis Date: 7/29/2014	SeqNo: 588376	Units: mg/L CaCO3	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
otal Alkalinity (as Car	CO3) ND 20			
Sample ID Ics-2	SampType: LCS	TestCode: SM2320B: All	calinity	
Client ID: LCS	N Batch ID: R20245	RunNo: 20245		
Prep Date:	Analysis Date: 7/29/2014	SeqNo: 588377	Units: mg/L CaCO3	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
otal Alkalinity (as Ca	CO3) 80 20 80.00	0 100 90	110	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range Е
- Analyte detected below quantitation limits J
- 0 RSD is greater than RSDlimit
- RPD outside accepted recovery limits R
- S Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- Not Detected at the Reporting Limit ND

- Sample pH greater than 2.
- Reporting Detection Limit

Page 19 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#:

1407D12

15-Aug-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-28-14 3rd QTR

Sample ID MB-14475

SampType: MBLK

TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: **PBW**

Batch ID: 14475

RunNo: 20257 SeqNo: 588640

Prep Date: 7/29/2014 Analysis Date: 7/30/2014

Units: mg/L

Analyte

Result **PQL** SPK value SPK Ref Val %REC LowLimit

HighLimit

%RPD

RPDLimit

Qual

Total Dissolved Solids

20.0

SampType: LCS

Analysis Date: 7/30/2014

RunNo: 20257

%REC

TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Prep Date: 7/29/2014

Sample ID LCS-14475

Batch ID: 14475

SeqNo: 588641

Units: mg/L

%RPD

Analyte

Result 1020

1000

SPK value SPK Ref Val

HighLimit

20.0

80

RPDLimit

Total Dissolved Solids

0

102

120

Qual

Qualifiers:

Value exceeds Maximum Contaminant Level.

Value above quantitation range Ε

Analyte detected below quantitation limits

0 RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

P Sample pH greater than 2. Reporting Detection Limit

Page 20 of 20

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: Western Refining Southw Work Order Number:	1407D12		ReptNo: 1
Received by/date: A 01/29/19			
Logged By: Anne Thorne 7/29/2014 7:55:00 AM		an Il-	
Completed By: Anne Thorne 7/29/2014		anne Stran	
Reviewed By: MA 07/29/14		CARL STA	
Chain of Custody			
Custody seals intact on sample bottles?	Yes 🗌	No 🗆	Not Present ✓
2. Is Chain of Custody complete?	Yes 🗹	No 🗌	Not Present
3. How was the sample delivered?	Courier		
<u>Log In</u>			
4. Was an attempt made to cool the samples?	Yes 🗹	No 🗆	NA 🗔
5. Were all samples received at a temperature of >0° C to 6.0°C	Yes 🗹	No 🗆	na 🗆
6. Sample(s) in proper container(s)?	Yes 🗹	No 🗆	•
7. Sufficient sample volume for indicated tast(s)?	Yes 🗹	No 🗆	
8. Are samples (except VOA and ONG) properly preserved?	Yes 🔽	No 🗆	
9. Was preservative added to bottles?	Yes 🗌	No 🗹	NA 🗆
10.VOA vials have zero headspace?	Yes ✓	No 🗆	No VOA Vials
11. Were any sample containers received broken?	Yes	No 🗹	
12. Does paperwork match bottle labels?	Yes 🗸	No 🗀	# of preserved bottles checked for pH:
(Note discrepancies on chain of custody)	-		(<2/or >12 vhiess noted) Adjusted?
13. Are matrices correctly identified on Chain of Custody?	Yes 🗹	No □	, Adjusted:
14. Is it clear what analyses were requested?	Yes ⊻ Yes ☑	No □ No □	Checked by:
15. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes 🗹	NO 🗀	
Special Handling (if applicable)			
16. Was client notified of all discrepancies with this order?	Yes 🗌	No 🗆	NA 🗹
Person Notified: Date		\$100 marking 2 mb mm m	
By Whom: Via:	eMail	Phone 🔲 Fax	☐ In Person
Regarding:	dana la canolist de la Colon de Procisione	د دو	The second security of the second district the second
Client Instructions:		alanan a sanahan da sanah sa al	The second section of the second
17. Additional remarks:			
18. Cooler information	ود فرم مواهد	17 h., . 770, 7 h.:	
Cooler No Terrip C Condition Seal Intact Seal No	Seal Date	Signed By	
1 1.0 Good Yes			

		-of-Custody Record Turn-Around Time:								н	ΔI	LL I	=N'	VTI	RO	NN	1E	NT	'Al	_
Clients \	Noste	לאמי	ReGNING	Standard	□ Rush_		-					ALY								
	מוכביוו			Standard Project Name		7-28-14						.halle								
Mailing /	Address	165	CR 4990	Wieel	ionw	7-28-14 ell 3 doTR		490)1 Ha	awkin	s N	E - <i>F</i>	Nbuq	uerqu	ıe, Ni	M 87	109			
Rlot	m Cit	2/2/	VM 874/3 2-4/35	Project #:				Te	1. 50	5-345	5-39	75	Fax	505	-345	4107	7			
Phone #	52	5-63	2-41.35									An	alysi	s Re	quest					
email or	Fax#:		,	Project Manag	ger:			줃	2		3	- -	$\Psi_{\hat{c}}$	}			Ţ	·	_	
QA/QC F	<u> </u>						(8021)	+ TPH (Gas only)	DRO / MRO)	105	- 1	(S)	4 c	ğ			Correst VITT		0	,
Stand	dard		□ Level 4 (Full Validation)				3's (의	윉		5	. हि	ؿ ؙؙؙؙٛ۩ڰۣ	22 2			, o		쑱	
Accredit				Sampler: B		The state of the s	TMB's	自	~			270	3 } ≥) i						S (Y or N)
□ NEL/		□ Othe	f		Transport Company and Company of the		+		(GRO			8 5		se s		δ	मे	1	Ø	Ø ≥
□ EDD	(Type)_	· ·· · · · · · · · · · · · · · · · · ·		semate nem	ierature—		TB					ě];	5 G		₹	[-		+	S	3 8
				Container	Preservative		2 +	≥	9			88	8 4	Se S	چ	(Ser	18	F.	<u>स्रो</u>	연혈
Date	Time	Matrix	Sample Request ID	Type and #	Туре		BTEX + MTBE	BTEX + MTBE	TPH 8015B			PAH's (8310 or 8270 SIMS)	RCRA 8 Metals Ca., No. No. RO., SO.)	8081 Pesticides / 8082 PCB's	8260B (VOA)	8270 (Semi-VOA)	Ē	ReacTivity	W W	A B B
7-28-14	9:30	#20	Injection Well	3-VOA	Hel	-701									X				\Box	
1	,	t		1-liter	amber	001						`				X				
·				1-500ml		701	İ								_		X	\square		
				1-500m		70				X									X	
				1-250ml	H2504	201					X									
				1-500ml	I .	7EU							X			<u> </u>	$oxed{oxed}$			
			\	1-500 ml	NOH	7001									<u> </u>	<u> </u>		X	\dashv	
				1-500m]		701		<u> </u>								$ldsymbol{f eta}$				X_
								<u> </u>					\perp		\downarrow	<u> </u>	ļ!			
*****													_		_	<u> </u>	ļ			
												<u> </u>	_	_			<u> </u>			-
				Received by:												<u></u>	<u>L</u>			
Date:	Time:	Relinquish	ned by:	Date Time	Re	mark	S:													
- <i>28-14</i> Date:	1452	Received by: Received by: Date																		
pf :	Time:	of 29/14																-		•
128/14	11121	Y JW	omitted to Hall Environmental may be sub		arranditad laboratori	es. This serves as notice of the	his nos	ibility	Anv s	ub-cont	tracte	ed data v	vi l be c	learly n	otated (on the	analyti	cal rep	ort.	
1	if necessary	(samples sul	omitted to mail environmental may be suf	Journacied to other a	IMICATED ISDOIGNIE	es. The series of helicities of h	pool		, -						•		-	•		

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

October 23, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4166 FAX (505) 632-3911

RE: Injection Well 4th QTR 10-1-14 OrderNo.: 1410102

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received I sample(s) on 10/2/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

Only

4901 Hawkins NE

Albuquerque, NM 87109

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

Case Narrative

WO#:

1410102

Date:

10/23/2014

CLIENT: Project:

Western Refining Southwest, Inc. Injection Well 4th QTR 10-1-14

Analytical Notes Regarding EPA Method 8260:

The injection well sample was diluted due to a foamy matrix.

Lab Order 1410102

Date Reported: 10/23/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: Injection Well 4th QTR 10-1-14

Lab ID: 1410102-001

Client Sample ID: Injection Well

Collection Date: 10/1/2014 10:00:00 AM

Received Date: 10/2/2014 6:50:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst:	LGP
Chloride	220	10	mg/L	20	10/2/2014 4:07:13 PM	R21640
Sulfate	26	2.5	mg/L	5	10/2/2014 3:54:49 PM	R21640
EPA METHOD 7470: MERCURY					Analyst:	MMD
Mercury	ND	0.00020	mg/L	1	10/8/2014 3:02:49 PM	15770
EPA 6010B: TOTAL RECOVERABLE	METALS				Analyst:	ELS
Arsenic	ND	0.020	mg/L	1	10/10/2014 9:26:53 AM	15825
Barium	0,20	0.020	mg/L	1	10/10/2014 9:26:53 AM	15825
Cadmium	ND	0.0020	mg/L	1	10/10/2014 9:26:53 AM	15825
Calcium	110	5.0	mg/L	5	10/10/2014 9:28:28 AM	15825
Chromium	ND	0.0060	mg/L	1	10/10/2014 9:26:53 AM	
Lead	ND	0.0050	mg/L	1	10/10/2014 9:26:53 AM	
	23	1.0	mg/L	1	10/10/2014 9:26:53 AM	15825
Magnesium Potassium	8.2	1.0	mg/L	1	10/10/2014 9:26:53 AM	
	ND	0.050	mg/L	1	10/10/2014 9:26:53 AM	
Selenium	ND	0.0050	mg/L	1	10/10/2014 9:26:53 AM	
Silver	220	5.0	mg/L	5	10/10/2014 9:28:28 AM	
Sodium		5.0	mg/L	J		
EPA METHOD 8270C: SEMIVOLATIL	LES				Analyst	
Acenaphthene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Acenaphthylene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Aniline	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Anthracene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Azobenzene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Benz(a)anthracene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Benzo(a)pyrene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Benzo(b)fluoranthene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Benzo(g,h,i)perylene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Benzo(k)fluoranthene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Benzoic acid	ND	40	μg/L	1	10/9/2014 9:16:21 PM	15747
Benzyi alcohol	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Bis(2-chloroethoxy)methane	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Bis(2-chloroethyl)ether	ND	10		1	10/9/2014 9:16:21 PM	15747
Bis(2-chloroisopropyl)ether	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Bis(2-ethylhexyl)phthalate	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
4-Bromophenyl phenyl ether	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Butyl benzyl phthalate	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Carbazole	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
4-Chloro-3-methylphenol	ND	10	• -	1	10/9/2014 9:16:21 PM	15747
4-Chloroaniline	ND	10	, •	1	10/9/2014 9:16:21 PM	15747

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 18

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order 1410102

Date Reported: 10/23/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Injection Well

