

Earthwork RCE Calculation Summary

Task: Earthwork RCE

Client: Freeport NM Page 1 of 23 Operations

Computed By: Taryn Tigges Date: 4/30/19

_Checked By: Fred Charles Date: 4/30/19

Calculation Documentation

Problem Statement:

Freeport-McMoRan (FMI) utilizes a spreadsheet developed by the New Mexico Mining and Minerals Division (MMD) to estimate the earthwork's closure costs associated with the Little Rock Mine Closure/Closeout Plan (CCP). The spreadsheet calculations are intricate and complex and require careful study to master their structure. Each worksheet groups similar activities, and each line on each worksheet documents one construction step required to complete reclamation. All lines totaled equal the entire earthworks for the CCP. The sheer amount of information in the spreadsheet makes review of the cost estimate difficult for a site as complex as the Little Rock Mine.

Objective:

- 1. Provide a guide to the earthwork spreadsheets.
- 2. Note that this calculation set presents the approach, data and assumptions, and calculations and results for developing the unit cost. It is intended to serve as a guide/example even if the actual quantities and/or cost data used in these calculations change due to updates or application to a different Freeport NM Operations mine. The example screenshots shown are from the Tyrone Mine CCP.

Approach:

- 1. Identify worksheets within the spreadsheet.
- 2. Provide a general equation or explanation of the calculation performed in each worksheet.
- 3. Use a graphic of each worksheet to illustrate the equations and augment the explanations pertaining to the specific worksheet.

Results:

The following worksheets are included within the earthwork RCE spreadsheet and covered in this calculation documentation:

Databases:

- 1. Quantities
- 2. Activity-Material Codes
- 3. Unit Rates
- 4. Equipment

Earthwork Calculations:

- 1. General 14. Revegetation
- 2. Demo 15. Other
- 3. Material
- 4. Earthwork
- Characteristics

16. Summary

17. Facility

- 6. Road Maint
- 7. Ripper

5. Dozer

- 8. Excavator
- 9. Trucks
- 10. Loader Shovel
- 11. Scrapers
- 12. M'grader
- 13. Earth Sum

Job No: 200540a	Client: Freeport NM	Page <u>2</u> of <u>23</u>
	Operations	0
Task: Earthwork RCE	Computed By: Taryn Tigges	Date: 4/30/19

Checked By: Fred Charles Date: 4/30/19

Results:

The following worksheets are included within the earthwork RCE spreadsheet and covered in separate calculation documentations or are self-explanatory:

Equipment Optimization:

1. Truck Optimization

<u>0&M:</u>

- 1. Full Site Vegetation Maintenance
- 2. Full Site O&M
- 3. Full Site O&M Summary

Building Demolition:

- 1. Building Demo
- 2. Building Cover
- 3. Building Vegetation
- 4. Building Waste
- 5. Building Summary

Unit Costs:

- 1. Bench Grading
- 2. Bench Channel (and Riprap/Gravel)
- 3. Downdrain
- 4. Pipeline (6"-8" and 20"-36")
- 5. Revegetation
- 6. Seepage Collection
- 7. Trestle Demo
- 8. Berm
- 9. Substation Demo

Task: Earthwork RCE

Client: Freeport NM Page 3 of 23 Operations

Computed By: Taryn Tigges Date: 4/30/19

Checked By: Fred Charles Date: 4/30/19

Results Cont'd

Sheet 1 – <u>General</u>: A summary of the overall costs (before escalation and discounting for the timevalue of money) are included on this sheet along with the applicant's information.

	А	В	С
1			Tyrone Mine
2		Stock	pile Spreadsheet Worksheet #1
3	General Information		4/29/2019
4			
5	Applicant	Tyrone Mine Company	
6		Tyrone, New Mexico 88065	
7			
8			
9			
10			
11	Disturbed Surface Area (acres)	3,031	
12	(does not include previously reclaimed areas)		
13			
14	Type of Operation	Existing/Surface/Copper	
15			
16			
17			
	Current value of earthwork and O&M before escalation and		
18	discounting	\$101,470,627	
19			
20			
21			
22			
23			Stockpiles, Tailing,
24			Reservoirs, Haul Roads
25			and Disturbed Areas

<u>Quantities Sheet</u>: This sheet assigns an item code to a facility and corresponding sub-area code with a description of the facility and sub-area. This sheet provides raw data and factors (such as area, volume, distances, grades, etc.) to be used in calculations within all the other worksheets. Each facility is broken down into sub-areas to account for differing reclamation quantities to more accurately determine the amount of work required for each facility. The Quantities sheet includes 36 columns of hard-wired (hand entered) data associated with each facility. Columns A through H for 1A and 1B Leach, 1C, 2A Leach and 2B Waste, and 3A/3B Stockpiles are shown as an example:

-	1	2	3	4	5	. 6	7	
	ltem	Facility	Sub Area or Destination for Cover Material	Description	Area (sf)	Volume (cy)	Push Distance (ft) Berm Length (ft) or Fence Length(ft)	Coarse Regrading an Fine Grading (%)
t	1000	1A and 1B Leach	1A1B-0	Entire Stockpile	11.891.880	1.548.670	-	-
Г	1001	1A and 1B Leach	1A1B-1	Тор	740,520	79,000	430	1.0%
L	1002	1A and 1B Leach	1A1B-2	Outslopes - Regrade benches from pullback	-	1,329,670	90	-29.0%
	1003	1A and 1B Leach	1A1B-3	Outslopes - Area outside of pullback	11,151,360	140,000	250	-29.0%
Г	1100	10	1C-0	Top (Haul Road)	740,700		-	
Г	1200	2A Leach and 2B Waste	2A2B-0	Entire Stockpile	21,213,358	8,203,000	-	-
L	1201	2A Leach and 2B Waste	2A2B-1	Тор	1.568,160	143,000	370	1.0%
	1202	2A Leach and 2B Waste	2A2B-2	Outslopes	19,645,198	8,060,000	470	-29.0%
Г	1300	3A/3B	3A3B-0	Entire Stockpile	19.819.800	5.289.064	-	-
t	1301	3A/3B	3A3B-1	Тор	1.437.480	199,000	560	1.0%
	1302	3A/3B	3A3B-2	Outslopes Pullback		17,500,000		-29.0%
1	1303	3A/3B	3A3B-3	Outslopes - Regrade benches from pullback	- 3	1,590,064	90	-29.0%
	1304	3A/3B	3A3B-4	Outslopes (total area, volume outside of pullback)	18,382,320	3,500,000	560	-29.0%
	4400	101 1	10.0		7 074 400	0.707.000		

		J	ob No: 200540a Client: Freeport NM Page 4 of 23				
		IECTO	Operations				
s	0 L U T I	LEJIV	ask: Earthwork RCE Computed By: Taryn Tigges Date: 4/30/19				
			Checked By: Fred Charles Date: 4/30/19				
Re	esults	Cont'd					
A	ctivity	-Material Codes Sheet: This	s sheet assigns an activity code (column A) to each activity				
(0	columi	n B)					
		P					
1	A	D	U Decerintian				
-	Item	Activity	Description				
2		-	Place holder for item				
3	A	Grade	Rough grading original material or tine grading cover material				
4	В	Dozer Assist	Dozer is used to assist loader or snovel at cover stockpile or assist scrapers during rough grading				
0	C	Load	Cover material is loaded at borrow areas onto haul trucks				
6	D	Haul	Haul trucks transport cover material from borrow areas to destination stockpiles				
-	-		Tops of stockpiles are ripped before placing cover to compensate for compaction of soil during rough				
1	E	Rip	grading. Stockpiles are also ripped before rough grading with a scraper. Borrow stockpile ripped				
8	F	Grade Benches	Benches are graded at stockpiles and tailings after fine grading				
9	G	Construct Downdrains	Downdrains are constructed after fine grading and consist of articulated concrete blocks (ACB's)				
10	Gb	Construct Downdrain Dissipators	Energy dissipators are specified as part of the downdrains				
11	н	Construct Bench Channels w/ Riprap	Bench channels are constructed along benches after bench grading. Construction includes excavation and wasting, riprap production, riprap and filter placement, and final grading.				
			Bench channels are constructed along benches after bench grading. Construction includes excavation				
12	Hb	Construct Bench Channels w/o Riprap	and wasting and final grading.				
13	1	Construct Top/Outslope Channels	Top and outslope channels are not part of this RCE				
			Occurs after final grading and channel construction and includes tractor rental and maintenance, fuel,				
14	J	Revegetate	scarifying, discing, drill seeding, mulching, crimping, seed, and mulch				
15	К	Perforate Liner	Reservoir liners are perforated prior to reclamation				
16	L	Replace Infrastructure	Replacing infrastructure is not part of this RCE				
			Includes vegetation maintenance for 12 years after reclamation and erosion control, road				
17	M	Post-Closure O&M	maintenance, and groundwater monitoring for 100 years after reclamation				
18	N	Plug and Abandon Well	Well borehole is backfilled with cement grout				
19	0	Replace Well	Includes borehole drilling, casing, and cementing				
20	P	Road Maintenance	Dust suppression and road maintenance with water truck and motor grader				
21	Q	Construct Haul Road	For shorter hauls etc.				
22	R	Construct Berms	Berming for stormwater runoff control				
23	S	Fencing	Fencing for pits				
24	Т	Build Grade Control Walls	Grade control in each drainage of Tailing Launder Line removal				
25	U	Vehicle Gates	Limited access at 1-mile intervals around open pits				
26	V	Signs Every 500 ft	Warning signs posted every 500 feet around open pits				
07							
In	ie sam	ie is done by assigning a ma	terial code (column A) to differentiate the materials used in the				
sn	roads	heat					
1 ₂ h	reausi						
		_					
20	A	В	C				
28	ltem	Material	Description				

_			
29	Item	Material	Description
30	-	-	Placeholder
31	а	Existing Ground	Existing ground before rough grading
32	b	Cover	Cover material from cover stockpiles, before being placed at destination location
33	с	Rough Graded Material	Exisiting ground after rough grading
34	d	Placed Cover	Cover material after being placed at destination location
35	e	Final Grade	Facility material and cover material after rough grading and fine grading
36	f	Backfill/Stockpile Material	Material used to backfill pit/ponds or stockpile material used in pullback
37			

These codes are used to assign an ID to each task, on the Materials sheet. The codes dictate which earthwork calculation is used for each row of work.

Client: Freeport NM Page 5 of 23 Operations

Task: Earthwork RCE

_Computed By: Taryn Tigges Date: 4/30/19

Checked By: Fred Charles Date: 4/30/19

Results Cont'd

<u>Unit Rates Sheet</u>: This sheet applies the same concept as the Quantities and Activity-Material Codes sheets whereby unit rates for particular activities utilized in the development of costs within the spreadsheet are identified and assigned a unit rate code. The unit rates are used throughout the RCE spreadsheet and are referenced from this sheet.

1	A	в	1	c V			E	F	G
10	Code	Activity	Ba	se Fer Unit Cost	Fue	Per Unit Cost	Units	Source	Reference
11	U1	Fuel	\$	2.34	\$	-	gal	-	Diesel fuel cost is estimated by correlating historical local quotes with public data, as agreed upon in November 2018 discussions with the agencies. Fuel cost
12	U2	Revegetation	\$	820.12	\$	3.85	ac	Revegetation Unit Cost Sheet	See unit rates calculations - Cost is based on a calculated unit rate that includes tractor rental and maintenance, fuel, scarifuing, discing, drill seeding, mulching,
13	U3	Bench Grading Stockpile	\$	1.35	\$	0.33	ft	Bench Grading Unit Cost Sheet	See unit rates calculations
14	U4	Bench Grading Tailings Pond	\$	1.35	\$	0.33	ft	Bench Grading Unit Cost Sheet	See unit rates calculations
15	U5	Downdrain Construction	\$	374.38	\$	-	ft	Downdrain Unit Cost Sheet	See unit rates calculations
16	U6	Downdrain Dissipater	\$	14,556.48	\$		ea	Downdrain Unit Cost Sheet	See unit rates calculations
17	U7a	Bench Channel Construction w	\$	6.60	\$	1.39	ft	N/A	See unit rates calculations
18	U7Ь	Bench Channel Construction w/o	\$	0.41	\$	0.10	ft	N/A	See unit rates calculations
19	U8	Erosion Control	\$	2,923.36	\$	382.26	day	Modified Crew B-13A	Erosion control for O&M – includes 1 foreman, 2 laborers, 1 equipment operator, 2 truck drivers, 1 loader (4 cy), 2 dump trucks (8 cy)
									Building demolition, large urban projects, mixture of types, excludes foundation
20	09	Structure Demolition	\$	0.25	\$	-	fo	Means Line Item 024116.13 0100	demolition, dump tees Building footings and foundations demolition, floors, concrete slab on grade,
21	U10	Concrete Slab Demolition	\$	0.62	\$		sf	Means Line Item 024116.17 0400	plain concrete, 6" thick, excludes disposal costs and dump fees
22	U11	Storage Tank Demolition	\$	1,005.97	\$	-	ea	Means Line Item 130505.75 0530	Selective Demolition – Storage Lanks, steel tank, single wall, above ground, not including foundations, pumps or piping, 5,000 thru 10,000 gallon
23	U12	Storage Tank Demolition	\$	2,168.93	\$	-	ea	Means Line Item 130505.75-0540	demolition, excluding foundation, pumps or piping Storang Tapks steel tapk single wall above ground not inclifed, pumps or
24	U13	Storage Tank Demolition	\$	3,934.80	\$	-	ea	Scaled Means Items	piping; scaled for a 45,500 gal tank
25	U14	Power Line Demolition	\$	0.63	\$	-	ft	Means Line Item 260505.10 0370	in cost to overhead powerlines.
26	U15	Power Pole Demolition	\$	216.24	\$		ea	Means Line Item 024113.80 0200	Selective Demolition - wood utility poles 35-45 ft high
27	U16	Pipeline (small HDPE pipe)	\$	2.29	\$	-	ft	Means Line Item 024113.38 1700	excludes excavation
28	1117	Pipeline (medium HDPE nine)	\$	3.82	\$	-	ft	Means Line Item 024113 38 1800	excludes excavation
29	1118	Pineline (large HDPE nine)	\$	5.72	\$	-	6	Means Line Item 024113 38 1900	excludes excavation
30	1119	Vell Plug & Abandon	\$	10.55	\$	-	ft	N/A	Layne Christensen Company, 7/31/18 Tyrone estimate is \$10,000 mobilization and Idemobilization plus \$5,704,94 (escalated at 2½ to \$5819,04) for one 1500 ft well
31	U20	Vell Replacement	\$	67.76	\$	2	ft	N/A	Wilcox Professional Services, 8/2011, est. cost for 5 ½ in bore, \$173,500 for 3000 ft total (\$57.83/ft). Escalated 2½ 2011-2019= \$67.76/ft
32	U21	Reinforced Concrete Vall Demolition	\$	199.20	\$	2	hr	Means Crew B-12C	Standard Union Crew: 1 equipment operator (crane), 1 laborer, 1 hydraulic excavator, 2 cy, approximately 40 hrs to demo 200 ft reinforced concrete dam.
33	U22	Disc harrow attachment, for tractor	\$	616.33	\$	-	month	Means Line Item 015433.20 1500	Equipment rental costs
34	U23	Cast-In-Place Concrete	\$	254.97	\$	-	CV	Means Line Item 033053.40 6200	reinforcement
		Cleanup & Disposal of Vastes	1		-		-/		
35	U24	Requiring Special Handling	\$	335.20	\$		ton	Means Line Item 028120.10 1120/1130	Solid pickup; average of minimum and maximum
36	1125	Tranportation of Vastes Requiring	*	4.78	*	_	mile	Maana Line Item 028120 10 1260/1270	Transporation to disposal site (Truckload = 80 drums or 25 cy or 18 tons); average of minimum and maximum
37	1126	Boad Maintenance	*	4.10	*	1 240 32	month	nearis cine ken 020120, 10 12001 210	water truck
20	1127	Total Maintenance	*	9,040.00	*	1,240.32	deur	M- #6- # C P. 194	1 down to be (12 too)
30	021	rannig Gover Maintenance	+	2,144.23	*	203.57	day	Modified Crew DF15A	Der ft. to 0.13 ou/ft: Einich grade volume is 1/3 X Execution Volume? or 0.04 fills
-		2							The berm will be made from cover material; only applicable to the types of berms at
39	028	Berming	\$	0.06	\$		n		the reclaimed borrow areas - These berms are only used to move water along an
40	029	Fencing	\$	23.05	\$		ft	Means Line Item 323113.20 0800	
41	U30	Vehicle Gates, Pit Perimeters	\$	1.002 88	\$	20	ea	Means Line Item 323113.20.5070	hence, chain link industrial, double swing gates, 5° high, 20° opening, includes excavation, posts & hardware in concrete
42	1131	Signs even 500 ft . nit perimeters	\$	65 19	\$		ea	Means Line Item 101453 20.0600	Signs, guide and directional signs, reflectorized, 12" x 18", excludes posts
43	1132	Fire Hadrant Demolition	\$	396.73	\$	-	0.0	Means Line Item 024113 33 0900	I Itilituremoval budrants fire remove only excludes bauling
44	1133	Saanaga Collection Penlagament	*	133 355 94	*		00	Seepage Collection Unit Cost Shoet	See unit rates calculations
44	1134	Culuert Remound	*	12 00,000,000	*		6	Means Line Item 024113 40 0190	ee unit rates calculations
40	034	Cuivert Nemoval	*	12.03	*		R	means Line item 024 h3.40 0130	doop upreinforced includes forms(duses) concrete (Portland coment Tune I)
46	U35	Grade Control Vall	\$	165.59	\$	-	су	Means Line Item 033053.40 3945	placing and finishing, excludes reinforcing
47	U36	Steel Trestle Demolition	\$	30,689.10	\$	- 2	ea	Means Line Item 024116.33 0200	Bridge demolition, pedestrian, steel, 50' to 160' long, 8' to 10' wide
48	U37	Sludge Removal	\$	306.69		- 1	ea	Means Line Item 026510.30 0320	remove sludge, water and remaining product from tank bottom of tank with vacuum truck, 9,000 – 12,000 gallon tank
49	U38	Substation Demo	\$	12,470,55	\$	2 3	ea	Substation Demo Unit Cost	See unit rates calculations
			1.7						

Unit rates are either derived from separate calculations, RSMeans pages, or direct quotes. The unit costs are broken into base per unit cost (column C) and fuel per unit cost (column D) when applicable. If a unit cost is obtained from RSMeans, the Las Cruces, New Mexico, area cost is utilized.

b	No:	200540a	
---	-----	---------	--

Task: Earthwork RCE

Operations Computed By: Taryn Tigges Date: 4/30/19

Page <u>7</u> of <u>23</u>

Client: Freeport NM

Checked By: Fred Charles Date: 4/30/19

Results Cont'd

Equipment Sheet cont'd:

Other equipment specifications listed in the equipment sheet can also be found in the RCE report. It is important to note that each piece of equipment is assigned an operator group by which labor rates are assigned according to the most up to date labor rates from NMDOL.

EARTHWORK AND O&M LA	BOR			
NMDOL Type A		Rate		
Operator Group		(\$/hr)		
Equipment Operator IV	\$	27.41		
Equipment Operator V	\$	27.52		
Equipment Operator VI	\$	27.70		
Laborer I	\$	23.09		
Laborer II	\$	23.84		
Truck Driver III	\$	24.27		
	EARTHWORK AND O&M LA NMDOL Type A Operator Group Equipment Operator IV Equipment Operator V Equipment Operator VI Laborer I Laborer II Truck Driver III	EARTHWORK AND O&M LABOR NMDOL Type A Operator Group Equipment Operator IV \$ Equipment Operator V \$ Equipment Operator VI \$ Laborer I \$ Laborer II \$ Truck Driver III \$		

Sheet 2 – <u>Demolition</u>: Costs are based on square footage (ex: buildings), linear footage (ex: pipeline or power line length), or lump sum per item (ex: power pole, well casing). The costs are derived from the 2019 R.S. Means Online Heavy Construction cost data or actual on-site experience and bids.

Example calculation: (10,300 feet of powerline) x (\$0.63 per linear foot)=\$6,489

1.1	A	В	С	D	E .	F	G	/н	I. I.
1									Tyrone Mine
2									Stockpile Spreadsheet Worksheet #2
3	Demolition							/	4/29/2019
4					Carlos and		/		
5	Building Demolition costs are calculated in "1 BuildingDemo", "	2 BuildingCover", "3 Build	lingVeg", and "4Buile	dingWa:	ste" and summ	arized on the las	t line of this t abl	e.	
6									
7									
8									
ă									
	Item	Activite	Quantite	IInit	Unit Cost	Direct Item	Beference	Means Line	Description
	Kem	······	quantity		(+Junit)	Cost (*)		Item	Description
10					(+id te)	Cost (+)		itein	
				64 A.					
			40.000			40.400		Ivieans Line item	Nonmetallic sheathed cable 3 wire; assume
11	Power line Demolition [3 PLS to 1x1 Pond installed 2012]		10,300	R	\$0.63	\$6,483	Ivieans	260505.10 0370	similar enough in cost to overhead power lines.
								Means Line Item	
12	Power pole Demolition (3 PLS to 1x1 Pond installed 2012)		36	ea	\$216.24	\$7 785	Means	024113 80 0200	wood utility poles 35-45 feet high
						\$1,100	1. IC GILD	021110.00 0200	nood dailing poleo oo to teet nigh
								Means Line Item	Nonmetallic sheathed cable 3 wire; assume
13	Power line Demolition (San Salvador Pit)	-	5,222	ft	\$0.63	\$3,290	Means	260505.10 0370	similar enough in cost to overhead power lines.
		6	102	0 1	1.	1000		Constant and the second	
1.1			-					Means Line Item	
14	Power pole Demolition [San Salvador Pit]	· ·	17	ea	\$216.24	\$3,676	Means	024113.80 0200	wood utility poles 35-45 feet high
	Rower lines to substations or sours for buildings to be							Maang Line Itom	Nonmetallic sheathed cable 3 wire: accume
15	demolished		66 200	6	40.00	\$41700	Maang	260505 to 0270	similar enough in cost to querkeed never lines
19	demonshed		00,200	PR -		\$41,706	ivieans	200000.10 0370	similar enough in cost to overneau power lines.
	Power Poles to substations or spurs for buildings to be							Means Line Item	
16	demolished	-	135	ea	\$216.24	\$29,192	Means	024113.80 0200	wood utility poles 35-45 feet high
		54 S				4-1/			
			201102-000000	12.2.2	52245-534		100000000000000000000000000000000000000	Means Line Item	Nonmetallic sheathed cable 3 wire; assume
17	Telephone Lines around buildings to be demolished	a	1,400	ft	\$0.63	\$882	Means	260505.10 0370	similar enough in cost to overhead power lines.
								Managed in a line	
			40	10000				Ivleans Line Item	
18	Light Poles around to be demolished buildings	-	13	ea	\$216.24	\$2,811	Ivieans	024113.80 0200	wood utility poles 35-45 feet high
								Means Line Item	
19	Fire Hudrants Mainlu bu SXEW		14	6.2	\$396.73	\$5 554	Means	024113 33 0900	Minor Site Demolition: remove fire hydrants
	The High and High and Big on En				4000.10	40,001	in cario	021110.00 0000	Planet ette Demonder, remore me narans
	Little Rock Dewatering Pipeline Alighnment #1 and #2 (Year 34		X1010 AV6 1V		100000000000000000000000000000000000000				
20	of Closure)	6"-8" Diameter Plastic	4,940	ft	\$1.88	\$9,266			See Pipeline UC
		assume 20-36-inch							
21	Water Treatment Pipelines (Year 99 of Closure)	diameter	74,500	ft	\$4.57	\$340,282			See Pipeline UC
		assume 20-36-inch	くべきうちんさんご	1000		2			1989/2010/00/00/00/00/00/00/00/00/00/00/00/00/
22	Sewer Pipelines (Year 6 of Closure)	diameter	1.414	R	\$4.57	\$6,459			See Pipeline UC
	Contraction of the second second	assume 20-36-inch	1000000000	8 8		Server and		8	a har a company the second
23	PLS Pipelines (Year 6 of Closure)	diameter	18.893	R	\$4.57	\$86,295			See Pipeline UC
									Storage Tanks, steel tank, single wall, above
									ground, not incl fdn, pumps or piping, 15.000 thru
								Scaled Means	30,000; scaled for a 45,500 gal tank - assuming
20	2A East PLS Tank and 2A West PLS Tank (Year 6 of Closure)	Tank Demolition	2	ea	\$3,934.80	\$7,870	Means	Items	22 ft diameter and 16 ft high
		200400000000000000000000000000000000000	80000	1	111111		100000000000	C. 1999-000	Storage Tanks, steel tank, single wall, above
									around, not incl fdn, pumps or piping, 15 000 thru
								Scaled Means	30,000 gal: scaled for a 45,500 gal tank -
25	1A and 1B PLS Tanks (Year 99 of Closure)	Tank Demolition	2	ea	\$3,934.80	\$7,870	Means	Items	assuming 22 ft diameter and 16 ft high
-				1				Means Line Item	Selective demolition, metal drainage piping
29	Culverts at Tailing Launder Line	Culvert Removal	22	ea	\$12.69	\$279	Means	024113.40 0190	CMP, steel, 48"-60", diameter, excludes
					1.2.00				Bridge demolition, pedestrian, steel, 50' to 160'
27	Steel Trestle at Tailing Launder Line	Steel Trestle Demo	1	ea	\$30,689 10	\$30,689	÷		long 8' to 10' wide
29	Substation Bernoval at Mangus Pumphouse	Substation Demo	1	ea	\$12,470,55	\$00,000			See Substation Demo UC
29	Buildings and Associated Facilities	Demolition	See Demo Sheets		4.1.1.0.00	\$4 499 228			
-			att being oneers			ψ1,100,220		5	
30									-
31			1	i otal I	Direct Cost:	\$5,089,622			
30									
	For evamn	la usa only	Values ma	w n	ot mate	h the cu	rront cr	readshee	
_		ie use only.	values illo	· y · I	ormatt	in the cu	in ent s	reausinee	

ob No:	200540a
--------	---------

Task: Earthwork RCE

Client: Freeport NM Page 8 of 23 Operations

_Computed By: Taryn Tigges Date: 4/30/19

Checked By: Fred Charles Date: 4/30/19

Results cont'd:

Sheet 3 – <u>Material</u>: No calculations are included on this sheet. Four codes, which can be referenced from the Quantities, Activity-Material Codes, and Equipment or Unit Rates sheets, are entered by hand for each row in Columns A – D. The column labeled ID concatenates the codes. The ID contains the codes for facility location (with sub-area if applicable), work activity, material and equipment used for that particular row of work. This combination determines which equipment production and cost equations are used in the rest of the spreadsheet. The other columns on this sheet then reference the ID to lookup the description from the Activity Material Codes sheet, the source and destination locations from the Quantities sheet, the total haul or push distance and grade from the Quantities sheet, and the equipment (when applicable) from the Equipment sheet.

