

A proud member of WSP

DISCHARGE PERMIT APPLICATION

FORMER GIANT BLOOMFIELD REFINERY BLOOMFIELD, NEW MEXICO

MAY 2020

Prepared for:

WESTERN REFINING SOUTHWEST, INC. 111 COUNTY ROAD 4990 BLOOMFIELD, NEW MEXICO 87413

Prepared by:

LT ENVIRONMENTAL, INC. 848 East Second Avenue Durango, Colorado 81301 970.385.1096

DISCHARGE PERMIT APPLICATION

FORMER GIANT BLOOMFIELD REFINERY BLOOMFIELD, NEW MEXICO

Project Number: 095820002

Prepared by:

Stuart Hyde, LG LTE Project Geologist May 11, 2020

Date

Ashley L. ager

Reviewed by:

Ashley Ager, P.G. LTE Senior Geologist May 11, 2020

Date

TABLE OF CONTENTS

1.0	DISCHARGE PERMIT TYPE	1
2.0	OPERATOR INFORMATION	2
3.0	LOCATION	3
4.0	LANDOWNER INFORMATION	4
5.0	FACILITY DESCRIPTION	5
6.0	STORED MATERIALS	6
7.0	EFFLUENT SOURCES	7
8.0	WATER COLLECTION, TREATMENT, AND DISPOSAL	8
	8.1 WATER COLLECTION8.2 WATER TREATMENT	8 8
	8.2.1 Tank 102	8
	8.3 WATER DISCHARGE	8
9.0	PROPOSED MODIFICATION OF EXISTING COLLECTION, TREATMENT, AND DISPOSAL SYSTEMS	9
10.0	INSPECTION AND MAINTENANCE PLAN	10
11.0) SPILLS AND RELEASE CONTINGENCY PLAN	11
	11.1 SPILL AND LEAK PREVENTION AND MONITORING	11
	 11.1.1 Construction Materials 11.1.2 Safety and Shutdown Devices 11.1.3 Secondary Containment 11.1.4 Inspection 11.1.5 Security 	12 12 12 12 12
12.0	GEOLOGICAL/HYDROLOGICAL INFORMATION	13
	12.1 BACKGROUND CONCENTRATIONS 12.2 FLOODING POTENTIAL	13 14
13.0) MONITORING AND REPORTING	15
14.0	FACILITY CLOSURE AND POST CLOSURE PLAN	16

TABLE OF CONTENTS (continued)

15.0 PERMIT RENEWAL	17
16.0 PERMIT MODIFICATIONS	18
17.0 REFERENCES	19
18.0 CERTIFICATION	20

FIGURES

- FIGURE 1 SITE LOCATION MAP
- FIGURE 2 SITE MAP
- FIGURE 3 SIMPLIFIED REPRESENTATION OF THE GROUNDWATER RECOVERY, TREATMENT, AND DISCHARGE SYSTEM
- FIGURE 4 THE CARBON ADSORPTION SYSTEM
- FIGURE 5 INFILTRATION TRENCH DESIGN AND CONSTRUCTION SPECIFICATIONS
- FIGURE 6 CROSS SECTION A-A'
- FIGURE 7 CROSS SECTION B-B'
- FIGURE 8 GROUNDWATER POTENTIOMETRIC SURFACE MAP (NOVEMBER 2019)

TABLES

- TABLE 1
 2015 INFLUENT AND EFFLUENT ANALYTICAL RESULTS
- TABLE 2
 GROUNDWATER ELEVATIONS AND THICKNESS OF PHASE-SEPARATED HYDROCARBONS
- TABLE 32010 TO 2018 ANNUAL COMPLIANCE GROUNDWATER LABORATORY ANALYTICAL
RESULTS
- TABLE 4
 CLOSURE AND POST CLOSURE COST ESTIMATES

APPENDICES

APPENDIX A BACKGROUND CONCENTRATIONS IN UPGRADIENT WELLS

1.0 DISCHARGE PERMIT TYPE

Western Refining Southwest, Inc. (Western) proposes the potential discharge of water derived from wells at the inactive former Giant Bloomfield Refinery (GBR) in San Juan County, New Mexico. Monitoring and recovery wells were installed as part of site characterization activities and as a remedial action (groundwater recovery and treatment) to address groundwater contamination associated with historical releases of diesel fuel on the GBR property. For the purposes of this document, the "Site" is considered to be the lateral and vertical extents of contamination related to historical diesel-fuel releases originating from the GBR property. The "Facility" is considered the groundwater recovery and treatment system, as well as the existing water-discharge infrastructure, located on the GBR property.

Since 2015, no water has been discharged at the Facility. However, additional groundwater sampling is planned as part of additional characterization proposed for the Site per the *Stage 1 Abatement Plan* prepared by LT Environmental (LTE). Depending on the results of the additional sampling, the groundwater recovery and treatment system may be reactivated and require the discharge of treated effluent into the existing infiltration trenches located at the Site.

2.0 OPERATOR INFORMATION

The landowner, operator and legally responsible party is as follows:

Western Refining Southwest, Inc. 539 South Main Street, Room M-7081 Findlay, OH 45840 Phone: (419) 421-2338

Correspondence regarding this discharge plan should be directed to the local representative:

Gregory McCartney Senior Environmental Professional Marathon Petroleum Company LP 539 South Main Street, Room M-7081 Findlay, OH 45840 Phone: (419) 310-4888

3.0 LOCATION

The Facility is located on the northeast corner of United States Highway 64 and County Road 3500, approximately five miles west of Bloomfield, New Mexico, in the southwest quarter of Section 22 and the northwest quarter of Section 27, Township 29 North, Range 12 West in San Juan County, New Mexico (Figure 1).

4.0 LANDOWNER INFORMATION

The landowner, operator and legally responsible party is as follows:

Western Refining Southwest, Inc. 539 South Main Street, Room M-7081 Findlay, OH 45840 Phone: (419) 421-2338

5.0 FACILITY DESCRIPTION

The Facility consists of the former Giant Bloomfield Refinery storage tanks and equipment, as well as the remedial equipment installed for recovery, treatment, and discharge of groundwater from the Site (pumps, piping, and treatment system). The refinery operated from 1974 to 1982 and is presently inactive. A remediation system was installed in stages beginning in 1988 and has gradually been simplified over time. The remediation system was designed to treat groundwater affected by various releases during operation of the former refinery and periodic spills at the truck unloading facility. The remediation system consists of a series of groundwater monitoring wells, groundwater recovery wells, water treatment equipment, and treated-water infiltration trenches. During operation, the treatment system could process up to 5,000,000 gallons of water per year. Currently, the Facility and associated equipment is located within the GBR property boundary. The location of the current Facility equipment is shown on Figure 2.

6.0 STORED MATERIALS

The refinery is no longer in operation and there are no stored materials located at the Facility.

7.0 EFFLUENT SOURCES

The effluent will be derived from groundwater pumped from a series of recovery wells at the Site. Groundwater in several areas of the Site is impacted by petroleum hydrocarbons. However, the recovered water will be treated prior to discharge (see Section 8.0). Table 1 presents the analytical results of the influent and effluent water in 2015 prior to shut-down of the remediation system. Up to 420,000 gallons of water was previously treated and discharged per month.

8.0 WATER COLLECTION, TREATMENT, AND DISPOSAL

8.1 WATER COLLECTION

At the Facility, petroleum hydrocarbon-impacted groundwater and phase-separated hydrocarbons (PSH) may be pumped from the shallow aquifer through a series of recovery wells located within the formerly defined contaminant plume associated with the Site. Locations of previously used recovery wells are shown in Figure 2 and are identified by the acronym GRW (Giant Recovery Well), followed by a numerical designation. There may be solid filters in each recovery well enclosure to control deposition of solid contaminants in the system. Flow meters will be installed to monitor volumes of groundwater recovered.

8.2 WATER TREATMENT

Recovered water exhibiting dissolved phase contaminants and/or PSH above New Mexico Water Quality Control Commission (NMWQCC) regulatory standards require treatment to within applicable guidelines prior to discharge. A carbon adsorption process formerly was utilized for water treatment prior to discharge and is available for future use, if appropriate. This process removes contaminants from the groundwater by forcing it through tanks containing activated carbon treated to attract the contaminants. Figure 3 presents a simplified representation of the groundwater recovery and treatment system at the Site. Figure 4 details the carbon adsorption tank and associated piping used at the refinery.

8.2.1 Tank 102

Depending on the volume recovered, Tank 102 (capacity of 500 barrels, or 21,000 gallons) may be used as an intermediate storage tank for the water treatment system. The tank can store water before it is treated.

8.3 WATER DISCHARGE

Once treated, water can be discharged to an infiltration trench located within the Site boundary. Infiltration trenches consist of subsurface distribution systems placed within gravel packs. Water infiltrates into the surrounding strata and eventually makes its way to the shallow aquifer. Figure 5 illustrates a typical infiltration gallery. The return of treated water to the aquifer serves to recharge the aquifer.

9.0 PROPOSED MODIFICATION OF EXISTING COLLECTION, TREATMENT, AND DISPOSAL SYSTEMS

No modifications of the existing collection, treatment, and/or disposal systems are requested at this time. Following completion of a *Stage 1 Abatement Plan*, changes may be proposed in a *Stage 2 Abatement Plan*.

10.0 INSPECTION AND MAINTENANCE PLAN

When in operation, inspection and maintenance are an integral part of the remediation system. Inspection provides information critical to the safe and efficient operation of the system. Maintenance is key in the prevention of undesirable events and excessive downtime. Regular inspections are performed to assure safe and efficient operation. During operation, the system will be monitored on a regular basis during the work week. Observations will be recorded in a bound field logbook with the date, time, and person recording the information noted.

During operation, an inspection will be made weekly in the control building, at the storage tank, and each recovery well. All equipment will be inspected for leaks and malfunctions. The operator will be familiar with the location of underground lines and note any surface indication of underground leaks. Leaks of any size will be noted and repaired. Readings from all water meters will be observed and recorded in the logbook regularly, and comparisons to previous readings will be made. Abnormal meter readings can indicate problems within the system. On a semi-annual basis, the level of water and product is determined for each monitoring and recovery well. An electronic water/oil detection tape is used to determine levels. The data will be recorded in a logbook.

Maintenance of the Facility will include replacement of filters in well houses, lubrication of rotating equipment, air compressor oil changes, addition of nutrients as necessary, observations of unusual pump and motor noise, inspection of the carbon pre-filter, and repair of any equipment as required. Water volumes removed from each recovery well will be metered. Metered water volumes, as well as water levels, indicate the effectiveness of the well pump and controls. Efforts will be made to maintain consistent pumping rates.

An inspection and maintenance schedule and checklist will be provided with the *Stage 2 Abatement Plan*.