 Project:
 Injection Well 4th QTR 10-1-14
 Collection Date: 10/1/2014 10:00:00 AM

 Lab ID:
 1410102-001
 Matrix: AQUEOUS
 Received Date: 10/2/2014 6:50:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLA	TILES				Analyst	: DAM
2-Chioronaphthalene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
2-Chlorophenol	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
4-Chlorophenyl phenyl ether	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Chrysene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Di-n-butyi phthalate	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Di-n-octyl phthalate	ND	20	μg/L	1	10/9/2014 9:16:21 PM	15747
Dibenz(a,h)anthracene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Dibenzofuran	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
1,2-Dichlorobenzene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
1,3-Dichlorobenzene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
1,4-Dichlorobenzene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
3,3'-Dichlorobenzidine	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Diethyl phthalate	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Dimethyì phthalate	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
2,4-Dichlorophenol	ND	20	μg/L	1	10/9/2014 9:16:21 PM	15747
2,4-Dimethylphenol	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
4,6-Dinitro-2-methylphenol	ND	20	μg/L	1	10/9/2014 9:16:21 PM	15747
2,4-Dinitrophenol	ND	20	μg/L	1	10/9/2014 9:16:21 PM	15747
2,4-Dinitrotoluene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
2,6-Dinitrotoluene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Fluoranthene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Fluorene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Hexachlorobenzene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Hexachlorobutadiene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Hexachlorocyclopentadiene	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747
Hexachloroethane	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747
Indeno(1,2,3-cd)pyrene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Isophorone	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
1-Methylnaphthalene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	157 4 7
2-Methylnaphthalene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
2-Methylphenol	ND	20	μg/L	1	10/9/2014 9:16:21 PM	15747
3+4-Methylphenol	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
N-Nitrosodi-n-propylamine	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
N-Nitrosodimethylamine	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
N-Nitrosodiphenylamine	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Naphthalene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
2-Nitroaniline	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
3-Nitroaniline	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
4-Nitroaniline	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 3 of 18

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order 1410102

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/23/2014

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Injection Well

 Project:
 Injection Well 4th QTR 10-1-14
 Collection Date: 10/1/2014 10:00:00 AM

 Lab ID:
 1410102-001
 Matrix: AQUEOUS
 Received Date: 10/2/2014 6:50:00 AM

Analyses	Result	RL (Qual Units	DF	Date Analyzed	Batch	
EPA METHOD 8270C: SEMIVOLATILE	S				Analyst: DAN		
Nitrobenzene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747	
2-Nitrophenol	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747	
4-Nitrophenol	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747	
Pentachlorophenol	ND	20	μg/L	1	10/9/2014 9:16:21 PM	15747	
Phenanthrene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747	
Phenol	ND	10	μg/L	1	10/9/2014 9:16;21 PM	15747	
Pyrene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747	
Pyridine	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747	
1,2,4-Trichlorobenzene	ND	10	μg/L	1	10/9/2014 9:16;21 PM	15747	
2,4,5-Trichlorophenol	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747	
2,4,6-Trichlorophenol	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747	
Surr: 2-Fluorophenol	59.4	12.1-85.8	%REC	1	10/9/2014 9:16:21 PM	15747	
Surr: Phenol-d5	52.8	17.7-65.8	%REC	1	10/9/2014 9:16:21 PM	15747	
Surr: 2,4,6-Tribromophenol	83.8	26-138	%REC	1	10/9/2014 9:16:21 PM	15747	
Surr: Nitrobenzene-d5	76.3	47.5-119	%REC	1	10/9/2014 9:16:21 PM	15747	
Surr: 2-Fluorobiphenyl	68.0	48.1-106	%REC	1	10/9/2014 9:16:21 PM	15747	
Surr: 4-Terphenyl-d14	69.3	44-113	%REC	1	10/9/2014 9:16;21 PM	15747	
EPA METHOD 8260B: VOLATILES					Analyst	RAA	
Benzene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R2165	
Toluene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R2165	
Ethylbenzene	ND	5.0	μ g /L	5	10/3/2014 10:52:10 PM	R2165	
Methyl tert-butyl ether (MTBE)	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R2165	
1,2,4-Trimethylbenzene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R2165	
1,3,5-Trimethylbenzene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R2165	
1,2-Dichloroethane (EDC)	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R2165	
1,2-Dibromoethane (EDB)	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R2165	
Naphthalene	ND	10	μg/L	5	10/3/2014 10:52:10 PM	R2165	
1-Methylnaphthalene	ND	20	μg/L	5	10/3/2014 10:52:10 PM	R2165	
2-Methylnaphthalene	ND	20	μg/L	5	10/3/2014 10:52:10 PM	R2165	
Acetone	120	50	μg/L	5	10/3/2014 10:52:10 PM	R2165	
Bromobenzene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R2165	
Bromodichloromethane	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R2165	
Bromoform	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R2165	
Bromomethane	ND	15	μg/L	5	10/3/2014 10:52:10 PM	R2165	
2-Butanone	ND	50	μg/L	5	10/3/2014 10:52:10 PM	R2165	
Carbon disulfide	ND	50	μ g /L	5	10/3/2014 10:52:10 PM	R2165	
Carbon Tetrachloride	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R2165	
Chlorobenzene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R2165	
Chloroethane	ND	10	μg/L	5	10/3/2014 10:52:10 PM	R2165	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 4 of 18

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order 1410102

Date Reported: 10/23/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: Injection Well 4th QTR 10-1-14

Lab ID: 1410102-001

Client Sample ID: Injection Well

Collection Date: 10/1/2014 10:00:00 AM

Received Date: 10/2/2014 6:50:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	RAA
Chloroform	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653
Chloromethane	ND	15	μg/L	5	10/3/2014 10:52:10 PM	R21653
2-Chlorotoluene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653
4-Chlorotoluene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653
cis-1,2-DCE	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653
cis-1,3-Dichloropropene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653
1,2-Dibromo-3-chloropropane	ND	10	μg/L	5	10/3/2014 10:52:10 PM	R21653
Dibromochloromethane	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653
Dibromomethane	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653
1,2-Dichlorobenzene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653
1,3-Dichlorobenzene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653
1,4-Dichlorobenzene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653
Dichlorodifluoromethane	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R2165
1,1-Dichloroethane	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R2165
1,1-Dichloroethene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R2165
1,2-Dichloropropane	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R2165
1,3-Dichloropropane	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R2165
2,2-Dichloropropane	ND	10	μg/L	5	10/3/2014 10:52:10 PM	R2165
1,1-Dichloropropene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R2165
Hexachlorobutadiene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R2165
2-Hexanone	ND	50	μg/L	5	10/3/2014 10:52:10 PM	R2165
Isopropylbenzene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R2165
4-Isopropyltoluene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R2165
4-Methyl-2-pentanone	ND	50	μg/L	5	10/3/2014 10:52:10 PM	R2165
Methylene Chloride	ND	15	μg/L	5	10/3/2014 10:52:10 PM	R2165
n-Butylbenzene	ND	15	μg/L	5	10/3/2014 10:52:10 PM	R2165
n-Propylbenzene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R2165
sec-Butylbenzene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R2165
Styrene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R2165
tert-Butylbenzene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R2165
1,1,1,2-Tetrachloroethane	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R2165
1,1,2,2-Tetrachloroethane	ND	10	μg/L	5	10/3/2014 10:52:10 PM	R2165
Tetrachloroethene (PCE)	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R2165
trans-1,2-DCE	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R2165
trans-1,3-Dichloropropene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R2165
1,2,3-Trichlorobenzene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R2165
1,2,4-Trichlorobenzene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R2165
1,1,1-Trichloroethane	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R2165
1,1,2-Trichloroethane	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R2165

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 5 of 18

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order 1410102

Date Reported: 10/23/2014

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: Injection Well

CLIENT: Western Refining Southwest, Inc. Injection Well 4th QTR 10-1-14 Collection Date: 10/1/2014 10:00:00 AM Project:

Lab ID: 1410102-001 Matrix: AQUEOUS Received Date: 10/2/2014 6:50:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES						Analys	t: RAA
Trichloroethene (TCE)	ND	5.0		μg/L	5	10/3/2014 10:52:10 PM	1 R21653
Trichlorofluoromethane	ND	5.0		μg/L	5	10/3/2014 10:52:10 PM	1 R21653
1,2,3-Trichloropropane	ND	10		μg/L	5	10/3/2014 10:52:10 PM	1 R21653
Vinyl chloride	ND	5.0		μg/L	5	10/3/2014 10:52:10 PM	1 R21653
Xylenes, Total	ND	7.5		μg/L	5	10/3/2014 10:52:10 PM	1 R21653
Surr: 1,2-Dichloroethane-d4	82.3	70-130		%REC	5	10/3/2014 10:52:10 PM	1 R21653
Surr: 4-Bromofluorobenzene	84.8	70-130		%REC	5	10/3/2014 10:52:10 PM	R21653
Surr: Dibromofluoromethane	79.9	70-130		%REC	5	10/3/2014 10:52:10 PM	R21653
Surr: Toluene-d8	84.8	70-130		%REC	5	10/3/2014 10:52:10 PM	R21653
SM2510B: SPECIFIC CONDUCTANCE						Analys	t: JRR
Conductivity	1100	0.010		µmhos/cm	1	10/6/2014 5:51:56 PM	R21715
SM4500-H+B: PH						Analys	t: JRR
рН	7.08	1.68	Н	pH units	1	10/6/2014 5:51:56 PM	R21715
SM2320B: ALKALINITY						Analys	t: JRR
Bicarbonate (As CaCO3)	150	20		mg/L CaCO3	1	10/6/2014 5:51:56 PM	R21715
Carbonate (As CaCO3)	ND	2.0		mg/L CaCO3	1	10/6/2014 5:51:56 PM	R21715
Total Alkalinity (as CaCO3)	150	20		mg/L CaCO3	1	10/6/2014 5:51:56 PM	R21715
SM2540C MOD: TOTAL DISSOLVED SOI	LIDS					Analys	t: KS
Total Dissolved Solids	742	40.0	*	mg/L	1	10/8/2014 4:42:00 PM	15759

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- RSD is greater than RSDlimit O
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit

Page 6 of 18

- Sample pH greater than 2. Ρ
- RL Reporting Detection Limit

Anatek Labs, Inc.

1282 Alturas Drive · Moscow, iD 83843 · (208) 883-2839 · Fax (208) 882-9246 · email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

141003043

Address:

4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109

Project Name:

1410102

Attn:

ANDY FREEMAN

Analytical Results Report

Sample Number

141003043-001

Sampling Date 10/1/2014

Date/Time Received 10/3/2014

Client Sample ID

1410102-001E / INJECTION WELL

Sampling Time 10:00 AM

Matrix

Sample Location

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide (reactive)	ND	mg/L	1	10/15/2014	CRW	SW846 CH7	
Flashpoint	>200	°F		10/15/2014	KFG	EPA 1010	
pH	6.82	ph Units		10/6/2014	KJS	SM 4500pH-B	
Reactive suifide	3.01	mg/L	1	10/15/2014	HSW	SW846 CH7	

Authorized Signature

MCL

EPA's Maximum Contaminant Level

ND

Not Detected

PQL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory.

The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address: HALL ENVIRONMENTAL ANALYSIS LAB

4901 HAWKINS NE SUITE D

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Batch #:

141003043

Project Name:

1410102

Analytical Results Report **Quality Control Data**

Lab Control Sa	mple					_					
Parameter		LCS Result	Units	LCS	Spike	%Rec	AR	%Rec	Prep	Date	Analysis Date
Reactive suffide		0.180	mg/L	(0.2	90.0	70	-130	10/15	/2014	10/15/2014
Cyanide (reactive)		0.519	mg/L		0.5	103.8	80	120	10/15	/2014	10/15/2014
Matrix Splke					,						
Sample Number	Parameter		Sample Result	MS Result	Մո	its	MS Spike	%Rec	AR %Rec	Prep Date	Analysis Dat
141003043-001	Reactive sulfide		3.01	3.77	mg		0.767	99.1	70-130	10/15/2014	•
141003043-001	Cyanide (reactive)		ND	2.41	mģ		2,5	96.4	80-120	10/15/2014	10/15/2014
Matrix Spike D	uplicate	•		·.		<u></u>		<u> </u>			•
Parameter		MSD Result	Units	MSD Spike	%	Rec	%RPD	AR %RPI		p Date	Analysis Date
Cyanide (reactive)		2.41	mg/L	2.5		6.4	0.0	0-25		15/2014	10/16/2014
Method Blank	······································			***************************************					•		<u> </u>
Parameter			Re	sult	U	Inits		PQL	P	rep Date	Analysis Date
Cyanide (reactive))		N	D	F	ng/L		1	10/	15/2014	10/15/2014
Reactive suifide			N	מ	г	ng/L		1	10/	15/2014	10/15/2014

Acceptable Range

ND PQL Not Detected

RPD

Practical Quantitation Limit Relative Percentage Difference

Comments:

Hall Environmental Analysis Laboratory, Inc.