All activities for the Tyrone RCE are listed on this sheet and carried through the succeeding worksheets of the RCE. The description (F123) lists the activity, top or outslope (if applicable), and the material. The source location (G123) lists the stockpile name (or sub-area) for the location of the activity. If borrow material is involved, it is transported from a borrow stockpile to a destination stockpile (H123) Push or haul distance (I123) is used as part of calculating equipment production on Sheets 5, 9, and 11. Grade (J123) haul grade or facility slope) is used as part of calculating equipment production on Sheets 5, 9, 11, and 12. Equipment (K123) lists the name of the equipment referenced in the ID. Blank cells indicate that that column is not relevant to a particular activity.

The ID for the example below is 1300-D-b-Tk4. This indicates that a Komatsu 730E truck (Tk4) will be used to haul (D) cover material (b) from the Gila Borrow Area to the 3A/3B (1300). The total haul distance from STS2 to the Raffinate Pond is 11,221 feet, with an average haul grade of 1.3%.

		_		1	_			/			
	A	В	С	D	E	F F	G	Н		J	K
1											l yrone Mine
2									Stor	ckpile Opread	sheet Worksheet #3
3				/	/	Material Handling Pl.	an Summary Sheet				4/29/2019
4						All activities for the yrone Rut RCE. The column labeled ID con that particular few of work. The source location lists the stockpi it is transported from a borrow relevant to a particular activity.	 are listed on this sheet and carried trains the codes for the facility locatio description lists the activity, top or o le name (or sub-area) for the location stockpile to a destination stockpile. E 	rough the succeeding worksheets of the n, activity, material and equipment used for utslope (if applicable), and the material. The of the activity. If borrow material is involved, Blank cells indicate that that column is not			
5											
6						Notes and Assumptions:					
7		/				Haul/Pach Distance based on 2015 Tyrone RCE Submittal or measured/assumed as shown in documentation 2 - Visighted Average that Grades based on 2015 Tyrone RCE Submittal 3 - Grade Factory from 2015 Tyrone RCE Submittal 4 - Cover hauf distance for 2A/3B stockpile is volume weighted average of Gila Borrow Area (1/3) & 3AX Stockpile [27]					
0											
10					-/						
11					/ /						
12					· · · · /						
12											
13	ltem	Activity	Material	Eq	ID	Description	Source Location 1	Destination Location 2	Total Haul/Push Distanc <u>e (ft)</u> 1	Grade (%) ^{2,3}	Equipment
122	1200			TLA	1200-D-L-TL	Haud-Cause	Cila Borrow Area	20138	(11.221)		Kamahau 720E
120	1500	n n	5	TL4	1500-D-D-Tk4	Hadi-Cover	Gila Borrow Area	50 Querburden	4 750	19/	Komatsu 730E
124	2200	ň	6	TLA	2200-D-b-Tk4	Haul-Cover	Leach Stockpile	San Saluador Pit	12,570	18%	Komatsu 730E
126	2300	ň	6	TLd	2300-D-b-Tk4	Haul-Cover Haul-Cover	Gila Borrow Area	Sausona In-Pit Leach Stocknile	5 730	16%	Komatsu 730E
127	1400	ň	Б	TLA	1400-D-6-TL4	Haul-Cover	Gila Borrow Area	4CLeach	17,830	5.0%	Komatsu 730E
128	1800	ň	Б	TL4	1800-D-b-Tk4	Haul-Cover Haul-Cover	Gila Borrow Area	2C 4A 4B 7BLeach	13,990	3.9%	Komatsu 730E
129	1900	ň	Б	TL4	1900-D-b-Tk4	Haul-Cover	Gila Borrow Area	80	5.730	16%	Komatsu 730E
130	1600	ň	ĥ	Tk4	1600-D-b-Tk4	Haul-Cover	Gila Borrow Area	68	10.050	2.0%	Komatsu 730E
131	1700	ñ	ĥ	Tk4	1700-D-b-Tk4	Haul-Cover	Gila Borrow Area	60	11.833	2.5%	Komatsu 730E
132	2701	Ď	Б	Tk4	2701-D-b-Tk4	Haul-Cover	Gila Borrow Area	Cotmot-1	10.811	2.9%	Komatsu 730E
133	3300	Ď	Б	Tk4	3300-D-Ь-Тк4	Haul-Cover	Gila Borrow Area	Unplanned Disturbance Area	10,811	2.9%	Komatsu 730F
134	2100	Ď	Ь	Tk4	2100-D-b-Tk4	Haul-Cover	9AX Stockpile Toe	9AX	6,343	7.7%	Komatsu 730E
135	2600	D	Б	Tk2	2600-D-b-Tk2	Haul-Cover	9AX Stockpile	Tailing Launder Line	17,721	-1.8%	Cat 769D
136	2900	D	Ь	Tk2	2900-D-b-Tk2	Haul-Cover	Tailing Launder Line	Mangus Pumphouse	14,100	-1.8%	Cat 769D
			_	- Fe	or exampl	e use only. Val	ues may not mat	ch the current sprea	dsheet.		

TELECTO	Job No: 200540a	Client: Freeport NM Page 9 of 23 Operations
SOLUTIONS IN CORPORATED	Task: Earthwork RCE	Computed By: Taryn Tigges Date: 4/30/19
		Checked By: Fred Charles Date: 4/30/19

Results cont'd:

Sheet 4 – <u>Earthwork</u>: Repeats the ID, Description, Source Location, and Destination Location for each row from the Materials sheet. The acreage (1123), cover depth (J123), swell factor (L123), and loose/stockpile volume (M123) are referenced from the Quantities sheet. The in-place (i.e., bank) volume (K123) is calculated from the loose/stockpile volume by dividing by the swell factor. Swell is assumed to occur when cover material is moved from the borrow stockpile to the haul truck. Material left in place is assumed to have no swell, meaning the bank and loose volumes are equal. $Volume_{loose\ cover} = area * depth_{cover}$

I325*J325/12*43560/27

Sheet 5 – <u>Dozer</u>: Dozers are used for rough grading facilities, assisting loaders or shovels at borrow stockpiles, or pushing scrapers for grading facilities. See page 11 of this calculation documentation for a screenshot of the Dozer sheet. Columns E through K repeats ID, activity, locations, equipment from Sheet 3 (Material) and volumes from Sheet 4 (Earthwork). Columns O, P, and Z are the results of the dozer productivity calculations for grading (the multiplier and exponent coefficients C and b, respectively, for the normal productivity equation can be found in columns N and O of the Equipment sheet). Column T is the calculated task time. If the task is for dozer assist of scrapers or loaders/shovels, the dozer task time is equal to the task time of the scraper or loader/shovel, respectively. Columns Q, R, and S are calculated on the scraper and loader sheets and repeated on the dozer sheet. The remaining columns are the input factors that produce the calculation result of bulldozer material handling productivity in cubic yards per hour or acres per hour based on material weight, grade, dozing type, push distance, and operating conditions such as visibility, operator experience, and elevation.

	Job No:	200540a	Client: Freeport NM Operations	Page <u>10</u> of <u>23</u>			
TED	Task:_Ea	orthwork RCE	Computed By: Taryn Tigges	Date: 4/30/19			

Checked By: Fred Charles Date: 4/30/19

Results cont'd:

Sheet 5 – <u>Dozer cont'd</u>: Input values, power curves and capacities are taken from the 2017 and 2018 Caterpillar (Cat) Performance Handbook (CPH) (Editions 47 and 48) for the specific model dozer. Determining actual productivity starts by calculating the *normal* production factor using a formula derived by curve fit to productivity graphs provided in the CPH for the specific dozer. This is accomplished by scaling values from the figures and using the curve fitting tools within Microsoft Excel:

	Job No: 200540	a	Client: Free	oort NM	Page <u>11</u> of _	23
	Task:_Earthwork	RCE	.Computed B	ations _{y:} _Taryn Tigges_	Date: 4/30/1	9
			Checked By:	Fred Charles	Date: 4/30/1	9
Results cont'd:						
Sheet 5 – <u>Dozer cont'd</u> : The nor	<i>mal</i> production	curves assu	me a flat su	Irface with a pount for slope	oushed	
experience, equipment specific	ations, and othe	er site-specif	ic factors, t	he CPH modi	fies the	
normal production curve by mu	ultiplying various	s factors to o	btain the o	verall produc	tivity:	
E F	G H	l J	к	L M	N O	Р
Productivity and Hours Required for Dozer UseEarthmod	ving					
 5 Notes and Assumptions: 6 Uses volumes of outslope sections and dam breaches to calculate pro 7 Uses push distances of outslope sections for grading productivity 	ductivity	Number of 2 dozers	of Dozers per Assist = per assist at 3A/3B and S	1 ian Salvador Pit (manually ent	ered)	
 Uses scraper push cycle time for dozer assist with scraper Uses loader cycle time for dozer assist with loader at cover stockpiles Grade Factor = -0.02(Grade %) + 1 						
11 May filter on equipement (D14) to show pertinent rows 12 13						
IU Task Description Source	e Location 1 Destination Location 2	n Equipment Type 2 Equipm Assist	or Iype of ent to Equipment to (ID) Assist	Number of Loose Dozers per /Stockpile Assist Volume (c)	e (ac) (cy/hr)	eroductivity (ac/hr)
14	n -	Cat D11T CD	(Name) 	6,300,00	0 308 768	-
I Q R S T U	v w x	Y Z	AA AB	AC AD	AE AF AG	AH Tyrone Mine
2 3 4 P	Production ==	= C * Distance	b		Stockpile Spreadshee	t Worksheet #5 04/29/19
5 5 7	, o d d o o to normal		Push			
9						
1	CEFACTORS					
Scraper Cycles Loader/ Total Material G Pusher per Shovel/ Task Time Factor Fa Cycle Time Scraper Excavator (hrs)	rade Material Production C actor Weight Method/ (Ib/cy) Blade	Centroid to Normal Centroid Production Push (cy/hr)	Effective Speed Blade (mph) Width (ft)	Operator Work Hour Visi Factor (min/hr) Fa	bility Elevation Direct ctor Factor Drive Trans.	Cut to Fill Haul Grade (%)
(min) per Hr Cycle Time 33 - - 8,204.8 1.0	1.6 3,300 1.2	istance (ft) 540 697	22 3	1.00 50	1.0 1.0 1.0) -29%
$Productivity(\frac{cy}{L}) \neq F_{ma} + F_{a}$	$_{rade} * F_{prod-metho}$	* Foperator* Fvis	sibility* F _{elev} *	F _{drive}		
WorkHour	$r = \frac{2,300 \ lb/cy}{Mattill Main lt} * 1$	Production _{norm}	al			
60min/hr	• Mat'l Weight					
=U39*V39*X39*AC3	9*AE39*AF39*AG39*(A	\D39/60)*(2300/W	39)*Z39			
Sheet 6 – <u>Road Maint</u> : This sheet	calculates the ti	me required	for a water	r truck and m	otor grader	to
be used for dust suppression and	l site maintenan	ce during ea	rthwork rea	clamation. Co	lumns E thro	ough
assumed to be equal to the load	er/shovel task ti	me.		lance fille (
E F	G	Н		1		J Turope Misco
2 Productivity and Hours Required for Dust Supp	pression and Road Main	tenance		S	tockpile Spreadsheet	Worksheet #6
Notes and Assumptions: 6,000 gal water truck and 14M motor grader for dust super	pression and site maintenance	e (water truck hours ar	nd 14M hours tied to l	oading time for cover m	aterial)	04120110
6 May filter on equipement (D14) to show pertinent rows 7						
8 9 10 Sheet to which to tip has 10 Les	der Shovel					
Equipment for hrs Sh1 I2 Equipment for hrs Ld2						
				1 10 10	Opera	ational
ID Task Description Source 74 1000-P-b-Comb1 Road Maintenance Gila Bo	rrow Area 1A and 1BL	ation Location 2 .each	Cat 14M, Off-Hwy V	E quipment /ater Tanker Truck,6,00	Maintena 0-gal.	ance Time 423
	iding time on Load	der/Shovel sh	eet	raker ranker muck,0,00		423
For example	use only. Values n	nay not match	the current	spreadsheet.		1111

TELESTO SOLUTIONS OF NO CORPORATED	Job No:200540a Task:_Earthwork RCE	Client: Freeport NM Page <u>12</u> of <u>23</u> Operations Computed By: Taryn Tigges Date: <u>4/30/19</u>
		_Checked By: Fred Charles Date: 4/30/19

Results cont'd:

Sheet 7 – <u>Ripper</u>: Rippers are used after rough grading, before placing cover, at all facilities (or before revegetation at borrow stockpiles) to promote revegetation. Rippers are also used to loosen the existing ground before rough grading with scrapers. Columns E through J repeat the ID, title of the activity, locations, equipment and areas from Sheets 3 & 4. Columns K and L are the results of the dozer ripper productivity calculations. The remaining columns are the inputs that allow the calculation of bulldozer ripper productivity in acres per hour based on ripper performance factors:

1	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T	U	V
																	Tyrone Min
-																Stockpile Spi	eadsheet Worksheet #
Pro	ductivity and Hours Requ	ired for Ripper	Equipped Do	zer Use													04/29/19
Note	es and Assumptions:																
Uses	area to calculate task time																
88 ft	min = 1 mph																
May	filter on equipement (D14) to s	now pertinent rows															
135	come is less man Thour for and	as smaller man pro	oducewey rate (acri	no													
								DEDEODA		_							
	Task Description	Source	Destination	Equipment	Area	Productivitu	Task	Bipping	Bipper	Pocket	Distance	Number of	Turo Time	Vork Hour	Speed	1000 Et or 100	Binned Width Plus
	rusk besonption	Location 1	Location 2	Equipment	(ac)	(ac/hr)	Time	Length	Penetration	Spacing	b/n	Shank	(min/pass)	(min/hr)	(mph)	Ft Passes/Acre	Distance b/n
ł					,		(hrs)	ffti	(in)	finl	Passes	Pockets					Passes (fr)
			(Cat D11T CD Multi-shar	nk		\sim									\frown	
4 Rip-	Top-Rough Graded Material	1A and 1B Leach	- (wHMOR-353HJ	17	2.9	5.8	1,000	18	59	59	3	0.25	50	1.0	15	30
						\sim										T	
																/	
	/															./	
-																	
												1		- and the second			
	=	64/((M6	54/(5280)*T64/60)	+R6	4)*U64	.)						=4	3560/	(M64	4*V64)	
		- / 11	1			1	<u> </u>								(,	
					/												
								C				-					
									=164/K6	54							
						_		L	vv .,								
							-	<hr/>									
							~								=0	64*(P64+	064)/12
															-4	, , , , , , , , , , , , , , , , , , , ,	004//12
										<hr/>							
											Un	it conv	version	n facto	ors		
											0						

Sheet 8 – <u>Excavator</u>: An excavator with a sheepsfoot attachment is used for perforating liners before reclamation of lined impoundments. Columns E through J repeat the ID, title of the activity, locations, equipment and areas from Sheets 3 & 4. Task time (column Q) to complete compacting the entire area is calculated using the inputs from columns J-P, which are referenced from the Equipment sheet.

	Е	F	G	н	I	J	к	L	м	N	0	Р	Q
1												Tyro	ne Mine
2	Productivity	and Hours Required for Hydraulic	Excavator							Stockpil	e Spreads	sheet Works	heet #8;
3	Notes and A	ssumptions:											*****
5	lses area to ca	alculate time for perforating liners											
6	8' choon cfoot e												
7	Can be used fo	r excavating and loading, or sheepsfoot o	compaction using a roller										
8	May filter on eq	uipment (D14) to show pertinent rows											
10				1									
11				15									
12													
13			7	8	9	10		11		12	13		14
	IJ	lask Description	Source Location 1	Destination Location 2	Equipment	Area (ac) or Volume	Unit (ac or Icy)	Sheepstoot Roller Width (ft) or Bucket	Unit (ft or cy)	Maximum Reach at Ground	Cycle Time (min)	Work Hour (min/hr)	Time (hr)
14						(lcy)		Capacity (cy)		Level (ft)			
78	2701-K-a-Ex1	Perforate Liner-Surface Impoundments	Surface Impoundments closed at year 33; some closed year 6	-	Cat 319D L	21.2	ac	3.0	h	31.7	0.16	50.00	31.15
				=078*((J78*43	560)/	(L78	*N78)/P78	-				
						Ur	nit co	onversion fa	actor				
		For	example use only. Values may	not ma	itch the	curre	ent s	spreadshee	et.				

	Job No: 200540a	Client: Freeport NM Page <u>13</u> of <u>23</u> Operations
RATED	Task: Earthwork RCE	Computed By: Taryn Tigges_ Date: 4/30/19
		Checked By: Fred Charles Date: 4/30/19

Results cont'd

Sheet 9 – <u>Trucks:</u> Trucks are used to haul cover material from borrow stockpiles to destination facilities. Columns E through J repeat the ID, title of the activity, locations, equipment and volumes from Sheets 3 & 4. Column K sums the truck cycle, which includes the haul time loaded, return time empty, loading time, truck exchange time, and the dump/maneuver time. Column L reports the optimum number of trucks as limited by the number and size of loaders (calculated on the Truck Optimization sheet, as shown in the Equipment Optimization calculation summary). Column M lists the loader or shovel net bucket capacity, referenced from the Shovel sheet. Column O lists the loader or shovel task time, referenced from the Shovel sheet. Column N and P calculate the overall productivity and time required of the load-haul-dump operations, respectively. Column P calculates the time for the truck to complete that task and compares that time to the loader task time, because the truck will have to idle while the loader/shovel finishes loading if the loader/shovel task time is longer, the loader task time is longer, the loader task time is listed. If the truck task time is longer, the truck task time is longer, the truck task time is listed.

	Job No: 200540a	Client: Freeport NM Page <u>15</u> of <u>23</u> Operations
D	Task: Earthwork RCE	Computed By: Taryn Tigges Date: 4/30/19
		Checked By: Fred Charles Date: 4/30/19

Results cont'd

Sheet 9 – <u>Trucks cont'd</u>: Haul times are calculated for the trucks by using rimpull-speed-gradeability curves and retarding curves to create a relationship for travel time vs. effective resistance for travel uphill and downhill, respectively. A formula is derived by curve fit to the rimpull-speed-gradeability curves and retarding curves provided in the CPH for the specific truck. Similar to the dozer productivity curves, this is accomplished by scaling values from the figures and using the curve fitting tools within Microsoft Excel. Input values are taken from the 1998, 2011, 2017 and 2018 Caterpillar (Cat) Performance Handbook (CPH) (Editions 29, 41, 47, and 48) for the specific model truck. The example below shows how travel time is calculated for uphill routes, assuming a loaded truck:

	Job No: 200540a	Client: Freeport NM Operations	Page <u>17</u> of <u>23</u>
A T E D	Task: Earthwork RCE	Computed By: Taryn Tigges	Date: 4/30/19
		Checked By: Fred Charles	Date: 4/30/19

Results cont'd:

Sheet 10 – <u>Loader Shovel</u>: Loaders or shovels are used to load cover material onto haul trucks at borrow stockpiles. Columns E through I repeat the ID, title of the activity, locations, and equipment from Sheet 3. Column J is the hauling equipment that is loaded by the loader or shovel. Column K is from Sheet 4 and contains the total amount of material to be loaded/moved. Loader/shovel cycle time (column L), net bucket capacity (column P), and work hour (column Q) are from the Equipment sheet. Per Loader/Shovel Productivity (cy/hr) (column M) and Loader/Shovel Task Time (hrs) (column N) are calculated directly. Similar to the truck task time calculation, the maximum of either the loader/shovel task time or the truck task time is used (column O).

TELECTO	Job No:_
SOLUTIONS . IN CORPORATED	Task: Ear

Job No: 200540a	Client: Freeport NM Page <u>18</u> of <u>23</u>
	Operations
Task: Earthwork RCE	Computed By: Taryn Tigges Date: 4/30/19

Checked By: Fred Charles Date: 4/30/19

Results cont'd:

Sheet 12 – <u>M'Grader</u>: Motor graders are used for rough grading tops of stockpiles or for fine grading cover material. Columns E through I repeat the ID, title of the activity, locations, and equipment from Sheet 3. Column J is from Sheet 4 and contains the area of material to be graded. The grade factor (Column M) is calculated based on percent grade. Column K, shaping productivity, is calculated from the speed and effective blade width. Column L is calculated directly. Column N is an assumed material handling factor and Column U is a factor based on operator experience. Columns O-T are based on material properties and equipment information.

1.14	E	F	G	н	1	J	к	L	M	N	0	Р	Q	R	S	Т	U
1																	Tyrone Mine
2	Productivity a	nd Hours Required for	Motorgrader Us	eGrading										Stock	kpile Sprea	adsheet Wo	rksheet #12
3				1000 C													4/29/2019
4	Notes and Assu	mptions:															
5	Productivity (base	d on area of overall stockpile) = Sq.ft per hour = S	Speed x (Eff. Bla	ade L -Blade Ov	rerlap) x	Efficiency (Cal	t. Handbo	ook Editio	n 47 pg 11	-27)						
6	Max. safe slope for	r motor graders is 2:1 (50%)	, proposed final grad	le for Tyrone co	over grading on	stockpile	es is 33%, there	fore use	of grader	s an option	(Cat. Har	dbook Edition	46 pg 11-30)				
7	Grade Factor = -0.	02(Grade %) + 1						8									
8	May filter on equip	ement (D14) to show pertine	nt rows					2	_								
9																	
10																	
11																	
12	4							2			-						
15	ID	Tack Deparintion	Course Leastion	Dectination	Crading	Area	Crading	Taak	Crada	Motorial	Matorial	Draduction	Effortivo	Dago	Speed	Mork	Operator
	10	Task Description	Source Location	Location 2	Equipment	(ac)	Shaping	Timo	Eastor	Eastor	Woight	Method	Plado	Overlap	(mph)	Hour	Eastor
				Location 2	equipment	(ac)	Productivity	(hre)	ractor	ractor	(lb/cv)	Blade	Width (ft)	(ft)	(inpit)	(min/hr)	ractor
	T			×	×	-	lacher	(1115)		-	(ID/Cy)	Diade	widen (ity	(14)		(1111/11/)	-
14	4004 4 - 11-4	Orada Tan Evistina Oravad	1A and 4D Lanah		0-1401	47	(aquin)			10	2.200	4.00	10.00	2.00	2.50		4.00
40	1001-A-a-Mg1	Grade-Top-Existing Ground	TA and TB Leach	-	Cat IoM	17	3	<u>Д 5.9</u>	1.0	1.0	3,300	1.20	16.00	2.00	2.50	50	1.00
						-	\sim	\sim									
											-15/	V11E>0	1115/11	15 0)			
	(1			1 4 7 3 8 4 4 4 7	*CAG	*1016-				-IF(VTT250'	1112/ 11	15,01			
-	(=(T46/60)*N4	6*(2300/04	6)*P46*l	J46*IVI46	340	(040-)		
		=(T46/60)*N4	6*(2300/04	6)*P46*l	J46*IVI46	340	(Q40=				<u> </u>		-				
		=(T46/60)*N4 R46)*5280/43	6*(2300/04 560	6)*P46*l	J46*IVI46	340	(Q+0=				<u> </u>						
		=(T46/60)*N4 R46)*5280/43	6*(2300/O4	6)*P46*l	J46*IVI46	340	(Q+0-				<u> </u>						
	(=(T46/60)*N4 R46)*5280/43	6*(2300/O4 560	6)*P46*l	J46*IM46	340	(Q+0-										

Unit conversion factors

Soil weight (lb/cy) assumed in CPH

Sheet 13 – <u>EarthSum</u>: This sheet summarizes all of the quantities and production rates on the individual sheets (5, and 7 through 12) and applies costs from Equipment Watch, the New Mexico labor rates table, fuel quotes, etc. Columns E through I repeat the ID, title of the activity, locations, equipment from Sheet 3. Columns J through L list the fuel, rental and maintenance, and labor unit costs from the Equipment sheet for the associated piece of equipment. The number of units of equipment is assumed to be one except for trucks and scrapers, which use an optimum number of units, calculated on the truck and scraper optimization sheets. The time required is taken from each of the equipment sheets (Sheets 5-12). The fuel, rental and maintenance, and labor costs are calculated by multiplying the unit costs by the time required for each task. The total equipment cost (column R) is the sum of the fuel, rental and maintenance, and labor costs. The total production volumes and areas are repeated from Sheet 4.