11.0 SPILLS AND RELEASE CONTINGENCY PLAN

In the event of an unplanned release of water or hydrocarbon at the Facility, the Western Project Manager should be notified and act as the response coordinator. If the Project Manager is not available, the next person noted in the following list of alternates should be notified.

INTERNAL EMERGENCY NOTIFICATIONS

- **24-hour Emergency Line:** 1-888-658-8006
- Tommy D. Roberts Facility Supervisor

Mobile:	505-801-0421
Office:	505-632-4195

• Frank Dooling - Operations

Mobile:	505-634-6138
Office:	505-632-4142

EMERGENCY RESPONSE CONTRACTORS

- EnviroTech Inc. / Emergency Spill Response Contractor
 - 5796 U.S. Highway 64
 - Farmington, New Mexico 87401
 - 24 Hour Emergency Response: 1-800-362-1879
- H2O Environmental / Emergency Spill Response Contractor
 - 2634 S Airport Blvd #2
 - Chandler, Arizona 85286
 - 24 Hour Emergency Response: 480-855-5676

If it is determined that the release is 5 barrels or greater, the OCD will be notified and a written report submitted. Leaks occurring outside of tank containment berms should be contained or redirected so that they can be picked up by pumps or vacuum trucks and placed back in storage. In the event of a broken pipe, the leaking section should be isolated by closing necessary valves and shutting down pumps.

11.1 SPILL AND LEAK PREVENTION AND MONITORING

Leaks and spills are not likely; however, the potential does exist for these events. Tanks and piping are the most likely locations for leak and/or spills. Safeguards in place in the refinery include choice of construction materials, safety and shutdown devices, secondary containment, inspection and security.

11.1.1 Construction Materials

All piping is and will be constructed of PVC or other hydrocarbon and corrosion resistant plastic. Material choices for valves and controls include plastic, stainless steel, bronze and cast iron. All are suitable for water and hydrocarbon service. Storage Tank 102 is constructed of steel.

11.1.2 Safety and Shutdown Devices

All storage tanks are equipped with high- and low-level liquid sensors to detect breaches or overfills. Any treatment system installed may be equipped with an emergency shutoff.

11.1.3 Secondary Containment

Tank 102 has viable earthen secondary containment berms in place. The bermed area has a minimum liquid capacity of 1.5 times the total capacity of the tank contained within it. Berms are monitored and maintained to ensure effectiveness.

11.1.4 Inspection

During system operation, regular inspections will be performed during the work week. These inspections include looking for visual indications of leaks, checking tank levels, recording and comparing meter readings and checking the condition of pump seals and motors. Unusual conditions are noted in the logbook and reported to the Project Manager.

11.1.5 Security

The facility is entirely fenced with chain link or barbed wire. Gates are locked and access is limited to facility personnel and supervised visitors and contractors.

12.0 GEOLOGICAL/HYDROLOGICAL INFORMATION

The Facility and Site are located on weathered outcrops of Nacimiento Formation, which is comprised of shales, sandstones and siltstones of Cretaceous-Tertiary age. Immediately to the west of the Facility and on Western's property is a large unnamed arroyo, which is underlain by 30 to 60 feet of Quaternary alluvial sediments. Older Quaternary terrace deposits of cobbles and boulders are observed on the interfluvial ridges adjacent to the arroyo. These terrace deposits may have been utilized as fill on the refinery site. The San Juan River Valley is located south of the site and contains up to several hundred feet of alluvial fill.

The uppermost zone of ground water in the refinery area is unconfined to partially confined water table unit, which is hosted by the weathered, locally porous sandstones and shales of the Nacimiento Formation and arroyo alluvium. These units merge hydrologically with the San Juan River alluvium to the south. Figures 6 and 7 present generalized cross sections through the refinery site showing the relationship of the arroyo alluvium to bedrock. Major hydrogeologic features of the site are:

- An interconnected water table aquifer hosted by both valley and arroyo fill and the upper parts of the Nacimiento Formation;
- Ground water at a depth of 30 to 70 feet beneath the land surface;
- An upper water table surface generally conforming to topography, with ground water flow from north or northeast to south (towards the San Juan River) through the refinery area;
- Minor, local zones of perched ground water lying 5 to 10 feet above the water table.

Water levels and floating product thicknesses were measured in all wells at the Site during 2019. A record of these measurements is shown in Table 2. A groundwater contour map was prepared based on the static water levels of all the wells at the Site in November 2019 (Figure 8). This map is representative of static conditions of the aquifer because pumping currently is not being performed on wells at the Site. Where floating product was encountered, the product thickness has been multiplied by 0.8 and added to the measured water elevation. This calculation corrects for the difference in density between floating product and water.

12.1 BACKGROUND CONCENTRATIONS

As discussed in the *Stage 1 Abatement Plan* prepared for the Site (LTE, 2020), several constituents are present at the Site at concentrations exceeding NMWQCC standards. However, based on concentrations detected in wells hydrogeologically upgradient of the Site, elevated concentrations of several constituents are present due to the offsite migration of contaminants originating from the Lee Acres Landfill Superfund site. Specifically, chloride, chromium, iron, sulfate, and TDS concentrations are present in groundwater at and downgradient of the Lee Acres Landfill at concentrations above NMWQCC standards; however, these constituents were not considered during the remediation-selection process outlined in the *Record of Decision* for the Superfund site (EPA, 2004). In addition to these constituents, manganese (considered a COC for the Lee Acres Landfill Superfund site) also is found at concentrations above NMWQCC standards. These constituents have long been detected at the Site in upgradient wells GBR-32, GBR-48, GBR-49, and

GBR-50, located hydrogeologically upgradient of the source areas at the Site (identified on Figure 2) and downgradient of the Lee Acres Landfill Superfund site.

In June 2019, LTE performed a statistical analysis using ProUCL software (developed by the United States Environmental Protection Agency, or EPA) to develop "background" concentrations for the following constituents migrating onto the Site: chloride, chromium, iron, manganese, sulfate, and TDS. Table 3 presents the results of the statistical analysis and groundwater analytical results for these constituents detected between 2010 and 2018. Table 3 also presents the cleanup standards (or "remedial goals") established for the Lee Acres Landfill Superfund site in their *Remedial Investigation Report* (BLM, 1992) and *Record of Decision* (EPA, 2004). Appendix B presents the assumptions and inputs used for the statistical analysis. Appendix B also includes a letter prepared by LTE summarizing our findings that was provided to the EPA for their five-year review of the Lee Acres Landfill Superfund site (conducted in 2019).

12.2 FLOODING POTENTIAL

The greatest threat to flooding of the Facility are the San Juan River (located less than one mile south of the site) and the unnamed arroyo located within the Site itself. History suggests flooding potential of the San Juan River is small. From 1904 until 1976, only 23 flood events (on individual streams, not concurrent on all streams) have been recorded. According to a study conducted by the New Mexico Floodplain Managers Association (2003), previous floods of the San Juan River resulted from general rainstorms, snowmelt augmented by rain, and from cloudburst storms. Rain floods usually occur during the months of September and October. This type of flood results from prolonged heavy rainfall over tributary areas and is characterized by high peak flows of moderate duration. Major floods (recurrence interval of 100 or more years) result from excessive snowmelt generally occur during the period from May through July. Snowmelt flooding is characterized by moderate peak flows, large volume and long duration, and marked diurnal fluctuation in flow. The refinery is elevated above the floodplain of the San Juan River, decreasing the chance of a river flood, such as the ones described above, from reaching the Facility.

The flooding potential of the arroyo is predicted to be low as well. Similar arroyos have been studied in detail near Farmington and are described as ephemeral in character, flowing only during periods of heavy rainfall (New Mexico Floodplain Managers Association, 2003). Furthermore, the arroyo's influence on the Site and Facility has been decreased due to the construction of a new highway located between the arroyo and the refinery.

13.0 MONITORING AND REPORTING

When the Facility is in operation, influent/effluent and water samples will be collected on a monthly basis. Per the *Stage 1 Abatement Plan* (LTE, 2020) prepared for the Site, groundwater conditions also will be monitored through sampling of the existing Site monitoring wells. Based on the results of the Stage 1 sampling, a *Stage 2 Abatement Plan* and/or *Groundwater Monitoring Plan* will be prepared for the Site. At a minimum, appropriate wells will be gauged quarterly, with groundwater sampled for chemical analysis annually when the Facility is in operation. Constituents to be analyzed will be based on the results of the *Stage 1* and *Stage 2 Abatement Plans*.

A report of activities performed at the Facility will be prepared annually. The report will include an update of operations, analytical results, water levels, a potentiometric surface map, and discharge volume history. Reports and associated data will be retained by Western for a period of at least five years.

14.0 FACILITY CLOSURE AND POST CLOSURE PLAN

As described in Section 13.0 above, specific monitoring wells will be gauged quarterly, with groundwater sampled for chemical analysis annually when the Facility is in operation. Constituents to be analyzed will be based on the results of the *Stage 1* and *Stage 2 Abatement Plans*.

After completing abatement of groundwater contaminants originating from the Site to the standards proposed in the *Stage 2 Abatement Plan*, Western will cease active remedial actions and perform appropriate quarterly groundwater monitoring for at least two years (eight quarters) based on results at the time of proposed closure. During this period of monitoring, no maintenance activities are anticipated for the existing remediation system. Western will submit annual reports to the NMOCD documenting monitoring results. Once eight consecutive quarters with groundwater contaminants below applicable standards is documented, facility closure will be requested from the NMOCD that will include the following activities:

- Remove or plug all lines leading to and from groundwater recovery wells and injection lines so that a discharge can no longer occur at the Site.
- Remove all remediation system components from the Site, if applicable.
- Plug and abandon all monitoring wells associated with the Site.

Estimated costs for closure and post-closure activities are presented in Table 4.

15.0 PERMIT RENEWAL

The Facility discharge permit will expire five years after NMOCD approval and notification of this application. Western will prepare and submit an application for discharge permit renewal at least 120 days before the discharge permit expires. If the renewal application is submitted at least 120 day prior to expiration, then the existing discharge permit for the same activity shall not expire until the application for renewal has been approved or disapproved by NMOCD.

16.0 PERMIT MODIFICATIONS

In the case of Facility expansion, increase in discharge, and/or other significant modifications to the discharge of water, Western will notify NMOCD in writing for review and approval prior to implementing the modification. An application and a description of the requested modifications will be included in the written notice.

Modifications to abatement or monitoring plans prepared to address pre-existing contaminants associated with the Site (as of March 2020) also will be submitted to NMOCD in writing for review and approval. These modifications will not require an application and will not be subject to permit fees as described in Table 1 of 20.6.2.3114 NMAC. However, filing and/or review fees may be applied as presented in Table 2 of 20.6.2.3114 NMAC.