WO#:

1410102

23-Oct-14

Client: Western Refining Southwest, Inc. Project:

Injection Well 4th QTR 10-1-14

Sample ID MB SampType: MBLK Client ID: PBW

RunNo: 21640 Batch iD: R21640

SeqNo: 634799 Units: mg/L Analysis Date: 10/2/2014 Prep Date:

%RPD **RPDLimit** Qual SPK value SPK Ref Val %REC LowLimit Analyte Result HighLimit

TestCode: EPA Method 300.0: Anions

90

110

Chloride ND 0.50 0.50 Sulfate ND

TestCode: EPA Method 300.0: Anions Sample ID LCS SampType: LCS RunNo: 21640 Client ID: LCSW Batch ID: R21640 Prep Date: Analysis Date: 10/2/2014 SeqNo: 634800 Units: mg/L %RPD **RPDLimit** Qual HighLimit Analyte SPK value SPK Ref Val %REC LowLimit 5.000 94.0 90 110 4.7 0.50

Chloride 0 96.8 0.50 10.00 Sulfate 9.7

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range Е
- Analyte detected below quantitation limits
- RSD is greater than RSDlimit 0
- RPD outside accepted recovery limits R
- Spike Recovery outside accepted recovery limits S
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- Reporting Detection Limit RL

Page 7 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#:

1410102

23-Oct-14

Client: Project:

Sample ID 5ml-rb

Western Refining Southwest, Inc.

Injection Well 4th QTR 10-1-14

SampType: MBLK Batch ID: R21653 TestCode: EPA Method 8260B: VOLATILES

,	•	- 1								
Client ID: PBW	Batch	i ID: R2	1653	F	RunNo: 2	1653				
Prep Date:	Analysis D	ate: 10	0/3/2014	\$	SeqNo: 6	36225	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloraform	ND	1,0								
Chloromethane	ND	3,0								
2-Chlorotoluene	ND	1.0								
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1,0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2,0								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range Е
- Analyte detected below quantitation limits
- RSD is greater than RSDlimit 0
- RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits S
- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- Sample pH greater than 2.
- Reporting Detection Limit RL

Page 8 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#:

1410102 23-Oct-14

Client: Western Refining Southwest, Inc.

Project: Injection Well 4th QTR 10-1-14

Sample ID 5ml-rb	SampT	уре: МВ	LK	Test	Code: El	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	1D: R2	1653	R	lunNo: 2	1653				
Prep Date:	Analysis D	ate: 10	/3/2014	S	eqNo: 6	36225	Units: μg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	0.8		10.00		80.4	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		101	70	130			
Surr: Dibromofluoromethane	8.0		10.00		80.5	70	130			
Surr: Toluene-d8	8.9		10.00		89.4	70	130			

Sample ID 100ng Ics	SampType: LCS				tCode: El	PA Method	ATILES		.,	
Client ID: LCSW	Batch	ID: R2	1653	F	RunNo: 2	1653				
Prep Date:	Analysis D	ate: 10	/3/2014	8	SeqNo: 6	36227	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	96.4	70	130			
Toluene	20	1.0	20.00	0	98.8	80	120			
Chlorobenzene	20	1.0	20.00	0	97.9	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 9 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#: 1410102

23-Oct-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 4th QTR 10-1-14

Sample ID 100ng Ics	SampType: LCS TestCode: EPA Method 8						8260B: VOL	ATILES		
Client ID: LCSW	•	ı ID: R2		F	RunNo: 2					
Prep Date:	Analysis D	ate: 10	0/3/2014	5	SeqNo: 6	36227	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloroethene	21	1.0	20.00	0	105	82.6	131			
Trichloroethene (TCE)	19	1.0	20.00	0	96.9	70	130			
Surr: 1,2-Dichloroethane-d4	8.5		10.00		84.9	70	130			
Surr: 4-Bromofluorobenzene	9.8		10.D0		97.7	70	130			
Surr: Dibromofluoromethane	8.0		10.D0		79.7	70	130			
Surr: Toluene-d8	9.1		10.00		91.1	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 10 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#:

1410102

23-Oct-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 4th QTR 10-1-14

Sample ID mb-15747	SampT	ype: ME	3LK	Tes	tCode: El	PA Method	8270C; Semi	volatiles		
Client ID: PBW	Batch	ID: 15	747	F	RunNo: 2	1803				
Prep Date: 10/7/2014	Analysis D	ate: 10	0/9/2014	S	SeqNo: 6	40784	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	ND	10								
Acenaphthylene	ND	10								
Aniline	ND	10								
Anthracene	ND	10								
Azobenzene	ND	10								
Benz(a)anlhracene	ND	10								
Benzo(a)pyrene	ND	10								
Benzo(b)fluoranthene	ND	10								
Benzo(g,h,i)perylene	ND	10								
Benzo(k)fluoranthene	ND	10								
Benzoic acid	ND	40								
Benzyl alcohol	ND	10								
Bis(2-chloroethoxy)methane	ND	10								
Bis(2-chloroethyl)ether	ИD	10								
Bis(2-chloroisopropyl)ether	ND	10								
Bis(2-ethylhexyl)phthalate	ND	10								
4-Bromophenyl phenyl ether	ND	10								
Butyl benzyl phthalate	ND	10								
Carbazole	ND	10								
4-Chloro-3-methylphenol	ND	10								
4-Chloroaniline	ND	10								
2-Chloronaphthalene	ND	10								
2-Chlorophenol	ND	10								
4-Chlorophenyl phenyl ether	ND	10								
Chrysene	ND	10								
Di-n-butyl phthalate	ND	10								
Di-n-octyl phthalate	ND	20								
Dibenz(a,h)anthracene	ND	10								
Dibenzofuran	ND	10								
1,2-Dichlorobenzene	ND	10								
1,3-Dichlorobenzene	ND	10								
1,4-Dichlorobenzene	ND	10								
3,3´-Dichlorobenzidine	ND	10								
Diethyl phthalate	ND	10								
Dimethyl phthalate	ND	10								
2,4-Dichlorophenol	ND	20								
2,4-Dimethylphenol	ND	10								
4,6-Dinitro-2-methylphenol	ND	20								
2,4-Dinitrophenol	ND	20								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 11 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#:

1410102

23-Oct-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 4th QTR 10-1-14

Sample ID mb-15747	SampT	ype: MBLK	TestCode: EPA Method 8270C: Semivolatiles							
Client ID: PBW	Batch	1D: 15747	R	unNo: 218 0	03				ļ	
Prep Date: 10/7/2014	Analysis D	ate: 10/9/2014	s	eqNo: 640	784	Units: µg/L			<u> </u>	
Analyte	Result		SPK Ref Val	%REC L	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
2,4-Dinitrotoluene	ND	10				···				
2,6-Dinitrotoluene	ND	10								
Fluoranthene	ND	10								
Fluorene	ND	10								
Hexachlorobenzene	ND	10								
Hexachlorobutadiene	ND	10								
Hexachlorocyclopentadiene	ND	10								
Hexachloroethane	ND	10								
Indeno(1,2,3-cd)pyrene	ND	10								
Isophorone	ND	10								
1-Methylnaphthalene	ND	10								
2-Methylnaphthalene	ND	10								
2-Methylphenol	ND	20								
3+4-Methylphenol	ND	10								
N-Nitrosodi-n-propylamine	ND	10								
N-Nitrosodimethylamine	ND	10								
N-Nitrosodiphenylamine	ND	10								
Naphthalene	ND	10								
2-Nitroaniline	ND	10								
3-Nitroaniline	ND	10								
4-Nitroaniline	ND	10								
Nilrobenzene	ND	10								
2-Nitrophenol	ND	10								
4-Nitrophenol	ND	10								
Pentachlorophenol	ND	20								
Phenanthrene	ND	10								
Phenol	ND	10								
Pyrene	ND	10								
Pyridine	ND	10								
1,2,4-Trichlorobenzene	ND	10								
2,4,5-Trichlorophenol	ND	10								
2,4,6-Trichlorophenol	ND	10								
Surr: 2-Fluorophenol	140	200.0		68.8	12.1	85.8				
Surr: Phenol-d5	130	200.0		64.5	17.7	65.8				
Surr: 2,4,6-Tribromophenol	130	200.0		66.6	26	138				
Surr: Nitrobenzene-d5	79	100.0		79.4	47.5	119				
Surr: 2-Fluorobiphenyl	75	100.0		75.3	48.1	106				
Surr: 4-Terphenyl-d14	74	100.0	1	74.3	44	113				

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 12 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#:

1410102 23-Oct-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 4th QTR 10-1-14

Sample ID Ics-15747	SampT	ype: LC	s	8270C: Semi	volatiles					
Client ID: LCSW	Batch	ı ID: 15 '	747	F	RunNo: 2	1803				
Prep Date: 10/7/2014	Analysis D	ate: 10)/9/2014	S	SeqNo: 6	40785	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	77	10	100.0	0	76.7	4 7,9	114			
4-Chloro-3-methylphenol	180	10	200.0	0	88.1	51.7	122			
2-Chlorophenol	170	10	200.0	0	83.0	40.7	113			
1,4-Dichlorobenzene	70	10	100.0	0	70.4	39.6	99.9			
2,4-Dinitrotoluene	69	10	100.0	0	68.9	40.8	113			
N-Nitrosodi-n-propylamine	81	10	100.0	0	81.2	51.2	111			
4-Nitrophenol	130	10	200.0	0	64.1	15.7	86.9			
Pentachlorophenol	120	20	200.0	0	59.2	21.6	104			
Phenol	140	10	200.0	0	71.0	28.6	71.7			
Pyrene	73	10	100.0	0	73.1	54.2	128			
1,2,4-Trichlorobenzene	71	10	100.0	0	7 1.2	40.9	101			
Surr: 2-Fluorophenol	150		200.0		73.2	12.1	85.8			
Surr: Phenol-d5	140		200.0		71.8	17.7	65.8			S
Surr: 2,4,6-Tribromophenol	140		200.0		70.9	26	138			
Surr: Nitrobenzene-d5	83		100.0		83.4	47.5	119			
Surr: 2-Fluorobiphenyl	0.46		100.0		0.460	48.1	106			S
Surr: 4-Terphenyl-d14	75		100.0		75.1	44	113			