1							12	_
2			Summarizes costs for	line items inv	olving earth	works		
3		Summary Calculation of Earthmovin	ng Costs					
4			Notes and Assumption	ns:				
5		Summarizes all earthmoving guantities and	co Productivity (based on are	a of overall stoc	kpile) = Sq.ft per	r hour = Sp	eed x (Eff. Blade L -Blade O	verlap) x Effic
6			Max. safe slope for motor o	raders is 2:1(50	%), proposed fir	nal grade fo	or Tyrone cover grading on s	tockpiles is 3
7			Grade Factor = -0.02(Gra	de%)+1				
8			May filter on equipement (I	014) to show per	tinent rows			
9								
10								
11								
12								
13		-		-	-			
	UI	Description	Source Location 1	Destination	Equipment	Fuel	Lube, Tires, GEC, &	Labor
				Location 2		Cost	Field Parts Adjusted	Cost
		_				(\$/hr)	Rental Cost (w/o fuel)	(\$/hr)
14	-		* · · · · ·	-	-	-	(\$/hr) 🚽	-
36 1	202-A-a-Dz2	Grade-Outslopes-Existing Ground	2A Leach and 2B Waste	-	Cat D11T CD	\$69.62	\$254.44	\$27.41

TELECTO	Job No: 200540a	Clien	t: Freeport NM Operations	. Page <u>19</u> of <u>23</u>		
SOLUTIONS IN CORPORATED	Task: Earthwork R	CEComp	outed By: Taryn Tigg	ges_ Date: 4/30/19		
		Check	ked By: Fred Charle	esDate:4/30/19		
Results cont'd Sheet 13 – EarthSum cont'd:						
	M N C) Р	Q R	S T Turone Mine		
2 3 4				Stockpile Spreadsheet Worksheet #13 04/29/19		
=SUM(015:Q15)	<i>Lat. Handbook Edition 47</i> pg 11-2 refore use of graders an option (Ca	() at. Handbook Edition 46 pg 11-30)				
3 b 11 12						
	nber of Time Req'd Direct Inits (hrs) Cos ipment)	t (\$) Direct Lube, Tires, t (\$) GEC, & Field Parts Adjusted Rental Cost (#/o fuel) (Direct Total Equipme Labor Cost (\$) (\$)	nt Total Production Total Volume (CY) Area (AC)		
=J15*N15*M15	1 <u>3,306.8</u> \$6	47,897 \$2,368,057	\$255,101 \$3,271,0	55 8,060,000 -		
areas from Sheets 3 & 4. The ca without fuel) are multiplied by t revegetation costs for each loca costs related to each location.	ilculated unit rate he corresponding tion. The total re	es for revegetation gareas to calcula vegetation direct	on (reveg fuel co ate the associate t cost is then the	st and reveg cost ed direct e sum of all direct		
E F 1 2 Reventation Costs		G	H I J	K L M Tyrone Mine Stocknile Spreadsbeet Worksbeet #14		
A Description: A Description: A Description: A Includes scartfying (rpping), discing, rangeland drill seeding, mulching, crimp Max filter on equivament (D14) to show perfinent rows	ing, and daily per diem			04/29/19		
7 8 9 10						
11 12 13 10 Description		iource Location 1	Destination Area Fuel Unit	Reveg w/o Fuel Fuel Direct Reveg w/o Fuel		
14 Revegetate-Entire Stockpie-Final Grade 154 1000-J-e-U2 Revegetate-Entire Stockpie-Final Grade	A and 1B Leach		Location 2 (ac) Cost (\$/ac)	Unit Cost (\$/ac) \$ 820.12 \$ 1,051 \$ 223,893 \$ 970.42 \$ 6 5 123,893		
153 Floor-e-02 Revegetate-Entire Stockpile-Final Grade 157 1300-J-e-U2 Revegetate-Entire Stockpile-Final Grade 158 1500-J-e-U2 Revegetate-Entire Stockpile-Final Grade 158 1500-J-e-U2 Revegetate-Entire Final Grade	2A Leach and 2B Wa 3A / 3B 5A Overburden San Salvador Pit		- 487.0 \$ 3.85 - 455.0 \$ 3.85 - 371.0 \$ 3.85 - 115.0 \$ 3.85	3 620.12 \$ 1,874 \$ 399,392 \$ 820.12 \$ 1,874 \$ 399,392 \$ 820.12 \$ 1,751 \$ 373,155 \$ 820.12 \$ 1,428 \$ 304,265 \$ 820.12 \$ 1,428 \$ 304,265 \$ 820.12 \$ 443 \$ 94,314		
160 2300-J-e-U2 Revegetate-Entire Stockpile-Final Grade 161 1400-J-e-U2 Revegetate-Entire Stockpile-Final Grade 162 1800-J-e-U2 Revegetate-Entire Stockpile-Final Grade 163 1900-J-e-U2 Revegetate-Entire Stockpile-Final Grade 163 1900-J-e-U2 Revegetate-Entire Stockpile-Final Grade	Savanna In-Pit Leach 4C Leach 2C, 4A, 4B, 7B Leach 8C	Stockpile	- 65.0 \$ 3.85 - 183.0 \$ 3.85 - 375.0 \$ 3.85 - 47.4 \$ 3.85	\$ 820.12 \$ 250 \$ 53,308 \$ 820.12 \$ 704 \$ 150,082 \$ 820.12 \$ 1,443 \$ 307,545 \$ 820.12 \$ 1,443 \$ 307,545 \$ 820.12 \$ 182 \$ 38,841		
164 1600-J-e-U2 Revegetate-Entire Stockpie-Final Grade 165 1700-J-e-U2 Revegetate-Entire Stockpie-Final Grade 166 2000-J-e-U2 Revegetate-Entire Stockpie-Final Grade 167 2600-J-e-U2 Revegetate-Entire Stockpie-Final Grade 167 2600-J-e-U2 Revegetate-Entire Stockpie-Final Grade	6B 6C 9A Overburden Tailing Launder Line		- 54.0 \$ 3.85 - 66.0 \$ 3.85 - 129.0 \$ 3.85 - 7.4 \$ 3.85	\$ 820.12 \$ 208 \$ 44,286 \$ 820.12 \$ 254 \$ 54,128 \$ 820.12 \$ 254 \$ 105,796 \$ 820.12 \$ 28 \$ 105,796		
186 290U-J-e-U2 Revegetate-Mangus Fumphouse-rinal Grade 198 2701-J-e-U2 Revegetate-Surface Impoundments closed at year 99; so 170 2702-J-e-U2 Revegetate-Surface Impoundments graded over at closur 171 3300-J-e-U2 Revegetate-Implanned Disturbance Area-Final Grade 272 2100-L-12 Revegetate-Implanned Disturbance Area-Final Grade	Mangus Pumphouse me closed year 6- Surface Impoundment: e-Final Grade Surface Impoundment: Unplanned Disturbanc	s closed at year 99; some closed year (s graded over at closure ce Area	- 7.0 \$ 3.85 - 21.2 \$ 3.85 - 0.5 \$ 3.85 - 125.0 \$ 3.85 - 25.0 \$ 3.85	\$ 820.12 \$ 27 \$ 5,741 \$ 820.12 \$ 82 \$ 17,411 \$ 820.12 \$ 2 \$ 394 \$ 820.12 \$ 2 \$ 394 \$ 820.12 \$ 481 \$ 102,515 \$ 820.12 \$ 246 \$ 52,242		
290 291	Tailing Repositories Bo	rrow Areas	- 74.7 \$ 3.85	\$ 820.12 \$ 287 \$ 61,263 \$ 11,301 \$ 2,408,586		
			=1173*J173	=SUM(M15:M290)		
For example	use only. Values m	ay not match the c	urrent spreadshe	et.		

	Job No: 200540a	Client: Freeport NM Page 20 of 23 Operations
TLEDIU	Task: Earthwork RCE	Computed By: Taryn Tigges Date: 4/30/19
		Checked By: Fred Charles Date: 4/30/19

SOLI

Sheet 15 – <u>Other</u>: This sheet contains the direct costs associated with miscellaneous (other) earthwork tasks. These tasks include grading benches, constructing downdrains, constructing downdrain dissipators, constructing bench channels (including filter and riprap production and placement), replacing infrastructure, plugging and abandoning wells, replacing wells, constructing berms, fencing (including vehicle gates and signs), and building grade control walls. Columns E through H repeat the ID, description, and locations from Sheet 3. Columns I and J document the quantity and unit associated with each quantity for each task (referenced from the Quantities sheet). The unit costs (columns K and L) are referenced from the Unit Cost sheet. The quantity multiplied by the unit costs give the direct costs for each activity. The direct costs are totaled at the bottom of the sheet.

	EIEC	TO	Job No: 20054	0a	Clien	t: Freeport NM Operations	Page <u>21</u> of <u>23</u>
s o	SOLUTIONS IN CORPORATED		Task: Earthworl	RCE	gges Date: 4/30/19		
					rles		
Re Sh	sults cont'd eet 16 – <u>Sum</u> : This sts are added as a p	sheet sum	marizes the dir	ect co	osts from She	eets 2, 13, 14 a	nd 15. The indirect
			D D	0	D	E	
1	A		D	C	D	E Tyrone Mine	
2			5	stockp	ile Spreadsheet	t Worksheet #16	
3						4/29/2019	
4							
5	Tyrone Mine						'2 Demo'/521
6	Reclamation Summar	y Stockpiles,	Haul Roads, Res	ervoirs	s, and Disturbed	d Areas	- z Dellio (FSI
7					s. a.v.		
8					Current Value		='13 EarthSum'!R295
9	DIRECT COSTS	Facility and	Structure Removal		\$5,089,622		
10	Earthmoving			\$43,140,197		='14 Revegetation'!M291+'14	
11		Revegetation	1 <u>-</u>		\$2,419,888		Revegetation'!L291
12		Other	2000	-	\$20,527,008		
13		Su	btotal, Direct Costs		\$71,176,714		
14	INDIDECT COSTS	C.L		20.00	\$24 252 04A		Other'!M291
15	INDIRECTCOSTS	Sub	total, indirect Costs	30.0%	121,333,014		
17							=SUM(D9:D12)
18	TOTAL COST				\$92,529,729		
19		Twelve Year	Annual Expenditure		\$7,710,811		=C15*\$D\$13
20			3.5				
21							
22	Notes:	5 65(8)-1					=(D13+D15)
23	Indirect costs are based or	n 2019 agreem	ent between FMI and	agencie	es		
24 25	Indirect costs include but a contingencies, contractor p	are not limited t profit and overh	o mobilization and de ead, project manager	emobiliz nent fee	ation, engineering e, and state procur	redesign fee, ement cost	=D18/12
		200/					
Total indirect costs of 30% are applied to the capital direct costs based on discussions involving the							
FA Work Group completed in December 2018 and as agreed in January 2019. The FA Work Group							
inv	olved representativ	es of Free	port-McMoRar	New	Mexico Ope	rations (FNMO), MMD, NMED, and
Gil	a Resources Inform	ation Proje	ect (GRIP). The	indir	ect costs inco	orporate Mobili	ization and
De	mabilization Conti	ngoncios r		lacian	Foo Contro	ator Draft and	Overhead Drainet

Demobilization, Contingencies, Engineering Redesign Fee, Contractor Profit and Overhead, Project Management Fee, and other administrative costs. The RCE report provides further information on the FA Work Group agreement.

Client: Freeport NM Page 22 of 23

Task: Earthwork RCE

_Computed By: Taryn Tigges Date: 4/30/19

Operations

Checked By: Fred Charles Date: 4/30/19

Results cont'd:

Sheets 17-<u>Facility Characteristics-</u> This sheet summarizes direct and indirect cost for each facility in the Tyrone RCE spreadsheet. The first four facilities listed on this sheet are shown below:

4	A	В	С	D	E	F
1						
2	A REAL PROPERTY AND A REAL PROPERTY OF A REAL PROPE					
3	Facility Characteristics					
4	Facilities are categorized in th	is listing to meet the MMD reporting				
5	requirement					
6	100 million (100 m		1000	1100	1200	1300
7		Facility	1A and 1B Leach	1C	2A Leach and 2B Waste	3A / 3B
8	<u></u>					
9		Reclaimed Acres [®]	273.00	17.00	486.99	455.00
10			0	0	Combal Comp	0
11	Dise at Carata	Kem	tapital Lost	tapital Lost	AD DOL EDO	AD 105 070
12	Direct Costs	Cover Material Excav, Haul, Grade'	\$1,262,102	\$30,723	\$3,231,029	\$3,100,876
13		Fullback of Backrill Top/Outplace Adjustment Condine?	\$U #164.600	\$U \$0	\$U \$2,277,222	\$13,377,403
14		Costifu Sood & Mulah, Douga	\$104,000	\$U \$14.011	\$3,211,233 \$401,266	\$1,603,024 \$274,906
10		Channels & Benches ⁴	\$1928.349	\$0	\$3709.623	\$2,966,998
10		Demolition	\$0	\$0	\$0,000,020	\$0
18		Other ³	\$0	\$0	\$0	\$0
19		Capital Cost Totals	\$3.579.994	\$109,734	\$10.619.651	\$21,684,211
20		Capital Cost/Acre	\$13,114	\$6.453	\$21.807	\$47.658
21	Contraction of the local sectors of the local secto					
22	Indirect Costs	Cover Material Excav, Haul, Grade1	\$378,631	\$28,717	\$969,459	\$931,763
23		Pullback or Backfill	\$0	\$0	\$0	\$4,073,223
24		Top/Outslope Adjustment Grading ²	\$49,380	\$0	\$983,170	\$497,707
25		Scarify, Seed & Mulch, Reveg ^a	\$67,483	\$4,203	\$120,380	\$112,472
26		Channels & Benches*	\$578,505	\$0	\$1,112,887	\$890,099
27		Demolition	\$0	\$0	\$0	\$0
28		Other ^s	\$0	\$0	\$0	\$0
29		Indirect Cost Totals	\$1,073,998	\$32,920	\$3,185,895	\$6,505,263
30		Indirect Cost/Acre	\$3,934	\$1,936	\$6,542	\$14,297
31						
32						
33						
34		Total Cost	\$4,653,992	\$142,654	\$13,805,546	\$28,189,475
35		Total Cost Cover	\$1,640,733	\$124,440	\$4,200,988	\$4,037,638
36		Fullback of Backhill	\$U 4010.000	\$U \$0	\$0	\$17,650,631
37		Total Cost Top/Outslope Adjustment	\$213,980	\$0	\$4,250,403	\$2,105,731
38		Total Cost Earthwork	\$1,809,712	\$124,440	\$8,461,331	\$23,840,001
39		Capital Cost Re-Veg	\$232,420	\$10,214	\$021,640	\$401,311 40
40		Capital Cost Other*	۵ 0	φu	¢٥	φU
41		Total Cost/Acre	\$17.048	\$8.389	\$28.349	\$61,955
42		Total Costilária Couer	\$6.010	\$7 318	\$8 626	\$8 874
45		Pullback or Backfill	\$0	\$0	\$0,020	\$38,793
44		Total Costilàcre TosiOutolose àdjustment	\$784	\$0	\$8,748	\$4,740
46		Total Cost/Acre Farthwork	\$6,794	\$7.318	\$17,375	\$52,407
47		Capital Cost/Acre Re-Veg	\$1,071	\$1,071	\$1.071	\$1,071
48		Capital Cost/Acre Other ³	\$0	\$0	\$0	\$0
49						
	1					

The Direct and Indirect Costs are each broken down into the following sections: Cover Material, Pullback or Backfill, Top/Outslope Adjustment Grading, Revegetation, Channels & Benches, Demolition, and Other. Demolition is not divided by location but is given as a total.

Task: Earthwork RCE

__Computed By: Taryn Tigges Date: 4/30/19

Checked By: Fred Charles Date: 4/30/19

Results cont'd:

<u>Remaining Sheets</u>: The remaining sheets and data supporting the earthwork calculations described in this calculation documentation are described in the following calculation summaries:

- Equipment Optimization
- 0&M
- Building Demo
- Bench Grading Unit Cost
- Bench Channel Unit Cost (and Riprap/Gravel Unit Cost)
- Downdrain Unit Cost
- Pipeline Unit Cost
- Revegetation Unit Cost
- Fuel Unit Cost

Job No: 200544a-001-02

Client: Freeport NM Page 1 of 4 Operations

Task: Fuel Cost

_Computed By: Fred Charles Date: 2/19/2019

_Checked By: Taryn Tigges __Date: 2/19/2019

Calculation Documentation

Problem Statement:

Freeport-McMoRan (FMI) utilizes fuel price information as part of earthwork closure cost estimation associated with the Little Rock Mine Closure/Closeout Plan (CCP). A reliable estimate of the local 2021 fuel price is needed, based on local and national data for past years.

Objective:

1. Develop an equation to predict the estimated 2021 local fuel price for use in estimating earthwork closure costs at FMI's mining operations in Grant County, NM.

Approach:

- 1. Identify existing data used for the calculation.
- 2. Correlate local and national data for fuel price, paired by year.
- 3. Estimate 2021 fuel price for use in the earthwork closure costs.

Data and Assumptions:

 Data used for the calculations are shown below (1995-2018 as example) and include (a) U.S. No. 2 Diesel Retail Prices (annual national) and (b) FMI quotes (for specific dates within a year) for the local Silver City area. All prices are in \$/gallon.

(Dollars per Gallon)		FMI Fuel Quotes ²					
Date	U.S. No 2 Diesel Retail	Site	Date	Dyed, low- sulfur diesel	Notes		
1995	1109	Continental	1/21/2005	\$140	Tom Shelley - guote from fuel broks		
1996	1235	Chino & Turope	5/9/2007	\$2.41	Porter Oil Quote (7500 gal capacitu)		
1997	1198	Continental	1/23/2009	\$180	Porter Oil Quote (7500 gal capacitu)		
1998	1044	Turope (Little Bock)	1/14/2010	\$2.49	Porter Oil Quote (7500 gal capacitu)		
1999	1.121	Turone	7/7/2012	\$3.13	Vestern Befining Oil		
2000	1491	Continental	6/18/2014	\$3.22	Vestern Befining Oil		
2001	1.401	Chino (North Lampbright)	11/5/2015	\$1.74	Vestern Befining Oil		
2002	1.319	Chino	5/20/2016	\$1.66	Vestern Refining Oil		
2003	1.509	Tyrone (Little Rock)	4/24/2017	\$1.90	Western Refining Oil		
2004	1.81	Continental	3/12/2018	\$2.75	Griffin Propane		
2005	2.402	Chino	10/10/2018	\$2.75	Griffin Propane		
2006	2.705						
2007	2.885						
2008	3.803						
2009	2.467						
2010	2.992						
2011	3.84						
2012	3.968						
2013	3.922						
2014	3.825						
2015	2.707						
2016	2.304						
2017	2.65						
2018	3.178						
Date	U.S. No 2 Diesel Retail Prices ¹						
Jan 2019	2.98						
U.S. Epergulpformation A	Iministration						
ttp://tonto.eia.gov/dnav/ne	t/hist/LeafHandler.ashx?n=PET&s=EI	MD EPD2D PTE NUS DPG&F=	M				

Job No: 200544a-001-02

Client: Freeport NM Page 2 of 4 Operations

Task: Fuel Cost

Computed By: Fred Charles Date: 2/19/2019 Checked By: Taryn Tigges Date: 2/19/2019

Data and Assumptions (continued):

- 2. The local FMI fuel quotes and annual national retail fuel (U.S. No. 2) prices are assumed to trend similarly if the national prices increase the local prices also increase.
- 3. A correlation between national and local fuel prices is assumed to be a reasonable predictor of local fuel prices for any time period (e.g., annual, monthly, etc).

Calculations and Results:

1. The annual national retail fuel prices (U.S. Energy Information Administration) dataset is tabulated and plotted for comparison with the available annual local FMI fuel quotes (note that quotes are not available for blank years).

Year	U.S. No 2 Diesel Retail Prices ¹	FMI Fuel Quotes ²	 Year	U.S. No 2 Diesel Retail Prices ¹	FMI Fuel Quotes ²
1995	1.109		2007	2.885	\$2.41
1996	1.235		2008	3.803	
1997	1.198		2009	2.467	\$1.80
1998	1.044		2010	2.992	\$2.49
1999	1.121		2011	3.84	
2000	1.491		2012	3.968	\$3.13
2001	1.401	5 5	2013	3.922	· · · · · · · · · · · · · · · · · · ·
2002	1.319		2014	3.825	\$3.22
2003	1.509		2015	2.707	\$1.74
2004	1.81		2016	2.304	\$1.66
2005	2.402	\$1.40	2017	2.65	\$1.90
2006	2.705	520	2018	3.178	\$2.75
		1.1			

1. U.S. Energy Information Administration

http://tonto.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=EMD_EPD2D_PTE_NUS_DPG&f=M 2. Quotes obtained from Freeport-McMoRan (FMI)

Job No: 200544a-001-02

Client: Freeport NM Page <u>3</u> of <u>4</u> Operations

Task: Fuel Cost

_Computed By: Fred Charles Date: 2/19/2019 _Checked By: Taryn Tigges Date: 2/19/2019

Calculations and Results (continued):

- 2. The annual national fuel retail prices are ranked from lowest to highest, and corresponding local FMI fuel quotes are listed for matching years in which they are available. (see Col. A and B, below)
- 3. The difference between the national fuel retail prices and FMI fuel quotes is calculated for each pairing. Note that FMI fuel quotes are all lower than the corresponding national fuel retail prices. The differences for all pairs are averaged. (Col. C)
- 4. For each year without an FMI quote, the average difference (\$0.69) is subtracted from the national fuel retail prices. This results in a calculated FMI value for each unpaired data year. (Col. D)
- 5. The available FMI fuel quotes and calculated FMI values are combined into one column for a full listing of calculated FMI values and FMI quotes. (Col. E)
- 6. The annual national fuel retail prices (Col. A) are plotted vs FMI calculated values and quotes (Col. E), and a correlation is developed with national fuel prices as the independent variable and FMI values and quotes as the dependent (i.e., estimated) variable. (see Col. F and graph below)

		L	U	E	F
J.S. No. 2 Diesel	FMI Fuel	Difference Between	Calculated FMI	Calculated	y = -0.0617x3 +
Potnil Prices	Queter ²	Retail Prices and FMI	Values Based on	FMI Values	0.4659x2 - 0.0611x +
Retail Prices	Quotes	Quotes	Average Difference	and Quotes	0.0148
\$0.00				\$0.00	\$0.01
\$1.11			\$0.42	\$0.42	\$0.44
\$1.24	10		\$0.55	\$0.55	\$0.53
\$1.20			\$0.51	\$0.51	\$0.50
\$1.04	s	2	\$0.36	\$0.36	\$0.39
\$1.12			\$0.43	\$0.43	\$0.44
\$1.49			\$0.80	\$0.80	\$0.75
\$1.40			\$0.71	\$0.71	\$0.67
\$1.32			\$0.63	\$0.63	\$0.60
\$1.51			\$0.82	\$0.82	\$0.77
\$1.81		5 11.999.0.0	\$1.12	\$1.12	\$1.06
\$2.40	\$1.40	\$1.00		\$1.40	\$1.70
\$2.71			\$2.02	\$2.02	\$2.04
\$2.89	\$2.41	\$0.47	and the second second	\$2.41	\$2.23
\$3.80			\$3.11	\$3.11	\$3.13
\$2.47	\$1.80	\$0.67		\$1.80	\$1.77
\$2.99	\$2.49	\$0.50		\$2.49	\$2.35
\$3.84			\$3.15	\$3.15	\$3.16
\$3.97	\$3.13	\$0.84		\$3.13	\$3.25
\$3.92	S 3		\$3.23	\$3.23	\$3.22
\$3.83	\$3.22	\$0.61		\$3.22	\$3.14
\$2.71	\$1.74	\$0.97		\$1.74	\$2.04
\$2.30	\$1.66	\$0.65		\$1.66	\$1.59
\$2.65	\$1.90	\$0.75		\$1.90	\$1.98
\$3.18	\$2.75	\$0.43		\$2.75	\$2.89
	Average	\$0.69		Alterna A	
U.S. Energy Info	rmation Ad	ministration			
p://tonto eia gov	/dnav/net/h	ist/LeafHandler ashy?n	=PET&s=EMD_EPD2D	PTE NUS DP	G&f=M
Quotes obtainer	from Free	port-McMoRan (FMI)	LING-LIND LIDZD	112 1100 01	<u></u>
addies obtailied		port aronortan (r m)			

2. The following prediction equation developed in these calculations can be used to predict the estimated December 2020 local fuel price for use in earthwork closure costs:

Local fuel price = $-0.0593x^3 + 0.4528x^2 - 0.0447x + 0.012$

where x = national retail fuel price (\$/gallon) and y = predicted local fuel price (\$/gallon)

Client: Freeport NM P Operations

Page <u>1</u> of <u>3</u>

Task: Bench Grading Unit Cost Computed By: Fred Charles Date: 2/27/2019

Checked By: Taryn Tigges Date: 3/14/2019

Calculation Documentation

Problem Statement:

Freeport-McMoRan (FMI) utilizes unit cost information for bench grading on side slopes of stockpiles and tailing ponds as part of earthwork closure cost estimation associated with the Little Rock Mine Closure/Closeout Plan (CCP). The unit costs need to account for the earthwork process and site-specific conditions, equipment productivity, equipment rental rates, and associated equipment maintenance, fuel costs, and labor rates.

This calculation set presents a summary of the approach and results for estimating the unit cost for bench grading. Detailed information is presented in the earthwork reclamation cost estimate (RCE) spreadsheet file.

This calculation set is intended to serve as a guide/example even if the actual quantities and/or cost data used in these calculations change due to updates or application to a different Freeport NM Operations mine.

Objective:

1. Develop a bench grading unit cost (\$/ft) for stockpile side slopes and tailing pond side slopes for use in estimating earthwork closure costs at FMI's mining operations in Grant County, NM. Account for equipment and fuel costs in the estimate.

Approach:

- 1. The data, assumptions, calculations, and results for the bench grading unit cost estimate are presented within the Tyrone earthwork RCE spreadsheet file in a sheet (tab) named "Bench Grading_UC".
- 2. The approach for estimating bench grading unit costs is as follows:
 - Compile data and assumptions used in the calculations. Data obtained from the CCP or Scope of Work include:
 - Material factors
 - Grade factors
 - Soil weight
 - Production method/blade factors
 - Centroid to centroid push distance
 - Operator factor
 - Work hour
 - Visibility factor
 - Elevation factor
 - Transmission factor
 - Number of passes to finish grade
 - Speed
 - Volume

Job No:	200540A
---------	---------

Page <u>1</u> of <u>14</u>

Task:Bench Channel Unit Cost
(including riprap/filter
material)Computed By: Fred Charles
Date:Date:4/29/2019Checked By:Taryn Tigges
Date:4/30/2019

Calculation Documentation

Problem Statement:

Freeport-McMoRan (FMI) utilizes bench channel unit cost information as part of earthwork closure cost estimation associated with the Little Rock Mine Closure/Closeout Plan (CCP). The unit cost for bench channel construction (including production and placement of riprap and filter material) needs to account for the earthwork process and site-specific conditions, equipment productivity, equipment rental rates, and associated equipment maintenance, fuel costs, and labor rates.

Objectives:

- 1. Develop a bench channel unit cost (\$/ft) for use in estimating earthwork closure costs at FMI's mining operations in Grant County, NM.
- 2. Note that this calculation set presents the approach, data and assumptions, and calculations and results for developing the unit cost. It is intended to serve as a guide/example even if the actual quantities and/or cost data used in these calculations change due to updates or application to a different Freeport NM Operations mine.

Approach:

- 1. The data, assumptions, calculations, and results for the bench channel unit cost estimate are presented within the Tyrone earthwork RCE spreadsheet file in sheets (tabs) named "Bench Channel_UC" and "Riprap_Gravel_UC".
- 2. The approach for the calculations is as follows:
 - Estimate the unit cost for each of the five following bench channel construction steps:
 - Earthwork excavate and waste
 - Load and transfer riprap and filter
 - Haul riprap and filter
 - Place riprap and filter
 - Finish grade channel and riprap
 - Estimate the cost to produce riprap and filter where these materials are obtained.
 Combine equipment and fuel costs for the bench channel operations and riprap
 - and filter production for a total bench channel unit cost.
| SOLUTIONS | IN | CORPO | RATED |
|-----------|----|-------|-------|

Job No: 200540A	Client: Freeport NM	Page _	2 of14
	 Operations 	0	
Task: Bench Channel Unit Cost	Computed By: Fred Charles	Date:	4/29/2019
(including riprap/filter			
material)	Checked By: Taryn Tigges	Date:	4/30/2019

Data and Assumptions:

Table 1

1. Bench channel cross-section data and earthwork quantities are defined in the reclamation design, with additional calculations presented below in Calculations and Results. Basic channel dimensions are shown in Table 1.

