Prepared for:

UNITED NUCLEAR CORPORATION

P.O. Box 3077 Gallup, New Mexico 87305

ST. ANTHONY MINE SITE CLOSEOUT PLAN

January 2006

Prepared by:

MWH P.O. Box 774018 1475 Pine Grove Road, Ste. 109 Steamboat Springs, Colorado 80487 (970) 879-6260

TABLE OF CONTENTS

<u>Sectio</u>	<u>n No.</u>	<u>Page No.</u>
1.0	INTRODUCTION	1
1.1	PROJECT DESCRIPTION AND BACKGROUND	
1.2	SITE SOILS	
1.3	SITE GEOLOGY	1
1.4	SURFACE WATER, GROUNDWATER, AND PIT WATER	2
1.	4.1 Surface Water	2
1.	4.2 Groundwater	
1.	<i>4.3 Pit Water</i>	
1.5	POST-MINING LAND USE	
1.6	CULTURAL RESOURCES	4
2.0	CLOSEOUT PLAN COMPONENTS	5
2.1	SURFACE WATER AND EROSION CONTROL	5
2.2	REGRADING	5
2.	2.1 Piles 1 and 2	
2.	2.2 Pile 3	
2.	2.3 Pile 4	
2.	2.4 Pile 5 and Adjacent Topsoil Pile	
2.	2.5 Pile 6	7
2.	2.6 Pile 7	7
2.	2.7 Crusher/Stockpile Area	
2.	2.8 West Disturbance Area	
2.	2.9 Mine Shaft	
2.3	PITS 1 AND 2	
2.4	CONCRETE SLABS	
2.5	BORROW AREAS	
2.6	ROAD RECLAMATION	
2.7	REVEGETATION	
2.8	REGULATORY COMPLIANCE	
2.9	SITE ACCESS CONTROL	10
3.0	SCHEDULE	
4.0	REFERENCES	

LIST OF TABLES

<u>Table No.</u>	Description	<u>Page No.</u>
2.1	Regrade Volumes	5
2.2	Cover Material Volume Requirements	9
2.3	Cover Material Stockpile Volumes	10

LIST OF FIGURES

<u>Figure</u> **Description**

- General Location Map 1
- 2 Site Layout
- Existing Conditions Regrade Plan 3
- 4
- Mine Shaft Area 5

LIST OF APPENDICES

Appendix **Description**

- Phase I Abatement Plan Analytical Data A
- Slope Stability Analysis В

1.0 INTRODUCTION

1.1 PROJECT DESCRIPTION AND BACKGROUND

This Closeout Plan (Plan) for the former United Nuclear Corporation (UNC) St. Anthony Mine (the Site) has been prepared in compliance with the requirements of Section 5 of the New Mexico Mining Act. The Plan is prepared with available site data and topographic mapping in conjunction with the Mining Act Reclamation Program Closeout Plan Guidelines compiled by the State of New Mexico Energy, Minerals and Natural Resources Department. The Plan intends to address environmental concerns and reclaim the Site to a post-mining land use of livestock grazing. The Plan's principal components include regrading and revegetating non-economic material storage areas.

The St. Anthony Mine was an open pit and underground shaft uranium mine located on the Cebolleta Land Grant approximately 40 miles west of Albuquerque, New Mexico located in Cibola County approximately 4.6 miles southeast of Seboyeta, New Mexico. The mine site is located in a very remote, sparsely populated area with difficult access. A location map is included as Figure 1, *General Location Map.* UNC operated the St. Anthony Mine from 1975 to 1981, pursuant to a mineral lease with the Cebolleta Land Grant, the current surface and mineral rights owner. The original lease covered approximately 2,560 acres. This lease was obtained on February 10, 1964 and was surrendered by a Release of Mineral Lease dated October 24, 1988. UNC has access to the site through access agreements with the Cebolleta Land Grant and an adjacent landowner.

The site includes underground workings consisting of one shaft, and a number of vent shafts that are sealed at the surface, two open pits (one containing a pond), seven large piles of non-economical mine materials with some revegetation, numerous smaller piles of non-economical mine materials, and three topsoil piles. No perennial streams occur within the St. Anthony site, but an arroyo (Meyer Gulch) passes through the site. The site layout of the St. Anthony Mine is included as Figure 2, *Site Layout*. The two open pits at the mine site are located in Sections 19 and 30, Township 11 North, Range 4 West, and the entrance to the underground mine is located in Section 24, Township 11 North, Range 5 West. The area disturbed during mining encompasses approximately 430 acres and includes roads and other disturbed areas along with the open pits and non-economical mine materials piles. Existing conditions at the St. Anthony Mine Site are shown on Figure 3, *Existing Conditions*.

1.2 SITE SOILS

The native soils within the site boundary consist of well-drained silty sands and inorganic silts and clays. Soil material samples will be collected as described in the Materials Characterization Work Plan. Closeout Plan components will be modified, if necessary, depending on the results of the Materials Characterization.

1.3 SITE GEOLOGY

The site is located on the Colorado Plateau physiographic province, broadly characterized by plateaus of stratified sedimentary rock overlying tectonically stable Precambrian basement. The relatively high relief and dramatic topography of the Colorado Plateau formed as canyons were incised within thick sedimentary sequences. Within the southeastern portion of the Colorado Plateau lies the San Juan Basin, a structural depression encompassing most of northwestern New Mexico and adjoining parts of Colorado and Utah. The strata of the San Juan Basin dip gently to the north (approximately 2 degrees), although small faults and folds alter the dip of the strata locally. The San Juan Basin is truncated on its southeastern margin by the Jemez lineament, a northeasterly trending structural boundary between the Colorado Plateau to the northwest and the Rio Grand Rift to the south and east. The St. Anthony site is located within the Grants uranium district that lies on this transitional

margin amidst many prominent Late Cenozoic volcanic fields that demarcate the Jemez lineament and the southeast margin of the San Juan Basin.

Sediments in the Grants area were deposited in various continental environments. During late Permian time, the area now defined by the San Juan basin was an active seaway connecting the central New Mexico Sea with the Paradox basin in Utah. During this time, the Glorieta sandstone and San Andreas limestone were deposited. The region was subsequently uplifted in Laramide time and fluvial, lacustrine, and aolian sediments of the respective Chinle Formation, San Rafael Group, and Morrison Formation were deposited. Upper Cretaceous strata consist of marine shorezone sandstones, marine shales, and various continental deposits. In ascending order, these are represented by the Dakota Sandstone, Mancos Shale, and the Mesaverde Group.

Stratigraphy of interest at the St. Anthony site includes the Mancos Formation (Late Cretaceous), the Dakota Formation (Early and Late Cretaceous) and the Morrison Formation (Late Jurassic). The surficial geologic unit at the site is the Mancos Formation consisting of three sandstone units and interbedded shale units with a maximum thickness of 465 feet. The upper sandstone caps Gavilan Mesa to the south of the pits. The Dakota Formation sandstone has a thickness of six to twenty feet in the site area. The Morrison Formation is approximately 600 feet thick and is comprised of the Jackpile Member (sandstone), the Brushy Basin Member (interlayered mudstone and sandstone), the Westwater Canyon Member (sandstone), and the Recapture member (interbedded claystone and sandstone).

Uranium production at the site was from the Jackpile Member with each pit penetrating approximately 75 feet into this unit. The Jackpile sandstone varies in thickness in the site area from 80 to 120 feet and is representative of deposition in a braided stream environment.

1.4 SURFACE WATER, GROUNDWATER, AND PIT WATER

1.4.1 Surface Water

Meyer Gulch is an intermittent arroyo that bisects the site, flowing from northwest to southeast across the site. Near the southeast corner of the site, Meyer Gulch joins an unnamed intermittent arroyo to form Arroyo Pedro Padilla. Arroyo Pedro Padilla flows southward for approximately 4 miles where it joins Arroyo de Piedre Lumbre to form Arroyo Conchas. Arroyo Conchas flows southward for approximately 11 miles where it joins the Rio San Jose. Each of these streams is intermittent.

Surface water quality in the vicinity of the mine was evaluated as part of the Phase I Abatement Plan investigation. The results of this investigation are reported in the St. Anthony Mine Status Report issued by INTERA (Dec 2004). As a part of this investigation, Meyer Gulch surface water was sampled in upstream/downstream sets. The Meyer Gulch surface water samples were analyzed for dissolved metals and select cations and anions. In comparison to the temporal variation in constituent background levels, the spatial variation in constituent levels from upstream to downstream of the Site were insignificant. The presence of the non-economic material piles does not measurably add to the arroyo mass loading during runoff events. The specific surface water quality data as presented in St. Anthony Mine Status Reports are reproduced as they appear in their original form in Appendix A. Any additional surface water data, if available, will be analyzed and reported in the Final Stage I Abatement Plan Report to be issued by INTERA.

Piles of non-economical mine materials are located immediately adjacent to the north and south banks of Meyer Gulch as shown on Figure 2. During an inspection performed in November 2000, the NMED opined that there was excessive sedimentation in the arroyo caused by mass wasting of the piles (NMED, 2001). During a later site visit conducted by UNC, it was noted that sediment

MWH * 1475 Pine Grove Road, Ste. 109 * Steamboat Springs, Colorado 80487 * (970) 879-6260

deposition in the arroyo was localized near the non-economic material piles, and no evidence of sediment from the St. Anthony piles was noted beyond the limits of the site. Most importantly there did not appear to be any mass wasting of the ore-bearing materials into the Arroyo.

1.4.2 Groundwater

The regional ground water flow is to the southeast (Stone, et al., 1983). The local St. Anthony Mine site ground water flows are radially inward toward Pit 1 (INTERA, 2004). Pit 1, therefore, acts as a local ground water sink and no groundwater appears to be leaving the mine. The Preliminary Assessment Report, St. Anthony Mine (NMED, 1995) indicated that the closest domestic wells to the site are located at a distance of two to three miles. This report also mentions several stock wells and one mine well located within two miles of the site.

Groundwater quality monitoring performed in December 2004 as part of the Phase I Abatement Plan investigation found that the St. Anthony Mine is not impacting groundwater quality in the vicinity of the mine. The most recent site-specific groundwater data for the St. Anthony Mine site is reported as part of the ongoing Phase I Abatement Plan investigation. The results confirm the original Status Report for the Phase I Abatement Plan investigation finding that the St. Anthony Mine is not impacting groundwater quality in the vicinity of the mine (INTERA, 2004). The specific groundwater quality data as presented in St. Anthony Mine Status Reports are reproduced as they appear in their original form in Appendix A. Exceedances of groundwater quality standards are associated with the undisturbed, mineralized orebody. There is no indication that the disturbed soil stockpiles contribute any degradation to groundwater quality in comparison to natural background conditions, or that impacted water leaves the Site.

The nearest groundwater rights in the vicinity of the site are owned by Two Rivers Ranch, Inc for 80 acre-feet per year from seven wells the closest of which is located less than one mile north of the site. The water rights are for mining, milling and associated operations. John Dilts owns the rights to a combined 1370 acre-feet per annum from 14 wells the closest well located 1.7 miles north of the site. The nearest stock well is located 1.3 miles to the northeast of the site and the nearest domestic well is located 2.8 miles to the northwest of the site. No wells were identified within the New Mexico Water Administration Technical Engineering Resource System (WATERS) database as being located within 10 miles southeast (downgradient) of the site.

1.4.3 Pit Water

Pits 1 and 2 have affected the hydrologic balance and drainage by diverting a minor amount of surface water into the pits rather than allowing it to flow, unrestricted, into Meyer Gulch. Surface evaporation and evapotranspiration from both pits causes a net loss from the ground water system. The presence of Pits 1 and 2 at the site has effectively created a large-diameter well that has penetrated all geologic units above and into the Jackpile. Currently information detailing contaminant transport into and through any adjacent water-bearing formations is limited. However, due to high rates of evaporation and the lack of potential recharge through the upper units at the site, any movement of constituents from the site via groundwater will be within the Jackpile unit, and is radially inward to the pit pond. The specific pit water quality data as presented in St. Anthony Mine Status Reports are reproduced as they appear in their original form in Appendix A. The quality of the pit water is poor, owing to the evaporative concentration of dissolved minerals that discharge to the pit from the surrounding orebody.

1.5 POST-MINING LAND USE

Reclamation at the St. Anthony Mine is intended to achieve a post-mining land use of livestock grazing comparable to surrounding areas. A vegetation survey has been conducted in nearby areas by

Cedar Creek Associates of Fort Collins, Colorado to determine the native species and corresponding plant densities for undisturbed areas. The survey was performed in accordance with the approved work plan (Cedar Creek, 2005). A report detailing results of the survey, revegetation requirements, success monitoring and criteria will be submitted to by March 31, 2006. Soils will be sampled as described in the Materials Characterization Work Plan in order to determine agronomic requirements to ensure vegetation success.

1.6 CULTURAL RESOURCES

A cultural resources survey of the Site and proposed borrow areas has been performed by Lone Mountain Archaeological Services. The cultural resources survey included a records search of known historic sites in the vicinity of the St. Anthony Mine and a 100 percent pedestrian survey of proposed disturbance areas. A report of finding will be submitted to HPD.

2.0 CLOSEOUT PLAN COMPONENTS

2.1 SURFACE WATER AND EROSION CONTROL

Surface water will be controlled to limit flow velocities and route runoff away from regraded and revegetated slopes. Silt fence and straw bales will be installed prior to construction and will be maintained for the duration of construction. All runoff from the site will be conveyed into Myers Gulch and the two open pits. A National Pollutant Discharge Elimination System (NPDES) construction permit will be applied for prior to construction. The Storm Water Pollution Prevention Plan (SWPP) to be prepared under the NPDES permit will provide additional information on surface water and erosion control during construction.

2.2 REGRADING

Regrading at the St. Anthony Mine will consist of reshaping material piles to promote non-erosive runoff and slope stability. All regrading at the St. Anthony Mine will be completed while adhering to the following general regrade requirements:

- A 3H:1V slope angle is to be used for all final side slope regrading.
- All slopes of greater than 50 feet of elevation will be interrupted with a flat, ten-foot wide bench.
- Material piles will be set back 50 feet from the edge of the natural channels.
- All materials extracted from Piles 1, 2, and 3, as a result of area specific regrading, are to be consolidated into Pit 2. The total volume of material to be deposited into Pit 2 is 1,505,000 cubic yards (cy).
- All materials excavated from Piles 4, 5, 6, and 7, as a result of area specific regrading, will be consolidated into Pit 1. The total volume of material to be deposited into Pit 1 is 3,541,000 cy.
- All regraded areas will be covered with a minimum of two feet of cover material.

The regrading requirements listed above are incorporated into the regrading plan shown in Figure 4, *Regrade Plan.* The regrade volume for each pile is summarized in Table 2.1, *Regrade Volumes.*

		Table 2.1 Ade volumes		
Facility	Cut Volume ¹ (cy)	Fill Volume ² (cy)	Haulage ³ (cy)	Haulage Location
Pile 1 & 2	746,000	20,000	726,000	Pit 1
Pile 3	819,000	40,000	779,000	Pit 1
Pile 4	4,029,000	780,000	3,249,000	Pit 2
Pile 5	185,000	15,000	170,000	Pit 2
Pile 6	101,000	5,000	96,000	Pit 2
Pile 7	31,000	5,000	26,000	Pit 2
Crusher/Stockpile Area	102,000	102,000	0	na
Notes:				

1. Cut volume is total volume of material to be moved during regrade.

2. Fill volume is amount of cut volume to be consolidated within the final facility footprint shown on Figure 4.

3. Haulage is the amount of cut volume to be hauled and consolidated at the haulage location.

2.2.1 Piles 1 and 2

Piles 1 and 2 are shale piles covering approximately 18 acres, adjacent to Meyer Gulch at the South end of the St. Anthony Mine property. The surface of Piles 1 and 2 will be regraded with the side slope and natural drainage buffer requirements noted above. Material from the eastern edges of these shale piles will be pulled back from Meyer Gulch towards the top (northwestern) portion of the piles. There is a topsoil pile at the southwestern tip of Pile 1. This topsoil pile will be used as cover material for the final regraded surfaces of Piles 1 and 2. The total available topsoil material at this location is 284,000 cy. The total volume of materials to be extracted from Piles 1 and 2 and deposited into Pit 2 is 726,000 cy.

The dense, low permeability nature of the shale makes it a poor growth medium for revegetation, plant roots have difficulty penetrating the dense material and the low permeability prevents rainfall from infiltrating in sufficient quantity to sustain vegetation. It is anticipated that six feet of non-shale material will be required over the shale to provide sufficient rooting depth and water storage capacity for revegetation success. The top two feet of cover material will be sourced from the topsoil stockpiles and borrow areas. The remaining four feet of material may come from the cover material stockpile or from other non-economic material piles. Depth and sources of cover material will be determined from the results of the Materials Characterization Plan. The volume of material required for six feet of cover over the final regraded surface of Piles 1 and 2 is 211,000 cy.

There is an earthen control structure at the western end of the Piles 1 and 2 topsoil pile that will be knocked down and pushed to the North, away from the southern mine property line. Once this drainage control structure has been demolished, the native surface water drainage will be restored. Two feet of cover will be placed over the knocked down control structure material.

2.2.2 Pile 3

Pile 3 is a non-economic material area covering approximately 24 acres immediately adjacent to Meyer Gulch. The surface of Pile 3 will be regraded with the side slope and natural drainage buffer requirements noted above. The final regraded surface will be achieved by pulling material back from Meyer Gulch and the existing footprint of Pile 3. The total volume of material that will be extracted from Pile 3 and deposited into Pit 2 is 779,000 cy. Two feet of cover will be placed on all regraded areas requiring 89,000 cy of cover material.

2.2.3 Pile 4

Pile 4 covers 120 acres and is the largest non-economic material pile at the St. Anthony Mine site. Due to the size of the pile, the regrading plan for this pile will be split into four specific sections. First, the northeast corner of Pile 4 will be regraded by pushing material away from the non-economic material area towards the northern St. Anthony Mine property line where allowable as per the side slope and drainage buffer requirements noted above. Second, the southern half of Pile 4 will be regraded by pulling the side slopes of the pile away from Meyer Gulch and the Arroyo east of Pile 4. No material from the southern half of Pile 4 will be pushed into the flood plain between the southern tip of Pile 4 and the Meyer Gulch/Arroyo confluence. Third, the southwestern edge of Pile 4 will be regraded by pulling material away from the natural drainage on the western edge of Pile 4 and Meyer Gulch. Fourth, the northwestern edge of Pile 4 will be regraded by pushing material towards the northern St. Anthony Mine property boundary. The total volume of materials to be extracted from Pile 4 and deposited into Pil 1 is 3,249,000 cy.

Depending on the results of the abatement plan investigation, deposition of excavated materials from Pile 4 into Pit 1 may not be possible. Therefore, as an alternative, the footprint of Pile 4 may be

extended to the west where it will overlap with the footprints of Pile 5 and Topsoil/Overburden Pile (after removal of the topsoil).

Two feet of cover will be placed on all regraded areas. Using the current regrade plan, 396,000 cy of cover material will be required.

The existing power line to the north of Pile 4 will be relocated to the north of the toe of the regraded and covered pile. Final alignment of the power line will be dependent on the whether Pit 1 is backfilled.

A stability analysis was performed on the regraded pile using available geotechnical data. The internal friction angle was estimated using the existing slope angles assuming that the material is at angle of repose (Factor of Safety of one). Remaining parameters were estimated based on professional experience. Given these assumptions, the factor of safety for the regraded slope of Pile 4 is 2.1. This is greater than the acceptable factor of safety of 1.5 typical for this situation. The stability analysis will be refined based on the material properties acquired during implementation of the Material Characterization Plan.

2.2.4 Pile 5 and Adjacent Topsoil Pile

Pile 5 is a non-economic material pile covering approximately 9 acres adjacent to Pile 4 and Meyer Gulch. Pile 5 will be regraded by pulling material away from Meyer Gulch and pushing material towards the St. Anthony Mine northern property boundary as per the general regrading requirements noted above. The total volume of materials to be extracted from Pile 5 and deposited into Pit 1 is 170,000 cy. Depending on the results of the abatement plan investigation, deposition of excavated materials from Pile 5 into Pit 1 may not be possible. Therefore, as an alternative, the total volume of material that may be excavated and consolidated within the final regraded extents of Pile 5 is 185,000 cy. The final regrade extents of Pile 5 may include the fan area on the western edge of Pile 4. Two feet of cover will be placed on all regraded areas requiring 31,000 of cover material.

There is a topsoil pile North of Pile 5. This topsoil pile will be used as cover material for regraded non-economic material piles. After the existing topsoil stores are removed, the topsoil pile area will be returned to the native topography. The total volume of topsoil material available as a source of cover material is 558,000 cy.

2.2.5 Pile 6

Pile 6 is a non-economic material pile covering of approximately 5 acres adjacent to Meyer Gulch. Pile 6 will be regraded by pulling material away from Meyer Gulch as per the general regrading requirements noted above. The total volume of materials to be extracted from Pile 6 and deposited into Pit 1 is 96,000 cy. Depending on the results of the abatement plan investigation, deposition of excavated materials from Pile 6 into Pit 1 may not be possible. Therefore, as an alternative, the excavated material from Pile 6 may be deposited into Pit 2. Two feet of cover will be placed on all regraded areas requiring 20,000 cy of cover material.

2.2.6 Pile 7

Pile 7 is a non-economic material pile covering approximately 3 acres adjacent to Meyer Gulch. Pile 7 will be regraded by pulling material away from Meyer Gulch as per the general regrading requirements noted above. The total volume of materials to be extracted from Pile 7 and deposited into Pit 1 is 26,000 cy. Depending on the results of the abatement plan investigation, deposition of excavated materials from Pile 7 into Pit 1 may not be possible. Therefore, as an alternative, the total volume of

MWH * 1475 Pine Grove Road, Ste. 109 * Steamboat Springs, Colorado 80487 * (970) 879-6260

material that may be excavated and consolidated within the final regraded extents of Pile 7 is 30,693 cy. Two feet of cover will be placed on all regraded areas requiring 10,000 cy of cover material.

2.2.7 Crusher/Stockpile Area

The Crusher/Stockpile Area is located between Pit 1 and Meyer Gulch. This 24-acre area consists of multiple piles of non-economic material. Individual piles will be regraded as per the general regrading requirements noted above. The Crusher/Stockpile Area will be regraded by pushing material towards the St. Anthony Mine northern property boundary as per the general regrading requirements noted above. The total volume of material to be excavated and consolidated within the final extents of Crusher/Stockpile area as a result of regrading is 102,000 cy. Two feet of cover will be placed over the entire Crusher/Stockpile Area requiring 84,000 cy of cover material.