Sample ID Icsd-15747	SampType: LCSD TestCode: EPA Method 8270C: Semivolatiles										
Client ID: LCSS02	Batch	ı ID: 15	747	F	tunNo: 2	1803					
Prep Date: 10/7/2014	Analysis D	ate: 10	0/9/2014	S	SeqNo: 6	40786	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Acenaphthene	79	10	100.0	0	78.8	47.9	114	2.60	27.2		
4-Chloro-3-methylphenol	190	10	200.0	0	94.7	51.7	122	7.26	25.9		
2-Chlorophenol	160	10	200.0	0	80.2	40.7	113	3.52	22.5		
1,4-Dichlorobenzene	74	10	100.0	0	73.7	39.6	99,9	4.50	24.6		
2,4-Dinitrotoluene	73	10	100.0	0	73.1	40.8	113	6.00	25.3		
N-Nitrosodi-n-propylamine	79	10	100.0	0	79.0	51.2	111	2.82	23.6		
4-Nitrophenol	140	10	200.0	0	69.4	15.7	86.9	7.95	34.7		
Pentachlorophenol	120	20	200.0	0	61.6	21.6	104	4.01	32.8		
Phenoi	140	10	200.0	0	68.3	28.6	71.7	3,88	25.5		
Pyrene	79	10	100.0	0	78.8	54.2	128	7.56	31.4		
1,2,4-Trichlorobenzene	76	10	100.0	0	75.7	40.9	101	6.10	25.9		
Surr: 2-Fluorophenol	150		200.0		73.3	12.1	85.8	0	0		
Surr: Phenol-d5	140		200.0		72.3	17.7	65.8	0	0	S	
Surr: 2,4,6-Tribromophenol	140		200.0		70.9	26	138	0	0		
Surr: Nitrobenzene-d5	88		100.0		88.0	47.5	119	0	0		
Surr: 2-Fluorobiphenyl	83		100.0		83.2	48.1	106	0	0		

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Value above quantitation range Ε
- Analyte detected below quantitation limits
- RSD is greater than RSDImit 0
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit
- - Sample pH greater than 2.
- Reporting Detection Limit RL

Page 13 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#:

1410102

23-Oct-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 4th QTR 10-1-14

Sample ID Icsd-15747

SampType: LCSD

TestCode: EPA Method 8270C: Semivolatiles

Client ID: LCSS02

Batch ID: 15747

RunNo: 21803

Prep Date: 10/7/2014

Analysis Date: 10/9/2014

SeqNo: 640786

Analyte

Result

SPK value SPK Ref Val %REC

LowLimit

Units: µg/L

HighLimit

%RPD **RPDLimit** Qual

113

Surr: 4-Terphenyl-d14

81

100.0

80.9

Qualifiers: Value exceeds Maximum Contaminant Level.

Value above quantitation range E

Analyte detected below quantitation limits J

RSD is greater than RSDlimit 0

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits S

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Η

Not Detected at the Reporting Limit ND

P Sample pH greater than 2.

Reporting Detection Limit RL

Page 14 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#:

1410102 23-Oct-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 4th QTR 10-1-14

Sample ID MB-15770

SampType: MBLK

TestCode: EPA Method 7470: Mercury

Client ID:

PBW

Batch ID: 15770

PQL

RunNo: 21753

Prep Date: 10/7/2014

Analysis Date: 10/8/2014

Result

SeqNo: 639033

SPK value SPK Ref Val %REC LowLimit

Units: mg/L HighLimit

RPDLimit

Qual

Analyte Mercury

0.00020

Sample ID LCS-15770

SampType: LCS

TestCode: EPA Method 7470: Mercury

Client ID: LCSW

Batch ID: 15770

RunNo: 21753

Prep Date: 10/7/2014

Analysis Date: 10/8/2014

SeqNo: 639034

Units: mg/L

%RPD

Analyte

SPK value SPK Ref Val **PQL**

%REC LowLimit

HighLimit

%RPD **RPDLimit** Qual

0.005000

Mercury

0.0051 0.00020

103

120

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- RPD outside accepted recovery limits R
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reporting Detection Limit

- Sample pH greater than 2.
- Page 15 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#:

1410102

23-Oct-14

Client:

Western Refining Southwest, Inc.

Project: Injection Well 4th QTR 10-1-14

Sample ID MB-15825 SampType: MBLK

 Client ID:
 PBW
 Batch ID:
 15825
 RunNo:
 21801

 Prep Date:
 10/9/2014
 Analysis Date:
 10/10/2014
 SeqNo:
 640639
 Units: mg/L

Prep Date: 10/9/2014	Anaiysis	Date: 10	0/10/2014	S	SeqNo: 6	40639	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	ND	0.020								
Barium	ND	0,020								
Cadmium	ND	0,0020								
Calcium	ND	1.0								
Chromium	ND	0,0060								
Lead	ND	0.0050								
Magnesium	ND	1.0								
Potassium	ND	1.0								
Selenium	ND	0.050								
Silver	0.010	0.0050								
Sodium	ND	1.0								

TestCode: EPA 6010B: Total Recoverable Metals

Sample ID LCS-15825	Samp	mpType: LCS TestCode: EPA 6010B: Total Recoverable Metals								
Client ID: LCSW	Bato	h ID: 15	825	F	RunNo: 2	1801				
Prep Date: 10/9/2014	Analysis	Date: 10	0/10/2014	8	SeqNo: 6	40640	Units: mg/L			
Anaiyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	0.52	0.020	0.5000	0	104	80	120			
Barium	0.49	0.020	0.5000	0	98.9	80	120			
Cadmium	0.49	0.0020	0.5000	0	98.9	80	120			
Caldium	52	1.0	50.00	0	104	80	120			
Chromium	0.48	0.0060	0.5000	0	96.8	80	120			
Lead	0.49	0.0050	0.5000	0	97.6	80	120			
Magnesium	51	1.0	50.00	0	103	80	120			
Potassium	49	1.0	50.00	0	98.8	80	120			
Selenium	0.50	0.050	0.5000	0	100	80	120			
Silver	0.10	0.0050	0.1000	0	102	80	120			В
Sodium	51	1.0	50.00	0	101	80	120			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 16 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#:

1410102

23-Oct-14

Client: Project: Western Refining Southwest, Inc. Injection Well 4th QTR 10-1-14

Sample ID mb-1

SampType: MBLK

TestCode: SM2320B: Alkalinity

Client ID: PBW

Batch ID: R21715

PQL

20

RunNo: 21715

Units: mg/L CaCO3

Prep Date:

Analysis Date: 10/6/2014

SeqNo: 637458

Qual

Analyte

Result

SPK value SPK Ref Val %REC LowLimit

%RPD

%RPD

%RPD

%RPD

RPDLimit

Total Alkalinity (as CaCO3)

ND

TestCode: SM2320B: Alkalinity

Sample ID Ics-1

Client ID: LCSW

PBW

SampType: LCS Batch ID: R21715

PQL

RunNo: 21715

HighLimit

Prep Date:

Analyte

Analysis Date: 10/6/2014

Result

Result

81

80.00

SeqNo: 637459

Units: mg/L CaCO3

SPK value SPK Ref Val %REC 103

LowLimit HighLimit

HighLimit

RPDLimit Qual

Total Alkalinity (as CaCO3)

Sample ID mb-2

20 SampType: MBLK

TestCode: SM2320B: Alkalinity

RunNo: 21715

Client ID: Prep Date:

Batch ID: R21715 Analysis Date: 10/6/2014

SeqNo: 637474

Units: mg/L CaCO3

RPDLimit Qual

Analyte Total Alkalinity (as CaCO3)

Sample ID Ics-2

ND 20

PQL

TestCode: SM2320B: Alkalinity

SampType: LCS Batch ID: R21715

RunNo: 21715

Prep Date:

Client ID: LCSW Analysis Date: 10/6/2014

SeqNo: 637475

Units: mg/L CaCO3

RPDLimit

Page 17 of 18

Qual

Analyte Total Alkalinity (as CaCO3)

20

SPK value SPK Ref Val %REC LowLimit 80.00

0

SPK value SPK Ref Val %REC LowLimit

102

HighLimit

110

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits
- RSD is greater than RSDlimit 0 R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits S
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Η
- ND
 - Sample pH greater than 2.
- Not Detected at the Reporting Limit
 - Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#:

1410102 23-Oct-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 4th QTR 10-1-14

Sample ID MB-15759

SampType: MBLK

TestCode: SM2540C MOD: Total Dissolved Solids

Client ID:

PBW

Batch ID: 15759

RunNo: 21752

Prep Date: 10/7/2014

Analysis Date: 10/8/2014

SeqNo: 638741

Units: mg/L

Qual

Analyte

Result

SPK value SPK Ref Val %REC LowLimit PQL 20.0

HighLimit

%RPD **RPDLimit**

Total Dissolved Solids

ND

SampType: LCS

TestCode: SM2540C MOD: Total Dissolved Solids

Sample ID LCS-15759 Client ID: LCSW Prep Date: 10/7/2014

Batch ID: 15759

RunNo: 21752

SeqNo: 638742 %REC LowLimit Units: mg/L

Quai

Analyte

Analysis Date: 10/8/2014 Result

PQL SPK value SPK Ref Val

101

Total Dissolved Solids

1000

RPDLimit

HighLimit

%RPD

1010

20.0

120

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits J
- RSD is greater than RSDlimit 0 RPD outside accepted recovery limits R
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η ND Not Detected at the Reporting Limit
- Sample pH greater than 2.
- Reporting Detection Limit

Page 18 of 18

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

RoptNo: 1 Work Order Number: 1410102 Western Refining Southw Client Name: Received by/date: an Ilm 10/2/2014 6:50:00 AM Logged By: **Anne Thorne** an In-10/2/2014 Completed By: Anne Thorne Reviewed By: Chain of Custody No 🗆 Not Present Yes 🗌 1. Custody seals intact on sample bottles? No 🗆 Not Present Yes 🗸 2. Is Chain of Custody complete? Courier 3. How was the sample delivered? <u>Log in</u> NA 🗆 No 🗌 Yes 🗹 4. Was an attempt made to cool the samples? NA 🔲 Yes 🔽 5. Were all samples received at a temperature of >0° C to 6.0°C Yes 🔽 No 🗆 6. Sample(s) in proper container(s)? Yes 🗸 No 🗌 7. Sufficient sample volume for indicated test(s)? No 🗆 Yes 🔽 8. Are samples (except VOA and ONG) properly preserved? NA 🗆 Yes 🗆 No 🔽 9. Was preservative added to bottles? No VOA Vials No 🗆 Yes 🗹 10. VOA vials have zero headspace? Yes 🗌 No 🗹 11. Were any sample containers received broken? # of preserved bottles checked for pH: Yes 🔽 No 🗔 12. Does paperwork match bottle labels? nless noted) (Note discrepancies on chain of custody) Adjusted[®] No 🗔 13. Are matrices correctly identified on Chain of Custody? No 🗆 14. Is it clear what analyses were requested? Checked by: No 🗆 Yes 🗹 15. Were all holding times able to be met? (If no, notify customer for authorization.) Special Handling (if applicable) NA 🗹 Yes 🗌 No 🗆 16. Was client notified of all discrepancies with this order? Date Person Notified: eMail Phone Fax In Person Via: By Whom: Regarding: Client Instructions: 17. Additional remarks: 18. Cooler Information Seal Date | Signed By Cooler No Temp C Condition Seal Intact Seal No Good