BENCH CHANNELS		
Dimensions:		
Left Side Slope:	3.00	H:1V
Left Side Slope:	2.50	H:1V
Depth:	2.00	ft
Left Side Slope Length:	3.61	
Right Side Slope Length:	3.20	
Bottom Width:	5.00	ft
Left Anchor	0.00	ft
Right Anchor	0.00	ft
Perimeter:	11.81	ft
Excavation Area:	21.00	sf
Filter Area ¹ (cross-sectional)	5.90	sforcf/ft ²
Riprap Area (cross-sectional)	11.81	sf or cf/ft

1. Bench cross width* 6" filter thickness 2. Volume (cy) =Area(sf)*Length(ft)/27

- 2. Equipment and fuel cost information used for bench channel unit cost calculations is developed in the Equipment sheet of the separate Earthwork RCE spreadsheet (summary) calculation set.
- 3. Equipment rates from Equipment Watch include overhaul labor, parts, and time, and are corrected for a 50-minute work hour.
- 4. Other equipment parameters used in the calculations are assigned based on previous use at other FMI New Mexico operations.
- 5. The work day is set at 8 hours/day, 50 minutes/hour.
- 6. The following assumptions/data inputs apply to riprap and filter production:
 - For riprap and filter production, the primary plant is fed directly by two 769D haul trucks, 300 to 400 yd haul.
 - 400 tons input/hr (per Rusty McCauley, equipment peak production is 900 tons/hr).
 - 30% 60% waste depending on smallest rip rap size used. (per Rusty McCauley, consistent w/ McCain Springs waste rate of 43% 1" minus).
 - 3650 lb/cy (Caterpillar Performance Handbook p. 27-4, consistent with 1.8 tons/cy riprap unit weight).

	JA	Client: Freeport NM Page <u>3</u> of <u>14</u>
Task: Bench Char (including r material)	nnel Unit Co riprap/filter	Operations <u>Dst_Computed By: Fred Charles_Date:</u> 4/29/2019 Checked By: Taryn Tigges_Date: 4/30/2019
Data and Assumptions (continued): 7. Key assumptions/data inputs for shown in Table 2.	⁻ riprap an	Id filter production equipment and labor are
Table 2		
Equipment & Labor Dne 988H Loader with Operator (bucket = 8.3 cy)	Rate (\$/hr) \$ 156.46	Comment Used to load stockpiled material to 769D trucks and 777 haul truck:
'hree 769D haul trucks with drivers (22 cy, 36 ton payload each)	\$ 396.83	Option: Two used to directly feed primary screening plant, one used to move material from end of conveyor
)ne 1 Deck Portable Screening Plant w/ 5x16 screen & 48''x60' conveyor + 1 Operator	\$ 63.68	Primary screening plant, grizzly used to split oversized, 6" - 12" and 6" minus (2 conveyers) One operator required in tower to run screening plant
)ne 3 Deck Portable Screening Plant w/ 5x16 screen & 42''x60' conveyor + 1 Operator	\$ 64.25	One operator required in tower to run screening plant Fed with 6" minus, Produce 6" - 6", 1.5" - 3", 3/8" - 1.5", 3/8 minus
wo Cat 980H Loaders with Operator (bucket = 7.5 cy)	\$ 210.53	One operator required in tower to run screening plant Used move material to conveyors or load trucks
ero Cat 992K Loaders with Operator (bucket = 16 cy)	\$ -	Unused loader option
)ne Cat 966H Loader with Operator (bucket = 5.5 cy)	\$ 100.81	Used to move material from end of conveyors & load trucks
Ine Water Truck with Driver (10,000 gal)	\$ 91.96	Dust suppression
ine Poreman	\$ 23.07	

(including riprap/filter material) Checked By: Taryn Tigges Date: 4/30/2019	TELEST	Job No: 200540A	Client: Freeport NM Operations	Page <u>4</u> of <u>14</u>
	SOLUTIONS • IN CORPORATED	(including riprap/filter material)	_Checked By: Taryn Tigges	Date: 4/30/2019

Calculations and Results:

Table 3

The unit costs for each of the five following bench channel construction steps are developed:

- Earthwork excavate and waste
- Load and transfer riprap and filter
- Haul riprap and filter
- Place riprap and filter
- Finish grade channel and riprap
- 1. <u>Excavate and waste</u> (earthwork) operations comprise the first construction step (shown in "Bench Channel_UC" sheet). The unit cost is calculated based on both operations using a Cat D11T CD, U Blade dozer. Table 3 (split into 3 segments due to many columns) shows the progression of the calculations to estimate the cost for these operations. This table is followed by the calculations (or assigned parameters) for the "Excavate" row.

	В	С	D		E	F	F		G	ł	H	1		J
5		Task Description	Equipment	Vo (c)	lume //ft)	Produc (cy/hr)	tivity	Mate Fact	erial tor ²	Grad Facto	e v	Mater Neigl	rial M nt ² B) F	roduction lethod/ lade actor ²
6	Bench Channels	Excavate	Cat D11T CD, U	Blade	0.78		1123		1.20		1.0	1	2900	1.00
7	Bench Channels	Waste	Cat D11T CD, U	Blade	0.78		1001		1.20		1.0	1	2900	1.00
		111111												
	В	С	K	L		М	N	J		0	F			Q
5		Task Description	Centroid to Centroid Push Distance ² (feet)	Normal Productic (cy/hr)	n Ope Fact	erator tor ²	Work H (min/hr	lour ²)	Vis Fac	ibility ctor ²	Eleva Facto	ition	Trans Facto	mission pr ²
6	Bench Channels	Excavate	175	18	51	0.75		5	50	1.00)	1.00)	1.00
7	Bench Channels	Waste	200	16	49	0.75		5	50	1.00)	1.00)	1.00
2	В	С	R	S	1 .	т	U		V	1	W		Х	Y
5		Task Description	Productivity (hrs/ft)	Fuel Cost (\$/hr)	Equip Cost	oment (\$/hr)	Opera Cost (l (\$/hr)	tor V)	Dozer Cost (\$/hr)	Be	ench quipme ost (\$/	ent (Bench Fuel Cost (\$/ft)	Total \$/ft
6	Bench Channels	Excavate	0.0007	69.62	2 2	254.44	27	.41	281	85	0	.20	0.05	5
7	Bench Channels	Waste	0.0008	69.62	2 2	254.44	27	.41	281	85	0	.22	0.05	5
8											0	41	0.10	\$ 0.52

The following parameters used in the calculations are based on previous use at other FMI New Mexico operations – also see Equipment sheet in the separate Earthwork RCE (summary) spreadsheet calculation set: Material Factor (Col. G), Grade Factor (Col. H), Material Weight (Col. I), Production Method/Blade Factor (Col. J), Centroid to Centroid Push Distance (Col. K), Operator Factor (Col. M), Work Hour (Col. N), Visibility Factor (Col. O), Elevation Factor (Col. P), and Transmission Factor (Col. Q).

TELECTO	Job No: 200540A	Client: Freeport NM	Page <u>_5</u> of <u>_14</u>
SOLUTIONS IN CORPORATED	Task: Bench Channel Unit Cos	t_Computed By: Fred Charle	es_Date:4/29/2019
	(including riprap/filter material)	Checked By: Taryn Tigge	s
		, 	
Calculations and Results (contin	ued): (earthwork) calculations (c	ontinued)	
1. Excavate and waste			
$Volume(Col. E) = \frac{(Excar}{E})$	(27 cf/cy)	$\frac{21.00 \text{ s}}{27 \text{ cf/c}} = \frac{21.00 \text{ s}}{27 \text{ cf/c}}$	$\frac{f}{y} = 0.78 cy/ft$
Productivity(Col.F) = C	ol. $L \times M \times G \times \left(\frac{N}{c_0}\right) \times H \times C$	$\left(\frac{2300}{I}\right) x J x O x P x Q =$	=
$1851\frac{cy}{r} \times 0.75 \times 1.20 \times 0$	$\frac{50 \text{ min/hr}}{10 \text{ r}}$	$\frac{lb}{cy}$ x 1.00 x 1.00 x	$1.00 \times 1.00 -$
$\frac{1031}{hr} \times 0.73 \times 1.20 \times (1122)$	$60 min^{1.0 x} 2900$	<i>lb/cy</i> x 1.00 x 1.00 x	1.00 x 1.00 -
1123 cy/hr			
Normal Production (Col	L): If Centroid to Centr	oid Push Distance is	not 0.
then, for the equipment	used, look up the produc	ction curve fit param	eters C and b
for equation: C x (Avera 1851 cv/hr	ge dozing distance [ft]	$p^{p} = 162,758.76 x (175)$	5 ft) $0.86691 =$
1001097			
Productivity(Col.R) :	$=\frac{\left(Volume,\frac{cy}{ft}[Col.E]\right)}{CV}=0$	0.78 cv/ft)/(1123 cv/hr)) =
0.00069 hr/ft (or 0.000	(Productivity, cy [Col.F]) 7 hr/ft)	,, -,, (,, ,	
Fuel Cost (Col. S), Equipy	nent Cost(Col.T) and O	perator (IV) Cost (Co	LU) are from
Equipment cost calcs (pr	resented in the Earthwo	rk RCE spreadsheet c	calculation set).
Dozer Cost (Col. V)= $\frac{$254.}{hr}$	$\frac{44}{2}(equipment) + \frac{27.41}{hr}(equipment)$	$operator) = \frac{\$281.85}{hr}$	
Ponch aquinment cost ((
$(Dozer cost. \stackrel{\$}{=} [Col. V]) x$	(Productivity ^{hr} [Col. R	$(21) = (5281.85/hr) \times (0.0)$	00069 hr/ft) =
\$0.20/ft	(I roundettilly), ft	() (\$201.00, m) × (0.	
Bench Fuel Cost (Col. X) =	$\frac{hr}{\left[c_{1}, b_{1} \right]}$		
$(Fuel cost, \frac{1}{hr}[col.S]) \times ($	$Productivity, \frac{1}{ft} [Col. R]$	$f = (569.62/nr) \times (0.000)$	69 nr/ft) =
φυ.υ.σ/1ί			
The total unit cost for the	aarthwark (avcavata and	$(w_{2}, t_{0}) = $0.52/ft$	
	cai μιννοι κ (ελιαναις dilu	νναδιεj — φ0.32/1	
For example	use only. Values may not mat	ch the current spreadshee	t

TELECTO	Job No: 200540A	Client: Freeport NM Operations	Page <u>6</u> of <u>14</u>
SOLUTIONS OIN CORPORATED	Task: Bench Channel Unit Cost (including riprap/filter	Computed By: Fred Charles	Date: 4/29/2019
	material)	_Checked By: Taryn Tigges	Date: 4/30/2019

Calculations and Results (continued):

2. Load riprap and filter, and transfer for placing, unit cost is calculated based on the following separate operations (see "Riprap_Gravel_UC" sheet): load riprap, load filter, transfer riprap for placing, and transfer filter for placing. A Cat 992K is used for these operations. Table 4 (split into 2 segments due to many columns) shows the progression of the calculations to estimate the cost for these operations. This table is followed by the calculations (or assigned parameters) for the "Load Riprap" row.

Table 4

	В	С	D		E	F		G	Н	<u>і</u> і	J	
4	Earthwork				- 3							
5	Loading per cy											
6	Task Description	Equipmer	nt	Load, Man Time	Dump, euver (min)	Work Ti (min	ime)	Loads/hr	Net Bucket (cy/load)	Productio Rate (cy/h	FuelUse n Galper m) Hour	
7	Load riprap	Cat 992K		8	0.65		50	76.92	14.00	1076.	92 25.63	
}	Load filter	Cat 992K			0.65		50	76.92	14.00	1076.	92 25.63	
)	Transfer riprap for placing	Cat 992K			0.65		50	76.92	14.00	1076.	92 25.63	
)	Transfer filter for placing	Cat 992K			0.65		50 76.92		14.00	1076.	92 25.63	
					111				<u> </u>		<u> i j i i j</u>	
4	B B	к	L			M		N	U	Р	ų	
-	Larthwork											
-	Ecoading per cy			_		-						
	Task Description	Fuel Cost (\$/hr)	Equip Cost (ment \$/hr)	Operat (\$/	or Cost hr)	Loa Co	der+Oper ost (\$/hr)	Load+Op Cost (\$/cy)	Fuel Cost (\$/cy)	Total Cost (\$/cy)	
	Load riprap	59.97		216.23	9	27.70		243.93	0.23	0.06	0.28	
	Load filter	59.97		216.23		27.70		243.93	0.23	0.06	0.28	
	Transfer riprap for placing	59.97		216.23		27.70		243.93	0.23	0.06	0.28	
	Transfer filter for placing	59.97		216.23		27.70		243.93	0.23	0.06	0.28	

The following parameters used in the calculations are developed in the Equipment sheet as described for the separate Earthwork RCE (summary) spreadsheet calculation set: Load, Dump, Maneuver Time (min) (Col. E); Net Bucket (cy/load) (Col. H); Fuel Use Gal per Hour (Col. J); Fuel Cost (\$/hr) (Col. K); Equipment Cost (\$/hr) (Col. L); and Operator Cost (\$/hr) (Col. M).

TELECTO	Job No: 200540A	_Client: Freeport NM Page _7 of _14 Operations
SOLUTIONS IN CORPORATED	Task: Bench Channel Unit Cost (including riprap/filter	_Computed By: Fred Charles Date: 4/29/2019
	material)	_Checked By: Taryn TiggesDate: 4/30/2019
Calculations and Results (contir	nued):	
2. Load/transfer riprap	and filter (continued)	
Work Time (Col. F) = 50 r	nin per hour	
Loads/hr (Col. G) = (Col. I	F)/(Col. E) = 50/0.65 = 76.92	loads/hr
Production Rate (cy/hr) (Col. I) = (Col. H) x (Col. G) =	14.00 x 76.92 = 1076.92 cy/hr
Loader + Operator Cost/l = \$216.23/hr + \$27.70/h	hr (Col. N) = Equipment Cost r = \$243.93/hr	: (Col. L) + Operator Cost (Col. M)
Loader + Operator Cost/o I)] = (\$243.93/hr)/(1076.	cy (Col. O) = [Loader Cost, \$/ 92 cy/hr) = \$0.23/cy	/hr (Col. N)]/[Production Rate, cy/hr (Col.
Fuel Cost/cy (Col. P) = [Fu = (\$59.97/hr)/(1076.92 c	uel Cost/hr (Col. K)]/[Produc y/hr) = \$0.06/cy	tion Rate, cy/hr (Col. I)]
The total unit cost for the equipment + total for fue	e loading and transferring (fo el = \$0.23/ft + \$0.06/ft = \$0.	or placing) riprap and filter = total for 28/ft (difference due to rounding)
For example	use only. Values may not matc	h the current spreadsheet.

TELESTO SOLUTIONS OF N CORPORATED	Job No: 200540A Task: Bench Channel Unit Cost (including riprap/filter material)	Client: Freeport NM Operations Computed By: Fred Charles Checked By: Taryn Tigges	Page <u>8</u> of <u>14</u> - Date: <u>4/29/2019</u> Date: <u>4/30/2019</u>
Calculations and Results (contin 3. <u>Haul riprap and filte</u> (see "Riprap_Gravel	u ed): unit cost is calculated base _UC" sheet): haul riprap and	d on the following sepa I haul filter. A Komatsu 7	rate operations 730E is used for

these operations. Table 5 (split into 3 segments due to many columns) shows the progression of the calculations to estimate the cost for these operations. This table is followed by the calculations (or assigned parameters) for the "Haul Riprap" row.

	Table 5										
. d	В	C	[E		F	-	G	н	1	J
12	11 1										
13	nauling										
14	Task Description	Equipment		Excha Time (nge De min)	elivery Time ¹	, Travel (min)	Unload and Maneuver Time (min)	Return Travel Time ¹ (min)	Load Time (min)	Total Time (min)
5	Haul riprap from source to site	Komatsu 73	30E		0.70		8.62	1.10	3.47	6.73	20.62
6	Haul filter from source to site	Komatsu 73	30E		0.70		8.62	1.10	3.47	6.73	20.62
7				1.1.1.1							
	В	K	L		м	R.	N	0	P		
12											
13	Hauling										
14	Task Description	Work Time (min)	Load	s/hr (d	leaped apacity cy/load)	Pr Ra	oduction ite (cy/hr)	Fuel Use G per Hour	Gal FuelCost (\$/hr)		
15	Haul riprap from source to site	50	1000	2.42	145	5	352	2 33.	48 78.34		
16	Haul filter from source to site	50	8	2.42	145	5	352	2 33.	48 78.34		
17				1111							
	В		1	B	S		т	1 11 1	V I		
12						_					
13	Hauling										
14	Task Description	Equipmen Cost (\$/br		oerator st (\$/br)	Truck+	+Op	Truck + Op Cost (\$/cu)	Fuel Cost	Total Cost		
15	Haul riprap from source to site	221.7	/9	24.27	24	6.06	0.70	0.22	0.92		
16	Haul filter from source to site	221.7	'9	24.27	24	6.06	0.70	0.22	0.92		
			-								

The following parameters used in the calculations are developed in the Equipment sheet as described for the separate Earthwork RCE (summary) spreadsheet calculation set: Exchange Time (min) (Col. E); Unload and Maneuver Time (min) (Col. G); Heaped Capacity (cy/load) (Col. M); Fuel Use Gal per Hour (Col. O); Fuel Cost (\$/hr) (Col. P); Equipment Cost (\$/hr) (Col. Q); and Operator Cost (\$/hr) (Col. R).

Delivery Travel Time (Col. F) and Return Travel Time (Col. H) are based on site-wide average borrow haul time.

TELESTO	Job No: 200540A Task: Bench Channel Unit Cost	Client: Freeport NM Page 9 of 14 Operations Computed By: Fred Charles Date: 4/29/2019
	(including riprap/filter material)	_Checked By: Taryn TiggesDate: 4/30/2019
Calculations and Results (contin 3. Haul riprap and filter	ued): r (continued)	
Load Time (Col. I) = Dump, Maneuver Time x [Heaped Capacity, cy/lo = 0.65 min x (145 cy/load	(Col. E in load/transfer ripra ad (Col. M)]/[Net Bucket, cy l)/(14.00 cy/load) = 6.73 mii	ap) y/load (Col. H in load/transfer riprap)] n
Total Time (Col. J) = Excha Maneuver Time (Col. G) + = 0.70 + 8.62 + 1.10 + 3.4	ange Time (Col. E) + Delivery + Return Travel Time (Col. H) -7 + 6.73 = 20.62 min	y Travel Time (Col. F) + Unload and) + Load Time (Col. I)
Work Time (Col. K) = 50 n	nin per hour	
Loads/hr (Col. L) = [Work	Time (Col. K)]/[Total Time (Col. J)] = 50/20.62 = 2.42 loads/hr
Production Rate, cy/hr (C = (145 cy/load) x (2.42 lo	ol. N) = [Heaped Capacity, c ads/hr) = 352 cy/hr	xy/load (Col. M)] x [Loads/hr (Col. L)]
Truck + Operator Cost/hr = \$221.79/hr + \$24.27/hr	(Col. S) = Equipment Cost ((r = \$246.06/hr	Col. Q) + Operator Cost (Col. R)
Truck + Operator Cost/cy cy/hr (Col. N)] = (\$246.06	(Col. T) = [Truck + Operator //hr)/(352 cy/hr) = \$0.70/cy	Cost, \$/hr (Col. S)]/[Production Rate,
Fuel Cost/cy (Col. U) = [Fu = (\$78.34/hr)/(352 cy/hr)	uel Cost/hr (Col. P)]/[Produc) = \$0.22/cy	ction Rate, cy/hr (Col. N)]
The total unit cost for the \$0.70/ft + \$0.22/ft = \$0.9	e hauling riprap and filter = t 92/ft	total for equipment + total for fuel =
For example	use only. Values may not matc	h the current spreadsheet.

TELECTO	Job No: 200540A Client: Freeport NM Page 10 of 14 Operations	1
SOLUTIONS OF IN CORPORATED	Task: <u>Bench Channel Unit Cost</u> Computed By: <u>Fred Charles</u> Date: <u>4/29/201</u> (including riprap/filter	.9
	material)Checked By: Taryn TiggesDate:4/30/201	.9

Calculations and Results (continued):

4. <u>Place riprap and filter</u> unit cost is calculated based on the following separate operations (see "Riprap_Gravel_UC" sheet): place riprap and place filter. A Cat 725 is used for these operations. The sequence of calculations for the place riprap and filter unit cost is the same as for haul riprap and filter (from source to site) calculations, above. Inputs to the calculations for placing riprap and filter are generally the same except that Cat 725 operating parameters and costs are used. Delivery and return travel times are calculated based on the haul distance and the Haul Travel Time polynomial equation (see Equipment sheet) that calculates minutes/meter based on effective grade.

Table 6 (split into 3 segments due to many columns) shows the progression of the calculations to estimate the cost for these operations.

19	B	С	D		E	F		0	3	Н	1
20	Task Description	Equipmer	nt Dista	nce	Grade	Exchar Time (r	nge nin)	Deliv Travel (mi	very Time in)	Unload and Maneuver Time (min)	Return Travel Time (min)
21	B C Placing Image: Construction of the section of the s	40	0.00	-30%	1 2	0.70) i i	3.25	1.10	0.74	
22	Place filter	Cat 725	40	0.00	-30%	1	0.70		3.25	1.10	0.74
19	B Placing	J	к	L	М	1	J		0	Р	
20	Task Description	Load Time (min)	Total Time (min)	Work Time (min)	Loads/	Hea Cap hr (cy/l	ped acity oad)	Prod Rate	luction (cy/hr)	Fuel Use Gal per Hour	
21	Place riprap	0.87	6.67	50	7.	50	- 19	3	141.01	6.02	
22	Place filter	0.87	6.67	50	7.	50	19	9	141.01	6.02	
19	B Placing	Q	R		S	Т		U	V	V	
20	Task Description	Fuel Cost (\$/hr)	Equipmer Cost (\$/hr	t Op) Cos	erator :t (\$/hr)	Truck + Op Cost (\$/hr)	Tru pl (\$	ck+O Cost /cy)	Fuel Cost (\$/cy	Total Cost) (\$/cy)	
21	Place riprap	14.09	73.1	11	24.27	97.38	}	0.69	0.	10 0.79	
22	Place filter	14.09	73.1	11	24.27	97.38	}	0.69	0.	10 0.79	