2.2.8 West Disturbance Area

There are a number of small non-economic material piles west of Pile 6. These piles cover a total of 6 acres of non-economical material in 9 individual piles. All of these piles will be regraded by pushing material out from the current pile footprints as per the general regrading requirements noted above. Two feet of cover will be placed on all regraded areas requiring 18,000 cy of cover material.

2.2.9 Mine Shaft

The mine shaft is located to the West of the Pit 1 approximately as shown on Figure 2. The mine shaft area includes a work pad constructed on non-economic material covering approximately 6 acres and an access road that runs to the north of the bluff that separates Pit 1 from the shaft area. An aerial photo of the shaft area is shown on Figure 5.

The shaft area will be regraded per the general regrading requirements noted above. Side slopes will be pushed out to a stable slope angle and material along the wash will be pulled back and consolidated with the material on the top of the work pad. Concrete pads located on the work area will be cracked as discussed below and covered. The shaft area will be covered with two-feet of cover material requiring 20,000 cy. Cover material for the mine shaft area will come from the borrow area located to the north of the shaft work pad.

The access road was constructed using standard cut and fill methods. The sideslope of fill areas will be regraded to a stable slope angle per the general regrading requirements. The access road to the mine shaft will be reclaimed as discussed in Section 2.6 below.

2.3 PITS 1 AND 2

Depending on recommendations in the water abatement investigation, Pit 1 may be backfilled with 3,541,000 cy of material, filling the pit to an elevation of 5,943 feet. The fill depth over the surveyed pit lake elevation is 91 feet. The fill material will be covered with two-feet, 139,000 cy, of cover material. Pit 1 will be fenced with a four-wire barbed wire fence to discourage human or grazing access to the pit.

Pit walls were originally excavated at the steepest stable angle to minimize the pit's disturbance area and the amount of non-economic materials generated during mining. Setting back the pit walls to a slope capable of supporting a self-sustaining ecosystem is not recommended. Setting back the west pit wall will expand the slope into the mesa to the west of the pit, significantly increasing the disturbance area and the volume of material that would require placement. This runs counter to the overall goal of reclamation. Backfilling along the pit walls would require approximately 10,000,000 cy of material at an estimated cost of \$17,000,000, more than doubling the cost of earthworks at the site.

Additionally, backfilling along the pit wall would require backfilling of the pit pond, which the Phase I Abatement Plan Investigation report may recommend against. Leaving the pit wall in its current state is consistent with engineering constraints and economic considerations. The pit walls are stable and they do not pose any risk to water resources; they are non-acid generating, and reducing their slope would only increase the aerial contact of disturbed material with rainfall. Current industry standards and practices as reflected in federal mine reclamation laws and mine reclamation laws of other states (e.g., Arizona, Idaho, Montana, and Nevada)(McElfish, 1996) all allow for the retention of the pit walls in the current state. Safety issues are managed by the fence.

Pit 2 will be backfilled with 1,505,000 cy of material from the sources described above. Backfill material will be placed along the pit walls to facilitate drainage using slopes not steeper than 3H:1V. Shale material from Piles 1 and 2 will be covered with a minimum of four feet of non-shale non-economic material to minimize effect of the shale on the establishment of a self-sustaining ecosystem. Two feet of cover material will be placed over all backfill material requiring 113,000 cy of cover material.

2.4 CONCRETE SLABS

Concrete slabs located west of Pile 3 will be broken or cracked on three-foot centers and covered with two feet of cover requiring 600 cy of material.

2.5 BORROW AREAS

Cover material will be sourced from three material stockpiles and potentially four borrow areas. The locations of the stockpiles and three of the borrow areas are shown on Figure 2 the fourth borrow area is located near the mine shaft and is shown on Figure 5. Suitability of stockpile and borrow sources for use as cover material will be confirmed under the Material Characterization Plan.

The volume of cover material required is summarized in Table 2.2, *Cover Material Volume Requirements*. The volume of material available from the three stockpiles is summarized in Table 2.3, *Cover Material Stockpile Volumes*. Material from the topsoil stockpiles will be used first the remaining 251,000 cy of cover material required will be sourced from the borrow areas. If non-economic material is used for four feet of the six foot cover over Piles 1 and 2 the volume of material required from the borrow areas will be 110,000 cy.

TABL COVER MATERIAL VO	e 2.2 Lume requirements							
Facility	Volume (cy)							
Piles 1 & 2	212,000							
Pile 3	89,000							
Pile 4	396,000							
Pile 5	31,000							
Pile 6	20,000							
Pile 7	10,000							
Crusher/Stockpile Area	84,000							
West Disturbance Areas	18,000							
Pit 1	139,000							
Pit 2	113,000							
Mine Shaft	20,000							
TOTAL	1,132,000							

TABL COVER MATERIAL S	E 2.3 TOCKPILE VOLUMES
Stockpile	Volume (cy)
Topsoil Stockpile 1	39,000
Topsoil Stockpile 2	284,000
Topsoil/Overburden Stockpile	558,000
TOTAL	881,000

2.6 ROAD RECLAMATION

Existing access roads on the site are shown on Figure 2. Reclamation of roads will involve ripping and regrading the road surfaces at the completion of reclamation activities. Road reclamation will likely be completed as a final task after regrading has been completed. Revegetation of the regraded roads will be performed concurrently with other areas. It is not anticipated that any roads will be left on site as part of the final reclamation.

2.7 REVEGETATION

Areas impacted by reclamation activities will be revegetated. Revegetation is intended to reduce impacts to surface water by establishing a self-sustaining plant community that provides erosional stability. Site soils will be sampled for agronomic properties as part of the Material Characterization Plan. Required quantities of soil amendments will be determined on a site-specific basis. Inorganic fertilizer will be added to increase the nitrogen, phosphate, and potassium available to reseeded areas as required by analytical analysis. Mulch will be applied after seeding is complete to conserve soil moisture and protect the soil from wind and water erosion. Revegetation will take place between June and September. Approximately 320 acres will be revegetated as part of this plan. Regraded areas will be seeded with a mixture containing native grasses and forbs that will not depend on external inputs of water or fertilizer. Specific species, composition percentages and seeding rates will be determined by a vegetation and wildlife survey conducted by Cedar Creek Associates of Fort Collins, Colorado. The initial vegetation survey was performed September 26 to 28, 2005. This survey was performed under the St. Anthony Vegetation and Wildlife Survey (Cedar Creek Associates, 2005). Results of the survey will be reported by March 31, 2006 and will include seed species and composition percentages. In addition, the report will include cover monitoring and success criteria.

2.8 REGULATORY COMPLIANCE

An NPDES construction permit for storm water discharge will be obtained prior to implementation of the Closeout Plan. A SWPP will be prepared as part of the NPDES permit application. The SWPP will present erosion control measures that will be implemented, inspected, and maintained for the duration of construction. Dust will be controlled by periodically watering haul roads and other dust-generating areas as necessary.

Applicable permits required under Section 404 of the Clean Water Act (CWA) for construction activities in Meyer Gulch will be obtained prior to implementation of the Closeout Plan.

2.9 SITE ACCESS CONTROL

Access to the St. Anthony Mine is across lands owned by the Seboyeta Land Grant and Jack Diltz. A locked gate currently exists at the entrance to the site to prevent public access. Fences that are currently on site will remain in place and will be repaired and photographically documented. UNC does not own or control the St. Anthony Mine site.

MWH * 1475 Pine Grove Road, Ste. 109 * Steamboat Springs, Colorado 80487 * (970) 879-6260

Therefore, UNC will assume no responsibility for the maintenance of site access controls or for security of the site once the improvements have been made.

3.0 SCHEDULE

Implementation of the St. Anthony Closeout Plan will begin after it has been approved by the Mining and Minerals Division (MMD). Approval of the Closeout Plan is dependent on the Vegetation and Wildlife Report, results of the archaeological survey, results of the Phase I Abatement Investigation, and results of the Material Characterization Plan. Upon approval construction documents and permit applications will be prepared, a construction contractor will be selected and construction will begin.

A specific reclamation schedule will be developed by the contractor during the construction bidding process. The general schedule for implementation of the Closeout Plan is below. This schedule may have to be adjusted depending on the results of the surveys and reports to be submitted in the spring and summer of 2006.

<u>Spring 2006</u>

- Submission of Vegetation and Wildlife Report
- Completion of Archaeological Survey
- Submission of Phase I Abatement Plan Investigation Report
- Implement Materials Characterization Work Plan

<u>Summer 2006</u>

• Submission of Materials Characterization Report

<u>Fall 2006</u>

• Revision of Closeout Plan based on comments from State agencies and results of Vegetation and Wildlife Report, Archaeological Survey, Phase I Abatement Plan Investigation, and Materials Characterization Report

Winter 2006/2007

- Respond to comments to revised Closeout Plan
- Develop bidding documents, select contractor and apply for applicable permits

<u>Spring 2007</u>

• Construction mobilization and begin site reclamation

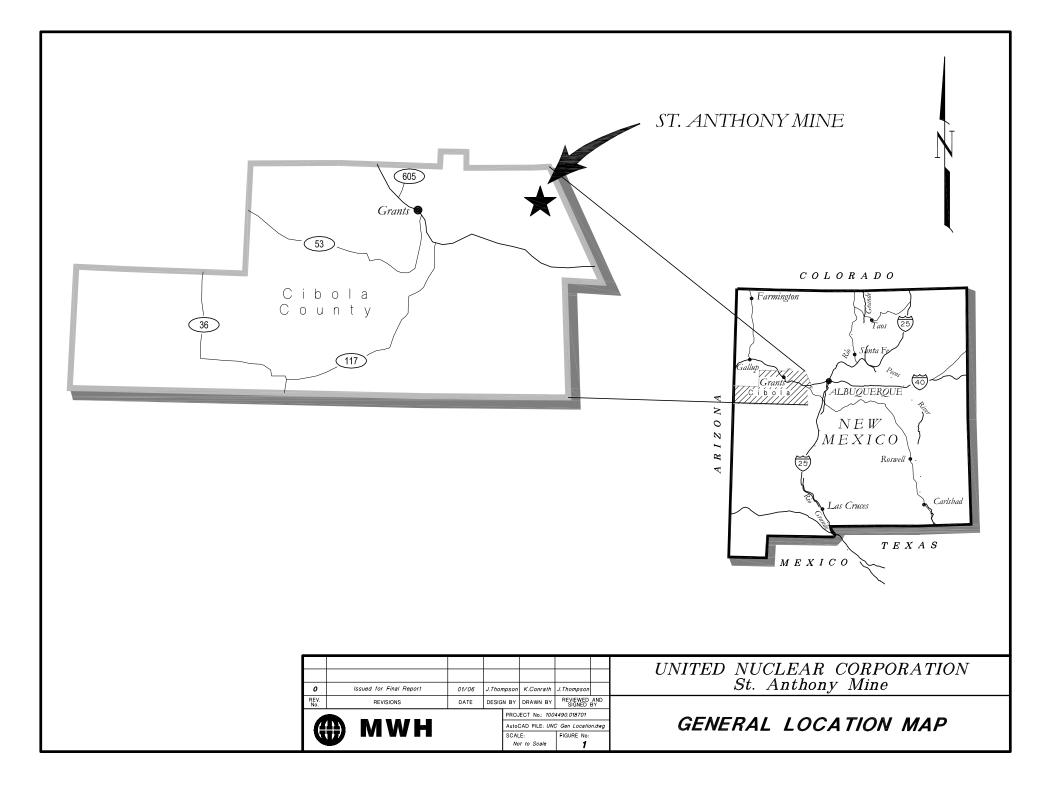
<u>Fall 2007</u>

• Complete site reclamation and demobilization

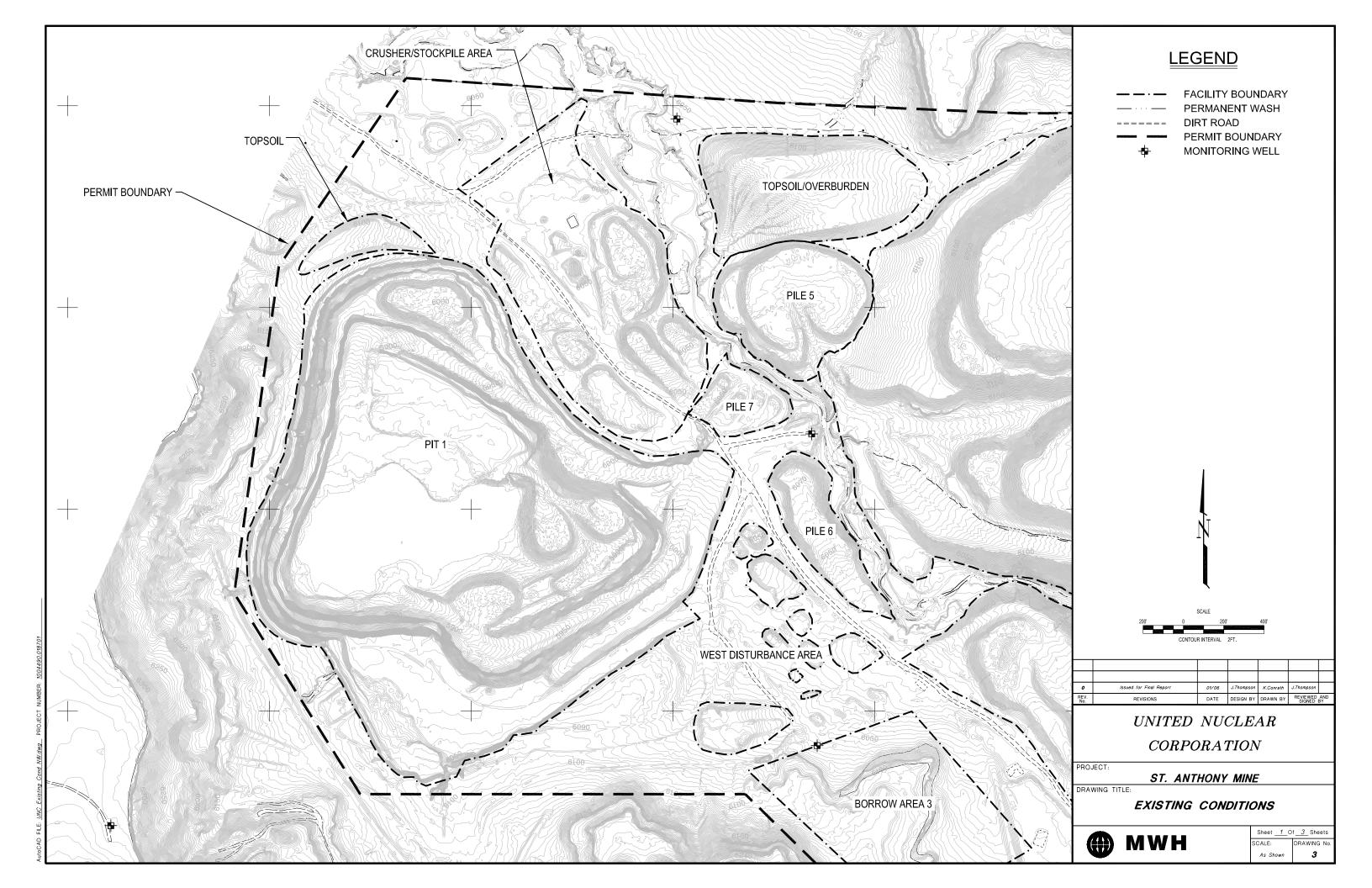
Winter 2007/2008

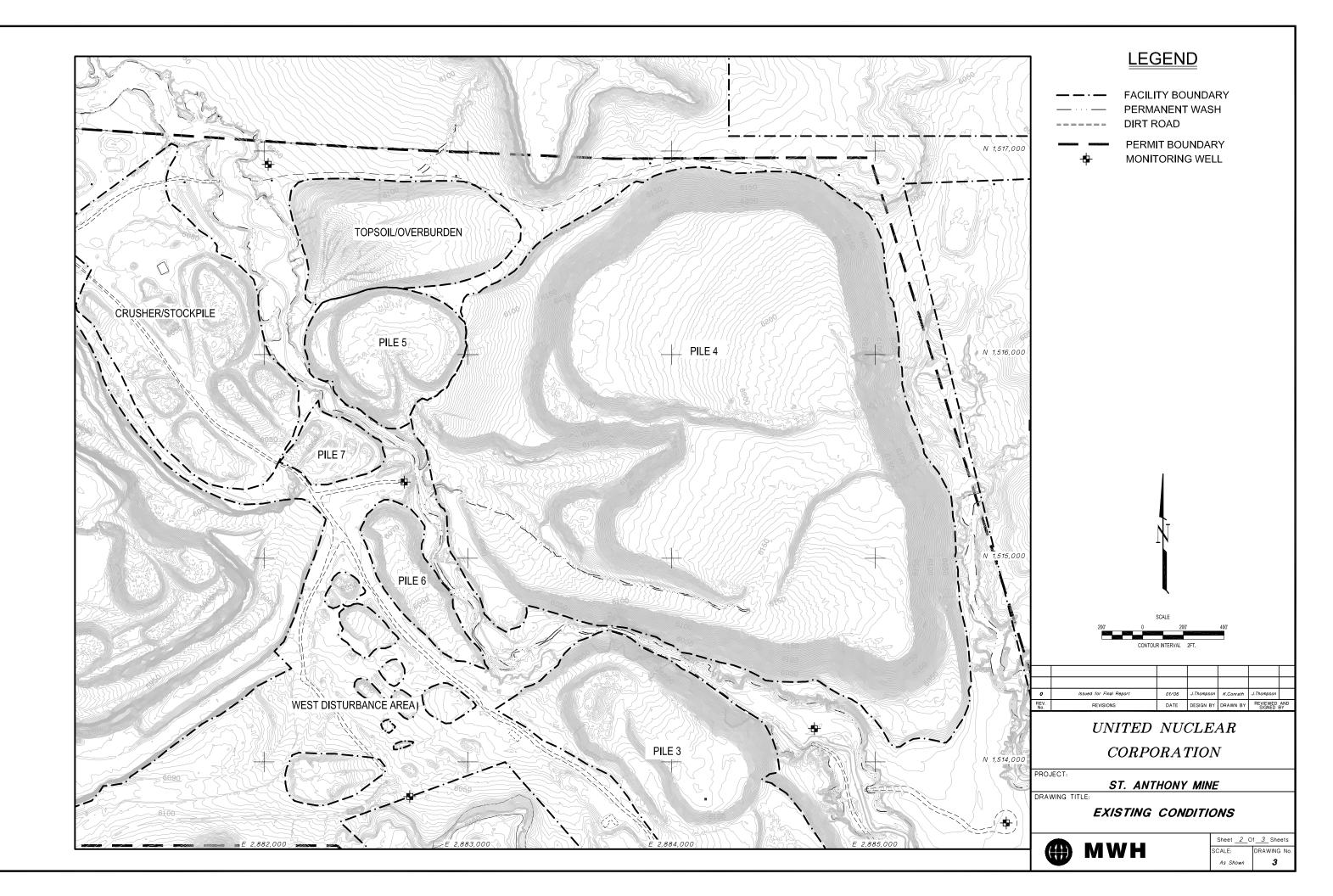
• Preparation and submission of As-Built Report and construction documentation