Ç	hain-	of-Cu	stody Record	Turn-Around	Time:						IAI			uV	тр		u M	1Er	uT	ΔI	
Client:	West.	na) 7	Refining	Standard	□ Rush_		_ _													R	7
		- 10		Project Name		10-1-1	7									al.cor					
Mailing	Address:	#5	6 CR 4990	Injec	tion w	lell ITE		49	01 H	iawki	ns N	IE -	Albu	uque	rque	, NM	871	109			
Blo	omf	الم ا	NM 874/3	Project #:				Τe	el. 50)5-34	5-39	75	F	ax 5	05-3	345-4	107				
Phone #	± 505	-632	NM 874/3 -4/35									A	naly	sis F	Requ	ıest					F
email or				Project Mana	ger:		1=	nly)	8		Q.	1		Q P	a			13	,		
QA/QC F	Package: dard	,	►Level 4 (Full Validation)			•	's (8021)	TPH (Gas only)	30/M	SOLIN	Back & P	8270 SIMS)	G. T. R. K	,PO ₄ ,S	2 PCB's			Grosswit		J.	
Accredi			- ·	Sampler: 13	òb] [8	표		Î	1	270	=	Š	808			d	1	¥	or N
□ NEL		☐ Othe	r				+	+	[원				2 8	õ	es/		8	生	2	R'	γŞ
□ EDD	(Type)			Samuleura			MTBE	+ MTBE) (8)			5	Meta	<u>oʻ</u>	ficid	8	글	4	١ڿ	X -	A Sa
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type		BTEX + N	BTEX + N	TPH 8015B (GRO / DRO / MRO)			PAH's (8310 or	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082	8260B (VOA)	8270 (Semi-VOA)	Fruitati l'ite	React	はい	72/4. Air Bubbl
10-1-14	10:00	H20	INi. well	3-10A	Hc1	-00										X					$oldsymbol{\mathbb{L}}$
Ţ	1	1		1- Liter	amber	-0 00		ŀ									X				
				1-500ml		-201												X			
				1-500ml		-20				X									2	X	
					H2504.	-al					X					ـسرـ					
				1-500 ml	HN03	-001							X								
				1-500ml		-zd													X		\perp
			\		ZN-ACETETE														\perp	<u> </u>	<u> </u>
																			\dashv	\bot	
						,			<u> </u>	<u> </u>								\dashv	_		_
							\bot	_	ļ								-		\dashv		+
Date: ウ-/- 1 ゲ	Time:	Relinquish	ed by: Fut Krakon	Received by:	That	Date Time 16/14 1421	Re	mark	KS:				,	•							
Date:	Time:	Relinquish	ed by: Whele	Received by:	A	10 12 14 114 116	2								-						
7	f necessary,	samples sub	mitted to Hall Environmental may be sub	contracted to other a	ccredited laboratorie	es. This serves as notice of	this pos	sibility.	Апу	ub-con	tracte	d data	will be	dearl	ly nota	ted on	the ar	nalytica	l repor	t,	

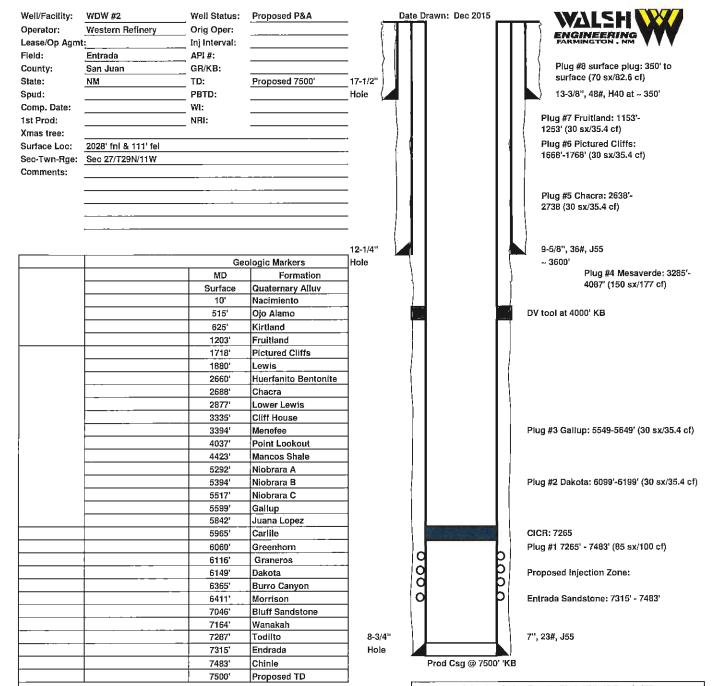
Appendix D Closure Plan

Western Refinery Southwest Inc. Bloomfield Terminal Waste Disposal Well (WDW) #2

Closure Plan

In accordance with Rule 19.15.25 NMAC the following information describes the possible closure plan which would entail plugging and abandoning the proposed well bore and reclaiming the surface location to pre-drill status. This is Western's standard closure procedure.

All closure activities will include proper documentation and be available for review upon request. All required paperwork (sundry notices) will be submitted to NMOCD for approval prior to any field work taking place. All plug and abandon activities are intended to protect fresh water, public health and the environment.


General Plan

- 1. Notify NMOCD
- 2. Note: verify all cement volumes based on actual slurry to be pumped.
- 3. Review any COA's from NMOCD

Procedure

- 1 Move-in, rig up pulling unit. Pump & pit. Half tank for cement returns.
- 2 Hold safety meeting with rig crew and related personnel explaining the procedure and outlining potential hazards.
- 3 ND WH & NU BOP
- 4 TIH w/ CICR & set at ~ 7265'.
- 5 Load hole and circulate clean with fresh water.
- 6 Load tubing and pressure test tubing to 1000 psi.
- 7 Pull stinger out of CICR enough to load hole w/ water and circulate clean. Test casing to 500 psi.
- 8 Plug #1 (7265'-7483'). Mix & pump 85 sx (100 cf) of Class B neat cement. Sting out of retainer leaving 50' of cement on top of retainer. Note. Cement volumes will be adjusted if alternate but comparable cement is used (based on vendor selection). Volumes estimated using 100% excess.
- 9 Pull up hole.
- 10 Spot plug #2 in a balanced plug. Plug #2 Dakota: (6099'–6199'). Mix & pump 30 sx (35.4 cf) of Class B neat cement. Calculated cement volumes to include extra 50' of cement.

- 11 Pull up hole & WOC. TIH & tag TOC.
- 12 Spot plug #3 in a balanced plug. Plug #3 Gallup (5549'-5649'). Mix & pump 30 sx (35.4 cf) of Class B neat cement. Calculated cement volumes to include extra 50' of cement.
- 13 Pull up hole & WOC. TiH & tag TOC.
- 14 Spot plug #4 in a balanced plug. Plug #4 Mesaverde (3285'-4087'). Mix & pump 150 sx (177 cf) of Class B neat cement. Calculated cement volumes to include extra 50' of cement.
- 15 Pull up hole & WOC. TIH & tag TOC.
- 16 Spot plug #5 in a balanced plug. Plug #5 Chacra (2638'-2738'). Mix & pump 30 sx (35.4 cf) of Class B neat cement. Calculated cement volumes to include extra 50' of cement.
- 17 Pull up hole & WOC. TIH & tag TOC.
- 18 Spot plug #6 in a balanced plug. Plug #6 Pictured Cliffs (1668'-1768'). Mix & pump 30 sx (35.4 cf) of Class B neat cement. Calculated cement volumes to include extra 50' of cement.
- 19 Pull up hole & WOC. TIH & tag TOC.
- 20 Spot plug #7 in a balanced plug. Plug #7 Fruitland (1153'-11253'). Mix & pump 30 sx (35.4 cf) of Class B neat cement. Calculated cement volumes to include extra 50' of cement.
- 21 Pull up hole & WOC. TIH & tag TOC.
- 22 Spot plug #8 in a balanced plug. Plug #8 Surface Plug (350'-surface). Mix & pump 66 sx (77.9 cf) of Class B neat cement.
- 23 Fill up inside of casing w/ additional cement as needed to top off.
- 24 ND BOP & cut off well head.
- 25 Install P&A marker and cut off anchors.
- 26 RD & release rig and related equipment.
- 27 Remove all surface/production equipment.
- 28 Re-contour and re-claim surface/location as per NMOCD approved Reclamation plan.

15.00
15.00
15.00

WALSH ENGINEERING & PRODUCTION CORP.

Workover Cost Estimate

Western Refinery Southwest, Inc. AUTHORITY FOR EXPENDITURE

Well Name: WDW #2

Location: Sec 27, T29N, R11W, San Juan, NM Objective: Permanently P&A Wellbore

	Tangible	Intangible	Total
I. Workover Costs	•	5	
Anchors, and Misc.			
Completion Rig (18 hrs @ \$250/hr, includes Mob-de-Mob, crew travel)		29,500	29,500
Completion Fluids/Water hauling (pump truck)		•	,
Cased Hole Services (Including CICR)		7,200	7,200
Cement		24,650	24,650
Tubing Head and Well Connection Fittings			
Tubing (480 ft @ 3.30 \$/ft.)			
Sucker Rods (50 rods @ 60 \$/rod)			
Down hole pump			
Pumping equipment (Polish rod, tbg anchor, ect)			
Rentals (tanks, etc)		1,720	1,720
Trucking		5,100	5,100
Surface Facility Installation			
Restore Location			
Well Site Supervision		4,100	4,100
Engineering		1,000	1,000
Bits			
Labor & Trucking to remove surface equipment			
Pipelines and Installation			
Tank and Fittings			
Disposal Costs Meter		1,250	1,250
Surface Reclamation			
P&A marker		5,125	5,125
Pos marker		135	135
Workover Costs	0	79,780	79,780
10% Contingency	0	7,978	7.070
10 /0 CONTINUENCY	0	7.978	7,978

Prepared By: John C. Thompson

Date: 2/2/2016

Working Interest Owners

ESTIMATED COSTS ONLY--Each participating Owner to pay Proportionate Share of Actual Well Costs Subject to Operating Agreement

	Field Parameters												
Site	Sp. Cond.	TDS	DO	ORP	рН	Temp.	Date	Time	Sampler				
Site	(uS/cm)	(g/L)	(mg/L)	(mV)	(Units)	(F)	Date	Tillic	Sampler				
DWD#2	68,017	44,200	1.33	211.9	5.13	52.3	1/25/2017	11:00 AM	Matt Krakow				

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

February 01, 2017

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4135 FAX (505) 632-3911

RE: DWD #2 OrderNo.: 1701A75

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 1/26/2017 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andy

4901 Hawkins NE

Albuquerque, NM 87109

Analytical ReportLab Order **1701A75**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 2/1/2017

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: DWD 2 Formation Water

 Project:
 DWD #2
 Collection Date: 1/25/2017 11:00:00 AM

 Lab ID:
 1701A75-001
 Matrix: AQUEOUS
 Received Date: 1/26/2017 7:05:00 AM

Analyses	Result	PQL (Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	MRA
Fluoride	ND	2.0		mg/L	20	1/26/2017 6:37:17 PM	R40335
Chloride	23000	2500	*	mg/L	5E	1/27/2017 7:20:01 PM	R40361
Bromide	ND	2.0		mg/L	20	1/26/2017 6:37:17 PM	R40335
Phosphorus, Orthophosphate (As P)	ND	10		mg/L	20	1/26/2017 6:37:17 PM	R40335
Sulfate	910	25	*	mg/L	50	1/27/2017 7:07:36 PM	R40361
Nitrate+Nitrite as N	ND	20		mg/L	100	1/27/2017 7:32:26 PM	R40361
SM2510B: SPECIFIC CONDUCTANCE	≣					Analyst	JRR
Conductivity	94000	50		µmhos/cm	50	1/30/2017 1:40:54 PM	R40366
SM2320B: ALKALINITY						Analyst	JRR
Bicarbonate (As CaCO3)	255.3	20.00		mg/L CaCO3	1	1/30/2017 11:39:53 AM	R40366
Carbonate (As CaCO3)	ND	2.000		mg/L CaCO3	1	1/30/2017 11:39:53 AM	R40366
Total Alkalinity (as CaCO3)	255.3	20.00		mg/L CaCO3	1	1/30/2017 11:39:53 AM	R40366
SM2540C MOD: TOTAL DISSOLVED	SOLIDS					Analyst	KS
Total Dissolved Solids	48900	2000	*D	mg/L	1	2/1/2017 3:56:00 PM	29970
EPA 6010B: TOTAL RECOVERABLE	METALS					Analyst	pmf
Calcium	1700	20		mg/L	20	1/30/2017 10:59:56 AM	29930
Magnesium	200	20		mg/L	20	1/30/2017 10:59:56 AM	29930
Potassium	450	20		mg/L	20	1/30/2017 10:59:56 AM	29930
Sodium	16000	500		mg/L	500	1/30/2017 11:06:12 AM	29930

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 1 of 5
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Billings, MT 800.735.4489 • Casper, WY 888.235.0515

College Station, TX 888.690.2218 • Gillette, WY 866.685.7175 • Helena, MF 877.472.0711

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client:

Hall Environmental

Project:

Not Indicated

Lab ID:

B17011690-001

Client Sample ID: 1701A75-001C DWD 2 Formation Water

Report Date: 01/27/17

Collection Date: 01/25/17 11:00

DateReceived: 01/27/17

Matrix: Aqueous

Analyses	Result Units	Qualifiers RL	MCL/ QCL Method	Analysis Date / By
CORROSIVITY pH	6.46 s.u.	0.10	SW9040C	01/27/17 10:54 / jmg

Billings, MT 890.735.4489 • Casper, WY 888.235.0515
College Station, TX 988.690.2218 • Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Hall Environmental

Project: Not Indicated

Report Date: 01/27/17

Work Order: B17011690

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW9040C						Analytical Ru	n: ORION	720A HZW	_170127A
Lab ID: pH	ICV	Initial Calibrat 8.11	ion Verificat s.u.	ion Standard 0.10	101	98	102		01/27	7/17 10:54
Method:	SW9040C								Batch:	R273874
Lab ID: pH	B17011690-001ADUP	Sample Duplic 6.49	s.u.	0.10		Run: ORIC	N 720A HZW_	170127A 0.5	01/27 3	7/17 10:54

Hall Environmental Analysis Laboratory, Inc.