Table 6

	ICCT		Job No:	2005404	4	Clie	nt: <u>Free</u>	port NM	Page <u>11</u>	_ of <u>1</u> 4
U T I C		RATED	Task: <u>Be</u> i	nch Chan cluding ri	nel Unit (prap/filte	Cost_Con r	nputed E	_{By:} Fred Char	les Date: 4	/29/201
			ma	terial)		Che	cked By	Taryn Tigge	es Date:4,	/30/201
ulati	ions and Results	(continu	ed):							
5	5. <u>Finish grade</u> "Riprap Grav	unit cost vel UC" s	is calcu heet): f	lated ba inish gra	ased on ade cha	the follo	owing s d finish	eparate op grade ripr	erations (s ap. A Cat D	ee 6T. SU
	Blade is used	for these	e opera	tions. Tl	he sequ	ence of	calcula	tions for th	ne finish gra	ade un
	cost is the sa	me as for	the firs	st opera	ition for	bench o	channe	l construct	ion – earth	work
	(excavate and	d waste) (al and fini	(see tho	ose calcu	ulations	, above,	for de	tails). Inpu rally the ca	ts to the fir	nish
	following exc	ceptions:	isii grau	enprap	Calcula	tions ar	e gene	rally the sa	me with ti	le
	Cat D6	ST, SU Bla	de oper	ating pa	aramete	rs and c	costs ar	e used.		
	• Mater	ial Factor	(Col. E)	and Ma	aterial V	Veight (Col. G)	for riprap a	are used, w	hich a
	differe	ent than fo	or the e	xcavate	and wa	ste, and	d chanr	el grading,	materials.	
	-									
	Table 7 (sp	olit into 3	segme	nts due	to many	/ colum	ns) sho	ws the pro	gression of	the
	calculation	ns to estir	nate th	e cost to	or these	operat	ions.			
	Table 7									
24	В	<u> </u>		D	E	F	G	н		
24 25	B Grading	C		D	E	F	G	H	l Centroid to	
24 25	B Grading	Equipment	F	D Productivity	E Material	F Grade Factor	G Soil Weight (Ib/cu)	H Production Method/Blade	Centroid to Centroid Pus Distance (fr	
24 25 26 27	B Grading Task Description Finish grade -filter	Equipment Cat D6T, SI	F JBlade	D Productivity (cy/hr) 304.38	E Material Factor	F Grade Factor 1.02	G Soil Weight (Ib/cy) 3500	H Production Method/Blade Factor	l Centroid to Centroid Pus Distance (ft	
24 25 26 27 28	B Grading Task Description Finish grade - filter Finish grade - Riprap	Equipment Cat D6T, SI Cat D6T, SI	J Blade J Blade	D Productivity (cy/hr) 304.38 230.34	E Material Factor 3 1.0 0.8	F Grade Factor 1.02 1.02	G Soil Weight (Ib/cy) 3500 3700	H Production Method/Blade Factor 1.0	l Centroid to Centroid Pus Distance (ft	h I) 50 50
24 25 26 27 28	B Grading Task Description Finish grade -filter Finish grade - Riprap B	Equipment Cat D6T, SI Cat D6T, SI	J Blade J Blade J Blade	D Productivity (cy/hr) 304.38 230.34	E Material Factor 3 1.0 0.8	F Grade Factor 1.02 1.02	G Soil Weight (Ib/cy) 3500 3700	H Production Method/Blade Factor 1.0 1.0	l Centroid to Centroid Pus Distance (ft	h) 50 50
24 25 26 27 28 20 24	B Grading Task Description Finish grade - filter Finish grade - Riprap B	Equipment Cat D6T, SI Cat D6T, SI	JBlade JBlade K	Productivity (cy/hr) 304.38 230.34	E Material Factor 3 1.0 0.8 M	F Grade Factor 1.02 1.02 N	G Soil Weight (Ib/oy) 3500 3700	H Production Method/Blade Factor 1.0	Centroid to Centroid Pus Distance (ft	h) 50 50
24 25 26 27 28 20 24 25	B Grading Task Description Finish grade - filter Finish grade - Riprap B Grading	Equipment Cat D6T, SI Cat D6T, SI J	J Blade J Blade K	Productivity (cy/hr) 304.38 230.34 L	E Material Factor 3 1.0 0.8 M	F Grade Factor 1.02 1.02 N	G Soil Weight (Ib/cy) 3500 3700	H Production Method/Blade Factor 1.0	l Centroid to Centroid Pus Distance (ft	h I) 50 50
24 25 26 27 28 27 28 27 28 20 24 25 26	B Grading Task Description Finish grade -filter Finish grade - Riprap B Grading Task Description	Equipment Cat D6T, SI Cat D6T, SI J J Normal Production (cy/hr)	JBlade JBlade K Operator Factor	Productivity (cy/hr) 304.38 230.34 L L Work Time (min)	E Material Factor 3 1.0 0.8 M Visibility Factor ²	F Grade Factor 1.02 1.02 N N Elevation Factor	G Soil Weight (Ib/cy) 3500 3700 3700 0 Transmis Facto	H Production Method/Blade Factor 1.0 1.0	Centroid to Centroid Pus Distance (ft	
24 25 26 27 28 27 28 20 24 25 26 27 28	B Grading Task Description Finish grade - filter Finish grade - Riprap B Grading Task Description Finish grade - filter Finish grade - filter	Equipment Cat D6T, SI Cat D6T, SI J J Normal Production (cy/hr) 727	JBlade JBlade K Operator Factor	Productivity (cy/hr) 304.38 230.34 L L Work Time (min) 1 50	E Material Factor 1.0 0.8 M Visibility Factor ²	F Grade Factor 1.02 1.02 N Elevation Factor 1.00	G Soil Weight (Ib/cy) 3500 3700 3700 0 Transmis Facto	H Production Method/Blade Factor 1.0 1.0	Centroid to Centroid Pus Distance (ft	h I) 50 50
24 25 26 27 28 20 24 25 26 27 28 27 28 27	B Grading Task Description Finish grade -filter Finish grade - Riprap B Grading Task Description Finish grade - filter Finish grade - Riprap	Equipment Cat D6T, SI Cat D6T, SI Cat D6T, SI J Normal Production (cy/hr) 727 727	JBlade JBlade K Operator Factor	Productivity (cy/hr) 304.38 230.34 L L Work Time (min) 1 50 1 50	E Material Factor 3 1.0 0.8 M Visibility Factor ² 1 1	F Grade Factor 1.02 1.02 N N Elevation Factor 1.00 1.00	G Soil Weight (Ib/oy) 3500 3700 3700 C Transmis Facto	H Production Method/Blade Factor 1.0 1.0 sion r 1.00	Centroid to Centroid Pus Distance (ft	h) 50 50
24 25 26 27 28 20 24 25 26 27 28 26 27 28	B Grading Task Description Finish grade - filter Finish grade - Riprap B Grading Task Description Finish grade - filter Finish grade - Riprap	Equipment Cat D6T, SI Cat D6T, SI J Normal Production (cy/hr) 727 727	JBlade JBlade K Operator Factor	Productivity (cy/hr) 304.38 230.34 L L Work Time (min) 1 50 1 50	E Material Factor 3 1.0 0.8 M Visibility Factor ² 1 1 1 S	F Grade Factor 1.02 1.02 N Elevation Factor 1.00 1.00	G Soil Weight (Ib/oy) 3500 3700 0 Transmis Facto	H Production Method/Blade Factor 1.0 1.0 1.00 1.00	Centroid to Centroid Pus Distance (ft	h) 50 50
24 25 26 27 28 24 25 26 27 28 26 27 28 26 27 28 26 27 28 26 27 28 26 27 28 26 27 28 26 27 28 26 27 28 26 27 28 27 28 26 27 28 27 28 26 27 28 26 27 28 26 27 28 26 27 28 26 27 28 26 27 28 26 27 28 26 27 28 26 27 28 26 27 28 26 27 28 27 28 26 27 28 26 27 28 26 27 28 26 27 28 26 27 28 26 27 28 26 27 28 26 27 28 26 27 28 27 28 27 28 27 28 27 27 28 27 27 28 27 27 28 27 27 28 27 27 28 27 27 28 27 27 28 27 27 28 27 27 28 27 27 27 27 28 27 27 27 28 27 27 27 27 27 27 27 28 27 27 27 27 27 27 27 27 27 27 27 27 27	B Grading Task Description Finish grade - filter Finish grade - Riprap B Grading Task Description Finish grade - filter Finish grade - Riprap B	Equipment Cat D6T, SI Cat D6T, SI Cat D6T, SI J Normal Production (cy/hr) 727 727	Dperator Q	Productivity (cy/hr) 304.38 230.34 L U Work Time (min) 1 50 1 50	E Material Factor 3 1.0 0.8 M Visibility Factor ² 1 1 1 S	F Grade Factor 1.02 1.02 1.02 N Elevation Factor 1.00 1.00	G Soil Weight (Ib/cy) 3500 3700 3700 Transmis Facto	H Production Method/Blade Factor 1.0 1.0 sion r 1.00 1.00	Centroid to Centroid Pus Distance (ft	h 50 50
24 25 26 27 28 24 25 26 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 20 27 28 20 27 28 20 27 28 20 27 28 20 27 28 20 27 28 20 20 20 20 20 20 20 20 20 20 20 20 20	B Grading Task Description Finish grade - filter Finish grade - Riprap B Grading Task Description Finish grade - filter Finish grade - Riprap B Grading	Equipment Cat D6T, SU Cat D6T, SU J Normal Production (cy/hr) 727 727	JBlade JBlade K Operator Factor	Productivity (cy/hr) 304.38 230.34 L U Work Time (min) 1 50 1 50 R R	E Material Factor 0.8 M Visibility Factor ² 1 1 1 S	F Grade Factor 1.02 1.02 N Elevation Factor 1.00 1.00 1.00	G Soil Weight (Ib/cy) 3500 3700 3700 0 Transmis Facto	H Production Method/Blade Factor 1.0 1.0 1.00 1.00 1.00	Centroid to Centroid Pus Distance (ft	50 50
24 25 26 27 28 24 25 26 27 28 26 27 28 26 27 28 26 24 25 26 24 25 26 27 28 22 24 22 26 27 28 22 24 22 26 27 28 22 24 22 26 27 28 22 24 22 26 27 28 22 24 22 26 27 28 22 24 22 26 27 28 22 24 22 26 27 28 22 26 27 28 22 26 27 27 28 22 26 27 27 28 22 26 27 27 28 22 26 27 27 28 22 26 27 27 28 22 26 27 27 28 27 27 28 27 27 28 27 27 28 27 27 28 27 27 28 27 27 28 27 27 28 27 27 28 27 27 28 27 27 28 27 27 28 27 27 28 27 27 28 27 27 27 28 27 27 27 27 28 27 27 28 27 27 28 27 27 28 27 28 28 28 28 28 28 28 28 28 28 28 28 28	B Grading Task Description Finish grade -filter Finish grade - Riprap B Grading Task Description Finish grade -filter Finish grade - Riprap B Grading Task Description	Equipment Cat D6T, SI Cat D6T, SI Cat D6T, SI J Normal Production (cy/hr) 727 727 727 727	Derator Factor Q Equipment	Productivity (cy/hr) 304.36 230.34 L L Work Time (min) 1 50 1 50 1 50 1 50	E Material Factor 3 1.0 0.8 M Visibility Factor ² 1 1 1 1 S 0 0 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F Grade Factor 1.02 1.02 1.02 N Elevation Factor 1.00 1.00 1.00 1.00 1.00 (\$/o;	G Soil Weight (Ib/cy) 3500 3700 3700 Transmis Facto U Transmis Facto U transmis Facto (\$/c	H Production Method/Blade Factor 1.0 1.0 sion r 1.00 1.00 V	Centroid to Centroid Pus Distance (ft	h 50 50
24 25 26 27 28 26 27 28 24 25 26 27 28 24 25 26 27 28 27 28 26 27 28 26 27 28 27 28 26 27 28 27 28 26 27 28 26 27 28 27 28 26 27 28 28 27 28 26 27 28 26 27 28 27 28 26 27 28 26 27 28 26 27 28 26 27 28 27 28 27 28 26 27 28 27 28 27 28 26 27 28 26 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 27 27 28 27 27 27 28 27 27 27 27 27 27 28 27 27 27 27 27 27 27 27 27 27 27 27 27	B Grading Task Description Finish grade - filter Finish grade - Riprap B Grading Task Description Finish grade - filter Finish grade - Riprap B Grading Task Description Finish grade - filter Finish grade - Filter	C Equipment Cat D6T, SI Cat D6T, SI J J Normal Production (cy/hr) 727 727 727 727 Fuel Cost (\$/hr) 16.8948 16.8948	Derator Factor Q Equipment Cost (\$/hr) 63.65	D Productivity (cy/hr) 304.38 230.34 L U Work Time (min) 1 50 1 50 1 50 1 50 1 50 1 50 1 50 2 (%/hr) 2 (%/hr)	E Material Factor 3 1.0 0.8 0.8 M Visibility Factor ² 1 1 1 1 S 0 0 0 2 1 1 1 1 3 1 1 3 1 1 3 1 1 3 1 0 8 1.0 1 9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	F Grade Factor 1.02 1.02 1.02 N Elevation Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	G Soil Weight (Ib/oy) 3500 3700 3700 3700 3700 3700 3700 3700	H Production Method/Blade Factor 1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Centroid to Centroid Pus Distance (ft	50 50
24 25 26 27 28 24 25 26 27 28 24 25 26 27 28 24 25 26 27 28 24 25 26 27 28 20 24 25 26 27 28 20 27 28 20 27 28 20 27 28 20 27 28 20 27 28 20 27 28 20 27 28 20 27 28 20 27 28 20 27 28 20 27 28 20 27 28 20 27 28 20 27 28 20 27 28 20 27 28 20 20 20 20 20 20 20 20 20 20 20 20 20	B Grading Task Description Finish grade - filter Finish grade - Riprap B Grading Task Description Finish grade - Riprap B Grading Task Description Finish grade - filter Finish grade - filter Finish grade - filter	Equipment Cat D6T, SI Cat D6T, SI Cat D6T, SI J Normal Production (cy/hr) 727 727 727 727 727 727 727 727 727 72	Q Equipment Cost (\$/hr) 63.65	D Productivity (cy/hr) 304.38 230.34 L U Work Time (min) 1 50 1 50 1 50 R Operato Cost (IV (\$/hr) 5 27.4	E Material Factor 3 1.0 0.8 M Visibility Factor ² 1 1 1 1 S 0 0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F Grade Factor 1.02 1.02 1.02 N Elevation Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	G Soil Weight (Ib/cy) 3500 3700 3700 0 Transmis Facto 0 Transmis Facto 0 U U tr + Fue ost Cos y) (\$/c 1.30 0.	H Production Method/Blade Factor 1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Centroid to Centroid Pus Distance (ft	h 50 50
24 25 26 27 28 24 25 26 27 28 26 27 28 24 25 26 27 28 26 27 28 29	B Grading Task Description Finish grade - filter Finish grade - Riprap B Grading Task Description Finish grade - filter Finish grade - Riprap Grading Task Description Finish grade - filter Finish grade - filter	Equipment Cat D6T, SI Cat D6T, SI J Normal Production (cy/hr) 727 727 P P Fuel Cost (\$/hr) 16.8948 16.8948	Q Equipmeni Cost (\$/hr) 63.65	D Productivity (cy/hr) 304.38 230.34 L U Work Time (min) 1 50 1 50 1 50 R Operato Cost (IV (\$/hr) 5 27.4	E Material Factor 3 1.0 0.8 M Visibility Factor ² 1 1 1 1 S 0 0 0 2 0 1 1 1 1 1 3 1 1 1 1 3 1 1 1 1 1 1 1 1	F Grade Factor 1.02 1.02 1.02 N Elevation Factor 1.00 1.00 1.00 1.00 0 Op Co hr) (\$/o; 0.06 0	G Soil Weight (Ib/oy) 3500 3700 3700 3700 0 Transmis Facto U Transmis Facto U (\$/c 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	H Production Method/Blade Factor 1.0 1.00 sion r 1.00 1.00 V V el Total st Cost y) (\$/cy) 06 0.35 07 0.47	Centroid to Centroid Pus Distance (ft	30 50 50
24 25 26 27 28 24 25 26 27 28 24 25 26 27 28 24 25 26 27 28 24 25 26 27 28 29	B Grading Task Description Finish grade - filter Finish grade - Riprap B Grading Task Description Finish grade - filter Finish grade - Riprap B Grading Task Description Finish grade - filter Finish grade - filter	Equipment Cat D6T, SI Cat D6T, SI Cat D6T, SI J Normal Production (cy/hr) 727 727 727 727 727 727 727 727 727 72	Q Equipment Cost (\$/hr) 63.65	D Productivity (cy/hr) 304.38 230.34 L Work Time (min) 1 50 1 50 1 50 R Operato Cost (IV (\$/hr) 5 27.4	E Material Factor 3 1.0 0.8 M Visibility Factor ² 1 1 1 1 S 0 0 0 2 1 1 1 1 9 1 1 9 1 1 9 1 1 9	F Grade Factor 1.02 1.02 1.02 N Elevation Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	G Soil Weight (Ib/cy) 3500 3700 3700 0 Transmis Facto Facto U U r+ Fue ost Cos y) (\$/c 1.30 0.	H Production Method/Blade Factor 1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Centroid to Centroid Pus Distance (ft	h
24 25 26 27 28 24 25 26 27 28 26 27 28 24 25 26 27 28 29	B Grading Task Description Finish grade - filter Finish grade - Riprap B Grading Task Description Finish grade - filter Finish grade - Riprap B Grading Task Description Finish grade - filter Finish grade - filter	Equipment Cat D6T, SI Cat D6T, SI J Normal Production (cy/hr) 727 727 P Fuel Cost (\$/hr) 16.8948 16.8948	Derator Factor Q Equipment Cost (\$/hr) 63.65 63.65	D Productivity (cy/hr) 304.38 230.34 L U Work Time (min) 1 50 1 50 R Operato Cost (IV (\$/hr) 5 27.4	E Material Factor 1.0 0.8 M Visibility Factor ² 1 1 1 S 0 0.8 M Visibility Factor ² 1 1 1 1 1 1 1 1 1 1 1 1 1	F Grade Factor 1.02 1.02 1.02 N Elevation Factor 1.00 1.00 1.00 0 Op Co hi) (\$/o; 0.06 0	G Soil Weight (Ib/oy) 3500 3700 3700 3700 Transmis Facto U Transmis Facto U (\$/c) (\$/c) (\$/c) (\$/c) (\$/c) (\$/c) (\$/c) (\$/c) (\$/c)) (\$/c	H Production Method/Blade Factor 1.0 1.00 1.00 1.00 V V el Total st Cost y) (\$/cy) 06 0.35 07 0.47	Centroid to Centroid Pus Distance (ft	50 50
24 25 26 27 28 24 25 26 27 28 24 25 26 27 28 24 25 26 27 28 29	B Grading Task Description Finish grade - filter Finish grade - Riprap B Grading Task Description Finish grade - filter Finish grade - Riprap B Grading Task Description Finish grade - filter Finish grade - filter	Equipment Cat D6T, SI Cat D6T, SI Cat D6T, SI J Normal Production (cy/hr) 727 727 727 727 727 727 727 727 727 72	Q Equipment Cost (\$/hr) 63.65	D Productivity (cy/hr) 304.38 230.34 L Work Time (min) 1 50 1 50 1 50 R Operato Cost (IV (\$/hr) 5 27.4	E Material Factor 3 1.0 0.8 M Visibility Factor ² 1 1 1 1 S 0 0 0 2 1 1 1 1 1 1 9 1 1 1 1 1 1 1 1 1 1 1 1	F Grade Factor 1.02 1.02 1.02 N Elevation Factor 1.00 1.00 1.00 1.00 0 Co hr) (\$/c; 06 0 0.06 0	G Soil Weight (Ib/cy) 3500 3700 3700 Transmis Facto Facto U U r+ Fue ost Cos y) (\$/c 1.30 0.	H Production Method/Blade Factor 1.0 1.00 1.00 1.00 1.00 1.00 V V el Total st Cost y) (\$/cy) 06 0.35 07 0.47	Centroid to Centroid Pus Distance (ft	

Job No:	200540A
TOD NO:	200540A

 Task:
 Bench Channel Unit Cost Computed By: Fred Charles Date: 4/29/2019

 (including riprap/filter material)
 Checked By: Taryn Tigges Date: 4/30/2019

Calculations and Results (continued):

6. Riprap and filter production costs (where the material source is located) are estimated according to Table 8, with a summary of the calculations provided after Table 8.

Table 8

4	В	E -	C		D	E #		F	G #	T	H tal Equipment		1
6	Equipment	EC	Cost	Fu	el Cost	Equipment	0	perator	operator	10	Cost	Tota	I Fuel Cost
7			(\$/hr)		(\$/hr)			(\$/hr)			(\$/hr)		(\$/hr)
В	Cat 988H	S	128.76	S	35.57	1	S	27.70	1	S	156.46	S	35.57
9	Cat 769D	S	108.01	S	22.79	3	S	24.27	3	\$	396.83	S	68.37
0	1 Deck Screening Plant (5X16, 48X60)	S	40.59	S	11.35	1	S	23.09	1	S	63.68	S	11.35
1	3 Deck Screening Plant (5X16, 42X60)	S	41.16	S	11.35	1	S	23.09	1	S	64.25	S	11.35
2	Cat 980H	S	77.56	S	25.27	2	S	27.70	2	S	210.53	S	50.54
3	Cat 992K	S	216.23	S	59.97	0	S	27.70	0	S	-	S	-
4	Cat 966H	S	73.11	S	19.61	1	S	27.70	1	S	100.81	S	19.61
5	Off-Hwy Water Tanker Truck,6,000-gal.	S	67.69	S	26.33	1	S	24.27	1	S	91.96	S	26.33
6	Supervisor	S	-	-		0	S	23.84	1	S	23.84	S	-
7													
3							Dir	ect Cost	Equipmen	t Fu	el		
)									\$ 1,108	S	223	\$/hr	
5		1							8		8	hr/w	ork day
ī		1							\$ 8,867	S	1,785	\$/day	1
2								11.1.1					
3							Pro	duction		1		-	
4									400	tor	ns input/hr (tota	al)	
5									0.30	%	waste		
5									0.70	%	rip rap and gra	avel/fill	ter
7									280	tor	ns produced/hi	r (net)	
В									560,000	lb/	hr		
9									3,650	lb/	су		
)									153	су	/hr		
1									8	hr/	day (net (60 m	nin/hr)))
2									1,227	CY.	/day net produ	iction	
3						-							
4							Pro	oduction	\$ 7.22	S	1.45	\$/cy	
5					Filter	Delivery and	l pla	cement	\$ 2.14	S	0.49	\$/cy	
6					Rip Rap	Delivery and	l pla	acement	\$ 2.24	S	0.51	\$/cy	
1													

TELECTO	Job No: 200540A	Client: Freeport NM	Page <u>13</u> of <u>14</u>
SOLUTIONS OF N CORPORATED	Task: Bench Channel Unit Cost	_Computed By: Fred Charle	s_Date:4/29/2019
	(including riprap/filter material)	_Checked By: Taryn Tigges	Date: 4/30/2019
Calculations and Results (conti	inued):		
6. Riprap and filter pr	oduction calculations (conti	nued):	
For each type of equip calculation set) are tab D), and Operator Cost	ment used, the costs calcula ulated in Table 8, including (Col. F).	ated (see Earthwork RCE Equipment Cost (Col. C)	spreadsheet , Fuel Cost (Col.
The number of pieces of based on the logistical number of operators, e	of equipment (Col. E) and no requirements for productio except for addition of a Supe	umber of operators (Col n. Pieces of equipment ervisor.	. G) are assigned match the
Total equipment cost (for the Cat 988H:	Col. H) is calculated as follow	ws, with an example cal	culation shown
Total Equipment Cos $\{(Equip Cost [Col. C])\}$ $\{(Operator Cost [Col. \{(0perator Cost [Col)\}\})\}$	st,\$/hr =) x (# Equipment [Col.E]) .F]) x (# Operator [Col.0 \$27.70)x(1)} = \$156.46/I)} + ;])} = pr	
Total fuel cost (Col. I) is Cat 988H:	calculated as follows, with	an example calculation	shown for the
Total Fuel Cost, $/hr$ {(\$35.57) $x(1)$ } = \$35	r = {(Fuel Cost [Col.D]) x 5.57/hr	r (# Equipment [Col. E])} =
The daily cost is calcula G56) and total fuel cos	ated for all equipment by su t (Cell H56), as follows:	mming the total equipn	nent cost (Cell
Daily Total Equipme	$nt \ Cost, \frac{\$}{day} = \left(Sum \ for\right)$	all equipment, $\frac{\$}{hr} x$	$\left(8\frac{hr}{day}\right) =$
$\left(\frac{\$1,108}{hr}\right)x\left(8\frac{hr}{day}\right)$	$=\frac{\$8,867}{day}$		
Daily Total Fuel Cos	$t, \frac{\$}{day} = \left(Sum \text{ for all } fue}\right)$	$el,\frac{\$}{hr}\right)x\left(8\frac{hr}{day}\right) =$	
$\left(\frac{\$223}{hr}\right)x\left(8\frac{hr}{day}\right) =$	\$1,785 day		

	Job No: 200540A	Client: Freeport NM Page 14 of 14
TELESTO		Operations
SOLUTIONS . IN CORPORATED	Task: Bench Channel Unit Cost (including riprap/filter	_Computed By: Fred Charles_ Date: 4/29/2019_
	material)	Checked By: Taryn Tigges Date: 4/30/2019
Calculations and Results (cont	inued):	
6. Riprap and filter pr	oduction calculations (conti	nued):
Next the production c	alculations are summarized	(see Rows 54-62 in Table 8) Daily net
production is calculate	d via the following sequence	2:
• 400 ton	s input/hr (total) – see prod	uction assumptions
• 30% wa	ste – see production assum	otions
• 70 % rip	orap and gravel/filter = 100 r	ninus % waste
• 280 ton	s produced/hr (net) = (400 t	ons input/hr) x (70%)
• 560,000) lb/hr = (280 tons) x (2,000	lb/ton)
• 3,650 lb	p/cy - see production assume (1.5)	ptions
• 153 CV/I	$nr = (560,000 \ lb/nr)/(3,650 \ r)$	D/CY)
• 1 227 o	y (net [60 mm/m]) – see pro	$c_{\rm v}/b_{\rm r}$ x (8 br/day)
1,227 0	// day net production = (155	
The total cost for prod	uction (see Row 64 in Table	8) is calculated separately for equipment
and fuel as follows:		
• Equipm	ent portion of the cost = (\$8	,867/day)/(1,227 cy/day) = \$7.22/cy
Fuel por	rtion of the cost = (\$1,785/d	ay)/(1,227 cy/day) = \$1.45/cy
Ihis yiel	lds a total cost of \$8.67/cy	
Summary and Conclusions:		
These calculations achieve the	objective to develop an esti	mated bench channel unit cost for the
earthwork RCE, as summarized	below for production of filt	er and riprap, and delivery and placement
of filter and riprap.		
The sect for second setting		
The cost for production	of filter and riprap \$7.22/cy	(equipment + operator) + \$1.45/cy (fuel)
= \$8.68/Cy (differen	nce due to rounding).	
The cost for filter delive	erv and placement is the sur	n of the calculations presented above, for
loading, hauling, pl	acing, and final grading, for	a total of \$2.14/cy (equipment +
operator) + \$0.49/	cy (fuel) = \$2.63/cy	
Similarly, the cost for rij	orap delivery and placement	t is the sum of the calculations above, for
a total of \$2.24/cy	(equipment + operator) + \$	0.51/cy (fuel) = \$2.75/cy
The total cost (\$/ft) for	bench channel construction	, including the initial earthwork (excavate
and waste) along w	vith riprap placed at 0.44 cv.	/ft and filter placed at 0.22 cv/ft, for
combined equipme	ent/operator and fuel costs,	is:
\$0.52/ft (excavate	and waste) + \$2.47/ft (filter) + \$5.00/ft (riprap) = \$7.99/ft
For example	use only. Values may not matc	h the current spreadsheet.

Downdrain/ Dissipater Unit Cost

Client: Freeport NM Pag Operations

Page <u>1</u> of <u>3</u>

Task: <u>Downdrain/Dissipater Unit</u>Computed By: <u>Fred Charles</u> Date: <u>2/19/2019</u> Cost

Checked By: Taryn Tigges Date: 2/19/2019

Calculation Documentation

Problem Statement:

Freeport-McMoRan (FMI) utilizes downdrain/dissipater unit cost information as part of earthwork closure cost estimation associated with the Little Rock Mine Closure/Closeout Plan (CCP). Downdrains are constructed on regraded side slopes of rock stockpiles to convey runoff. Dissipaters are constructed as needed at the bottom end (downslope) of specific downdrains to dissipate the energy of the downdrain runoff flow. The unit cost needs to account for excavation/preparation of the subgrade, material and placement costs to install articulated concrete blocks (ACBs) in the downdrains and dissipaters, and installation of a concrete cutoff wall at the downslope end of each dissipater.

Objective:

- 1. Develop unit costs for downdrains (\$/ft) and dissipaters (\$/each) for use in estimating earthwork closure costs at FMI's mining operations in Grant County, NM.
- 2. Note that this calculation set presents the approach, data and assumptions, and calculations and results for developing the unit cost. It is intended to serve as a guide/example even if the actual quantities and/or cost data used in these calculations change due to updates or application to a different Freeport NM Operations mine.

Approach:

- 1. The data, assumptions, calculations, and results for the downdrain/dissipater unit cost estimate are presented within the Tyrone earthwork RCE spreadsheet file.
- 2. The approach for the calculations is as follows:
 - Identify locations and lengths required for downdrains. Use reclamation design drawings and quantities.
 - Identify excavation equipment and estimate cost to complete the rough grade where the downdrains and dissipaters will be constructed. Use equipment cost information and calculations as also developed for other earthwork operations in the overall earthwork cost estimate.
 - Estimate cost to finish grade and place ACBs in downdrains and dissipaters. Use available unit costs from Contech Engineered Solutions (Contech ES), the manufacturer and installer of ACBs in the area.
 - Estimate cost to install cast-in-place concrete cutoff wall at downslope end of dissipaters. Use online RS Means data.

Job No: 200540a Client: Freeport NM Page 2 of 3 Operations 2/19/2014

Task: Downdrain/Dissipater Unit Computed By: Fred Charles Date: 2/19/2019 Cost

Checked By: Taryn Tigges Date: 2/19/2019

Data and Assumptions (continued):

- Attachment A presents the following key quantity data used to develop unit costs (note that Attachment A also includes the calculations and results presented in this calculation set):
 - Downdrain base excavation area = 52 square feet/foot of length (sf/ft)
 - Downdrain ACB area coverage = 31 sf/ft
 - Dissipater area (middle [Area 2]) = 320 sf
 - Dissipater area (each side [Area 1 = Area 3]) = 253 sf
 - Cutoff wall concrete volume (each dissipater) = 14 cubic yards
- 2. Unit cost data from Contech ES (February 2019, see Attachment A) include the following:
 - Material costs for ACBs (includes non-woven geotextile and microgrid/geogrid) are as follows:
 - \$7.42/sf (Block Class 40T, for the channel of each downdrain and both side areas of each dissipater)
 - \$10.65/sf (Block Class 70T, for the center area of each dissipater)
 - Installation cost is \$4.63/sf, which covers the following installation process for both sizes of ACBs: off-load the truck and place delivered ACBs in temporary storage area, fine grade base/subgrade soils, compact soils to 90% Standard Proctor (D698), place and secure filter fabric (non-woven geotextile), place 4- to 6-inch drainage layer overlaid by geogrid, place ACBs in final configuration, grout seams, and backfill ACBs with crushed stone. The installation cost includes crushed stone.
- Cost data from RS Means for installation of a concrete cutoff wall at the downslope end of each dissipater are presented in Attachment A. The online RS Means cost is \$254.97/cubic yard.