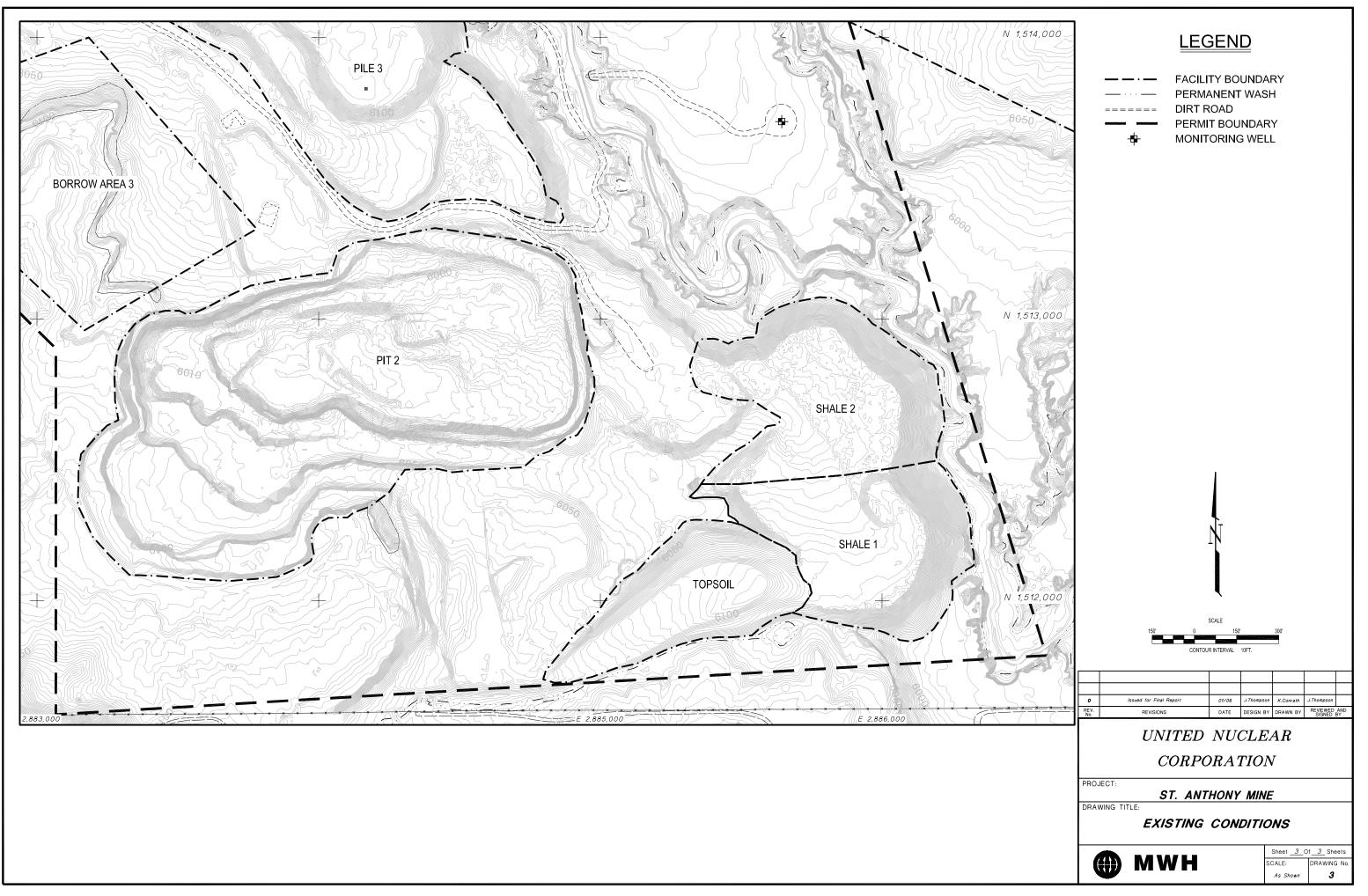
<u> 2008 - 2021</u>

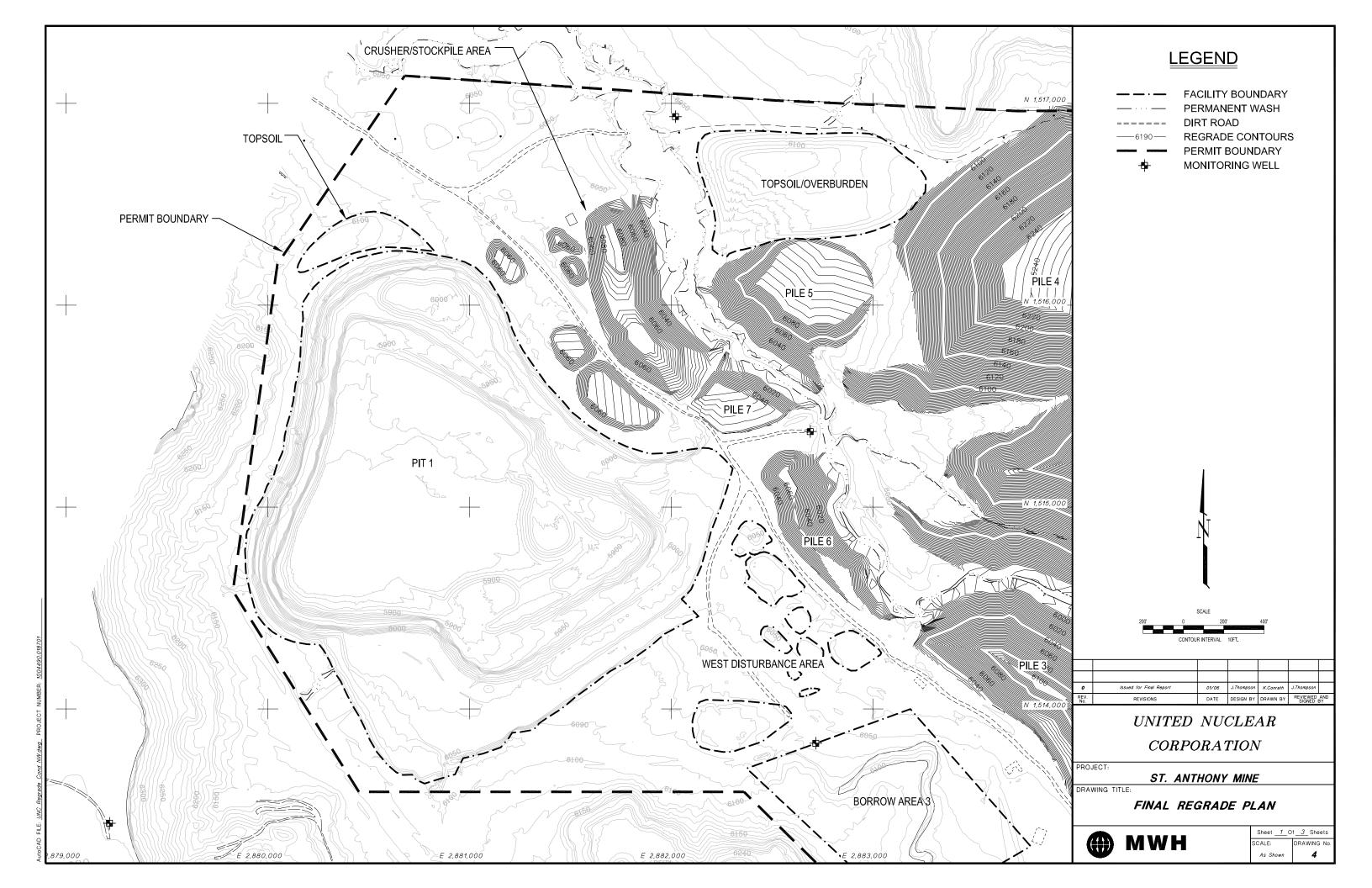

• Monitoring of revegetation success

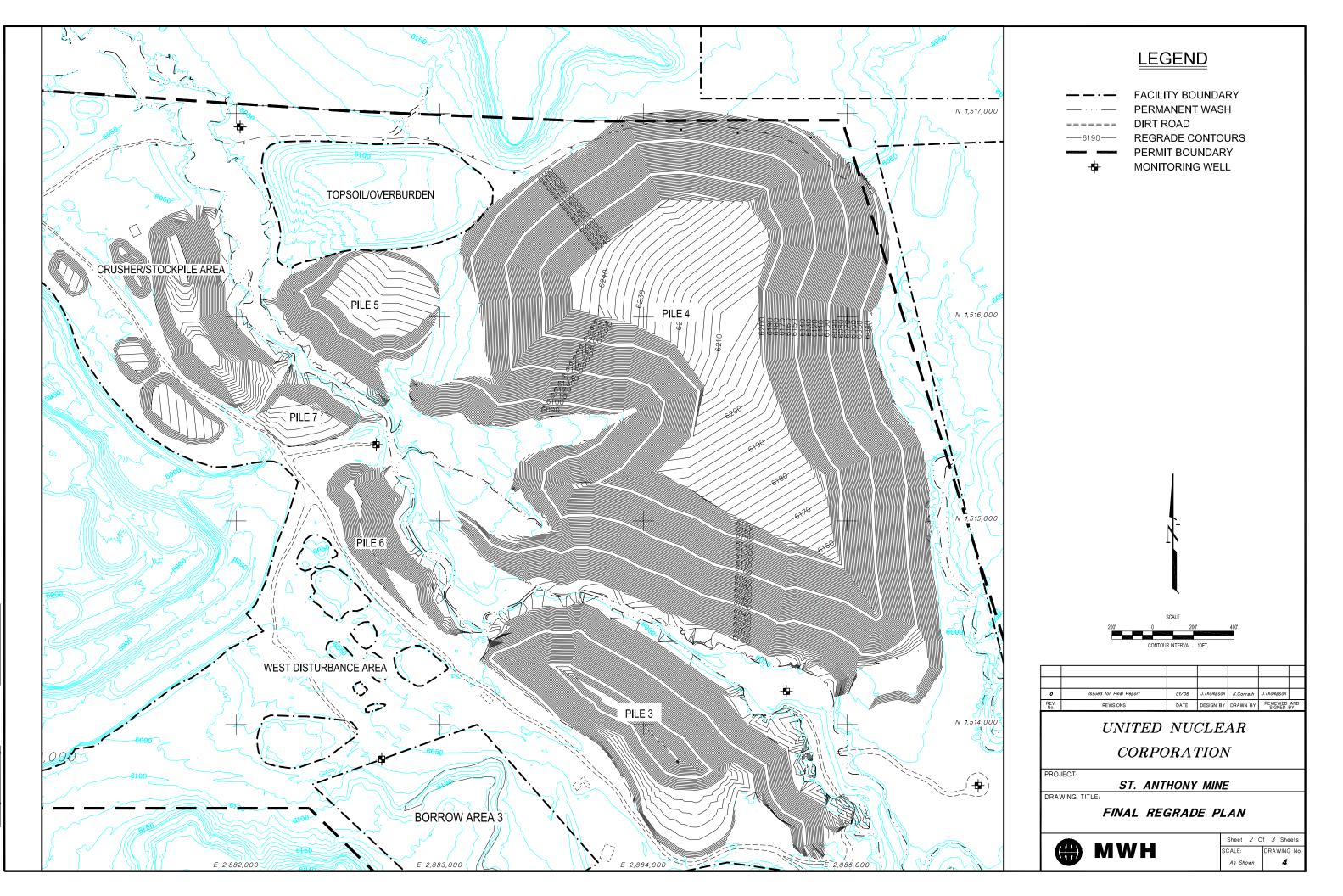
MWH * 1475 Pine Grove Road, Ste. 109 * Steamboat Springs, Colorado 80487 * (970) 879-6260 WWP\United Nuclear/St Anthony Mine Site/Final Closeout Plan

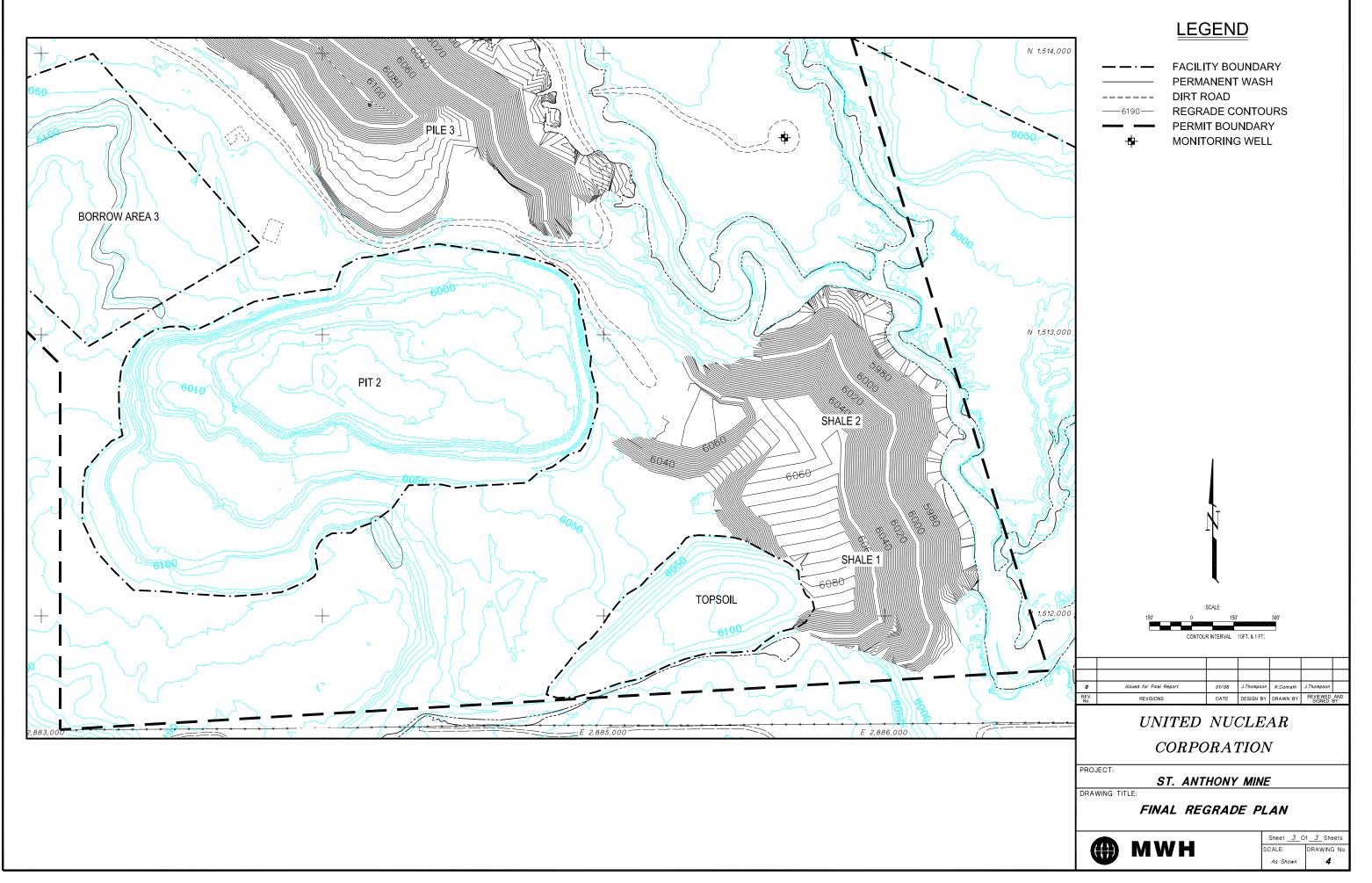

4.0 **REFERENCES**

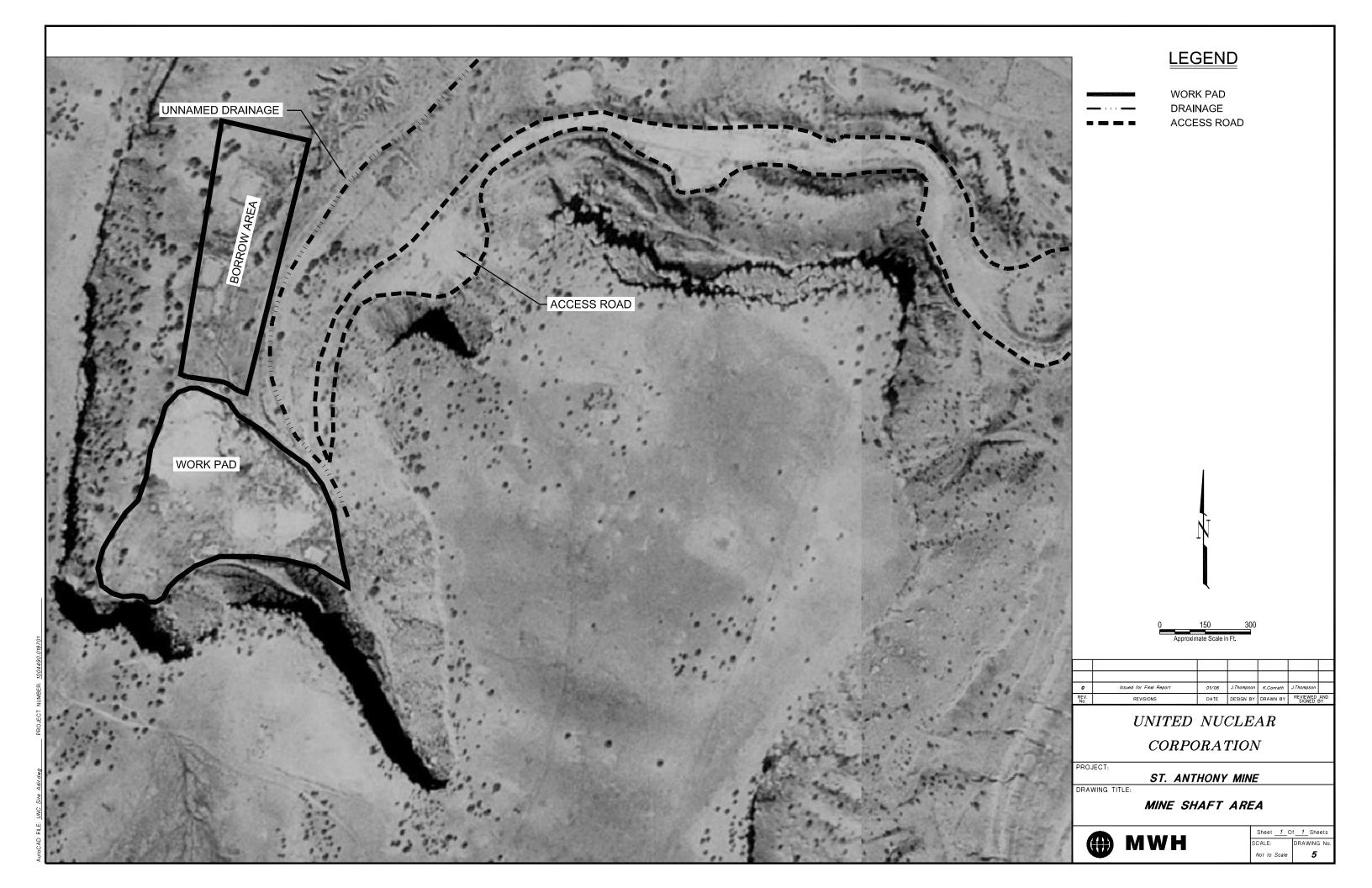

- Brod, R.C., and Stone, W.J., 1981. <u>Hydrogeology of Ambrosia Lake-San Mateo area, McKinley and Cibola Counties, New Mexico</u>, New Mexico Bureau of Mines and Mineral Resources Hydrogeologic Sheet 2.
- Cedar Creek Associates, 2005. <u>Work Plan United Nuclear Corporation, St. Anthony Mine,</u> <u>Vegetation and Wildlife Evaluations Contributory to Development of Final Reclamation</u> <u>Considerations and Success Determination</u>, Ft. Collins, Colorado.
- Intera, 2004. St. Anthony Mine Status Report December 2004, Albuquerque, NM
- McElfish, J. M., T. Bernstein, S. P. Bass, and E. Sheldon, 1996. <u>Hard Rock Mining: State Approaches</u> to Environmental Protection. Washington, D.C.: Environmental Law Institute.
- MWH, 2002, <u>St. Anthony Mine Site Stage 1 Abatement Plan</u>, Steamboat Springs, Colorado.
- NMED, 1995, <u>Preliminary Assessment Report St. Anthony Mine, Cibola County, New Mexico</u>, Santa Fe, New Mexico.
- NMED, 2001, "Subject: SWQB Field Inspection of St. Anthony Mine, Cibola County:" Michael W. Coleman, RPG, January 16, 2001.
- United Nuclear Corporation (UNC), 1978, <u>Final Draft Saint Anthony Open Pit Mine Feasibility</u> <u>Study</u>, Gallup, New Mexico.


FIGURES









APPENDIX A

PHASE I ABATEMENT PLAN ANALYTICAL DATA

TABLE 1 MONITORING WELL AND PIT WATER ELEVATION AND SURVEY DATA ST. ANTHONY STATUS REPORT

Location ID	Northing	Easting	Top of Casing Elevations	Location of Survey Measurement	Total Depth of Well (feet bgs)	Date Gauged	DTW (feet)	Ground Water Elevation (feet)		
MW-1	1516934.39	2882019.92	6047.87	North Side of PVC Casing	202	8/17/2004	105.97	5941.90		
				3	-	9/17/2004	108.93	5938.94		
						12/17/2004	105.10	5942.77		
						3/9/2005	105.54	5942.33		
MW-2	1515374.35	2882687.95	6037.87	North Side of PVC Casing	52	8/17/2004		Dry		
				-		9/17/2004		Dry		
						12/17/2004		Dry		
						3/9/2005				
MW-3	1514163.47	2884702.08	5989.39	North Side of PVC Casing	67	8/17/2004	52.67	5936.72		
						9/17/2004	55.94	5933.45		
						12/17/2004	52.52	5936.87		
						3/9/2005	52.51	5936.88		
MW-4	1513700.60	2885643.90	6008.55	North Side of PVC Casing	95	8/17/2004	75.43	5933.12		
				6		9/17/2004	85.14	5923.41		
						12/17/2004	75.13	5933.42		
						3/9/2005	75.16	5933.39		
MW-5	1513829.91	2882715.11	6058.58	North Side of PVC Casing	193	8/17/2004	114.24	5944.34		
				6		9/17/2004	110.80	5947.78		
						12/17/2004	114.04	5944.54		
						3/9/2005	113.97	5944.61		
MW-6	1513433.40	2879214.31	6370.32	North Side of PVC Casing	510	8/17/2004	437.61	5932.71		
-				3		9/17/2004	445.46	5924.86		
						12/17/2004	437.01	5933.31		
						12/30/2004	436.91	5933.41		
						3/8/2005	436.65	5933.67		
Mystery Well	Ν	IA		NA	578*	9/17/2004	119.92	NA		
, , .						3/8/2005	115.87	NA		
Large Pit	1514744.77	2880911.33	5852.80	Southerly Shore at Water's	NA	8/17/2004	NA	5852.80		
_a.go		2000011100	0002100	Edge		9/17/2004		5852.47		
				Lago		12/30/2004	1	5853.30		
						1/13/2005	1	5853.40		
						3/2/2005	1	5853.82		
						3/8/2005		5853.90		
						3/29/2005		5853.87		
Small Pit	1512917.67	2884057.73	5956.29	East Shore at Water's Edge	NA	1/13/2005	NA	5956.29		
						3/2/2005		5955.98		
						3/10/2005		5955.99		
						3/29/2005		5955.77		