17.0 REFERENCES

- New Mexico Floodplain Managers Association, 2003, A History of Floods and Flood Problems in New Mexico, LA Bond Associates, High Rolls, New Mexico, 144 p.
- United States Bureau of Land Management (BLM). (1992). Remedial Investigation Report for the Lee Acres Landfill. Albuquerque: US Bureau of Land Management.
- United States Environmental Protection Agency (EPA). (2004). Record of Decision for the Lee Acres Landfill Superfund Site, Farmington, New Mexico.

18.0 CERTIFICATION

WESTERN REFINING SOUTHWEST, INC. GIANT BLOOMFIELD REFINERY BLOOMFIELD, NEW MEXICO

I certify that the information provided in the application is true, accurate, and complete to the best of my knowledge, after reasonable inquiry.

Signature:

Gregory McCartney Senior Environmental Professional gjmccartney@marathonpetroleum.com May 11, 2020

Date

FIGURES

P:\Western Refining\GIS\MXD\029519002_GBR\029518010_GIANT_FIG01_SL.mxd

P:\Western Refining\GIS\MXD\029519002_GBR\029518010_GIANT_FIG02_SITE_XSEC.mxd

- SCREENED INTERVAL H
- BGS BELOW GROUND SURFACE
- TD TOTAL DEPTH IN FEET
 - GROUNDWATER ELEVATION FROM OCTOBER 2018

ELEVATION IN FEET

 $\left(\begin{array}{c} \cdot \\ \cdot \end{array} \right)$

 \bigcirc

٩

 \bigcirc

SILTY SAND

PEBBLES/GRAVEL

NACIMIENTO SHALE

NACIMIENTO SANDSTONE

SAND

SOUTH

HORIZONTAL SCALE 1" = 10 FEET

VERTICAL SCALE 1" = 90 FEET

FIGURE 6 **CROSS SECTION A-A'** FORMER GIANT BLOOMFIELD REFINERY SWSW SEC 22 & WNW SEC 27 T29N R12W WESTERN REFINING SOUTHWEST, INC.

FIGURE 7 CROSS SECTION B-B' FORMER GIANT BLOOMFIELD REFINERY SWSW SEC 22 &WNW SEC 27 T29N R12W WESTERN REFINING SOUTHWEST, INC.

HORIZONTAL SCALE 1" = 10 FEET

VERTICAL SCALE 1" = 90 FEET

P:\Western Refining\GIS\MXD\029519002_GBR\029519002_GIANT_FIG06_NOV_2019.mxd

TABLES

TABLE 1 2015 INFUENT AND EFFLUENT ANALYTICAL RESULTS

FORMER GIANT BLOOMFIELD REFINERY WESTERN REFINING SOUTHWEST, INC. SAN JUAN COUNTY, NEW MEXICO

Analyta	NMWQCC	Unit	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	
Analyte	Standard	Unit	27-Jan	27-Jan	8-Apr	8-Apr	24-Jul	24-Jul	3-Aug	3-Aug	
USEPA Method 8260B: Volatiles											
penzene	10	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
oluene	750	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
ethylbenzene	750	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
nethyl tert-butyl ether (MTBE)	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
,2,4-trimethylbenzene	620	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
,3,5-trimethylbenzene	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
,2-dichloroethane (EDC)	10	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
2-dibromoethane (EDB)	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
aphthalene	NE	μg/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	
methylnaphthalene	NE	μg/L	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	
methylnaphthalene	NE	μg/L	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	
cetone	NE	μg/L	<10	<10	<10	<10	<10	<10	<10	<10	
romobenzene	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
romodichloromethane	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
romoform	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
romomethane	NE	μg/L	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	
butanone	NE	μg/L	<10	<10	<10	<10	<10	<10	<10	<10	
rbon disulfide	NE	μg/L	<10	<10	<10	<10	<10	<10	<10	<10	
rbon tetrachloride	10	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
lorobenzene	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
loroethane	NE	μg/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	
lloroform	100	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
loromethane	NE	μg/L	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	
chlorotoluene	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
chlorotoluene	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
s-1,2-DCE	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
s-1,3-dichloropropene	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
,2-dibromo-3-chloropropane	NE	μg/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	
ibromochloromethane	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
bromomethane	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
2-dichlorobenzene	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
3-dichlorobenzene	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
4-dichlorobenzene	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
chlorodifluoromethane	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
1-dichloroethane	25	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
1-dichloroethene	5	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
2-dichloropropane	NE	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
3-dichloropropane	NE	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
2-dichloropropane	NE	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	
1-dichloropropene	NE	<u></u>	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	

TABLE 1 2015 INFUENT AND EFFLUENT ANALYTICAL RESULTS

FORMER GIANT BLOOMFIELD REFINERY WESTERN REFINING SOUTHWEST, INC. SAN JUAN COUNTY, NEW MEXICO

Analyta	NMWQCC	llmit	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent
Analyte	Standard	Unit	27-Jan	27-Jan	8-Apr	8-Apr	24-Jul	24-Jul	3-Aug	3-Aug
hexachlorobutadiene	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-hexanone	NE	μg/L	<10	<10	<10	<10	<10	<10	<10	<10
isopropylbenzene	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
4-isopropytoluene	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
4-methyl-2-pentanone	NE	μg/L	<10	<10	<10	<10	<10	<10	<10	<10
methylene chloride	100	μg/L	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
n-butylbenzene	NE	μg/L	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
n-propylbenzene	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
sec-butylbenzene	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
styrene	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
tert-butylbenzene	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1,2-tetrachloroethane	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-tetrachloroethane	10	μg/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
tetrachloroethene (PCE)	20	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,2-DCE	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,3-dichloropropene	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-trichlorobenzene	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-trichlorobenzene	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1-trichloroethane	60	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-trichloroethane	10	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trichloroethene (TCE)	100	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trichlorofluoromethane	NE	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-trichloropropane	NE	μg/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
vinyl chloride	1	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
xylenes, total	620	μg/L	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5

Notes:

BOLD - indicates concentration exceeds the NMWQCC standard

mg/L - milligrams per liter

NE - not established

NMWQCC - New Mexico Water Quality Control Commission

NT - not tested

µg/L - micrograms per liter

USEPA - United States Environmental Protection Agency

TABLE 2 GROUNDWATER ELEVATIONS AND THICKNESS OF PHASE-SEPARATED HYDROCARBONS

FORMER GIANT BLOOMFIELD REFINERY WESTERN REFINING SOUTHWEST, INC. SAN JUAN COUNTY, NEW MEXICO

				Mai	rch 2019			Novem	ber 2019	
Well Number	Wellhead Elevation (feet)	Total Depth (feet)	Depth to Water (feet BTOC)	Depth to Product (feet)	PSH Thickness (feet)	Adjusted GWEL (feet)	Depth to Water (feet BTOC)	Depth to Product (feet)	PSH Thickness (feet)	Adjusted GWEL (feet)
GRW-1	5 394 30	73.35	43.33	-	-	5.350.97	44.81	-	-	5.349.49
GRW-2	5 391 28	61.00	44.98	-	-	5.346.30	44.19	-	-	5.347.09
GRW-3	5 388 77	58.30	43.83	-	-	5.344.94	44.21	-	-	5.344.56
GRW-4	5.390.02	60.00	42.19	-	-	5.347.83	42.44	-	-	5.347.58
GRW-5	5.390.56	68.30	42.28	-	-	5.348.28	42.61	-	-	5.347.95
GRW-6	5 390 81	53.80	41.45	-	-	5.349.36	41.84	-	-	5.348.97
GRW-9	5.395.70	54.40	41.10	-	-	5.354.60	41.29	-	-	5.354.41
GRW-10	5 395 02	66.02	36.15	-	-	5.358.87		NM - Well bl	ocked at 5 f	eet
GRW-11	5 397 85	64.00	33.18	-	-	5.364.67	33.37	-	-	5.364.48
GRW-12	5 397 24	48.00	35.42	-	-	5.361.82	35.45	-	-	5.361.79
GRW-13	5 396 90	61.30	34.51	-	-	5.362.39	33.90	-	-	5.363.00
GBR-5	5 395 07	47.08	41 41	_	-	5 353 66	40.70	-	-	5 354 37
GBR-7	5 305 85	51.65	41 91	41 74	0.17	5 354 08	42.35	42.18	0.17	5 353 64
GBR-8	5 390 50	50.90	42 30	11.71	0.17	5 348 20	42.33	12.10	0.17	5 348 01
GBR-9	5 389 92	67.22	42.25	_	-	5 347 67	42.15	-	-	5 347 48
GBR-10	5 300 57	47.56	42.25	_	-	5 348 23	42.35	-	_	5 348 22
GBR-11	5 380 43	51.87	41 29	_	-	5 348 14	41 57	-	-	5 347 86
GBR-13	5 303 04	45.47	40.98	_	-	5,352.06	41.37	-	-	5,347.00
GBR-15	5,393.04	58 / 2	34.25	_		5 363 74	31.11	-		5 363 55
GBR-17	5,397.99	/3 20	34.68	_		5,368,01	35.31	-		5 367 38
GBR-19	5,402.09	47.20	37.00	_	_	5 38/ 30	37.74	_	_	5 383 0/
GBP_10 (1)	5,421.00	47.00	57.25	_		5,564.55	57.74			5,585.54
	5,595.65	40.23 E4 E7	41.21	-	_	5 252 26	11 51	_	-	E 2E1 06
GBR-21D	5,595.47	J4.J7 /0.77	41.21	-	-	5 363 81	36.63	-	-	5 363 56
GBR-21D	5,400.19	49.77	30.38	-		5,505.81	30.03)rv	5,505.50
GBR-213	5,400.05	28 72	37.60	_		5 258 21	NIA		l onto well c	asing
GBP_22 (2)	5,595.91	20.45	37.00	_		5,558.51	30.00			5 264 72
GBR-24D	5,405.72	51.40	30.66	_		5 366 11	33.00			5 365 06
GBR-24D	5,396.77	27.05	22.20	-	-	5,500.11	51.71)rv	5,505.00
GBR-243	5,396.08	27.03	35.56	-	-	5 361 08	25 /7		лу 	5 361 56
GBR-25	5,397.03	37.1Z 41.20	22 57	-	-	5,501.50	22 57	-	-	5,301.30
GBR-20	5,596.72	41.29	22.04	-	_	5,303.13	22.57	_	-	5,304.15
GBR-30	5,595.59	41.00	55.04	-		5,502.55	25.45	_		5 361 04
GBR-31	5,390.58	43.30	24 56		Diy	E 280 20	25.34	-	-	5,301.04
GBR-32	5,414.80	47.05	54.50	-	-	5,580.50	24.79	-	-	5,575.04
CPD 34	5,396.28	43.72	-	-	-	- E 2E0.46	34.70	-	-	5,501.50
GBR-34	5,394.00	42.20	54.54 24.57	-	-	5,559.40	24.06	-	-	5,556.09
GBP 20	5,593.00	42.55	24.57	-	-	5,353.03	24.90 2/ 11	-		5,556.70
GDR-33	5,397.55	41.4Z	34.00	-	- Dru	3,302.09	34.11		-	3,303.44
GBR-40	5,400.76	24.20	24.20		лу	E 262 06		L) ny	
GDR-41	5,390.35	34.20 12 EA	24.29	-	-	5,502.00 E 201 0C	26.06		лу Г	E 277 04
GPR 40),413.90 (2)	45.54	32.04 22.04	-	-	3,301.00	22.24	-	-	3,377.04
GBP 50	(3)	40.30	52.90 22.10	-	-	-	22 50	-	-	-
GBR-50		44.37 57.07	20.76	-	-	-	52.59 D8.A	-		-
GPP 52	5,389.68	57.07	59.70 27.00	-	-	-	27 0C	-	-	- E 240.00
UDR-32	5,387.74	52.75	57.00			-	57.00			3,349.00