Calculations and Results:

- The estimated cost to excavate the rough grade (where the downdrains will be constructed) is developed in the same manner as excavation costs prepared for bench channel unit costs. Therefore, see the bench channel unit cost calculation set for details. The downdrain rough grade cost = \$0.83/ft.
- 2. The estimated cost to install ACBs in downdrains includes the finish grade and subsequent placement of ACBs. This estimated cost is developed from the Contech ES quotes (as listed above in Data and Assumptions), as follows:
 - Downdrain material cost for 40T ACBs is \$7.42/sf
 - Downdrain installation cost for 40T ACBs is \$4.63/sf
 - The cost per ft of downdrain (\$/ft) = (\$7.42/sf + \$4.63/sf) x (31 sf/ft) = \$12.05/sf x 31 sf/ft = \$373.55/ft

Total downdrain installation cost (after rough grading) = 373.55/ft

Job No: 200540a Client: Freeport NM Page 3 of 3 Operations Task: Downdrain/Dissipater Unit Cost Cost

Checked By: Taryn Tigges Date: 2/19/2019

Calculations and Results (continued):

- 3. Similarly, the estimated cost to install ACBs in dissipaters includes the finish grade and subsequent placement of ACBs. This estimated cost is developed from the Contech ES quotes (as listed above in Data and Assumptions), as follows:
 - Dissipater material cost for 40T ACBs is \$7.42/sf
 - Dissipater material cost for 70T ACBs is \$10.65/sf
 - Dissipater installation cost for 40T and 70T ACBs is \$4.63/sf
 - For each dissipater, 40T ACBs cover 506 sf and 70T ACBs cover 320 sf
 - The cost for the 40T part of each downdrain (\$/each) =
 - $($7.42/sf + $4.63/sf) \times (506 sf) = $12.05/sf \times 506 sf = $6,097.30/each$ The cost for the 70T part of each downdrain (\$/each) =
 - $(\$10.65/sf + \$4.63/sf) \times (320 sf) = \$15.28/sf \times 320 sf = \$4,889.60/each$ The total cost for ACBs in each dissipater = \$6,097.30 + \$4,889.60 =
 - \$10,986.90
- 4. The estimated cost for installing a cast-in-place concrete cutoff wall at the downslope end of each dissipater is based on on-line cost data from RS Means and the required concrete volume:
 - Cast-in-place concrete cutoff wall (RS Means) cost = \$254.97/cubic yard
 - Each dissipater requires cutoff wall concrete volume of 14 cubic yard
 - The total cost for cutoff wall installation at each dissipater = (\$254.97/cubic yard) x (14 cubic yard) = \$3,569.58

Total dissipater installation cost (after rough grading) = \$10,986.90 + \$3,569.58 = \$14,556.48

Summary and Conclusions:

- Unit costs for installing downdrains (\$/ft) and dissipaters (\$/each) were developed for use in estimating earthwork closure costs at FMI's mining operations in Grant County, NM. Note that the estimated unit cost developed in this analysis applies only to FMI operations in the Silver City (Grant County), NM area.
- Downdrain cost = \$0.83/ft (rough grading) + \$373.55/ft (after rough grading) = \$374.38/ft
- 3. Dissipater cost = \$10,986.90/each (rough grading is included in downdrain cost) + \$3,569.58/each (cutoff wall) = **\$14,556.48/each**

Downdrain Unit Cost

Rough Grade																						
							Centroid to															
					Soil	Production	Centroid	Normal		Work								Operator		Equipment		
				Grade	Weight	Method/Blade	Push	Production	Operator	Hour	Visibility	Elevation	Transmission	Volume	Productivity	Fuel Cost	Equipment	Cost (IV)	Dozer Cost	w/o Fuel	Fuel Cost	Total Excavation
Task Description	Equipment	Productivity (cy/hr)	Material Factor	Factor	(lb/cy)	Factor	Distance (ft)	(cy/hr)	Factor	(min/hr)	Factor	Factor	Factor	(cy/ft)	(hrs/ft)	(\$/hr)	Cost (\$/hr)	(\$/hr)	(\$/hr)	Cost (\$/ft)	(\$/ft)	Cost (\$/ft)
Excavate	Cat D11T CD	1731	1.2	1.6	2900	1.0	175	1851	0.75	50	1.0	1.0	1.0	1.9	0.0011	\$69.62	\$254.44	\$27.41	\$281.85	\$0.31	\$0.08	\$0.39
Waste	Cat D11T CD	1542	1.2	1.6	2900	1.0	200	1649	0.75	50	1.0	1.0	1.0	1.9	0.0012	\$69.62	\$254.44	\$27.41	\$281.85	\$0.35	\$0.09	\$0.44
																				\$0.67	\$0.16	\$0.83

Finish Grade & Place ACB

	Total Downdrain Cost (\$/ft)		\$374.38
		ACB Cost/ft	\$373.55
Installation	31	\$4.63	\$143.53
40T ¹	31	\$7.42	\$230.02
Downdrain ACBs			
	(sf/ft)	(\$/sf)	\$/ft
	Area	Cost	
		Unit	

Unit Area Cost Dissipater ACBs (sf) (S/sf) 70 ⁺¹ 320 \$10.65 Installation ⁴ 320 \$4.63 407 ⁺ 506 \$7.42 Installation ¹⁴ 506 \$54.63	\$10 986 90	ACB Cost ner Dissinater		
Unit Area Cost Dissipater ACBs (sf) (5/sf) 701 ⁺ 320 \$10.65 Installation ¹ 320 \$4.63 401 ⁺ 506 \$7.42	\$2,342.78	\$4.63	506	Installation ¹
Unit Area Cost Dissipater ACBs (sf) (S/sf) 701 ⁺ 320 \$10.65 Installation ¹ 320 \$4.63	\$3,754.52	\$7.42	506	40T ¹
Unit Area Cost Dissipater ACBs (sf) (S/sf) 701 ⁺ 320 \$10.65	\$1,481.60	\$4.63	320	Installation ¹
Unit Area Cost Dissipater ACBs (sf) (5/sf)	\$3,408.00	\$10.65	320	70T ¹
Unit Area Cost	\$/sf	(\$/sf)	(sf)	Dissipater ACBs
Unit		Cost	Area	
		Unit		
Place ACB				Place ACB

Install Cutoff Wall							
Cutoff Wall (cast in place concrete)	cubic yard		\$/cubic yard	\$/dissipater ²			
RSMeans (2019)	14	\$	254.97	\$3,569.58			
Total Dissipator Cost (\$/each) \$14,556,48							

DOWNDRAIN		
Dimensions:		
Left S	de Slope: 3	H:1V
Left S	de Slope: 3	H:1V
	Depth: 2	ft
P	erimeter: 31	ft
Excava	ion Area: 52	sf
	CB Area: 31	sf

	ACB				Cutoff		
DISSIPATERS	ACD				Wall ³		
					Cross-		
					Sectional		
	Surface Area 1	Surface Area 2	Surface Area 3	Total	Area	Thickness	Volume
	(sf)	(sf)	(sf)	(sf)	(sf)	(ft)	(cy)
	253	320	253	825	260	1.5	14

1. Quote from Contech E5 2018; Downdrain ACB installation includes fine grade base/subgrade soils (assuming subgrade at + 0.5 ft); equipment is D6 LGP dozer with Power Angle Tilt Blade (PAT) and GPS Blade Control 2. One cutoff wall per dissipator 3. Trybical flow depth 6.2; concrete depth is 5' (diagram is not drawn to scale); concrete thickness is 1.5'

NT.S AU TYPICAL DOWNDRAIN SECTION

Fred Charles

From:	Fawcett, Clayton <cfawcett@conteches.com></cfawcett@conteches.com>
Sent:	Tuesday, February 5, 2019 9:25 AM
То:	Fred Charles
Subject:	RE: confirm or update costs for ACBs (reply requested by end of day Monday Feb 4, if possible)

Fred,

Hello and good morning. I hope this message finds you doing well. I made it back in to the office this morning and saw your e-mails.

Material and installation costs we discussed in September are still good. Please feel free to use those to complete your estimate.

Regarding your questions:

- 1 Yes, installation costs are the same for both downchutes and dissipator basins.
- 2 Yes, installation cost does include crushed stone infill (purchase and install)

Regarding your follow up e-mail with questions pertaining to cut-off walls.

- 1 Cut-off walls are not always required, however they are a good idea. The use of cut-off walls has increased in the last five years and as such, they are now recommended for inclusion at dissipator basins.
- 2 Material and installation costs for the installation of a cut-off wall <u>are not</u> included in the costs previously discussed and should be added.

I hope this information helps. Feel free to contact me directly with any additional questions.

Regards,

Clayton Fawcett PE (co) Armortec Area Manager - West

CONTECH Engineered Solutions 970-290-2971 (cell) <u>cfawcett@conteches.com</u>

From: Fred Charles [mailto:fcharles@telesto-inc.com]
Sent: Sunday, February 3, 2019 3:28 PM
To: Fawcett, Clayton <CFawcett@conteches.com>
Subject: confirm or update costs for ACBs (reply requested by end of day Monday Feb 4, if possible)

Hi Clayton. This email is a follow up to our email correspondence in September 2018 regarding material and installation costs for articulated concrete blocks (ACBs) used for downdrains at Chino. We've been using the cost info you passed along to me at that time. Now, I need you to confirm those costs or update them. We will use this information in a reclamation cost estimate (financial assurance for closure bonding) which we are currently finalizing for Chino and other mines in that area.

<u>Costs</u>

As we had discussed, the material costs for ACBs (includes non-woven geotextile and microgrid/geogrid) are as follows:

\$7.42/square foot (Block Class 40T, for the channel of each downdrain)

- \$10.65/square foot (Block Class 70T, for the dissipation basin at bottom of each downdrain)

Also, you quoted \$4.63/square foot for installation costs, which covers the following installation process: off-load the truck and place delivered ACBs in temporary storage area, fine grade base/subgrade soils, compact soils to 90% Standard Proctor (D698), place and secure filter fabric (non-woven geotextile), place 4-6" drainage layer overlaid by geogrid, place ACBs in final configuration, grout seams, and backfill ACBs with crushed stone.

2 questions

In addition to you confirming or updating the material and installation costs, I have two questions: (1) Is the installation cost (\$4.63/square foot) the same for both channel downdrains and dissipation basins? (2) Does the installation or material cost include the crushed stone used to backfill the ACBs?

Please create a new email to me with updated unit costs <u>or</u> reply to this email to confirm what I show is still correct. I will present what you provide for documentation in the cost estimate we submit to the state agencies.

Thanks,

Fred Charles, Ph.D., P.E. Senior Engineer Office: 970-484-7704, Ext 120 Cell: 720-318-5021 3801 Automation Way, Suite 201, Fort Collins, CO 80525 <u>fcharles@telesto-inc.com</u>

www.telesto-inc.com

This email may contain confidential and/or privileged information. If you are not the intended recipient, you are hereby notified that retention, dissemination, or copying of this communication is prohibited. If you have received this email in error, please notify the sender by reply email and permanently delete this email and any attachments. Thank you.

Client: Freeport NM Operations

Page <u>1</u> of <u>4</u>

Task: Truck Optimization

Checked By: Taryn Tigges Date: 3/14/2019

Computed By: Fred Charles Date: 2/28/2019

Calculation Documentation

Problem Statement:

Freeport-McMoRan's (FMI's) Chino Mines Company utilizes truck optimization information to develop the most efficient proportions of equipment as part of earthwork closure cost estimation associated with the Little Rock Mine Closure/Closeout Plan (CCP). Optimization needs to account for the time required and associated costs for truck loading and hauling operations.

Objectives:

- 1. Develop optimization calculations to determine the most efficient number of trucks (2 to 9 and a calculated maximum) per loader or shovel for loading cover material at borrow stockpiles.
- 2. Note that this calculation set presents the approach and calculations and results for optimizing equipment for earthwork. It is intended to serve as a guide/example even if the actual quantities and/or cost data used in these calculations change due to updates or application to a different Freeport NM Operations mine.

Approach:

- 1. The data, calculations, and results for the optimization calculations are presented within the Tyrone earthwork RCE spreadsheet file in sheet (tab) named "18 Truck Optimization".
- 2. Truck optimization is calculated for each cover material source and destination based on
 - The truck cycle time for 1 roundtrip between a cover material source and destination and the maximum number of trucks per loader/shovel.
 - For X number of trucks (2 to 9 and a calculated maximum), the productivity, task time, cost of using X trucks per loader, the optimum number of trucks per loader/shovel, and the maximum number of trucks per loader/shovel.

		СТ		lob No:_	200540a	9		Client:	Freeport I Operation	NM Is	Page	2_of_4_
				Task:_ Tr	uck Optin	nization	(Comput	ed By: Fre	ed Cha	arles Date	2/28/201
							(Checked	By <u>:</u> Tar	yn Tigg	ges Date	3/14/201
cul	ations and 1. The of a part Tabl	f Results: truck opti row of da s due to t e 1, with r	imizatior ta/calcu he many referenci	n calcul lations colum ing to t	lations a in the " ins in the he Colu	re set up 18 Truck e spread mn ident	o as s Opt shee ifier	shown imizat et. Key in Tab	in Table ion" she calculat le 1 (an	e 1, w et. Ta ion st d the	hich is a able 1 is teps are spreads	snapshot shown in 6 listed after heet).
	Table 1											
13	E	F		G	Н			I .	J		К	L
14	ID	Task Descript	s tion Loc	ource ation 1	Destin Locat	ation ion 2	Equip	ment	Work Hour (min/hr)	Load Cy	ler/Shovel cles per Truck	Loader/Shove Cycle Time (min)
299	1200-D-b-Tk4	Haul-Cov	er Uppe	r South	West Sto	ckpile Ko	matsu	1730E	50	1	5	0.45
13	М	N	_	0	Р	Q		R	S		т	U
14	Loader/Shov Time Per True (min) 2.2	el Truck Cy ck Time P Truck (n	vole Truc er Loa nin) Sh 22.7	ks Per ader/ ovel 10.1	Loader/ Shovel Type Sh1	Loader/ Shovel Cos (\$/hr) \$ 535.6	st Ca	oader Ne Bucket pacity (c 27	et Ha Volu cy) (c) 7.4 3,031	ul ime /) ,924	Max Trucks Round Up 3,317	Max Trucks Round Down 3,016
⊿ 13	V	W Productivity f	X for X Trucks	Y s (cy/hr)	Z	AA	AB	AC	+			
14 299	9 2,714	8 2,412	7 2,111	6 1,809	5 1,508	4 1,206	3 905	2 60	3			
13	AD	AE	AF	AG Ta	AH sk Time for	Al X Trucks (hr)	AJ	AK	AL	AM	
	Max M	lax Trucks						1			22.22	
14 299	Round Up 914.0	Down 1,005.4	9 1,117.2	8 1,256.8	7	6 1,675.7	2,0	5 010.9	4 2,513.6	3 3,351	2	7.2
13	AN	AO	AP		AQ	AR		AS	Cost of U	AT sing X 1	Trucks per	AU
14	Loader/ Shovel Task Time (hr) 995.9	Truck Cost (\$/hr) \$ 246.06	Max Truc Round U \$ 3,229.0	ks Ma Ip Roi	ax Trucks und Down 3,012,613	9 \$ 3,072.4	458	8 \$ 3,14	7,264 \$	7 3,243.4	442 \$ 3.	6 371,681
1	AV	AW	AX		AY	AZ			BA	Ì	BB	
13	5)				2	Lowest (ost	Optimur of Tru	m Number icks Per	Opti True	imum Numb cks Per Loa	er of der/

Task: Truck Optimization

_Checked By: Taryn Tigges ______ Date: 3/14/2019

Computed By: Fred Charles Date: 2/28/2019

1. Truck optimization (continued)
 Calculate the number of loader/shovel (or referred to as loader) cycles to load a truck and the loading time required per truck (Columns K, L, and M) – this calculation uses data from the "9 Trucks" and "10 Shovel" sheets.
Loader Time Per Truck (Col. M) =
[Loader Cycles per Truck (Col. K)] x [Loader Cycle Time, min (Col. L)]
= (5 cycles/truck) x (0.45 min/cycle) = 2.25 min/truck
 Using the truck cycle time for 1 roundtrip between a cover material source and destination (data from the "9 Trucks" sheet), calculate the maximum number of trucks per loader/shovel.
Max Number Trucks Per Loader (Col. O) = [Truck Cycle Time, min (Col. N)]/[Loader Time, min/truck (Col. M)]
= (22.7 min)/(2.25 loader min/truck) = 10.1 trucks/loader
 Calculate the productivity (cy/hr) for X number of trucks (2 to 9 and a calculated maximum).
For X=6 trucks, Productivity, cy/hr (Col. Y) = (X) x Work Hour, min/hr (Col. J) x Loader Cycles/Truck (Col. K) x [Loader Net Bucket Capacity, cy (Col. R)]/[Truck Cycle Time Per Truck, min (Col. N)] = [6 x (50 min/hr) x (5 loader cycles/truck) x (27.4 cy/loader cycle)]/(22.7 min/truck cycle) = 1,809 cy/hr
 Using the productivity and total volume of cover material to be hauled, calculate the task time for X trucks (2 to 9).
For X=6 trucks Task Time br (Col AI) =
[Haul Volume, cy (Col. S)]/[Productivity, cy/hr (Col. Y)] = (3,031,924 cy)/(1,809 cy/hr) = 1,676 hr
For example use only. Values may not match the surrent spreadchest

Job No: 200540a Client: Freeport NM Page 4 of 4 Operations

Task: Truck Optimization

Checked By: Taryn Tigges Date: 3/14/2019

Computed By: Fred Charles Date: 2/28/2019

Calculations and Results (continued):

- 1. Truck optimization (continued):
 - Calculate the cost of using X trucks per loader (2 to 9 and a calculated maximum) using data for loader/shovel task time in "9 Trucks" (for each cover material source and destination), loader/shovel cost (\$/hr), truck cost (\$/hr), and task time for the number of trucks.

For X=6 trucks, Cost of Using X Trucks per Loader, \$ (Col. AU) = [Max of Task Time for Trucks (Col AI) or Loader/Shovel Task Time (Col. AN)] x {(Loader Cost, \$/hr (Col. Q) + [(X) x (Truck Cost, \$/hr (Col. AO)]} = (1,675.7 hr) x {(\$535.68/hr + [6 x \$246.06/hr]} = \$3,371,681

• The optimum number of trucks per loader is the lowest cost number of trucks per loader/shovel. This optimum number is compared with the maximum number of trucks per loader/shovel, to ensure the optimum number is within the maximum.

For this row of data, the optimum number of trucks per loader = 10, which is the same within the max.

Client: Freeport NM Page Operations

Page <u>1</u> of <u>2</u>

Task: Building Demolition Cost Computed By: Fred Charles Date: 2/27/2019

Checked By: Taryn Tigges Date: 3/14/2019

Calculation Documentation

Problem Statement:

Freeport-McMoRan (FMI) utilizes cost information for demolition of buildings (including storage tanks) as part of earthwork closure cost estimation associated with the Little Rock Mine Closure/Closeout Plan (CCP). The demolition costs need to account for site-specific conditions including building dimensions and footprint areas which are used with available construction/earthwork unit rates to estimate the demolition cost.

This calculation set presents a summary of the approach and results for estimating the building demolition cost. Detailed information is presented in the Tyrone earthwork reclamation cost estimate (RCE) spreadsheet file.

This calculation set is intended to serve as a guide/example even if the actual quantities and/or cost data used in these calculations change due to updates or application to a different Freeport NM Operations mine.

Objective:

1. Develop a cost estimate for demolition of buildings (including storage tanks) for use in estimating earthwork closure costs at FMI's mining operations in Grant County, NM.

Approach:

- The data, assumptions, calculations, and results for the building demolition cost estimate are presented within the Tyrone earthwork RCE spreadsheet file in a series of sheets (tabs) that address building demolition, cover placement, revegetation, and removal/disposal of building waste materials requiring special handling. An additional tab presents a summary of the costs.
- 2. The approach for estimating building demolition costs is as follows:
 - Compile building and storage tank dimension/footprint area data and assumptions used in the calculations.
 - Estimate the cost for demolition to account for volume of structural materials, volume of cover material placement, area of revegetation, and tonnage of waste requiring special handling.

____ Client: Freeport NM ____ Page _2 of _2 ____ Operations

Task: Building Demolition Cost Computed By: Fred Charles Date: 2/27/2019

Checked By: Taryn Tigges Date: 3/14/2019

Results:

- 1. The results of the building demolition cost calculations are summarized below (some of the final results may vary from what is shown). These results are used in the overall earthwork RCE.
- The indirect costs are set at 30% of direct costs, based on an agreement between FMI and the agencies in January 2019. Indirect costs include but are not limited to mobilization and demobilization, contingencies, engineering redesign fees, contractor profit and overhead, project management, administrative expenses, etc.

DRAFT Facility L	Jemoliuon Summary		
			Current Value
DIRECT COSTS	Facility and Structure Removal		\$666,916
	Cover		\$24,132
	Ripping & Revegetation		\$2,061
	Hazardouse Waste Removal		\$2,534,217
	Subtotal, Direct Costs		\$3,227,325
INDIRECT COSTS ¹	Subtotal, Indirect Costs	30.0%	\$968,198
TOTAL COST			\$4,195,523

DRAFT Facility Demolition Summary

Job	No:	200540a

Client: Freeport NM Page Operations

Page <u>1</u> of <u>2</u>

Task: <u>Pipeline Demolition Unit</u> Computed By: <u>Fred Charles</u> Date: <u>3/14/2019</u> Cost

_Checked By: Taryn Tigges __Date: 3/14/2019

Calculation Documentation

Problem Statement:

Freeport-McMoRan (FMI) utilizes unit cost information for pipeline demolition as part of earthwork closure cost estimation associated with the Little Rock Mine Closure/Closeout Plan (CCP). The unit costs need to account for site-specific conditions and pipeline information which are used with available construction/earthwork unit rates to estimate the pipeline demolition cost.

This calculation set presents a summary of the approach and results for estimating the unit cost for pipeline demolition (remove sludge/water, place cover). Detailed information is presented in the earthwork reclamation cost estimate (RCE) spreadsheet file.

This calculation set is intended to serve as a guide/example even if the actual quantities and/or cost data used in these calculations change due to updates or application to a different Freeport NM Operations mine.

Objective:

1. Develop a pipeline demolition unit cost (\$/ft) for use in estimating earthwork closure costs at FMI's mining operations in Grant County, NM.

Approach:

- The data, assumptions, calculations, and results for the pipeline demolition unit cost estimate are presented within the Tyrone earthwork RCE spreadsheet fil in sheets (tabs) named "6"-8" Pipeline_UC", "18" Pipeline_UC", and 20"-36" Pipeline UC".
- 2. The approach for estimating the pipeline demolition unit cost is as follows:
 - Compile pipeline data and assumptions used in the calculations.
 - Identify a unit rate for pipeline sludge/water removal from available construction/earthwork data. For the required sludge/water removal, use a similar operation for storage tank sludge/water removal from R.S. Means Online to develop a pipeline cost (\$/ft).
 - Estimate the volume of cover (cubic yard [cy]) required and cost to excavate, haul, and grade the cover material over the pipeline areas. Calculate a site-wide average unit cost (\$/cy) to excavate, haul, and grade cover material.
 - Based on an assumed cover volume per foot of pipeline, calculate a weighted cost (\$/ft) for all pipeline areas.

Client: Freeport NM Page Operations

Page <u>1</u> of <u>4</u>

2/21/2019

Task: Revegetation Unit Cost Computed By: Fred Charles Date:

_Checked By: Taryn Tigges _____ Date: _____ 3/14/2019

Calculation Documentation

Problem Statement:

Freeport-McMoRan (FMI) utilizes revegetation unit cost information as part of earthwork closure cost estimation associated with the Little Rock Mine Closure/Closeout Plan (CCP). The unit cost for revegetation needs to account for equipment rental rates and associated maintenance, fuel costs, and labor rates.

Objectives:

- 1. Develop a revegetation unit cost (\$/acre) for use in estimating earthwork closure costs at FMI's mining operations in Grant County, NM.
- 2. Note that this calculation set presents the approach, data and assumptions, and calculations and results for developing the unit cost. It is intended to serve as a guide/example even if the actual quantities and/or cost data used in these calculations change due to updates or application to a different Freeport NM Operations mine.

Approach:

- 1. The data, assumptions, calculations, and results for the revegetation unit cost estimate are presented within the Tyrone earthwork RCE spreadsheet file.
- 2. The approach for the calculations is as follows:
 - Identify equipment types for scarifying, discing, drill seeding, mulching, crimping.
 - Obtain equipment information from EquipmentWatch (EQW) and RS Means, labor rates from NMDOL; revegetation material costs (seed, mulch) from FMI and/or their supplier; and the current fuel price from fuel cost calculations.
 - Determine the equipment traveling distance and time to cover 1 acre.
 - For each of the key operations, estimate the operating cost (\$/hour).
 - Combine all operations and material costs, calculate the total unit cost.

Data and Assumptions:

- Rental and operating cost information is accessed online from EQW for tractor (Deere 7340), ripper, and mulcher, and from RS Means for disc harrow (see Attachment A). Monthly rental rates are converted to hourly rates assuming 176 hours/month.
- 2. Equipment information is not available in EQW nor RS Means for drill seeding and crimping. Therefore, the drill seeder cost is assumed to be an average of the mulcher and disc (complexity is between the two, thus an average is assumed), and the crimper rental cost is assumed to be equal to the disc harrow (similar type of equipment).
- 3. Costs are included in the ripper and disc harrow (and drill seeder and crimper) to account for the ground engaging component (GEC) of these implements. The GEC cost for the ripper is applied to each of these other implements.
- 4. Local fuel price is developed from fuel cost calculations also prepared for earthwork closure cost estimates the estimated 2019 fuel price is \$2.34/gallon.
- 5. Revegetation material costs are from a quote by Rocky Mountain Reclamation, based on typical sources for seed and mulch (see Attachment A). The cost for seed is \$210/acre and for mulch is \$245/ton which, at 2 tons/acre, is \$490/acre.

Client: Freeport NM Operations

Page <u>2</u> of <u>4</u>

Task: Revegetation Unit Cost Computed By: Fred Charles Date: 2/21/2019

Checked By: Taryn Tigges Date: 3/14/2019

Data and Assumptions (continued):

- Labor rates are from NMDOL (see Attachment A). 6.
- Equipment typical net coverage (width) is set at 12 feet, and equipment travel speed is 7. set at 3 miles/hour (mph) for a 60-minute hour.