WO#: 1701A75

01-Feb-17

Client: Western Refining Southwest, Inc.

Project: DWD #2

Sample ID MB SampType: mblk TestCode: EPA Method 300.0: Anions Client ID: **PBW** Batch ID: **R40335** RunNo: 40335 Prep Date: Analysis Date: 1/26/2017 SeqNo: 1264291 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Fluoride ND 0.10 Bromide ND 0.10 ND 0.50 Phosphorus, Orthophosphate (As P

Sample ID LCSb SampType: Ics TestCode: EPA Method 300.0: Anions Client ID: LCSW Batch ID: R40335 RunNo: 40335 Prep Date: Analysis Date: 1/26/2017 SeqNo: 1264293 Units: mg/L Analyte **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 0 Fluoride 0.52 0.10 0.5000 104 90 110 Bromide 2.4 0.10 2.500 0 96.4 90 110 0.50 5.000 0 96.7 90 110 Phosphorus, Orthophosphate (As P 4.8

Sample ID MB TestCode: EPA Method 300.0: Anions SampType: mblk Client ID: PBW Batch ID: R40361 RunNo: 40361 Prep Date: Analysis Date: 1/27/2017 SeqNo: 1265117 Units: mg/L Result **PQL** SPK value SPK Ref Val %REC LowLimit %RPD **RPDLimit** Analyte HighLimit Qual Chloride ND 0.50 Sulfate ND 0.50 Nitrate+Nitrite as N ND 0.20

Sample ID LCS TestCode: EPA Method 300.0: Anions SampType: Ics Client ID: LCSW Batch ID: R40361 RunNo: 40361 Prep Date: Analysis Date: 1/27/2017 SeqNo: 1265118 Units: mg/L Analyte SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Result **PQL** Qual Chloride 0.50 5.000 95.5 4.8 90 110 0 97.2 Sulfate 9.7 0.50 10.00 90 110 Nitrate+Nitrite as N 3.5 0.20 3.500 0 98.8 90 110

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix В Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits

Page 2 of 5

P Sample pH Not In Range

RLReporting Detection Limit

Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: **1701A75**

01-Feb-17

Client: Western Refining Southwest, Inc.

Project: DWD #2

Sample ID MB-29930 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals PBW Client ID: Batch ID: 29930 RunNo: 40375 Prep Date: 1/27/2017 Analysis Date: 1/30/2017 SeqNo: 1265583 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Calcium ND 1.0 ND Magnesium 1.0 Potassium ND 1.0 ND Sodium 1.0

Sample ID LCS-29930	SampType: LCS			TestCode: EPA 6010B: Total Recoverable Metals						
Client ID: LCSW	Batch ID: 29930			RunNo: 40375						
Prep Date: 1/27/2017	Analysis Date: 1/30/2017			SeqNo: 1265584			Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium	49	1.0	50.00	0	98.3	80	120			
Magnesium	49	1.0	50.00	0	97.3	80	120			
Potassium	47	1.0	50.00	0	94.9	80	120			
Sodium	48	1.0	50.00	0	95.4	80	120			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 3 of 5

Hall Environmental Analysis Laboratory, Inc.

WO#: **1701A75**

01-Feb-17

Client: Western Refining Southwest, Inc.

Project: DWD #2

Sample ID mb-1 SampType: mblk TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R40366 RunNo: 40366

Prep Date: Analysis Date: 1/30/2017 SeqNo: 1266120 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID Ics-1 SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R40366 RunNo: 40366

Prep Date: Analysis Date: 1/30/2017 SeqNo: 1266121 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 78.04 20.00 80.00 0 97.6 90 110

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 4 of 5

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **1701A75**

01-Feb-17

Client: Western Refining Southwest, Inc.

Project: DWD #2

Sample ID MB-29970 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 29970 RunNo: 40436

Prep Date: 1/31/2017 Analysis Date: 2/1/2017 SeqNo: 1267368 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 20.0

Sample ID LCS-29970 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 29970 RunNo: 40436

Prep Date: 1/31/2017 Analysis Date: 2/1/2017 SeqNo: 1267369 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 1010 20.0 1000 0 101 80 120

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 5 of 5

Hall Environmental Analysis Laboratory 4901 Hawkins NE Aibuquergue, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

Sample Log-In Check List

Work Order Number: 1701A75 RoptNo: 1 Western Refining Southw Client Name: AT 01/26/17 Received by/date: an Shan Logged By: 1/26/2017 7:05:00 AM Anne Thorne an In Anne Thorne 1/26/2017 9:13:16 AM Completed By: Reviewed By: Chain of Custody Not Present 🗹 Yes 🗀 No \square 1 Custody seals intact on sample bottles? No 🗆 Yes 🗸 Not Present 2. Is Chain of Custody complete? 3. How was the sample delivered? Courier Log In NA \square Yes 🗸 No 🗌 4. Was an attempt made to cool the samples? NA 🗔 No \square 5. Were all samples received at a temperature of >0° C to 6.0°C Yes 🗸 No 🗆 Yes 🗸 6. Sample(s) in proper container(s)? Yes 🗸 7. Sufficient sample volume for indicated test(s)? Yes 🗸 8. Are samples (except VOA and ONG) properly preserved? No 🗸 NA \square Yes 9. Was preservative added to bottles? Yes 🗌 No \square No VOA Vials 🗹 10. VOA vials have zero headspace? No 🗸 11. Were any sample containers received broken? # of preserved bottles checked Yes 🗹 No 🗌 for pH: 12. Does paperwork match bottle labels? or >12 unless noted) (Note discrepancies on chain of custody) Adjusted? Yes 🗸 No 🗀 13. Are matrices correctly identified on Chain of Custody? Yes 🔽 No 🗌 14. Is it clear what analyses were requested? No 🗆 Checked by: Yes 🗸 15. Were all holding times able to be met? (If no, notify customer for authorization.) Special Handling (if applicable) Yes No 🗌 NA 🗹 16. Was client notified of all discrepancies with this order? Person Notified: Date By Whom: eMail Phone Fax In Person Regarding: Client Instructions: 17. Additional remarks: 18. Cooler Information Cooler No Temp °C Condition Seal Intact Seal No Seal Date Good

Chain-of-Custody Record Client: Western Refining			Turn-Around Time: Standard X Rush 2 - day Project Name: DWD#2 Project #: PO - 126 19031-2											, T. F.			4=	AIT.	. .		
						HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com															
Mailing Address: 50 CR 4990 Bloomfield, NM 87413 Phone #: 505-632-4169						4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request															
email or Fax#:			Project Manager:				(ylr	3					O ₄)				\prod				
QA/QC Package: ☑ Standard □ Level 4 (Full Validation)			Kelly Robinson			's (8021	(Gas or	RO / MF			or 8270 SIMS)	S	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's		OA)	otto chrow				
Accreditation □ NELAP □ Other			Sampler: MaH Kra Kow On Ice: Yes □ No			= + TMB	: + TPH	SRO/D	418.1)	504.1)										or N)	
□ EDD Date	(Type) _ Time	Matrix	Sample Request ID		Preservative Type	1.0 HEAL No. 1101A15	BTEX + MTBE	BTEX + MTBE + TPH (Gas only)	TPH 8015B (GRO / DRO / MRO)	TPH (Method 418.1)	EDB (Method	PAH's (8310 or 8270 SIMS)	RCRA 8 Metals	Anions (F,CI,N	8081 Pesticid	8260B (VOA)	8270 (Semi-VOA)	See offe			Air Bubbles (Y or N)
25-17	11:00	H2O	DWD2 Formation water	1-500m1	Poly	701												X			
				1-500M1		701		-										X	\top		
				1-125m		700												X			
																		Ш	\perp		_
																<u> </u>			\perp	\perp	$oldsymbol{ol{ol{ol}}}}}}}}}}}}}}}}$
																<u> </u>		Ш	\dashv	\bot	╄
Date:	Time:	Relinquish	and by:	Received by:	.) .	Date Time	Rei	mark	s:												
15/17	1447	1/7	WUJUJUM	Musta	e Walte	1/25/17 1447															

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

All Anions	EPA Method 300.0	1-500ml unpreserved plastic 1-125 ml H2SO4 plastic
Alkalinity	SM2320 B	Volume will come from the 500ml unpreserved plastic
eC	SM 2510B	Volume will come from the 500ml unpreserved plastic
TDS	SM 2540 C	Volume will come from the 500ml unpreserved plastic
Cations	EPA Method 200.7	1-500ml HNO3 Plastic
pН	EPA Method 9040	Volume will come from the 500ml unpreserved plastic

SM = Standard Methods

EPA Methods 310.1, 150.1, 160.1, 320.1 and 120.1 have been withdrawn by EPA. Most labs have are accredited for all of the tests listed above and we perform these methods regularly for I

We will ship out one bottle set today as listed below. Fill all bottles to the neck and keep the sa We can rush this work on a 1-2 business day TAT.

- 1-500ml unpreserved plastic
- 1-125ml H2SO4 Plastic
- 1-500ml HNO3 plastic

Garza, Margaret A From: To: Chavez, Carl J, EMNRD Cc: Saucedo, Levi

Subject: [EXT] Revised changes to UICo11 WDW-2 Renewal Application

Date: Friday, April 9, 2021 12:36:43 PM

Attachments: image001.png

Broomfield Products Terminal - UICI-011 WDW-2 Renewal Application_2021_0407_1000 - Revised Pages.pdf

Response Letter to OCD Carl Chavez April 7_2021.pdf

Hi Carl,

In follow up to our conversation, attached are a couple changes I will attach to the submittal of the Public Notice letter. Per Levi's feedback, the PN will be published in the Farmington Daily Time Sunday publication.

Working on updating the PN letter. Completed and forwarded the C-146 Change of Operator Name Form to Levi for signature. Will try to get that sent today.

Thank you,

Margaret A. Garza

Environmental Professional L&S Terminals

1250 W. Washington St., Suite 420; Tempe, AZ 85281

Office: 602-286-1517 Mobile: 480-532-1434

Email: MGarza4@marathonpetroleum.com

1. INTRODUCTION

Western Refining Southwest, Inc.'s Bloomfield Products Terminal (BPT) is permitted to dispose of non-hazardous (RCRA exempt and RCRA non-exempt non-hazardous) treated wastewater into Wastewater Disposal Well #2 (WDW-2). WDW-2 (AP #30-045-35747) commenced operation in 2016 under Discharge Permit No. UICI-011, which will expire on July 20, 2021.