TABLE 2 GROUNDWATER ELEVATIONS AND THICKNESS OF PHASE-SEPARATED HYDROCARBONS

FORMER GIANT BLOOMFIELD REFINERY WESTERN REFINING SOUTHWEST, INC. SAN JUAN COUNTY, NEW MEXICO

				Mai	rch 2019			Novem	ber 2019	
Well Number	Wellhead Elevation (feet)	Total Depth (feet)	Depth to Water (feet BTOC)	Depth to Product (feet)	PSH Thickness (feet)	Adjusted GWEL (feet)	Depth to Water (feet BTOC)	Depth to Product (feet)	PSH Thickness (feet)	Adjusted GWEL (feet)
SHS-1	5,383.54	50.40	P&A	-	-	-	P&A	-	-	-
SHS-2	5,381.66	44.56	P&A	-	-	-	P&A	-	-	-
SHS-3 (4)	5,383.33	-	P&A	-	-	-	P&A	-	-	-
SHS-4	5,383.62	52.16	P&A	-	-	-	P&A	-	-	-
SHS-5	5,378.36	47.85	P&A	-	-	-	P&A	-	-	-
SHS-6	5,378.17	52.78	38.05	-	-	5,340.12	P&A	-	-	-
SHS-8	5,380.25	50.92	38.52	-	-	5,341.73	P&A	-	-	-
SHS-9	5,380.79	46.25			Dry		38.01	-	-	5,342.78
SHS-10	5,373.80	45.80			Dry		P&A	-	-	-
SHS-12	5,373.94	52.41			Dry		P&A	-	-	-
SHS-13	5,367.81	47.51	36.03	-	-	5,331.78	36.28	-	-	5,331.53
SHS-14	5,367.07	52.71	34.36	-	-	5,332.71	P&A	-	-	-
SHS-15 (5)	5,366.21	47.78	34.02	-	-	5,332.19	P&A	-	-	-
SHS-16	5,362.58	42.20	31.25	-	-	5,331.33	P&A	-	-	-
SHS-17	5,364.35	46.21	33.87	-	-	5,330.48	P&A	-	-	-
SHS-18	5,373.64	47.36	39.51	-	-	5,334.13	P&A	-	-	-
SHS-19	5,378.89	52.40	37.76	-	-	5,341.13	P&A	-	-	-

Notes:

BTOC - below top of casing

D - designates that the well screen is deep

GWEL - groundwater elevation

NM - not measured

P&A - plugged and abandoned

PSH - phase-separated hydrocarbon

S - designates that the well screen is shallow

(1) Well was paved over in June 2010

(2) Well hit by a vehicle May 2014

(3) Top-of-casing elevation is unknown

(4) Well is damaged by a tree root

(5) Well visibly broken/buried January 2016

- indicates no GWEL or PSH measured

When PSH is detected, the GWEL is corrected using an estimated density correction factor of 0.8

TABLE 3 2010 to 2018 - ANNUAL COMPLIANCE GROUNDWATER LABORATORY ANALYTICAL RESULTS

FORMER GIANT BLOOMFIELD REFINERY

						WESTE SAN J	RN REFINI UAN COUI	NG SOUTHWES NTRY, NEW ME	T, INC. XICO						
Exploration Location	Wellhead Elevation (feet)	Well Depth (feet)	Screened Interval (depth in feet)	Well Diameter (inches)	Sample Date	Depth to Water (feet BTOC)	5587	Anterod 200: Arions	suffre	JSE	A Metrod 200.7: Total Ma	iter iter	na Bares	USER Metrod SMISAC Modified	a solution of the solution of
NMWQCC Standard	recheld Values (1	,						250	600 2 546		0.05	1.0	0.2	1,000	
Begional Background Th	d Levels (Stone e) htal 1983) ((2)					2 - 34 000	2,546		0.001 - 0.06	97.06	0.42	4,500 NA	
Lee Acres RI Backgro	ound Concentrati	ons - Alluvia	al Aquifer (1992) (3)					6.4 - 404	420 - 2,120		0.0144 - 0.113	0 - 1.48	0.0161 - 0.423	760 - 3,600	
Lee Acres RI/ROD R	emedial Goals (19	992/2004) (4	4)					34,000	14,000		0.06	16	0.346	10,000	
Units								mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	
Lee Acres Sampli Lee Acres Site 1, Sul Lee Acres Site 1, Sul Lee Acres Site 2, Sul	ing, 1992 RI Re barea 2, OU 2 - Al barea 3, OU 2 - So barea 4 - Alluvial	eport (5) Iuvial Aquif Duthern Area Aquifer	er a - Alluvial Aquifer					8.8 - 730 19 - 2,110 3.5 - 604	195 - 4,370 830 - 2,610 310 - 3,220		0.0108 - 0.124 0.0145 - 0.0406 0.043 - 0.110	0.118 - 1.71 0.148 - 23.9 0.0749 - 64.1	0.0161 - 8.62 0.0214 - 4.23 0.0131 - 3.4	943 - 6,560 622 - 5,300 616 - 6,370	
GBR Sampling, U	Jpgradient We	lls (6 <u>)</u>													
GBR-32	5,414.86	45	25 - 40	2	Oct 2018	33.95		200	1,700		0.074	2.7	1.9	3,110	
					Dec 2017			290	1,600		0.13	2.3	1.2	3,210	
					Jan 2017			320	2,000		0.33	11	1.2	3,500	
					Aug 2015			370	2,000		0.02	0.26	0.56	3,830	
					NOV 2014			380	1,900		1.4	5.9	0.70	3,800	
					Jan 2013			500	2,200 2.800		0.030	0.88	0.50	4,320	
					Jan 2011			420	2,300		0.13	NT	NT	4,010	
					Jan 2010			NT	NT		NT	NT	NT	NT	
GBR-48	5,413.90	43.6	28.4 - 38.4	2	Oct 2018	35.62		300	1,800		0.036	18	0.49	3,580	
					Dec 2017			350	1,900		0.13	40	1.7	3,690	
					Jan 2017			340	2,000		0.42	89	4.8	3,360	
					Aug 2015			370	2,100		0.95	170	6.4	3,730	
					Nov 2014			420	2,100		0.92	52	2.0	4,030	
					Jan 2013			230	2,200		0.52	17	0.94	4,020	
					Jan 2012			390	2,200		0.71	9.3	NT	3,510	
					Jan 2010			NT	NT		NT	NT	NT	NT	
GBR-49	*	38 5	25.9 - 36 3	2	Oct 2018	32.06		180	1.800		12	23	0.98	3 010	
		50.5	20.0 00.0	-	Dec 2017	52.00		150	1.300		0.018	0.44	0.30	2.720	
					Jan 2017			210	1,900		0.2	11	1.1	3,160	
					Aug 2015			180	1,500		0.38	7.1	0.54	2,840	
					Nov 2014			63	1,400		0.060	41	3.9	2,340	
					Jan 2013			240	1,600		0.041	4.6	1.3	3,290	
					Jan 2012			260	2,000		0.018	0.23	0.34	3,470	
					Jan 2011			310	2,000		0.48	NT	NT	3,390	
					Jan 2010			IN I	IN I		IN I	IN I	IN I	IN I	

									. /		me	315		solifie
Exploration Location	Wellhead Elevation (feet)	Well Depth (feet)	Screened Interval (depth in feet)	Well Diameter (inches)	Sample Date	Depth to Water (feet BTOC)	158	Ametrod 39.5. Anon	Sulfate	JS	PANetros 2007. Toron	ion	INSURANCE OF	SEE USERA METRO SMEDISONED SUB
NMWQCC Standard			-				I	250	600	<u>r</u>	0.05	1.0	0.2	1,000
GBR Background Thre	eshold Values (1)						560	2,546		1.553	97.06	6.42	4,566
Regional Background	l Levels (Stone, e	t al. 1983) (2)					2 - 34,000	1.9 - 14,000		0.001 - 0.06	0.01 - 16	0 - 2.6	NA
Lee Acres RI Backgro	und Concentration	ons - Alluvia	l Aquifer (1992) (3)					6.4 - 404	420 - 2,120		0.0144 - 0.113	0 - 1.48	0.0161 - 0.423	760 - 3,600
Lee Acres RI/ROD Re	medial Goals (19	92/2004) (4	.)					34,000	14,000		0.06	16	0.346	10,000
	*	40 -	20.04 27 7 7		a : aa : -	24.65		mg/L	mg/L		mg/L	mg/L	mg/L	mg/L
GBR-50	*	42.5	26.91 - 37.26		Oct 2018	31.26		59	1,700		0.044	4.0	0.13	2,770
					Dec 2017			54	1,500		0.16	5.8	0.32	2,590
					Jan 2017			59	1,500 1,700		0.36	ט.ט סיס	1.3	2,580
					Nov 2013			44 52	1 700		0.073	2.2	0.19	2,700
					Jan 2013			49	1,600		<0.0060	1.3	0.12	2,830
					Jan 2012			49	1,800		0.0069	0.72	0.041	2,730
					Jan 2011			46	1,800		0.023	NT	NT	2,640
					Jan 2010			NT	NT		NT	NT	NT	NT
GBR Sampling, So	ource-Area We	ells												
GRW-3/GBR-29 or 43	5 ,388.77	58.3	34.5 - 50.2	6	Oct 2018	43.13		99	640		NT	18	0.80	2.190
	0,00011	0010	0.10 0012	C	Dec 2017	10120		74	1,400		NT	54	1.9	2,920
					Jan 2017			74	1,200		NT	150	2.9	2,730
					Aug 2015			38	1,900		NT	0.89	0.69	3,320
					Nov 2014			26	2,200		NT	0.86	0.44	3,680
					Jan 2013			59	1,300		NT	2.8	0.54	2,620
					Jan 2012			54	1,300		NT	2.8	0.67	2,660
					Jan 2011			95 NT	480 NT		NT	NT	NT	1,810
·					Jan 2010			IN I	IN I		IN I	IN I	IN I	INT
GRW-6/GBR-44	5,390.81	58.6	32.6 - 48.3	6	Oct 2018	40.89		100	1,300		NT	890	45	2,390
					Dec 2017			120	1,200		NT	40	9.1	2,570
					Jan 2017			89	1,500			11	1/	2,580
					Aug 2015 Nov 2014			88 86	1,400 1,600			52 72	δ C TΩ	3,220
					lan 2014			100	1,000		NT	24	8.3 1.2	2 760
					Apr 2012			80	1.900		NT	0.47	1.0	2,740
					Jan 2011			110	1,400		NT	NT	NT	2,490
					Jan 2010			NT	NT		NT	NT	NT	NT
GBR-17	5,402.69	51	31 - 51	2	Oct 2018	34.00		49	1,200		NT	100	3.0	2,180
					Dec 2017			50	1,000		NT	9.3	0.25	2,110
					Jan 2017			46	1,100		NT	15	0.35	1,890
					Aug 2015			43	1,100		NT	3.6	< 0.00200	1,960
					Nov 2014			44	1,200		NT	3.7	0.13	1,980
					Jan 2013			47	1,300		NT	1.2	0.045	2,700
					Jan 2012			46	1,400		NT	3.9	0.15	2,150
					Jan 2011			47 NT	1,300		NT	NT	NT	2,140
					Jan 2010			IN I	IN I		IN I	IN I	IN Í	IN I