Calculations and Results:

1. The Deere 7340 tractor data, along with labor and fuel costs, are tabulated in the following table:

	В		С	D	E
5	Tractor used for each operation is Deere 7430		Cost	Unit	Information or Calculation
6	EQW base rate for tractor rental	\$	5,210.05	\$ per month	EQW for Deere 7430
7	EQW base rate for tractor rental	\$	29.60	\$ per hour	= (\$/month)/176
8	EQW field labor rate per hour of operation	\$	2.53	\$ per hour	EQW for Deere 7430, which includes mechanic's wage of \$23.09 (NMDOL, 2019)
9	EQW lube material cost	\$	2.84	\$ per hour	EQW for Deere 7430
10	EQW field parts cost	\$	0.61	\$ per hour	EQW for Deere 7430
11	EQW tire material cost	\$	2.42	\$ per hour	EQW for Deere 7430
12	EQW fuel burn rate		5.98	gallons per hour	EQW for Deere 7430
13	Local fuel cost	\$	2.34	\$ per gallon	Local quote
14	Fuel cost	\$	13.99	\$ per hour	= (EQW fuel burn rate) x (local fuel cost)
15	NM Department of labor equipment operator rate	\$	24.27	\$ per hour	NM Department of Labor (NMDOL)
16	Total tractor cost	\$	76.27	\$ per hour	Sum of \$ per hour costs shown in boxes
47		11	HHH		

Data in Rows 6 and 8-12 are from EQW, data in Row 8 also incorporates an NMDOL labor rate in the EQW cost, Row 13 is the estimated local fuel cost of \$2.34/gallon, and Row 15 shows an NMDOL labor rate. Costs in other rows (7, 14, and 16) are calculated as follows:

EQW base rate for tractor rental = (\$5,210.05/month)/(176 hours/month) = \$29.60/hour

Fuel cost = (EQW burn rate) x (local fuel cost) = (5.98 gallons/hour) x (\$2.34/gallon) = \$13.99/hour

Total tractor cost = sum of rows 7, 8, 9, 10, 11, 14, 15 = $29.60 + 2.53 + 2.84 + 0.61 + 2.42 + 13.99 + 24.27 = \frac{76.27}{\text{hour}}$

Based on an equipment typical net width of 12 feet, and equipment net travel speed of 2. 2.5 mph (3 mph x 50/60 to adjust for a 50-minute hour), each operation will travel a distance of 3,630 feet to cover 1 acre, and will require 0.275 hour to travel this distance (see calc steps in the table below). The resulting fuel cost is \$3.85/acre.

1	В	С	D	E
18	Tractor coverage/rate of operation, fuel cost per acr	e		
19	Tractor/equipment net width	12	feet	Assigned as a typical net width of coverage for each pass
20	Tractor/equipment travel speed	2.5	miles per hour	Assigned as approximate average speed of equipment (3 mph for 50 min/hr)
21	For 1 acre, total traveling distance	3630	feet per acre	= (43560 sf/ac)/(net width)
22	Time of travel over 1 acre	0.275	hour per acre	= [(traveling distance feet/acre)/(5280 ft/mile)]/(travel speed)
23	Fuel cost per acre	\$ 3.85	\$ per acre	Already included in total tractor cost Fuel cost/acre = (fuel cost/hour) x (travel time hour/acre)
	For example use only. Va	lues mav	not match the	current spreadsheet.

Client: Freeport NM Page Operations

Page <u>3</u> of <u>4</u>

Task: Revegetation Unit Cost Computed By: Fred Charles Date: 2/21/2019

Checked By: Taryn Tigges Date: 3/14/2019

Calculations and Results (continued):

3. Operating costs for each of the 5 revegetation operations are calculated as shown in the following table. Calculation equations are also noted in the table. Note the total cost for each operation includes fuel.

	В	1	с	D	E
25	Operation				
26	Scarifying				
27	Base rate for ripper rental	\$	898.90	per month	EQW Ripper, Miscellaneous MSR-189H, to 260 HP
28	Base rate for ripper rental	\$	5.11	\$ per hour	= (\$/month)/176
29	Lube labor rate per hour of operation	\$	0.57	\$ per hour	EQW for ripper, incl mechanic's wage \$23.09 (NMDOL, 2019)
30	Lube material cost	\$	0.15	\$ per hour	EQW for ripper
31	Field parts cost	\$	0.16	\$ per hour	EQW for ripper
32	Ground Engaging Component cost	\$	0.78	\$ per hour	EQW for ripper
33	Total cost with tractor+operator included	\$	83.03	per hour	percentil and data de
35	Discing		and the s		
36	Disc harrow attachment, for tractor	\$	616.33	per month	RS Means 01 54 33 20 1500
37	Disc harrow attachment, for tractor	\$	3.50	per hour	= (\$/month)/176
38	Ground Engaging Component (GEC) cost	\$	0.78	\$ per hour	Assume similar to GEC cost for ripper (EQW)
39	Total cost with tractor+operator included	\$	80.55	per hour	
41	Drill seeding (assume similar to discing)		Acres 1		
42	Disc harrow attachment, for tractor	\$	616.33	per month	RS Means 01 54 33 20 1500
43	Disc harrow attachment, for tractor	\$	3.50	per hour	= (\$/month)/176
44	Ground Engaging Component cost	\$	0.78	\$ per hour	Assume similar to GEC cost for ripper (EQW)
45	Total cost with tractor+operator included	\$	80.55	per hour	
47	Mulching				
48	Mulcher, diesel powered, trailer mounted	\$	2,167.95	per month	EQW for trailer mounted mulcher (Finn B260)
49	Mulcher, diesel powered, trailer mounted	\$	12.32	per hour	= (\$/month)/176
50	Lube labor rate per hour of operation	\$	1.25	\$ per hour	EQW for trailer mounted mulcher (Finn B260), incl mechanic's wage \$23.09 (NMDOL, 2019)
51	Lube material cost	\$	1.60	\$ per hour	EQW for trailer mounted mulcher (Finn B260)
52	Field parts cost	\$	0.15	\$ per hour	EQW for trailer mounted mulcher (Finn B260)
53	Tire material cost	\$	0.60	\$ per hour	EQW for trailer mounted mulcher (Finn B260)
54	Fuel burn rate		4.13	gallons per hour	EQW for trailer mounted mulcher (Finn B260)
55	Local fuel cost	\$	2.34	\$ per gallon	Local quote
56	Fuel cost	\$	9.66	\$ per hour	= (EQW fuel burn rate) x (local fuel cost)
57	NM Department of labor equipment operator rate	\$	24.27	\$ per hour	NM Department of Labor (NMDOL)
58	Total cost with tractor+operator included	\$	126.12	per hour	
60	Crimping (assume similar to discing)				CONTRACTOR INCOMENTS IN CONTRACTOR
61	Disc harrow attachment, for tractor	\$	616.33	per month	RS Means 01 54 33 20 1500
62	Disc harrow attachment, for tractor	\$	3.50	per hour	= (\$/month)/176
63	Ground Engaging Component cost	\$	0.78	\$ per hour	Assume similar to GEC cost for ripper (EQW)
		¢	00.55	and the second se	

Client: Freeport NM Page <u>4</u> of <u>4</u> Operations

Task: Revegetation Unit Cost Computed By: Fred Charles Date: 2/21/2019

Checked By: Taryn Tigges Date: 3/14/2019

Calculations and Results (continued):

•

- 5. The hourly operating cost for each operation (includes fuel) is summed for a total cost of \$450.79/hour. The cost for each operations is as follows:
 - Scarifying = \$83.03/hour
 - Discing = \$80.55/hour
 - Drill seeding = \$80.55/hour
 - Mulching = \$126.12/hour
 - Crimping = \$80.55/hour •
- 6. The total combined equipment operating cost with fuel (\$/acre) is then calculated based on the operating cost per hour and the time of travel over 1 acre, as follows:

Total combined operating cost =
$$\left(\frac{\$450.79}{hour}\right) x \left(0.275\frac{hour}{acre}\right) = \$123.97/acre$$

- 7. Seed and mulch costs are added to the total combined operating cost (\$/acre) to calculate the total revegetation unit cost as follows:
 - Total combined operating cost = \$123.97/acre
 - Seed = \$210/acre •
 - Mulch = \$490/acre

Total revegetation unit cost = Total combined operating cost + Seed + Mulch =\$123.97/acre + \$210/acre + \$490/acre = \$823.97/acre (\$824/acre)

Summary and Conclusions:

- A revegetation unit cost was developed for use in estimating earthwork closure costs at FMI's mining operations in Grant County, NM. Note that the estimated unit cost developed in this analysis applies only to FMI operations in the Silver City (Grant County), NM area.
- 2. The total revegetation unit cost is \$824/acre.

All prices shown in US\$

Adjustments for MANDYLILLA27 in All Saved Models

Deere 7430 (disc. 2011) Wheel Tractors

Size Class: 125 to 174 hp Weight: N/A

Configuration for 7430 (disc. 2011)

Power Mode

lode Diesel

Hourly Ownership Costs

	Standard Value	User Adjusted Value	Variance
Depreciation	\$12.48/hr	\$11.70/hr	-6.3%
Cost of Facilities Capital (CFC)	\$3.12/hr	\$2.43/hr	-22.1%
Overhead	\$4.42/hr	\$3.35/hr	-24.2%
Overhaul Labor	\$6.46/hr	\$1.92/hr	-70.3%
Overhaul Parts	\$5.55/hr	\$4.20/hr	-24.3%
Total Hourly Ownership Cost:	\$32.03/hr	\$23.60/hr	-26.3%
User Defined Adjustments: Annual L	Jse Hours (1,030hrs -> 1,359hrs)	Sales Tax (5.1% -> 0%)	

Hourly Operating Costs

	Standard Value	User Adjusted Value	Variance
Field Labor	\$8.51/hr	\$2.53/hr	-70.3%
Field Parts	\$4.86/hr	\$0.61/hr	-87.4%
Ground Engaging Component (GEC)	\$0.00/hr	<u>-</u>	-
Tire	\$2.42/hr	-	-
Electrical/Fuel	\$19.54/hr	\$5.98/hr	-69.4%
Lube	\$2.84/hr	<u>-</u>	_
Total Operating Ownership Cost: User Defined Adjustments: Annual Fie	\$38.17/hr Id Repair Parts Cost (\$4,174.20	\$14.38/hr) -> \$0.20) Diesel Cost (3.27 -> 1) Mecha	-62.3% nics Wage (\$58.84 -> \$23.09)

Total

	Standard Value	User Adjusted Value	Variance
Hourly Ownership Costs	\$32.03/hr	\$23.60/hr	-26.3%
Hourly Operating Costs	\$38.17/hr	\$14.38/hr	-62.3%
Total Hourly Cost	\$70.20	\$37.98/hr	-45.9%

Non-active use rates

	Standard Value	User Adjusted Value	Variance
Standby	\$20.02/hr	\$17.48/hr	-12.7%
Idle	\$51.57/hr	\$29.58/hr	-42.6%

Revised Date: 1st Half 2019

The equipment represented in this report has been exclusively prepared for MANDY LILLA (mlilla@fmi.com)

January 17, 2019

All prices shown in US\$

Adjustments for MANDYLILLA27 in All Saved Models

Deere 7430 (disc. 2011) Wheel Tractors

Size Class: 125 to 174 hp Weight: N/A AOLO

Configuration for 7430 (disc. 2011)

AED Rental Rates

These rental rates reflect an average for equipment of this type and size. Rates shown for specific brands or models are provided for convenience only. Rates charged by rental companies for specific brands or models will vary depending on many factors

	Monthly	Weekly	Daily
Published Rates	\$3,891.00	\$1,303.00	\$463.00
Adjustments			
Region (New Mexico: 134%)	\$1,319.05	\$441.72	\$156.96
User Defined			
Rental Rates (100%)		-	-
Total: Date Last Updated: Oct 01, 2018	\$5,210.05	\$1,744.72	\$619.96
,			

The equipment represented in this report has been exclusively prepared for MANDY LILLA (mlilla@fmi.com)

NNN. COUIR

All prices shown in US\$

ustom Cost Evaluat ~

February 21, 2019

Miscellaneous MSR-189H	r		1 obidaly 21, 2010
Size Class:			
Weight: 3,557 lbs.			Model Image
Configuration for MSR-189H	1		
Engine Horsepower Ripper Type	130 - 189 Parallelogram	Number of Shanks	3
Hourly Ownership Costs			
	Standard Value	User Adjusted Value	Variance
Depreciation	\$2.64/hr	\$2.50/hr	-5.3%
Cost of Facilities Capital (CFC)	\$0.38/hr	\$0.31/hr	-18.4%
Overhead	\$0.66/hr	\$0.52/hr	-21.2%
Overhaul Labor	\$1.10/hr	\$0.34/hr	-69.1%
Overhaul Parts	\$0.95/hr	\$0.75/hr	-21.1%
Total Hourly Ownership Cost:	\$5.73/hr	\$4.42/hr	-22.9%
User Defined Adjustments: Annu	Jai Use Hours (1,285hrs -> 1,629h	nrs) Sales Tax (5.1% -> 0%)	
Hourly Operating Costs			
	Standard Value	User Adjusted Value	Variance
Field Labor	\$1.83/hr	\$0.57/hr	-68.9%
Field Parts	\$1.18/hr	\$0.16/hr	-86.4%
Ground Engaging Component (GEC)	\$0.99/hr	\$0.78/hr	-21.2%
Tire	\$0.00/hr	-	-
Electrical/Fuel	\$0.00/hr	-	-
Lube	\$0.15/hr	-	-
Total Operating Ownership Cost: User Defined Adjustments: Annu	\$4.15/hr Jal Field Repair Parts Cost (\$1,26	\$1.66/hr 8.18 -> \$0.18) Mechanics Wage (\$58	-60% 84 -> \$23.09)
Total			
	Standard Value	User Adjusted Value	Variance
Hourly Ownership Costs	\$5.73/hr	\$4.42/hr	-22.9%
Hourly Operating Costs	\$4.15/hr	\$1.66/hr	-60%
Total Hourly Cost	\$9.88	\$6.08/hr	-38.5%
Non-active use rates			
	Standard Value	User Adjusted Value	Variance
Standby	\$3 68/hr	\$3.33/hr	-9 5%
Idle	\$5.73/hr	\$4.42/hr	-22.9%
Revised Date: 1st Half 2019			
T he second s			
The equipment represented in this	report has been exclusively prep	ared for MANDY LILLA (mlilla@fmi.co)	m)

All prices shown in US\$

Rental Rate Blue Book®

February 21, 2019

÷

Miscellaneous MSR-189H Crawler Tractor Multi-Shank Rippers			
Size Class: To 260 HP Weight: 3,557 Ibs.			Model Image
Configuration for MSR-189H			
Engine Horsepower Ripper Type	130 - 189 Parallelogram	Number of Shanks	3
Blue Book Rates			

** FHWA Rate is equal to the monthly ownership cost divided by 176 plus the hourly estimated operating cost.

	Ownership Costs				Estimated Operating Costs	FHWA Rate**	
	Monthly	Weekly	Daily	Hourly	Hourly	Hourly	
Published Rates	\$1,010.00	\$285.00	\$71.00	\$11.00	\$4.15	\$9.89	
Adjustments							
Region (Las Cruces, New Mexico: 89%)	(\$111.10)	(\$31.35)	(\$7.81)	(\$1.21)			
Model Year (2019: 100%)	-		0	-			
Adjusted Hourly Ownership Cost (100%)	-		-	-			
Hourly Operating Cost (100%)					-		
Total:	\$898.90	\$253.65	\$63.19	\$9.79	\$4.15	\$9.26	

Non-Active Use Rates

Hourly Standby Rate \$3.52 Idling Rate \$5.11

Rate Element Allocation

Element	Percentage	Value
Depreciation (ownership)	50%	\$505.00/mo
Overhaul (ownership)	31%	\$313.10/mo
CFC (ownership)	7%	\$70.70/mo
Indirect (ownership)	12%	\$121.20/mo

Fuel cost data is not available for these rates.

Revised Date: 1st Half 2019

These are the most accurate rates for the selected Revision Date(s). However, due to more frequent online updates, these rates may not match Rental Rate Blue Book Print. Visit the Cost Recovery Product Guide on our Help page for more information.

The equipment represented in this report has been exclusively prepared for MANDY LILLA (mlilla@fmi.com)

All prices shown in US\$

Custom Cost Evaluator

February 21, 2019

			···· j , ·
Finn B260 Trailer Mounted Mulchers			
Size Class: 51 HP & Over			
veight: ,880 lbs.			Model Image
Configuration for B260			
Power Mode	Diesel	Horsepower	115
Iourly Ownership Costs			
	Standard Value	User Adjusted Value	Variance
Depreciation	\$5.80/hr	\$5.45/hr	-6%
Cost of Facilities Capital (CFC)	\$0.88/hr	\$0.69/hr	-21.6%
Overhead	\$1.18/hr	\$0.90/hr	-23.7%
Overhaul Labor	\$3.36/hr	\$1.00/hr	-70.2%
Overhaul Parts	\$2.54/hr	\$1.92/hr	-24.4%
Fotal Hourly Ownership Cost: Jser Defined Adjustments: Annua	\$13.76/hr al Use Hours (1,050hrs -> 1,388hı	\$9.96/hr rs) Sales Tax (5.1% -> 0%)	-27.6%
	Standard Value	User Adjusted Value	Variance
Field Labor	\$4.20/hr	\$1.25/hr	-70.2%
Field Parts	\$1.47/hr	\$0.15/hr	-89.8%
Ground Engaging Component (GEC)	\$0.00/hr	-	-
lire line	\$0.60/hr	-	-
Electrical/Fuel	\$13.50/hr	\$4.13/hr	-69.4%
Lube	\$1.60/hr	-	-
Fotal Operating Ownership Cost: Jser Defined Adjustments: Annua	\$21.37/hr al Field Repair Parts Cost (\$1,342	\$7.73/hr .66 -> \$0.66) Diesel Cost (3.27 -> 1)	-63.8% Mechanics Wage (\$58.84 -> \$23.09)
Fotal			
	Standard Value	User Adjusted Value	Variance
Hourly Ownership Costs	\$13.76/hr	\$9.96/hr	-27.6%
lourly Operating Costs	\$21.37/hr	\$7.73/hr	-63.8%
otal Hourly Cost	\$35.13	\$17.69/hr	-49.6%
Non-active use rates			
	Standard Value	User Adjusted Value	Variance
Standby	\$7.86/hr	\$7.04/hr	-10.4%
dle	\$27.26/hr	\$14.09/hr	-48.3%
Revised Date: 1st Half 2019			
The equipment represented in this i	report has been exclusively prepa	ared for MANDY LILLA (mlilla@fmi.cor	n)

All prices shown in US\$

Rental Rate Blue Book®

February 21, 2019

Finn B260 Trailer Mounted Mulchers							
Size Class: 51 HP & Over Weight:					Madal Im	77.0	
4,880 lbs.					mouerm	uye	
Configuration for B260)						
Power Mode	Diesel		Horsepower		115		
Blue Book Rates							
** FHWA Rate is equal to th	e monthly ownership	o cost divided by 17	6 plus the hourly est	imated operating	g cost.		
		Ownership	Costs		Estimated Operating Costs	FHWA Rate**	
	Monthly	Weekly	Daily	Hourly	Hourly	Hourly	
Published Rates	\$2,425.00	\$680.00	\$170.00	\$26.00	\$21.35	\$35.13	
Adjustments							
Region (Las Cruces, New Mexico: 89.4%)	(\$257.05)	(\$72.08)	(\$18.02)	(\$2.76)			
Model Year (2019: 100%)	-	-		-			
Adjusted Hourly Ownership Cost (100%)	-		<u> </u>	-			
Hourly Operating Cost (100%)				A AA A 4	-	4 00 0 -	
Total:	\$2,167.95	\$607.92	\$151.98	\$23.24	\$21.35	\$33.67	
Non-Active Use Rates						Hourly	
Standby Rate						\$6.16	
Idling Rate						\$25.82	
Rate Element Allocatio	on						
Element			Percentage		Value	•	
Depreciation (ownership)			37%		\$897.25/mo		
Overhaul (ownership)			50%		\$1,212.50)/mo	
CFC (ownership)			6%		\$145.50/	mo	
Indirect (ownership)			7%		\$169.75/	mo	
Fuel (operating) @ 3.27		63%			\$13.50/hr		

Revised Date: 1st Half 2019

These are the most accurate rates for the selected Revision Date(s). However, due to more frequent online updates, these rates may not match Rental Rate Blue Book Print. Visit the Cost Recovery Product Guide on our Help page for more information.

The equipment represented in this report has been exclusively prepared for MANDY LILLA (mlilla@fmi.com)

RS Means Online Data

Accessed February 13, 2019

Revegetation

Line Number	Description	Unit	Material	Labor	Equipment	Total	Data Release	CCI Location
015433201500	Rent disc harrow attchment for tractor, Excl. Hourly Oper. Cost.	Month	\$-	\$-	\$ 616.33	\$ 616.33	Year 2019	NEW MEXICO / LAS CRUCES (880)

Labor Rates

NMDOL Type A Operator Group	Base rate	Fringe rate	Apprenticeship	Total 2019 Rate (\$/hr)
Equipment Operator IV	20.87	5.94	0.6	\$ 27.41
Equipment Operator V	20.98	5.94	0.6	\$ 27.52
Equipment Operator VI	21.16	5.94	0.6	\$ 27.70
Laborer I	16.86	5.63	0.6	\$ 23.09
Laborer II	17.61	5.63	0.6	\$ 23.84
Truck Driver III	16.15	7.52	0.60	\$ 24.27

Labor rates based on NM Department of Labor Type H (Heavy Engineering) 2019 labor rates. Rates include base hourly wage, fringe benefit, and apprenticeship contribution rates.

https://www.dws.state.nm.us/Portals/0/DM/LaborRelations/Prevailing_Wage_Poster_H_2019_final.pdf

Revegetation/Reclamation Rangeland Rehabilitation Landscaping / Fencing Hydroseeding **Environmental Consulting**

ROCKY MOUNTAIN RECLAMATION

Phone

(307) 745-5235 (307) 745-5230

ron@reveg.us www.reveg.us

P.O. Box 1695 Laramie, WY 82073

FREEPORT MCMORAN – NEW MEXICO MINING OPERATIONS

PRICE ESTIMATES FOR REVEGETATION SERVICES FOR BUDGETING ESTIMATES

Table 1 – Freeport McMoRan, New Mexico Mining Operations – Price Estimates for **Revegetation Services for Budgeting Estimates, prepared April, 2018.**

		ESTIMATED		COST/UNIT	
	REVEGETATION OPERATION	QUANTITY	UNITS	(\$)	TOTAL COST
I.	OPERATIONS:				
1	SCARIFYING	500	Acres	\$30.00	\$15,000.00
2	DISCING	500	Acres	\$20.00	\$10,000.00
3	DRILL SEEDING (special Rangeland Drill)	500	Acres	\$80.00	\$40,000.00
4	MULCHING	500	Acres	\$148.00	\$74,000.00
5	CRIMPING	500	Acres	\$55.00	\$27,500.00
6	DAILY PER DIEM, ETC.	50	Days	\$385.00	\$19,250.00
7	MOBILIZATION	1	Each	\$13,500.00	\$13,500.00
	Subtotal	1			\$199,250.00
II.	MATERIALS:				
1	SEED at 8.9 PLS/acre	500	Acres	\$210.00	\$105,000.00
2	HAY MULCH - nox. weed free, native	1000	Tons	\$245.00	\$245,000.00
	Subtotal	1			\$350,000.00
	TOTAL ESTIMATED REVEGETATION COS	T BEFORE TA	X	-	\$549,250.00
	Add New Mexico Gross Receipts Tax	5.9375	%	-	\$32,611.72
	ESTIMATED REVEGETATION COST PER A				
	TOTAL ESTIMATED REVEGETATION COS	Т			\$581,861.72

Estimate prepared by Ron Schreibeis, Rocky Mountain Reclamation, for use for Budgeting Estimates.

Task: O&M Costs

Client: Freeport NM Page 1 of 2 Operations

_Computed By: Fred Charles Date: 4/29/2019

_Checked By: Taryn Tigges __Date: 4/30/2019

Calculation Documentation

Problem Statement:

Freeport-McMoRan (FMI) utilizes cost information for operations and maintenance (O&M) as part of earthwork closure cost estimation associated with the Little Rock Mine Closure/Closeout Plan (CCP). The O&M costs need to account for vegetation maintenance costs for a 12-year period after completion of initial revegetation activities in each area, along with ongoing erosion control, road maintenance, and groundwater monitoring for a 100-year period. Tailing cover maintenance for areas reclaimed in the past will take place for the first 7 years of closure reclamation.

This calculation set presents a summary of the approach and results for estimating O&M costs. Detailed information is presented in the earthwork reclamation cost estimate (RCE) spreadsheet file.

This calculation set is intended to serve as a guide/example even if the actual cost data used in these calculations change due to updates or application to a different Freeport NM Operations mine.

Objective:

 Develop the estimated O&M costs for vegetation maintenance for a 12-year period after completion of initial revegetation activities in each area, along with ongoing erosion control, road maintenance, and groundwater monitoring activities for a 100-year period. Also, develop tailing cover maintenance costs for previously reclaimed areas for the first 7 years of closure reclamation. The O&M costs are used as part of the earthwork RCE for FMI's mining operations in Grant County, NM.

Approach:

- 1. The data, assumptions, calculations, and results for the O&M cost estimate are presented within the Tyrone earthwork RCE spreadsheet file. Also, a summary of results is presented in the spreadsheet file.
- 2. The approach for estimating vegetation maintenance O&M costs is as follows:
 - For each facility (stockpile, tailing pond, reservoirs, etc), the total area is listed, along with approximate year of reclamation start, vegetation maintenance start, and vegetation maintenance complete. A 2% loss per year (i.e., 2% of vegetation fails each year) for 12 years is assumed to estimate the acreage requiring vegetation maintenance for each year.
 - Revegetation unit costs (equipment and fuel) are applied to the loss of acreage for each year to calculate the vegetation maintenance cost for each facility.

For example use only. Values may not match the current spreadsheet.