* Total depth of mystery well is below top of casing

TABLE 2 MONITORING WELL SAMPLE ANALYTICAL RESULTS ST. ANTHONY STATUS REPORT

												mg/L													
MONITORING WELL ID	DATE	Aluminum	Arsenic	Barium	Beryllium	Boron	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Molybdenum	Nickel	Potassium	Selenium	Silver				
MW-1	08/10/04	7.6	<0.0049	0.090	<0.00041	0.35	<0.00027	4.7	0.0080	0.0024	0.0057	6.0	0.0062	1.8	0.047	<0.000025	0.015	0.0050	5.1	<0.0046	<0.00070				
-	12/17/04	0.12	< 0.015	0.019	< 0.0050	0.33	< 0.0050	4.1	<0.010	0.0025	< 0.0025	0.12	< 0.0030	0.62	0.016	<0.00020	0.0091	0.0027	1.9	< 0.015	0.00039				
	03/09/05 08/10/04	0.060	<0.015	0.015	<0.0050	0.36	<0.0050	4.4	<0.010	<0.010	<0.010 RY - WELL	0.030	<0.0030	0.63	0.018	<0.00020	0.0093	<0.040	1.6	<0.015	0.0011				
MW-2	12/17/04											NOT SA													
	03/09/05										RY - WELL	. NOT SA	MPLED												
MW-3	08/10/04	0.14	< 0.0049	0.021	< 0.00041	0.36	< 0.00027	20	< 0.0021	0.00069	< 0.00097	0.16	< 0.0021	8.3	0.10	< 0.000025		< 0.0042	2.7	< 0.0046					
-	12/17/04 03/10/05	<0.10 <0.10	<0.015 <0.015	0.014	<0.0050 0.0050	0.36	<0.0050 <0.0050	18 18	<0.010 <0.010	0.00140	<0.010 <0.010	0.11 0.13	<0.0030 <0.0030	7.5 7.5	0.086	<0.00020 <0.00020	0.0043	<0.040 <0.040	2.1 2.2	<0.015 <0.015	0.00038 0.0020				
	08/10/04	1.5	<0.0049	0.014	<0.000041	0.30	<0.00027	30	<0.0021	0.0013	<0.00097	1.1	<0.0030	13	0.084	<0.00020	0.0004	<0.0040	4.9	< 0.0046	<0.0020				
MW-4	12/17/04	0.061	0.007	0.017	<0.0050	0.33	< 0.0050	30	<0.0021	0.0044	< 0.010	0.061	< 0.0021	13	0.15	<0.00020	0.0032	< 0.040	3.9	<0.015	<0.010				
	03/29/05	<0.10	<0.010	0.017	<0.0050	0.36	<0.0050	34	<0.010	0.0019	<0.010	0.045	<0.0030	14	0.2	<0.00020	0.0047	<0.040	4.4	<0.0050	0.00066				
MW-5	08/10/04	0.039	<0.0049	0.015	< 0.00041	0.26	< 0.00027	330	<0.0021	0.0034	< 0.00097	1.6	<0.0021	180	0.40	< 0.000025	< 0.0023	< 0.0042	7.6	< 0.0046	<0.00070				
-	12/17/04 03/09/05	<0.10 <0.10	<0.015 <0.015	0.010	<0.0050 <0.0050	0.25	<0.0050 <0.0050	310 330	<0.010 <0.010	0.0016	<0.010 <0.010	1.9 1.5	<0.0030 <0.0030	170.0 180	0.29	<0.00020 <0.00020	<0.020	0.0025	7.2	<0.015 <0.015	0.00085				
	08/10/04	0.039	<0.015	0.0099	<0.0000	0.26	<0.0050	3.6	0.015	<0.00067	<0.00097	<0.019	<0.0030	0.94	0.0014	<0.00020	0.0024	<0.0040	16	< 0.0015					
MW-6	12/30/04	0.039	<0.0049	0.010	<0.00041	0.27	<0.0050	5.8	<0.013	0.0016	<0.00097	0.058	<0.0021	0.94	0.053	<0.00020	0.013	0.0042	3.5	<0.0040	0.00038				
	03/09/05	<0.10	0.0054	0.019	<0.0050	0.27	< 0.0050	5.9	<0.010	<0.010	<0.010	<0.10	<0.0030	0.82	0.034	<0.00020	0.012	<0.040	2.7	< 0.015	0.00067				
NMWQCC		5.0**	0.1	1.0	NA	0.75**	0.01	NA	0.05	0.05**	NA	1.0*	0.05	NA	0.2*	0.002	1.0**	0.2**	NA	0.05	0.05				
									mg/L								pCi/	1			-				
MONITORING WELL ID	DATE	Sodium	Thallium	Uranium	Vanadium	Zinc	Bicarbonate Alkalinity	Carbonate Alkalinity	ity	Chloride	Fluoride	Nitrate-Nitrite	Sulfate	Total Dissolved Solids	Total Suspended Solids	Radium 226	Radium 226 error (+/-)	Radium 228	Radium 228 error (+/-)	Field Conductivity (uhmos/cm)	Field pH (pH Units)				
MW-1	08/10/04	350	<0.0081	0.025	0.015	0.013	390	25	410	19	1.4	<0.021	290	2100	5300	225	2.69	3.23	0.849	1026	8.52				
-	12/17/04	330	<0.010	0.018	< 0.010	0.0053	410	15	420	17	1.4	0.056	300	1300	470	36	2.21	1.29	0.703	1487	8.33				
	03/09/05														310	12.9	0.842	1.59	0.595	1430	8.39				
	08/10/04	350	DRY - WELL NOT SAMPLED																						
MW-2	08/10/04 12/17/04	350											DRY - WELL NOT SAMPLED												
MW-2		350								D		. NOT SA	MPLED												
	12/17/04 03/09/05 08/10/04	350	<0.0081	0.019	<0.0026	0.0096	390	<0.85		D D 20	RY - WELL RY - WELL 1.6	NOT SA NOT SA <0.021	MPLED MPLED 370	1000	67	1.01	0.233	0.232	0.731	1027	7.86				
MW-2 MW-3	12/17/04 03/09/05 08/10/04 12/17/04	350 350	<0.010	0.015	<0.010	<0.010	390	<5.0	390	D D 20 19	RY - WELL RY - WELL 1.6 1.6	NOT S/ NOT S/ <0.021 <0.10	MPLED MPLED 370 390	1000	48	2.10	0.548	0.494	0.634	1500	7.71				
MW-3	12/17/04 03/09/05 08/10/04 12/17/04 03/10/05	350 350 350	<0.010 0.0061	0.015 0.016	<0.010 <0.010	<0.010 <0.020	390 400	<5.0 <5.0	390 400	D D 20 19 20	RY - WELL RY - WELL 1.6 1.6 1.6	NOT SA NOT SA <0.021 <0.10 0.067	MPLED MPLED 370 390 420	1000 1000	48 150	2.10 2.69	0.548 0.362	0.494 2.00	0.634 0.616	1500 1559	7.71 7.95				
	12/17/04 03/09/05 08/10/04 12/17/04	350 350	<0.010	0.015	<0.010	<0.010	390	<5.0 <5.0 <0.85	390 400	D D 20 19	RY - WELL RY - WELL 1.6 1.6	NOT S/ NOT S/ <0.021 <0.10	MPLED MPLED 370 390	1000	48	2.10	0.548	0.494	0.634	1500	7.71				
MW-3	12/17/04 03/09/05 08/10/04 12/17/04 03/10/05 08/10/04	350 350 350 430	<0.010 0.0061 <0.0081	0.015 0.016 0.85	<0.010 <0.010 <0.0026	<0.010 <0.020 0.013	390 400 300	<5.0 <5.0	390 400 300	D 20 19 20 21	RY - WELL RY - WELL 1.6 1.6 1.6 1.3	NOT SA NOT SA <0.021 <0.10 0.067 <0.021	MPLED MPLED 370 390 420 680	1000 1000 1400	48 150 200	2.10 2.69 1.84	0.548 0.362 0.244	0.494 2.00 0.799	0.634 0.616 0.754 0.69 0.742	1500 1559 1405 1715 NT	7.71 7.95 7.96				
MW-3 MW-4	12/17/04 03/09/05 08/10/04 12/17/04 03/10/05 08/10/04 12/17/04 03/29/05 08/10/04	350 350 350 430 440 440 580	<0.010 0.0061 <0.0081 <0.010 <0.010 <0.0081	0.015 0.016 0.85 0.25 0.10 0.12	<0.010 <0.010 <0.0026 <0.010 <0.010 <0.0026	<0.010 <0.020 0.013 0.0075 0.023 0.029	390 400 300 380 390 270	<5.0 <5.0 <0.85 <5.0 <5.0 <0.85	390 400 300 380 390 270	D 20 19 20 21 20 20 20 25	RY - WELL <u>RY - WELL</u> <u>1.6</u> <u>1.6</u> <u>1.3</u> <u>1.1</u> <u>1.1</u> <u>0.32</u>	NOT SA NOT SA <0.021 <0.10 0.067 <0.021 <0.10 <0.10 <0.021	MPLED 370 390 420 680 1300 720 2500	1000 1000 1400 1400 1500 3900	48 150 200 92 680 90	2.10 2.69 1.84 3.12 0.31 196	0.548 0.362 0.244 0.674 0.160 2.46	0.494 2.00 0.799 0.74 1.08 1.78	0.634 0.616 0.754 0.69 0.742 0.793	1500 1559 1405 1715 NT 12490	7.71 7.95 7.96 7.72 NT 7.49				
MW-3	12/17/04 03/09/05 08/10/04 12/17/04 03/10/05 08/10/04 12/17/04 03/29/05 08/10/04 12/17/04	350 350 350 430 440 440 430 580 590	<0.010	0.015 0.016 0.85 0.25 0.10 0.12 0.17	<0.010 <0.010 <0.0026 <0.010 <0.010 <0.0026 <0.010	<0.010 <0.020 0.013 0.0075 0.023 0.029 <0.020	390 400 300 380 390 270 270	<5.0 <5.0 <5.0 <5.0 <5.0 <0.85 <5.0	390 400 300 380 390 270 270	20 20 19 20 21 20 20 20 25 22	RY - WELL RY - WELL 1.6 1.6 1.3 1.1 1.1 0.32 0.35	NOT SA NOT SA <0.021 <0.10 0.067 <0.021 <0.10 <0.10 <0.021 0.18	MPLED MPLED 370 390 420 680 1300 720 2500 2700	1000 1000 1400 1400 1500 3900 3900	48 150 200 92 680 90 6.4	2.10 2.69 1.84 3.12 0.31 196 232	0.548 0.362 0.244 0.674 0.160 2.46 5.37	0.494 2.00 0.799 0.74 1.08 1.78 1.61	0.634 0.616 0.754 0.69 0.742 0.793 0.793	1500 1559 1405 1715 NT 12490 3570	7.71 7.95 7.96 7.72 NT 7.49 7.14				
MW-3 MW-4 MW-5	12/17/04 03/09/05 08/10/04 12/17/04 03/10/05 08/10/04 12/17/04 03/29/05 08/10/04 12/17/04 03/09/05	350 350 350 430 440 440 430 580 590 600	<0.010	0.015 0.016 0.85 0.25 0.10 0.12 0.17 0.27	<0.010 <0.010 <0.0026 <0.010 <0.010 <0.0026 <0.010 <0.010	<0.010 <0.020 0.013 0.0075 0.023 <0.029 <0.020 <0.020	390 400 300 380 390 270 270 270 270	<5.0 <5.0 <5.0 <5.0 <0.85 <5.0 <5.0 <5.0	390 400 300 380 390 270 270 270 270	20 20 19 20 21 20 20 25 22 24	RY - WELL RY - WELL 1.6 1.6 1.3 1.1 1.1 0.32 0.35 0.34	NOT SA NOT SA <0.021 <0.10 <0.021 <0.10 <0.10 <0.10 <0.021 0.18 0.18	MPLED 370 390 420 680 1300 720 2500 2700 2600	1000 1000 1400 1400 1500 3900 3900 3900	48 150 200 92 680 90 6.4 4.4	2.10 2.69 1.84 3.12 0.31 196 232 296	0.548 0.362 0.244 0.674 0.160 2.46 5.37 4.07	0.494 2.00 0.799 0.74 1.08 1.78 1.61 3.87	0.634 0.616 0.754 0.69 0.742 0.793 0.736 0.701	1500 1559 1405 1715 NT 12490 3570 4450	7.71 7.95 7.96 7.72 NT 7.49 7.14 7.19				
MW-3 MW-4	12/17/04 03/09/05 08/10/04 12/17/04 03/10/05 08/10/04 12/17/04 03/29/05 08/10/04 12/17/04	350 350 350 430 440 440 430 580 590	<0.010	0.015 0.016 0.85 0.25 0.10 0.12 0.17	<0.010 <0.010 <0.0026 <0.010 <0.010 <0.0026 <0.010	<0.010 <0.020 0.013 0.0075 0.023 0.029 <0.020	390 400 300 380 390 270 270	<5.0 <5.0 <5.0 <5.0 <5.0 <0.85 <5.0	390 400 300 380 270 270 270 270 430	20 20 19 20 21 20 20 20 25 22	RY - WELL RY - WELL 1.6 1.6 1.3 1.1 1.1 0.32 0.35	NOT SA NOT SA <0.021 <0.10 0.067 <0.021 <0.10 <0.10 <0.021 0.18	MPLED MPLED 370 390 420 680 1300 720 2500 2700	1000 1000 1400 1400 1500 3900 3900	48 150 200 92 680 90 6.4	2.10 2.69 1.84 3.12 0.31 196 232	0.548 0.362 0.244 0.674 0.160 2.46 5.37	0.494 2.00 0.799 0.74 1.08 1.78 1.61	0.634 0.616 0.754 0.69 0.742 0.793 0.736 0.701 0.670	1500 1559 1405 1715 NT 12490 3570 4450 961	7.71 7.95 7.96 7.72 NT 7.49 7.14				
MW-3 MW-4 MW-5 MW-6	12/17/04 03/09/05 08/10/04 12/17/04 03/10/05 08/10/04 12/17/04 03/29/05 08/10/04 12/17/04 03/09/05 08/10/04	350 350 350 430 430 440 430 580 590 600 310 320 310	<0.010 0.0061 <0.0081 <0.010 <0.010 <0.0081 <0.010 <0.010 <0.010 <0.0081	0.015 0.016 0.85 0.25 0.10 0.12 0.17 0.27 0.024	<0.010 <0.010 <0.0026 <0.010 <0.010 <0.0026 <0.010 <0.010 <0.011	<0.010 <0.020 0.013 0.0075 0.023 0.029 <0.020 <0.020 <0.020	390 400 300 380 270 270 270 270 330	<5.0 <5.0 <5.0 <5.0 <0.85 <0.85 <5.0 <5.0 100	390 400 300 380 270 270 270 270 430 420 430	20 20 21 20 20 20 20 25 22 24 18 19 18	RY - WELL RY - WELL 1.6 1.6 1.3 1.1 1.1 0.32 0.35 0.34 1.3 1.4 1.4	NOT S/ NOT S/ <0.021 <0.10 0.067 <0.021 <0.10 <0.10 <0.021 0.18 0.18 0.36	MPLED 370 390 420 680 1300 720 2500 2700 2600 230	1000 1000 1400 1500 3900 3900 3900 830 830 870 860	48 150 200 92 680 90 6.4 4.4 20 17 17	2.10 2.69 1.84 3.12 0.31 196 232 296 1.08	0.548 0.362 0.244 0.674 0.160 2.46 5.37 4.07 0.216	0.494 2.00 0.799 0.74 1.08 1.78 1.61 3.87 0.465	0.634 0.616 0.754 0.69 0.742 0.793 0.736 0.701	1500 1559 1405 1715 NT 12490 3570 4450 961 1412	7.71 7.95 7.96 7.72 NT 7.49 7.14 7.19 8.81				
MW-3 MW-4 MW-5	12/17/04 03/09/05 08/10/04 12/17/04 03/10/05 08/10/04 12/17/04 03/29/05 08/10/04 12/17/04 03/09/05 08/10/04 12/30/04	350 350 350 430 440 440 430 580 590 600 310 320	 <0.010 0.0061 <0.0081 <0.010 <0.010 <0.0081 <0.010 <0.010 <0.010 <0.0081 <0.0081 <0.0081 <0.0081 <0.010 	0.015 0.016 0.85 0.25 0.10 0.12 0.17 0.27 0.024 0.024	<0.010 <0.010 <0.0026 <0.010 <0.010 <0.0026 <0.010 <0.010 0.011 0.010	<0.010 <0.020 0.013 0.0075 0.023 0.029 <0.020 <0.020 <0.020 <0.0071 0.016	390 400 380 380 270 270 270 270 330 NR	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	390 400 300 380 390 270 270 270 430 420	D 20 19 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 22 24 18 19	RY - WELL RY - WELL 1.6 1.6 1.3 1.1 1.1 0.32 0.35 0.34 1.3 1.4	NOT S/ NOT S/ <0.021	MPLED 370 390 420 680 1300 720 2500 2700 2600 230 240	1000 1000 1400 1500 3900 3900 3900 830 830	48 150 200 92 680 90 6.4 4.4 20 17	2.10 2.69 1.84 3.12 0.31 196 232 296 1.08 0.563	0.548 0.362 0.244 0.674 0.160 2.46 5.37 4.07 0.216 0.222	0.494 2.00 0.799 0.74 1.08 1.61 3.87 0.465 0.379 1.12	0.634 0.616 0.754 0.69 0.742 0.793 0.736 0.701 0.670 0.670	1500 1559 1405 1715 NT 12490 3570 4450 961 1412	7.71 7.95 7.96 7.72 NT 7.49 7.14 7.19 8.81 8.47				
MW-3 MW-4 MW-5 MW-6 NMWQCC	12/17/04 03/09/05 08/10/04 12/17/04 03/10/05 08/10/04 12/17/04 03/29/05 08/10/04 12/17/04 03/09/05 08/10/04 12/30/04 03/09/05	350 350 350 430 430 440 430 430 580 590 600 310 320 310 NA	 <0.010 0.0061 <0.0081 <0.010 <0.010 <0.0081 <0.010 <0.010 <0.0081 <0.0081 <0.0081 <0.010 <0.010 <0.010 	0.015 0.016 0.85 0.25 0.10 0.12 0.17 0.27 0.024 0.024 0.022	<0.010	<0.010 <0.020 0.013 0.0075 0.023 <0.029 <0.020 <0.020 <0.0071 0.016 <0.020	390 400 380 270 270 270 270 330 NR 410	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 100 NR 13	390 400 300 380 270 270 270 270 430 420 430	20 20 21 20 20 20 20 25 22 24 18 19 18	RY - WELL RY - WELL 1.6 1.6 1.3 1.1 1.1 0.32 0.35 0.34 1.3 1.4 1.4	NOT S/ NOT S/ <0.021	MPLED 370 390 420 680 1300 720 2500 2700 2600 230 240 250	1000 1000 1400 1500 3900 3900 3900 830 830 870 860	48 150 200 92 680 90 6.4 4.4 20 17 17	2.10 2.69 1.84 3.12 0.31 196 232 296 1.08 0.563 1.30	0.548 0.362 0.244 0.674 0.160 2.46 5.37 4.07 0.216 0.222 0.327 30	0.494 2.00 0.799 0.74 1.08 1.78 1.61 3.87 0.465 0.379 1.12	0.634 0.616 0.754 0.69 0.742 0.793 0.736 0.701 0.670 0.670 0.632	1500 1559 1405 1715 NT 12490 3570 4450 961 1412 1332 NA	7.71 7.95 7.96 7.72 NT 7.49 7.14 7.19 8.81 8.47 8.19				
MW-3 MW-4 MW-5 MW-6 NMWQCC Bold values indicat	12/17/04 03/09/05 08/10/04 12/17/04 03/10/05 08/10/04 12/17/04 03/29/05 08/10/04 12/17/04 03/09/05 08/10/04 12/30/04 03/09/05 08/10/04	350 350 350 430 440 430 440 430 580 580 590 600 310 310 310 310 NA	<0.010 0.0061 <0.0081 <0.010 <0.010 <0.0081 <0.010 <0.010 <0.0081 <0.010 <0.010 NA	0.015 0.016 0.85 0.25 0.10 0.12 0.17 0.27 0.024 0.024 0.024 0.022 0.03	<0.010 <0.010 <0.0026 <0.010 <0.0026 <0.010 <0.010 <0.010 0.011 0.011 0.012 NA	<0.010 <0.020 0.013 0.0075 0.023 0.029 <0.020 <0.020 <0.020 <0.0071 0.016 <0.020 10.0*	390 400 300 380 390 270 270 270 270 330 NR 410 NA	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 100 NR 13	390 400 300 380 270 270 270 270 430 420 430	20 20 21 20 20 20 20 25 22 24 18 19 18	RY - WELL RY - WELL 1.6 1.6 1.3 1.1 1.1 0.32 0.35 0.34 1.3 1.4 1.4	NOT S/ NOT S/ <0.021	MPLED 370 390 420 680 1300 720 2500 2700 2600 230 240 250	1000 1000 1400 1500 3900 3900 3900 830 830 870 860	48 150 200 92 680 90 6.4 4.4 20 17 17	2.10 2.69 1.84 3.12 0.31 196 232 296 1.08 0.563 1.30	0.548 0.362 0.244 0.674 2.46 5.37 4.07 0.216 0.222 0.327 30 ystery W	0.494 2.00 0.799 0.74 1.08 1.78 1.61 3.87 0.465 0.379 1.12 ell Sampl	0.634 0.616 0.754 0.69 0.742 0.793 0.736 0.701 0.670 0.670 0.632 ing Res	1500 1559 1405 1715 NT 12490 3570 4450 4450 961 1412 1332 NA	7.71 7.95 7.96 7.72 NT 7.49 7.14 7.19 8.81 8.47 8.19 6 to 9				