Wellhead ExplorationWell Elevation (feet)Screened Interval (depth in feet)Well Diameter (inches)Depth to DateDepth to Water (feet BTOC)Depth fo street (IO Rate 1.0 0.2 7.06 6.42 11 - 16 0 - 2.6 -1.48 0.0161 - 0.423 16 0.346 ng/L mg/L 9.1 1.8 11 1.8 14 1.8	ese 1,000 4,566 NA 760 - 3,600 10,000 mg/L 3,780
NMWQCC Standard GBR Background Threshold Values (1) 250 600 0.05 Regional Background Levels (Stone, et al. 1983) (2) Lee Acres RI Background Concentrations - Alluvial Aquifer (1992) (3) Lee Acres RI Background Concentrations - Alluvial Aquifer (1992) (3) 2 - 34,000 1.9 - 14,000 0.001 - 0.06 0.0 Lee Acres RI Background Concentrations - Alluvial Aquifer (1992) (3) 6.4 - 404 420 - 2,120 0.0144 - 0.113 0 - 0.06 Units mg/L	1.0 0.2 7.06 6.42 01 - 16 0 - 2.6 • 1.48 0.0161 - 0.423 16 0.346 ng/L mg/L 9.1 1.8 11 1.8 14 1.8	1,000 4,566 NA 760 - 3,600 10,000 mg/L 3,780
Constrained values (1) 1.533 5 Regional Background Levels (Stone, et al. 1983) (2) 2 - 34,000 1.9 - 14,000 0.001 - 0.06 0.0 Lee Acres RI Background Concentrations - Alluvial Aquifer (1992) (3) 6.4 - 404 420 - 2,120 0.0144 - 0.113 0 - Lee Acres RI/ROD Remedial Goals (1992/2004) (4) 33 - 43 2 Oct 2018 30.92 130 2,300 NT 9 GBR-24D 5,396.77 46.3 33 - 43 2 Oct 2018 30.92 130 2,300 NT 9 GBR-24D 5,396.77 46.3 33 - 43 2 Oct 2018 30.92 130 2,300 NT 9 Jan 2017 140 1,800 NT 9 <td< td=""><td>7.00 0.42 01 - 16 0 - 2.6 • 1.48 0.0161 - 0.423 16 0.346 ng/L mg/L 9.1 1.8 11 1.8 14 1.8</td><td>NA 3 760 - 3,600 10,000 mg/L 3,780 3,780</td></td<>	7.00 0.42 01 - 16 0 - 2.6 • 1.48 0.0161 - 0.423 16 0.346 ng/L mg/L 9.1 1.8 11 1.8 14 1.8	NA 3 760 - 3,600 10,000 mg/L 3,780 3,780
Units mg/L mg/L <t< th=""><th>ng/L mg/L 9.1 1.8 11 1.8 14 1.8</th><th>mg/L 3,780</th></t<>	ng/L mg/L 9.1 1.8 11 1.8 14 1.8	mg/L 3,780
GBR-24D 5,396.77 46.3 33 - 43 2 Oct 2018 30.92 130 2,300 NT 2 Dec 2017 Dec 2017 140 1,800 NT 2 0 1 0 1 0 1 0 1 0 NT 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1<	9.1 1.8 11 1.8 14 1.8	3,780
Aug 2015 160 2,100 NT Nov 2014 210 1,800 NT Jan 2013 200 1,700 NT 3		3,560 3,390
	11 1.8 12 1.7 3.6 1.8	3,380 3,410 3,430
Jan 2012 200 2,000 NT 2 Jan 2011 170 2,400 NT 1 Jan 2010 NT NT NT NT	2.4 1.7 NT NT NT NT	3,320 3,410 NT
GBR-30 5,395.59 45 25 - 40 2 Oct 2018 32.31 250 1,500 NT 250 Dec 2017 Dec 2017 220 1,300 NT 350 Jan 2017 Aug 2015 310 1,600 NT 350 Nov 2014 270 1,400 NT 310 Jan 2013 310 1,500 NT 310	28 0.76 38 1.4 64 2.3 7.6 0.5 88 2.2 130 6.1 2.0 0.20	3,000 2,770 2,580 3,020 2,520 3,340 2,240
Jan 2012 390 1,700 NT 2 Jan 2011 320 1,600 NT 1 Jan 2010 NT NT NT 1	2.9 0.29 NT NT NT NT	3,240 3,340 NT
Dec 2017 93 1,700 NT Jan 2017 84 1,700 NT 1 Aug 2015 250 1,700 NT 1	15 5.1 21 4.2 1.9 0.18 2.4 0.45 12 1.6	2,940 2,970 3,170 3 100
Jan 2013 79 1,600 NT Jan 2012 74 1,700 NT Jan 2011 97 1,800 NT Jan 2010 NT NT NT	12 1.0 15 0.77 3.8 0.27 NT NT NT NT	2,720 2,760 2,740 NT
GBR-51 5,389.68 59.5 38.5 - 54.25 6 Oct 2018 NM 54 1,300 NT 0. Dec 2017 Jan 2017 Jan 2017 45 990 NT 990 Aug 2015 54 1,600 NT 91	.059 <0.0020	2,330 2,250 2,080 2,430
Nov 2014 54 1,400 NT 55 Jan 2013 56 1,500 NT 55 Jan 2012 53 1,600 NT 55 Jan 2011 53 1,600 NT 55	16 0.47 9.7 0.88 3.1 0.16 NT NT	2,320 2,540 2,440 2,380

					er Sample						Me	tals .		odified
Exploration	Wellhead Elevation	Well Depth	Screened Interval	Well Diameter		Depth to Water (feet BTOC)		A Method 300.9. Anion			A Method 2007. Total		ome	s of wetting with the solution
Location	(feet)	(feet)	(depth in feet)	(inches)	Date	(feet BTOC)	USEY	chlor.	sulfat	55	the chron	iron	mants	JSH KOTAL
NMWQCC Standar	rd						ſ	250	<u>í</u> 600	1	<i>i</i> 0.05	1.0	0.2	1,000
GBR Background T	Threshold Values (1	.)						560	2,546		1.553	97.06	6.42	4,566
Regional Backgrou Lee Acres RI Backg Lee Acres RI/ROD	und Levels (Stone, e ground Concentrati Remedial Goals (19	et al. 1983) (ons - Alluvia 992/2004) (4	(2) al Aquifer (1992) (3) 4)					2 - 34,000 6.4 - 404 34,000	1.9 - 14,000 420 - 2,120 14,000		0.001 - 0.06 0.0144 - 0.113 0.06	0.01 - 16 0 - 1.48 16	0 - 2.6 0.0161 - 0.423 0.346	NA 760 - 3,600 10,000
Units			-					mg/L	mg/L		mg/L	mg/L	mg/L	mg/L
GBR-52	5 <i>,</i> 387.74	50.78	30.08 - 45.75	6	Oct 2018	NM		54	1,500		NT	0.12	0.0028	2,580
					Dec 2017			54	1,500		NT	0.048	<0.0020	2,640
					Jan 2017			58	1,400		NT	18	0.46	2,540
					Aug 2015			65	1,400		NT	8.2	0.15	2,840
					Nov 2014			65	1,700		NT	12	0.25	2,540
					Jan 2013			63	1,700		NT	2.3	0.036	2,770
					Jan 2012			60	1,800		NT	2.2	0.032	2,720
					Jan 2011			62	1,900		NT	NT	NT	2,700
					Jan 2010			NT	NT		NT	NT	NT	NT
GBR Sampling	Downgradient V	Wells												
		50.07	25.67.45.67		1 2017	59.4		100	4 9 9 9		NT	5.IT	NIT	2,422
SHS-1	5,383.54	50.97	35.67 - 45.67	4	June 2017	P&A		100	1,300		NI	NI	NI	2,400
					Jan 2011			INI	IN I		INI	INT	IN I	N I
SHS-2	5,381.66	41.28	30.98 - 40.98	4	June 2017	P&A		310	2,200		NT	NT	NT	4,100
					Jan 2011			NT	NT		NT	NT	NT	NT
SHS-4	5,383.62	55	37 - 47	2	June 2017	P&A		59	1,600		NT	NT	NT	2,270
SHS-5	5.378.36	53.33	37.62 - 48.0	4	June 2017	P&A		50	1.200		NT	NT	NT	2.030
	0,070.000				Jan 2011			NT	NT		NT	NT	NT	NT
SHS-6	5,378.17	47.88	32.48 - 42.85	4	Jan 2018	37.85		NT	NT		NT	NT	NT	NT
SHS-8	5,380.25	52 5	30 83 - 46 60	4	Oct 2018	38 25		130	890		NT	50	2 1	2 730
SHS-8	0,000.20	52.5	50.05 40.00		Dec 2017	30.23		110	1,200		NT	10	3.6	2,730
SHS-8					Jan 2017			100	720		NT	66	3.0	2,730
SHS-8					Aug 2015			120	47		NT	8.6	0.41	1.300
SHS-8					Nov 2014			110	350		NT	260	5.0	1,400
SHS-8					Jan 2013			120	770		0.099	100	4.7	1,800
SHS-8					Jan 2012			170	430		NT	15	2.3	2,040
SHS-8					Jan 2011			150	150		0.0063	NT	NT	1,440
SHS-8					Jan 2010			NT	NT		NT	NT	NT	NT
SHS-9	5,380.79	49.88	34.46 - 44.46	4	Jan 2018	37.43		NT	NT		NT	NT	NT	NT
SHS-13	5,367.81	47.4	27 - 42	4	Jan 2018	35.85		NT	NT		NT	NT	NT	NT
SHS-14	5.367.07	54	28.70 - 48.70	4	Jan 2018	34.18		NT	NT		NT	NT	NT	NT
SHS-15	5 366 21	47.8	27 40 - 42 40	4	lan 2018	33.00		NT	NT		NT	NT	NT	NT
0.10 10	3,300.21	-7.0	27.70 72.70	т	3011 2010	33.00								