Pursuant to Section 20.6.2.3106.G of the New Mexico Administrative Code, an application must be submitted at least 120 days before the discharge permit expires. Therefore, an application for renewal of the permit is due by no later than March 22, 2021. BPT is herein submitting this application to renew Discharge Permit No. UICI-011.

Section 2 is the Discharge Plan Application for Renewal. The attachments for this application are included in the appendices of this application document. Section 3 includes the Application for Authorization to Inject. The attachments for the application are also in the appendices of this application document. Section 4 is the Administrative Application Checklist.

RECEIVED:	REVIEWER:	TYPE:	APP NO:

ABOVE THIS TABLE FOR OCD DIVISION USE ONLY

NEW MEXICO OIL CONSER	VATION DIVISION
- Geological & Engineeri	ng Bureau – (()
1220 South St. Francis Drive, Sai	nta Fe, NM 87505
ADMINISTRATIVE APPLICA	TION CHECKLIST
THIS CHECKLIST IS MANDATORY FOR ALL ADMINISTRATIVE APPL REGULATIONS WHICH REQUIRE PROCESSING AT	ICATIONS FOR EXCEPTIONS TO DIVISION RULES AND
REGULATIONS WHICH REQUIRE I ROCESSINO AT	THE DIVISION LEVEL IN SAMATALE
Applicant: <u>Western Refining Southwest, Inc.</u>	OGRID Number: <u>267595</u>
Well Name: <u>WDW#2</u>	API: <u>30-045-35747</u>
Pool:	
SUBMIT ACCURATE AND COMPLETE INFORMATION REQ	UIRED TO PROCESS THE TYPE OF APPLICATION
INDICATED BE	LOW
1) TYPE OF APPLICATION: Check those which apply for	[A]
A. Location – Spacing U <u>ni</u> t – Simultaneous De <u>di</u> c	
■ NSL ■ NSP(project area) ■ N	NSP (proration unit)
B. Check one only for [I] or [II]	
[1] Commingling – Storage – Measurement	
□DHC □CTB □PLC □PC □	ols Dolm
[II] Injection – Disposal – Pressure Increase – En	
□ WFX □ PMX 🕱 SWD □ IPI □	EOR PPR Note: Only treated wastewater is injected.
2) NOTIFICATION REQUIRED TO: Check those which app	FOR OCD ONLY
3) \(\subseteq \text{ Offset operators or lease holders} \)	Notice Complete
A. Royalty, overriding royalty owners, revenue of	owners
B. X Application requires published notice	Application
C. Notification and/or concurrent approval by	
D. ☐ Notification and/or concurrent approval by E. ☐ Surface owner	BLM
F. For all of the above, proof of notification or process.	oublication is attached, and/or.
G. No notice required	
 CERTIFICATION: I hereby certify that the information s administrative approval is accurate and complete to 	···
understand that no action will be taken on this appli	,
notifications are submitted to the Division.	
Note: Statement must be completed by an individual w	rith managerial and/or supervisory capacity.
Angela S. Brown	Date
Print or Type Name	(419) 421-2629
	asbrown@marathonpetroleum.com
Signature	e-mail Address

9400 Holly Avenue NE, Bldg. 3, Suite 300 | Albuquerque, NM 87122 / P 505.266.6611 / trinityconsultants.com

VIA E-MAIL: <u>CarlJ.Chavez@state.nm.us</u>

April 7, 2021

Mr. Carl J. Chavez, Environmental Specialist Engineering Bureau EMNRD – Oil Conservation Division 5200 Oakland Avenue, N.E. Suite 100 Albuquerque, NM 87113

Re: UICI-011 Class I (NH) WDW-2 (30-045-35747) Western Refining SW, Inc.- WQCC DP Renewal

Application

Dear Mr. Chavez:

On behalf of Western Refining SW, Inc., Trinity Consultants is submitting to you the Total Dissolved Solids (TDS) values for the upstream monitoring wells MSs 52 and 53. The TDS concentrations for the injection water into WDW-2 (30-045-35747) were presented in Appendix B rather than Appendix D of the subject application. We apologize for the confusion. Per the attached data, you will observe that the TDS concentrations for the background wells are higher than the injection water into the WDW-2.

Ms. Margaret Garza will respond to your other April 6, 2021 questions. If you have any questions regarding the TDS, please contact me at (504) 828-5845 or elee@trinityconsultants.com or Ms. Garza at (602) 286-1517 or MGarza4@marathonpetroleum.com.

Sincerely,

TRINITY CONSULTANTS

Edward Lee

Edward Lee, P.E.

Managing Consultant

CC: Margaret A. Garza, Marathon L&S Terminals

Attachment: 2020 Summary of Analytical Data with TDS

Attachment B - Analytical Summary

99

MW-29

Downstream

340

970

	WQCC					T			
	Standards	WDW #2				MW-53	MW-52	MW-68	ļ
		3/25/2020	6/30/2020	9/18/2020	12/18/2020	Upstream	Upstream	Downstream	ļ
Chloride	250 *	1200	1200	830	890	940	560	20	ļ
Sulfate	600 *	87	78	86	72	930	980	230	ļ
Total Dissolved Solids 10,000		2920	2870	2190		3380	2660	651	l
pH (pH Units)		7.27	7.77	7.71					
Bicarbonate (As CaC	569	647.1	626.3		235	246.4	202.6		
Carbonate (As CaCO	<2.0	<2.0	<2.0		<2.0	<2.0	<2.0		
Total Alkalinity (as C	569	647.1	626.3		235	246.4	202.6		
Oxidation-Reduction	6.2	37.7	179						
Specific Gravity		0.993	0.9946	0.9958					
-		0.020	0.020	0.000		0.00021	0.0015	0.0000	
Arsenic		< 0.030	< 0.030	<0.030		0.00021	0.0017	0.0008	
Barium		0.32	0.22	0.27		0.016	0.013	0.016	
Cadmium		< 0.0020	< 0.0020	< 0.0020		< 0.0020	< 0.0020	< 0.0020	
Calcium		90	0.0010	0.0010			0.004	0.0040	
Chromium		< 0.0060	< 0.0060	<0.0060		< 0.006	< 0.006	< 0.0060	
Lead		< 0.020	< 0.020	< 0.020		< 0.0025	< 0.0010		
Selenium		< 0.050	< 0.050	< 0.050		0.06	0.066	0.0047	
Silver		< 0.0050	< 0.0050	< 0.0050		0.0035	0.0056	0.0019	
Mercury	0.002	< 0.00020	< 0.0010	<0.00020		<0.00020	< 0.00020	< 0.00012	
Calcium	0.01	90	73	79		270	230	80	
Magnesium		53	52	43		70	54	21	
Potassium		< 20	13	13		4.9	4.1	2.2	
Sodium		830	910	650		780	540	100	
				1					
Reactive Cyanide (mg		< 0.005	< 0.005	<0.00500					
Reactive Sulfide (mg/	(L)	0.32	0.833	< 0.0500					
Ignitability (°F)		>170	>170	>170					
Corrosivity (ph Units	6-9	7.27	7.63	7.82		j			
V U						,			
4,4´-DDD									
4,4´-DDE									
4,4´-DDT									
Aldrin									
alpha-BHC									
beta-BHC									
Chlordane		< 0.002	< 0.20	< 0.30					
delta-BHC									
Dieldrin									
Endosulfan I									
Endosulfan II									
Endosulfan sulfate									
Endrin									
Endrin aldehyde									
gamma-BHC									
Heptachlor									
Heptachlor epoxide									
Methoxychlor									
Toxaphene						5			
Oxidation-Reduction Potential		268							
Specific Conductance	12,110								
рН		7.59	7.63	7.73					
Temperature (°C)		24.5	<u> </u>						
Notes:						-			

^{* =} Screening level is to apply to dissolved phase result; therefore comparison is bias high. Field Parameters collected

From: Rachel Reese

To: <u>Chavez, Carl J, EMNRD</u>
Cc: <u>Garza, Margaret A; Ed Lee</u>

Subject: [EXT] UICI-011 Public Notice Newspaper Ad for Review

Date: Tuesday, April 13, 2021 9:46:41 AM

Attachments: <u>image001.pnq</u>

UICI-011 PN 4-12-2021.docx

Morning Carl,

The draft public notice newspaper advertisement for the renewal of discharge permit UICI-011 is attached for OCD review. Please let me know if you have any questions or comments, or if this is approved to publish in English and Spanish in the Farmington Daily Times.

Thanks, Rachel

Rachel Reese

Senior Consultant

P 505.266.6611 M 505.920.2177

9400 Holly Avenue NE, Bldg. 3, Suite 300 | Albuquerque, NM 87122

Email: rreese@trinityconsultants.com

NOTICE OF PUBLICATION

Notice is hereby given that pursuant to New Mexico Water Quality Control Commission Regulations (20.6.2.3106 NMAC); the following discharge permit application has been submitted to the Director of the New Mexico Oil Conservation Division ("NMOCD"), 1220 S. Saint Francis Drive, Santa Fe, New Mexico 87505, Telephone (505) 476-3440:

(UICI-011) Western Refining Southwest LLC, Mr. Levi Saucedo, Terminal Manager, #50 County Road 4990 (P.O. Box 159) Bloomfield, New Mexico 87413 at 505-632-4195, has submitted an application for Underground Injection Control (UIC) Class I (Non-Hazardous) Injection Well Discharge Permit Renewal (UICI-011) for Waste Disposal Well No. 2 - WDW-2 (API# 30-045-35747), located 2028 FNL and 111 FEL (SE/4, NE/4) in Section 27, Township 29 North, Range 11 West, NMPM, San Juan County, New Mexico. The injection well is located approximately 415 ft. N of the intersection of Sullivan Rd. and Wooten Rd. or approximately 1mile E-NE of the intersection of Hwy 550 and Sullivan Rd. The San Juan River is within 1,320 ft. N-NW of the well at it closest point. Wastewater is derived from and routed from the Bloomfield Terminal (GW-1) to treated water from the Wastewater Treatment Plant (WWTP) before injection. The treated wastewaters are rendered non-hazardous as it is primarily derived from boiler blow-down, reverse osmosis reject water, as it flows through the API Separator (solids, sludge, and floating scum are removed), the Benzene Strippers (volatile organics are removed), and the three lined aeration lagoons (active biological treatment) before reaching either the evaporation ponds or the Class 1 injection well. Typically, the water is routinely pumped directly from the Terminal aeration lagoons to the Class 1 injection well, thereby bypassing the evaporation ponds. Wastewater consists of oil-field exempt and non-exempt, non-hazardous fluids to be disposed into the Entrada Formation at an injection interval from 7,315 ft. to 7,483 ft. below ground level (bgl) at a daily rate not to exceed 8,500 barrels per day and at a maximum surface injection pressure of 1,465 psig. The injection fluid contains approximately 2,660 ppm total dissolved solids (TDS). Groundwater most likely to be affected by a spill, leak or accidental discharge is at a depth of about 20 ft. bgl and has a TDS concentration of approximately 3,020 ppm. The TDS in the Entrada Formation or injection zone is about 48,900 ppm. The discharge permit addresses well construction, operation, monitoring of the well, associated surface facilities, and provides a contingency plan in the event of accidental spills, leaks, and other accidental discharges to protect fresh water.