MW-3 MW-4 MW-5 MW-6 NMWQCC Bold values indicat NMWQCC = New M	12/17/04 03/09/05 08/10/04 12/17/04 03/10/05 08/10/04 12/17/04 03/29/05 08/10/04 12/17/04 03/09/05 08/10/04 12/30/04 03/09/05 te exceedance of s Mexico Water Qual	350 350 350 430 440 430 580 590 600 600 310 320 310 NA standard lity Control	 <0.010 0.0061 <0.0081 <0.010 <0.010 <0.0081 <0.010 <0.010 <0.0081 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 NA Commission 	0.015 0.016 0.85 0.25 0.10 0.12 0.17 0.27 0.024 0.024 0.024 0.022 0.03	<0.010 <0.010 <0.0026 <0.010 <0.0026 <0.010 <0.010 <0.010 0.011 0.011 0.012 NA	<0.010 <0.020 0.013 0.0075 0.023 0.029 <0.020 <0.020 <0.020 <0.0071 0.016 <0.020 10.0*	390 400 300 380 390 270 270 270 270 330 NR 410 NA	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 100 NR 13	390 400 300 380 270 270 270 270 430 420 430	20 20 21 20 20 20 20 25 22 24 18 19 18	RY - WELL RY - WELL 1.6 1.6 1.3 1.1 1.1 0.32 0.35 0.34 1.3 1.4 1.4	NOT S/ NOT S/ <0.021	MPLED 370 390 420 680 1300 720 2500 2700 2600 230 240 250	1000 1000 1400 1500 3900 3900 3900 830 830 870 860	48 150 200 92 680 90 6.4 4.4 20 17 17	2.10 2.69 1.84 3.12 0.31 196 232 296 1.08 0.563 1.30 M Grab sa	0.548 0.362 0.244 0.674 0.160 2.46 5.37 4.07 0.216 0.222 0.327 30 ystery W mple colle	0.494 2.00 0.799 0.74 1.08 1.78 1.61 3.87 0.465 0.379 1.12 ell Sampl ected by N	0.634 0.616 0.754 0.69 0.742 0.793 0.736 0.701 0.670 0.670 0.632 ing Res	1500 1559 1405 1715 NT 12490 3570 4450 961 1412 1332 NA ults 6/30/200	7.71 7.95 7.96 7.72 NT 7.49 7.14 7.19 8.81 8.47 8.19 6 to 9				
MW-3 MW-4 MW-5 MW-6 NMWQCC Bold values indicat	12/17/04 03/09/05 08/10/04 12/17/04 03/10/05 08/10/04 12/17/04 03/29/05 08/10/04 12/17/04 03/09/05 08/10/04 12/30/04 03/09/05 te exceedance of s Mexico Water Qual	350 350 350 430 440 430 580 590 600 600 310 320 310 NA standard lity Control	 <0.010 0.0061 <0.0081 <0.010 <0.010 <0.0081 <0.010 <0.010 <0.0081 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 NA Commission 	0.015 0.016 0.85 0.25 0.10 0.12 0.17 0.27 0.024 0.024 0.024 0.022 0.03	<0.010 <0.010 <0.0026 <0.010 <0.0026 <0.010 <0.010 <0.010 0.011 0.011 0.012 NA	<0.010 <0.020 0.013 0.0075 0.023 0.029 <0.020 <0.020 <0.020 <0.0071 0.016 <0.020 10.0*	390 400 300 380 390 270 270 270 270 330 NR 410 NA	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 100 NR 13	390 400 300 380 270 270 270 270 430 420 430	20 20 21 20 20 20 20 25 22 24 18 19 18	RY - WELL RY - WELL 1.6 1.6 1.3 1.1 1.1 0.32 0.35 0.34 1.3 1.4 1.4	NOT S/ NOT S/ <0.021	MPLED 370 390 420 680 1300 720 2500 2700 2600 230 240 250	1000 1000 1400 1500 3900 3900 3900 830 830 870 860	48 150 200 92 680 90 6.4 4.4 20 17 17	2.10 2.69 1.84 3.12 0.31 196 232 296 1.08 0.563 1.30	0.548 0.362 0.244 0.674 0.160 2.46 5.37 4.07 0.216 0.222 0.327 30 ystery W mple colle	0.494 2.00 0.799 0.74 1.08 1.78 1.61 3.87 0.465 0.379 1.12 ell Sampl	0.634 0.616 0.754 0.69 0.742 0.793 0.736 0.701 0.670 0.670 0.632 ing Res	1500 1559 1405 1715 NT 12490 3570 4450 961 1412 1332 NA ults 6/30/200	7.71 7.95 7.96 7.72 NT 7.49 7.14 7.19 8.81 8.47 8.19 6 to 9				
MW-3 MW-4 MW-5 MW-6 MW-6 Bold values indicat NMWQCC = New N * = Standards for de for irrigation use NA = No limit availa	12/17/04 03/09/05 08/10/04 12/17/04 03/10/05 08/10/04 12/17/04 03/29/05 08/10/04 12/17/04 03/09/05 08/10/04 12/30/04 03/09/05 te exceedance of s Mexico Water Qual omestic water supp	350 350 350 430 440 430 580 590 600 600 310 320 310 NA standard lity Control	 <0.010 0.0061 <0.0081 <0.010 <0.010 <0.0081 <0.010 <0.010 <0.0081 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 NA Commission 	0.015 0.016 0.85 0.25 0.10 0.12 0.17 0.27 0.024 0.024 0.024 0.022 0.03	<0.010 <0.010 <0.0026 <0.010 <0.0026 <0.010 <0.010 <0.010 0.011 0.011 0.012 NA	<0.010 <0.020 0.013 0.0075 0.023 0.029 <0.020 <0.020 <0.020 <0.0071 0.016 <0.020 10.0*	390 400 300 380 270 270 270 270 330 NR 410 NA	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	390 400 300 380 270 270 270 270 270 430 420 430 NA	20 20 21 20 20 20 20 25 22 24 18 19 18	RY - WELL RY - WELL 1.6 1.6 1.3 1.1 1.1 0.32 0.35 0.34 1.3 1.4 1.4	NOT S/ NOT S/ <0.021	MPLED 370 390 420 680 1300 720 2500 2700 2600 230 240 250	1000 1000 1400 1500 3900 3900 3900 830 830 870 860	48 150 200 92 680 90 6.4 4.4 20 17 17 17 NA	2.10 2.69 1.84 3.12 0.31 196 232 296 1.08 0.563 1.30 M Grab sa Constituent ss Alpha w/Ai	0.548 0.362 0.244 0.674 2.46 5.37 4.07 0.216 0.222 0.327 30 ystery W mple colle	0.494 2.00 0.799 0.74 1.08 1.78 1.61 3.87 0.465 0.379 1.12 ell Sampl ected by N Unit pCi/L	0.634 0.616 0.754 0.69 0.742 0.793 0.736 0.701 0.670 0.670 0.632 mg Res MED on Result 23.20	1500 1559 1405 1715 NT 12490 3570 4450 961 1412 1332 NA ults 6/30/200 Unit mg/L	7.71 7.95 7.96 7.72 NT 7.49 7.14 7.19 8.81 8.47 8.19 6 to 9 6 to 9				
MW-3 MW-4 MW-5 MW-6 MW-6 NMWQCC Bold values indicat NMWQCC = New N * = Standards for do for irrigation use NA = No limit availa < = less than	12/17/04 03/09/05 08/10/04 12/17/04 03/10/05 08/10/04 12/17/04 03/29/05 08/10/04 12/17/04 03/09/05 08/10/04 12/30/04 03/09/05 te exceedance of s Mexico Water Qual omestic water suppable	350 350 350 430 440 430 580 590 600 600 310 320 310 NA standard lity Control	 <0.010 0.0061 <0.0081 <0.010 <0.010 <0.0081 <0.010 <0.010 <0.0081 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 NA Commission 	0.015 0.016 0.85 0.25 0.10 0.12 0.17 0.27 0.024 0.024 0.024 0.022 0.03	<0.010 <0.010 <0.0026 <0.010 <0.0026 <0.010 <0.010 <0.010 0.011 0.011 0.012 NA	<0.010 <0.020 0.013 0.0075 0.023 0.029 <0.020 <0.020 <0.020 <0.0071 0.016 <0.020 10.0*	390 400 300 380 270 270 270 270 330 NR 410 NA	<5.0 <5.0 <0.85 <5.0 <5.0 <5.0 <5.0 100 NR 13 NA	390 400 300 380 270 270 270 270 430 420 430 NA	D D 20 21 20 20 25 22 24 18 19 18 250*	RY - WELL RY - WELL 1.6 1.6 1.3 1.1 1.1 0.32 0.35 0.34 1.3 1.4 1.4 1.6	NOT S/ NOT S/ <0.021	MPLED 370 390 420 680 1300 720 2500 2700 2600 230 240 250	1000 1000 1400 1500 3900 3900 3900 830 830 870 860	48 150 200 92 680 90 6.4 4.4 20 17 17 17 NA	2.10 2.69 1.84 3.12 0.31 196 232 296 1.08 0.563 1.30 Grab sa Constituent ss Alpha w/Al	0.548 0.362 0.244 0.674 0.160 2.46 5.37 4.07 0.216 0.222 0.327 30 ystery W mple colle	0.494 2.00 0.799 0.74 1.08 1.78 1.61 3.87 0.465 0.379 1.12 ell Sample ected by N Unit pCi/L pCi/L	0.634 0.616 0.754 0.69 0.742 0.793 0.736 0.701 0.670 0.670 0.632 mED on Result 23.20 33.50	1500 1559 1405 1715 NT 12490 3570 4450 961 1412 1332 NA ults 6/30/200 Unit mg/L mg/L	7.71 7.95 7.96 7.72 NT 7.49 7.14 7.19 8.81 8.47 8.19 6 to 9 6 to 9 4 Estimated Equivalent 0.034 0.050				
MW-3 MW-4 MW-5 MW-6 NMWQCC Bold values indicat NMWQCC = New N * = Standards for do for irrigation use NA = No limit availa < = less than MW = Monitoring W	12/17/04 03/09/05 08/10/04 12/17/04 03/10/05 08/10/04 12/17/04 03/29/05 08/10/04 12/17/04 03/09/05 08/10/04 12/30/04 03/09/05 te exceedance of s Mexico Water Qual omestic water suppable	350 350 350 430 440 430 580 590 600 600 310 320 310 NA standard lity Control	 <0.010 0.0061 <0.0081 <0.010 <0.010 <0.0081 <0.010 <0.010 <0.0081 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 NA Commission 	0.015 0.016 0.85 0.25 0.10 0.12 0.17 0.27 0.024 0.024 0.024 0.022 0.03	<0.010 <0.010 <0.0026 <0.010 <0.0026 <0.010 <0.010 <0.010 0.011 0.011 0.012 NA	<0.010 <0.020 0.013 0.0075 0.023 0.029 <0.020 <0.020 <0.020 <0.020 <0.0071 0.016 <0.020 10.0* bund Wate	390 400 300 380 270 270 270 270 330 NR 410 NA r	<5.0 <5.0 <0.85 <5.0 <5.0 <5.0 <5.0 100 NR 13 NA	390 400 300 380 270 270 270 270 430 420 430 420 430 NA	D 20 19 20 21 20 25 22 24 18 19 18 250* rd is combi	RY - WELL RY - WELL 1.6 1.6 1.3 1.1 0.32 0.35 0.34 1.3 1.4 1.4 1.6 1.6 1.3 1.1 1.1 0.32 0.35 0.34 1.3 1.4 1.6	NOT \$/ NOT \$/ <0.021 <0.10 <0.001 <0.021 <0.021 <0.021 0.18 0.18 0.13 <0.10 10	MPLED 370 390 420 680 1300 720 2500 2700 2600 230 240 250 600*	1000 1000 1400 1500 3900 3900 3900 830 830 870 860	48 150 200 92 680 90 6.4 4.4 20 17 17 17 NA	2.10 2.69 1.84 3.12 0.31 196 232 296 1.08 0.563 1.30 Grab sa Constituent ss Alpha w/A ss Alpha w/C ss Beta w/Cs	0.548 0.362 0.244 0.674 0.160 2.46 5.37 4.07 0.216 0.222 0.327 30 ystery W mple colle m-241 U-nat s-137	0.494 2.00 0.799 0.74 1.08 1.78 1.61 3.87 0.465 0.379 1.12 ell Sampl ected by N Unit pCi/L pCi/L pCi/L	0.634 0.616 0.754 0.69 0.742 0.793 0.736 0.701 0.670 0.670 0.632 mED on Result 23.20 33.50 8.30	1500 1559 1405 1715 NT 12490 3570 4450 961 1412 1332 NA 0/200 Unit mg/L mg/L mg/L	7.71 7.95 7.96 7.72 NT 7.49 7.14 7.19 8.81 8.47 8.19 6 to 9 6 to 9 6 to 9				
MW-3 MW-4 MW-5 MW-6 MW-6 MW-6 MWQCC Bold values indicat NMWQCC = New M * = Standards for do for irrigation use NA = No limit availa < = less than MW = Monitoring W Dup = Duplicate	12/17/04 03/09/05 08/10/04 12/17/04 03/10/05 08/10/04 12/17/04 03/29/05 08/10/04 12/17/04 03/09/05 08/10/04 12/30/04 03/09/05 te exceedance of s Mexico Water Qual omestic water suppable	350 350 350 430 440 430 580 590 600 600 310 320 310 NA standard lity Control	 <0.010 0.0061 <0.0081 <0.010 <0.010 <0.0081 <0.010 <0.010 <0.0081 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 NA Commission 	0.015 0.016 0.85 0.25 0.10 0.12 0.17 0.27 0.024 0.024 0.024 0.022 0.03	<0.010 <0.010 <0.0026 <0.010 <0.0026 <0.010 <0.010 <0.010 0.011 0.011 0.012 NA	<0.010 <0.020 0.013 0.0075 0.023 0.029 <0.020 <0.020 <0.020 <0.020 <0.0071 0.016 <0.020 10.0* bund Wate	390 400 300 380 270 270 270 270 330 NR 410 NA r	<5.0 <5.0 <0.85 <5.0 <5.0 <5.0 <5.0 100 NR 13 NA	390 400 300 380 270 270 270 270 430 420 430 420 430 NA	D 20 19 20 21 20 25 22 24 18 19 18 250* rd is combi	RY - WELL RY - WELL 1.6 1.6 1.3 1.1 1.1 0.32 0.35 0.34 1.3 1.4 1.4 1.6	NOT \$/ NOT \$/ <0.021 <0.10 <0.001 <0.021 <0.021 <0.021 0.18 0.18 0.13 <0.10 10	MPLED 370 390 420 680 1300 720 2500 2700 2600 230 240 250 600*	1000 1000 1400 1500 3900 3900 3900 830 830 870 860	48 150 200 92 680 90 6.4 4.4 20 17 17 17 NA	2.10 2.69 1.84 3.12 0.31 196 232 296 1.08 0.563 1.30 Grab sa Constituent ss Alpha w/A ss Alpha w/A ss Beta w/Cs ss Beta w/Sr	0.548 0.362 0.244 0.674 0.160 2.46 5.37 4.07 0.216 0.222 0.327 30 ystery W mple colle m-241 U-nat s-137 /Y-90	0.494 2.00 0.799 0.74 1.08 1.78 1.61 3.87 0.465 0.379 1.12 ell Sampl ected by N Unit pCi/L pCi/L pCi/L pCi/L	0.634 0.616 0.754 0.69 0.742 0.793 0.736 0.701 0.670 0.670 0.632 MED on Result 23.20 33.50 8.30 7.90	1500 1559 1405 1715 NT 12490 3570 4450 961 1412 1332 NA 0/200 Unit mg/L mg/L mg/L	7.71 7.95 7.96 7.72 NT 7.49 7.14 7.19 8.81 8.47 8.19 6 to 9 6 to 9 6 to 9 4 Estimated Equivalent 0.034 0.050 0.012 0.012				
MW-3 MW-4 MW-5 MW-6 NMWQCC Bold values indicat NMWQCC = New N * = Standards for do for irrigation use NA = No limit availa < = less than MW = Monitoring W	12/17/04 03/09/05 08/10/04 12/17/04 03/10/05 08/10/04 12/17/04 03/29/05 08/10/04 12/17/04 03/09/05 08/10/04 12/30/04 03/09/05 te exceedance of s Mexico Water Qual omestic water supp able Vell	350 350 350 430 440 430 580 590 600 600 310 320 310 NA standard lity Control	 <0.010 0.0061 <0.0081 <0.010 <0.010 <0.0081 <0.010 <0.010 <0.0081 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 NA Commission 	0.015 0.016 0.85 0.25 0.10 0.12 0.17 0.27 0.024 0.024 0.024 0.022 0.03	<0.010 <0.010 <0.0026 <0.010 <0.0026 <0.010 <0.010 <0.010 0.011 0.011 0.012 NA	<0.010 <0.020 0.013 0.0075 0.023 0.029 <0.020 <0.020 <0.020 <0.020 <0.0071 0.016 <0.020 10.0* bund Wate	390 400 300 380 270 270 270 270 330 NR 410 NA r	<5.0 <5.0 <0.85 <5.0 <5.0 <5.0 <5.0 100 NR 13 NA	390 400 300 380 270 270 270 270 430 420 430 420 430 NA	D 20 19 20 21 20 25 22 24 18 19 18 250* rd is combi	RY - WELL RY - WELL 1.6 1.6 1.3 1.1 0.32 0.35 0.34 1.3 1.4 1.4 1.6 1.6 1.3 1.1 1.1 0.32 0.35 0.34 1.3 1.4 1.6	NOT \$/ NOT \$/ <0.021 <0.10 <0.001 <0.021 <0.021 <0.021 0.18 0.18 0.13 <0.10 10	MPLED 370 390 420 680 1300 720 2500 2700 2600 230 240 250 600*	1000 1000 1400 1500 3900 3900 3900 830 830 870 860	48 150 200 92 680 90 6.4 4.4 20 17 17 17 NA	2.10 2.69 1.84 3.12 0.31 196 232 296 1.08 0.563 1.30 Grab sa Constituent ss Alpha w/A ss Alpha w/C ss Beta w/Cs	0.548 0.362 0.244 0.674 0.160 2.46 5.37 4.07 0.216 0.222 0.327 30 ystery W mple colle m-241 U-nat s-137 /Y-90 centration	0.494 2.00 0.799 0.74 1.08 1.78 1.61 3.87 0.465 0.379 1.12 ell Sampl exted by N Unit pCi/L pCi/L pCi/L pCi/L	0.634 0.616 0.754 0.69 0.742 0.793 0.736 0.701 0.670 0.670 0.632 mED on Result 23.20 33.50 8.30	1500 1559 1405 1715 NT 12490 3570 4450 961 1412 1332 NA 0/200 Unit mg/L mg/L mg/L	7.71 7.95 7.96 7.72 NT 7.49 7.14 7.19 8.81 8.47 8.19 6 to 9 6 to 9 6 to 9				
MW-3 MW-4 MW-5 MW-6 MW-6 NMWQCC Bold values indicat NMWQCC = New M * = Standards for dc for irrigation use NA = No limit availa < = less than MW = Monitoring W Dup = Duplicate pCi/L = picocuries p	12/17/04 03/09/05 08/10/04 12/17/04 03/10/05 08/10/04 12/17/04 03/29/05 08/10/04 12/17/04 03/09/05 08/10/04 12/30/04 03/09/05 08/10/04 12/30/04 03/09/05 te exceedance of s Mexico Water Qual omestic water supp able Vell per liter per liter per liter by analytical labora	350 350 350 430 430 430 430 580 580 590 600 600 310 320 310 310 310 320 310 ** = Sta	 <0.010 0.0061 <0.0081 <0.010 <0.010 <0.0081 <0.010 <0.010	0.015 0.016 0.85 0.25 0.10 0.12 0.17 0.27 0.024 0.024 0.024 0.022 0.03	<0.010 <0.010 <0.0026 <0.010 <0.0026 <0.010 <0.010 <0.010 0.011 0.011 0.012 NA	<0.010 <0.020 0.013 0.0075 0.023 0.029 <0.020 <0.020 <0.020 <0.020 <0.0071 0.016 <0.020 10.0* bund Wate	390 400 300 380 270 270 270 270 330 NR 410 NA r	<5.0 <5.0 <0.85 <5.0 <5.0 <5.0 <5.0 100 NR 13 NA	390 400 300 380 270 270 270 270 430 420 430 420 430 NA	D 20 19 20 21 20 25 22 24 18 19 18 250* rd is combi	RY - WELL RY - WELL 1.6 1.6 1.3 1.1 0.32 0.35 0.34 1.3 1.4 1.4 1.6 1.6 1.3 1.1 1.1 0.32 0.35 0.34 1.3 1.4 1.6	NOT \$/ NOT \$/ <0.021 <0.10 <0.001 <0.021 <0.021 <0.021 0.18 0.18 0.13 <0.10 10	MPLED 370 390 420 680 1300 720 2500 2700 2600 230 240 250 600*	1000 1000 1400 1500 3900 3900 3900 830 830 870 860	48 150 200 92 680 90 6.4 4.4 20 17 17 17 NA	2.10 2.69 1.84 3.12 0.31 196 232 296 1.08 0.563 1.30 M Grab sa Constituent ss Alpha w/A ss Alpha w/A ss Beta w/Cs ss Beta w/Sr n, Mass Conc	0.548 0.362 0.244 0.674 0.160 2.46 5.37 4.07 0.216 0.222 0.327 30 ystery W mple colle m-241 U-nat s-137 /Y-90 centration	0.494 2.00 0.799 0.74 1.08 1.78 1.61 3.87 0.465 0.379 1.12 ell Sampl ected by N Unit pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L	0.634 0.616 0.754 0.69 0.742 0.793 0.736 0.701 0.670 0.670 0.632 mED on Result 23.20 33.50 8.30 7.90 <1.00	1500 1559 1405 1715 NT 12490 3570 4450 961 1412 1332 NA 0/200 Unit mg/L mg/L mg/L mg/L	7.71 7.95 7.96 7.72 NT 7.49 7.14 7.19 8.81 8.47 8.19 6 to 9 6 to 9 6 to 9 4 Estimated Equivalent 0.034 0.050 0.012 0.012 <0.001				

θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ								
0.016 <0.0020								
0.018 <0.00020 0.0093 <0.040 1.6 <0.015 0.0011 0.10 <0.00025								
0.10 <0.00025 0.0066 <0.0042 2.7 <0.0046 <0.00070 0.086 <0.00020			<0.00020		0.0027			
0.086 <0.00020 0.0043 <0.040 2.1 <0.015 0.00038 0.084 <0.00020		0.018	<0.00020	0.0093	<0.040	1.6	<0.015	0.0011
0.086 <0.00020								
0.084 <0.00020 0.0064 <0.040 2.2 <0.015 0.0020 0.38 <0.00020 0.0032 <0.040 3.3 <0.015 <0.0070 0.15 <0.00020 0.0032 <0.040 3.3 <0.015 <0.0016 0.2 <0.00020 <0.0021 <0.0042 7.6 <0.0046 <0.00070 0.29 <0.00020 <0.022 <0.0042 <0.040 7.1 <0.015 <0.00085 0.27 <0.00020 <0.017 <0.0042 3.5 <0.015 <0.00081 0.034 <0.00020 <0.012 <0.040 2.7 <0.015 <0.00067 0.2* <0.002 <0.012 <0.040 2.7 <0.015 <0.0067 0.2* <0.002 <0.12 <0.040 2.7 <0.015 <0.0067 0.2* <0.002 <0.12 <0.040 2.7 <0.015 <0.0067 0.2* <0.002 <0.12 <0.040 2.7 <0.015 <0.0067 </td <th></th> <td>0.10</td> <td>< 0.000025</td> <td>0.0066</td> <td>< 0.0042</td> <td>2.7</td> <td><0.0046</td> <td><0.00070</td>		0.10	< 0.000025	0.0066	< 0.0042	2.7	<0.0046	<0.00070
0.38 <0.000025 0.011 <0.0042 4.9 <0.0066 <0.00070 0.15 <0.00020		0.086	<0.00020	0.0043	<0.040	2.1	<0.015	0.00038
0.15 <0.00020 0.0032 <0.040 3.9 <0.015 <0.010 0.2 <0.00020			<0.00020	0.0064	<0.040	2.2	<0.015	0.0020
0.2 <0.00020 0.0047 <0.040 4.4 <0.00050 0.00066 0.40 <0.000025 <0.0023 <0.0042 7.6 <0.0046 <0.00070 0.29 <0.00020 <0.020 0.0025 7.2 <0.015 0.00081 0.27 <0.00020 0.0024 3.5 <0.015 0.00081 0.0014 <0.00020 0.017 0.0024 3.5 <0.015 0.00081 0.0033 <0.0020 0.012 <0.040 2.7 <0.015 0.00067 0.2* 0.002 1.0** 0.2** NA 0.05 0.05 0.2* 0.002 1.0** 0.2** NA 0.05 0.05 0.02 1.0** 0.2** NA 0.05 0.05 0.02 1.0** 0.2** NA 0.05 0.05 0.03 2 2.69 3.23 0.849 1026 8.52 0.70 36 2.21 1.29 0.731 <th< td=""><th></th><td></td><td></td><td>0.011</td><td></td><td></td><td></td><td></td></th<>				0.011				
0.40 <0.000025 <0.0023 <0.0024 <0.0015 <0.0015 <0.00016 <0.00001 <0.0025 <0.22 <0.00025 <0.22 <0.015 0.00085 0.27 <0.00020			<0.00020		<0.040		<0.015	<0.010
0.29 <0.00020 <0.020 0.0025 7.2 <0.015 0.00085 0.27 <0.00020 0.0024 <0.040 7.1 <0.015 0.00081 0.014 <0.00020 0.0124 <0.040 7.1 <0.015 0.00070 0.053 <0.0020 0.017 0.0024 3.5 <0.015 0.00087 0.034 <0.0020 0.012 <0.040 2.7 <0.015 0.00067 0.2* 0.002 1.0** 0.2** NA 0.05 0.05 0.2* 0.002 1.0** 0.2** NA 0.05 0.05 0.00 2.5 2.69 3.23 0.849 1026 8.52 470 36 2.21 1.29 0.731 1487 8.33 310 12.9 0.842 1.59 0.595 1430 8.39 5200 1.84 0.244 0.793 1487 7.72 68 48 2.10 0.548						4.4		
0.27 <0.00020 0.0024 <0.040 7.1 <0.015 0.00081 0.0014 <0.000025								
0.0014 <0.00025 0.013 <0.0042 16 <0.0046 <0.00070 0.053 <0.00020								
0.053 <0.0020 0.017 0.0024 3.5 <0.015 0.00038 0.034 <0.00020								
0.034 <0.0020 0.012 <0.040 2.7 <0.015 0.00067 0.2* 0.002 1.0** 0.2** NA 0.05 0.05 PCi/L A 0.05 0.05 0.03 0.02 1.0** 0.2** NA 0.05 0.05 PCi/L A 0.05 0.05 0.03 0.02 0.2* 0.05 0.05 0.05 0.05 0.02 0.75 E 0.75 E 0.75 E 0.75 E 0.75 E 0.75 H 0.75 H 0.75 H 0.75 H 0.77 1.487 8.33 310 12.9 0.842 1.59 0.595 1430 8.39 Prime 0.731 1027 7.86 48 2.10 0.674 0.744 1405 7.96 92 3.12 0.674 0.741 1405 7.96 92 3.12]							
0.2* 0.002 1.0** 0.2** NA 0.05 0.05 population pci/L Ai Ai 0.05 0.05 population go construction go construction<								
pc//L pc//L <th< td=""><th></th><td>0.034</td><td></td><td>0.012</td><td><0.040</td><td>2.7</td><td>< 0.015</td><td>0.00067</td></th<>		0.034		0.012	<0.040	2.7	< 0.015	0.00067
Φθ Φ σ sn o sn o ret p Φ C C E Φ m m Φ m Φ m <thφ m</thφ 		0.2*	0.002	1.0**	0.2**	NA	0.05	0.05
Φθ Φ σ sn o sn o ret p Φ C C E Φ m m Φ m Φ m <thφ m</thφ 								
5300 225 2.69 3.23 0.849 1026 8.52 470 36 2.21 1.29 0.703 1487 8.33 310 12.9 0.842 1.59 0.595 1430 8.39 67 1.01 0.233 0.232 0.731 1027 7.86 48 2.10 0.548 0.494 0.634 1500 7.71 150 2.69 0.362 2.00 0.616 1559 7.95 200 1.84 0.244 0.799 0.754 1405 7.96 92 3.12 0.674 0.74 0.69 1715 7.72 680 0.31 0.160 1.08 0.742 NT NT 90 196 2.46 1.78 0.793 12490 7.49 6.4 232 5.37 1.61 0.736 3570 7.14 4.4 296 4.07 3.87 0.701 1412				pCi/l	_		Ż	is)
5300 225 2.69 3.23 0.849 1026 8.52 470 36 2.21 1.29 0.703 1487 8.33 310 12.9 0.842 1.59 0.595 1430 8.39 67 1.01 0.233 0.232 0.731 1027 7.86 48 2.10 0.548 0.494 0.634 1500 7.71 150 2.69 0.362 2.00 0.616 1559 7.95 200 1.84 0.244 0.799 0.754 1405 7.96 92 3.12 0.674 0.74 0.69 1715 7.72 680 0.31 0.160 1.08 0.742 NT NT 90 196 2.46 1.78 0.793 12490 7.49 6.4 232 5.37 1.61 0.736 3570 7.14 4.4 296 4.07 3.87 0.701 1412		ed					(c	Jnit
5300 225 2.69 3.23 0.849 1026 8.52 470 36 2.21 1.29 0.703 1487 8.33 310 12.9 0.842 1.59 0.595 1430 8.39 67 1.01 0.233 0.232 0.731 1027 7.86 48 2.10 0.548 0.494 0.634 1500 7.71 150 2.69 0.362 2.00 0.616 1559 7.95 200 1.84 0.244 0.799 0.754 1405 7.96 92 3.12 0.674 0.74 0.69 1715 7.72 680 0.31 0.160 1.08 0.742 NT NT 90 196 2.46 1.78 0.793 12490 7.49 6.4 232 5.37 1.61 0.736 3570 7.14 4.4 296 4.07 3.87 0.701 1412		pu	26	-)	28	-)	luc /cm	ЧС
5300 225 2.69 3.23 0.849 1026 8.52 470 36 2.21 1.29 0.703 1487 8.33 310 12.9 0.842 1.59 0.595 1430 8.39 67 1.01 0.233 0.232 0.731 1027 7.86 48 2.10 0.548 0.494 0.634 1500 7.71 150 2.69 0.362 2.00 0.616 1559 7.95 200 1.84 0.244 0.799 0.754 1405 7.96 92 3.12 0.674 0.74 0.69 1715 7.72 680 0.31 0.160 1.08 0.742 NT NT 90 196 2.46 1.78 0.793 12490 7.49 6.4 232 5.37 1.61 0.736 3570 7.14 4.4 296 4.07 3.87 0.701 1412		sp ds	n 2	,+, (+, 2	n 2	n 2 (+/	bud os,	ld)
5300 225 2.69 3.23 0.849 1026 8.52 470 36 2.21 1.29 0.703 1487 8.33 310 12.9 0.842 1.59 0.595 1430 8.39 67 1.01 0.233 0.232 0.731 1027 7.86 48 2.10 0.548 0.494 0.634 1500 7.71 150 2.69 0.362 2.00 0.616 1559 7.95 200 1.84 0.244 0.799 0.754 1405 7.96 92 3.12 0.674 0.74 0.69 1715 7.72 680 0.31 0.160 1.08 0.742 NT NT 90 196 2.46 1.78 0.793 12490 7.49 6.4 232 5.37 1.61 0.736 3570 7.14 4.4 296 4.07 3.87 0.701 1412		sus soli	liur	or	liur	or	ŏĘ	Hd
5300 225 2.69 3.23 0.849 1026 8.52 470 36 2.21 1.29 0.703 1487 8.33 310 12.9 0.842 1.59 0.595 1430 8.39 67 1.01 0.233 0.232 0.731 1027 7.86 48 2.10 0.548 0.494 0.634 1500 7.71 150 2.69 0.362 2.00 0.616 1559 7.95 200 1.84 0.244 0.799 0.754 1405 7.96 92 3.12 0.674 0.74 0.69 1715 7.72 680 0.31 0.160 1.08 0.742 NT NT 90 196 2.46 1.78 0.793 12490 7.49 6.4 232 5.37 1.61 0.736 3570 7.14 4.4 296 4.07 3.87 0.701 1412		al	łac	kac err	łac	kac err	n)	p
5300 225 2.69 3.23 0.849 1026 8.52 470 36 2.21 1.29 0.703 1487 8.33 310 12.9 0.842 1.59 0.595 1430 8.39 67 1.01 0.233 0.232 0.731 1027 7.86 48 2.10 0.548 0.494 0.634 1500 7.71 150 2.69 0.362 2.00 0.616 1559 7.95 200 1.84 0.244 0.799 0.754 1405 7.96 92 3.12 0.674 0.74 0.69 1715 7.72 680 0.31 0.160 1.08 0.742 NT NT 90 196 2.46 1.78 0.793 12490 7.49 6.4 232 5.37 1.61 0.732 1322 8.19 NA 30 0.327 1.12 0.632 1332		ot	Ľ.	Ľ.	ĽĽ.	ĽĽ.	i.	in the second se
470 36 2.21 1.29 0.703 1487 8.33 310 12.9 0.842 1.59 0.595 1430 8.39 67 1.01 0.233 0.232 0.731 1027 7.86 48 2.10 0.548 0.494 0.634 1500 7.71 150 2.69 0.362 2.00 0.616 1559 7.95 200 1.84 0.244 0.799 0.754 1405 7.96 92 3.12 0.674 0.74 0.69 1715 7.72 680 0.31 0.160 1.08 0.742 NT NT 90 196 2.46 1.78 0.793 12490 7.49 6.4 232 5.37 1.61 0.736 3570 7.14 4.4 296 4.07 3.87 0.701 4450 7.19 20 1.08 0.216 0.465 0.670 961		H 1					_	<u> </u>
310 12.9 0.842 1.59 0.595 1430 8.39 67 1.01 0.233 0.232 0.731 1027 7.86 48 2.10 0.548 0.494 0.634 1500 7.71 150 2.69 0.362 2.00 0.616 1559 7.95 200 1.84 0.244 0.799 0.754 1405 7.96 92 3.12 0.674 0.74 0.69 1715 7.72 680 0.31 0.160 1.08 0.742 NT NT 90 196 2.46 1.78 0.793 12490 7.49 6.4 232 5.37 1.61 0.736 3570 7.14 4.4 296 4.07 3.87 0.701 4450 7.19 20 1.08 0.216 0.465 0.670 961 8.81 17 1.30 0.327 1.12 0.632 1332	1	-	225	2.00	2.02	0.040		
67 1.01 0.233 0.232 0.731 1027 7.86 48 2.10 0.548 0.494 0.634 1500 7.71 150 2.69 0.362 2.00 0.616 1559 7.95 200 1.84 0.244 0.799 0.754 1405 7.96 92 3.12 0.674 0.74 0.69 1715 7.72 680 0.31 0.160 1.08 0.742 NT NT 90 196 2.46 1.78 0.736 3570 7.14 4.4 296 4.07 3.87 0.701 4450 7.19 20 1.08 0.216 0.465 0.670 961 8.81 17 0.563 0.222 0.379 0.670 1412 8.47 17 1.30 0.327 1.12 0.632 1332 8.19 NA 30 NA 6 to 9 0.050 mg/L		5300					1026	8.52
48 2.10 0.548 0.494 0.634 1500 7.71 150 2.69 0.362 2.00 0.616 1559 7.95 200 1.84 0.244 0.799 0.754 1405 7.96 92 3.12 0.674 0.74 0.69 1715 7.72 680 0.31 0.160 1.08 0.742 NT NT 90 196 2.46 1.78 0.793 12490 7.49 6.4 232 5.37 1.61 0.736 3570 7.14 4.4 296 4.07 3.87 0.701 4450 7.19 20 1.08 0.216 0.465 0.670 961 8.81 17 0.563 0.222 0.379 0.670 1412 8.47 17 1.30 0.327 1.12 0.632 1332 8.19 NA 30 V NA 6 to 9 0.012		5300 470	36	2.21	1.29	0.703	1026 1487	8.52 8.33
48 2.10 0.548 0.494 0.634 1500 7.71 150 2.69 0.362 2.00 0.616 1559 7.95 200 1.84 0.244 0.799 0.754 1405 7.96 92 3.12 0.674 0.74 0.69 1715 7.72 680 0.31 0.160 1.08 0.742 NT NT 90 196 2.46 1.78 0.793 12490 7.49 6.4 232 5.37 1.61 0.736 3570 7.14 4.4 296 4.07 3.87 0.701 4450 7.19 20 1.08 0.216 0.465 0.670 961 8.81 17 0.563 0.222 0.379 0.670 1412 8.47 17 1.30 0.327 1.12 0.632 1332 8.19 NA 30 V NA 6 to 9 0.012		5300 470	36	2.21	1.29	0.703	1026 1487	8.52 8.33
48 2.10 0.548 0.494 0.634 1500 7.71 150 2.69 0.362 2.00 0.616 1559 7.95 200 1.84 0.244 0.799 0.754 1405 7.96 92 3.12 0.674 0.74 0.69 1715 7.72 680 0.31 0.160 1.08 0.742 NT NT 90 196 2.46 1.78 0.793 12490 7.49 6.4 232 5.37 1.61 0.736 3570 7.14 4.4 296 4.07 3.87 0.701 4450 7.19 20 1.08 0.216 0.465 0.670 961 8.81 17 0.563 0.222 0.379 0.670 1412 8.47 17 1.30 0.327 1.12 0.632 1332 8.19 NA 30 V NA 6 to 9 0.012		5300 470	36	2.21	1.29	0.703	1026 1487	8.52 8.33
150 2.69 0.362 2.00 0.616 1559 7.95 200 1.84 0.244 0.799 0.754 1405 7.96 92 3.12 0.674 0.74 0.69 1715 7.72 680 0.31 0.160 1.08 0.742 NT NT 90 196 2.46 1.78 0.793 12490 7.49 6.4 232 5.37 1.61 0.736 3570 7.14 4.4 296 4.07 3.87 0.701 4450 7.19 20 1.08 0.216 0.465 0.670 961 8.81 17 0.563 0.222 0.379 0.670 1412 8.47 17 1.30 0.327 1.12 0.632 1332 8.19 NA 30 V NA 6 to 9 MA 50 Grab sample collected by NMED on 6/30/2004 Gr		5300 470 310	36 12.9	2.21 0.842	1.29 1.59	0.703 0.595	1026 1487 1430	8.52 8.33 8.39
200 1.84 0.244 0.799 0.754 1405 7.96 92 3.12 0.674 0.74 0.69 1715 7.72 680 0.31 0.160 1.08 0.742 NT NT 90 196 2.46 1.78 0.793 12490 7.49 6.4 232 5.37 1.61 0.736 3570 7.14 4.4 296 4.07 3.87 0.701 4450 7.19 20 1.08 0.216 0.465 0.670 961 8.81 17 0.563 0.222 0.379 0.670 1412 8.47 17 1.30 0.327 1.12 0.632 1332 8.19 NA 30 NA 6 to 9 9 Mystery Well Sampling Results Grab sample collected by NMED on 6/30/2004 Constituent Unit Result Unit Estimated Equivalent Gross Alpha		5300 470 310 67	36 12.9 1.01	2.21 0.842 0.233	1.29 1.59 0.232	0.703 0.595 0.731	1026 1487 1430 1027	8.52 8.33 8.39 7.86
92 3.12 0.674 0.74 0.69 1715 7.72 680 0.31 0.160 1.08 0.742 NT NT 90 196 2.46 1.78 0.793 12490 7.49 6.4 232 5.37 1.61 0.736 3570 7.14 4.4 296 4.07 3.87 0.701 4450 7.19 20 1.08 0.216 0.465 0.670 961 8.81 17 0.563 0.222 0.379 0.670 1412 8.47 17 1.30 0.327 1.12 0.632 1332 8.19 NA 30 NA 6 to 9 9 6.409 6.409 Mystery Well Sampling Results Grab sample collected by NMED on 6/30/2004 Constituent Unit Result Unit Estimated Equivalent Gross Alpha w/Am-241 pCi/L 23.20 mg/L 0.034		5300 470 310 67 48	36 12.9 1.01 2.10	2.21 0.842 0.233 0.548	1.29 1.59 0.232 0.494	0.703 0.595 0.731 0.634	1026 1487 1430 1027 1500	8.52 8.33 8.39 7.86 7.71
680 0.31 0.160 1.08 0.742 NT NT 90 196 2.46 1.78 0.793 12490 7.49 6.4 232 5.37 1.61 0.736 3570 7.14 4.4 296 4.07 3.87 0.701 4450 7.19 20 1.08 0.216 0.465 0.670 961 8.81 17 0.563 0.222 0.379 0.670 1412 8.47 17 1.30 0.327 1.12 0.632 1332 8.19 NA 30 X X K K K Grab sample collected by NMED on 6/30/2004 Constituent Unit Result Unit Estimated Equivalent Gross Alpha w/Am-241 pCi/L 23.20 mg/L 0.034 Gross Beta w/Cs-137 pCi/L 33.50 mg/L 0.012 Gross Beta w/Sr/Y-90 pCi/L 7.90 mg/L 0.01		5300 470 310 67 48 150	36 12.9 1.01 2.10 2.69	2.21 0.842 0.233 0.548 0.362	1.29 1.59 0.232 0.494 2.00	0.703 0.595 0.731 0.634 0.616	1026 1487 1430 1027 1500 1559	8.52 8.33 8.39 7.86 7.71 7.95
90 196 2.46 1.78 0.793 12490 7.49 6.4 232 5.37 1.61 0.736 3570 7.14 4.4 296 4.07 3.87 0.701 4450 7.19 20 1.08 0.216 0.465 0.670 961 8.81 17 0.563 0.222 0.379 0.670 1412 8.47 17 1.30 0.327 1.12 0.632 1332 8.19 NA 30 NA 6 to 9 Mystery Well Sampling Results Grab sample collected by NMED on 6/30/2004 Constituent Unit Result Unit Estimated Equivalent Gross Alpha w/Am-241 pCi/L 23.20 mg/L 0.034 Gross Alpha w/Cs-137 pCi/L 33.50 mg/L 0.012 Gross Beta w/Cs-137 pCi/L 8.30 mg/L 0.012 Uranium, Mass Concentration µg/L <1.00		5300 470 310 67 48 150 200	36 12.9 1.01 2.10 2.69 1.84	2.21 0.842 0.233 0.548 0.362 0.244	1.29 1.59 0.232 0.494 2.00 0.799	0.703 0.595 0.731 0.634 0.616 0.754	1026 1487 1430 1027 1500 1559 1405	8.52 8.33 8.39 7.86 7.71 7.95 7.96
6.4 232 5.37 1.61 0.736 3570 7.14 4.4 296 4.07 3.87 0.701 4450 7.19 20 1.08 0.216 0.465 0.670 961 8.81 17 0.563 0.222 0.379 0.670 1412 8.47 17 1.30 0.327 1.12 0.632 1332 8.19 NA 30 NA 6 to 9 Mystery Well Sampling Results Grab sample collected by NMED on 6/30/2004 Constituent Unit Result Unit Estimated Equivalent Gross Alpha w/Am-241 pCi/L 23.20 mg/L 0.034 Gross Alpha w/U-nat pCi/L 33.50 mg/L 0.012 Gross Beta w/Cs-137 pCi/L 8.30 mg/L 0.012 Gross Beta w/Sr/Y-90 pCi/L 7.90 mg/L 0.012 Uranium, Mass Concentration µg/L <1.00		5300 470 310 67 48 150 200 92	36 12.9 1.01 2.10 2.69 1.84 3.12	2.21 0.842 0.233 0.548 0.362 0.244 0.674	1.29 1.59 0.232 0.494 2.00 0.799 0.74	0.703 0.595 0.731 0.634 0.616 0.754 0.69	1026 1487 1430 1027 1500 1559 1405 1715	8.52 8.33 8.39 7.86 7.71 7.95 7.96 7.72
4.4 296 4.07 3.87 0.701 4450 7.19 20 1.08 0.216 0.465 0.670 961 8.81 17 0.563 0.222 0.379 0.670 1412 8.47 17 1.30 0.327 1.12 0.632 1332 8.19 NA 30 NA 6 to 9 Mystery Well Sampling Results Grab sample collected by NMED on 6/30/2004 Constituent Unit Result Unit Estimated Equivalent Gross Alpha w/Am-241 pCi/L 23.20 mg/L 0.034 Gross Alpha w/U-nat pCi/L 33.50 mg/L 0.012 Gross Beta w/Cs-137 pCi/L 8.30 mg/L 0.012 Uranium, Mass Concentration µg/L <1.00		5300 470 310 67 48 150 200 92 680	36 12.9 1.01 2.10 2.69 1.84 3.12 0.31	2.21 0.842 0.233 0.548 0.362 0.244 0.674 0.160	1.29 1.59 0.232 0.494 2.00 0.799 0.74 1.08	0.703 0.595 0.731 0.634 0.616 0.754 0.69 0.742	1026 1487 1430 1027 1500 1559 1405 1715 NT	8.52 8.33 8.39 7.86 7.71 7.95 7.96 7.72 NT
17 0.563 0.222 0.379 0.670 1412 8.47 17 1.30 0.327 1.12 0.632 1332 8.19 NA 30 NA 6 to 9 Mystery Well Sampling Results Grab sample collected by NMED on 6/30/2004 Constituent Unit Result Unit Estimated Equivalent Gross Alpha w/Am-241 pCi/L 23.20 mg/L 0.034 Gross Alpha w/Cs-137 pCi/L 33.50 mg/L 0.050 Gross Beta w/Cs-137 pCi/L 8.30 mg/L 0.012 Uranium, Mass Concentration µg/L <1.00		5300 470 310 67 48 150 200 92 680 90	36 12.9 1.01 2.10 2.69 1.84 3.12 0.31 196	2.21 0.842 0.233 0.548 0.362 0.244 0.674 0.160 2.46	1.29 1.59 0.232 0.494 2.00 0.799 0.74 1.08 1.78	0.703 0.595 0.731 0.634 0.616 0.754 0.69 0.742 0.793	1026 1487 1430 1027 1500 1559 1405 1715 NT 12490	8.52 8.33 8.39 7.86 7.71 7.95 7.96 7.72 NT 7.49
17 1.30 0.327 1.12 0.632 1332 8.19 NA 30 NA 6 to 9 Mystery Well Sampling Results Grab sample collected by NMED on 6/30/2004 Constituent Unit Result Unit Estimated Equivalent Gross Alpha w/Am-241 pCi/L 23.20 mg/L 0.034 Gross Alpha w/Am-241 pCi/L 33.50 mg/L 0.050 Gross Beta w/Cs-137 pCi/L 8.30 mg/L 0.012 Gross Beta w/Sr/Y-90 pCi/L 7.90 mg/L 0.012 Uranium, Mass Concentration µg/L <1.00		5300 470 310 67 48 150 200 92 680 90 6.4	36 12.9 1.01 2.10 2.69 1.84 3.12 0.31 196 232	2.21 0.842 0.233 0.548 0.362 0.244 0.674 0.160 2.46 5.37	1.29 1.59 0.232 0.494 2.00 0.799 0.74 1.08 1.78 1.61	0.703 0.595 0.731 0.634 0.616 0.754 0.69 0.742 0.793 0.736	1026 1487 1430 1430 1500 1559 1405 1715 NT 12490 3570	8.52 8.33 8.39 7.86 7.71 7.95 7.96 7.72 NT 7.49 7.14
NA30NA6 to 9Mystery Well Sampling ResultsGrab sample collected by NMED on 6/30/2004ConstituentUnitResultUnitEstimated EquivalentGross Alpha w/Am-241pCi/L23.20mg/L0.034Gross Alpha w/Am-241pCi/L33.50mg/L0.050Gross Beta w/Cs-137pCi/L8.30mg/L0.012Gross Beta w/Sr/Y-90pCi/L7.90mg/L0.012Uranium, Mass Concentrationµg/L<1.00		5300 470 310 67 48 150 200 92 680 90 6.4 4.4	36 12.9 1.01 2.10 2.69 1.84 3.12 0.31 196 232 296	2.21 0.842 0.233 0.548 0.362 0.244 0.674 0.160 2.46 5.37 4.07	1.29 1.59 0.232 0.494 2.00 0.799 0.74 1.08 1.78 1.61 3.87	0.703 0.595 0.731 0.634 0.616 0.754 0.69 0.742 0.793 0.736 0.701	1026 1487 1430 1430 1500 1559 1405 1715 NT 12490 3570 4450	8.52 8.33 8.39 7.86 7.71 7.95 7.96 7.72 NT 7.49 7.14 7.19
Mystery Well Sampling Results Grab sample collected by NMED on 6/30/2004 Constituent Unit Result Unit Estimated Equivalent Gross Alpha w/Am-241 pCi/L 23.20 mg/L 0.034 Gross Alpha w/Am-241 pCi/L 33.50 mg/L 0.050 Gross Alpha w/U-nat pCi/L 8.30 mg/L 0.012 Gross Beta w/Cs-137 pCi/L 7.90 mg/L 0.012 Uranium, Mass Concentration µg/L <1.00		5300 470 310 67 48 150 200 92 680 90 6.4 4.4 20	36 12.9 1.01 2.10 2.69 1.84 3.12 0.31 196 232 296 1.08	2.21 0.842 0.233 0.548 0.548 0.362 0.244 0.674 0.160 2.46 5.37 4.07 0.216	1.29 1.59 0.232 0.494 2.00 0.799 0.74 1.08 1.78 1.61 3.87 0.465	0.703 0.595 0.731 0.634 0.616 0.754 0.69 0.742 0.793 0.736 0.701 0.670	1026 1487 1430 1027 1500 1559 1405 1715 NT 12490 3570 4450 961	8.52 8.33 8.39 7.86 7.71 7.95 7.96 7.72 NT 7.49 7.14 7.19 8.81
Grab sample collected by NMED on 6/30/2004ConstituentUnitResultUnitEstimated EquivalentGross Alpha w/Am-241pCi/L23.20mg/L0.034Gross Alpha w/ U-natpCi/L33.50mg/L0.050Gross Beta w/Cs-137pCi/L8.30mg/L0.012Gross Beta w/Sr/Y-90pCi/L7.90mg/L0.012Uranium, Mass Concentrationµg/L<1.00		5300 470 310 67 48 150 200 92 680 90 6.4 4.4 20 17	36 12.9 1.01 2.10 2.69 1.84 3.12 0.31 196 232 296 1.08 0.563	2.21 0.842 0.233 0.548 0.362 0.244 0.674 0.160 2.46 5.37 4.07 0.216 0.222	1.29 1.59 0.232 0.494 2.00 0.799 0.74 1.08 1.78 1.61 3.87 0.465 0.379	0.703 0.595 0.731 0.634 0.616 0.754 0.69 0.742 0.793 0.736 0.701 0.670 0.670	1026 1487 1430 1027 1500 1559 1405 1715 NT 12490 3570 4450 961 1412	8.52 8.33 8.39 7.86 7.71 7.95 7.96 7.72 NT 7.49 7.14 7.19 8.81 8.47
Grab sample collected by NMED on 6/30/2004ConstituentUnitResultUnitEstimated EquivalentGross Alpha w/Am-241pCi/L23.20mg/L0.034Gross Alpha w/ U-natpCi/L33.50mg/L0.050Gross Beta w/Cs-137pCi/L8.30mg/L0.012Gross Beta w/Sr/Y-90pCi/L7.90mg/L0.012Uranium, Mass Concentrationµg/L<1.00		5300 470 310 67 48 150 200 92 680 90 6.4 4.4 20 17 17	36 12.9 1.01 2.10 2.69 1.84 3.12 0.31 196 232 296 1.08 0.563	2.21 0.842 0.233 0.548 0.362 0.244 0.160 2.46 5.37 4.07 0.216 0.222 0.327	1.29 1.59 0.232 0.494 2.00 0.799 0.74 1.08 1.78 1.61 3.87 0.465 0.379	0.703 0.595 0.731 0.634 0.616 0.754 0.69 0.742 0.793 0.736 0.701 0.670 0.670	1026 1487 1430 1027 1500 1559 1405 1715 NT 12490 3570 4450 961 1412 1332	8.52 8.33 8.39 7.86 7.71 7.95 7.96 7.72 NT 7.49 7.14 7.19 8.81 8.47 8.19
ConstituentUnitResultUnitEstimated EquivalentGross Alpha w/Am-241pCi/L23.20mg/L0.034Gross Alpha w/ U-natpCi/L33.50mg/L0.050Gross Beta w/Cs-137pCi/L8.30mg/L0.012Gross Beta w/Sr/Y-90pCi/L7.90mg/L0.012Uranium, Mass Concentrationµg/L<1.00		5300 470 310 67 48 150 200 92 680 90 6.4 4.4 20 17 17	36 12.9 1.01 2.10 2.69 1.84 3.12 0.31 1.84 3.12 0.31 1.96 232 296 1.08 0.563 1.30	2.21 0.842 0.233 0.548 0.362 0.244 0.674 0.674 0.674 0.674 0.674 0.246 5.37 4.07 0.216 0.222 0.327 30	1.29 1.59 0.232 0.494 2.00 0.799 0.74 1.08 1.78 1.61 3.87 0.465 0.379 1.12	0.703 0.595 0.595 0.634 0.616 0.754 0.69 0.742 0.793 0.736 0.701 0.670 0.670 0.632	1026 1487 1430 1027 1500 1559 1405 1715 NT 12490 3570 4450 961 1412 1332 NA	8.52 8.33 8.39 7.86 7.71 7.95 7.96 7.72 NT 7.49 7.14 7.19 8.81 8.47 8.19
Constituent Unit Result Unit Equivalent Gross Alpha w/Am-241 pCi/L 23.20 mg/L 0.034 Gross Alpha w/Unat pCi/L 33.50 mg/L 0.050 Gross Beta w/Cs-137 pCi/L 8.30 mg/L 0.012 Gross Beta w/Sr/Y-90 pCi/L 7.90 mg/L 0.012 Uranium, Mass Concentration µg/L <1.00		5300 470 310 67 48 150 200 92 680 90 6.4 4.4 20 17 17	36 12.9 1.01 2.10 2.69 1.84 3.12 0.31 196 232 296 1.08 0.563 1.30	2.21 0.842 0.233 0.548 0.362 0.244 0.674 0.674 0.674 0.674 0.160 2.46 5.37 4.07 0.216 0.222 0.327 30 ystery Wo	1.29 1.59 0.232 0.494 2.00 0.799 0.74 1.08 1.61 3.87 0.465 0.379 1.12 ell Sampli	0.703 0.595 0.595 0.634 0.616 0.754 0.69 0.742 0.793 0.736 0.701 0.670 0.670 0.632 ng Resu	1026 1487 1430 1027 1500 1559 1405 1715 NT 12490 3570 4450 961 1412 1332 NA	8.52 8.33 8.39 7.86 7.71 7.95 7.96 7.72 NT 7.49 7.14 7.19 8.81 8.47 8.19 6 to 9
Gross Alpha w/ U-nat pCi/L 33.50 mg/L 0.050 Gross Beta w/Cs-137 pCi/L 8.30 mg/L 0.012 Gross Beta w/Sr/Y-90 pCi/L 7.90 mg/L 0.012 Uranium, Mass Concentration μg/L <1.00		5300 470 310 67 48 150 200 92 680 90 6.4 4.4 20 17 17	36 12.9 1.01 2.10 2.69 1.84 3.12 0.31 196 232 296 1.08 0.563 1.30	2.21 0.842 0.233 0.548 0.362 0.244 0.674 0.674 0.674 0.674 0.160 2.46 5.37 4.07 0.216 0.222 0.327 30 ystery Wo	1.29 1.59 0.232 0.494 2.00 0.799 0.74 1.08 1.61 3.87 0.465 0.379 1.12 ell Sampli	0.703 0.595 0.595 0.634 0.616 0.754 0.69 0.742 0.793 0.736 0.701 0.670 0.670 0.632 ng Resu	1026 1487 1430 1027 1500 1559 1405 1715 NT 12490 3570 4450 961 1412 1332 NA	8.52 8.33 8.39 7.86 7.71 7.95 7.96 7.72 NT 7.49 7.14 7.19 8.81 8.47 8.19 6 to 9
Gross Beta w/Cs-137 pCi/L 8.30 mg/L 0.012 Gross Beta w/Sr/Y-90 pCi/L 7.90 mg/L 0.012 Uranium, Mass Concentration μg/L <1.00		5300 470 310 67 48 150 200 92 680 90 6.4 4.4 20 17 17 17 NA	36 12.9 1.01 2.69 1.84 3.12 0.31 196 232 296 1.08 0.563 1.30 M Grab sat	2.21 0.842 0.233 0.548 0.362 0.244 0.674 0.674 0.674 0.674 0.246 5.37 4.07 0.216 0.222 0.327 30 ystery Wo	1.29 1.59 1.59 0.232 0.494 2.00 0.799 0.74 1.08 1.78 1.61 3.87 0.465 0.379 1.12 ell Sampli cted by Ni Unit	0.703 0.595 0.595 0.634 0.616 0.754 0.69 0.742 0.793 0.736 0.701 0.670 0.670 0.632 MED on Result	1026 1487 1430 1027 1509 1405 1715 NT 12490 3570 4450 961 1412 1332 NA Ilts 6/30/200	8.52 8.33 8.39 7.86 7.71 7.95 7.96 7.72 NT 7.49 7.14 7.19 8.81 8.47 8.19 6 to 9 6 to 9
Gross Beta w/Sr/Y-90 pCi/L 7.90 mg/L 0.012 Uranium, Mass Concentration µg/L <1.00		5300 470 310 67 48 150 200 92 680 90 6.4 4.4 20 17 17 17 NA	36 12.9 1.01 2.69 1.84 3.12 0.31 196 232 296 1.08 0.563 1.30 M Grab sat	2.21 0.842 0.233 0.548 0.362 0.244 0.674 0.674 0.674 0.674 0.246 5.37 4.07 0.216 0.222 0.327 30 ystery Wo	1.29 1.59 0.232 0.494 2.00 0.799 0.74 1.08 1.78 1.61 3.87 0.465 0.379 1.12 ell Sampli cted by Ni Unit pCi/L	0.703 0.595 0.595 0.634 0.616 0.754 0.69 0.742 0.793 0.736 0.701 0.670 0.670 0.632 MED on Result	1026 1487 1430 1027 1500 1559 1405 1715 NT 12490 3570 4450 961 1412 1332 NA 1412 1332 NA 1415 6/30/200 Unit	8.52 8.33 8.39 7.86 7.71 7.95 7.96 7.72 NT 7.49 7.14 7.19 8.81 8.47 8.19 6 to 9 6 to 9
Uranium, Mass Concentration µg/L <1.00 mg/L <0.001		5300 470 310 67 48 150 200 92 680 90 6.4 4.4 20 17 17 17 NA Gros Gros	36 12.9 1.01 2.69 1.84 3.12 0.31 196 232 296 1.08 0.563 1.30 M Grab sa Constituent s Alpha w/ A	2.21 0.842 0.233 0.548 0.362 0.244 0.674 0.674 0.674 0.246 5.37 4.07 0.216 0.222 0.327 30 ystery Wo mple colle	1.29 1.59 0.232 0.494 2.00 0.799 0.74 1.08 1.78 1.61 3.87 0.465 0.379 1.12 ell Sampli cted by Ni Unit pCi/L	0.703 0.595 0.595 0.634 0.616 0.754 0.69 0.742 0.793 0.736 0.701 0.670 0.670 0.670 0.670 0.670 0.632 MED on Result 23.20	1026 1487 1430 1027 1500 1559 1405 1715 NT 12490 3570 4450 961 1412 1332 NA ilts 6/30/200 Unit mg/L	8.52 8.33 8.39 7.86 7.71 7.95 7.96 7.72 NT 7.49 7.14 7.19 8.81 8.47 8.19 6 to 9 6 to 9
		5300 470 310 67 48 150 200 92 680 90 6.4 4.4 20 17 17 17 NA Gros Gros	36 12.9 1.01 2.69 1.84 3.12 0.31 196 232 296 1.08 0.563 1.30 M Grab sa Constituent s Alpha w/ A	2.21 0.842 0.233 0.548 0.362 0.244 0.674 0.674 0.674 0.246 5.37 4.07 0.216 0.222 0.327 30 ystery Wo mple colle	1.29 1.59 0.232 0.494 2.00 0.799 0.74 1.08 1.78 1.61 3.87 0.465 0.379 1.12 ell Sampli cted by Ni Unit pCi/L pCi/L	0.703 0.595 0.731 0.634 0.616 0.754 0.69 0.742 0.793 0.736 0.701 0.670 0.670 0.670 0.632 0.670 0.632 MED on Result 23.20 33.50	1026 1487 1430 1487 1430 1559 1500 1559 1405 1715 NT 12490 3570 4450 961 1412 1332 NA 1412 1332 NA 1412 1332 NA	8.52 8.33 8.39 7.86 7.71 7.95 7.96 7.72 NT 7.49 7.14 7.19 8.81 8.47 8.19 6 to 9 6 to 9 4 Estimated Equivalent 0.034 0.050
Radium-226, SDWA Method pCi/L 8.21 mg/L 0.012		5300 470 310 67 48 150 200 92 680 90 6.4 4.4 20 17 17 17 NA Gros Gros Gro Gros	36 12.9 1.01 2.69 1.84 3.12 0.31 196 232 296 1.08 0.563 1.30 M Grab sat Constituent s Alpha w/At ss Beta w/Cs	2.21 0.842 0.233 0.548 0.362 0.244 0.674 0.674 0.674 0.246 5.37 4.07 0.216 0.222 0.327 30 ystery Wo mple colle	1.29 1.59 0.232 0.494 2.00 0.799 0.74 1.08 1.78 1.61 3.87 0.465 0.379 1.12 ell Sampli cted by Ni Unit pCi/L pCi/L pCi/L	0.703 0.595 0.731 0.634 0.616 0.754 0.69 0.742 0.793 0.736 0.701 0.670 0.670 0.670 0.632 MED on Result 23.20 33.50 8.30	1026 1487 1430 1027 1500 1559 1405 1715 NT 12490 3570 4450 961 1412 1332 NA 961 1412 1332 NA 1412 1332 NA	8.52 8.33 8.39 7.86 7.71 7.95 7.96 7.72 NT 7.49 7.14 7.19 8.81 8.47 8.19 6 to 9 6 to 9 4 Estimated Equivalent 0.034 0.050 0.012
		5300 470 310 67 48 150 200 92 680 90 92 680 90 6.4 4.4 20 17 17 NA Cros Gros Gros Gros	36 12.9 1.01 2.69 1.84 3.12 0.31 196 232 296 1.08 0.563 1.30 M Grab sai Constituent s Alpha w/ I ss Beta w/Cs ss Beta w/Sr	2.21 0.842 0.233 0.548 0.362 0.244 0.674 0.160 2.46 5.37 4.07 0.216 0.222 0.327 30 ystery Wo mple colle	1.29 1.59 0.232 0.494 2.00 0.799 0.74 1.08 1.78 1.61 3.87 0.465 0.379 1.12 0.465 0.379 1.12 ell Sampli cted by Ni Unit pCi/L pCi/L pCi/L	0.703 0.595 0.731 0.634 0.616 0.754 0.793 0.742 0.793 0.736 0.701 0.670 0.670 0.670 0.632 MED on Result 23.20 33.50 8.30 7.90	1026 1487 1430 1027 1500 1559 1405 1715 NT 12490 3570 4450 961 1412 1332 NA 961 1412 1332 NA JIts 6/30/200 Unit mg/L mg/L	8.52 8.33 8.39 7.86 7.71 7.95 7.96 7.72 NT 7.49 7.14 7.19 8.81 8.47 8.19 6 to 9 6 to 9 6 to 9 4 Estimated Equivalent 0.034 0.050 0.012 0.012
		5300 470 310 67 48 150 200 92 680 90 6.4 4.4 200 90 6.4 4.4 20 17 17 17 NA Gros Gros Gros Gros Gros Gros Gros	36 12.9 1.01 2.69 1.84 3.12 0.31 196 232 296 1.08 0.563 1.30 M Grab sar Constituent s Alpha w/Ar ss Alpha w/A ss Beta w/Sr ss Beta w/Sr	2.21 0.842 0.233 0.548 0.362 0.244 0.160 2.46 5.37 4.07 0.216 0.222 0.327 30 ystery Wo mple colle m-241 J-nat s-137 /Y-90 centration	1.29 1.59 0.232 0.494 2.00 0.799 0.74 1.08 1.61 3.87 0.465 0.379 1.12 0.465 0.379 1.12 ell Sampli cted by Ni Unit pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L	0.703 0.595 0.731 0.634 0.616 0.754 0.793 0.742 0.793 0.736 0.701 0.670 0.670 0.632 0.670 0.632 MED on Result 23.20 33.50 8.30 7.90 <1.00	1026 1487 1430 1027 1500 1559 1405 1715 NT 12490 3570 4450 961 1412 1332 NA 961 1412 1332 NA Unit mg/L mg/L mg/L mg/L	8.52 8.33 8.39 7.86 7.71 7.95 7.96 7.72 NT 7.49 7.14 7.19 8.81 8.47 8.19 6 to 9 6 to 9 6 to 9 6 to 9 4 Estimated Equivalent 0.034 0.050 0.012 0.012 <0.001