Exploration Location	Wellhead Elevation (feet)	Well Depth (feet)	Screened Interval (depth in feet)	Well Diameter (inches)	Sample Date	Depth to Water (feet BTOC)	JSEP	Metro 2000: Milors	Subate	558	Amethod 2007: Toraine	ist it of	TRANSPORT	USER METROS MERCHONINGS
NMWQCC Standard								250	600		0.05	1.0	0.2	1,000
GBR Background Thr	reshold Values (1)							560	2,546		1.553	97.06	6.42	4,566
Regional Background	d Levels (Stone, e	t al. 1983) (2)					2 - 34,000	1.9 - 14,000		0.001 - 0.06	0.01 - 16	0 - 2.6	NA
Lee Acres RI Backgro	ound Concentratio	ons - Alluvia	l Aquifer (1992) (3)					6.4 - 404	420 - 2,120		0.0144 - 0.113	0 - 1.48	0.0161 - 0.423	760 - 3,600
Lee Acres RI/ROD Re	emedial Goals (19	92/2004) (4	L)					34,000	14,000		0.06	16	0.346	10,000
Units								mg/L	mg/L		mg/L	mg/L	mg/L	mg/L
SHS-16	5,362.58	42.6	22.2 - 37.2	4	Jan 2018	32.68		NT	NT		NT	NT	NT	NT
SHS-17	5,364.35	46.21	35.67 - 45.67	4	Jan 2018	32.63		NT	NT		NT	NT	NT	NT
SHS-18	5,373.64	47.36	37.36 - 47.36	4	Jan 2018	39.24		NT	NT		NT	NT	NT	NT
SHS-19	5,378.89	52.4	32.40 - 52.40	4	Jan 2018	37.77		NT	NT		NT	NT	NT	NT

Notes

Background Concentrations Proposed for the Giant Bloomfield Refinery Site. Based on Statistical Analysis Prepared by LT Environmental and Submitted to New Mexico Oil Conservation District in an Email Dated June 10, 2019. (1)

(2) Regional Background Concentrations Established in Document Titled Hydrogeology and Water Resources of San Juan Basin, New Mexico, Stone et al., dated 1983

(3) "Background" Concentration Proposed in Lee Acres DRAFT Remedial Investigation Report Prepared for the US Bureau of Land Management (dated February 1992)

(4) Contaminant Concentrations Established as the "Remedial Goals" or "Background" Concentrations for the Lee Acres Superfund Site. Based on the Lee Acres DRAFT Remedial Investigation Report and Record of Decision (dated May 2004).

The Lee Acres Remedial Investigation Report Presents Analytical Data for Areas of the Site and Not Data for Individual Wells (5)

(6) Well Location Used for Statistical Analysis of Background Concentrations

* Top-of-Casing Elevation is Unknown

NM Not Measured

P&A Plugged and Abandoned

μg/L micrograms per liter

BOLD Indicates Concentration Exceeds the Greater Value of the NMWQCC Water-Quality Standards or Background Threshold Values Proposed for the Giant Bloomfield Refinery

mg/L milligrams per liter

NMWQCC New Mexico Water Quality Control Commission

NT Not Tested

USEPA United States Environmental Protection Agency

TABLE 4 CLOSURE AND POST CLOSURE COST ESTIMATES

FORMER GIANT BLOOMFIELD REFINERY WESTERN REFINING SOUTHWEST, INC SAN JUAN COUNTY, NEW MEXICO

QUARTERLY GROUNDWATER COMPLIANCE MONITORING					
LABOR COST	Senior	Project	Staff	CADD/	Admin/
LABOR COST	Sci/Eng I	Sci/Eng II	Sci/Eng II	Designer	Clerical
Task 1 -Office (2 Annual Reports)	8	60	16	16	4
Task 2 - Field (8 Sampling Events, 2 Personnel)	4	32	160		4
TOTAL HOURS	12	92	176	16	8
RATE (\$)	\$150.00	\$115.00	\$90.00	\$70.00	\$60.00
	\$1,800.00	\$10,580.00	\$15,840.00	\$1,120.00	\$480.00
				SUBTOTAL	\$29,820.00
OTHER DIRECT COSTS		QTY.	UNIT	RATE	UNIT TOTAL
Interface Probe		8	day	\$60.00	\$480.00
Temp/PH/Conductivity Meter		8	day	\$35.00	\$280.00
Held Venicle		8	day	\$120.00	\$960.00
Misc Field Equipment		100	ea.	\$7.00	\$1,120.00
		0	ed.	\$25.00	\$184.00
				SUBTUTAL	\$5,024.00
OTHER COSTS BILLED DIRECT TO WESTERN		ΟΤΥ	UNIT	RATE	ΠΝΙΤ ΤΟΤΑΙ
Laboratory Analyses (VOCs PAHs 20 Wells each event)		160	ea	\$270.00	\$43 200 00
		100	<u>cu.</u>		\$43,200.00
				JOBIOTAL	343,200.00
				TOTAL	\$76.044.00
					+
SYSTEM REMOVAL AND P&A OF WELLS					
	Senior	Project	Staff	CADD/	Admin/
LABOR COST	Sci/Eng I	Sci/Eng II	Sci/Eng II	Designer	Clerical
Task 1 - Follow Up and Documentation/State Engineer Coordination	2	20	10	10	2
Task 2 - Field		8	100		2
TOTAL HOURS	2	28	110	10	4
RATE (\$)	\$150.00	\$115.00	\$90.00	\$70.00	\$60.00
	\$300.00	\$3,220.00	\$9,900.00	\$700.00	\$240.00
				SUBTOTAL	\$14,360.00
OTHER DIRECT COSTS		QTY.	UNIT	RATE	UNIT TOTAL
Drilling Services, P&A of 47 Monitoring and Recovery Wells		1	ea.	\$45,000.00	\$45,000.00
Removal of Remediation System Intrastructure and Subsurface Piping		10	ea.	\$30,000.00	\$30,000.00
Mise Field Equipment		10	uay	\$120.00	\$1,200.00
		10	ed.	ŞZS.00	\$250.00
				SUBIUIAL	\$76,430.00
				ΤΟΤΑΙ	\$90 790 00
				TOTAL	\$50,750.00
CLOSURE REPORTING AND NEGOTIATIONS					
LABOR COST	Senior	Project	Staff	CADD/	Admin/
LABOR COST	Sci/Eng I	Sci/Eng II	Sci/Eng II	Designer	Clerical
Task 1 - Closure Reporting and NMOCD Negotiations	8	76	28	16	3
TOTAL HOURS	8	76	28	16	3
RATE (\$)	\$150.00	\$115.00	\$90.00	\$70.00	\$60.00
	\$1,200.00	\$8,740.00	\$2,520.00	\$1,120.00	\$180.00
				SUBTOTAL	\$13,760.00
OTHER DIRECT COSTS		QTY.	UNIT	RATE	UNIT TOTAL
Field Veniclé		2	day	\$120.00	\$240.00
				SUBTOTAL	Ş240.00
				TOTAL	¢14.000.00
				TOTAL	\$14,000.00

SUBTOTAL	\$180,834.00
CONTINGENCY (10%)	\$18,083.40
TOTAL ESTIMATED COST	\$198,917.40

LT Environmental, Inc.

848 East Second Avenue Durango, Colorado 81301 970.385.1096

October 4, 2019

Nelly Smith, Remedial Project Manager Superfund and Emergency Division – Remedial Branch (6SEDRL) U.S. Environmental Protection Agency – Region 6 1445 Ross Avenue, Suite 1200, Dallas, TX 75202

RE: EPA-Requested Information Giant Bloomfield Refinery GW-40 Site Western Refining Southwest, Inc. (Marathon Petroleum Company, LP) Bloomfield, New Mexico

Dear Ms. Smith:

At the request of the United States Environmental Protection Agency (USEPA), in conjunction with the New Mexico Oil Conservation Division (NMOCD), LT Environmental has prepared the attached table (Table 1) to provide requested well information and analytical data for the former Giant Bloomfield Refinery, "GW-40" site (the "Site"). Specifically, the table provides well information that includes wellhead elevation, well depth, well-screen interval, well diameter, and depth to water measurements. The table also presents analytical results for select constituents requested by the USEPA, collected during annual sampling events between 2010 and 2018 (chloride, sulfate, chromium, iron, manganese, and total dissolved solids). In addition, the *2018 Annual Report* prepared for the Site is attached for your review. The report includes analytical results for the 2018 groundwater-sampling event, as well as figures presenting well locations, cross sections, and groundwater potentiometric surface maps with interpreted groundwater-flow directions. We understand that this information will be used as part of the upcoming five-year review for the upgradient Lee Acres Superfund Site.

Please contact us if you have questions regarding the attached information.

Sincerely,

LT ENVIRONMENTAL, INC.

Devin Hencmann Project Geologist Stuart Hyde, LG Project Geologist

cc: Greg McCartney, Marathon Petroleum Company, LP Carl Chavez, NMOCD

TABLE 1

2010 to 2018 - ANNUAL COMPLIANCE GROUNDWATER LABORATORY ANALYTICAL RESULTS

FORMER GIANT BLOOMFIELD REFINERY SAN JUAN COUNTRY, NEW MEXICO WESTERN REFINING PIPELINE, LLC.