	Job No: 200540a
TELEST OF SOLUTIONS OF NGOR DORATED	Task: O&M Costs

Client: Freeport NM Page 2 of 2 Operations Computed By: Fred Charles Date: 4/29/2019

Checked By: Taryn Tigges Date: 4/30/2019

- Proucing	continued):											
3.	The approach	n for estimatin	g erosion control, road	d mai	ntenance, taili	ngs cover						
	maintenance	, and groundw	vater monitoring ("Oth	er")	D&M costs is a	s follows:						
	For erc	sion control a	nd road maintenance									
	•	Determine ba	ase costs (\$/day) for eq	quipn	nent and fuel b	ase. Also, estimate						
		the number of	of days/yr for erosion o	contro	ol and road ma	intenance for three						
		periods: Year	s 0-19, 20-39, and 40-9	99.								
	•	Calculate the	annual equipment an	d fue	costs, based	on days/yr, for the						
		same three p	eriods.									
	For tail	ling cover main	ntenance									
	•	Use erosion o	control equipment with	h red	uced truck req	uirement and,						
		therefore, rea	duced base cost. Assur	me 10) days/yr for Ye	ears 0-6, after which						
		tailing cover i	maintenance is not rec	quire	J.							
	For grc	oundwater mo	nitoring									
	•	Determine ba	ase costs (\$/day) for eq	auipn	nent and aque	ous chemistry (lab						
		analytical), and days/yr for groundwater monitoring for three periods:										
	Years 0-19, 20-39, and 40-99.											
	 Calculate the annual equipment and annual aqueous chemistry costs, 											
	based on days/yr, for the same three periods.											
	For these "Other" O&M activities											
	• While reclamation is ongoing, adjust the O&M costs accordingly based on											
	the proportion of reclamation completed as of each year. The full annual											
	cost applies when reclamation is complete											
	For years after reclamation is complete, assign the O&M costs for each											
		vear based or	n the annual costs calc	nulato	d for Vears 0-1	9 20-39 and 40-99						
esults:		year based of		unate		.5, 20 55, and 40 55						
1.	The vegetation maintenance and "Other" O&M costs are summed for all years, as											
	shown in the	summary tab	le below (some of the	final	results may va	ry from what is						
	shown). Thes	, e results are u	used in the overall eart	hwor	k RCE.							
2.	The indirect of	costs are set a	t 17.5% of direct costs	. base	ed on an agree	ment between FMI						
	and the agen	cies in January	v 2019. Indirect costs i	nclud	e but are not l	imited to						
	mobilization	and demobiliz	ation, contingencies, e	ngin	eering redesig	n fees, contractor						
	profit and ov	erhead, projec	t management, admir	nistra	ive expenses.	etc.						
	promeana or	sincad, projec	in management, aanni	notra	ine expenses,							
	ſ	RAFT Operation	is and Maintenance Summar	rv								
					Current Value							
		IRECT COSTS	Facility and Structure Removal		\$0							
			Earthmoving		\$0							
			Other		\$1,320,000							
			Subtotal, Direct Costs		\$7,531,713							
		NDIRECT COSTS ¹	Subtotal, Indirect Costs	17.5%	\$1,318,050							
				-								
					40.040.700							

Stormwater Conveyance Channels

Client: FMI

Page <u>1</u> of <u>13</u>

Task: NM Operations Stormwate Computed By: T. Tigges Date: 1/21/21 Management

Checked By: W. Niccoli Date: 1/12/21

Calculation Documentation

Problem Statement:

Freeport-McMoRan (FMI) utilizes a spreadsheet developed by the New Mexico Mining and Minerals Division (MMD) to estimate the earthwork's closure costs associated with the Closure/Closeout Plans (CCPs) for various New Mexico operations. Part of the CCP involves design and unit cost of channels to direct stormwater from stockpiles. Channel sizes are unknown and needed for estimating closure costs and complying with regulations.

Objectives:

- 1. Estimate the runoff potential for each contributing watershed to the reclamation channels under the 100-year, 24-hour storm event (i.e., design storm)
- 2. Verify that the channels created by typical cross sections can convey the design storm
- 3. Recommend areas of channel protection (riprap) and size based on a conceptual design

Approach:

- 1. Utilize NOAA Frequency precipitation website to determine the most current 100-yr, 24-hr storm event
- 2. Use the SCS TR-55 method to estimate total runoff from each basin and the peak flow to each conveyance channel or runoff scenario (stockpile top with no channel, top channels, bench channels, and downdrains)
- 3. Determine the "worst case" scenario/channels with the highest peak flows to determine the standard channel size needed for the entire site
- 4. Estimate the peak velocity and if > 5 fps, then size riprap using the US Army Corps (USACE) technique

Data and Assumptions:

- 1. SCS Curve number of 80 and Manning's n=0.13 for disturbed mine areas (utilized throughout Freeport's mines as agreed to in various agency documents)
- 2. Assume peak flows from each drainage basin occur simultaneously
- 3. Manning's n for Articulate Concrete Block (ACB) is 0.025 (Contech)
- 4. Manning's n for riprap is 0.033 (Chow)
- 5. Analyze the basins that will produce the largest peak flow for riprap and ACB requirement.
- 6. NOAA Frequency precipitation 100-yr, 24-hr storm event depth is 3.74 inches.

	540A	Client: <u>FMI</u>	Page <u>3</u> of <u>13</u>
Task: NM Op Manag	eratíons : ement	StormwateComputed By:T. Tigges	_ Date: 1/21/21
		Checked By: W. Níccolí	_Date: <u>1/12/21</u>
Calculation Data and Assumptions: 11. Calculate total and peak runoff using S shallow concentrated flow, where applicat Equations for sheet flow:	n Doc CS TR-5! ble. Use	5. Add together the travel times a minimum Tc of 0.1 hr.	for sheet flow and
SCS runoff curve number meth The SCS Runoff Curve Number (CN) method is scribed in detail in NEH-4 (SCS 1985). The SCS equation is $Q = \frac{(P - I_a)^2}{(P - I_a) + S}$ where $Q = runoff (in)$ $P = rainfall (in)$ $S = potential maximum retention after runoff begins (in) and I_a = initial abstraction (in) Initial abstraction (I_a) is all losses before runoff$	hod de- runoff eq. 2-1] ff	For sheet flow of less than 300 feature kinematic solution (Overtop and compute T_t : $T_t = \frac{0.007(nL)^{0.8}}{(P_2)^{0.5} s^{0.4}}$ where: $T_t = travel time (hr),$ $n = Manning's roughness coelections of the second seco$	et, use Manning's Meadows 1976) to [eq. 3-3] fficient (table 3-1)
begins. It includes water retained in surface dep sions, water intercepted by vegetation, evaporal and infiltration. I _a is highly variable but generall correlated with soil and cover parameters. Thro studies of many small agricultural watersheds, I found to be approximated by the following emp equation:	res- ion, y is ugh _a was irical		
I _a = 0.2S [6	eq. 2-2]		
By removing I_a as an independent parameter, th approximation allows use of a combination of S to produce a unique runoff amount. Substituting equation 2-2 into equation 2-1 gives:	is and P g		
$Q = \frac{(P - 0.2S)^2}{(P + 0.8S)}$ [6]	eq. 2-3]		
S is related to the soil and cover conditions of the watershed through the CN. CN has a range of 0 and S is related to CN by:	ne to 100,		
$S = \frac{1000}{CN} - 10$ [6	eq. 2-4]		
Figure 2-1 and table 2-1 solve equations 2-3 and for a range of CN's and rainfall.	2-4		

TE		Job No: 2	200540A Client: <u>FMI</u> Page <u>7</u> of <u>13</u>
SOLUTI		Task: NM	Operations StormwateComputed By:T. Tigges Date: 1/21/21 nagement
			Checked By: <u>W. Niccoli</u> Date: 1/12/21
		Calculat	ion Documentation
Coloulat	ions and Day	Culturu	Ion Documentation
		suits: athad is shown as ar	a avample to determine neall discharge from the ten of a
1.	stocknilo to a	1% top channel (co	o: VVVVMMDD TP EF Channel Sizing v(sv):
	stockpile to a	1 1% top channel (se	
	A	в С	
	1		Frank CAD the law east (studiet)
	2 1%	6 Top Channel	From CAD, the longest (straight line) flow path to the channel
	3		time) flow pach to the channet
	4 L =	1,000 ft	=B4/43560
	5		(based on one unit length of channel)
	6 A =	0.0230 ac	=B6/640
	7	3.59E-05 mi ²	
	8		TIME OF TRAVEL (MANNING'S FORMULA) FOR SHEET FLOW, TR55:
	9 n=	0.13	See assumptions
	10 L(<300) =	= 300 ft 🚤	Based on topography and <300 ft
	11 P2=	= 1.83 in -	=B41
	12 5	0.01	From CAD
	13 14 Tt-	- 26.72 min	
	14 11-	- 30.73 mm -	=0.007*((B9*B10))^0.8/(B11^0.5*B12^0.4)*60
	15		(from TR-55)
	171 =	700 ft _	TIME OF TRAVEL FOR SHALLOW CONCENTRATED FLOW, TR55:
	18V=	1.58 ft/s	=B4-B10
	19		=10^(0.5*LOG10(B12)+1.2) (from TR-55)
	20 Tt =	7.36 min	
	21		=B17/B18/60
	22 Tc =	44.09 min 🚤	-B20+B14
	23	0.73484 hr	-620+614
	35		
	36 P =	3.74 in 🔫	
	37 la =	0.50 in	
	38 CN =	80	
	39		=1000/038-10
	405=	2.50 in	
	410 =		=(D30-B37)^2/(B30-B37+B40)
	42	0.0003499 aC-IL 🔫	=B41/12*B6
	43	ลบ-แ	GRAPHICAL PEAK DISCHARGE METHOD:
	44 45 la/P =	0.13	=B37/B36
	46	0.10	From TR-55 Chart
	47Qu =	417 csm/in	_P7
	48 Am =	3.59E-05 mi ²	=D/
	49Q =	1.83 in	=B41
	50 Fp =	1.00	
	51		
	52 Qp =	2.73E-02 cfs	=B47*B48*B49*B50
11111			

TEL	FC	Job N	0: 200540A	Client:	FMI	_ Page <u>8</u> _ of <u>13</u> _
SOLUTION	ES s · I N C O R I	Task:	NM Operations Sto Management	rmwatecompute	ed By: <u>T. Tígges</u>	Date: 1/21/21
				Checked	By: <u>W. Níccolí</u>	Date:/12/21
		Calcul	ation Docu	mentatio	n	
Calculation	is and Resu	ults (con'd)				
I. (cor cha	na) Multip nnel. Multi	iple channel len	by the channel le eths are shown ir	ngth to comp 1 column A (st	ute total peak i arting in row 5	Tow from the top 7):
						· · · · · · · · · · · · · · · · · · ·
1	A	B (٨	P	
2	1%	Top Channel		A	D	
3			5/	Ditch Length		
4	L =	<mark>1,000</mark> ft	58	100	6.55	
5			59	200	13.10	
6	A =	0.0230 ac	60	400	26.20	
7		3.59E-05 mi ²	61	800	52.40	
8			62	1000	65.51	
9	n =	0.13	63	1500	98.26	
10) L(<300) =	300 ft	64	1600	104.81	
11	P2 =	1.83 in	65	3200	209.62	
12	S =	0.01				
13	T+	26.72 min				
14	I II -	30.73 1111				
10						
17	71 =	700 ft				
17	v=	1.58 ft/s				
10						
20	Tt =	7.36 min				
21						
22	Tc =	44.09 min				
23	5	0.73484 hr				
35	5					
36) P =	3.74 in				
37		0.50 in				
38	CN =	80				
39		2.50 in				
4	0-	2.30 III				
41		0.003499 ac-ft				
42		ac-ft				
4.	1					
45	la/P =	0.13				
46	Ś					
47	Qu =	417 csm/ir	1			
48	Am =	3.59E-05 mi ²				
49	Q =	1.83 in				
50)Fp =	1.00				
51						
52	Qp =	2.73E-02 cfs				

T C 1		Job No: 200540A		Client: <u>FMI</u>	Page <u>9</u> of <u>13_</u>
IEL		Task: NM Operation	ns Stormw	ateromouted By.T. Tiga	25 Date: 1/21/21
SOLUTIONS	• IN CORPORATED	Management	:		
				Checked By: <u>.</u> W. Nícod	olíDate: _1/12/21
	Ca	Iculation D	ocume	entation	
Calculations	and Results (con'd)			
2. The	TR-55 method is sho	own as an exampl	e to dete	rmine peak discharge	from the top of a
stock	kpile to a bench cha	nnel (see: YYYYM	IMDD_TR	-55_Channel_Sizing.x	ilsx):
A	В	C	Use the	e same equations s	hown on page 7 for
1			a top c	hannel.	
2 3:1 Outs					
3 101AL V	VATERSHED LENGT	1 200 ft	Multip	v Op (call RE2) by h	anch channal
5 TOTAL V	VATERSHED AREA		length	to compute total +	peak flow to each
6 A =	0.0	046 ac	bench	channel. Multiple c	hannel lengths are
7	7.17401E	-06 mi ²	shown	in column A:	
8 TIME OF	TRAVEL (MANNING	S FORMULA) FC			
9	n = (0.13			
10 L(<300)) =	200 ft		A	B
11 P	2 =	.83 in	00		-
12	5 = 0.333333	333	09	Ditch Length	Flow (cts)
14 1	T = 6	53 min	/0	1260	16.08
15			71	1010	12.89
16 TIME OF	TRAVEL FOR SHAL	LOW CONCENT	72	1140	14.55
17L=		0 ft	73	340	4.34
18v=	ę	0.15 ft/s	74	215	2 74
19		00 min	75	280	2.57
20 It =		0.00 min	70	200	5.57
22 Tc =		53 min	/0	405	5.17
23	0.108851	936 hr	11	405	5.17
35 SCS CU	RVE NUMBER METH	DD	78	470	6.00
36 P =		3.74 in	79	400	5.11
37 la =	(0.50 in			
38 CN =		80			
39		EQ in	The lor	igest bench channe	el has the
405 -		83 in	contrib	uting area and lar	gest peak flow,
470 -	0 000699	744 ac-ft	which	can be used for cat	pacity and erosion
43 GRAPHI	CAL PEAK DISCHAR	GE METHOD	calcula	CIONS.	
44					
45 la/P =	(0.13			
46		070 /			
4/Qu =	7 47	973 csm/in			
48 Am =	7.1/E	-00 mi ⁻ 83 in			
50 Fp =		.00			
51					
52 Qp =	(0.01 cfs			

Client: FMI

Page <u>10</u> of <u>13</u>

Task: NM Operations Stormwate Computed By: T. Tigges Date: 1/21/21 Management

Checked By: W. Niccoli Date: 1/12/21

Calculation Documentation

Calculations and Results (Con'd)

3. Downdrains- where conveying to a downdrain, combine flow from top of stockpile with bench channel flows

Ditch Length	Flow (cfs)	CUMULATIVE TOTAL TO DOWNDRAIN (CFS)	Combined with top
1260	16.08	36.77	
1010	12.89	49.66	=36.77+12.89
1140	14.55	64.21	etc.
340	4.34	68.55	
215	2.74	71.30	
280	3.57	74.87	
405	5.17	80.04	
405	5.17	85.21	
470	6.00	9 <u>1.2</u> 1	Total flow to
400	5.11	(96.31)	downdrain

4. For each channel type (downdrain shown as an example), calculate channel depths and velocities based upon Manning's Formula and verify that typical channel dimensions are adequate for calculated flow:

4	A	В	С	D	E	F	G	Н	I	J	K	L
1		TDADE	701041	DITCH								
23	NAME	SLOPE	LS	RS	DEPTH	BOTTOM	ANNING	ARFA	WETTED	HYD RAD	MANNING	VELOCITY
1			SLOPE	SLOPE	FT	WIDTH	COEFF	FT ²	PER	FT	FLOW	F/S
5			L:H	L:H		FT			FT		CFS	
ŝ						AC	B Down Dr	ain				
7	A	0.28571	3	3	0.10	20	0.025	2.03	20.63	0.10	13.78	6.79
3	A	0.28571	3	3	0.20	20	0.025	4.12	21.26	0.19	43.95	10.67
	A	0.28571	3	3	0.30	20	0.025	6.27	21.90	0.29	86.78	13.84
		Slope along ditch	Outslope	Cross-slope	Depth of flow, iterate this value	(see page 2)	See assumptions	=(F9+F9+E9*C9+E9*D9)*E	=F9+SQRT(E9^2+(E9*C9) SQRT(E9^2+(E9*D9)^2)	e1/6H=	=1.49/G9*H9*(J9)^(2/3)*B	=K9/H9

Client: FMI

Page <u>12</u> of <u>13</u>

12

Task: NM Operations Stormwate Computed By: T. Tigges Date: 1/21/21 Management

Checked By: W. Niccoli Date: 1/12/21

Discussion and Conclusions:

- 1. This calculation set is conservative in that it assumes the peak flows occur simultaneously, which is not the case. Larger drainage areas will lag behind the smaller areas.
- 2. The calculation set met its objectives by estimating, runoff flow rates, verifying that the channels can carry the flow safely, and showing that typical erosion protection is adequate.

These calculations are an application of the Moment Stability Analysis technique presented in Julien (2010) ar as illustrated in the NCMA Manual (2010), listed in the References.

The factor of safety method is used in the selection of block sizes for ACB's for revetments or bed armor.

The following assumes that hydraulic testing has been performed for the block system to quantify a

critical shear stress; the use of Manning's equation conservatively assumes normal depth and critical velocity.

References

1. Julien, Pierre Y. (2010) "Erosion and Sedimentation", 2nd Edition, Cambridge University Press

2. National Concrete Masonry Association (2010), "Design Manual for Articulating Concrete Block (ACB) Revetment Systems", NCMA Publication TR220A.

3. USDOT Federal Highway Administration Hydraulic Engineering Circular No. 15, Third Edition (2005) "Design of Roadside Channels with Flexible Linings", National Highway Institute.

4. Cox, A.L. (2010), "Moment Stability Analysis Method for Determining Safety Factors for Articulated Concrete Blocks", Ph.D. Dissertation, Colorado State University

5. ASTM D 7276 & D7277 Testing and Analysis Compliant

Detailed Calculations REFERENCE Flow Area, $A = A_L + A_B + A_R$ $A_1 = \frac{1}{2} * d^2 * Z_1 =$ ft² 0.37 ft² $A_B = B * d =$ 9.87 $A_R = \frac{1}{2} * d^2 * Z_R =$ ft² 0.37 ft² 10.60 A = Wetted Perimeter, $P = P_L + P_B + P_R$ $P_L = d * (Z_L^2 + 1)^{0.5} =$ 1.56 ft $P_B = B =$ ft 20 $P_R = d * (Z_R^2 + 1)^{0.5} =$ 1.56 ft P = 23.12 ft Volumetric Flow Rate, Q $Q = 1.486 / n * A * R_{H}^{2/3} * S^{1/2} =$ 200.00 (Ref. 3 Eqn. 2.1) cfs **Compute Factor of Safety Parameters** Submerged Weight, W_s $W_{s} = W * ((S_{c} - 1) / S_{c}) =$ 30.22 lb (Ref. 2 Eqn 4.13a) $\tau_o = \gamma * d * S_o =$ Applied Shear Stress, To 8.78 (Ref. 3 Eqn. 2.4) psf **Bend Coefficient Calculation** X = r/B = (Constrained to between 1.984 and 10) 1.984 --Calculated $K_b = 2.38-0.206(X)+0.0073(X)^2 =$ 2.00 --(Ref. 3 Eqn. 3.7) Constrained K_b : 1.05 $\leq K_b \leq 2 \rightarrow$ 1.00 (If no bend radius is present, $K_b = 1$) $\tau_{0} = K_{h} \gamma y \sin(\tan^{-1} S_{0}) =$ 8.44 lbs/ft² (Design Shear Stress) (Ref. 3 Eqn 3.1 & 3.6) Calculate Cox Parameters $\beta = \cos^{-1}((b/2)/\vartheta_8) =$ 48.31 0.747 $\sin\beta =$ $\cos \beta =$ 0.665 $W_{SX} = W_{S}^* \sin \theta_0$ 8.28 lb (Ref. 4. Eqn. 7.1) $\theta_2 = \tan^{-1}(\tan\theta_1 \cos\theta_0)$ 17.774 o (Ref. 4. Eqn. 7.3) $W_{SY} = W_S^* \cos \theta_0^* \cos \theta_2$ 27.68 lb (Ref. 4. Eqn. 7.2) $W_{SZ} = W_S \cos\theta_0 \sin\theta_2$ 8.87 lb (Ref. 4. Eqn. 7.4) Applied $F_D = \tau_0^* A_B =$ 9.46 lbs (Ref. 4. Eqn. 7.10) Applied $F_L = 0.5 C_{BL}^* \rho^* A_B^* V^2 =$ 3.22 lbs (Ref. 4. Eqn. 7.11) $F_L = F_D = 0.5 \Delta Z b \rho V_{des}^2 =$ 0.00 lbs (Ref. 4. Eqn. 7.12) $SF_{M} = (9_{7}*W_{SY})/[(9_{1}*(W_{SX}*\sin\beta + W_{SZ}*\cos\beta)) + (9_{3}*(F_{D} + F_{D}')*\sin\beta) + (9_{8}*(F_{L} + F_{L}'))] = 0$ 3.23 (Ref. 4. Eqn. 7.18) $SF_{P} = (9_{2}*W_{SY})/[(9_{1}*W_{SX}) + (9_{3}*(F_{D} + F_{D}')) + (9_{4}*(F_{L} + F_{L}'))] =$ 2.60 (Ref. 4. Eqn. 7.20) $SF_{O} = (9_{5} W_{SY})/[(9_{1} W_{SZ}) + (9_{6} (F_{L} + F_{L}))] =$ (Ref. 4. Eqn. 7.22) 4 66 $SF_{BED} = (9_2 * W_S * \cos\theta_0) / [(9_1 * (W_S * \sin\theta_0)) + (9_3 * (F_D + F_D')) + (9_4 * (F_L + F_L'))] =$ 2.73 (Ref. 4. Eqn. 7.28)

	Parameters for Factor of Safety Calculations													
Block	Block	a	a.	a.	a.	a_	a	a	a.	τ_{c}	Width	Weight	1 :64	
Class	Area	υ1	U ₂	53	54	05	υ ₆	U 7	U8	0 °	The second	Coeff. C		
	(SF)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(psf)	(ft)	(lbs)		
30-S	0.68	0.198	0.542	0.396	0.542	0.483	0.483	0.726	0.726	5.180	0.967	32.89	0.11045	
40	1.23	0.198	0.725	0.396	0.725	0.646	0.646	0.971	0.971	11.200	1.292	59.02	0.04563	
40-L	1.93	0.198	0.725	0.396	0.725	0.983	0.983	1.222	1.222	19.460	1.967	97.18	0.02455	
40-T	1.12	0.198	0.725	0.396	0.725	0.646	0.646	0.971	0.971	25.022	1.292	58.12	0.00834	
45	1.49	0.198	0.725	0.396	0.725	0.646	0.646	0.971	0.971	13.530	1.292	71.25	0.04563	
45-L	2.31	0.198	0.725	0.396	0.725	0.983	0.983	1.222	1.222	21.860	1.967	109.15	0.02455	
45-S	0.83	0.198	0.542	0.396	0.542	0.483	0.483	0.726	0.726	6.170	0.967	39.20	0.11045	
50	1.23	0.250	0.725	0.500	0.725	0.646	0.646	0.971	0.971	13.610	1.292	76.29	0.04563	
50-L	1.93	0.250	0.725	0.500	0.725	0.983	0.983	1.222	1.222	22.050	1.967	116.02	0.02455	
50-S	0.68	0.250	0.542	0.500	0.542	0.483	0.483	0.726	0.726	6.130	0.967	42.03	0.11045	
50-T	1.12	0.250	0.725	0.500	0.725	0.646	0.646	0.971	0.971	30.500	1.292	75.39	0.00834	
55	1.49	0.250	0.725	0.500	0.725	0.646	0.646	0.971	0.971	16.290	1.292	91.37	0.04563	
55-L	2.31	0.250	0.725	0.500	0.725	0.983	0.983	1.222	1.222	26.280	1.967	138.29	0.02455	
55-S	0.83	0.250	0.542	0.500	0.542	0.483	0.483	0.726	0.726	7.330	0.967	50.25	0.11045	
60	1.23	0.313	0.725	0.625	0.725	0.646	0.646	0.971	0.971	15.490	1.292	93.17	0.04563	
60-T	1.12	0.313	0.725	0.625	0.725	0.646	0.646	0.971	0.971	35.200	1.292	93.42	0.00834	
70	1.23	0.354	0.725	0.708	0.725	0.646	0.646	0.971	0.971	17.730	1.292	113.90	0.04563	
70-L	1.93	0.354	0.725	0.708	0.725	0.983	0.983	1.222	1.222	29.520	1.967	174.46	0.02455	
70-T	1.12	0.354	0.725	0.708	0.725	0.646	0.646	0.971	0.971	38.500	1.292	108.96	0.00834	
75	1.49	0.313	0.725	0.625	0.725	0.646	0.646	0.971	0.971	18.620	1.292	112.02	0.04563	
85	1.49	0.354	0.725	0.708	0.725	0.646	0.646	0.971	0.971	21.100	1.292	135.60	0.04563	
85-L	2.31	0.354	0.725	0.708	0.725	0.983	0.983	1.222	1.222	35.060	1.967	207.23	0.02455	

	Δ_	a	Q.	Q	Ø	9	9	a	a	a	9		<u>θ</u>	99	τ_{c}	Width	Woight	Lift
	ΛB	\mathbf{v}_1	\mathbf{v}_2	U 3	v ₄	5	ა ₆	ა 7	ა 8	0 °	wiath	weight	Coeff. C_L					
40-T	1.121	0.198	0.725	0.396	0.725	0.646	0.646	0.971	0.971	25.022	1.292	58.120	0.00834					

TELESTO	ask: NM Operations Stor	mwateromouted By: T. Tigges	Date: 1/13/21
SOLUTION SOIN CORPORATED	Management	compated by:	
		Checked By: W. Níccolí	Date: <u>·1/12/21</u>
Calc	culation Docur	nentation	
Problem Statement:			
Freeport-McMoRan (FMI) utilize	s a spreadsheet devel	oped by the New Mexico N	1ining and Minerals
Division (MMD) to estimate the	arthwork's closure co	osts associated with the Clo	sure/Closeout
Plans (CCPs) for the Little Rock N	line. Part of the CCP i	nvolves design and unit cos	t of channels to
costs and complying with regulat	ions.	TIKITOWIT and Theeded TOP es	timating closure
See the Channel Size Verification	calculation documen	tation for New Mexico ope	rations for detailed
Little Rock Mine.			ins specific to the
Objectives:			
1. Estimate the runoff potent	ial for each contribut	ing watershed to the reclan	nation channels
under the 100-year, 24-ho	ır storm event (i.e., d	esign storm)	
2. Verify that the channels cr	eated by typical cross	sections can convey the de	esign storm
5. Recommend areas of chan	ner protection (nprap	y and size based on a conce	eptual design
Approach:			

Client: FMI

Page <u>1</u> of <u>13</u>

- 1. Use the SCS TR-55 method to estimate total runoff from each basin and the peak flow to each conveyance channel or runoff scenario (stockpile top with no channel, top channels, bench channels, and downdrains)
- 2. Determine the "worst case" scenario/channels with the highest peak flows to determine the standard channel size needed for the entire site
- 3. Estimate the peak velocity and if > 5 fps, then size riprap using the US Army Corps technique

Data and Assumptions:

1. See the Channel Size Verification calculation documentation for New Mexico operations

Client: FMI

Page <u>4</u> of <u>13</u>

Task: NM Operations Stormwate Computed By: T. Tigges Date: 1/13/21 Management

Checked By: W. Niccoli Date: 1/12/21

Discussion and Conclusions:

- 1. The bench channels at West In-Pit Waste were found to have velocities less than 5 fps and the typical bench channel capacity was adequate, as well. For future projects, verify riprap size for velocities above 5 ft/s (silt erosive velocity).
- 2. The downdrain at West In-Pit Waste also met the requirements needed for use of 40T ACB system and typical channel capacity.
- 3. This calculation set is conservative in that it assumes the peak flows occur simultaneously, which is not the case. Larger drainage areas will lag behind the smaller areas.
- 4. The calculation set met its objectives by estimating, runoff flow rates, verifying that the channels can carry the flow safely, and showing that typical erosion protection is adequate.