TABLE 3 ARROYO SAMPLE ANALYTICAL RESULTS ST. ANTHONY STATUS REPORT

		1										mg/L										
SAMPLE ID	DATE	Aluminum	Arsenic	Barium	Beryllium	Boron	Cadmium	Calcium	Chromium	Cobalt	Copper	uou	Lead	Magnesium	Manganese	Mercury	Molybdenum	Nickel	Potassium	Selenium	Silver	Sodium
Arroyo	6/29/2004	0.045	< 0.0049	0.048	< 0.00041	0.047	<0.00027	150	<0.0021	0.00081	< 0.00097	0.15	<0.0021	26	0.022	0.000056	0.0024	< 0.0042	11	< 0.0046	<0.00070	32
Alloy0 AS-N	8/21/2004	0.043	< 0.0049	0.048	< 0.00041	0.047	<0.00027	250	<0.0021	< 0.00067	0.0032	0.051	<0.0021	32	0.022	0.000030	< 0.0024	< 0.0042	13	<0.0046	<0.00070	34
AS-S	8/21/2004	0.035	< 0.0049	0.048	< 0.00041	0.051	< 0.00027	150	< 0.0021	< 0.00067	0.003	0.04	<0.0021	21	0.016	< 0.000025	0.0023	<0.0042	7.3	0.0054	<0.00070	24
	to Downstream	^	=	1	=	1	=	I	=	=	1	1	=	Ţ	1	I	^	=	-	*	=	1
	Effect			Ļ		¥		Ŷ			Ļ	¥		•	Ļ	+			¥			¥
AS-N	9/22/2004 9/22/2004	< 0.02	< 0.0049	0.054	< 0.00041	0.035	< 0.00027	210	< 0.0021	< 0.00067	0.0012	0.034	0.0026	23	0.0015	0.000042	0.0030	< 0.0042	10	< 0.0046	0.0013	14
AS-S	to Downstream	<0.02	0.0053	0.063	<0.00041	0.093	<0.00027	250	<0.0021	0.0028	<0.00097	0.87	<0.0021	35	1.0	<0.000025	0.0035	<0.0042	6.6	<0.0046	0.0011	42
	Effect	=	1	↑	=	↑	=	Î	=	1	\downarrow	1	\downarrow	1	↑	\downarrow	1	=	\downarrow	=	\downarrow	↑
AS-N	10/15/2004	<0.10	0.0035	0.03	< 0.005	0.053	< 0.005	58	0.0013	<0.01	<0.01	0.034	< 0.003	15	0.0046	< 0.0002	< 0.02	< 0.04	10	0.0047	0.0014	12
AS-S	10/15/2004	0.16	<0.015	0.047	<0.005	0.059	<0.005	150	<0.01	0.002	<0.01	0.16	0.0025	23	0.47	<0.0002	<0.02	<0.04	6.2	0.0078	0.00074	19
	to Downstream Effect	\uparrow	ND	↑	=	Ŷ	=	1	ND	ND	=	↑	ND	Ŷ	1	=	=	=	\downarrow	\uparrow	\downarrow	\uparrow
AS-N	12/17/2004	<0.10	<0.015	0.029	<0.0050	0.032	<0.0050	64	<0.010	0.0029	<0.010	0.030	<0.0030	11	0.0073	<0.00020	<0.020	<0.040	7.4	<0.015	0.00056	10
AS-S	12/17/2004	<0.10	<0.015	0.022	<0.0050	0.037	<0.0050	140	<0.010	0.0078	<0.010	0.033	<0.0030	23	0.22	<0.00020	<0.020	0.0029	6.9	<0.015	0.00054	26
	to Downstream Effect	=	=	\downarrow	=	1	=	↑	=	↑	=	1	=	1	↑	=	=	ND	\downarrow	=	\downarrow	↑
	Liloot																					
								mg/	Ľ									pCi/L				
SAMPLE ID	DATE	Thallium	Uranium	Vanadium	Zinc	Total Dissolved Solids	Total Suspended Solids	Bicarbonate Alkalinity	Carbonate Alkalinity	Total Alkalinity	Chloride	Fluoride	Nitrate-Nitrite	Sulfate	Radium 226	Radium 226 error (+/-)	Radium 228	Radium 228 error (+/-)	Gross Alpha	Gross Alpha error (+/-)	Gross Beta	Gross Beta error (+/-)
A	6/29/2004	<0.0081	0.28	.0.0000	0.0074	700	<u> </u>	40	<0.85	40	2.0	0.46	2	400	2.00	0.422	0.0004	0.050	250	20	CO 4	0.00
Arroyo AS-N	8/21/2004	<0.0081	0.28	<0.0026	<0.0071 <0.0071	790 1100	69 3500	48 69	<0.85	48 69	3.8 5.9	0.46	3 0.98	480 570	3.98 0.223	0.422	-0.0621 1.31	0.656	356 675	32 90.4	69.1 472	9.39 124
AS-N AS-S	8/21/2004	< 0.0081	0.0014	< 0.0026	<0.0071	130	1700	59	<0.85	59	9	0.63	1.6	340	1.21	0.273	-0.155	0.562	869	98.9	678	124
	to Downstream		•		=			1		1	 ↑		•	1			1		1		A.	
	Effect	=		=		↓	Ļ	Ŷ	=	Ļ	-			↓			\downarrow					
AS-N	9/22/2004	< 0.0081	0.00087	< 0.0026	< 0.0071	930	170	67	<0.85	67	4.2	0.42	1.3	500	0.00	0.144	0.484	0.730	0.697	1.57	11.5	23.1
AS-S	9/22/2004 to Downstream	<0.0081	0.0059	<0.0026	0.041	1200	660	120	<0.85	120	17	0.72	0.18	720	2.07	0.254	1.54	0.651	81.1	11.7	64.2	9.49
	Effect	=	1	=	↑	1	1	↑	=	↑	1	1	\downarrow	1	↑		1		1		↑	
AS-N	10/15/2004	< 0.01	0.0020	< 0.01	< 0.02	340	480	91	<5.0	91	13	13	0.16	130	1.22	0.213	3.46	1	23.5	3.6	36.4	4.22
AS-S	10/15/2004	< 0.01	0.0042	< 0.01	<0.02	740	470	120	<5.0	120	8.1	8.1	0.5	400	0.623	0.173	4.1	1.27	12.2	2.52	47.5	2.42
	to Downstream Effect	=	↑	=	=	1	↓	Ŷ	=	↑	↓	\downarrow	↑	1	↓		↑		\leftarrow		Ŷ	
AS-N	12/17/2004	<0.010	0.0088	<0.010	0.0050	310	NS	79	<5.0	79	7.1	0.28	NS	140	0.365	0.25	0.438	0.659	19.7	2.18	18.6	1.06
AS-S	12/17/2004	<0.010	0.42	<0.010	0.0067	820	NS	110	<5.0	110	6.1	0.30	NS	430	6.13	0.902	0.757	0.632	287	16.6	40.8	2.38
	to Downstream Effect	=	↑	=	↑	↑		↑	=	↑	L.	↑		↑	↑		↑		↑		↑ (
"Arroyo" san ND = Not dis NS = Insuffic	nple was collected cernable because ient sample volum = Not Applicable	of less that	an detecti	on limit res	sult	not ana	Notes: Nitrate-Nitr				is combine	d										