Exploration Location	Wellhead Elevation (feet)	Well Depth (feet)	Screened Interval (depth in feet)	Well Diameter (inches)	Sample Date	Depth to Water (feet BTOC)	Justen	Wetton 3000 Anions	Suitate	USE	A Method 2007. Tool Me	ats	INDIREONE	se USER M	ethod Switched Solides Solids	
NMWQCC Standar	rd Thread and Makes (1	N						250	600 2 546		0.05	1.0	0.2		1,000	
Regional Background Lee Acres RI Backg Lee Acres RI/ROD	und Levels (Stone, e ground Concentration Remedial Goals (19) it al. 1983) (2 ons - Alluvia 992/2004) (4	2) l Aquifer (1992) (3))					2 - 34,000 6.4 - 404 34,000	2,546 1.9 - 14,000 420 - 2,120 14,000		0.001 - 0.06 0.0144 - 0.113 0.06	97.06 0.01 - 16 0 - 1.48 16	0.42 0 - 2.6 0.0161 - 0.423 0.346		4,566 NA 760 - 3,600 10,000	
onits								1116/ L	111 <u>6</u> / L		1116/ L	1118/ L	111 <u>6</u> / L		1116/ L	
Lee Acres Samp Lee Acres Site 1, S Lee Acres Site 1, S Lee Acres Site 2, S	pling, 1992 RI Re Subarea 2, OU 2 - Al Subarea 3, OU 2 - So Subarea 4 - Alluvial A	port (5) Iuvial Aquife uthern Area Aquifer	er 1 - Alluvial Aquifer					8.8 - 730 19 - 2,110 3.5 - 604	195 - 4,370 830 - 2,610 310 - 3,220		0.0108 - 0.124 0.0145 - 0.0406 0.043 - 0.110	0.118 - 1.71 0.148 - 23.9 0.0749 - 64.1	0.0161 - 8.62 0.0214 - 4.23 0.0131 - 3.4		943 - 6,560 622 - 5,300 616 - 6,370	
GBR Sampling,	Upgradient Wel	lls (6)														
GBR-32	5,414.86	45	25 - 40	2	Oct 2018 Dec 2017 Jan 2017 Aug 2015 Nov 2014 Jan 2013 Jan 2012 Jan 2011 Jan 2010	33.95		200 290 NT NT 380 400 500 420 NT	1,700 1,600 NT NT 1,900 2,200 2,800 2,300 NT		0.074 0.13 NT NT 1.4 0.098 0.030 0.13 NT	2.7 2.3 NT NT 5.9 1.2 0.88 NT NT	1.9 1.2 NT NT 0.70 0.40 0.50 NT NT		3,110 3,210 NT NT 3,800 4,320 4,290 4,010 NT	
GBR-48	5,413.90	43.6	28.4 - 38.4	2	Oct 2018 Dec 2017 Jan 2017 Aug 2015 Nov 2014 Jan 2013 Jan 2012 Jan 2011 Jan 2010	35.62		300 350 NT NT 420 230 200 390 NT	1,800 1,900 NT NT 2,100 2,200 1,700 2,200 NT		0.036 0.13 NT NT 0.92 0.52 0.63 0.71 NT	18 40 NT 52 17 15 9.3 NT	0.49 1.7 NT 2.0 0.94 0.83 NT NT		3,580 3,690 NT NT 4,030 4,020 2,940 3,510 NT	
GBR-49	*	38.5	25.9 - 36.3	2	Oct 2018 Dec 2017 Jan 2017 Aug 2015 Nov 2014 Jan 2013 Jan 2012 Jan 2011 Jan 2010	32.06		180 150 NT NT 63 240 260 310 NT	1,800 1,300 NT NT 1,400 1,600 2,000 2,000 NT		1.2 0.018 NT 0.060 0.041 0.018 0.48 NT	23 0.44 NT NT 41 4.6 0.23 NT NT	0.98 0.30 NT NT 3.9 1.3 0.34 NT NT		3,010 2,720 NT NT 2,340 3,290 3,470 3,390 NT	

	Wellhead	Well	Screened	Well		Depth to	estrod 200.0. Anion			estrol 2007: Total Inter	*		e end supsoned piet
Exploration Location	Elevation (feet)	Depth (feet)	Interval (depth in feet)	Diameter (inches)	Sample Date	Water (feet BTOC)	JSEPAME Chloride	Sulfate	USEP	and chonium	iron	manearez	JSEPANA TO LOTA DISC
NMWQCC Standard	shold Values (1)						250	600		0.05	1.0	0.2	1,000
Regional Background	Levels (Stone, e	, t al. 1983) (2	2)				2 - 34.000	1.9 - 14.000		0.001 - 0.06	0.01 - 16	0.42	4,500 NA
Lee Acres RI Backgrou Lee Acres RI/ROD Ren	und Concentration medial Goals (19	ons - Alluvia 92/2004) (4	, Aquifer (1992) (3)				6.4 - 404 34,000	420 - 2,120 14,000		0.0144 - 0.113 0.06	0 - 1.48 16	0.0161 - 0.423 0.346	760 - 3,600 10,000
Units							mg/L	mg/L		mg/L	mg/L	mg/L	mg/L
GBR-50	*	42.5	26.91 - 37.26		Oct 2018	31.26	59	1,700		0.044	4.0	0.13	2,770
					Dec 2017		54	1,500		0.16	5.8	0.32	2,590
					Jan 2017		NT	NT		NT	NT	NT	NT
					Aug 2015		NT	N I 1 700		N I		N I	
					1NUV 2014 Jan 2012		52	1,700 1,600		0.013	3.D 1 2	0.22	2,800
					Jan 2013		49 49	1 800		0.0069	0.72	0.12	2,030
					Jan 2012		46	1,800		0.023	NT	NT	2,640
					Jan 2010		NT	NT		NT	NT	NT	NT
GBR Sampling, So	urce-Area We	ells											
GRW-3/GBR-29 or 43	5,388.77	58.3	34.5 - 50.2	6	Oct 2018	43.13	99	640		NT	18	0.80	2,190
	,				Dec 2017		74	1,400		NT	54	1.9	2,920
					Aug 2015		NT	NT		NT	NT	NT	NT
					Jan 2017		NT	NT		NT	NT	NT	NT
					Nov 2014		26	2,200		NT	0.86	0.44	3,680
					Jan 2013		59	1,300		NT	2.8	0.54	2,620
					Jan 2012		54	1,300		NT	2.8	0.67	2,660
					Jan 2011		95	480		NT	NT	NT	1,810
					Jan 2010		NT	NT		NT	NT	NT	NT
GRW-6/GBR-44	5,390.81	58.6	32.6 - 48.3	6	Oct 2018	40.89	100	1,300		NT	890	45	2,390
					Dec 2017		120	1,200		NT	40	9.1	2,570
					Jan 2017		NT	NT		NT	NT	NT	NT
					Aug 2015		NT	NT		NT	NT	NT	NT
					Nov 2014		86	1,600		NI	35	8.5	3,170
					Jd11 2013		200	1,500 1,000			2.4 0.47	1.2	2,700
					λρι 2012 Ian 2011		110	1,900 1,400		NT	0.47 NT	1.0 NT	2,740
					Jan 2010		NT	NT		NT	NT	NT	NT
GBR-17	5 402 69	51	31 - 51	2	Oct 2018	34.00	۵۸	1 200		NIT	100	3.0	2 180
JUN 17	5,402.05	JT	J1 J1	2	Dec 2017	54.00	49 50	1 000		NT	93	0.25	2,100
					Jan 2017		NT	NT		NT	NT	NT	NT
					Aug 2015		NT	NT		NT	NT	NT	NT
					Nov 2014		44	1,200		NT	3.7	0.13	1,980
					Jan 2013		47	1,300		NT	1.2	0.045	2,700
					Jan 2012		46	1,400		NT	3.9	0.15	2,150
					Jan 2011		47	1,300		NT	NT	NT	2,140
					lan 2010		NT	NT		NT	NT	NT	NT

								o.S. Anior			a.T.Tota Inet	1 ¹⁵		NSAC Modified
Exploration	Wellhead Elevation	Well Depth (feet)	Screened Interval (douth in fact)	Well Diameter	Sample	Depth to Water	SEP.	A Method 301 Noride	utate	ja j	PA Method 200 Miconium		anearese	SEPA Metrod Sal Disson dissolved Solut
LOCATION	(feet)	(feet)	(depth in feet)	(inches)	Date	(feet BIOC)	<u></u>	کار 250	600	<u></u>	0.05	1.0	0.2	1.000
GBR Background T	Threshold Values (1)							560	2,546		1.553	97.06	6.42	4,566
Regional Backgrou Lee Acres RI Backg Lee Acres RI/ROD	und Levels (Stone, e ground Concentratic Remedial Goals (19	t al. 1983) (2 ons - Alluvia 92/2004) (4	2) Aquifer (1992) (3))					2 - 34,000 6.4 - 404 34,000	1.9 - 14,000 420 - 2,120 14,000		0.001 - 0.06 0.0144 - 0.113 0.06	0.01 - 16 0 - 1.48 16	0 - 2.6 0.0161 - 0.423 0.346	NA 760 - 3,600 10,000
Units								mg/L	mg/L		mg/L	mg/L	mg/L	mg/L
GBR-24D	5,396.77	46.3	33 - 43	2	Oct 2018	30.92		130	2,300		NT	9.1	1.8	3,780
					Dec 2017			140	1,800		NT	11	1.8	3,560
					Jan 2017							IN I NIT		
					Aug 2015 Nov 2017			210	1 800			10 10	17	3 /10
					Jan 2013			200	1,700		NT	3.6	1.8	3,430
					Jan 2012			200	2,000		NT	2.4	1.7	3.320
					Jan 2011			170	2,400		NT	NT	NT	3,410
					Jan 2010			NT	NT		NT	NT	NT	NT
GBR-30	5,395.59	45	25 - 40	2	Oct 2018	32.31		250	1,500		NT	28	0.76	3,000
					Dec 2017			220	1,300		NT	38	1.4	2,770
					Jan 2017			NT	NT		NT	NT	NT	NT
					Aug 2015			NT	NT		NT	NT	NT	NT
					Nov 2014			270	1,400		NT	88	2.2	2,520
					Jan 2013			310	1,500		NT	130	6.1	3,340
					Jan 2012			390	1,700		NT	2.9	0.29	3,240
					Jan 2011			320	1,600		NT	NT	NT	3,340
					Jan 2010			NI	IN I		NI	IN I	IN I	IN I
GBR-31	5,396.58	45	24.6 - 39.6	2	Oct 2018	32.27		220	1,400		NT	13	3.1	2,660
					Dec 2017			93	1,700		NT	21	4.2	2,940
					Jan 2017			NT	NT		NT	NT	NT	NT
					Aug 2015				IN I 1 500			11		IN I 2 100
					INUV 2014			23U 70	1,500 1 600			12	1.0	3,100
					lan 2013			74	1 700		NT	38	0.77	2,720
					Jan 2011			97	1.800		NT	NT	NT	2.740
					Jan 2010			NT	NT		NT	NT	NT	NT
GBR-51	5.389.68	59.5	38.5 - 54.25	6	Oct 2018	NM		54	1.300		NT	0.059	<0.0020	2.330
	2,200,00	55.5		5	Dec 2017			51	1.200		NT	0.080	<0.020	2.250
					Jan 2017			NT	NT		NT	NT	NT	NT
					Aug 2015			NT	NT		NT	NT	NT	NT
					Nov 2014			54	1,400		NT	16	0.47	2,320
					Jan 2013			56	1,500		NT	9.7	0.88	2,540
					Jan 2012			53	1,600		NT	3.1	0.16	2,440
					Jan 2011			53	1,600		NT	NT	NT	2,380
					Jan 2010			NT	NT		NT	NT	NT	NT