The owner and operator of the facility is:

Western Refining Southwest, Inc. #50 County Road 4990 P.O. Box 159 Bloomfield, New Mexico 87413

Telephone: (505) 632-8013

The NMOCD has determined that the application is administratively complete. The NMOCD will accept comments and statements of interest regarding this renewal application and will create a facility-specific mailing list for persons who wish to receive future notices. Persons interested in obtaining further information, submitting comments, or requesting to be on a facility-specific mailing list for future notices may contact the Environmental Bureau Chief of the Oil Conservation Division at the address given below:

Environmental Bureau Chief New Mexico Oil Conservation Division (NMOCD) 1220 S. Saint Francis Drive Santa Fe, New Mexico 87505 Telephone: (505) 476-3440

Para obtener más información sobre esta solicitud en español, sirvase comunicarse por favor: New Mexico Energy, Minerals and Natural Resources Department (Depto. Del Energia, Minerals y Recursos Naturales de Nuevo México), Oil Conservation Division (Depto. Conservacio n Del Petróleo), 1220 South St. Francis Drive, Santa Fe, New México (Contacto: Laura Tulk, 575-748-1283 x100).

From: Garza, Margaret A
To: Chavez, Carl J, EMNRD

Subject: [EXT] RE: [EXTERNAL] RE: Revised changes to UICo11 WDW-2 Renewal Application

Date: Friday, April 16, 2021 6:47:10 PM

Attachments: image001.png

TTS-BLM1-PLP-0002.pdf

Wastewater Block Flow Diagram.pdf

PN Final 4-16-2021.doc

Hi Carl,

Per our phone discussion, the attached wastewater flow diagram should provide clarification that after wastewater leaves the aeration lagoons, the wastewater is clean and that there is no further treatment. Furthermore, the connection to the injection well "T's off" the pipeline that connects the Aeration Pond effluent to the South Evaporation Pond. From the "T" is where the water feeds the injection well.

Also, per OCD's request, the attached Public Notice has been updated to describe wastewater from the Bloomfield Terminal to the Injection Well.

Please review and let me know if the submitted information is acceptable. Once I receive the previously submitted Contingency Plan with OCD comments, I will review, update, and resubmit.

Thank you and have a great weekend.

Kind regards,

Margaret A. Garza

Environmental Professional

L&S Terminals 1250 W. Washington St., Suite 420; Tempe, AZ 85281

Office: 602-286-1517 Mobile: 480-532-1434

Email: MGarza4@marathonpetroleum.com

From: Chavez, Carl J, EMNRD < Carl J. Chavez@state.nm.us>

Sent: Thursday, April 15, 2021 7:43 AM

To: Garza, Margaret A < MGarza4@marathonpetroleum.com>

Subject: RE: [EXTERNAL] RE: Revised changes to UICo11 WDW-2 Renewal Application

Margaret,

Good morning!

I am still reviewing the Contingency Plan.

Regarding the PN, OCD has crafted "wastewater" language for the PN (please see below).

Wastewater is derived from and routed from the Bloomfield Terminal (GW-1) to the Wastewater Treatment Plant for treatment before injection. The treated wastewaters are rendered non-hazardous as it is primarily derived from boiler blow-down, reverse osmosis reject water, as it flows through the API Separator (solids, sludge, and floating scum are removed), the Benzene Strippers (volatile organics are removed), and the three lined aeration lagoons (active biological treatment) before reaching either the evaporation ponds or the Class 1 injection well. Typically, the water is routinely pumped directly from the Terminal aeration lagoons to the Class 1 injection well, thereby bypassing the evaporation ponds:

OCD is requesting an updated wastewater flow diagram for the combined terminal and injection well facility. Does OCD have a map that displays all of the lagoons and evaporation ponds. Please submit it along with wastewater flow diagram for the administrative record.

Also, we should discuss the bypass to ensure there is no concerns about wastewater quality sampling and data submitted to the OCD on a quarterly basis. Not sure if the bypass should be occurring?

Thank you.

Carl J. Chavez • Environmental Specialist

Engineering Bureau
EMNRD - Oil Conservation Division
5200 Oakland Avenue, N.E. Suite 100 | Albuquerque, NM 87113
505.660.7923 | CarlJ.Chavez@state.nm.us
http://www.emnrd.state.nm.us/OCD/

From: Garza, Margaret A < MGarza4@marathonpetroleum.com>

Sent: Monday, April 12, 2021 8:14 AM

To: Chavez, Carl J, EMNRD < Carl J. Chavez@state.nm.us>

Subject: [EXT] RE: [EXTERNAL] RE: Revised changes to UICo11 WDW-2 Renewal Application

Good morning Carl,

Forwarding the PN letter for your review prior to translating from English to Spanish. Let me know if anything else needs to be incorporated into the letter.

Thanks so much!

Margaret A. Garza

Environmental Professional L&S Terminals 1250 W. Washington St., Suite 420; Tempe, AZ 85281

Office: 602-286-1517 Mobile: 480-532-1434

Email: MGarza4@marathonpetroleum.com

From: Chavez, Carl J, EMNRD < CarlJ.Chavez@state.nm.us>

Sent: Friday, April 09, 2021 12:00 PM

To: Garza, Margaret A < MGarza4@marathonpetroleum.com > Cc: Saucedo, Levi <<u>LLSaucedo@Marathonpetroleum.com</u>>

Subject: [EXTERNAL] RE: Revised changes to UICo11 WDW-2 Renewal Application

Okay. Both Marathon and OCD must act on public notice only after the Admin. Complete Letter is issued.

Thank you.

Carl J. Chavez • Environmental Specialist

Engineering Bureau EMNRD - Oil Conservation Division 5200 Oakland Avenue, N.E. Suite 100 | Albuquerque, NM 87113 505.660.7923 | CarlJ.Chavez@state.nm.us http://www.emnrd.state.nm.us/OCD/

From: Garza, Margaret A < MGarza4@marathonpetroleum.com>

Sent: Friday, April 9, 2021 12:36 PM

To: Chavez, Carl J, EMNRD < Carl J. Chavez@state.nm.us> **Cc:** Saucedo, Levi <LLSaucedo@Marathonpetroleum.com>

Subject: [EXT] Revised changes to UICo11 WDW-2 Renewal Application

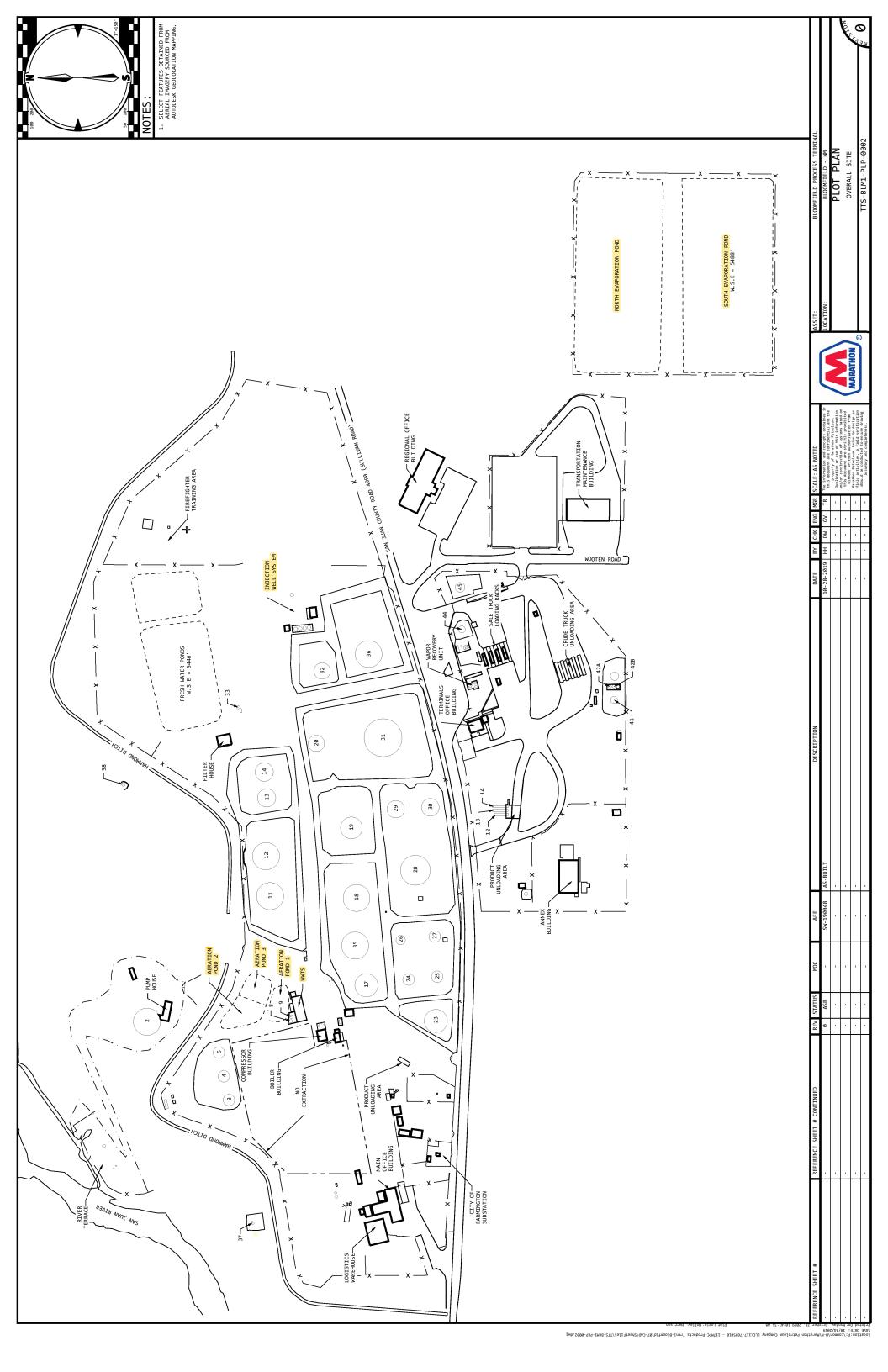
Hi Carl,

In follow up to our conversation, attached are a couple changes I will attach to the submittal of the Public Notice letter. Per Levi's feedback, the PN will be published in the Farmington

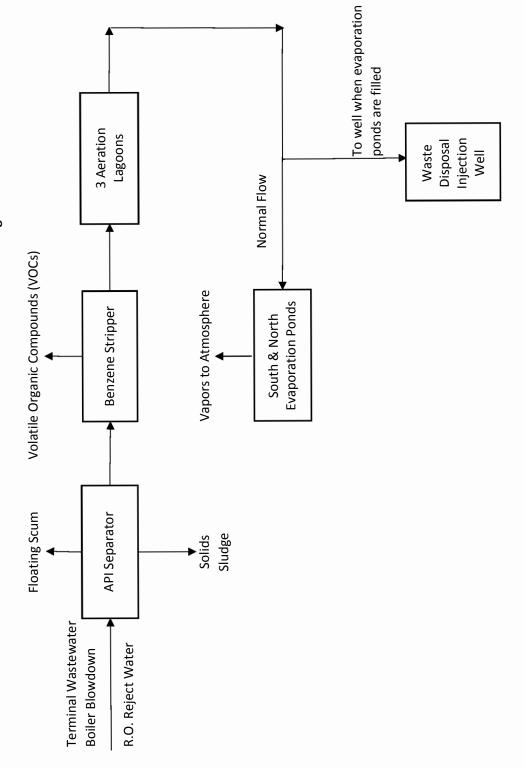
Daily Time Sunday publication.

Working on updating the PN letter. Completed and forwarded the C-146 Change of Operator Name Form to Levi for signature. Will try to get that sent today.

Thank you,



Margaret A. Garza


Environmental Professional L&S Terminals 1250 W. Washington St., Suite 420; Tempe, AZ 85281

Office: 602-286-1517 Mobile: 480-532-1434

Email: MGarza4@marathonpetroleum.com

Western Refining Southwest LLC Bloomfield Terminal Wastewater Block Flow Diagram