AS = Arroyo Sample pCi/L = picocuries per liter mg/L = milligrams per liter

TABLE 4 PIT WATER SAMPLE ANALYTICAL RESULTS ST. ANTHONY MINE STATUS REPORT

														mg/L				_						
SAMPLE ID	LOCATION	DATE	Aluminum	Arsenic	Barium	Beryllium	Boron	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Molybdenum	Nickel	Potassium	Selenium	Silver	Sodium	Thallium
LP-1	~11 foot depth	9/17/2004	0.081	0.011	0.11	0.0016	1.8	< 0.00027	480	< 0.0021	0.0012	< 0.00097	0.19	<0.0021	1300	0.37	<0.000025	0.0038	< 0.0042	68	< 0.0046	< 0.00070	8000	0.0086
-	~10.5-foot depth ~10.5-foot depth	12/30/2004 3/8/2005	0.071	0.032	0.074 0.039	0.0014 0.0012	1.5 1.5	<0.0050 <0.0050	410 390	0.0030	0.0082	0.0029	0.16	<0.0030 <0.010	1400 1200	<0.010 <0.010	<0.00020 <0.00020	0.0035	0.0062	50 48	0.035	0.00040	6600 6500	0.028
LP-2	surface water	9/17/2004	0.062	0.0081	0.000	0.0012	1.8	<0.00027	470	<0.0021	<0.00067	< 0.00097	0.14	<0.0021	1200	0.0074	<0.00020	0.0055	<0.0042	64	<0.0046	<0.00033	7700	0.0084
	surface water	12/30/2004	0.11	0.024	0.081	0.0012	1.4	0.00054	420	0.0022	0.0059	0.0018	0.20	< 0.0030	1100	<0.010	<0.00020	0.0043	0.0055	49	0.025	<0.010	6300	0.019
-	surface water	3/8/2005	0.070	0.0040	0.042	0.0012	1.3	< 0.0050	390	<0.010	<0.010	0.069	0.12	<0.0070	1000	<0.010	<0.00020	0.0030	< 0.040	43	<0.015	0.0011	5700	0.0061
SP-1	~0.5 foot depth	9/17/2004	<0.020	<0.0049	0.072	<0.00041	0.043	<0.00027		<0.0021	< 0.00067	< 0.00097	0.046	<0.0021	46	0.014	<0.000025	< 0.0023	<0.0042	10	<0.0046	<0.00070	9.3	<0.0081
	surface water	12/30/2004	<0.10	<0.015	0.047	<0.0050	0.040	<0.0050	200	<0.010	0.0022	<0.010	0.036	<0.0030	53	0.016	<0.00020	<0.020	0.0039	12	<0.015	0.00072	11	<0.010
	surface water	3/10/2005	<0.10	< 0.015	0.036	< 0.0050	0.039	<0.0050	190	<0.010	<0.010	<0.010	0.040	<0.0030	51	0.0026	<0.00020	<0.020	0.0026	15	<0.015	0.0023	12	<0.010
Pit 1	Unknown	12/5/2000	<0.1	< 0.025	<0.1	<0.05	1.1	< 0.1		<1.0	< 0.5	< 0.1	<0.1	< 0.005	810	<0.05	0.004	<0.1	<0.1	37.7	0.005	<0.1	4500	
Pit 1 Pit 1	Unknown Unknown	10/5/2000 11/16/1978	<0.05	<0.005 <0.005	0.1		1.32	<0.005 <0.001		<0.01	<0.01	<0.01		<0.005 <0.005			<0.001	0.0096		5.07	<0.005 <0.005		641.7	
Pit 1	Unknown	10/26/1977		0.005	0.1			<0.001						<0.005				0.0098		5.07	0.005		724.5	
1 11 1	NMWQCC	10/20/10/1	5.0**	0.000	1.0	NA	0.75**	0.01	NA	0.05	0.05**	1.0*	1.0*	0.05	NA	0.2*	0.002	1.0**	0.2**	NA	0.015	0.05	NA	NA
		<u> </u>																	-					
				mg/L pCi/L														nce						
SAMPLE ID	LOCATION	DATE	Uranium	Vanadium	Zinc	Total Dissolved Solids	Total Suspended Solids	Bicarbonate Alkalinity	Carbonate Alkalinity	Total Alkalinity	Chloride	Fluoride	Nitrate-Nitrite	Sulfate	Radium 226	Radium 226 error (+/-)	Radium 228	Radium 228 error (+/-)	Gross Alpha	Gross Alpha error (+/-)	Gross Beta	Gross Beta error (+/-)	Specific Conductar (uhmos/cm)	pH (pH Units)
LP-1	~11 foot depth	9/17/2004	4.4	<0.0026	0.0092	32000	22	110	87	200	140	0.82	<0.021	22000	16.4	1.55	1.27	0.675	3050	240	423	181	29000	9.0
	~10.5 foot depth	12/30/2004	4.6	<0.010	<0.020	29000	7.2	120	67	190	140	0.68	<0.10	19000	12.2	0.862	1.07	0.661	3800	259	712	88.8	26000	8.9
	~10.5-foot depth	3/8/2005	4.4	<0.010	0.011	27000	6.0	150	44	190	120	0.64	0.051	18000	10.8	0.758	0.742	0.622	3930	296	867	67.0	25000	8.8
LP-2	surface water	9/17/2004	4.5	< 0.0026	< 0.0071	31000	8.4	40	110	150	140	0.83	<0.021	25000	22.9	1.72	1.93	0.914	3390	255	336	31.5	28000	9.6
	surface water	12/30/2004	4.2	<0.010	< 0.020	27000	6.8	97	66	160	130	0.72	<0.10	18000	9.72	0.852	1.87	0.654	3450	245	720	79.6	25000	9.0
SP-1	surface water ~0.5 foot depth	3/8/2005 9/17/2004	4.5	<0.010	0.010	23000 970	4.4	140 67	37 <0.85	180 67	120 2.3	0.72 0.29	0.045	16000 560	10.1 7.55	0.717	0.889	0.579	3650 116	245 8.76	962 16.2	80.3 3.93	22000 1200	<u>8.8</u> 7.5
36-1	surface water	12/30/2004	0.11 0.15	<0.0020	<0.020	1100	<4.0	70	< 5.0	70	2.3	0.29	<0.021	750	6.70	0.745	2.49	0.614	162	11.9	29.2	2.620	1200	7.0
	surface water	3/10/2005	0.16	<0.010	<0.020	990	4.0	67	<5.0	67	3.5	0.22	<0.10	640	6.65	0.609	0.879	0.609	139	8.98	38.2	3.23	1300	7.7
Pit 1	Unknown	12/5/2000	4	<10.0	<0.1	17800	1.0	127	0	127	112	0.21	<0.1	13200	9.48	0.000	0.010	0.000	2780	0.00	1060	0.20	17040	8.2
Pit 1		10/5/2000	3	< 0.01	<0.025				_				-						1060		1170		17500	8.9
PILI	Unknown							284.7		284.7	20.1		2.25	2038.3	90				2100				3998	
Pit 1	Unknown	11/16/1978	5.5	<0.27	0.02	2493		204.7															45.40	
	Unknown Unknown		2.5			1378					23.5			2151.1	180								4549	8.18
Pit 1	Unknown	11/16/1978		<0.27	0.02		NA	NA	NA	NA	23.5 250*	1.6	10.0	2151.1 600*	180	3	0.0		1	NA	1	NA	4549 NA	8.18 6 to 9
Pit 1 Pit 1	Unknown Unknown NMWQCC ic locations of the F	11/16/1978 10/26/1977 Pit 1 samples is	2.5 0.03 s unknown	NA	10.0*	1378	NA		NA	NA		1.6	10.0	-	180	3	0.0			Pi	Sampling		NA	
Pit 1 Pit 1 The specifi	Unknown Unknown NMWQCC ic locations of the F = Indicate the consti	11/16/1978 10/26/1977 Pit 1 samples is ituent was not a	2.5 0.03 s unknown	NA	10.0*	1378	NA		NA	NA		1.6	10.0	-	180	3	0.0		Gra	Pi r ab sample c	Sampling	Results NMED on 6	NA /30/2004	6 to 9 Estimated
Pit 1 Pit 1 The specifi Bold values	Unknown Unknown NMWQCC ic locations of the F = Indicate the consti s indicate exceedance	11/16/1978 10/26/1977 Pit 1 samples is ituent was not a ce of standard	2.5 0.03 s unknown nalyzed for	NA In the samp	10.0*	1378 1000*	NA		NA	NA		1.6	10.0	-	180	3	0.0		Gra	Pi r ab sample c nt	Sampling ollected by Unit	Results NMED on 6 Result	NA /30/2004 Unit	6 to 9 Estimated Equivalent
Pit 1 Pit 1 The specifi Bold values	Unknown Unknown NMWQCC ic locations of the F = Indicate the consti s indicate exceedanc = New Mexico Water	11/16/1978 10/26/1977 Pit 1 samples is ituent was not a ce of standard r Quality Contro	2.5 0.03 s unknown nalyzed for	NA In the samp	10.0*	1378 1000*	NA		NA	NA		1.6	10.0	-	180	3	0.0		Gra Constitue s Alpha w/	Pi r ab sample c nt Am-241	Sampling ollected by Unit pCi/L	Results NMED on 6 Result 3320.00	NA /30/2004 Unit mg/L	6 to 9 Estimated Equivalent 4.91
Pit 1 Pit 1 The specifi Bold values NMWQCC = * = Standard	Unknown Unknown NMWQCC ic locations of the F = Indicate the consti s indicate exceedanc = New Mexico Water ds for domestic water	11/16/1978 10/26/1977 Pit 1 samples is ituent was not a ce of standard r Quality Contro	2.5 0.03 s unknown nalyzed for	NA In the samp	10.0*	1378 1000*	NA	NA	NA	NA		1.6	10.0	-	180	3	0.0	Gro	Gra Constitue s Alpha w/ ss Alpha w	Pin ab sample c nt Am-241 // U-nat	Sampling ollected by Unit pCi/L pCi/L	Results NMED on 6 Result 3320.00 4320.00	NA /30/2004 Unit mg/L mg/L	6 to 9 Estimated Equivalent 4.91 6.39
Pit 1 Pit 1 The specifi Bold values NMWQCC = * = Standard NA = No lim	Unknown Unknown NMWQCC ic locations of the F = Indicate the consti s indicate exceedanc = New Mexico Wate ds for domestic wate nit available	11/16/1978 10/26/1977 Pit 1 samples is ituent was not a ce of standard r Quality Contro	2.5 0.03 s unknown nalyzed for	NA In the samp	10.0*	1378 1000*	NA	NA Notes:			250*	1.6	10.0	-	180	3	0.0	Gro Gro	Gra Constitue s Alpha w/ ss Alpha w ss Beta w/0	Pit ab sample c nt Am-241 // U-nat Cs-137	Sampling ollected by Unit pCi/L pCi/L pCi/L	Results NMED on 6 Result 3320.00 4320.00 1290.00	/30/2004 /30/2004 /30/2004 // // // // // // // // // // // //////	6 to 9 Estimated Equivalent 4.91 6.39 1.91
Pit 1 Pit 1 The specifi Bold values NMWQCC = * = Standard NA = No lim < = less thal	Unknown Unknown NMWQCC ic locations of the F = Indicate the consti s indicate exceedanc = New Mexico Wate ds for domestic wate nit available	11/16/1978 10/26/1977 Pit 1 samples is ituent was not a ce of standard r Quality Contro	2.5 0.03 s unknown nalyzed for	NA In the samp	10.0*	1378 1000*	NA	Notes: Nitrate-Nitr	ite stand	dard comb	250*			-	180	3	0.0	Gro Gro Gros	Gra Constitue s Alpha w/ ss Alpha w ss Beta w/ ss Beta w/s	Pin ab sample c nt Am-241 // U-nat Cs-137 Sr/Y-90	Sampling ollected by Unit pCi/L pCi/L pCi/L pCi/L	Results NMED on 6 Result 3320.00 4320.00 1290.00 1250.00	/30/2004 /30/2004 // Unit mg/L mg/L mg/L mg/L	6 to 9 Estimated Equivalent 4.91 6.39 1.91 1.85
Pit 1 Pit 1 The specifi Bold values NMWQCC = * = Standard NA = No lim < = less that pCi/L = pico	Unknown Unknown NMWQCC ic locations of the F = Indicate the consti s indicate exceedanc = New Mexico Wate ds for domestic wate nit available in pocuries per liter	11/16/1978 10/26/1977 Pit 1 samples is ituent was not a ce of standard r Quality Contro	2.5 0.03 s unknown nalyzed for	NA In the samp	10.0*	1378 1000*	NA	Notes: Nitrate-Nitr Radium-22	ite stand	dard comb adium-228	250* ined 3 standard	s combine	d	600*		3	0.0	Gro Gro Gros Uranium	Gra Constitue s Alpha w/ ss Alpha w ss Beta w/G ss Beta w/G a, Mass Co	Pin ab sample c nt Am-241 // U-nat Cs-137 Sr/Y-90 ncentration	Sampling ollected by Unit pCi/L pCi/L pCi/L pCi/L µg/L	Results NMED on 6 Result 3320.00 4320.00 1290.00 1250.00 5100.00	/30/2004 /30/2004 // Unit mg/L mg/L mg/L mg/L	6 to 9 Estimated Equivalent 4.91 6.39 1.91 1.85 5.10
Pit 1 Pit 1 The specifi Bold values NMWQCC = * = Standard NA = No lim < = less that pCi/L = pico	Unknown Unknown NMWQCC ic locations of the F = Indicate the consti s indicate exceedanc = New Mexico Wate ds for domestic wate nit available	11/16/1978 10/26/1977 Pit 1 samples is ituent was not a ce of standard r Quality Contro	2.5 0.03 s unknown nalyzed for	NA In the samp	10.0*	1378 1000*	NA	Notes: Nitrate-Nitr Radium-22	ite stand	dard comb adium-228	250* ined 3 standard	s combine	d	-		3	0.0	Gro Gro Gros Uranium Radium	Gra Constitue s Alpha w/ ss Alpha w ss Beta w/G ss Beta w/G ss Beta w/G n, Mass Co n-226, SDW	Pin ab sample c nt Am-241 // U-nat Cs-137 Sr/Y-90	Sampling ollected by Unit pCi/L pCi/L pCi/L pCi/L	Results NMED on 6 Result 3320.00 4320.00 1290.00 1250.00	/30/2004 /30/2004 // Unit mg/L mg/L mg/L mg/L	6 to 9 Estimated Equivalent 4.91 6.39 1.91 1.85

TABLE 3 DRILLING SOIL SAMPLE ANALYTICAL RESULTS ST. ANTHONY STATUS REPORT

				mg/kg													
SAMPLE ID	SAMPLE LOCATION	SAMPLE DEPTH (feet bgs)	Aluminum	Arsenic	Barium	Beryllium	Boron	Cadmium	Chromium*	Cobalt	Copper	12/17/2004	Copper	Magnesium	Manganese	Molybdenum	
SS-2	MW-2	55	5800	4.1	55	0.65	5.7	<0.066	6.1	6.0	5.4	105.1	-50.1	3800	130	0.34	
SS-3	MW-2	3	11000	6.6	75	0.74	8.7	<0.071	10	6.3	8.1	6.3	8.1	5800	120	0.65	
SS-4	MW-3	4.5	15000	9.2	90	1.0	10	<0.065	16	7.6	15	52.52	37.5	8100	190	0.97	
SS-6	MW-3	50	7600	4.1	330	0.49	7.2	<0.065	57	15	6.6	75.13	254.9	4500	350	0.95	
	NMED SSL		100,000	17.7	78,300	2250	61,600	8600	100,000	20,500	45,400	114	78186.0	NA	21,800	5,680	
												437.01	-437.0				
					mg,	/Kg			μg,	/kg		рC		%			
SAMPLE ID	SAMPLE LOCATION	SAMPLE DEPTH (feet bgs)	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	Mercury**	NA	Radium 226	NA	5854.42 8	Radium 228 error (+/-)	Percent Moisture		
SS-2	MW-2	55	8.4	<0.82	<0.08	< 0.93	16	29	11	500	0.694	500	0.694	0.78	9.7		
SS-3	MW-2	3	11	<0.87	< 0.085	<0.99	19	41	21	15000	1.79	15000	1.79	0.746	15		
SS-4	MW-3	4.5	16	<0.80	< 0.077	<0.90	29	64	13	15000	7.21	15000	7.21	0.704	7.1		
SS-6	MW-3	50	16	<0.80	< 0.078	<0.91	23	31	14	1100	0.328	1100	0.328	0.51	8.0		
	NMED SSL		22,500	5,680	5,680	74.9	7,950	100,000	341	NA		N	A		NA		

Bold values indicate an exceedance of the regulatory standard

NMED SSL = New Mexico Environment Department Soil Screening Levels for Industrial/Occupational Soils

NA = No standard available

bgs = below ground surface

< = less than

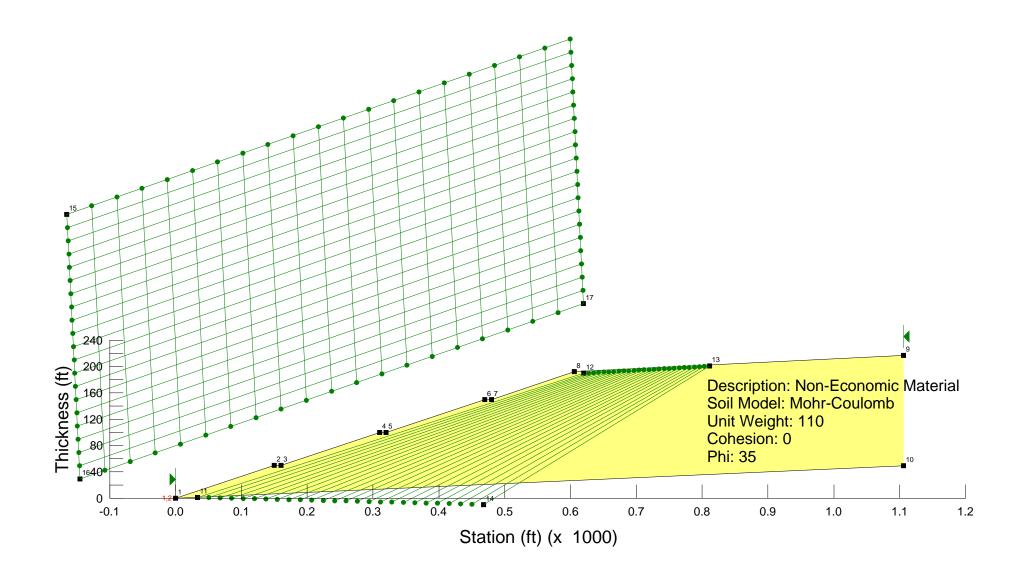
MW = Monitoring Well

SS = Soil Sample

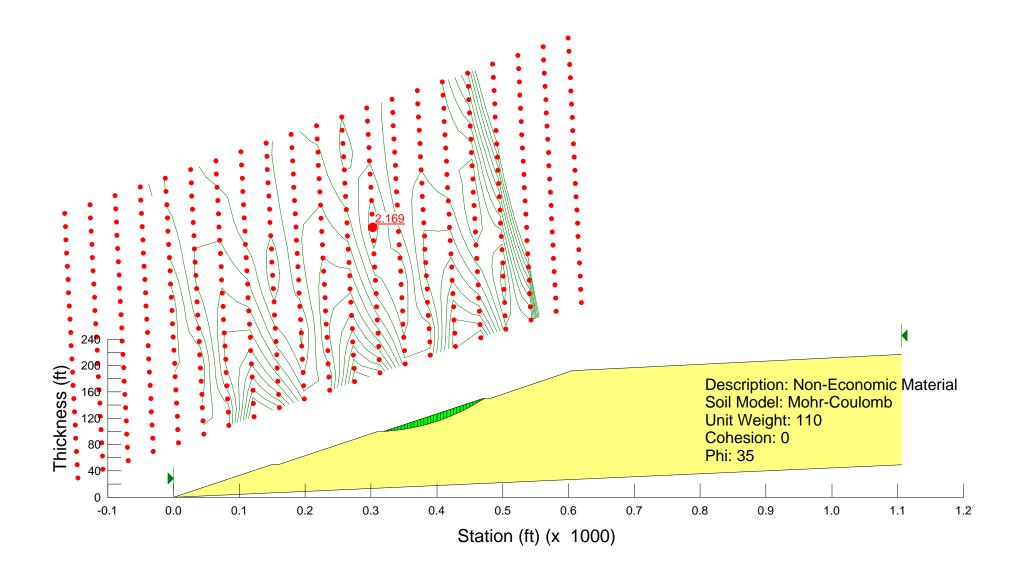
pCi/g = picocuries per gram

ug/kg = micrograms per kilogram

mg/kg = milligrams per kilogram


* Chromium III standard (Chromium IV standard is 3,400 mg/Kg)

** Elemental mercury standard


APPENDIX B

SLOPE STABILITY ANALYSIS

Description: St Anthony Pile 4 Stability Analysis File Name: St Anthony Stability Analysis.slz Analysis Method: Morgenstern-Price Slip Surface Option: Grid and Radius Seismic Coefficient: (none)

Description: St Anthony Pile 4 Stability Analysis File Name: St Anthony Stability Analysis.slz Analysis Method: Morgenstern-Price Slip Surface Option: Grid and Radius Seismic Coefficient: (none)