							1300°. Arion			0.2007.Total met	1 ⁵		d smissoned solids	
Exploration Location	Wellhead Elevation (feet)	Well Depth (feet)	Screened Interval (depth in feet)	Well Diameter (inches)	Sample Date	Depth to Water (feet BTOC)	JSEPA Method Chloride	sulfate	JSE	A Method Chronium	iron	naneanes	USER Metrotab totalisohed	
NMWQCC Standar	rd						250	600	<u> </u>	0.05	1.0	0.2	1,000	
GBR Background T	Threshold Values (1))	2)				560	2,546		1.553	97.06	6.42	4,566	
Regional Backgrou Lee Acres RI Backg Lee Acres RI/ROD	and Levels (Stone, e ground Concentratio Remedial Goals (19	t al. 1983) (ons - Alluvia 92/2004) (4	2) Il Aquifer (1992) (3) I)				2 - 34,000 6.4 - 404 34,000	1.9 - 14,000 420 - 2,120 14,000		0.001 - 0.06 0.0144 - 0.113 0.06	0.01 - 16 0 - 1.48 16	0 - 2.6 0.0161 - 0.423 0.346	NA 760 - 3,600 10,000	
Units							mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	
GBR-52	5,387.74	50.78	30.08 - 45.75	6	Oct 2018 Dec 2017	NM	54 54	1,500 1,500		NT NT	0.12 0.048	0.0028 <0.0020	2,580 2,640	
					Jan 2017 Aug 2015		NT	NT 1 700		NT	NT 12	NT	NT NT	
					lan 2013		63	1,700		NT	2.3	0.25	2,540	
					Jan 2012		60	1,800		NT	2.2	0.032	2,720	
					Jan 2011 Jan 2010		62 NT	1,900 NT		NT NT	NT NT	NT NT	2,700 NT	
GBR Sampling,	Downgradient V	Vells												
SHS-1	5,383.54	50.97	35.67 - 45.67	4	June 2017 Jan 2011	P&A	100 NT	1,300 NT		NT NT	NT NT	NT NT	2,400 NT	
SHS-2	5,381.66	41.28	30.98 - 40.98	4	June 2017 Jan 2011	P&A	310 NT	2,200 NT		NT NT	NT NT	NT NT	4,100 NT	
SHS-4	5,383.62	55	37 - 47	2	June 2017	P&A	59	1,600		NT	NT	NT	2,270	
SHS-5	5,378.36	53.33	37.62 - 48.0	4	June 2017 Jan 2011	P&A	50 NT	1,200 NT		NT NT	NT NT	NT NT	2,030 NT	
SHS-6	5,378.17	47.88	32.48 - 42.85	4	Jan 2018	37.85	NT	NT		NT	NT	NT	NT	
SHS-8 SHS-8	5,380.25	52.5	30.83 - 46.60	4	Oct 2018 Jan 2018	38.25	130 NT	890 NT		NT	50 NT	3.1 NT	2,730	
SHS-8					Dec 2017		110	1,200		NT	10	3.6	2,730	
SHS-8					Jan 2017		NT	NT		NT	NT	NT	NT	
SHS-8					Aug 2015		NT	NT		NT	NT	NT	NT	
SHS-8					Nov 2014		110	350		NT	260	5.0	1,400	
2H2-8 2H2-8					Jan 2013		120	//0		0.099	100	4./ 2.2	1,800	
SHS-8					Jan 2012		150	450 150		0.0063	15 NT	2.5 NT	2,040	
SHS-8					Jan 2010		NT	NT		NT	NT	NT	NT	
SHS-9	5,380.79	49.88	34.46 - 44.46	4	Jan 2018	37.43	NT	NT		NT	NT	NT	NT	
SHS-13	5,367.81	47.4	27 - 42	4	Jan 2018	35.85	NT	NT		NT	NT	NT	NT	
SHS-14	5,367.07	54	28.70 - 48.70	4	Jan 2018	34.18	NT	NT		NT	NT	NT	NT	
SHS-15	5,366.21	47.8	27.40 - 42.40	4	Jan 2018	33.00	NT	NT		NT	NT	NT	NT	

Exploration Location	Wellhead Elevation (feet)	Well Depth (feet)	Screened Interval (depth in feet)	Well Diameter (inches)	Sample Date	Depth to Water (feet BTOC)	J5 ⁴²	A Metrod 300.9 Anions	Sufate	JSE	A Method 2007: Total Met	10 Inor	manganes	USER Metrod SMILAGC Modified	is solution in the solution of
NMWQCC Standar	ď							250	600		0.05	1.0	0.2	1,000	-
GBR Background T	hreshold Values (1)							560	2,546		1.553	97.06	6.42	4,566	_
Regional Backgrou	ind Levels (Stone, et	t al. 1983) (2)					2 - 34,000	1.9 - 14,000		0.001 - 0.06	0.01 - 16	0 - 2.6	NA	
Lee Acres RI Backg	round Concentratio	ons - Alluvia	l Aquifer (1992) (3)					6.4 - 404	420 - 2,120		0.0144 - 0.113	0 - 1.48	0.0161 - 0.423	760 - 3,600	
Lee Acres RI/ROD I	Remedial Goals (19	92/2004) (4)					34,000	14,000		0.06	16	0.346	10,000	
Units								mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	
SHS-16	5,362.58	42.6	22.2 - 37.2	4	Jan 2018	32.68		NT	NT		NT	NT	NT	NT	
SHS-17	5,364.35	46.21	35.67 - 45.67	4	Jan 2018	32.63		NT	NT		NT	NT	NT	NT	-
SHS-18	5,373.64	47.36	37.36 - 47.36	4	Jan 2018	39.24		NT	NT		NT	NT	NT	NT	
SHS-19	5,378.89	52.4	32.40 - 52.40	4	Jan 2018	37.77		NT	NT		NT	NT	NT	NT	

Notes

(1) Background Concentrations Proposed for the Giant Bloomfield Refinery Site. Based on Statistical Analysis Prepared by LT Environmental and Submitted to New Mexico Oil Conservation District in an Email Dated June 10, 2019.

Regional Background Concentrations Established in Document Titled Hydrogeology and Water Resources of San Juan Basin, New Mexico, Stone et al., dated 1983 (2)

"Background" Concentration Proposed in Lee Acres DRAFT *Remedial Investigation Report* Prepared for the US Bureau of Land Management (dated February 1992) (3)

Contaminant Concentrations Established as the "Remedial Goals" or "Background" Concentrations for the Lee Acres Superfund Site. Based on the Lee Acres DRAFT Remedial Investigation Report and Record of Decision (dated May 2004). (4)

(5) The Lee Acres Remedial Investigation Report Presents Analytical Data for Areas of the Site and Not Data for Individual Wells

(6) Well Location Used for Statistical Analysis of Background Concentrations

* Top-of-Casing Elevation is Unknown

NM Not Measured

P&A Plugged and Abandoned

micrograms per liter μg/L

Indicates Concentration Exceeds the Greater Value of the NMWQCC Water-Quality Standards or Background Threshold Values Proposed for the Giant Bloomfield Refinery BOLD

milligrams per liter mg/L

NMWQCC New Mexico Water Quality Control Commission

NT Not Tested

USEPA United States Environmental Protection Agency

PROPOSED FACILITY-SPECIFIC BACKGROUND THRESHOLD VALUES FOR INORGANICS IN GROUNDWATER FORMER GIANT BLOOMFIELD REFINERY BLOOMFIELD, NEW MEXICO

												Original	NDs replaced with PQL - Analyzed as				(Statio	Origir	al Dataset wit	h NDs		
												Reported UTL		(per	Agency's requ	iest)	Jatas	previo	usly lognormal	cases)		
Analyte	Units	Number of Samples	Percent ND	Non- Detects	Detections	ND EM	Distribution	Min	Max	Mean	Std Deviation	95%UTL 95% Coverage	CV	ND EM	Distribution	95%UTL 95% Coverage	cv	ND EM	Distribution	95%UTL 95% Coverage	Proposed Background Threshold Values (BTVs)	Comments
Chloride	mg/L	40	0	0	40	NA	Non- Parametric\Max	44	560	232.3	153.4	560									560	No Change. Dataset do not follow a discernible distribution, use Max value as UTL
Chromium	mg/L	32	3.125	1	31	ROS	Lognormal	0.006	1.4	0.318	0.379	4.46	1.19	PQL	Gamma-WH	1.59	0.145	KM	Gamma-WH	1.553	1.553	Calculated UTL based on lognormal distribution is disproportionately high when compared to maximum detection= 1.4 due to highly variable sample data, recommend using UTL based on Gamma distribution with WH approximation
Iron	mg/L	33	6	2	31	ROS	Lognormal	0.1	170	16.62	33.37	261.7	2.008	PQL	Gamma-HW	100.1	1168	КМ	Gamma-HW	97.06	97.06	Calculated UTL based on lognormal distribution is disproportionately high when compared to maximum detection= 170 due to highly variable sample data, recommend using UTL based on Gamma distribution with HW approximation
Manganese	mg/L	24	0	0	24	NA	Lognormal	0.041	6.4	0.765	1.578	10.63					1.226	NA	Gamma-HW	6.42	6.42	Calculated UTL based on lognormal distribution is disproportionately high when compared to maximum detection= 6.4 due to highly variable sample data, recommend using UTL based on Gamma distribution with HW approximation
Sulfate	mg/L	40	0	0	40	NA	Normal	698	2800	1801	351.9	2546									2546	Low coefficient of variation, use UTL based on normal distribution
Total Dissolved Solids	mg/L	40	0	0	40	NA	Normal	1460	4320	3234	629	4566									4566	Low coefficient of variation, use UTL based on normal distribution

Notes:

CV - Coefficient of Variation

HW - Hawkins–Wixley approximation

KM - Kaplan-Meier method

NA - Not Applicable

ND - Non-detect

ND EM - Non-detect estimation method

ROS - Regression on order statistics

WH - Wilson-Hilferty approximation